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Essentials

• Von Willebrand factor (VWF) stabilizes factor VIII

(FVIII) and prevents its premature clearance.

• Rat anatomical and hepatocellular distribution studies

assessed the VWF effect on FVIII clearance.

• Hepatocytes and liver sinusoidal endothelial cells play a

key role in FVIII clearance.

• Anatomical and hepatocellular distribution of FVIII is

independent of high-affinity VWF binding.

Abstract. Background: Von Willebrand factor (VWF) sta-

bilizes factor VIII in the circulation and prevents its prema-

ture clearance. Objective: To study the effects of VWF on

FVIII clearance in rats with endogenous VWF. Methods:

Anatomical and hepatocellular distribution studies were

performed in rats following intravenous administration of

glycoiodinated recombinant FVIII (rFVIII) and a FVIII

variant, FVIII-Y1680F, lacking high-affinity VWF bind-

ing. Radioactivity was quantified in organs, and in distinct

liver cell populations. The role of VWF binding was also

studied by immunohistochemical staining of rat livers per-

fused ex vivo with rFVIII alone or with a FVIII-binding

VWF fragment. Results: The liver was the predominant

organ of rFVIII distribution, and a radioactivity peak was

also observed in the intestines, suggesting FVIII secretion

to the bile by hepatocytes. In the liver, ~60% of recovered

radioactivity was associated with hepatocytes, 32% with

liver sinusoidal endothelial cells (LSECs), and 9% with

Kupffer cells (KCs). When calculated per cell, 1.5-fold to 3-

fold more radioactivity was associated with LSECs than

with hepatocytes. The importance of hepatocytes and

LSECs was confirmed by immunohistochemical staining;

strong staining was seen in LSECs, and less intense, punc-

tate staining in hepatocytes. Minor staining in KCs was

observed. Comparable anatomical and hepatocellular dis-

tributions were observed with rFVIII and FVIII-Y1680F,

and the presence of the VWF fragment, D’D3A1, did not

change the FVIII staining pattern in intact livers. Conclu-

sions: The present data support FVIII clearance via the

liver, with hepatocytes and LSECs playing a key role.

High-affinity VWF binding did not alter the anatomical or

hepatocellular distribution of FVIII.

Keywords: distribution; hemophilia A; hepatocytes;

immunohistochemistry; liver.

Introduction

Factor VIII plays a critical role in the coagulation system

[1], and a deficiency of FVIII results in impaired hemosta-

sis, as seen in patients with hemophilia A [2]. The major

site of FVIII biosynthesis is the liver, with liver sinusoidal

endothelial cells (LSECs) having a primary role in produc-

ing and secreting FVIII [3–5]. FVIII associates with von

Willebrand factor (VWF), which stabilizes FVIII and pre-

vents its premature clearance [6,7], as demonstrated by the

short half-life (t1/2) of FVIII in the absence of VWF [8,9].

In humans, FVIII has a circulatory t1/2 of ~12 h in the pres-

ence of VWF, whereas, in type 3 von Willebrand disease,

the absence of VWF reduces the t1/2 of infused FVIII to

2.5 h [7,10]. FVIII binds tightly to VWF, with a dissocia-

tion constant of 0.3 nM [11], leaving only 2–5% of FVIII

not bound to VWF [12]. High-affinity binding of FVIII to

VWF is dependent on sulfation of Tyr1680 [13,14], and
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mutation of this residue results in faster clearance of FVIII

and a subsequent reduction in plasma levels [13,15]. The

majority of FVIII may be cleared in complex with VWF, as

supported by the observation that decreased VWF clear-

ance – seen as a reduction in the VWF propeptide to VWF

antigen ratio – results in increased FVIII plasma levels [6].

Previous studies have demonstrated that both FVIII and

VWF are primarily cleared via the liver [6,16], and identified

Kupffer cells (KCs) and hepatocytes as the primary liver cell

types responsible for FVIII uptake [16,17]. To further

understand the clearance of FVIII in the presence and

absence of VWF, anatomical and hepatocellular distribu-

tion studies were performed in rats, comparing 125I-labeled

recombinant FVIII (rFVIII) with FVIII-Y1680F, which has

markedly reduced affinity for VWF [13,14]. Radioiodina-

tion of tyrosine residues, using the classic methods such as

those involving lactoperoxidase [18], chloramine T [19] or

iodogen, [20], results in randomly labeled proteins that are

stable in vivo for no more than a few hours, as the 125I can

be rapidly cleaved off [21,22]. For the present study, a novel

method of radioiodination, termed ‘glycoiodination’, was

developed in order to follow FVIII for up to 16 h in vivo. In

this method, a prosthetic 125I-labeled group was selectively

conjugated to the proteins’ N-glycans, resulting in glycoiod-

inated rFVIII and FVIII-Y1680F molecules that were func-

tionally active and resistant to deradioiodination over

extended time frames in vivo. Although the loss of high-affi-

nity binding to VWF decreased the t1/2 of FVIII approxi-

mately four-fold in rats, it did not affect the anatomical or

hepatocellular distribution of FVIII. Furthermore, the pre-

sent studies indicate an important role for hepatocytes and

LSECs in the clearance of FVIII, both in the presence and

in the absence of high-affinity VWF binding.

Materials and methods

Proteins

The rFVIII used was turoctocog alfa (Novo Nordisk, Bags-

værd, Denmark) [23]. The Y1680F substitution was intro-

duced by modifying the turoctocog alfa-coding DNA by

site-directed mutagenesis, and FVIII-Y1680F was produced

as described previously [23]. The monomeric D0D3A1 VWF

fragment comprising residues 764–1464 of full-length

human VWF, and with Cys1099 and Cys1142 replaced by

Ser, was produced in Chinese hamster ovary cells.

Radiolabeling

For in vitro studies, rFVIII and FVIII-Y1680F were

labeled by use of the lactoperoxidase method (Fig. 1A)

[18], and for in vivo studies, glycoiodination (Fig. 1B) was

used. The glycoiodination method is based on site-selective

conjugation of in vivo-stable prosthetic iodo�aromatic

groups similar to those developed by Wilbur et al. [24] and

Vaidyanathan et al. [25]. rFVIII and FVIII-Y1680F were

desialylated by neuraminidase treatment, and resialylated

with an aminooxy-modified cytidine-50-monophospho-N-

acetylneuraminic acid derivative, by use of the N-glycan-

specific sialyltransferase ST3GalIII. 125I was introduced in

the para position of the aromatic prosthetic moiety 4-

bromo-N-(40,40-dimethoxybutyl)benzamide, and this was

followed by acetal deprotection and HPLC purification,

resulting in pure 4-125I-iodo-N-(40-oxobutyl)benzamide.

Specific oxime ligation of 4-125I-iodo-N-(40-oxobutyl)ben-
zamide to the N-glycan aminooxy-derivatized rFVIII and

FVIII-Y1680F resulted in the final products. Labeled pro-

teins were diluted to 23 lCi mL�1 in 20 mM imidazole,

10% glycerol, 150 mM NaCl, 10 mM CaCl2, 0.02% Tween-

80, and 0.1% human albumin (pH 7.3).

Activity and ELISAs

rFVIII and FVIII-Y1680F antigen and activity before

and after labeling were measured with Asserachrom

ELISA (American Diagnostica, Lexington, MA, USA)

and FVIII Coatest SP (Chromogenix, Diapharma, West

Chester, OH, USA), respectively. The ability of rFVIII

and FVIII-Y1680F to bind VWF was tested with ELISA

[26]. Data were background-subtracted and fitted with an

equation for log(agonist) versus response (four-parameter

fit) with GRAPHPAD PRISM v.6.05.

In vitro cell-binding assays

The influence of VWF on rFVIII and FVIII-Y1680F

in vitro cell binding was evaluated with a human glioblas-

toma cell line, U87 MG (ATCC; HTB-14), expressing high

amounts of LDL receptor-related protein (LRP). Cells

were maintained in advanced minimum essential medium

(Gibco, Jupiter, FL, USA) supplemented with 10% fetal

bovine serum and 1% penicillin–streptomycin. Cells were

seeded in fibronectin-coated wells to 95% confluency. Cells

were washed with HEPES-buffered saline (HBS) (100 mM

HEPES, 150 mM NaCl, 4 mM KCl, 11 mM glucose, 5 mM

CaCl2, 1 mg mL�1 bovine serum albumin [BSA], pH 7.4),

and incubated for 1 h at 37 °C with 1 nM 125I�labeled

rFVIII or FVIII-Y1680F – alone, with VWF (2.5–50 nM),

or with 10 lg mL�1 of an anti-FVIII-C1 antibody (hF8-

4F30; Novo Nordisk). Unbound material was removed

with ice-cold HBS, and surface�bound radioactivity was

released by incubation for 30 min, on ice, with 50 lg mL�1

trypsin, 50 lg mL�1 proteinase K and 5 mM EDTA in

phosphate-buffered saline. After 5 min centrifugation at

290 9 g, radioactivity in the supernatant was quantified in

a gamma counter (Perkin Elmer, Waltham, MA, USA).

Experimental animals

Sprague-Dawley male rats (mean body weight, 250 g;

Taconic, Ejby, Denmark) were housed under controlled

conditions (20–23 °C; relative humidity, 30–65%; 12-h
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light/12-h dark cycle), and fed standard chow ad libitum.

Pharmacokinetic (PK) and immunohistochemical studies

were performed and approved by the Danish Government

Animal Experiments Inspectorate and the Novo Nordisk

Ethical Review Committee. Rats were anesthetized with

4% isoflurane (Abbott Scandinavia AB, Solna, Sweden)

at time-points for liver harvesting, and maintained at

2.1%, or injected intravenously with a mixture of fen-

tanyl/fluanisone (Hypnorm; VetaPharma, Elmet, Leeds,

UK) and midazolam (Dormicum; Roche, Basel, Switzer-

land). For the anatomical and hepatocellular distribution

studies, protocols were approved and conducted in accor-

dance with the Norwegian National Animal Research

Authority and Novo Nordisk Ethics Committee.

Pharmacokinetics

Rats received a single intravenous tail vein injection of 125I-

labeled rFVIII (200 IU kg�1, n = 2) or unlabeled rFVIII

(132 IU kg�1, n = 3), and labeled or unlabeled FVIII-

Y1680F (216 IU kg�1, n = 4). Blood was sampled from

the tail vein before dosing and up to 12 h after dosing for

rFVIII, and up to 4 h for FVIII-Y1680F. Blood was stabi-

lized in sodium citrate (0.013 M), diluted in FVIII Coatest

SP buffer (50 mM Tris-HCl, 1% BSA, 10 mg L�1 cipro-

floxacin, pH 7.3), and centrifuged 5 min at 4000 9 g.

FVIII antigen in supernatants was analyzed with ELISA,

as described previously [27]. The percentage of protein-

associated radioactivity was calculated from the total

radioactivity and the amounts in supernatants and precipi-

tates following trichloroacetic acid precipitation [28–30].

Anatomical distribution

The anatomical distribution of rFVIII and FVIII-Y1680F

was investigated as described previously [31]. 125I-labeled

rFVIII or FVIII-Y1680F (135 IU kg�1) was diluted in

physiologic saline, and administered intravenously to rats

via the lateral tail vein. At 1 h, 8 h and 16 h after injection

(rFVIII) and at 0.5 h and 1 h after injection (FVIII-
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Fig. 1. Lactoperoxidase and glycoiodination methods for FVIII labeling. (A) Radiolabeling of FVIII tyrosines. (i) FVIII in imidazole buffer,

Na125I. Lactoperoxidase and hydrogen peroxide were incubated at room temperature for 30 min. (B) Glycoiodination method. 4-125I-iodo-N-

(4-oxobutyl)benzamide was produced from 4�bromo�N�(40,40�dimethoxybutyl)benzamide and Na125I by Br–I halogen exchange (i). The
125I�labeled precursor was then incubated overnight at room temperature with aminooxy�modified recombinant FVIII (ii).
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Y1680F), rats were subcutaneously injected with a mixture

of 0.4 mg kg�1 Dormitor (Orion Pharma, Newbury, Berk-

shire, UK) and 60 mg kg�1 Ketalar (Pfizer AS, Sandwich,

Kent, UK). Blood (25 lL) was sampled from the tail tip.

Before organ harvesting, blood was flushed out by perfu-

sion of the heart with 0.9% saline, and the amount of

radioactivity was measured in the liver, spleen, kidneys,

stomach, intestines, urine, bladder, lungs, heart, brain, tail,

muscle, thyroid, testicles, and adrenals. Total blood

radioactivity was calculated from the blood sample, based

on the estimation that rats contain ~ 7 mL of blood per

100 g of body weight [32].

Hepatocellular distribution determined by cell isolation

Rats were dosed as described above. At 1 h and 7 h

(rFVIII) or 0.5 h, 1 h and 2 h (FVIII-Y1680F) after injec-

tion, livers were perfused with collagenase to extract liver

cells, and this was followed by sequential centrifugations, 2

min at 50 9 g to obtain hepatocytes, and Percoll gradient,

30 min at 750 9 g to obtain LSECs and KCs, as described

previously [33–36]. LSEC preparations were between 95%

and 98% pure, and the degree of LSEC contamination in

KCs was < 10%, as assessed by light microscopy [37].

Hepatocytes and LSECs in suspension, and adherent KCs

solubilized in 1% SDS, were analyzed for radioactivity,

and the amount of radioactivity per million cells was calcu-

lated. The uptake per total cell population was assessed

according to the relative numbers of hepatocytes, LSECs

and KCs (7.6 : 2.5 : 1) in intact rat livers [38].

Hepatocellular distribution determined by

immunohistochemistry (IHC)

By use of a previously described perfused rat liver model

[39], rFVIII (20 nM) was added to the perfusate buffer and

recirculated through the liver for 60 min. The liver was per-

fusion fixated by perfusion with 4% paraformaldehyde, and

slices from the top lobe were processed for histology and

embedded in paraffin. Sections (3 lm) were stained with a

mouse anti-human FVIII mAb (FVIII-3F15; Novo Nor-

disk), and visualized by peroxidase-conjugated avidin–biotin
complex (Vectastain; Vector Laboratories, Orton Southgate,

Peterborough, UK) and an indirect biotin-conjugated tyra-

mide signal amplification (TSA) system (Perkin Elmer) and

diaminobenzidine (Sigma-Aldrich, St Louis, MO, USA).

For double immunofluorescence staining, rFVIII was visual-

ized with streptavidin–AlexaFluor 594 (Invitrogen, Carls-

bad, CA, USA). rFVIII-stained sections were further

stained for CD31 (rabbit polyclonal antibody; LifeSpan Bio-

sciences, Seattle, WA, USA) or CD68 (mouse mAb; Abcam,

Cambridge, Cambridgeshire, UK). CD31 was detected with

a biotinylated donkey anti-rabbit secondary antibody (Jack-

son ImmunoResearch, Newmarket, Suffolk, UK), and

TSA-AlexaFluor 488, and CD68 was detected with goat

anti-rabbit AlexaFluor 488 (Invitrogen). A second round of

heat-induced epitope retrieval was applied between rFVIII

staining and CD31/CD68 staining to avoid cross-reactivity.

No staining was observed when the primary antibodies were

replaced with unspecific IgG (data not shown).

Statistical analysis

An unpaired, two-sided Student’s t-test was performed to

compare time-points and treatments for anatomical and

hepatocellular distribution. P-values of < 0.05 were con-

sidered to be statistically significant.

Results

In vitro characterization of rFVIII and FVIII-Y1680F

The radiochemical purity of glycoiodinated proteins was

>94%, and the specific radioactivity was 1–6 lCi lg�1.

Specific FVIII activity was 60–77% after glycoiodination, as

compared with the unlabeled molecules. The binding of

rFVIII and FVIII-Y1680F to VWF was evaluated with

ELISA (Fig. 2A). The half-maximal binding of rFVIII was

0.19 � 0.05 nM, whereas that of FVIII-Y1680F was

75 � 28 nM (mean � standard deviation; n = 3), confirming

reduced affinity of FVIII-Y1680F for VWF. Consequently,

FVIII-Y1680F cell binding was minimally affected by the

presence of VWF, in contrast to that of rFVIII (Fig. 2B). At

a physiologically relevant concentration of VWF (50 nM),

the cell binding of rFVIII was reduced by 68% � 4%,

whereas that of FVIII-Y1680F was reduced by only

25% � 14%. VWF inhibited 125I-rFVIII internalization to

the same extent as binding (data not shown). Preincubation

with a C1 antibody that is known to prevent cell binding of

FVIII [40] inhibited FVIII-Y1680F cell binding to a level

similar to that observed for VWF inhibition of rFVIII, indi-

cating that the specific binding of both proteins was compa-

rable. Together, these data confirm that VWF binding of

FVIII-Y1680F was impaired, resulting in a markedly

reduced influence of VWF on FVIII-Y1680F cellular uptake.

Residual FVIII binding to immobilized human VWF

was quantified following incubation of rFVIII (2 nM; cor-

responding to the maximal plasma concentration follow-

ing the doses used in the rat studies) with plasma

containing rat or human VWF (Fig. S1). Rat and human

plasma inhibited rFVIII binding to immobilized VWF

equally well, demonstrating binding of human rFVIII to

rat VWF. Rat plasma samples with and without FVIII

were also compared (Fig. S1B). Similar dose responses

were observed for the two plasma samples, demonstrating

that the capacity of rFVIII to bind to endogenous rat

VWF is not influenced by endogenous rat FVIII.

Pharmacokinetics of radiolabeled rFVIII and FVIII-Y1680F

Radioiodination stability was compared between unla-

beled rFVIII, glycoiodinated rFVIII and lactoperoxidase-
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labeled rFVIII in rats. PK parameters showed that gly-

coiodination did not alter the FVIII antigen plasma con-

centration profile of rFVIII (Fig. S2), but, as predicted, a

greater amount of radioiodinated protein than of lac-

toperoxidase-labeled rFVIII was circulating 12 h after

dosing (93% versus 77%; Fig. S3). PK (rat) parameters

of glycoiodinated rFVIII and FVIII-Y1680F were also

comparable to those of their unlabeled counterparts

(Table 1). Together, these data support the reliability of

glycoiodination for use in distribution studies.

Anatomical distribution

The effect of VWF on FVIII distribution was investigated

in an anatomical distribution study in rats, in which the

influence of high-affinity VWF binding was explored with

rFVIII and FVIII-Y1680F. Rats were dosed intravenously
with 135 IU kg�1 rFVIII or FVIII-Y1680F. At 1 h, 8 h and
16 h (rFVIII) or 0.5 h, 1 h and 2 h (FVIII-Y1680F), blood
was sampled and flushed from the body, and organs
harvested. More than 94% of the radioactivity remained
protein-bound for both rFVIII and FVIII-Y1680F, and <1%
radioactivity was found in the thyroid at all time-points,
demonstrating that the labeled FVIII molecules were
minimally susceptible to deradioiodination in vivo.

At 1 h, 8 h and 16 h after injection with rFVIII,

51% � 1%, 29% � 4% and 10% � 0.3% radioactivity

was recovered, respectively. Figure 3 shows the anatomi-

cal distribution data presented as percentage of recovered

radioactivity. Radioactivity found in the blood declined

over time, from 61% at 1 h to 17% at 16 h after injec-

tion. Among the organs assessed, FVIII was primarily

found in the liver; 30% of the recovered radioactivity was

found in the liver at 1 h, declining to 15% and 6% at 8 h

and 16 h, respectively (Fig. 3A). The organs with the sec-

ond highest amount of recovered radioactivity were the

intestines (small and large), where 3.2% was detected

after 1 h; the recovered radioactivity increased to 30% at

8 h, declining thereafter to 11% by 16 h. When the

radioactivity per gram of tissue was calculated, high con-

centrations of rFVIII were also detected in the spleen.

The ratio of radioactivity recovered per gram of tissue,

spleen to liver, was between 0.6 (at 1 h) and 1.7 (at 8 h

and 16 h).

Owing to the faster clearance of FVIII-Y1680F, its ana-

tomical distribution was assessed only up to 1 h after injec-

tion. A total of 52% of the dosed radioactivity was

recovered 1 h after injection. Between 0.5 h and 1 h,

radioactivity in the blood declined from 68% to 53%, and

a comparable distribution among other organs was

Table 1 Estimated pharmacokinetic (PK) parameters of glycoiodinated and unlabeled recombinant factor VIII (rFVIII) and FVIII-Y1680F

t1/2 (h) MRT (h) CL (mL h�1 kg�1)

rFVIII (n = 3) 4.5 (3.1–6.5) 6.3 (4.3–9.0) 2.1 (1.8–2.3)
125I-rFVIII (n = 2) 5.7 (4.5–6.7) 7.8 (6.1–9.5) 2.6 (2.1–3.1)
FVIII-Y1680F (n = 4) 1.2 (1.1–1.4) 1.7 (1.6–1.9) 68 (51–80)
125I-FVIII-Y1680F (n = 4) 1.3 (1.25–1.34) 1.8 (1.7–1.9) 68 (61–82)

CL, clearance; MRT, mean residence time; t1/2, half-life. Unlabeled rFVIII and FVIII-Y1680F and their 125I-labeled counterparts, 125I-rFVIII

and 125I-FVIII-Y1680F, were administered intravenously to rats, and FVIII activity was measured in plasma samples. Mean (range) PK param-

eters were estimated by non-compartmental analysis.
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observed for FVIII-Y1680 and rFVIII, with the liver being

the primary organ of distribution (Fig. 3B). At 0.5 h after

injection, 25% of the recovered radioactivity was in the

liver, increasing to 34% at 1 h. Some radioactivity was also

found in the intestines (1.5% at 0.5 h, and 5% at 1 h) and

in the spleen. The ratio of radioactivity per gram of tissue,

spleen to liver, was ~1.6 at all time-points.

The anatomical distribution of FVIII-Y1680F

(280 IU kg�1) was assessed at 1 h and 2 h time-points in

separate experiments (two different doses: 135 IU kg�1

and 240 IU kg�1) to confirm that the distribution pat-

terns were similar beyond one half-life. The data were

comparable to the data obtained at earlier time-points

(Fig. 3B), as the liver contained the most radioactivity at

1 h and 2 h (42% and 46%, respectively), with additional

radioactivity in the intestines (5–12%), kidney (2%), and

spleen (4%), and <1% in all other organs at both time-

points. The ratio of radioactivity per gram of tissue,

spleen to liver, was the same as for rFVIII, being ~1.6 at

both time-points.

Hepatocellular distribution

To investigate the types of liver cell that are responsible

for the clearance and metabolism of FVIII, two different

hepatocellular distribution studies were performed. First,

FVIII was quantified in different cell types isolated from

the liver after intravenous administration of 125I-rFVIII
or 125I-FVIII-Y1680F. Second, FVIII was visualized by

IHC in intact livers perfused ex vivo with rFVIII.

For the first study, hepatocytes, KCs and LSECs were

isolated at different time-points from rat livers, and the

radioactivity associated with each cell type was deter-

mined [38]. The hepatocellular distribution of radioactiv-

ity from rFVIII 1 h after administration was 60% � 19%

associated with hepatocytes, 32% � 13% associated with

LSECs, and 9% � 7% associated with KCs (Fig. 4A).

Seven hours after administration, the relative distribution

of radioactivity from rFVIII between cell types was

unchanged. A comparable hepatocellular distribution to

that for rFVIII was observed with FVIII-Y1680F

(Fig. 4B). At 1 h, most of the radioactivity was associated

with hepatocytes (57% � 9%), followed by LSECs

(40% � 8%), with the lowest levels in KCs (3% � 3%).

These percentages were also representative of data

obtained at other time-points. When data were calculated

as the amount of radioactivity per million cells, 2.5 times

more radioactivity from rFVIII was associated with

LSECs than with hepatocytes (P < 0.01) at 7 h. Similar

results were obtained for FVIII-Y1680F; 1.5–3.0 times

more radioactivity was associated with LSECs than with

hepatocytes (P < 0.05) at all time-points after injection,

indicating that, in addition to hepatocytes, LSECs have a

predominant role in FVIII clearance, independently of

high-affinity VWF binding.

Next, the hepatocellular distribution was examined in

intact livers by IHC. As FVIII could not be detected by

IHC at the doses previously used (135 IU kg�1, corre-

sponding to ~10 lg kg�1), an ex vivo rat liver perfusion

model was used (Fig. S4). This model allows higher doses

of FVIII to be administered than in in vivo models, and

delivers FVIII to the liver only. Histologic sections of the

perfused livers were stained with an anti-human rFVIII

antibody that does not stain endogenous rat FVIII, as

confirmed in livers perfused only with buffer (Fig. 5D).

The influence of VWF on FVIII uptake was addressed by

comparing rat livers perfused with rFVIII (20 nM), with

or without a five-fold molar excess of a VWF fragment,

D0D3A1, containing the FVIII-binding domains of VWF

(D0D3) [41]. This D0D3A1 fragment decreased FVIII
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Fig. 3. The liver was the primary organ of distribution for recombi-

nant FVIII (rFVIII) and FVIII-Y1680F. An anatomical distribution

study of rFVIII and FVIII-Y1680F was performed in rats dosed

intravenously with 135 U kg�1 125I-rFVIII (A) or 125I�FVIII-

Y1680F (B). Perfusion with physiologic saline via the heart flushed

blood from the circulation, and organs were harvested at 1 h, 8 h

and 16 h for rFVIII (A) and 0.5 h and 1 h for FVIII-Y1680F (B).

Data (n = 3 per group) are presented as mean � standard deviation

of the percentage of radioactivity counted in the organ, in relation

to the total radioactivity recovered.
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clearance to the same extent as full-length VWF (Fig. S5).

Brightfield microscopy showed that the majority of

rFVIII was in non-hepatocyte cells, with less intense

staining in hepatocytes, reminiscent of intracellular vesi-

cles and bile canaliculi (Fig. 5A,B). Coformulation of

FVIII with D0D3A1 did not appear to alter the relative

distribution of rFVIII between cell types (although less

overall FVIII staining was observed), indicating that

VWF binding decreases FVIII clearance without altering

the relative distribution of FVIII between liver cells

(Fig. 5C).

To further distinguish between the different cell types

within the sinusoids, histologic sections were costained

for FVIII and CD68 (KC marker) or CD31 (endothelial

marker) by the use of double immunofluorescence. The

most intense FVIII staining was found in LSECs, with

less FVIII staining of KCs being observed (Fig. 5E–J).
No staining was observed when primary antibodies were

replaced with unspecific IgG (data not shown). As seen

with brightfield microscopy, FVIII staining in structures

resembling bile canaliculi and intracellular vesicles within

hepatocytes was also observed by immunofluorescence

microscopy when the sensitivity was increased (data not

shown). These immunohistochemical data correlate with

the hepatocellular cell isolation data, supporting a role

for LSECs and hepatocytes in the clearance of FVIII.

Discussion

The in vivo stability of glycoiodinated FVIII molecules

was demonstrated in rats, and found to be superior to

that achieved with commonly used methods, which rely

on random oxidative radioiodination of tyrosines [18–
20], possibly affecting bioactivity or binding, and render-

ing radioiodinated proteins susceptible to cleavage by

deiodinases. This results in less accurate localization of

the radiolabeled probe just a few hours after administra-

tion [21,22]. Glycoiodination is based on site-selective

conjugation, and allows for comparable in vitro and

in vivo FVIII characteristics. The majority of iodine

(94%) was bound to FVIII during circulation in vivo,

and > 1% was detected in the thyroid after 16 h.
125I-rFVIII and 125I-FVIII-Y1680F, the latter with

strongly reduced VWF binding, as confirmed in VWF-

binding and cell-binding assays, were used to study the

influence of high-affinity VWF binding on FVIII distribu-

tion in rats after intravenous injection. Approximately

50% of the administered radioactivity was recovered 1 h

after injection for both 125I-rFVIII and 125I-FVIII-

Y1680F. These data are similar to the recovery data for

other 125I-labeled proteins, where unrecovered radioactiv-

ity may be non-specifically bound to carcass tissue [42],

or eliminated via the urine or feces [43]. The majority of
125I-rFVIII was recovered in the liver, followed by the

intestines. A peak of 125I-rFVIII radioactivity in the small

and large intestines (total 30% � 4%) was observed at

8 h, and decreased thereafter. In comparison with
125I-rFVIII levels in the liver, this peak appears to be

delayed, suggesting that the radioactivity detected in the

intestines may be attributable to secretion of FVIII by

hepatocytes via the bile duct, which subsequently empties

directly into the duodenum in rats, and not into the gall

bladder as in mice [44]. This metabolic pathway has pre-

viously been suggested for proteins, including IgA and

activated FVII [39,43]. Radioactivity in the intestines

could also be attributable to metabolized or deradioiodi-

nated 125I-FVIII from sites including the liver, and trans-

ported in the circulation. Deradioiodination is expected

to be minimal, owing to the glycoiodination labeling of

FVIII. 125I-FVIII-Y1680F was also detected in the liver

and gastrointestinal tract (albeit to a lesser extent), sug-

gesting a distribution comparable to that of rFVIII. The
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Fig. 4. Recombinant FVIII (rFVIII) and FVIII-Y1680F were primar-

ily associated with hepatocytes and liver sinusoidal endothelial cells

(LSECs). 125I-rFVIII (A) and 125I-FVIII-Y1680F (B), both dosed at

135 IU kg�1, were administered intravenously to rats (n = 3 per time-

point, with the exception of the 2-h time-point, where n = 2 for FVIII-

Y1680F). At the time-points indicated, rats were anesthetized, and

liver cells were isolated by collagenase perfusion of the liver and Per-

coll density gradient separation. Accumulation of radioactivity in each

liver cell population was calculated on the assumption that liver

uptake of FVIII was according to the cell ratio of 7.6 : 2.5 : 1 for hep-

atocytes, LSECs, and Kupffer cells (KCs), respectively. Data are

depicted as mean � standard deviation of the percentage 125I counted

per cell type of total radioactivity recovered.
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lower level of radioactivity in the intestines for 125I-

FVIII-Y1680F than for 125I-rFVIII may be attributable

to decreased secretion into the bile by hepatocytes.

Although the kinetics of the distributions of rFVIII and

FVIII-Y1680F cannot be directly compared, owing to the

shorter t1/2 of FVIII-Y1680F, these data suggest that

VWF does not alter the anatomical distribution of FVIII

in rats.

Previously, both the liver and spleen have been

described as being important organs in the clearance of
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Fig. 5. Recombinant FVIII (rFVIII) detected in hepatocytes, liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs). Histologic sec-

tions of rat liver perfused ex vivo with 20 nM human rFVIII were stained for FVIII with an antibody that does not detect endogenous rat

FVIII. (A, B) Brightfield microscopy of rFVIII-perfused rat liver stained for rFVIII. The most intense rFVIII staining was found in the liver

sinusoids containing LSECs and KCs. Less intense, punctate staining reminiscent of bile canaliculi and vesicles was also observed in hepato-

cytes (shown by arrows in [B]). (C) Rat liver perfused with rFVIII coformulated with a von Willebrand factor (VWF) fragment, D0D3A1, con-

taining the FVIII-binding domains, D0D3, showed a similar FVIII staining pattern as when perfused with FVIII alone, albeit that less FVIII

appears to be detected. (D) Rat liver perfused with vehicle buffer alone showed no staining of FVIII, confirming that the anti-FVIII antibody

detects only human rFVIII and not endogenous rat FVIII. (E–G) Double immunofluorescence staining for rFVIII and the LSEC marker

CD31, showing that the majority of rFVIII detected is found in LSECs. (H–J) Double immunofluorescence staining for rFVIII and the KC

marker CD68, showing that a small fraction of KCs have also taken up rFVIII. Scale bars: 50 lm.
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FVIII [16,17]. In the present study, uptake of rFVIII by

the spleen was also observed in both the presence and the

absence of high-affinity VWF binding, with significant

radioactivity per gram of tissue being observed. However,

as the spleen is much smaller than the liver, the latter is

believed to play a larger role in FVIII clearance and

metabolism.

Both hepatocellular distribution studies reported here

support a predominant role for hepatocytes and LSECs in

the clearance of FVIII, independently of high-affinity bind-

ing to VWF. Hepatocellular cell isolation studies demon-

strated that ~60% of rFVIII and FVIII-Y1680F were

located in hepatocytes and ~35% in LSECs, following

in vivo dosing of FVIII. These findings are consistent with

the abundant expression of one of the receptors involved

in FVIII clearance, LRP, on both hepatocytes [45] and

LSECs [46]. LRP is involved in FVIII clearance either

directly [47–49] or indirectly, via flow-dependent uptake of

FVIII bound to VWF [50]. When the amount of radioac-

tivity per million cells was quantified, LSECs were associ-

ated with significantly more FVIII at 7 h than were

hepatocytes, and the same was true for FVIII-Y1680F at

all time-points. This may indicate that LSECs have a

greater capacity for clearance than hepatocytes, but does

not diminish the significance of hepatocytes in the clear-

ance and/or metabolism of FVIII, owing to their larger

volume, larger size and greater abundance than LSECs.

The importance of both LSECs and hepatocytes in the

clearance of FVIII, in the presence of VWF, has not been

previously reported. Rather, KCs have been identified as

being primarily responsible for the uptake of FVIII in the

presence of VWF [17]. In the absence of VWF, e.g. in

VWF knockout mice, FVIII is detected primarily in hepa-

tocytes [17]. In the present study, a contribution by KCs

was observed, but it appears to be minimal in comparison

with hepatocytes and LSECs. The differences between

previously published data and those reported here may be

attributable to variations in animal models and method-

ologies, including different dosing levels of FVIII. Instead

of using VWF knockout mouse models to represent the

absence of VWF, we used the FVIII-Y1680F mutant,

with reduced binding to VWF, in a rodent model with

endogenous VWF. A similar distribution would be

expected in rats with hemophilia A, as VWF in plasma

from normal rats and from those with hemophilia A

binds rFVIII in a comparable manner. Additionally,

doses in the present studies are within the dose linearity

range observed in mice [51], indicating that the rFVIII

doses used are not saturating clearance mechanisms.

In conclusion, the present study confirms a primary role

for the liver in FVIII clearance, and demonstrates that

some of the dosed FVIII was also in the gastrointestinal

tract, being potentially secreted via the bile. Both hepato-

cytes and LSECs appear to have major roles in FVIII clear-

ance, with KCs making a minor contribution. Although

VWF delays the clearance of FVIII, it does not affect the

distribution or overall clearance pathway of FVIII. Further

investigations are needed to delineate the relative involve-

ment of different receptors in the cellular uptake of FVIII,

in the absence and presence of VWF binding.
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Fig. S2.Glycoiodination did not alter FVIII plasma profiles.

Fig. S3. Glycoiodinated rFVIII was more stable than lac-

toperoxidase-labeled rFVIII.

Fig. S4. Ex vivo-perfused rat liver model.

Fig. S5. The VWF D0D3A1 fragment had a similar effect
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