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REARRANGEMENTS AND JENSEN TYPE INEQUALITIES

RELATED TO CONVEXITY, SUPERQUADRACITY,

STRONG CONVEXITY AND 1–QUASICONVEXITY

S. ABRAMOVICH AND L.-E. PERSSON

(Communicated by J. Pečarić)

Abstract. In this paper we derive and discuss some new theorems related to all rearrangements
of a given set in R

n , denoted (x) and use the results to prove some new Jensen type inequalities
for convex, superquadratic, strongly convex and 1-quasiconvex functions.

1. Introduction

Let α , β ∈ R and let (x) denote the set of all rearrangements of a given set
(x1,x2, ...,xn) , α < xi < β , i = 1, ...,n . In this paper we obtain new theorems related
to the rearrangements of (x) and use the results to get Jensen’s type inequalities for
convex, superquadratic, strongly convex and 1-quasiconvex functions.

Our first main result proved in Section 2 is:

THEOREM 1. Let F (u,v) be differentiable and symmetric real function defined
on α < u,v < β , −∞ � α < β � ∞ and assume that

∂F (v,u)
∂v

� ∂F (v,w)
∂v

, α < u,v,w < β (1.1)

and
∂F (w,u)

∂w
� ∂F (w,v)

∂w
α < u,v,w < β (1.2)

for u � min(w,v) .
Then, for any set (x) = (x1,x2, ...,xn) , α < xi < β , i = 1, ...,n, given except its

arrangements
n

∑
i=1

F (xi,xi+1) , xn+1 = x1 (1.3)

is maximal if (x) is arranged in circular symmetrical order and minimal if (x) is
arranged in circular alternating order as defined below.

Mathematics subject classification (2010): 26D15, 26A51.
Keywords and phrases: Inequalities, Jensen’s inequality, rearrangements, circular rearrangements,

convexity, superquadracity, strong convexity, 1 -quasiconvexity.

c© � � , Zagreb
Paper JMI-14-41

641

http://dx.doi.org/10.7153/jmi-2020-14-41


642 S. ABRAMOVICH AND L.-E. PERSSON

The maximum of (1.3) was proved in [1] in 1967, as a generalization of the special
case F (x,y) = f (|x− y|) , where f is a concave and decreasing function, which was
proved in 1963 in [5].

The minimum of (1.3) for the special case F (x,y) = xy was dealt with recently
by H. Yu in [8]. There the author introduced the circular alternating order arrangement
of a set (x) and proved that ∑n

i=1 xixi+1, xn+1 = x1 gets its minimum for this specific
arrangement.

This result motivates us to deal again with the behavior of (1.3) under rearrange-
ment of (x) .

We continue by giving some definitions missed in the formulation of Theorem 1
and which are important in the sequel. Moreover, we formulate one more main result
(Theorem 2) and also some other theorems, lemmas and corollaries we need for the
proofs of Theorems 1 and 2.

DEFINITION 1. (See [5] and the illustrations in Figure 1 and Figure 2). An or-
dered set (x) = (x1, ...,xn) of n real numbers is arranged in symmetrical decreasing
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order if
x1 � xn � x2 � xn−1 � ... � x[(n+2)/2] (1.4)

or if
xn � x1 � xn−1 � x2 � ... � x[(n+1)/2]. (1.5)

REMARK 1. When the ordered set (x) = (x1, ...,xn) of n terms satisfies (1.4),
then the ordered set (x2, ...,xn) of n−1 terms satisfies (1.5).

DEFINITION 2. (See [5]) A circular rearrangement of an ordered set (x) is a
cyclic rearrangement of (x) or a cyclic rearrangement followed by inversion; For ex-
ample, the circular rearrangements of the ordered set (1,2,3,4) are the sets

(1,2,3,4) ,(2,3,4,1) ,(3,4,1,2) ,(4,1,2,3) ,
(4,3,2,1) ,(1,4,3,2) ,(2,1,4,3) ,(3,2,1,4) .

DEFINITION 3. (See [5]) A set (x) is arranged in circular symmetrical order if
one of its circular rearrangements is symmetrically decreasing.

DEFINITION 4. (See [8] and the illustrations in Figure 3 and Figure 4). An or-
dered set (x) = (x1, ...,xn) of n real numbers is arranged in alternating order if

x1 � xn−1 � x3 � xn−3 � x5 � ... � x[ n+1
2 ] � ... � xn−4 � x4 � xn−2 � x2 � xn, (1.6)

or if

xn � x2 � xn−2 � x4 � xn−4 � ... � x[ n+1
2 ] � ... � x5 � xn−3 � x3 � xn−1 � x1. (1.7)

REMARK 2. When the ordered set (x) = (x1, ...,xn) of n terms satisfies (1.6),
then the ordered set (x2, ...,xn−1) of n−2 terms satisfies (1.7).

DEFINITION 5. A set (x) is arranged in circular alternating order if one of its
circular rearrangements is arranged in an alternating order.

DEFINITION 6. (See [8]). Given the set

(x) =
(
x1, ...,xi−1,xi,xi+1, ...,x j−1,x j,x j+1, ...,xn

)
,

we call its permutation

(z) =
(
x1, ...,xi−1,x j,x j−1,x j−2, ...,xi+2,xi+1,xi,x j+1, ...,xn

)
a turnover of (x) , for some 1 � i < j � n , in which the order of(

xi,xi+1,xi+2, ...,x j−2,x j−1,x j
)

in (x) is reversed in (z) .
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One more main result proved in Section 2 is the following:

THEOREM 2. Let F = F (u,v) be a differentiable real function defined on α �
u,v � β which is symmetric in u and v. Then ∑n

i=1 F (xi,xi+1) , where xn+1 = x1 , is
maximal if (x) is arranged in circular symmetrical order and minimal if (x) is ar-
ranged in circular alternating order in each of the following cases:

Case 2(a) F (x,y) = f (x+ y) , where f is convex on R+,

Case 2(b) F (x,y) = f (|x− y|) , where f is concave and decreasing on R+ .

Case 2(c) F (x,y) = f
( x+y

2

)
+ f

(∣∣ x−y
2

∣∣) , where f
′

is convex and differentiable on

R+ and f
′
(0) = 0,

Case 2(d) F (x,y)= f
( x+y

2

)
+C×(x−y

2

)2
, where the constant C satisfies C�ϕ ′( xm+x j

2

)
,

with 0 � xm � x j � xi, i �= m, j, i = 1, ...,n, f (x) = xϕ (x) , and ϕ is twice
differentiable and convex function on 0 � x � b.

Case 2(e) F (x,y) = f
( x+y

2

)
+ ϕ ′ ( x+y

2

)( x−y
2

)2
, where ϕ and ϕ ′

are twice differen-
tiable and convex on R+ and f (x) = xϕ (x) .

Next we recall (as mentioned in the introduction) that the maximum value of
∑n

i=1 F (xi,xi+1) , xn+1 = x1 , stated in the following theorem, is proved in [1, Theo-
rem 1]:

THEOREM A. Let F (u,v) be a symmetric function which is defined on α < u,v <
β , −∞ � α < β � ∞ . Let the set (x) = (x1, ...,xn) , α < xi < β , i = 1, ...,n, be given
except its arrangement. If

F (u,v)+F (u,w)−F (w,v) , α < u,v,w < β

is decreasing in v and w for u � min(v,w) , then

n

∑
i=1

F (xi,xi+1) , xn+1 = x1

is maximal if (x) = (x1, ...,xn) , is arranged in circular symmetrical order.

REMARK 3. We get a special case of Theorem A when F (u,v) is differentiable,
symmetric in u and v and (1.1) and (1.2) hold.

Moreover, the case F (u,v) = −(x− y)2 leads to the maximum of ∑n
i=1 xixi+1,

xn+1 = x1 (see [1]).

We also mention that the maximum of ∑n
i=1

(
f
(

xi+xi+1
2

)
+ f

(∣∣∣ xi−xi+1
2

∣∣∣)) ap-

peared as Theorem 2.1 in [2]:
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THEOREM B. Let F (x,y) = f
( x+y

2

)
+ f

(∣∣ x−y
2

∣∣) . If f
′

is convex, x � 0 , and

f
′
(0) = 0 , then

n

∑
i=1

(
f

(
xi + xi+1

2

)
+ f

(∣∣∣∣xi − xi+1

2

∣∣∣∣))
attains its maximum value when (x) = (x1, ...,xn) is arranged in circular symmetrical
order.

The remaining part of the paper is organized as follows: In Section 2 we prove
Theorems 1 and 2. For these proofs we need to prove some lemmas of independent
interest, since they may be regarded as new independent results on rearrangements (see
Lemmas 1, 2, 3 and c.f. also Corollary 1).

With the help of these results we will formulate and prove in Section 3 our new
Jensen type inequalities (see Theorems 3, 4 and 5).

2. Proofs of Theorems 1 and 2: New results on rearrangements

The case for which ∑n
i=1 F (xi,xi+1) , xn+1 = x1 gets its maximal value under rear-

rangements of (x) was proved in [1, Theorem 1] as quoted in Theorem A. Therefore it
is enough to discuss now the case for which ∑n

i=1 F (xi,xi+1) , xn+1 = x1 , gets its mini-
mal value under rearrangements of (x) and we implement these results on inequalities
related to convex, superquadratic, stronly convex and 1-quasiconvex functions in The-
orem 2.

An outline of the proofs of the following three lemmas, a corollary and Theorem
1 is as follows:

We denote a given set of n real numbers according to their increasing order
(a) = (a1,a2, ...,an−1,an) , where a1 � a2 � ... � an−1 � an . We start with an arbi-
trary permutation of (a) called (b) = (b1, ...,bn) . Since our F (u,v) is symmetric and
we are interested in ∑n

i=1 F (bi,bi+1) , bn+1 = b1 , which is clearly invariant under all
circular rearrangements, we can assume that b1 = a1 . Now we go through three per-
mutations which bring us from (b) → (c) → (d) → (e) in which ∑n

i=1 F (bi,bi+1) �
∑n

i=1 F (ci,ci+1) � ∑n
i=1 F (di,di+1) � ∑n

i=1 F (ei,ei+1) , and we make sure that the two
first and two last numbers in (e) are e1 = a1 , e2 = an−1 , en−1 = a2 , en = an , which are
already the two first and the two last in the rearrangements of the alternating order of
type (1.6) (see Figure 1). We realize also that when we check (e2,e3, ...,en−2,en−1) we
already have that e2 and en−1 are the largest and the smallest numbers, respectively, in
(e2,e3, ...,en−2,en−1) .

Now we use the induction procedure: We assume the validity of the Theorem 1 for
the set of n−2 numbers and show that this implies its validity for the set of n numbers.
More specifically, the n− 2 numbers if rearranged in alternating order of (1.7) gives,
according to the induction assumption, the smallest value of ∑n−2

i=2 F (ei,ei+1) and in
the same time we get that (e1, ...,en) is arranged in alternating order too, this time
according to (1.6) and therefore the proof by induction for n numbers is obtained.

In Lemma 1 we perform a permutation on (b) so that in the resulting (c) , the
minimum of ci and the maximum of ci , i = 1, ...,n , are neighbouring terms.
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LEMMA 1. Let (a) be the ordered set (a) = (a1, ...,an) , where a1 � a2 �, ...,�
an−1 � an and its given permutation (b) = (b1, ...,bn) , where b1 = a1 , b j = an. Let
(c) = (c1, ...,cn) =

(
b1,b2, ...,b j−1,bn,bn−1,bn−2, ...,b j+1,b j

)
, which is the turnover of

(b) where c1 = b1 = a1 , cn = b j = an . Let the symmetric and differentiable function
F (x,y) be defined on [a1,an]× [a1,an] . Then,

n

∑
i=1

F (bi,bi+1)−
n

∑
i=1

F (ci,ci+1) � 0

when ∂ (F(x,z)−F(x,y))
∂x � 0 , y � min(z,x) .

Proof. Since (c) is the turnover of (b) that satisfies
(c) =

(
a1,b2, ...,b j−1,bn,bn−1,bn−2, ...,b j+1,b j

)
, we get that

n

∑
i=1

F (ci,ci+1)

=

(
j−2

∑
i=1

F (ci,ci+1)

)
+F

(
c j−1,c j

)
+

(
n−1

∑
i= j

F (ci,ci+1)

)
+F (cn,c1)

=

(
j−2

∑
i=1

F (ci,ci+1)

)
+F

(
c j−1,c j

)
+

(
n− j−1

∑
k=0

F (cn−k−1,cn−k)

)
+F (cn,c1)

=

(
i−2

∑
i=2

F (bi,bi+1)

)
+F

(
b j−1,bn

)
+

(
n− j−1

∑
k=0

F (bn−k−1,bn−k)

)
+F (b j,b1) .

Similarly, we find that

n

∑
i=1

F (bi,bi+1)

=

(
i−2

∑
i=2

F (bi,bi+1)

)
+F

(
b j−1,b j

)
+

(
n− j−1

∑
k=0

F (bn−k−1,bn−k)

)
+F (bn,b1) .

Therefore, using the symmetry of F (u,v) the inequality

n

∑
i=1

F (bi,bi+1)−
n

∑
i=1

F (ci,ci+1)

= F
(
b j−1,b j

)
+F (bn,b1)−

(
F
(
b j−1,bn

)
+F (b j,b1)

)
= F

(
b j−1,an

)
+F (bn,a1)−

(
F
(
b j−1,bn

)
+F (an,a1)

)
=
[
F
(
an,b j−1

)−F (an,a1)
]− [F (bn,b j−1

)−F (bn,a1)
]
� 0,

holds when ∂ (F(x,z)−F(x,y))
∂x � 0, y � min(z,x) , because a1 � bi , i = 2, ...,n , an � bn

and b1 = a1 , b j = an . The proof is complete.
In Lemma 2 we make a turnover from (c) to (d) such that in (d) d2 = an−1.
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LEMMA 2. Let (a) be the ordered set (a) = (a1, ...,an) , where a1 � a2 � ... �
an−1 � an , let (c) = (c1, ...,cn) be such that c1 = a1 , cn = an , ck = an−1 . Let (d) be a
turnover of (c) such that (d) = (c1,ck,ck−1,ck−2, ...,c3,c2,ck+1,ck+2, ...,cn−1,cn) , let
the symmetric and continuouosly differentiable function F (x,y) be defined on [a1,an]×
[a1,an] . Then,

n

∑
i=1

F (ci,ci+1)−
n

∑
i=1

F (di,di+1) � 0

when ∂ (F(x,z)−F(x,y))
∂x � 0 , y � min(z,x) .

Proof. By the turnover of (c) we get that

n

∑
i=1

F (di,di+1)

= F (d1,d2)+

(
k−1

∑
i=2

F (di,di+1)

)
+F (dk,dk+1)+

(
n

∑
i=k+1

F (di,di+1)

)

= F (d1,d2)+

(
k−3

∑
i=0

F (dk−i,dk−i−1)

)
+F (dk,dk+1)+

(
n

∑
i=k+1

F (di,di+1)

)

= F (c1,ck)+

(
k−3

∑
j=0

F
(
ck− j,ck− j−1

))
+F (c2,ck+1)+

(
n

∑
i=k+1

F (ci,ci+1)

)
,

and

n

∑
i=1

F (ci,ci+1)

= F (c1,c2)+

(
k−3

∑
j=0

F
(
ck− j,ck− j−1

))
+F (ck,ck+1)+

(
n

∑
i=k+1

F (ci,ci+1)

)
.

Therefore

n

∑
i=1

F (ci,ci+1)−
n

∑
i=1

F (di,di+1) = F (c1,c2)+F (ck,ck+1)− (F (c1,ck)+F (c2,ck+1)) ,

and

n

∑
i=1

F (ci,ci+1)−
n

∑
i=1

F (di,di+1)

= F (an−1,ck+1)−F (an−1,a1)− [F (c2,ck+1)−F (c2,a1)] � 0

when ∂ (F(x,z)−F(x,y))
∂x � 0, y � min(z,x) , because a1 � c2,ck+1,an−1 and an−1 � c2 ,

and F (·, ·) is symmetric and continuously differentiable. The proof is complete.
In Lemma 3 we make a turnover from (d ) to (e) such that en−1 = a2 .
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LEMMA 3. Let (a) be as before and let (d) be such that d1 = a1,d2 = an−1

dn = an and dm = a2 . By the turnover of (d) we get

(e) = (e1,e2,e3, ...,en−2,en−1,en) = (d1,d2, ...,dm−1,dn−1,dn−2, ...,dm,dn) ,

where e1 = a1 = d1, e2 = an−1 = d2, en = an = dn and en−1 = a2 = dm . Let the sym-
metric and continuously differentiable function F (x,y) be defined on [a1,an]× [a1,an] .
Then,

n

∑
i=1

F (di,di+1)−
n

∑
i=1

F (ei,ei+1) � 0 (2.1)

when ∂ (F(x,z)−F(x,y))
∂x � 0 , y � min(z,x) .

Proof. Using the same idea as in the proof of the former lemmas, we get that

n

∑
i=1

F (di,di+1)−
n

∑
i=1

F (ei,ei+1)

= F (dm−1,dm)+F (dn−1,dn)− [F (dm−1,dn−1)+F (dm,dn)]
= F (an,dn−1)−F (an,a2)− [F (dm−1,dn−1)−F (dm−1,a2)] .

For inequality (2.1) to hold, we see that it is sufficient that

F (an,dn−1)−F (an,a2) � [F (dm−1,dn−1)−F (dm−1,a2)]

holds and this occurs because ∂ (F(x,z)−F(x,y))
∂x � 0. y � min(z,x) and dn−1 , dm−1 � a2,

an � dm−1 are satisfied and F (·, ·) is symmetric and continuously differentiable. The
proof is complete.

COROLLARY 1. By the three turnovers, from (b) to (c) in Lemma 1, from (c) to
(d) in Lemma 2 and from (d) to (e) in Lemma 3 it is clear that starting with a given
arrangement (b) we get an arrangement (e) for which e1 = a1 , e2 = an−1 , en−1 = a2

and en = an that leads to

n

∑
i=1

F (bi,bi+1) �
n

∑
i=1

F (ei,ei+1) .

Moreover, we realize that the rearrangement (e) is a step in rearranging the original
(b) toward its alternating order (see also Figure 3 and Figure 4).

With help of the inequalities obtained in lemmas 1, 2, 3 and Corollary 1, we are
ready to present and complete the

Proof of Theorem 1. First we verify the statement in the theorem for n = 3 and n =
4 by just computing all the different rearrangements. We prove now that ∑n

i=1 F (bi,bi+1) ,
bn+1 = b1 gets its minimal value when (b) is arranged in alternating order. We can
assume that b1 = a1, b2 = an−1, bn = an and bn−1 = a2 because otherwise the ar-
rangement does not give the minimal sum of ∑n

i=1 F (bi,bi+1) as shown in Lemmas
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1, 2, 3 and Corollary 1. Then, the set (b2,b3, ...,bn−1) , b2 = an−1 , bn−1 = a2 , satis-
fies b2 � bl � bn−1 l = 3,4, ...,n− 2. According to the induction assumption when
(b2,b3, ...,bn−1) is arranged in the alternating order (1.7), the sum ∑n−1

i=2 F (bi,bi+1) ,
bn = b2 , attains its minimum value which we denote (b̃2, ..., b̃n−1) . Because already
b1 = a1 , bn = an , b2 = b̃2 = an−1 and bn−1 = b̃n−1 = a2 , we get

n

∑
i=1

F (bi,bi+1)

= F (b1,b2)+

[
n−2

∑
i=2

F (bi,bi+1)+F (bn−1,b2)

]
−F (bn−1,b2)+F (bn−1,bn)+F (bn,b1)

= F (a1,an−1)+

[
F (an−1,b3)+

n−2

∑
i=3

F (bi,bi+1)+F (a2,an−1)

]
−F (a2,an−1)+F (a2,an)+F (an,a1)

� F (a1,an−1)+

[
F
(
an−1, b̃3

)
+

n−2

∑
i=3

F
(
b̃i, b̃i+1

)
+F (a2,an−1)

]
−F (a2,an−1)+F (a2,an)+F (an,a1)

= F (a1,an−1)+F
(
an−1, b̃3

)
+

n−2

∑
i=3

F
(
b̃i, b̃i+1

)
+F (a2,an)+F (an,a1)

=
n

∑
i=1

F
(
b̃i, b̃i+1

)
.

Indeed, using the induction assumption on (b̃2, ..., b̃n−1) we obtain ∑n−1
i=2 F (bi,bi+1) �

∑n−1
i=2 F

(
b̃i, b̃i+1

)
as simultaneously both (b̃2, ..., b̃n−1) and (b̃1,b̃2, ..., b̃n−1, b̃n) , ac-

cording to (1.7) and (1.6) respectively, are arranged in alternating order as is empha-
sized in Remark 2, the minimum of ∑n

i=1 F (bi,bi+1) and ∑n−1
i=2 F (bi,bi+1) are obtained

simultaneously when b1 = a1 , b2 = an−1 , bn−1 = a2 and bn = an . The proof of The-
orem 1 is complete.

Proof of Theorem 2. Case 2(a) is trivial to verify and therefore its proof is omitted.
Case 2(b) that states that (1.1) and (1.2) hold in this case was proved in [1, Theo-

rem1] (see Theorem A).

Case 2(c): In Theorem B it is proved that the maximum of ∑n
i=1 f

(
xi+xi+1

2

)
+

f
(∣∣∣ xi−xi+1

2

∣∣∣) , xn+1 = x1 is obtained when (x) is arranged in circular symmetrical order.

To complete the proof of Case 2(c), we prove now that:

The minimum of ∑n
i=1 f

(
xi+xi+1

2

)
+ f

(∣∣∣ xi−xi+1
2

∣∣∣) , xn+1 = x1 , is obtained when

(x) is arranged in alternating order and f
′
is convex on R+ and f

′
(0) = 0 for which,

according to Theorem 1, we have to show that

∂F (u,v)
∂v

− ∂F (w,v)
∂v

� 0,
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which means in our case that

∂ f (u+ v)
∂v

+
∂ f (|v−u|)

∂v
� ∂ f (w+ v)

∂v
+

∂ f (|v−w|)
∂v

.

has to be satisfied. Therefore when u � w � v we want to prove that the inequality

∂ f (u+ v)
∂v

+
∂ f (v−u)

∂v
� ∂ f (w+ v)

∂v
+

∂ f (v−w)
∂v

which is the same as

∂ f (v−u)
∂v

− ∂ f (v−w)
∂v

� ∂ f (w+ v)
∂v

− ∂ f (u+ v)
∂v

holds. The last inequality is satisfied because f
′
is convex.

Now we deal with the case that u � v � w and we have to show that

H1 (u,v) :=
∂ f (u+ v)

∂v
+

∂ f (v−u)
∂v

� ∂ f (w+ v)
∂v

− ∂ f (w− v)
∂v

=: H2 (w,v) .

It is obvious that when u = v = w there is equality in the last inequality because f
′
(0) =

0 which means that H1 (v,v) = H2 (v,v) = ∂ f (2v)
∂v . Moreover,

∂H1 (u,v)
∂u

=
∂ 2 f (u+ v)

∂v∂u
− ∂ 2 f (v−u)

∂v∂u
= f ” (x)/x=u+v− f ” (y)/y=v−u � 0

because f ” (x) is increasing as a result of the convexity of f
′
(x) when x � 0. Therefore

H1 (u,v) � H1 (v,v) because u � v. Similarly we get that also H2 (w,v) is increasing
with w , which leads to H2 (v,v) � H2 (w,v) . Summing up, we get that

H1 (u,v) � H1 (v,v) = H2 (v,v) � H2 (w,v)

holds. The proof of the Case 2(c) is complete.
We prove now Case 2(d): We have to show that

n

∑
i=1

f

(
x̃i + x̃i+1

2

)
+C×

(
x̃i − x̃i+1

2

)2

�
n

∑
i=1

f

(
xi + xi+1

2

)
+C×

(
xi − xi+1

2

)2

�
n

∑
i=1

f

(
x̂i + x̂i+1

2

)
+C×

(
x̂i − x̂i+1

2

)2

,

where (x̂) = (x̂1, ..., x̂n) is the circular symmetrical order of (x) and (x̃) is the circular
alternating order of (x) when xi � 0, i = 1, ...,n .

In our case, according to Theorem 1, we have to prove that

1
2

f
′
(

u+ v
2

)
+C×

(
v−u

2

)
� 1

2
f
′
(

w+ v
2

)
+C×

(
v−w

2

)
,
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which is the same as to prove that

1
2

f
′
(

u+ v
2

)
−C

u
2

� 1
2

f
′
(

w+ v
2

)
−C

w
2

.

It is obvious that for u = v = w there is equality in the last inequality.
We show now that the function H (u,v) = 1

2 f
′ ( u+v

2

)−Cu
2 is increasing with u ,

that is ∂H(u,v)
∂u = 1

4 f
” ( u+v

2

)− C
2 � 0. This follows because C � ϕ ′ ( xm+x j

2

)
, where

xm � x j � xi , i �= m, j, i = 1, ...,n, and because f
”
(x) = xϕ” (x)+2ϕ ′

(x) and hence
∂H(u,v)

∂u can be rewritten as

∂H (u,v)
∂u

=
1
4

(
u+ v

2

)
ϕ”
(

u+ v
2

)
+

2
4

ϕ
′
(

u+ v
2

)
− 1

2
C

and because ϕ ′
is increasing and

ϕ
′
(

u+ v
2

)
� ϕ

′
(

xm + x j

2

)
� C

we get that ∂H(u,v)
∂u � 0 and therefore when 0 � u � w,v , we conclude that H (u,v) �

H (w,v) and the proof of Case 2(d) is complete.
We prove finally Case 2(e). We have to show that

n

∑
i=1

(
f

(
x̃i + x̃i+1

2

)
+ ϕ

′
(

x̃i + x̃i+1

2

)(
x̃i− x̃i+1

2

)2
)

(2.2)

�
n

∑
i=1

(
f

(
xi + xi+1

2

)
+ ϕ

′
(

xi + xi+1

2

)(
xi− xi+1

2

)2
)

�
n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+ ϕ

′
(

xi + xi+1

2

)(
x̂i− x̂i+1

2

)2
)

holds, where (x̂) is the circular symmetrical arrangement of (x) and (x̃) is the circular
and alternating order of (x) .

As before we have to prove that under our conditions

∂F (v,u)
∂v

− ∂F (v,w)
∂v

� 0

when 0 � u � v,w , which means in our case that F (v,u) = f
(

u+v
2

)
+ ϕ ′ (u+v

2

)(
u−v
2

)2
and f (x) = xϕ (x) , ϕ and ϕ ′

are convex, we must prove that

ϕ” (u+ v)(v−u)2 + ϕ
′
(u+ v)(3v−u)+ ϕ (u+ v)

−
[
ϕ” (u+ v)(v−w)2 + ϕ

′
(w+ v)(3v−w)+ ϕ (w+ v)

]
� 0.



652 S. ABRAMOVICH AND L.-E. PERSSON

We show now that for every v � 0

H (u,v) = ϕ” (u+ v)(v−u)2 + ϕ
′
(u+ v)(3v−u)+ ϕ (u+ v)

is increasing with u . In other words, we must show that

∂H (u,v)
∂u

= ϕ
′′′

(u+ v)(v−u)2 + ϕ
′′
(u+ v)(u+ v) � 0,

and this holds because it is given that ϕ and ϕ ′
are convex. Hence (2.2) is proved. The

proof of Theorem 2 is complete.

REMARK 4. The function f (x) =−x2 is an example of functions where Theorem
2 Case 2(b) can be applied.

The functions f (x) = xp p � 2, x � 0 and f (x) = x2 lnx, x � 0 are immediate
examples of functions where we can apply Theorem 2 Case 2(c).

Theorem 2 Case 2(d) is satisfied for example for the 1-quasiconvex function
f (x) = x4, and the 1-quasiconvex function f (x) = x2 lnx, x > 0, f (0) = 0, for xi > 0,
i = 1, ...,n .

The assumptions in Theorem 2 Case 2(e) are satisfied e.g., by f (x) = xp , x � 0,
p > 3.

3. Jensen type inequalities and rearrangements

We start with quoting some definitions and lemmas that we need for the proof of
the theorems presented in the sequel:

DEFINITION 7. A function ϕ : [0,B) → R is superquadratic provided that for all
x ∈ [0,B) there exists a constant Cϕ (x) ∈ R such that the inequality

ϕ (y) � ϕ (x)+Cϕ (x) (y− x)+ ϕ (|y− x|)

holds for all y ∈ [0,B) , (see [3, Definition 2.1], but there [0,∞) instead [0,B)).

LEMMA 4. ([3, Inequality 1.2]) The inequality∫
ϕ ( f (s))dμ (s) � ϕ

(∫
f dμ

)
+
∫

ϕ
(∣∣∣∣ f (s)−

∫
f dμ

∣∣∣∣)dμ (s)

holds for all probability measures μ and all non-negative, μ− integrable functions f
if and only if ϕ is superquadratic.

LEMMA 5. ([3, Lemma 2.1]) Let ϕ be a superquadratic function with Cϕ (x) as
in Definition 7.

(i) Then ϕ (0) � 0 .
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(ii) If ϕ (0)= ϕ ′
(0)= 0, then Cϕ (x) = ϕ ′

(x) whenever ϕ is differentiable on [0,B) .

(iii) If ϕ � 0, then ϕ is convex and ϕ (0) = ϕ ′
(0) = 0 .

COROLLARY 2. Suppose that f is superquadratic. Let n ∈ N , 0 � xi < B, i =
1, ...,n and let x = ∑n

i=1 aixi, where ai � 0, i = 1, ...,n and ∑n
i=1 ai = 1. Then

n

∑
i=1

ai f (xi)− f (x) �
n

∑
i=1

ai f (|xi − x|) . (3.1)

If f is non-negative, then it is also convex and the inequality refines Jensen’s inequality.
In particular, the functions f (x) = xr , x � 0, r � 2 are superquadratic and convex, and
equality holds in inequality (3.1) when r = 2 .

LEMMA 6. ([3, Lemma 3.1]) Suppose ϕ : [0,B) → R is continuously differen-
tiable and ϕ (0) � 0 . If ϕ ′

is superadditive or ϕ ′
(x)/x is non-decreasing, then ϕ is

superquadratic and Cϕ (x) = ϕ ′
(x) with Cϕ (x) as in Definition 7.

The following is a definition of the Jensen inequality for strongly convex functions
with modulus C .

DEFINITION 8. ([6] and [7]) Let n∈N . The function f : I →R , I ⊂R is strongly
convexwith modulus C if for all xi ∈ I , and all ai � 0, i = 1, ...,n such that ∑n

i=1 ai = 1,
the inequality

n

∑
i=1

ai f (xi)− f (x) � C
n

∑
i=1

ai (xi− x)2 ,

where C � 0 and x = ∑n
i=1 aixi , holds.

DEFINITION 9. [4] Let N ∈ N . A real-valued function ψN defined on an interval
[a,b) with 0� a< b � ∞ is called N -quasiconvex if it can be represented as the product
of a convex function ϕ and the function p(x) = xN . For N = 0, ψ0 = ϕ and for N = 1
the function ψ1 (x) = xϕ (x) is called 1-quasiconvex function and for all n∈N satisfies
the inequalities

n

∑
i=1

aiψ1 (xi) � ψ1 (x)+ ϕ
′
(x)

n

∑
i=1

ai (xi− x)2 (3.2)

� ψ1 (x)+C
n

∑
i=1

ai (xi − x)2 ,

where C � minϕ ′
(xi) , ai � 0, i = 1, ...,n , ∑n

i=1 ai = 1 and x = ∑n
i=1 aixi .

In the following theorems we introduce new types of Jensen inequalities which
involve rearrangement of (x) = (x1,x2, ...,xn) . As in the former section, x̂i and x̃i are
the i− th numbers in (x̂) , the circular symmetrical decreasing order and the circular
alternating order (x̃) , respectively.
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The new Jensen type inequalities are derived from the cases 2(c), 2(d) and 2(e) of
Theorem 2.

We start with a Jensen type inequality for superquadratic functions. This is a result
of Theorem B together with Theorem 2 Case 2(c), when F (x,y) = f

( x+y
2

)
+ f
(∣∣ x−y

2

∣∣) ,
and it shows the use of rearrangements to get a refinement of Jensen type inequality:

THEOREM 3. Let xi , i = 1, ...,n, n ∈ N be a sequence of real non-negative num-
bers and let f be differentiable on R+ , f

′
is convex on R+ , f

′
(0) = 0 and f (0) � 0 .

Then, for the superquadratic function f , the following Jensen type inequalities hold:

n

∑
i=1

f (xi)− (n−1) f

(
∑n

j=1 x j

n

)
− (n−1)

n

∑
i=1

1
n

f

(∣∣∣∣xi−
∑n

j=1 x j

n

∣∣∣∣) (3.3)

� 1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+ f

(∣∣∣∣ x̂i − x̂i+1

2

∣∣∣∣))
� 1

n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+ f

(∣∣∣∣xi − xi+1

2

∣∣∣∣))
� 1

n

n

∑
i=1

(
f

(
x̃i + x̃i+1

2

)
+ f

(∣∣∣∣ x̃i − x̃i+1

2

∣∣∣∣))
and

n

∑
i=1

f (xi)−n f

(
∑n

j=1 x j

n

)
−

n

∑
i=1

f

(∣∣∣∣xi −
∑n

j=1 x j

n

∣∣∣∣) (3.4)

� 1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+ f

(∣∣∣∣ x̂i − x̂i+1

2

∣∣∣∣))

−
(

f

(
∑n

j=1 x j

n

)
+

n

∑
i=1

1
n

f

(∣∣∣∣xi −
∑n

j=1 x j

n

∣∣∣∣)
)

.

� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+ f

(∣∣∣∣xi − xi+1

2

∣∣∣∣))

−
(

f

(
∑n

j=1 x j

n

)
+

n

∑
i=1

1
n

f

(∣∣∣∣xi −
∑n

j=1 x j

n

∣∣∣∣)
)

� 1
n

n

∑
i=1

(
f

(
x̃i + x̃i+1

2

)
+ f

(∣∣∣∣ x̃i − x̃i+1

2

∣∣∣∣))

−
(

f

(
∑n

j=1 x j

n

)
+

n

∑
i=1

1
n

f

(∣∣∣∣xi −
∑n

j=1 x j

n

∣∣∣∣)
)

.

If, in addition

1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+ f

(∣∣∣∣ x̂i − x̂i+1

2

∣∣∣∣)) (3.5)
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�
(

f

(
∑n

j=1 x j

n

)
+

n

∑
i=1

1
n

f

(∣∣∣∣xi −
∑n

j=1 x j

n

∣∣∣∣)
)

then (3.4) refines (3.1) when ai = 1
n , i = 1, ...,n.

Proof. According to (3.1), a superquadratic function f satisfies

n

∑
i=1

f (xi)−n f

(
∑n

j=1 x j

n

)
−

n

∑
i=1

f

(∣∣∣∣xi −
∑n

j=1 x j

n

∣∣∣∣)� 0. (3.6)

Inequality (3.6) is not affected by any rearrangement of (x) .
Moreover, from (3.1) it follows that

n

∑
i=1

f (xi) =
n

∑
i=1

f (xi)+ f (xi+1)
2

(3.7)

�
n

∑
i=1

(
f

(
xi + xi+1

2

)
+ f

(∣∣∣∣xi − xi+1

2

∣∣∣∣))
holds.

Therefore, by using (3.6) and (3.7) we get the inequalities

n

∑
i=1

f (xi) (3.8)

=
1
n

n

∑
i=1

f (xi)+ (n−1)
n

∑
i=1

f (xi)
n

� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+ f

(∣∣∣∣xi− xi+1

2

∣∣∣∣))+(n−1)
n

∑
i=1

f (xi)
n

� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+ f

(∣∣∣∣xi− xi+1

2

∣∣∣∣))+(n−1) f

(
n

∑
i=1

xi

n

)

+(n−1)
n

∑
i=1

1
n

f

(∣∣∣∣∣xi −
n

∑
j=1

x j

n

∣∣∣∣∣
)

.

By combining the inequalities (3.8) together with Theorem 2 Case 2(c), regarding rear-
rangement we find that (3.3) holds.

If (3.5) holds it is clear that (3.4) refines (3.1) for ai = 1
n , i = 1, ...,n . The proof is

complete.

EXAMPLE 1. When n = 3, xi = i , i = 1,2,3, and f (x) = x4 , (3.4) is a refinement
of (3.6). In this specific case (3.4) reads:

3

∑
i=1

x4
i −3

(
∑3

j=1 x j

3

)4

−
3

∑
i=1

(∣∣∣∣∣xi −
∑3

j=1 x j

3

∣∣∣∣∣
)4
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>
1
3

3

∑
i=1

((
xi + xi+1

2

)4

+
(∣∣∣∣xi − xi+1

2

∣∣∣∣)4
)

−
⎛⎝(∑3

j=1 x j

3

)4

+
3

∑
i=1

1
3

(∣∣∣∣∣xi −
∑3

j=1 x j

3

∣∣∣∣∣
)4
⎞⎠> 0,

whereas from the basic inequality (3.1) satisfied by superquadratic functions we get the
weaker result

3

∑
i=1

x4
i −3

(
∑3

j=1 x j

3

)4

−
3

∑
i=1

(∣∣∣∣∣xi −
∑3

j=1 x j

3

∣∣∣∣∣
)4

� 0,

and from the convexity of f (x) = x4 we get only that:

3

∑
i=1

x4
i −3

(
∑3

j=1 x j

3

)4

> 0.

The three inequalities show that we get in this case a refinement of Jensen type inequal-
ity for the superquadratic and the convex function f (x) = x4 .

The following theorem shows the use of rearrangements for refinements of Jensen
type inequality for 1-quasiconvex functions by using Case 2(d) of Theorem 2.

THEOREM 4. Let xi , i = 1, ...,n, n ∈ N be a sequence of real non-negative num-
bers and let ϕ be convex on x � 0 and f (x) = xϕ (x) . Let C � minϕ ′

(xi) , i = 1, ...,n.
Then the 1 -quasiconvex function f (which is strongly convex when C � 0 ) satisfies

n

∑
i=1

f (xi) =
1
2

n

∑
i=1

( f (xi)+ f (xi+1)) (3.9)

�
n

∑
i=1

f

(
x̂i + x̂i+1

2

)
+ ϕ

′
(

x̂i + x̂i+1

2

)(
x̂i − x̂i+1

2

)2

�
n

∑
i=1

f

(
x̂i + x̂i+1

2

)
+C×

(
x̂i − x̂i+1

2

)2

�
n

∑
i=1

f

(
xi + xi+1

2

)
+C×

(
xi − xi+1

2

)2

�
n

∑
i=1

f

(
x̃i + x̃i+1

2

)
+C×

(
x̃i − x̃i+1

2

)2

,

and

n

∑
i=1

f (xi)−(n−1) f

(
∑n

j=1x j

n

)
−n−1

n
ϕ

′
(

∑n
j=1x j

n

) n

∑
i=1

(
xi−

∑n
j=1x j

n

)2

(3.10)
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� 1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+C×

(
x̂i− x̂i+1

2

)2
)

� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+C×

(
xi− xi+1

2

)2
)

� 1
n

n

∑
i=1

(
f

(
x̃i + x̃i+1

2

)
+C×

(
x̃i− x̃i+1

2

)2
)

.

If, in addition,

1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+C×

(
x̂i − x̂i+1

2

)2
)

(3.11)

−
(

f

(
∑n

j=1 x j

n

)
+C

n

∑
i=1

1
n

(
xi −

∑n
j=1 x j

n

)2
)

� 0

then

n

∑
i=1

f (xi)−n f

(
∑n

j=1 x j

n

)
−C×

n

∑
i=1

(
xi−

∑n
j=1 x j

n

)2

(3.12)

� 1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+C×

(
x̂i − x̂i+1

2

)2
)

−
(

f

(
∑n

j=1 x j

n

)
+C

n

∑
i=1

1
n

(
xi −

∑n
j=1 x j

n

)2
)

.

Proof. Inequality (3.9) is an immediate consequence of (3.2) for n = 2

f (xi)+ f (xi+1)
2

(3.13)

� f

(
xi+xi+1

2

)
+ϕ

′
(

xi+xi+1

2

)(
xi−xi+1

2

)2

� f

(
xi+xi+1

2

)
+C×

(
xi−xi+1

2

)2

together with the inequalities in Theorem 2, Case 2(d), concerning rearrangement.
We prove now (3.10):

n

∑
i=1

f (xi) (3.14)

=
1
n

n

∑
i=1

f (xi)+
n−1

n

n

∑
i=1

f (xi)

� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+ ϕ

′
(

xi + xi+1

2

)(
xi − xi+1

2

)2
)

+
n−1

n

n

∑
i=1

f (xi)
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� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+C×

(
xi − xi+1

2

)2
)

+
n−1

n

n

∑
i=1

f (xi)

� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+C×

(
xi − xi+1

2

)2
)

+(n−1) f

(
∑n

i=1 xi

n

)

+(n−1)ϕ
′
(

∑n
i=1 xi

n

) n

∑
i=1

1
n

(
xi−

∑n
j=1 x j

n

)2

.

Indeed, the first two inequalities in (3.14) follow from (3.13). The third inequality
follows from (3.2). From the first and the last lines in (3.14) we get

n

∑
i=1

f (xi)− (n−1) f

(
∑n

i=1 xi

n

)
− (n−1)

n
ϕ

′
(

∑n
i=1 xi

n

) n

∑
i=1

(
xi −

∑n
j=1 x j

n

)2

� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+C×

(
xi− xi+1

2

)2
)

.

Therefore, also

n

∑
i=1

f (x̂i)−(n−1) f

(
∑n

i=1x̂i

n

)
− (n−1)

n
ϕ

′
(

∑n
i=1x̂i

n

) n

∑
i=1

(
x̂i−

∑n
j=1x̂ j

n

)2

(3.15)

� 1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+C×

(
x̂i − x̂i+1

2

)2
)

.

Since ∑n
i=1 f (xi)−( n−1) f

(
∑n

i=1 xi
n

)
− n−1

n ϕ ′ (∑n
i=1 xi
n

)
∑n

i=1

(
xi− ∑n

j=1 x j

n

)2
is not

dependent on the arrangement of (x) we get from (3.15) that

n

∑
i=1

f (xi)−(n−1) f

(
∑n

i=1xi

n

)
−n−1

n
ϕ

′
(

∑n
i=1xi

n

) n

∑
i=1

(
xi−

∑n
j=1x j

n

)2

(3.16)

� 1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+C×

(
x̂i − x̂i+1

2

)2
)

holds. Inequality (3.10) is derived from Inequality (3.16) and Theorem 2 Case 2(d)
(which implies that the two last inequalities in (3.10) hold). Inequality (3.12) is a rewrit-
ing of (3.10). If (3.11) holds then it is obvious that (3.12) is a refinement of (3.2) for
ai = 1

n , i = 1, ...,n . The proof is complete.
We finish by stating a result which follows from Theorem 2, Case 2(e). Its proof

is omitted because it is similar to the proofs of Theorems 3 and 4.

THEOREM 5. Let xi , i = 1, ...,n, n ∈ N be a sequence of real non-negative num-
bers, and let ϕ and ϕ ′

be convex on R+ and f (x) = xϕ (x) , x ∈ R+ . Then denoting
x = 1

n ∑n
j=1 x j , it yields that

n

∑
i=1

f (xi)− (n−1) f (x)− (n−1)ϕ
′
(x)

n

∑
i=1

1
n

(xi − x)2
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� 1
n

n

∑
i=1

(
f

(
x̂i + x̂i+1

2

)
+ ϕ

′
(

x̂i + x̂i+1

2

)(
x̂i − x̂i+1

2

)2
)

� 1
n

n

∑
i=1

(
f

(
xi + xi+1

2

)
+ ϕ

′
(

xi + xi+1

2

)(
xi − xi+1

2

)2
)

� 1
n

n

∑
i=1

(
f

(
x̃i + x̃i+1

2

)
+ ϕ

′
(

x̃i + x̃i+1

2

)(
x̃i − x̃i+1

2

)2
)

.

If also

1
n

n

∑
i=1

(
f

(
x̂i+x̂i+1

2

)
+ϕ

′
(

x̂i+x̂i+1

2

)(
x̂i−x̂i+1

2

)2
)

� f (x)+
1
n

ϕ
′
(x)

n

∑
i=1

(xi−x)2 ,

then
n

∑
i=1

f (xi)−n f (x)−ϕ
′
(x)

n

∑
i=1

(xi − x)2

� 1
n

n

∑
i=1

(
f

(
x̂i+x̂i+1

2

)
+ϕ

′
(

x̂i+x̂i+1

2

)(
x̂i−x̂i+1

2

)2
)
− f (x)−ϕ

′
(x)

n

∑
i=1

1
n

(xi−x)2 �0.
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