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1 Summary 
Arctic tundra ecosystems are vulnerable to the direct and indirect effects of climate change. 
Long-term temperature increases, higher frequencies of extreme weather events and changes in 
food web structures will all affect the state of Arctic tundra ecosystems at different temporal 
and spatial scales. As ecologists, we are asked to understand these biotic and abiotic interactions 
and find methods to measure them. This thesis applies new technology and methods within the 
principles of adaptive monitoring to achieve four overarching goals: 1) Design a conceptual 
model for Svalbard’s moss tundra ecosystem and define the vegetation monitoring needs of 
high Arctic tundra systems in the context of climate change and herbivore management. 2) 
Design new monitoring approaches that help quantify habitat types and drivers of future 
vegetation state changes. 3) Evaluate the practical implications of using drones, drone imagery, 
photogrammetry, and image classification-based approaches for monitoring and 4) Evaluate 
how the findings of the thesis can contribute to future adaptive monitoring of Svalbard’s moss 
tundra and provide suggestions for future drone and photogrammetry-based studies.  

We proposed that Svalbard’s moss tundra habitat currently has three stable states, a graminoid, 
moss and bare patch state. Transitions between these states can be caused through slow long-
term changes e.g., temperature increases and grazing pressure, or through short-term 
disturbance events such as local erosion, freezing, trampling or herbivory. Remote sensing 
approaches using photogrammetry as well as drone and satellite images were tested to quantify 
state variables useful for long-term monitoring of Arctic tundra ecosystems: extent of 
vegetation types and bare ground, biotic and abiotic disturbances (winter damage and pink-
footed goose grubbing) and snowmelt progression as a driver for pink-footed goose abundances 
within the landscape.  

Drone images and random forest classifiers (RF) were reliably able to distinguish up to 15 
different tundra ground cover classes, including those that represent disturbances such as winter 
damage from extreme weather events, pink-footed goose grubbing and bare ground. 
Disturbance classes were generally overestimated; additional more precise ground truthing 
point collection can likely help to produce locally precise RF classifiers in the future. 
Normalized difference vegetation index (NDVI) values for disturbed areas (pink-footed goose 
grubbing or winter damage) were lower than undisturbed areas and higher than those covered 
in bare ground or gravel. Time-series analyses of drone images are therefore likely suitable 
tools to detect newly emerging disturbances in the future.  

During spring, snowmelt progression was mapped using drone and satellite images to enable 
analysis of pink-footed goose habitat selection, habitat use and vegetation disturbance 
likelihood via grubbing.  It revealed that both habitat use and grubbing likelihood were driven 
by vegetation class and snowmelt date. Moss tundra habitats that were free of snow during the 
first two weeks of the pre-breeding period had highest grubbing likelihoods. The study led to 
an estimation of approximately 23% of moss tundra and 10% of dwarf-shrub heath habitats 
within a pre-breeding site to be affected by pink-footed goose grubbing in a single season. This 
study was conducted in a late snowmelt year and one season is not enough to generalize the 
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findings. However, it demonstrated successful mapping of snowmelt progression using drones 
and satellite images. Future work should focus on studying interannual variation of snowmelt 
patterns and how this affects habitat use and disturbance by pink-footed geese. 

Drone-based remote sensing, photogrammetry and RF classifiers were useful tools in detecting 
nuanced differences in ground cover types. Successful ground cover type classifications were 
mostly dependent on optical variables, especially near-infrared, but terrain-related variables 
generally improved the classifiers. Transfer of RF classifiers between study sites was not 
possible but could be improved through simplifications of the classifier or other machine 
learning approaches. Drones that are used in Arctic conditions should be tolerant to strong 
winds and cold temperatures. Precise geometric and spectral calibrations are especially 
important when using drone images in the context of long-term monitoring. Satellite-based 
remote sensing studies generally lack enough ground truthing data from Arctic regions and 
drone images collected in different Arctic regions will therefore be especially valuable in 
closing this gap. 

The ground cover vegetation classifications conducted through this thesis can provide baseline 
data to detect future state changes, for example an increase in bare ground or the expansion of 
species such as Equisetum spp. or Carex subspathacea. This thesis has shown that it is possible 
to map the extent of pink-footed goose grubbing by means of drones. Studying the long-term 
consequences of grubbing on tundra ecosystems will require a closer integration of drone 
images and detailed field surveys that span over multiple seasons. The snow cover maps that 
were generated from drone images could be analyzed in more detail and provide valuable 
information for optimizing satellite-based snow cover classifications. Combining drone NDVI 
maps and already existing plot-based biomass estimates could be used to upscale these to larger 
spatial extents. 

This thesis has shown examples of several stages of adaptive monitoring. Defining conceptual 
models of Arctic moss tundra has helped to develop hypotheses and specifying targets for 
monitoring goals and the consecutive studies presented in this thesis. It has shown that drones 
can be useful tools to detect and quantify the extent of vegetation classes as well as abiotic and 
biotic disturbances. This thesis presents a novel approach of studying the effect of snowmelt 
timing on the extent of pink-footed goose vegetation disturbance by combining field and remote 
sensed data from drones and satellites and helped to elevate studies of causal ecological 
relationships into a spatial context. This thesis shows that approaches of studying biotic and 
abiotic interactions in tundra ecosystems with help of drone and satellite images can be 
successful and expands our toolset to study a rapidly changing Arctic. 
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2 Introduction 

2.1 Background information 

2.1.1 Tundra ecosystem and climate change 
The Arctic tundra is the northernmost terrestrial biome. Here, cold temperatures prevent tree 
growth and the ground is frozen for most parts of the year. Herbivores play an important role 
in shaping vegetation productivity and plant community compositions of Arctic tundra 
ecosystems (Bråthen et al. 2007, Ims et al. 2013). Amplification processes cause climate change 
to proceed exceptionally fast in the Arctic region (Arrhenius 1896, Serreze and Barry 2011). 
Changes in sea ice cover significantly alter the thermal balance of the Arctic (Holland and Bitz 
2003) and temperatures have increased in all seasons (IPPC 2019). Thawing permafrost releases 
large quantities of greenhouse gases, which further accelerates the rate of climate change and 
Arctic warming (Schuur et al. 2015). The tundra ecosystem is not only experiencing progressive 
warming but is also expected to face an increasing frequency and intensity of extreme weather 
events (Maxwell et al. 2019). Whilst warm summer temperatures favor increases in plant 
biomass, especially fast-growing forbs, graminoids or shrubs (Elmendorf et al. 2012, Myers-
Smith et al. 2015), short-term extreme events such as fires, icing events and insect outbreaks 
can reduce biomass or create spaces of bare ground (e.g. Jepsen et al. 2013, Hu et al. 2015, 
Milner et al. 2016). Annual Arctic precipitation is predicted to increase with up to 60% 
throughout the 21st century (Bintanja 2018). Because precipitation can be in the form of either 
rain or snow, even small temperature differences can significantly change the duration and 
physical properties of the snowpack (Bintanja 2018, Peeters et al. 2019). The extent, depth and 
physical properties of snow plays an important role in shaping tundra ecosystems (Bokhorst et 
al. 2016). Snow can provide habitats, e.g., for small mammals (Reid et al. 2012, Domine et al. 
2018) and it can restrict habitats, e.g., for grazing muskoxen or reindeer (Klein et al. 1993, 
Hansen and Aanes 2012). Climate change likely increases the complexity of future biotic and 
abiotic interactions as well as long term and short responses of tundra ecosystems (Hastings et 
al. 2007, Ims et al. 2013, Post et al. 2019). Studying these interactions requires robust 
conceptual models and methods that define and capture key ecosystem processes (Bentley and 
Anandhi 2020).  

2.1.2 Adaptive monitoring 
Adaptive monitoring aims to improve the quality of long-term ecological monitoring programs 
by the guidance of tractable scientific questions and hypotheses (Lindenmayer and Likens 2009, 
2010). Good adaptive monitoring, as defined by (Lindenmayer and Likens 2010), is based on 
three pillars: well defined questions, rigorous statistical design, and a management-driven need 
to know more about the ecosystem. Successful long-term monitoring programs need to be able 
to include new scientific questions and methods to stay relevant and adapt to changing 
ecosystems and altered management needs over time (Burt 1994, Overton and Stehman 1996, 
Porzig et al. 2011). Conceptual models are therefore key to most adaptive monitoring programs, 
as they outline the hypothesized causal relationships between the components of the study 
system (Lindenmayer and Likens 2009, 2010, Ims et al. 2013). Thus, they provide the base for 
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scientific questions, hypotheses for measurable drivers of change and focal points for 
discussion. (Lindenmayer and Likens 2009) provided a workflow framed as an iterative loop 
that builds on scientific questions or conceptual models and a study design that is able to answer 
these questions or quantify the components of the conceptual model. After data collection, 
analysis and interpretation, the chosen methods should enter a re-evaluation phase. In this 
phase, the questions and models can be updated based on the new knowledge gained, or more 
appropriate analytical methods can be suggested. At this stage, new technology can also be 
included. Examples of successful adaptive monitoring programs can be found across the world 
in both terrestrial and aquatic environments (Lindenmayer 2012, Ims et al. 2013, Fölster et al. 
2014, Perryman et al. 2018, Hubbard Brook 2022). The work of this thesis was conducted 
within the Climate-ecological Observatory for Arctic Tundra (COAT) long-term adaptive 
monitoring program (Ims et al. 2013). 

2.1.3 State and transition models 
One method to describe the complexity of an ecosystem is through state and transition models 
(STMs). The concept of STMs was first defined by (Westoby et al. 1989) and born out of the 
need to describe rangeland plant communities that were not developing towards a final state of 
equilibrium or climax, but instead, shifting between multi-directional stable states. Typical 
drivers of ecosystem state changes can be climatic variations, alterations in grazing pressure or 
major stochastic events (Westoby et al. 1989, Scheffer et al. 2001, Creutzburg et al. 2015, Oliva 
et al. 2016). State and transition model theory has been tested in many ecosystems. Several 
studies have pointed out, that disturbances can be so severe, or the system little resistant, that 
new stables states are not reversable (Jones 1992), or only partly reversable (Asefa et al. 2003), 
for example through changes in soil properties. Or, on the contrary, that alternate states can 
vary in function and diversity but are transient and do not reach any stable equilibrium (Fukami 
and Nakajima 2011). In tundra ecosystems, state changes have been linked to several biotic and 
abiotic processes. Shrub expansion that occurs in some Arctic regions can be attributed to a 
feedback loop of warmer summer temperatures and thicker, more insulating snow-cover 
(trapped by the shrubs) and thus warmer soil temperatures during winter (Sturm et al. 2005, 
Myers-Smith et al. 2015). In contrast, on Hudson Bay, an increased population of lesser snow 
geese (Chen caerulescens caerulescens) has pushed a wetland into a new, overgrazed, stable 
state with hyper-saline soils (Jefferies et al. 2004b). In Iceland  STMs have been used to identify 
restoration goals for regions with long-term overgrazing by sheep (Barrio et al. 2018). In high 
Arctic Svalbard, Wal (2006) argued that reindeer densities can move tundra vegetation into 
three alternate stable states that are either lichen-, moss- or graminoid-dominated. Using STMs 
as a tool in management as opposed to purely as a conceptual model requires a thorough 
understanding of the system and descriptions of e.g., threshold values (Bestelmeyer 2006, 
Twidwell et al. 2013), quantifiable state variables (Suding and Hobbs 2009) and timeframe 
estimates for state transitions (Sato and Lindenmayer 2021). 

  



 

6 

2.1.4 Drones in ecology 
Lightweight drones are an increasingly popular tool in ecological research (Tang and Shao 
2015). Praised as a new tool that will revolutionize ecological research dating back in 
2012/2013 (Koh and Wich 2012, Anderson and Gaston 2013), drones have since been used in 
ecological studies across all continents and many landscape types, e.g., to map European forests 
(Torresan et al. 2017), to detect landscape types in Antarctica (Miranda et al. 2020), or 
chimpanzee nests in Tanzania (Bonnin et al. 2018). Drones come in all forms and shapes 
(Vergouw et al. 2016) and commonly also are referred to as UAVs (Unmanned Aerial 
Vehicles), or UAS (Unmanned Aerial Systems), or RPAS (Remotely Piloted Aircraft Systems). 
Here, I will use the word drone because it is short and gender-neutral (Joyce et al. 2021). Within 
the field of ecology, the most popular type of drones are multirotor drones, that can often be 
bought off the shelf, and small fixed wing planes that are specialized for mapping flights (Sun 
et al. 2021). Drones can be equipped with a range of sensors, such as “normal” RGB (red, green, 
blue) cameras, multi-and hyperspectral cameras, thermal sensors, LiDAR and trackers that can 
follow individual animals, (e.g. Liu et al. 2017, Maes et al. 2017, Bagaram et al. 2018, Saarinen 
et al. 2018, Dı́az-Delgado et al. 2019, Muller et al. 2019). Drone-based measurements can 
complement smaller scale field measurements and provide detailed information across the 
ecological scales from individual species to monitoring entire ecosystems (Sun et al. 2021). 
Some of the practical advantages of using drones versus satellites are the possibility of quick 
and location specific deployment (Mangewa et al. 2019) especially of lightweight drones, to 
obtain data even on cloudy days (Dash et al. 2018) and self-determined temporal survey 
intervals (Tang and Shao 2015). Probably, the main advantage of drones is scale-appropriate 
measurements (Huylenbroeck et al. 2020) that can capture spatial-temporal variation in 
vegetation cover such as single shrubs (Cunliffe et al. 2016), terrain (e.g., thaw slump 
progression (Van der Sluijs et al. 2018)) and micro-climate heterogeneity (Duffy et al. 2021) 
that generally would not be possible with (non-military) satellites or planes (Sun et al. 2021). 
Drones haven proven to be especially useful as a ground truthing and upscaling tool in 
combination with satellite images (Dash et al. 2018, Karami et al. 2018, Rossi et al. 2018, 
Daryaei et al. 2020, Miranda et al. 2020) which can inform regional conservation management 
(Stark et al. 2018) and improve our ability to interpret satellite images (Siewert and Olofsson 
2020, Assmann et al. 2020). This high diversity of drone applications has led to an equally high 
diversity of methods and reporting standards. Therefore, there has been a need for more 
standardized field and data processing protocols to reduce sources of error (Morgan et al. 2010) 
and improve replication opportunities (Barnas et al. 2020). Recent landscape mapping protocols 
include items such flight planning, geometric and radiometric calibrations, image processing 
and how to report these steps and results (Aasen et al. 2018, Assmann et al. 2019, Tmušić et al. 
2020). With the right methods and rigorous scientific protocols drones could therefore become 
an important tool in effective monitoring of natural resources (Anderson and Gaston 2013, 
Tmušić et al. 2020). With this thesis I am planning to test the suitability of using drones (with 
RGB and multispectral sensors) in the context of long-term Arctic tundra monitoring and 
actively use and build upon recommended guidelines for drone-based landscape mapping. 

 



 

7 

 

 

Figure 1: Examples for two of the most common drone types used in ecological research. a) A multi-rotor drone 
and b) a small, fixed wing drone. Pictures taken in Svalbard, by a) I.Eischeid and b) L. Ársælsdóttir 

 

2.2 Thesis objectives 

2.2.1 COAT Tools+ 
This thesis was carried out in the context of COAT Tools+ which was funded by Tromsø 
Research Foundation. COAT, short for Climate-ecological Observatory of Arctic Tundra, is a 
long-term, ecosystem-based, and adaptive observation system. Its mission is to resolve how 
Arctic tundra food webs are impacted by climate change and provide science-based 
management advice. The Tools+ project is a method development initiative to integrate and 
evaluate new technology and enhance the scientific observation capacities of COAT (Ims et al. 
2013). 

2.2.2 Aims 
The overall aim of this thesis was to apply principles of adaptive monitoring to understand 
causal relationships of biotic and abiotic interactions in a high Arctic tundra ecosystem. 
Specifically, I used components of an adaptive monitoring framework (Figure 2) to achieve the 
following four goals. 
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Figure 2: Conceptual model for an iterative approach to adaptive monitoring. This figure was first published in 
Lindenmayer and Likens (2009) and is shared here with permission from the journal. It highlights important steps 
in time of an adaptive monitoring program: The monitoring is designed to answer specific questions and after data 
collection and data analysis, a re-evaluation can answer or alter these original scientific questions. It also allows for 
the inclusion of new technology to better answer the scientific questions and monitoring needs. The red circles 
highlight aspects of the adaptive monitoring framework that I apply in this thesis to specify the research questions. 

 
1) The first goal of this thesis was to design conceptual models for Svalbard’s moss tundra 
ecosystem and define the vegetation monitoring needs of high Arctic tundra systems in the 
context of climate change and herbivore management. I would like to answer the following 
questions (Paper I): 

1a) Which vegetation states and drivers are likely important at shaping Svalbard’s tundra 
ecosystem in the future? 
 
1b) How do the presented conceptual models define the monitoring goals for moss tundra 
ecosystems in Svalbard and how can this thesis contribute? 
 
2) The second goal was to design new monitoring approaches that help quantify habitat types 
and drivers of vegetation state change in the future by exploring the following questions within 
the context of long-term adaptive monitoring (Paper II, III). 

2a) Can we detect the habitat types described for Svalbard’s tundra ecosystem using drone 
images? 
 
2b) Can we use drone images to detect abiotic and biotic habitat disturbances? 
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2c) Can we quantify the role multiple drivers play in steering goose grubbing distribution and 
intensity? 
 
3) The third goal was to evaluate the practical implications of using drones, drone imagery, 
photogrammetry and image classification-based approaches for monitoring tundra or alpine 
environments (Paper II-IV). 
 
3a) How do random forests classifiers perform in tundra environments? 
 
3b) What have I learned from using photogrammetry and drones in tundra environments in 
the context of adaptive monitoring? 
 
4) The final aim was to evaluate how the findings of the thesis (Paper I-IV) can contribute to 
monitoring programs like COAT in the future.  
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3 Methods 

3.1 Study system 

3.1.1 Thesis framework 
The studies in this thesis are interrelated by sharing scientific questions, methods and data 
(Figure 3). Paper I was a conceptual study that defines the research framework for Paper II and 
III. In Paper II we mapped ground-cover types, including habitat disturbances in three sites 
Svalbard during summer. Paper III was a study conducted in spring, situated at one of study 
sites that we also investigated for Paper II. We are using the maps and methods developed in 
Paper II but expand the study by integrating snowmelt progression, timing of disturbances and 
pink-footed goose movement data. Paper IV was situated in the Alps but shared a large 
proportion of methodology with Paper II and III. This allowed me to draw some wider-scale 
methodical conclusions.  

 

Figure 3: Conceptual framework on how the Papers in this study are linked to one another. Paper I: High Arctic 
ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research, Paper II: 
Disturbance Mapping in Arctic Tundra Improved by a Planning Workflow for Drone Studies: Advancing Tools for 
Future Ecosystem Monitoring, Paper III: Snowmelt progression drives spring habitat selection and vegetation 
disturbance by an Arctic avian herbivore at multiple scales, Paper IV: Machine learning for classification of an 
eroding scarp surface using terrestrial photogrammetry with NIR and RGB imagery. 

3.1.2 Study area 
All four studies were conducted in tundra ecosystems (Figure 4). Paper I was a conceptual paper 
for high Arctic tundra and is relying on the tundra ecosystem of Svalbard as a case study. The 
studies of Paper II and III were conducted in the same ecological context, in Svalbard (74°- 81° 
N-10°- 35° E). The Svalbard archipelago is located in the high Arctic zone of the Circumpolar 
Arctic Vegetation Map (Walker et al. 2003). The archipelago is strongly influenced by the Gulf 
stream and has average winter temperatures up to 20°C higher than other places at the same 
latitude (Ims et al. 2013). The bioclimatic zones range from polar deserts, Northern Arctic 
tundra to middle Arctic tundra (Jónsdóttir 2005). Annual precipitation is low, around 190 mm 
(Lawrimore et al. 2021) and the growing season lasts for one to three months (Jónsdóttir 2005). 
Glaciers cover approximately 60% of the land surface and only approximately 16% is vegetated 
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(Johansen et al. 2012). The periglacial landscape is characterized by U-shaped valleys (Figure 
5) and the vegetated areas are mostly confined to elevations below 200 m above sea level 
(Elvebakk 2005). The study of Paper IV was conducted in Rotmoos Valley in the Austrian Alps 
(46°50’24’’N, 11°01’59’’E). This area is characterized by an inner alpine climate and a mean 
annual precipitation of 819 mm (Bernsteiner et al. 2020). The area was shaped by glacial 
erosion with 40 m of accumulated sediments and local peat deposits of 2.65 m (Patzelt, 1995 
and Bortenschlager, 2010 in Bernsteiner et al. (2020)). 

 
Figure 4: Locations for the studies included in this thesis indicated by red dots. Rotmoos valley in the Austrian alps 
in the South (46°50’24’’N, 11°01’59’’E) and Svalbard in the North (74° - 81° N, 10° - 35° E). The core study sites for 
Paper II and IV are shown in the zoomed map, Janssonhaugen (78°10'11.85"N, 16°18' 2.47"E), Sassendalen 
(78°19'53.08"N, 16°58'28.33"E) and Todalen (78°11'19.54"N, 15°49'24.06"E). 

 

 

 

Figure 5: Aerial images of Arctic tundra field sites in Svalbard. From left to right: Janssonhaugen (78°10'11.85"N, 
16°18' 2.47"E), Sassendalen (78°19'53.08"N, 16°58'28.33"E) and Todalen (78°11'19.54"N, 15°49'24.06"E). 
Pictures taken in July-August 2019 with a dji phantom 4 pro drone by I.Eischeid. 
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3.1.3 Habitat disturbances 
In Paper II and III, we investigated the extent and timing of biotic and abiotic disturbances as 
part of ground-cover mapping and an analysis of snowmelt progression on the extent of 
herbivory. In general terms, disturbance is “any relatively discrete event in time that disrupts 
the ecosystem, community, or population structure and changes resources, substrate 
availability, or the physical environment” (White 1985). Disturbance can thus be understood as 
a force that influences landscape heterogeneity and diversity. It can cause open spaces and 
create unique structural change and patterns in the landscape with a mosaic of areas with various 
disturbance intensity and unaffected regions (Turner 2005). Examples of biotic disturbances in 
a high Arctic ecosystem are those caused by herbivores, e.g., through extensive grazing (Wal 
2006), trampling (Tuomi et al. 2021) or grubbing (Speed et al. 2010b). Abiotic disturbances are 
often caused by either increases in temperature, temperature fluctuation, precipitation or a 
combination thereof: Plants that get damaged because of temperature changes during the spring 
and soil destabilization because of permafrost thaw (Lantuit et al. 2012, Milner et al. 2016). In 
this thesis I am focusing on the biotic disturbance, goose grubbing, and the abiotic disturbance, 
winter damage of plants, as two drivers of state change (see below).  

3.1.3.1 Goose grubbing 

The Svalbard population of breeding pink-footed geese has increased substantially the last 
decades (Madsen et al. 2016). Pink-footed geese overwinter in the Netherlands, Belgium and 
Denmark and migrate to the High Arctic for the breeding season (Madsen et al. 2009). Their 
numbers have increased from c. 40,000 in the 1980s to c. 80,000 in 2015-2019 (Heldbjerg et 
al. 2021). This has mainly been attributed to improved protection from hunting, intensified 
agricultural production and milder temperatures at their overwintering sites that improved their 
physical condition and survival rates (Van Eerden et al. 2005). During their pre-nesting stage, 
pink-footed geese concentrate their feeding on plant roots and rhizomes, this is commonly 
termed grubbing. While grubbing, geese often remove large amounts of moss in order to access 
the desired plant parts and open up bare ground (Fox et al. 2006). The recovery rate of grubbed 
areas depends on grubbing intensity, ground-cover type and weather conditions (Handa et al. 
2002, Jefferies and Rockwell 2002, Jefferies et al. 2004a, Speed et al. 2010a). The rapid 
increase of grubbing geese has therefore been proposed as one of the drivers of tundra 
vegetation degradation on Svalbard (Speed et al. 2009, Pedersen et al. 2013a). Grubbing activity 
can vary in intensity and form. In dry areas without significant moss cover, geese often aim 
directly for single rhizomes which leaves behind distinct holes, often visible many years after 
(Wal et al. 2020). In moist and mesic areas with a thick moss carpet, they can remove large 
areas of moss while they search for rhizomes. The different “types” of grubbing are illustrated 
in Figure 6. 
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Figure 6: a) Dwarf-shrub heath and b) Moss tundra vegetation class in late May 2019. Inserts show the habitat 
disturbances typical for the two vegetation classes: Single, isolated grubbing holes in dwarf-shrub heath (left) and 
continuous grubbing removing the moss carpet in moss tundra vegetation class. Pictures taken in Svalbard, by 
I.Eischeid 

3.1.3.2 Winter damage 

Winter rain events have increased over recent years in Svalbard (Peeters et al. 2019). Such 
events often cause basal ice, which blocks grazing grounds for herbivores, and have wide 
impacts on population dynamics of the entire vertebrate community (Hansen et al. 2013, Albon 
et al. 2017, Hansen et al. 2019a, Hansen et al. 2019b, Pedersen et al. 2021). Continuously higher 
winter temperatures have increased the frequency of winter days with temperatures above 0°C 
and thus the frequency of rain on snow events (Førland et al. 2011, Hansen et al. 2014). Periodic 
warm periods during winter and sequential freezing damages plant tissue, and coupled with 
rain, it encapsulates plants in an ice coat (Le Moullec et al. 2021). In addition, extreme winter 
warming can lead to desiccation when plants leave hibernation but cannot access water due to 
frozen soils (Bjerke et al. 2017). Freezing temperatures after snow melt can damage plant 
tissues and decrease flowering success (Milner et al. 2016). During the summer it is not always 
possible to determine what has caused the die-offs. In this thesis, I collectively refer to icing, 
desiccation or other damage that may occur during winter as ‘winter damage’. Dwarf shrub 
tissues that were damaged due to frost and died typically turn grey; mosses can turn white in 
their tips or be exposed to “freeze burns” and turn black (Figure 7). 
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Figure 7: Examples of winter damaged vegetation. a) Dead Dryas octopetala stems and leaves surrounded by 
healthy vegetation. b) Damaged and dead? moss carpet, the ecological process behind this damage is not fully 
understood. Pictures taken in Svalbard, by a) C. Jaspers and b) V. Ravolainen.  

3.1.4 Ground cover classes 
In each of the four papers included in this thesis, we grouped the ground into different, yet 
similar, ground cover classes. Svalbard’s tundra vegetation has been classified previously (e.g. 
Jónsdóttir 2005, Elvebakk 2005, Walker et al. 2005, Johansen et al. 2012) with varying degree 
of detail and purpose. We were particularly interested to find ground cover classes that would 
provide useful information for monitoring, such as disturbance classes, and were visually 
detectable.  

Paper I focused on moss tundra habitats and thereby has the most detailed descriptions within 
this habitat type. We used the habitat types in Paper I as the baseline to define the ground cover 
classes for Paper II and III but customized them to fit with the specific goals of each study. In 
the conceptual paper of this study (Paper I), we defined four main habitat types: Cryptogram 
barrens, Dwarf-shrub heath, Moss-graminoid tundra and Wetlands. These overarching classes 
are a product of climate, topography, substrate, hydrology and herbivory (Ravolainen et al. 
2020).  

In Paper II, we used more detailed subclasses of these general habitat types to describe the study 
system (Figure 8). Ground cover class selection was driven by finding a compromise between 
ecologically relevant classes and the visual detectability of these. Within the “Dwarf-shrub 
heath” habitat type, were the classes of heath moss, heath graminoid, dryas, cassiope and winter 
damage woody. Within the habitat type “Moss-graminoid tundra” were the ground cover class 
moss graminoid and winter-damage moss. The ground cover classes moss equisetum, Carex 
subspathacea and grubbing, could be assigned to either the “Moss-graminoid tundra” or 
“Wetland” habitat type. The ground cover types wetland, moss-brown wetland were within the 
“Wetland” habitat type. The ground cover classes bare ground, biological crust and gravel 
could be assigned to multiple habitat types. Detailed descriptions of these ground cover classes 
can be found in (Appendix A in Paper II).  
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The ground cover classes chosen in Paper III were generally in accordance with the four major 
habitat types described in Paper I. With the exception that we made a general, non-vegetated or 
sparsely vegetated class that included the “Cryptogam barrens” habitat type, but also areas that 
were covered in bare ground, biological crust and water. The “moss tundra” class in Paper III 
included predominantly areas within the Moss-graminoid tundra and Wetland habitat type. In  

Paper IV, the main goal was to describe classes that give an indication of active erosion sites in 
a peat scarp. These classes were rock, dry grass, green grass, peat and snow. 

 

Figure 8: Habitat types in green (Paper I) and their associated ground cover types in yellow and orange (Paper II). 
The positions of yellow and orange boxes indicate which habitat type they are closest associated with. The 
classes colored in orange can be associated to habitat disturbances and were investigated more closely (Figure 5 
in Paper II). More detailed descriptions about the ground cover classes can be found in Appendix A -Paper II. 

3.2 Data collection 

3.2.1 Geometric accuracy 
The field-based studies of this thesis (Paper II-IV) focused on centimeter scale difference in 
terrain and snow cover as well as in the highly heterogenous plant communities. Therefore, it 
was essential that measurements were conducted with appropriate spatial accuracies.  

3.2.1.1 Handheld GPS 

Handheld GPS (Global Positioning System) units have accuracies at meter scales. The Garmin 
device we used had reported accuracy of three meters about 95% of the time, pending clear 
skies and low magnetic activity (Garmin). The GPS location received is based on a triangulation 
between multiple position readings received from all satellites that are within the field of view 
of the GPS. Because of the inaccuracies of a normal hand-held GPS, we only used this unit to 
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register spatial positions for the observers during pink-footed goose surveys (Paper III). Driving 
and moving in and out of the car made it not possible to use more advanced equipment. 

3.2.1.2 Base stations 

To obtain more accurate positions that would be possible with a handheld GPS, we relied on 
base stations situated at previously measured locations (Paper II-IV). In less remote places, 
mapping authorities often provide a network of permanent base stations that can be used as 
reference points. In Svalbard, there is only a small number of official base stations and none of 
them were close enough to the study sites so that we could use them directly. Therefore, we 
used mobile base stations and established a new network of “known locations” to create our 
own reference points. We used equipment from Leica Geosystems, GS10 and CS10 
(https://leica-geosystems.com) for all high precision GPS work. As reference point, we used a 
marker that had been measured and marked by the local governing body (Figure 9), hereafter 
called “flagpost location” and was close (500 m) to the study site Todalen. To establish new 
“known locations” in Janssonhaugen and Sassendalen, we set up one base station at the 
“flagpost location” and a second base station at each of the two study sites. We then let both 
stations log their positions for several days and used GNSS processing to calculate the position 
of the new “known location” in Janssonhaugen and Sassendalen. During GNSS processing the 
deviations/offset of measured GPS locations of the established “known location” are used to 
estimate a similar offset (by matching time intervals every 15 seconds) at the new “known 
location” and calculate a corrected mean over time. The closer the two base stations are, and 
the longer they run in parallel, the more the increase in accuracy. Our reports revealed a 3D 
accuracy of approximately one millimeter. We marked the new “known locations” with 
aluminum pipes in ground so that they can be used as reference points in long-term monitoring.  

 

Figure 9: Leica GS10 Basestations at four locations in Svalbard used as reference point for drone flights and ground 
truthing. From left to right: “flagpost location”, Janssonhaugen, Sassendalen, Todalen. Pictures taken by I.Eischeid 
(1,2,4) and T.Blæsterdalen (3). 

3.2.1.3 Real time kinematic positioning (RTK) 

The core of the high precision GPS work for this thesis was done via real time kinematic links 
(RTK). With RTK, a mobile GPS unit (the rover) is communicating with a GPS base station 
that is located at a “known location” via a radio-link. The base station (because it is at a known 
point) can continuously compute the error/spatial offset at its location. The rover receives 
information about its position from the triangulation based on the positions received from 
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satellites (like a hand-held GPS), but it then corrects the position by “talking in real time” with 
the base station to receive information about the spatial errors/offset at any given point in time. 
This results in accuracies of approximately 2 cm. We used the RTK approach for several 
applications. We established a new “known location” at the Todalen site, as it was close enough 
to the “flagpost location” so that we did not have to use two base stations in parallel. Further, 
we used the RTK link system to measure ground-control points (GCP), which were targets 
visible in the drone images and used for georeferencing. All ground truthing points (for ground-
cover classes) were also collected using the RTK system. The drone used in Paper II and III 
was taking advantage of the same RTK system. The drone replaces the rover as the mobile unit 
but utilizes the same technology to obtain position errors in real time during flight. 

3.2.1.4 Total station 

In the study of Paper IV we used a total station instead of base station (Leica TC1100). The 
total station uses the distance and angle to calculate spatial positions in the terrain. We placed 
the total station approximately 20 meters from the peat scarp erosion site. From this place, we 
measured the angle and distance from two already “known points” in the landscape, thus 
calculating the coordinate and orientation of the total station. We then used the total station to 
geolocate the GCPs that were placed across in the peat scarp. 

3.2.1.5 Ground control points (GCPs) 

For the drone-based studies in Paper II and III, we used GCPs solely as a backup. Because the 
drone we had available had RTK capacities, where GCPs theoretically not necessary. As GCPs 
we used white canvass (1 x 1 m) with two black diagonal squares (checkerboard) that were 
clearly visible on the drone images. After each flight we measured the location of the GCPs 
using the GPS rover/base RTK setup (Figure 10). 

In the study of Paper IV, we had eleven GCPs placed across the study area of the peat scarp. 
As GCPs we used white cardboard (0.5 x 0.5 m) with black circular coded targets that could 
automatically be recognized by the image processing software (Figure 10). In front of the peat 
scarp landscape feature, we had an available “known location” that had previously been 
measured. At this “known location” we placed a total station and from there we could measure 
the exact location of each of the GCPs. This method was especially useful for an almost vertical 
wall like the peat scarp feature, where the highest elevated areas easily can obstruct the features 
in the lowest part of scarp. 
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Figure 10: Ground control points (GCP) used for georeferencing of drone and hand-held camera images. On the 
left, 1 x 1 m canvass, measured with the Leica GS10 rover, Svalbard, July 2019. On the right, cardboard targets, 
0.5 x 0.5 m, with black circular coded targets for automatic recognition, Obergurgl, June 2019. Pictures taken by 
I.Eischeid 

3.2.2 Cameras 

3.2.2.1 Drone cameras 

The two drone cameras that we had available for Paper II and III were a “regular” RGB (red, 
green, blue) camera (model AeriaX - sensefly) and a multispectral camera (Sequoia+ - 
sensefly). The RGB camera has a resolution of 6,000 x 4,000 pixels (3:2), which resulted in 
ground sampling distances (GSD) of approximately 2 cm at 100 m altitude. The Sequoia+ 
camera had four spectral bands, green, red, near infrared (NIR) and red edge and a GSD of 
approx.. 10 cm at 100 m altitude. It had an inbuilt light sensor and was radiometrically pre-
calibrated (Cubero-Castan et al. 2018). Therefore, similar to the GCPs, we only took spectral 
calibration images as backup. We used both grey-canvasses (1 x 1 m) of which we had a known 
spectral signature (measured in the lab) and a grey-card (A4 size) where the spectral signature 
was provided (Zenith Lite – SphereOptics).  

3.2.2.2 Handheld cameras 

In the study for Paper IV, we used two different cameras to take images of an eroding peat 
scarp. We used a consumer grade Canon EOS 450D (27mm) camera to take RGB images and 
a modified NIKON D-200 to take NIR images. The NIR range had wavelengths between 750-
1500 nm. To be able to take NIR images, we first removed the original filter, which blocks 
radiation above 720 nm and then installed a HOYA R72 filter. The filter allowed the camera to 
take images in the wavelength between 750 nm and 950 nm (the camera sensors maximum 
capacity). 
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3.2.3 Drone mapping 

3.2.3.1 Drone system 

The drone that I used for this thesis (Paper II, III) was a fixed-wing RTK drone (eBeeX) 
produced by Sensefly (www.sensefly.com). The drone has a weight of 1.6 kg and is therefore 
light enough to not require special certification outside of the general European pilot 
registration requirements. The drone can be transported in three pieces (core and two wings) 
and is therefore suitable (yet large in volume) for long hikes to remote field sites. The eBeeX 
is a drone especially equipped for flying mapping missions. It flies at pre-programmed flight 
lines with specified flight height and image overlap. A laptop and a radio antenna are used to 
monitor and control the drone during the flight. During the summer flights, (Paper II) we used 
a direct RTK link to the drone. To do so, we connected the laptop with a serial port cable to the 
Leica base station (Figure 11) so that the base station could give RTK corrections to the drone, 
this resulted in accuracies around 2 cm. In spring (Paper III) the necessary cable was not 
available, therefore we used post-processing-kinematics (PPK) to correctly georeference the 
drone images. The PPK workflow requires a base station that is logging its position (and 
therefore spatial offset) in vicinity to the flight area. We used the “flagpost known location” 
and logged the position at one second intervals. Afterwards we could match the drone images 
and logged base station positions based on the time and correct the image positions, this resulted 
in accuracies around 5 cm.  

 

Figure 11: left: Leica GS16 basestation connected to PC (with installed eMotion (sensefly) flying software) via 
Leica GEV 269 cable, picture taken by I.Eischeid. Fixed wing drone (eBeeX) launch by an eager PhD student, 
picture by V.Ravolainen, Svalbard 2019. 

3.2.3.2 Drone flights 

For all flights (Paper II, III), we tried to fly as close as possible to noon (earliest 10:00, latest 
15:00) to avoid shadowing (during sunny days) and have as stable light conditions as possible. 
We did not fly on days where light conditions were unstable, with so called “popcorn” clouds 
that produced shadows on the study sites. The eBeeX drone can handle wind speeds of up to 14 
m/s, but that results in very fast flying speeds when the drone is experiencing tail winds and is 
faster than the shutter speeds the cameras usually can confidently handle (Zhou et al. 2020). In 
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addition, start and landing procedures were difficult at these conditions. Therefore, we flew at 
wind speeds of 7 m/s and under. During summer we were able to conduct all planned flights. 
During spring, wind and light conditions prevented flights on two of the planned sampling days. 
Flight heights and image overlap varied between days and projects, mostly balancing the desire 
to obtain as low ground sampling distance (GSD) and high image overlap as possible but short 
enough flight times to have stable light conditions. During spring, cold temperatures also 
restricted flight times because the laptop batteries drained quickly. 

3.2.4 Habitat type and disturbance assessments (ground truthing) 
Field based habitat type and disturbance assessments were major components for the studies in 
Paper II and III. For both studies, we collected ground truthing data of the ground-cover classes 
included in each of the studies. We used the rover/base RTK system to obtain ground truthing 
data at 2 cm accuracy (Figure 12). Ground cover class detail varied between the studies, but the 
general procedure was the same. We spread ground truthing points out across the extent of the 
study area to reduce spatial autocorrelations as much as possible. A stratified random approach 
would have been best (Roberts et al. 2017), but because we did not have any previous maps 
from the sites, it would have been difficult to plan a more standardized approach whilst also 
covering all the ground truthing classes. During the summer survey (Paper II), we used several 
days at each study site to collect detailed ground truthing data. During spring (Paper III), as the 
landscape was constantly changing, we collected ground truthing data on the same days we 
were flying, but only for a limited number of classes (snow, no snow, disturbed vegetation). 
Additionally, in spring, we surveyed the progression of snowmelt and pink-footed goose 
disturbance in 320 plots that were spaced out in clusters across the study site. These plots were 
marked with small nails so that we could find them throughout the season. We also determined 
the exact location of all the plots by measuring two corners of each of the plots using the 
rover/base RTK system. 

 

Figure 12: Super-field assistants ground truthing during spring and summer. Left: Linda surveying a plot for 
snowmelt timing and goose grubbing. Middle: Torgeir taking a ground truthing point of the grubbing class. Right: 
Ingrid happily mapping a patch of graminoid heath. Pictures taken in May and July in Svalbard, 2019 by 
I.Eischeid. 
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3.2.5 Satellite images 
In the study of Paper III, we extrapolated the drone-based study onto a larger area using satellite 
images. We took advantage of the freely available Sentinel 2 images, provided by ESA. The 
Sentinel 2 mission is comprised of two satellites that orbit at a 180° phase in a polar orbit (ESA 
2022). This results in highly frequent revisit times in the polar regions, at least once a day. The 
satellite is equipped with 13 spectral bands, four of these at ten-meter resolution (red, green, 
blue, NIR), which are the ones we used for the study. We retrieved the satellite images using 
Google Earth Engine (GGE - https://earthengine.google.com), which is a free platform for 
universities and researchers. To obtain satellite images within the study period and study area, 
we used a shapefile to filter for images within the area, selected the time frame of the study and 
applied a cloud detection mask. Because the mask was not 100% reliable, we manually checked 
that the images were free of clouds in the study area. The biggest advantage with GEE is that 
all filtering and processing can be done online without downloading all the images that were 
not suitable. 

3.2.6 Pink-footed goose surveys 
For Paper III, we conducted goose surveys and used GPS collared birds (Figure 13) to track 
their movement. I was not involved in the GPS collaring field work but were given access to 
the data (www.movebank.org), see Paper III, Clausen et al. (2020) and Schreven et al. (2021) 
for more information on tagging procedures and bird handling. During spring 2019, we 
conducted manual goose census surveys by driving (by car) along the same route throughout 
the pink-footed goose pre-breeding period. For each observation we recorded the observer’s 
position (handheld GPS), measuring the distance (laser-beam on binocular) and angle 
(compass) to the goose. This made it possible to calculate their spatial position. 

 

Figure 13: Pink-footed goose survey during Spring 2019. Left: Super-field assistant Linda waiting for the first geese 
to arrive. Right: Pink-footed goose equipped with solar powered GPS tracking device – kindly using one of the 
monitoring sites in Todalen. Grubbing visible on the ground. Pictures taken in May, 2019 in Svalbard by I.Eischeid.  
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3.3 Data processing and analysis 

3.3.1 Photogrammetry 
In the studies of Paper II-IV, we relied heavily on modern photogrammetric methods to stitch 
images together and create three-dimensional (3D) point clouds. Traditional photogrammetry 
relied on detailed, manual 3D position reference point measurements of each image to match 
pixels and objects of multiple images into one. Higher computing capacities have led to the 
emergence of more effective tool: Structure-from-Motion (SfM), which recognizes matching 
features on overlapping images and detects camera position, orientation and terrain geometry 
simultaneously (Westoby et al. 2012). This can be used to create two-dimensional (2D) 
orthomosaics to generate one large (averaged) image of all the small images. And, because 
overlapping images have slightly different camera angles, it is possible to generate 3D point 
clouds. The principles of SfM were already developed in the 1990s but experienced a sort of 
renaissance with the rise of drone-based mapping (Westoby et al. 2012, Anderson et al. 2019). 
We used two different software programs (Paper II, III -Pix4D Mapper (www.pix4d.com), 
Paper IV Agisoft Metashape (www.agisoft.com), but the general SfM method was very similar 
for both. First, features (key points) on each of the images were matched with the same features 
on the other images. In the next step, camera positions and angles were used to calculate 3D 
point clouds with an associated RGB and NIR value for each point in space. In Paper II and III, 
we continued to generate 2D orthomosaics and digital surface models (DSM) out of the point 
clouds (using Pix4D Mapper) to use them for analysis. In Paper IV, we used the 3D point clouds 
directly and imported them into CloudCompare (www.cloudcompare.org) to generate training 
data. Joining many hundreds of drone images into a single point cloud requires computers with 
good processing powers. These computers do not need to be specialized but need to have more 
capacity than an average PC given to an ecologist in a research institute. Because we only 
needed processing capacities a few times throughout the year, I joined a pilot project by the IT 
section at Tromsø’s Arctic University. Together, we set up a temporary server that I could log 
into via a Remote Desktop. The specifications were: Microsoft Azure sky, Virtual Machine size 
NV12 (12 cores, 112 GB RAM, Nvidia GPU).  

3.3.2 Spatial layers 
In addition to the primary spatial layers that were obtained through the handheld cameras (RGB 
+ NIR, 3D point cloud) and the drone cameras (RGB + multispectral (green, red, red-edge, 
NIR), DSM), we computed a secondary set of variables for both optical layers and terrain 
descriptors. The most important ones are described below.  

3.3.2.1 Normalized difference vegetation index (NDVI) 

From the drone orthomosaics and satellite images we calculated the normalized difference 
vegetation index (NDVI = (NIR-red)/(NIR+red)). We included it as a predictor variable in the 
ground-cover classifications and as an estimator for general plant biomass density to detect 
disturbed areas (Schinasi et al. 2018). In Pix4D mapper, it is possible to calculate NDVI within 
the final processing steps. And in GEE, we calculated the NDVI using the satellite bands within 
the platform and then downloaded the final layer. 
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3.3.2.2 Gray level co-occurrence matrix (GLCM) 

In Paper II, to help distinguish between ground-cover classes of similar color, we calculated the 
neighborhood characteristics for each pixel in the green, red-edge and NDVI orthomosaics 
using gray level co-occurrence matrices (GLCM). It is a method that describes the structural 
characteristics within a chosen neighborhood of the central point or pixel (Haralick et al. 1973). 
We calculated seven different GLCMs, variance, homogeneity, contrast, dissimilarity, entropy 
and second moment using the GLCM R package (Zvoleff 2020). Because neighborhood size 
influences the values for each GLCM, we used the example of (Fan 2013) and tested predictive 
ability of multiple neighborhood sizes. 

3.3.2.3 Terrain 

In Paper II and IV, we used terrain variables as predictors within the classifier. In Paper II, we 
calculated habitat ruggedness and dissection at multiple neighborhood sizes from the DSM 
using the spatialEco R package (Evans 2020). In Paper IV, we calculated the terrain variables 
directly from the 3D point cloud using CloudCompare. We analyzed the predictive abilities of 
18 different terrain descriptors (such as roughness, verticality and mean curvature) with three 
different neighborhood sizes.  

3.3.2.4 Training data 

In addition to the ground truthing data collected in the field, we also generated manual training 
data of ground-cover classes (Paper II-IV). In ArcGIS (Paper II, III) or CloudCompare (Paper 
IV) we opened the point clouds/RBG orthomosaics/RGB satellite images and drew polygons 
to delineate areas that could be used as training data. In Paper II, we only used this method for 
ground-cover classes where we did not have enough data from the field (water, winter damaged 
heath and snow). For the studies in Paper III and IV, delineating polygons was the main method 
to obtain training data. In Paper III, we delineated polygons for a snow/no snow classification 
using GEE. To classify habitat classes (moss tundra, dwarf-shrub heath, not vegetated) with 
satellite images, we used the drone-based classification from Paper II as the training dataset. In 
Paper IV, we trained the classifier on six ground cover classes (such as grass, peat, rocks) from 
the 3D point cloud. 

3.3.3 Random forest classifier 
The studies of Paper II-IV relied heavily on random forests classifiers to detect ground cover 
types and snowmelt progression. The random forest (RF) classifier, sometimes also referred to 
as “quasi-machine learning”, is a classification approach that combines the results of multiple 
decision trees (using random subsets of the data) to generate a final, combined “decision forest” 
(Breiman 2001). The reason we chose to conduct the studies using RFs was because they  can 
efficiently handle many predictor variables and classes without overfitting and because it 
provides a ranking of variable importance (Breiman 2001, Cutler et al. 2012, Belgiu and Drăguţ 
2016). This allowed us to test many predictive spatial layers and select and obtain information 
on which of these will most likely be important for monitoring in the future. The overall 
predictive accuracy of a RF can be evaluated using the Out-of-Bag (OOB) error (Breiman 
2001). It has, however, been shown that with autocorrelated training data, the OOB can be 
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overoptimistic, and it is therefore recommended to use independent validation datasets that are 
not used to build the RF (Mascaro 2014, Millard and Richardson 2015). This can either be a K-
fold mechanism where the RF assembly is repeated a defined number of times (Hastie et al. 
2009) or splitting the dataset manually (e.g. Mascaro 2014). In this thesis (Paper II-IV) we split 
training and validation datasets manually. This was, in part, for practical reasons, because the 
classifier outputs using manual splits were more detailed than using the K-fold mechanism. In 
addition, the manual approach allowed us to specify the distance between the training and 
validation points to reduce chances of autocorrelation. For the snow classifications in Paper III 
and in Paper IV, we only constructed one RF for each dataset, with 500 trees each. For the 
vegetation classifications in Paper II and III, because the classes were more complex, we used 
multiple runs (n=30), i.e. created 30 RFs, with a new training and validation dataset split for 
each (See Figure 4 in Paper II). This provided us with information about the variance around 
the mean and allowed us to assess the robustness of the classifier. We used r-miner (Cortez 
2020), a package in R (R Team 2013) for building and testing the RF classifiers. To predict the 
results of the classifier over the study area to create classified maps, we used the “predict” 
function in the R raster package (Hijmans 2020). Because RFs are suitable for parallel 
processing (Cutler et al. 2012), we used the Cluster R package to speed up processing 
(Mouselimis 2020).  
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4 Key findings 
4.1 Paper I - High Arctic ecosystem states: Conceptual models 

of vegetation change to guide long-term monitoring and 
research 

We addressed the importance of adaptive monitoring and creating conceptual models to guide 
research questions and data collection. We stressed the need to find a balance in monitoring 
vegetation’s response to warming by obtaining a more general understanding of tundra 
vegetation changes as well as increasing knowledge of ecosystem-specific responses. 
Therefore, we recommended the use of conceptual models of vegetation change in High Arctic 
ecosystems to guide long-term monitoring and research. Using Svalbard as a case study, we 
suggested three conceptual models for different purposes and levels of detail.  

First, we defined a general ecological conceptual model for the main habitat types in Svalbard: 
cryptogam barrens, dwarf-shrub heath, wetlands and moss-graminoid tundra (Figure 1a in 
Paper I). Long term-changes and extreme events are needed for a habitat type at these levels to 
change into another. Examples of such drivers are changes in hydrology, soil movement, 
establishment or loss of sea bird colonies and long-term changes in herbivore densities.  

We then developed a more detailed ecological conceptual model for moss-graminoid tundra, a 
key habitat for many terrestrial animals in Svalbard (Figure 1b in Paper I). We proposed a three-
state system: moss state, herbaceous state and bare patch state. Transitions between the moss 
state and herbaceous state were previously described by Wal (2006) with long-term herbivore 
density variations and temperature as key drivers for state change. We suggested that short-
term disturbance events (pulses) such as heavy rainfall, active layer detachments or intensive 
goose grubbing can cause the system to shift to a bare patch state. Depending on succeeding 
conditions, such as the frequency of disturbance events, summer temperatures and grazing 
intensities, the system can move back to a moss or herbaceous state. 
 
Finally, we proposed a monitoring-oriented conceptual model that describes the ecosystem 
components that can influence the state of moss-graminoid tundra habitat (Figure 14). Using 
the conceptual model, we defined a set measurable state variables that help quantify these 
predictors and the effect they have (Table 1 in Paper I).  

 
Figure 14: Published in Ravolainen et al. (2020). A detailed conceptual model for moss tundra on Svalbard 
implemented within the monitoring program Climate-ecological Observatory for Arctic Tundra—COAT. The included 
drivers are expected to have direct impact on the state shifts. Indirect impacts (dashed lines) and effects the 
vegetation can have on the herbivores have been outlined earlier (Ims et al. 2013). Climate (pathway 1) can act as 
a ‘press’ via gradually warming temperature, or as a ‘pulse driver’ through, for example, abrupt extreme winter 
weather events. Likewise, the impact of herbivores can happen as an abrupt pulse event, as in the case of goose 
grubbing driving vegetation patches from vegetated to the bare patch state (pathway 2), or as press herbivory by 
reindeer gradually causing a shift from the moss to the herbaceous state (pathway 3). Fertilization by seabirds is 
an important driver of state shifts on the coast (pathway 4). 



 

26 

4.2 Paper II - Disturbance Mapping in Arctic Tundra Improved 
by a Planning Workflow for Drone Studies: Advancing Tools 
for Future Ecosystem Monitoring 

We developed a method planning workflow that was aimed at ecologists that wish to include 
drone imagery-based methods into their monitoring programs. It reviews topics such as the 
selection of predictor variables, layer resolutions, selection and optimization of ground-cover 
classes and the development and validation of models (See Table 1 in Paper II).  

We applied this workflow in a case study, producing ground cover maps at three study sites 
(Janssonhaugen, Sassendalen, Todalen) in Svalbard. For each site, we generated a high-
resolution map of tundra vegetation using drone images and a random forest classifier.  

First, we compared NDVI values of disturbed areas (state variables: goose grubbing and winter 
damage) with undisturbed areas within the same habitat class. Areas classified as goose 
grubbing, winter damage or biological crust had lower NDVI values than their undisturbed 
counterparts but higher values than bare ground (Figure 5 in Paper II).  

Second, we trained the RF classifier based on our ground-cover classes. The classification was 
based on four spectral bands, the normalized difference vegetation index (NDVI) and three 
types of terrain variables. After optimizing our class selection (Figure 3 in Paper II), we were 
able to distinguish up to 15 ground cover classes, including goose grubbing and a mixed class 
for winter damage and biological crust. We created classified maps of the three study sites 
(Figures 7-9 in Paper II). The overall predictive ability of the optimized classifier had macro-
F1 between 84.4% - 88.5% and class-specific F1 scores were generally high (Table 1). 
However, we detected a consistent overestimation of the disturbance classes. Classifiers that 
included optical and terrain-based predictor variables performed better than those only using 
optical variables. 

Finally, we tested the transferability of each locally trained RF to the other two study sites. 
Transferability was low, 50% or less (Figure 10 in Paper II). Transfer between the sites 
Janssonhaugen and Sassendalen was highest and shared a greater number of high importance 
predictor variables. 

 

Table 1: F1- scores of ground-cover classifications at the three study sites on Svalbard using the optimized classes 
and all predictor variables (optical and terrain). Class names in order from left to right: moss-graminoid, moss-
equisetum, wetland, moss-brown-wetland, Carex subspathacea, heath, dryas, cassiope, winter-damage-
woody/biological crust, grubbing, bare ground, gravel, water, snow.  

Class 
site mgr meq wet mbw csu hea dry cas wdc gru bgr gra wat sno 
JAN 85.2 89.3 92.3 - - 76.5 94.9 80.7 83.1 90.5 92.8 91.3 89.3 100 
SAS 70.5 83.8 92.8 - - 77.3 80.2 92.0 88.7 86.1 75.0 84.0 93.4 - 
TOD 84.7 85.9 80.8 86.4 97.7 95.6 80.7 74.7 77.5 78.3 88.9 74.0 98.9 - 
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4.3 Paper III - Snowmelt progression drives spring habitat 
selection and vegetation disturbance by an Arctic avian 
herbivore at multiple scales 

In this study we assessed how snowmelt timing and vegetation influence habitat selection, 
habitat use and vegetation disturbance likelihoods via grubbing by pink-footed geese during 
spring (Figure 15).  

First, we analyzed how snowmelt timing and vegetation type influence pink-footed goose 
habitat selection and habitat by using GPS telemetry and field-based observations. Second, we 
used field measurements of snowmelt, vegetation class and goose grubbing to make a predictive 
grubbing likelihood maps. And third, we tested whether habitat use estimates correlated with 
predicted grubbing likelihoods.  

We conducted the study at two spatial scales. A fine-scale analysis (5cm resolution) using drone 
images at the Todalen site of Paper II. The smaller site was nested within a larger, “valley-
scale”, study area (~30 km2) which we studied using Sentinel 2 satellite images (10 m 
resolution). We used vegetation class and snowmelt date as predictors and retrieved them from 
field assessments as well as drone and satellite images. The vegetation maps we used were 
generated from a simplified version of the ground cover classification map using drones 
presented in Paper II. We generated snow cover maps from drone repeat flights and cloud-free 
satellite images.  

The results of this study showed that at both spatial scales, snowmelt timing and vegetation 
type were important predictors for habitat selection and use as well as for vegetation habitat 
disturbance from pink-footed geese. Moss tundra habitats were preferred over dwarf-shrub 
heath habitats throughout the spring season. Habitat selection for earlier and later snow free 
areas was similar, therefore higher habitat selection ratios for early snow free areas was a result 
of that these habitats were available longest. Estimated habitat use and grubbing likelihoods 
were positively correlated at both spatial scales. We predicted that 23.1% of the moss tundra 
habitat and 10.1% of dwarf-shrub heath habitat were affected by pink-footed goose grubbing 
in the valley study area.  

 

Figure 15: A conceptual model for the interaction of snow, vegetation class and goose behavior. Snow cover and 
snowmelt timing influence pink footed goose feeding behavior because it restricts access to food resources 
(pathway 1). The vegetation class influences the food quality for the geese (pathway 2). The resulting goose habitat 
selection in turn influences the vegetation disturbance intensity and spatial distribution (pathway 3). 
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4.4 Paper IV - Machine learning for classification of an eroding 
scarp surface using terrestrial photogrammetry with NIR 
and RGB imagery 

As part of a summer school, we evaluated the capacities of a random forests (RF) to create a 
classified three-dimensional (3D) model of an eroding peat scarp in Rotmoos valley near 
Obergurgl, Austria. We were taking advantage of increasingly advanced and affordable close-
range sensing techniques and processing powers which allows the use of advanced 
photogrammetry and the computation of RFs (Figure 16). 

We used conventional RGB camera and a near-infrared (NIR) filter to take overlapping pictures 
of a 20 m long eroding peat scarp. We merged the RGB and NIR images into a single 3D point 
cloud and extracted 18 geometric features using three different radii (0.02, 0.05 and 0.1m) 
totaling 58 variables. Using the point cloud, we created a training dataset for five different 
ground cover classes, rock, dry grass, green grass, peat and snow. We used 50% of the training 
dataset to create the RF and evaluated its performance with the remaining 50% of the dataset.  

The overall classification accuracy was 98%. Rock and snow had the highest observation and 
prediction accuracies. The largest source of error was caused by mixing between the dry and 
the green grass classes with observation and prediction error rates of 1.9 – 5.6%. The spectral 
predictor variables (NIR, R, G, B) had higher importance rankings than the terrain derived 
variables. Terrain variables calculated at 0.1 m radius were higher ranked than those at 0.02 m 
and 0.05 m radius. NIR had the highest variable importance ranking of the spectral variables 
and verticality (at 0.1 m radius) was the most important terrain feature. 

 

 

 

Figure 16: Eroding peatscape presented as a RGB point cloud (top) and the classified point cloud with five ground 
cover classes (rock, dry grass, green grass, peat, snow) using a random forest classifier and 58 predictors (bottom). 
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5 Results and discussion 

5.1 Which vegetation states and drivers are likely important for 
shaping Svalbard’s moss tundra habitats in the future? 

Based on satellite monitoring, on a global scale, the Arctic tundra has become greener over 
recent decades (Tucker et al. 2001, Keenan and Riley 2018). On a local scale, this trend is, 
however, highly heterogenous (Berner et al. 2020), and many areas have not significantly 
changed or even had a reduction of greenness because of e.g., erosion, winter damage, 
overgrazing or land use change (Walker et al. 2009, Lara et al. 2018). Ecological causes of 
greening can be attributed to rising temperatures (Keenan and Riley 2018) that change growing 
conditions to increased biomass production of existing plants (Hudson and Henry 2009), 
colonization of previously barren land or by new, more productive species (Elmendorf et al. 
2012). Browning can be linked to disturbance events such as fires (Hu et al. 2015), insect 
outbreaks (Jepsen et al. 2013) or long-term trends such as permafrost degradation (Grosse et al. 
2016) or increases in herbivore densities (Barrio et al. 2017). Both greening and browning 
trends can likely be observed within the same ecosystem, especially in heterogenous tundra 
environments, typical for Svalbard. The conceptual model for moss-graminoid moss tundra 
(Figure 1b in Paper I) recognized the monitoring need for greening-browning dynamics of 
Arctic tundra ecosystems. Therefore, we suggest adding a “bare patch” state as an alternative 
to the “moss” or “herbaceous” state described by Wal (2006) for Svalbard’s moss tundra 
ecosystems.  

Adjusting the conceptual models to integrate new knowledge is one of the key principles of 
adaptive monitoring (Lindenmayer and Likens 2009). When developing the conceptual models, 
using Svalbard as a case study, we were challenged to find the balance of describing locally 
meaningful examples which were generic enough to provide valuable information for 
researchers and managers working in other High Arctic ecosystems (or elsewhere). For this 
thesis, I would like to suggest and discuss some Svalbard specific additions to the conceptual 
model because they define some of the research questions in Paper II and III (Figure 17) 

A recent (field-plot based) revisit study (Wal et al. 2020) in certain valleys in Nordenskjöld 
Land has documented a striking increase of Equisetum ssp. and Carex subspathacea in 
previously disturbed plots in moist and wet habitats. These species appear to replace Dupontia 
ssp. and Eriophorum scheuchzeri. In addition, Carex subspathacea is occupying drier habitats 
than it did 20 years ago. The herbaceous moss state described in Paper I, could be described in 
more detail as three substates: 1) graminoid (eg. Dupontia ssp, E. scheuchzeri, Poa spp., 
Festuca spp.), 2) Carex subspathacea or 3) dominated by Equisetum ssp.. My personal 
observations have shown that Equisetum spp. can also establish in moss dominated moss tundra 
with few other graminoids.  

The conceptual model did not include biological crusts as part of potential moss tundra states. 
These crusts consist of a mixture of cyanobacteria and can form on instable loamy soils (Migała 
et al. 2014) and can act as ecosystem engineers by weathering the substrate underneath making 
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it available for plant colonization (Agnelli et al. 2021). More research is needed on the 
succession pathways that involve biological crusts. In the field, we have observed that these 
crusts also form around winter damaged plants, but this has not been studied in detail. 
Therefore, I suggest including them in the conceptual model as they may play a role in shaping 
new plant communities. 

 

Figure 17: Refined version (gray boxes) of conceptual model presented in Figure 1b in Paper I to account for three 
possible sub-states of herbaceous moss tundra and a possible pathway of biological crust development after the 
bare patch state. Original figure caption: We suggest the moss-graminoid tundra can be found in a (i) moss, (ii) 
herbaceous, (iii) or bare patch characterized state. The drivers that cause shifts between these states can be 
characterized as those that gradually change their impact (‘press’), and those whose impact is a sudden event 
(‘pulse’). Both biotic and abiotic drivers can push the moss-graminoid tundra in the same direction, e.g. both sudden 
active layer detachments and high abundance of herbivores trampling or grubbing can cause the shift from the 
vegetated to the bare patch state. Suggested elaborations: The herbaceous state can be very diverse and could be 
described by (at least) three sub-states with either Graminoid, Moss-equisetum or Carex subspathacea dominance. 
In recent years regrowth after the bare patch has often been followed by the Moss-equisetum or Carex 
subspathacea. They can evolve into the Graminoid sub-state or Moss state over time. Bare patches can be regrown 
by biological crust and depending on terrain and frost-action these areas could develop to any moss state or another 
habitat class such as dwarf-shrub heath. 

Paper I focused on moss-graminoid tundra as a key habitat and described it in detail. It is 
important to keep in mind that the other habitat types can have equally diverse states and state 
changes. For example, dwarf-shrub heath habitat types can often be found on ridges and convex 
landscapes and can be free from snow during the winter or early in spring (Bjune 2000). This 
makes them especially prone to geological-cryospheric processes such as frost heave and 
cryoturbation and at the same time an attractive habitat to herbivores when snow covers other 
parts of the landscape (Pedersen et al. 2013a). This thesis therefore also focuses on dwarf-shrub 
heath habitats although they are not discussed in as much detail in Paper I. It is important to 
note that the conceptual models presented are ongoing work and that vegetation states are not 
fully understood and described. These models will therefore change over time when being 
tested in the field (through studies like Paper II, III of thesis) and updated when we have a better 
understanding of the system. 
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5.2 How do the presented conceptual models define the 
monitoring goals for moss tundra ecosystems in Svalbard 
and how can this thesis contribute? 

Defining good questions is a core component of successful adaptive monitoring programs 
(Lindenmayer and Likens 2010). In Paper I, we used the ecological moss-graminoid tundra 
model to frame a monitoring-oriented conceptual model that can help with the practical 
implementation of ecosystem-based monitoring. The conceptual model follows the principles 
of the Climate-ecological Observatory for Arctic Tundra (COAT) long-term adaptive 
monitoring program (Ims et al. 2013). It outlined general dependencies between biotic and 
abiotic drivers within the terrestrial moss tundra food web on Svalbard (Figure 14). Moss tundra 
states can be directly influenced by ungulates, geese and seabirds and the abiotic driver, climate. 
Both climate and management can also indirectly affect the moss tundra state, e.g., by changing 
the abundance or behavior of herbivores and predators. 
 
With the help of the conceptual model, we defined measurable state variables that can help to 
quantify the effect of different drivers within the ecosystem. A complete list of the proposed 
state variables can be found in Paper I, page 670. Path numbers correspond with labels in Figure 
14. The state variables that I proceeded to focus on in this thesis were “ice damage” (path nr. 
1), “extent of vegetation types/bare ground” (path nr. 1-3), “abundance of herbivores” (path nr. 
2 only) and “grubbing impact” (path nr. 2). This thesis therefore aims to “put some numbers on 
the arrows” and provide information that can be integrated into ecosystem-based assessments 
on Svalbard and give new insights into plant-herbivore interactions in general.  

 

5.3 Can we detect the habitat types described for Svalbard’s 
tundra ecosystem using drone images? 

After the class optimization procedure, we were able to distinguish up to 15 ground cover 
classes and the overall classification results (macro-F1 scores 84.4% - 88.5%) in Paper II were 
promising. Macro-F1 at this level can be considered high, taking into account the number of 
ground-cover classes and a strict spatial separation of training and validation data. Although 
difficult to compare because ground cover detail was different, the level of accuracies was 
similar to other drone-based tundra classifications (Siewert and Olofsson 2020, Thomson et al. 
2021). 
 
The class specific F1-scores varied from 76.5% (heath in Janssonhaugen) to 100% (snow in 
Janssonhaugen), but, from a monitoring perceptive, prediction and observation accuracies and 
confusion matrices may be more informative because they provide information about which 
classes tend to mix and if a consistent over- or underestimation can be observed. In other words, 
how good a classification is depends largely on the goals and monitoring needs. In this study, 
class mixing was largely restricted to ecologically similar ground cover classes, i.e., within the 
same habitat type. For example, grouping the ground-cover classes into a dry-mesic dwarf-
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shrub heath and a mesic-wet graminoid moss tundra-wetland complex would have resulted in 
observation and prediction accuracies of mostly over 90% at all three study sites.  
 
The great advantage with drone-based mapping is that it provides information at larger spatial 
extent than possible with plot or transect based studies. As suggested by Wal et al. (2020) we 
included Equisetum spp. and Carex subspathacea as ground-cover classes in our maps. The 
moss-equisetum class was detectable as its own ground cover class across all three study sites, 
with F1 scores over 80%. This suggests that drone images and RF classifications are promising 
tools to monitor Equisetum expansion in Svalbard and possibly elsewhere. Carex subspathacea 
was present at all three sites, but we decided too late to include it as its own ground cover class 
at the first two sites. Therefore, we only collected ground truthing data for C. subspathacea 
within a small area at the Todalen site. The high F1-score of 97.7% may be an artifact of spatial 
autocorrelation, because the ground truthing points were very close to one another, but it also 
suggests great potential for studying C. subspathacea via drone images in the future.  
 
Two sets of classes that we struggled with, were the distinction between the herbaceous and 
moss state, and more generally, finding a clear distinction between moss tundra and wetland 
habitats. We observed that these classes follow a moisture or terrain gradient, but we had 
difficulties drawing clear-cut borders between these classes. Because NDVI values are sensitive 
to water content (Hennessy et al. 2020), high water content in the moss can challenge 
classification robustness through seasonal variation of moisture levels. Forcing ecological 
diversity into distinct vegetation classes will always remain to be a challenge. 
 
Overall, with its mentioned limitations, the classification results of the study in Paper II suggest 
that drone image-based mapping can be a useful method to detect some of the most important 
ground cover classes of importance to monitor future changes in Svalbard’s tundra ecosystem 
(Ims et al. 2013). It can help to detect the mentioned COAT state variables “extent of vegetation 
types/bare ground” as described in Paper I, Table 1. 

5.4 Can we use drone images to detect abiotic and biotic habitat 
disturbances? 

Ecology has long recognized the importance of biotic and abiotic disturbance to alter the state 
of the ecosystem (Grime 1979, White 1985). Disturbance effects to the ecosystem can be highly 
scale dependent (Adler et al. 2001). But, for example, although we have detailed knowledge of 
herbivore-plant interactions, we still have little knowledge about the consequences of these 
interactions at larger spatial scales (Siewert and Olofsson 2021).  

One of the main goals of this thesis was to improve estimations of spatial and temporal 
occurrences of biotic and abiotic disturbances that can cause vegetation state changes. I focused 
on winter damage (abiotic) and goose grubbing (biotic) because these disturbances have been 
very prevalent in Svalbard in recent years (Pedersen et al. 2013b, Bjerke et al. 2017, Peeters et 
al. 2019, Wal et al. 2020). The spatial distribution of winter damage and goose grubbing, in 
centimeter to meter scale patches, irregularly spread across the landscape, makes it difficult to 
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study solely using plots or transects that cover only a small percentage of the landscape (Bjerke 
et al. 2017, Wal et al. 2020). We used three methodical approaches to estimate the spatial extent 
of disturbances. Two direct approaches, by identifying disturbance in images 1) disturbance 
detection based on NDVI and 2) treating disturbances as stand-alone ground cover classes in a 
random forest (RF) classifier (Paper II). And a third approach, estimating disturbances 
indirectly by using snowmelt timing and vegetation types to predict habitat selection and 
grubbing intensities by pink-footed geese during spring (Paper III). The third approach is 
discussed in section 5.5.  

The NDVI index is commonly used for change or disturbance detection in satellite-based 
timeseries to e.g., monitor windthrows or clearcuts in forests, fires, or moth outbreaks (Spruce 
et al. 2011, Lambert et al. 2015, Tian et al. 2018, Gao et al. 2021). Within the timeframe of this 
thesis, we could not collect drone-based time series data that span multiple years. Therefore, 
we used a space for time substitute to compare NDVI values of disturbed and undisturbed plots 
within the same habitat type. We showed that pixels (10 cm) recorded as winter damage, 
biological crust and grubbing had lower NDVI than undisturbed areas within the same habitat 
class.  

This poses great potential for future time-series-based detection of disturbance emergence or 
regrowth in Svalbard and similar ecosystems. The advantage of using NDVI as a single 
predictor for disturbance occurrence is that it is methodologically and computationally 
relatively simple. The challenge with this method is that it requires repeat measurements over 
multiple years, is dependent on spectral calibrations, exact georeferencing and previous 
knowledge of the ground cover classes. Because several of the ground cover classes were not 
distinguishable based on NDVI values alone, we tested the possibility of including disturbances 
as ground cover classes into the random forest classifier.  

The results of Paper II showed that the RF classifier was able to detect disturbances as stand-
alone ground cover classes (F1 scores between 77.5-90.5%). We registered a slight but 
consistent overestimation of the disturbance-related classes, grubbing, winter damage and 
biological crust. Inconsistencies within the grubbing class can most likely be corrected by 
adding additional ground cover classes for disturbed (e.g., reindeer trampling) terrain and 
brown, senescent Cassiope. In the process of optimizing the RF classifier, we grouped the 
woody winter damage and biological crust classes together because they were difficult to 
distinguish from one another. Improvements in the precision of ground truthing data collection 
may make it possible to treat them as two separate ground cover classes in the future. The 
biological crust class was a very broad class that included any coat of biological film, 
cyanobacteria and crust. Paying more attention to the diverse forms of biological crust in the 
ground truthing protocol could help to distinguish at least some of the crust covered areas from 
winter damage. Instead of mapping many hundred square meters, it may be more appropriate 
to focus on high resolution mapping within a smaller area to find key variables that help 
distinguish between biological crust and winter damage.  

Especially for goose grubbing, there has long been stated a need for more spatially explicit 
disturbance monitoring (Fox et al. 2006, Wal et al. 2020). The results of this study have shown 
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that drone imagery-based detection of abiotic and biotic disturbances such as winter damage 
and goose grubbing is possible. Which of the two above discussed methods is most appropriate 
for monitoring will depend on multiple factors, such as the main monitoring goal, if extensive 
ground truthing is possible or if annual repeat flights are feasible and thus allowing the 
construction of a time-series. The results of this study have shown that drone image-based 
methods open up new possibilities for monitoring biotic and abiotic disturbances in Arctic 
tundra ecosystems. It provides tools to detect and better study the COAT state variables “ice 
(winter) damage” and “grubbing impact”, as described in Paper I, Table 1. 

5.5 Can we quantify the role multiple drivers play in steering 
goose grubbing distribution and intensity? 

Both approaches presented above are based on visual detection of grubbing extents and hence 
relied mainly on distinguishing color differences. Therefore, best detection results can be 
expected in peak biomass season when visual differences between healthy and disturbed areas 
are largest. These methods could not distinguish between new and old grubbing from previous 
years. Nor did it capture early season grubbing where the vegetation cover already has regrown 
in summer (I. Eischeid, unpublished field data). Grubbing also occurs in drier dwarf-shrub heath 
habitats, but because it is less intense and does not accompany moss mat removal (Figure 6), it 
was not possible to detect these areas using drone images alone (I. Eischeid, unpublished field 
data). Finally, these detection-based methods did not provide any causal information on the 
spatial distribution of grubbing and its intensity.  

In Paper III, we tried a different approach, using landscape predictors to estimate goose 
grubbing extent. Through previous studies we knew that vegetation class is a strong predictor 
for goose habitat use and habitat disturbance (Pedersen et al. 2013a, Pedersen et al. 2013b). We 
also expected that snow cover plays a role in determining suitable habitats although this had 
not quantitively been shown (Wisz et al. 2008, Speed et al. 2009, Pedersen et al. 2013a, 
Anderson et al. 2016). Therefore, we assessed if we could map the relevant vegetation classes 
and snowmelt progression using drones and satellites. This would allow us to extrapolate 
predictive modelling of goose grubbing to larger spatial extents. We used a simplified version 
of the ground cover classification map presented in Paper II and generated snow cover maps 
from repeat drone flights and satellite images.  

We conducted the study at two spatial scales, using drone images at the Todalen site (also used 
in Paper II) and Sentinel 2 satellite images to test if we can upscale our findings to a larger 
spatial extent (~30 km2). The results of this study showed that snowmelt timing and vegetation 
class were important predictors for habitat use and, at both scales, this correlated well with 
habitat disturbance.  

From a monitoring perspective, this opens new opportunities of integrating remote sensing-
based methods to derive important predictors for future goose grubbing assessments. In years 
when no field work is possible, GPS telemetry-based data could be used to determine annual 
grubbing hotspots within the pre-breeding sites. The disadvantage of only using telemetry is 
that it will not provide information about the entire extent of the habitat use and disturbance. 
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Thus, I recommend conducting an annual goose grubbing field survey at the end of the pre-
breeding period with plots that are measured with a differential GPS. Field assessment could 
then be used to make an annual predictive grubbing likelihood map. GPS telemetry data could 
be used to validate the findings by testing the correlation between grubbing predictions and 
habitat use.  

This study has shown that it was possible to quantify two drivers (vegetation class and snowmelt 
date) and that these are important determinants of pink-footed goose habitat use and vegetation 
disturbance. Further, it provided information on grubbing for habitats where it is not very 
visible. It is also better (compared to the methods in Paper II) suited to provide temporally 
explicit grubbing estimates. Because we cannot detect grubbing on satellite images, a 
prediction-based approach is better suited for landscape-wide estimates. This, for example, 
would allow identification of important pre-breeding habitats and estimate annual carbon 
emissions caused by grubbing.  

We showed that overall, the patterns measured at the drone and satellite scales were similar. By 
moving from a drone-based (5 cm) to a satellite-based (10 m) resolution, information on 
landscape heterogeneity is inherently lost (Siewert and Olofsson 2020, Assmann et al. 2020). 
Many small patches that were free early from snow in the drone images were not visible in the 
satellite images (I. Eischeid, unpublished field data). A systematic study about the loss of 
information would be necessary to better understand the limitations of only using satellite 
images.  

This analysis of habitat selection and grubbing likelihood was dependent on snow maps at high 
temporal resolution. Drone-based assessments are sensitive to strong winds (common in the 
area), require fieldwork and are spatially limited. Optical satellite data is great for upscaling to 
larger areas but dependent on cloud free days. In 2019, we were lucky with the number of cloud-
free days, in years before and after there were fewer images available (Sentinel 2A in GEE). 
Moving forward, I suggest further studies that analyze the temporal resolution requirements of 
snow maps needed to adequately predict goose grubbing. For example, a single mid spring-
season image may be enough to at least predict most likely grubbing hotspots for the season. 
Although satellite data may not be equally available each year, we showed that snowmelt timing 
is an important driver for habitat disturbance and that it is possible to study it at management 
relevant spatial scales. This will provide a better understanding about interannual variations in 
habitat use and disturbance. It can help predicting the consequences that changes of spring 
temperatures and snow cover will have on pink-footed geese and tundra habitats.  

Although this study was limited to a specific ecosystem, the results and methodical approach 
may be applicable in other systems, e.g., goose disturbances elsewhere (Abraham et al. 2005) 
or systems where snow cover drives spatial and temporal habitat use herbivores (Ohashi et al. 
2016). This study helps to better understand the causal relationships of the COAT state variables 
“grubbing impact” and “herbivore abundances” as described in Paper I, Table 1.  
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5.6 How do random forests classifiers perform in tundra 
environments? 

For all the analytical papers included in this thesis (Paper II-IV), we used random forest (RF) 
classifiers as the main tool to distinguish ground cover classes. This provided a basis to gain a 
better understanding for optimization opportunities and transferability of RF classifiers, as well 
as to understand which optical and terrain-based predictor variables are likely most essential in 
tundra environments. 

We chose the RF classifier because it was reported to provide good results in similar ecosystems 
or datasets (Fan 2013, Mascaro 2014, Karami et al. 2018). Instead of testing multiple classifiers, 
this allowed us to have more time to develop our ecological questions and test multiple types 
of predictor variables. Whether other classifiers would have performed better is highly 
speculative, but a recently published study that compared five classifiers using a very similar 
dataset as in Paper II, showed that RFs outperformed bayes, K-nearest neighbor, support vector 
machine and decision tree classifiers in classifying wetlands using drone images (Zhou et al. 
2021). Although RF classifiers can handle many input variables, (Hastie et al. 2009) has shown 
that reducing the number of input variables and “branches” (mtry) in the prediction tree can 
improve classifications. In future, I would therefore pay more attention to optimizing the RF by 
trying variable selection functions (Saeys et al. 2007, Ehrlinger 2016) or testing parameter 
optimization functions to tune the decision trees (Kulkarni and Sinha 2012, Probst et al. 2019). 

Better knowledge of what kind of predictor variables are best suited for distinguishing ground 
cover classes in a RF classifier can help to reduce overfitting (Saeys et al. 2007), improve 
transferability (Tuanmu et al. 2011) and limit time-consuming computations (Laliberte and 
Rango 2009). A comparison of variable importance values across the three sites in Paper II and 
the study of Paper IV (both tundra environments), suggests that optical variables were more 
important than terrain variables to distinguish between classes. Of the optical variables NIR 
related layers (NIR or NDVI) were of great importance in both papers. Although terrain related 
variables were overall less important, their inclusion improved the RF performance in both 
studies. This corresponds with the findings of other drone and satellite-based RF classification 
studies (e.g. Dubeau et al. 2017, Dı́az-Delgado et al. 2019). In both Paper II and IV, we tested 
a variation of neighborhood sizes because it has been shown that neighborhood size can be of 
great importance for the value of the predictor variable (Fan 2013, Wang et al. 2015). Common 
for both studies was that larger neighborhoods generally had higher variable importance values 
than those with smaller neighborhoods. Small scale terrain characteristics like ruggedness were 
either not unique descriptors for particular ground cover classes, or noise due to gaps and 
shadows distorted the differences (Lu and He 2018). Careful evaluation of the variable 
importance values can give an indication on which spatial layers to collect in future field 
campaigns. 

Our results suggest that the most promising results for future drone-based classification surveys 
in similar environments can be expected from high resolution images that include a NIR band. 
This is not surprising as NIR and NDVI are often used for plant biomass estimates e.g., 
(Wessels et al. 2006, Zhu and Liu 2015) or detecting landcover changes, e.g., (Lunetta et al. 
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2006, Jung and Chang 2015). Hennessy et al. (2020), however, point out that the NIR spectra 
is vulnerable to variations in moisture content and highlights the importance to red edge 
wavelengths for discrimination of vegetation classes. Because terrain feature layers improved 
the classifiers, they should be included, but it is not likely that spatial resolutions of one to two 
centimeters will provide better information than coarser resolutions of a few tenths of 
centimeters (Lu and He 2018). The most appropriate scales will depend on the targeted ground 
cover classes and ecosystem properties.  

In Paper II, we tested the transferability of RF classifiers across different locations within the 
same type of environment and using the same drone. We applied the RF from each study site 
(Janssonhaugen, Sassendalen, Todalen) at the other two study sites. Transferability of the RFs 
was low with macro-F1 scores of 50% or less (Paper II, Figure 10). Low transferability rates 
could be attributed to local overfitting of the RF classifier, or that plant communities between 
study sites differed too much, and a classifier transfer thus would not be appropriate (Jin et al. 
2018). The data of the study in Paper II suggests that both hypotheses were true. Transferability 
between Janssonhaugen and Sassendalen was best. More similar highly ranked importance 
values for these sites suggests these two sites had more similar plant communities. My personal 
observation was that the ground cover classes in Todalen were more diffuse and blended and 
thus more difficult to detect and compare across sites. This is supported by the fact that several 
of the highest variable importance scores for the Todalen RF were terrain derived variables with 
large neighborhood sizes and not picking up local variations. Larger neighborhood sizes can 
increase the risk for spatial autocorrelation and overfitting because nearby training and 
validation points will more likely have the same values. Low transferability of RFs has been 
documented elsewhere (Juel et al. 2015, Maxwell et al. 2016, Jin et al. 2018), but can be 
improved by applying transformation matrices (Segev et al. 2015) or reducing the number of 
classes (Miranda et al. 2020). Alternative classifiers or deep learning approaches should also 
be tested (Zhang et al. 2019, Tong et al. 2020). How much attention should be placed on 
temporal and/or spatial transferability of the classifier will essentially depend on the monitoring 
goals and available resources.  

5.7 What have I learned from using photogrammetry and drones 
in tundra environments in the context of adaptive 
monitoring? 

The use of drones in ecology has markedly increased during the past five years. The fact that 
most of the drone-related articles referred to in this thesis were published after I started my PhD 
in late 2018, I think, illustrates the point quite well. In Norway non-commercial drone airspace 
regulations were very vague (a colleague described it as the “wild west era”) but more 
harmonized European regulations have been implemented at the start of 2021 
(https://luftfartstilsynet.no). Technological advancements, cheaper equipment and ecologists 
that have pushed the industry to provide products suitable for scientific work has led to a quick 
growth of the field of drone ecology (Crutsinger et al. 2016). Similarly, the use of drone images 
in science has evolved from “taking images from the air” to methodically robust procedures 
and a range of guidelines to standardize data collection and processing, (e.g. Aasen et al. 2018, 
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Assmann et al. 2019, Tmušić et al. 2020). With the workflow we presented in Paper II, we 
contributed to the process of fully integrating drones as a tool in ecology. We emphasized, like 
with other scientific methods, the importance of documenting and reflecting how 
methodological decisions will affect the study’s outcome. I think there is a risk in remote 
sensing that research is driven by visual detectability. Drones are a great tool in ecology but 
decisions on pixel sizes and ground-cover class detail should be based on an ecological 
understanding and documented in hypotheses like we present in Paper II, Table 1.  

5.7.1 The hardware 
Calibrated data and methods that can easily be repeated are key assets in adaptive long-term 
monitoring (Lindenmayer and Likens 2010). Therefore, I tried to find a drone and post-
processing procedures that can be easily repeated and do not require extensive specialized 
training. Throughout the time of my thesis, I used both a small multi-copter drone (Figure 1a) 
and the fixed wing (Figure 1b). The multi-copter drone (dji – phantom 4 pro) would have been 
suitable for long-term monitoring because it is easy to fly, quite light and comparably cheap. 
Using it under Arctic conditions has, however, proven to be difficult. Our drone did not have 
the ability to use GLONASS satellites, so positioning was less accurate, high soil iron content 
was probably disturbing the compass, and strong winds made it often not possible to fly the 
drone. We also struggled to cover enough area on a single flight day as we wanted to cover the 
full extent of the COAT vegetation/goose monitoring sites. The dji phantom 4 pro drone can be 
rigged to have a multispectral camera as payload, but we did not explore that route further. 
Instead, we added a single band, additional NIR camera (https://sentera.com/) onto the drone 
but we battled with extracting standardized NIR values that were not readily processed into a 
NDVI value. The RGB images we obtained from this drone were however of excellent quality 
and with better spectral calibration routines I would not out-rule this drone for future 
assessments. The fixed wing drone (eBeeX - sensefly) with the real-time kinematic (RTK) link 
and pre-calibrated camera required more up-front learning and preparation time. RGB image 
quality was comparable to the multi-copter drone but post-processing of the images was much 
easier. Although the fixed wing drone and processing software (Pix4D Mapper) are more 
expensive, it seems like a good solution for monitoring programs such as COAT, where a lot 
of data has to be collected within a very short summer season and image processing will be in 
the hands of technicians (as opposed to students with time and interest to explore new avenues). 
Personally, I would like to spend more time to explore the world of home-built drones and 
open-source photogrammetry software to tailor the tool to the state variables of interest, but this 
would be an unlikely avenue in long-term monitoring programs that depend on steady tools and 
robust data. 

5.7.2 Photogrammetry 
The structure-from-motion (SfM) method uses image angles and pixel color signatures to 
generate three-dimensional surface models. These point clouds can be ten times denser than 
those generated from airborne lidar (Cunliffe et al. 2016, Fraser et al. 2016). Structure-from-
motion has even been used to generate an Arctic-wide terrain model at two-meter resolution 
from overlapping satellite images (www.pgc.umn.edu/data/arcticdem). This terrain model was 
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good enough that I used it for all of my flight planning when using the fixed wing drone. 
Because SfM creates a 3D model of the surface, we need to make a big distinction between 
using photogrammetry in treeless environments and those covered in trees or bushes. In high-
Arctic tundra and alpine environments we were able to create surface models that were similar 
to the terrain because maximum vegetation heights were around 20 cm. In other systems or 
seasons, SfM will detect bushes (Alonzo et al. 2020, Cunliffe et al. 2020) or snow heights 
(Goetz and Brenning 2019). Beyond shrub-less tundra, our methods and findings are likely 
most similar to arid savanna regions with little errect vegetation (Koci et al. 2017). The 
processing powers needed to join hundreds of drone images is usually more than that of an 
average laptop given to an ecologist. Processing power limitations and considerations are often 
mentioned in scientific articles within the field, (e.g. Koci et al. 2017, Assmann et al. 2019) and 
need to be considered before data is collected. I used a temporary server to process my data. 
This was useful because I did not need the processing capacities all year round and saved cost 
for buying a more powerful computer. But it took several months to find the right resources at 
the University, and I was dependent on the IT department to make changes to the server. In a 
project with long-term perspective like COAT, a stable processing platform (physical or sever) 
will be essential for effective data management. 

5.7.3 Upscaling 
I think one of the biggest advantages with drone images is that it improves the quality of 
information we obtain from satellite images. Most research institutes without specialized 
personal are limited to fly drones within “line of sight”. This restricts the area that can be 
effectively mapped on a single field day to a few square kilometers (small fixed wing). Drone 
technology as a tool in ecology will therefore likely be restricted to areas of a few km2 and not 
to map entire valley systems. Many Arctic regions are difficult to access and regular “line of 
sight” flights with drones is an unlikely scenario. Climatic conditions make it especially 
challenging to operate drones in many Arctic regions (Kramar 2019). Satellite-based 
observation technologies are therefore important tools to detect and document environmental 
change in Arctic tundra ecosystems (Beamish et al. 2020). One of the biggest challenges with 
Arctic remote sensing is accessibility to proficient ground truthing information and this is where 
drone images can contribute substantially (Beamish et al. 2020). Drone images can help with 
spectral unmixing and provide information about spatial heterogeneity otherwise lost in satellite 
images. For example, a decline in NDVI is caused by overall reduction in biomass or a larger 
percentage of bare ground and otherwise changed vegetation (Assmann et al. 2020). I do not 
think that drone images will replace satellite-based monitoring programs. But I see them as an 
essential tool to increase the type and quality of information we can obtain from satellites. In 
the context of COAT, in the future, they can help with upscaling ground-cover classifications, 
disturbance detections and improve snow cover maps.  

5.8 Limitations and outlook 
One of the goals with this thesis was to “put numbers” on some of the arrows and boxes of the 
moss tundra conceptual model presented in Paper I and quantify the state variables stated as 
COAT monitoring goals (Table 1 in Paper I). In the paragraphs below, I will evaluate and 
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discuss which of these state variables we were able to measure and provide suggestions for 
future studies and monitoring approaches. This includes the vegetation module state variables 
that were studied in this thesis (ice damage, vegetation type/bare ground, abundance of 
herbivores, grubbing impact) and two state variables that were listed as monitoring goals for 
drones (productivity at peak-season /phenology) or are closely related (snow cover) but not 
quantified in this thesis. 

5.8.1 Ice damage (winter damage) 
One COAT state variable is the monitoring of the temporal and spatial changes in the 
occurrence of ice damage. In this thesis and in Paper II, we used a broader term “winter damage” 
to acknowledge that besides icing events, also other factors can cause plants to be damaged/die 
during the winter: for example, through late season freezing or general exposure to extremely 
cold temperatures. It was possible to detect winter damage in the landscape using drones as a 
mixed class with biological crust, rather than an independent class. Detecting winter damage as 
its own unique class will therefore be a challenge in the future. Separation between winter 
damage and biological crust was best in Todalen (compared to the other two sites) and a more 
detailed analysis to understand why they were better distinguished there, as well as more 
detailed ground truthing data, may improve the classifications. Detecting newly occurring 
winter damage in previously healthy vegetation through annual repeat measurements via drone 
images will likely be a suitable tool. This could yield estimates on the area and type of terrain 
affected. With additional data on snow and weather conditions, this may even help to reveal 
some causal relationships on winter damage occurrences. In future, I would recommend to 
compare the drone winter damage maps with annual field transects (2016 - 2021) that document 
winter damage in selected sites. These transects could act as additional ground truthing 
datapoints to make better maps. Or the winter damage maps can give an indication of how 
representative these transects are to characterize winter damage occurrences within the area. 

5.8.2 Vegetation types/bare ground 
The drone-based and simplified satellite-based image classifications showed promising results 
regarding monitoring of the most important vegetation types and the extent of bare ground. 
Some visually similar vegetation classes will be difficult to detect with drone images and I 
would suggest not to rely on drone images alone. Of the expected vegetation changes, the 
expansion of Equisetum spp. and Carex subspathacea are likely the easiest to detect because of 
their distinct coloration. Our results suggest that bare ground within the moss tundra habitats 
can be successfully monitored using drone images. This will be especially useful information 
for upscaling and biomass estimate comparisons with satellite images. The limitation with the 
drone-based bare ground mapping is that this detects the state but not the drivers that cause it 
(biological, physical or combination thereof). Knowledge about the terrain and goose densities 
will, however, help to attribute bare ground emergence to some of the most likely causes.  
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5.8.3 Abundance of herbivores 
My original plan was to count geese using drones. Pink-footed geese are known to be very shy 
during breeding season (Madsen et al. 2009) but preliminary tests at a staging area in Finland 
has shown that it is possible take drone images of resting flocks (Jesper Madsen, personal 
communication). During the pre-breeding period in Svalbard, pink-footed geese showed 
behavior more similar to that of the breeding season and just like planes and helicopters they 
noticed the drone in the air. Therefore, I could not assume that they show natural behavior when 
approaching them with a drone, and instead, counted geese and located their spatial positions 
manually. This provided information on where the highest goose densities were. This approach 
was time consuming, and I would not recommend it as a regular survey method. Previous goose 
counts in the area were conducted by noting the number of geese in several corridors (Anderson 
et al. 2015). I would recommend a corridor approach but decrease the size (to e.g. 0.5 km2) of 
these corridors to have more spatially explicit information on high or low goose densities to 
estimate disturbance likelihoods. These goose density estimates could be linked to changes in 
NDVI to assess whether high interannual variability in goose densities is detectible using 
satellite images.  

5.8.4 Grubbing impact 
Through the work conducted in this thesis I have learned a lot about detectability and predictors 
of grubbing extent and intensity (Paper II, III), but less so on the impact of grubbing on tundra 
landscapes. This thesis has thus prepared the tools to better monitor grubbing impact in the 
future. Two topics that should be considered when studying the impacts of grubbing are 
vegetation recovery and terrain changes induced by geese. I had planned to include a recovery 
study in this thesis but due to travelling restrictions in 2020 this was not possible.  

A preliminary analysis of data (NDVI values in drone images), collected in 2021, suggests that 
regrowth of grubbed areas after two years was high. I assume that drones will therefore be a 
useful tool to track vegetation regrowth after grubbing. Tracking detailed changes in plant 
community composition using drone images alone will be difficult. Therefore, I would suggest 
a form of hybrid monitoring where drone images can be used to assist field-based assessments 
by delineating areas that have been impacted. The biggest challenge with studying habitat 
regrowth is that we do not know where the new disturbances will occur. Drone images can 
therefore help to match similar areas that have been generally undisturbed to those that have 
recently been regrown. Field-assessments could then be used to compare these areas with one 
another and included into long-term recovery study. 

One of the most pressing questions about pink-footed goose grubbing is on how much they 
change the terrain and modify vegetation and soil properties with their specialized feeding 
technique. The timeframe of this thesis unfortunately did not allow me to study this in detail. I 
(and others) have observed that previously grubbed areas often are located in slightly lower 
areas than the surrounding terrain. Terrain changes could also be studied using a hybrid field 
and drone approach. High resolution 3D point clouds or DSMs and NDVI maps of at least three 
consecutive years would be necessary to assess this hypothesis using drones. The NDVI maps 
would help to identify areas that were undisturbed in year 1, disturbed in year 2 and regrown in 
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year 3. These areas could then be analyzed in the field and compared to areas that remained 
undisturbed throughout the three years. Using drone-based terrain models and snow depth 
estimates in combination with field assessments could then be used to assess if goose grubbing 
has caused changes in hydrology or snow accumulation. Alternatively, automatic cameras could 
be used to monitor snowmelt at selected “disturbance recovery sites” to assess if snowmelt 
patterns are impacted by grubbing. The challenge with surface model-based terrain monitoring 
approaches is that they measure the surface and do not distinguish between vegetation or water. 
Thus, if newly grubbed areas fill up with water, no terrain changes would be detected. Again, 
a hybrid version of using drone images to detect disturbance hotspots and detailed field 
assessments and/or automatic camera-based monitoring would be a good approach to study 
how grubbing may lead to a change in hydrology. 

5.8.5 Productivity at peak-season/phenology 
Both productivity at peak-season and phenology are listed as state variables that could be 
monitored using drones (Table 1 in Paper I). We did not study productivity at peak-season in 
any of the studies published through this thesis. We did, however, collect the information 
needed to estimate productivity. The drone images provided reliable NDVI measurements and 
were collected at peak-season. Unfortunately, we did not have time to collect repeat images 
within the same area to determine the seasonal maximum NDVI. Estimating productivity in 
very wet moss areas is difficult because NDVI is sensitive to moisture which leads to 
overestimations. A possible method to overcome this problem is to use the classified maps and 
first distinguish the major ground cover types and then only compare changes in NDVI with 
the classes. Further, I suggest using the COAT point framing monitoring plots to calibrate the 
drone NDVI measurements to actual biomass estimates and/or test if other vegetation indices 
(e.g., red edge-based ones) would be better estimators in wet moss tundra. Similarly, would 
phenology measurements generally be possible with the types of images that we collected but 
a higher temporal resolution of both flights and field plots would be necessary to obtain robust 
indicators of phenology. 

5.8.6 Snow cover 
Although snow cover mapping was not listed as any of the state variables directly linked to the 
moss tundra module (Table 1 in Paper I) this kind of information is of general interest to COAT 
monitoring and a key driver in other monitoring modules (Ims et al. 2013). During the spring 
season field work we collected drone images on several days that match a cloud-free satellite 
image. This data could be analyzed to get a better understanding on how information loss occurs 
when upscaling from centimeter to ten-meter scale. It would be possible to calculate how high 
the percentage of snow-free area on the ground has to be before it is detected as snow-free in a 
satellite image. This could possibly be used to perform spectral unmixing. The good quality of 
the drone images would also help to detect areas with dirty or wet snow and help to improve 
snow-no snow classifications of satellite images. 
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6 Conclusion 
This thesis, as also shown by others, has demonstrated that defining conceptual models can help 
developing hypotheses and specifying targets for monitoring goals. With our conceptual models 
of Svalbard’s moss tundra, we emphasized the need to detect both long-term trends and short-
term disturbance events and the necessity of quantifiable state variables that can describe 
changes to the ecosystem at relevant spatial and temporal scales. We further highlight that a 
full understanding of states and state drivers of Svalbard’s (and other Arctic) terrestrial 
ecosystems requires more work. We showed that drone images can be useful tools to quantify 
several state variables, such as the distribution of vegetation types, bare ground, snow cover 
extent and disturbances, such as winter damage and pink-footed goose grubbing. Further, we 
were able to use drone images, satellite images and field surveys as a tool to map snowmelt 
progression, and link this to pink-footed grubbing likelihoods in the landscape. Successful 
ground cover type classifications using random forests were mostly dependent on optical 
variables, especially near-infrared, but terrain-related variables generally improved the 
classifiers. The timeframe of the thesis did not allow me to evaluate how well drone images 
will perform in long-term monitoring (i.e., repeated measures on, for instance, seasonal or 
annual scales), but the data collected will provide a baseline for monitoring and state-change 
studies on Svalbard’s tundra ecosystem in the future. We are just at the beginning of exploring 
the potential that drone images offer to ecology. Our studies have shown that collecting ground 
truthing data in the field requires a good understanding of focal ecosystem components and 
their interactions with both abiotic and biotic factors, to not only detect visually distinctive, but 
also ecologically relevant ground cover classes. A close integration of detailed field-based 
assessments and drone images can elevate studies of causal ecological relationships into a 
spatial context. In addition, drone images will continue to improve the quality of information 
we gain from satellite-based remote sensing. For these reasons, I encourage closer collaboration 
between photogrammetrists, remote sensers and ecologists to take advantage of the full 
potential remote sensing technologies offer to the field of ecology and perhaps to remote 
sensing as well. This thesis has expanded our toolset to study a rapidly changing Arctic by 
showing that approaches of studying biotic and abiotic interactions can be successful. It has 
therefore served as an attempt to merge the fields of Arctic tundra ecology and remote sensing, 
and its results will hopefully encourage future interdisciplinary studies and cooperation. 
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Abstract Vegetation change has consequences for

terrestrial ecosystem structure and functioning and may

involve climate feedbacks. Hence, when monitoring

ecosystem states and changes thereof, the vegetation is

often a primary monitoring target. Here, we summarize

current understanding of vegetation change in the High

Arctic—the World’s most rapidly warming region—in the

context of ecosystem monitoring. To foster development of

deployable monitoring strategies, we categorize different

kinds of drivers (disturbances or stresses) of vegetation

change either as pulse (i.e. drivers that occur as sudden and

short events, though their effects may be long lasting) or

press (i.e. drivers where change in conditions remains in

place for a prolonged period, or slowly increases in

pressure). To account for the great heterogeneity in

vegetation responses to climate change and other drivers,

we stress the need for increased use of ecosystem-specific

conceptual models to guide monitoring and ecological

studies in the Arctic. We discuss a conceptual model with

three hypothesized alternative vegetation states

characterized by mosses, herbaceous plants, and bare

ground patches, respectively. We use moss-graminoid

tundra of Svalbard as a case study to discuss the

documented and potential impacts of different drivers on

the possible transitions between those states. Our current

understanding points to likely additive effects of herbivores

and a warming climate, driving this ecosystem from a

moss-dominated state with cool soils, shallow active layer

and slow nutrient cycling to an ecosystem with warmer

soil, deeper permafrost thaw, and faster nutrient cycling.

Herbaceous-dominated vegetation and (patchy) bare

ground would present two states in response to those

drivers. Conceptual models are an operational tool to focus

monitoring efforts towards management needs and identify

the most pressing scientific questions. We promote greater

use of conceptual models in conjunction with a state-and-

transition framework in monitoring to ensure fit for purpose

approaches. Defined expectations of the focal systems’

responses to different drivers also facilitate linking local

and regional monitoring efforts to international initiatives,

such as the Circumpolar Biodiversity Monitoring Program.

Keywords Arctic tundra � Climate change �
Ecological monitoring � Ecosystem state � Press driver �
Pulse driver

INTRODUCTION

Vegetation plays a key role in terrestrial ecosystem func-

tioning, with its attributes such as species composition,

structure, and productivity influencing soil carbon and

nitrogen cycling and supporting associated biodiversity

(Wookey et al. 2009). International assessments such as the

Circumpolar Biodiversity Monitoring Plan (CBMP within

CAFF—Conservation of Arctic Flora and Fauna) highlight

the importance of monitoring vegetation (Christensen et al.

2013; Ims and Ehrich 2013). The CBMP has suggested

four Focal Ecosystem Components for monitoring plants:

(i) all plants (species, life-form groups and associated

communities); (ii) rare species and species of concern; (iii)

non-native species; and (iv) species that humans use as

food. Abundance, productivity, composition, diversity, and

phenology are attributes that further specify the monitoring

of most of these Focal Ecosystem Components. These

attributes describe vegetation characteristics that are com-

monly used to measure shifts in whole ecosystem structure

and function, i.e. ecosystem state shifts (Scheffer and

Carpenter 2003; Bråthen et al. 2017).
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Adaptive monitoring is chosen as the paradigm to be

used in CBMP initiatives (Christensen et al. 2013). In this

framework, conceptual models form a basis for hypotheses

and predictions about change. The process of describing

the expected changes often allows for the identification of

variables to monitor (Lindenmayer and Likens 2009).

Conceptual models are therefore a useful tool to inform

monitoring decisions. Establishment of adaptive monitor-

ing programmes typically concerns (i) articulation of the

monitoring targets set as questions or hypotheses about the

system’s change; (ii) designing a monitoring approach and

deciding upon the variables; and (iii) performing data

collection and analysis. Thereafter, interpretation of the

results will reveal the need to re-visit the questions and

adjustment of protocols. Adaptivity refers to the pro-

grammes possibility to adjust to new potentially important

processes, while maintaining the integrity of core variable

sets. Hence, adaptive monitoring is not at odds with

maintaining long time-series, but rather articulates a way to

adapt new protocols and measures as needed (Lindenmayer

et al. 2011).

One way to conceptualize vegetation change is the

‘state-and-transition’ or ‘alternative stable states’ approach

(Briske et al. 2008). The premise of the alternative states

models—a term we prefer given that many states are

transient rather than stable (Fukami and Nakajima 2011) is

that a given location or habitat may occur in one or more

different vegetation states depending on conditions (i.e.

‘driver impacts’). Hypothesized alternative states models

can hence be used as a tool in building conceptual models

that guide monitoring. State transition models developed

for rangelands are an example of this, with vegetation

structural components and the drivers behind changes

specified to produce comprehensive catalogues of alterna-

tive states and their transitions (Stringham et al. 2003;

Briske et al. 2005; Barrio et al. 2018). In tundra ecosys-

tems, some alternative state models have been proposed

(Van der Wal 2006; Bråthen et al. 2017; Barrio et al. 2018),

but the use of specific conceptual models in Arctic moni-

toring programmes has been very limited. However, the

question ‘‘how does vegetation change’’ is put in the

spotlight by on-going rapid climate change (Anisimov et al.

2007; Post et al. 2009; Christensen et al. 2013), and calls

for increased attention to what suite of interacting biotic

and abiotic drivers are key when developing vegetation

monitoring strategies.

Vegetation change may happen gradually or abruptly.

Drivers of vegetation change can likewise manifest them-

selves as a trend developing gradually over time, or as a

sudden event that pushes the subject of interest over a

threshold into another domain (Briske et al. 2008). Indeed,

Arctic climate change provides examples of drivers that

induce both gradual change (e.g. rising mean temperature)

and discrete events that occur suddenly (e.g. mild winters

with rain-on-snow events or other weather extremes)

(Anisimov et al. 2007). In other words, Arctic climate

change generates disturbances or stresses that can manifest

themselves as ‘press driver’ (i.e. disturbances or stresses

that remain in place for a long time, or slowly increase in

pressure) and those that act as ‘pulse driver’ (i.e. sudden

and short events, though their effects may be long lasting).

A press driver can be described as extensive, pervasive, or

subtle and a pulse driver as infrequent, sudden or as an

event (Collins et al. 2011; Ratajczak et al. 2017). Current

understanding of what shapes Arctic vegetation acknowl-

edges the influence of what can be termed press and pulse

drivers (Walker et al. 2005; Zimov 2005; Van der Wal

2006; Wookey et al. 2009; Myers-Smith et al. 2011; Brå-

then et al. 2017), but the last decades of rapid changes in

climate warrant discussion of new conceptual models that

express their distinction more clearly.

Arctic land areas are warming considerably and are at

risk of experiencing ecosystem change and biome shifts at

already relatively modest increases in global mean tem-

peratures (Beck et al. 2011; Grimm et al. 2013; Warsza-

wski et al. 2013). However, evidence is accumulating that

vegetation change in the Arctic is highly spatially hetero-

geneous (Beck and Goetz 2011; Elmendorf et al. 2012a;

Myers-Smith et al. 2015; Huang et al. 2017) and lagging

behind temperature change (Huang et al. 2017). Indeed, a

review of experimental warming studies and long-term

monitoring in the Arctic showed that no change in plant

abundance was the most common response (Bjorkman

et al. 2020). High Arctic, sensu Christensen et al. (2020),

vegetation abundance is characterized by no or weak trends

in relation to experimental warming and ambient rising

temperatures (Hudson and Henry 2010; Prach et al. 2010;

Elmendorf et al. 2012a). This heterogeneity in vegetation

responses to warming challenges monitoring to strike a

balance between ecosystem-specific understanding and

general understanding of tundra vegetation changes that

can be applied more universally.

Here, we propose a general and a detailed conceptual

model for vegetation change in Svalbard that can help

guide and inspire vegetation monitoring and future

research also in other High Arctic tundra ecosystems. Some

of the impact pathways discussed below have been docu-

mented in previous research, while others are proposed as

hypotheses to be tested in future research and through

monitoring. For now, we take a pragmatic approach, and

categorize drivers as ‘press’ when their pressure gradually

increases, or remains in place, over multiple years and as

‘pulse’ when they change over less than annual timescales,

acknowledging that the best definition may vary between

subjects of interest. We discuss press and pulse drivers in

moss-graminoid tundra habitats in three potential
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alternative vegetation states characterized by (i) a thick

moss layer, (ii) herbaceous plants, and (iii) bare patches.

Because there is more monitoring knowledge from the Low

Arctic than the High Arctic (Bjorkman et al. 2020), we

build on insight from lower latitude but focus on the High

Arctic. We hope our examples will spark a broader and

more thorough discussion on the full range of High Arctic

vegetation states and drivers of transitions between them.

DRIVERS OF ARCTIC VEGETATION CHANGE:

CURRENT EXAMPLES OF PRESS AND PULSE

DRIVERS

Average temperature rise is an example of a mainly press

driver in the system. A number of studies have found that

in the Low Arctic warmer temperatures over time influence

plant growth and abundance, especially, shrubs have

increased (Tape et al. 2006; Elmendorf et al. 2012b;

Myers-Smith et al. 2015; Bråthen et al. 2017). Tall shrubs

are a growth form that is lacking in the High Arctic where

dwarf shrubs and herbaceous plants are the main con-

stituents of vegetation. Yet, the biomass of High Arctic

plants is also closely linked to summer temperatures

(Schmidt et al. 2012; Van der Wal and Stien 2014; Myers-

Smith et al. 2019). With a continued press from warmer

summer temperatures, plant abundance of especially the

relatively fast growing growth forms such as the herba-

ceous forbs and graminoids, as well as the woody, decid-

uous shrubs would be expected to increase (Elmendorf

et al. 2012b).

Sudden or short-term pulse drivers can damage vegeta-

tion, creating bare ground in previously vegetated habitats.

Contrary to boreal and temperate ecosystems where fire,

drought and insect outbreaks cause sudden, large-scale

state shifts (Scheffer and Carpenter 2003; Briske et al.

2005; Beck et al. 2011), Arctic tundra has not been char-

acterized by such dramatic and spatially extensive

responses to these pulse drivers. However, climate warm-

ing may potentially change this. Tundra fires (Mack et al.

2011) and variable winter weather causing basal ground-

ice formation (Bokhorst et al. 2012; Milner et al. 2016;

Peeters et al. 2019) are already documented examples of

pulse events that are likely to play a more prominent role

for tundra vegetation in the future. Small rodent population

fluctuations and their impact when at high densities act as a

pulse driver of vegetation composition in many Low Arctic

ecosystems (Ravolainen et al. 2011; Olofsson et al. 2012),

and in some High Arctic systems (Johnson et al. 2011;

Bilodeau et al. 2014). Yet, documentation of their potential

to create persistent bare ground patches is lacking.

The same factor, such as grazing, may act as a press or

pulse driver depending on its temporal pattern of change. A

sudden decrease in grazing pressure could, for instance,

shift herbaceous grassland to woody tundra. This has been

documented in riparian Low Arctic tundra where cessation

of grazing led to surprisingly fast increases in willow

growth (Ravolainen et al. 2014), suggesting that here

reindeer (Rangifer tarandus) grazing acted as a pulse dri-

ver. On the other hand, sustained grazing pressure—a press

driver—in the same study system keeps willow shrub

recruits restricted to a low height and restricts the altitu-

dinal limit of tall willow shrubs (Bråthen et al. 2017).

SVALBARD VEGETATION STATES IN MOSS-

GRAMINOID TUNDRA

Differences in topography, snow lie, hydrology, and sub-

strate give rise to general habitat types such as wetland,

dwarf-shrub heath, cryptogam-barren and moss-graminoid

tundra in Svalbard (Fig. 1a). While dramatic environmental

changes can ultimately drive shifts from one of these broad

types to another, here we will focus mainly on examples

from Svalbard moss-graminoid tundra which covers

8–24% of continuous vegetation in central Spitsbergen

(Johansen et al. 2012) and is a key habitat for many ter-

restrial animals (Staaland et al. 1993; Speed et al. 2009).

We propose a generalized conceptual model with three

hypothesized alternative states within moss-graminoid

tundra (Fig. 1b). Biotic and abiotic drivers may act in

concert and push moss-graminoid tundra towards similar

state changes. For the transition between the moss state and

the herbaceous state, we hypothesize mainly press driver

impacts. A warmer climate, gradually increased active

layer depth, and more available nutrients could push the

moss state towards the herbaceous state, with the latter

sustaining a greater number of herbivores (Fig. 1b). The

same state transition, with increased graminoid dominance,

is also likely to occur where large herbivores graze,

trample, and fertilize vegetation, i.e. in response to

increased herbivore numbers (Van der Wal 2006). The

opposite transition, from the herbaceous state to the moss

state, could potentially occur with reduced herbivore

activity. Graminoids and forbs are already common in

many High Arctic vegetation types (Walker et al. 2005).

We hypothesize that the herbaceous, graminoid-dominated

state, with relatively fast nutrient cycling and high toler-

ance to mechanical disturbance and grazing, would become

more common given a press from longer, warmer, and

wetter summers in the presence of a high number of her-

bivores, notably reindeer.

Abiotic events and biotic agents can act as pulse drivers

to shift the moss or the herbaceous state to the state char-

acterized by bare patches (typically from\ 1 m2 to cov-

ering a few 10 m2, and often occurring over large areas)
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(Fig. 1b). In the High Arctic, warm summers cause active

layer deepening, thaw slumps and the opening up of bare

soil (Anisimov et al. 2007; Lousada et al. 2018), and this

can happen in the course of few weeks or during a single

summer season (Ravolainen pers.obs.). In the Canadian

Low Arctic, lesser and greater snow goose grubbing, i.e.

foraging for below-ground plant parts, has caused local and

large-scale shifts to a bare ground state in interaction with

hydrology and salinity (Jefferies et al. 2006; Lefebvre et al.

2017). Goose foraging can remove nearly all vegetation

within only a few years also in the High Arctic (pers. obs.

authors). Hence, although goose populations may gradually

increase, being a ‘press driver’, goose grubbing at a given

location, due to an amplifying effect of saline sub-soil or

other abiotic factors, may act as a pulse driver. We

hypothesize that the abiotic and biotic pulse drivers could

increase the number and size of bare patches, causing a

distinct bare ground state in landscapes that currently have

continuous plant cover and hence changing the spatial

patterning of vegetation.

While a general model such as presented in Fig. 1b is

useful for clarifying which state transitions can be expected

to occur, a monitoring programme is reliant on an inte-

grated effort that specifies how to monitor both the vege-

tation state shifts and the drivers. In the following, we

suggest a more detailed conceptual model that specifies

expected climate- and management-driven impacts of

herbivores and nutrients on vegetation state transitions in

moss-graminoid tundra. In doing so, we illustrate the pro-

cess from depicting conceptual models to implementing

practical monitoring with the required set of variables

(Fig. 2, Table 1). The model suggested here is a part of an

ecosystem-based, adaptive monitoring programme in

Norway (Ims et al. 2013).
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Fig. 1 Topography, snow cover, hydrology, herbivory, and substrate are general factors supplemental to climate that differentiate High Arctic

habitat types on Svalbard: wetlands, dwarf-shrub heathlands, barrens with lichens or mosses, and moss-graminoid tundra (a). Within the context

given by the general habitats, transitions between alternative states can happen (b). We suggest the moss-graminoid tundra can be found in a

(i) moss, (ii) herbaceous, (iii) or bare patch characterized state. The drivers that cause shifts between these states can be characterized as those

that gradually change their impact (‘press’), and those whose impact is a sudden event (‘pulse’). Both biotic and abiotic drivers can push the

moss-graminoid tundra in the same direction, e.g. both sudden active layer detachments and high abundance of herbivores trampling or grubbing

can cause the shift from the vegetated to the bare patch state. See main text for examples and references
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Moss

Ungulates 

Geese

Response target (of the present module) 

Predictor target (responses in other modules)

Effects estimated in this module
(expected strength indicated by arrow thickness)

Effects estimated in other modules

Interaction effects

Climate

Management

Ornithogenic 
nutrient input

Indirect predictor target

1

2

3

4
Bare

Herbaceous

Fig. 2 A detailed conceptual model for moss tundra on Svalbard implemented within the monitoring programme Climate-ecological

Observatory for Arctic Tundra—COAT. The included drivers are expected to have direct impact on the state shifts. Indirect impacts (dashed

lines) and effects the vegetation can have on the herbivores have been outlined earlier (Ims et al. 2013). Climate (pathway 1) can act as a ‘press’

via gradually warming temperature, or as a ‘pulse driver’ through, for example, abrupt extreme winter weather events. Likewise, the impact of

herbivores can happen as an abrupt pulse event, as in the case of goose grubbing driving vegetation patches from vegetated to the bare patch state

(pathway 2), or as press herbivory by reindeer gradually causing a shift from the moss to the herbaceous state (pathway 3). Fertilization by

seabirds is an important driver of state shifts on the coast (pathway 4). See main text for more examples and references

Table 1 The set of variables derived from the conceptual model for monitoring of vegetation state transitions in moss-graminoid tundra on

Svalbard (Fig. 2). Path refers to the pathways outlined in Fig. 2. The relation to the Circumpolar Biodiversity Monitoring Program (CBMP) for

terrestrial Arctic and the Focal Ecosystem Components (FEC), and their Attributes (Attr.) are indicated

State variable Interval Method Path FEC* Attr.*

Moss layer thickness 1 year Field measure

Biomass of vascular plant species and

functional groups

1 year Point frequency All

plants

Diversity, composition,

and abundance

Ice damage 1 year Transect, drone and satellite imagery 1

Extent of vegetation types, bare ground 5 years Drone and satellite imagery 2, 3 All

plants

Diversity, composition

and

abundance/diversity

and spatial

structure

Productivity at peak season 1 year Drone and satellite imagery, NDVI 1 All

plants

Productivity

Phenology 1 year Drone and satellite imagery, time-integrated

NDVI

1 All

plants

Phenology

Air and soil temperatures Multiple Weather stations, medium-sized station,

small,

distributed loggers

1

Permafrost thaw depth 1 year Late summer maximum depth at bore hole 1

Snow depth, duration, distribution Multiple Field measurement, modelling 1

Soil moisture Multiple Weather stations, small loggers 1

Abundance of herbivores 1 year Pellet counts, camera traps, population census 2, 3

Grubbing impact 1 year Counts 2, 3

Soil nutrient level 1 year Near-infra red spectrometry 2, 3, 4

Ground-ice formation Multiple Field measurement, modelling 1

Permafrost-soil movement 5 year Satellite and drone imagery 1

*The attributes of the focal ecosystem component in the Circumpolar Biodiversity Monitoring Plan; ‘‘All plants (species, life-form groups and

associational communities) include attributes ‘‘diversity, composition and abundance’’, ‘‘diversity and spatial structure’’, ‘‘productivity’’, and

‘‘phenology’’
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Svalbard is a High Arctic archipelago with a relatively

simple food web. Moist, potentially very productive habi-

tats of Svalbard tundra harbour moss tundra (Vanderpuye

et al. 2002; Walker et al. 2005) that we suggested can exist

in three alternative states: (i) dominated by mosses; (ii)

herbaceous vascular plants in a matrix of moss, or (iii) as

bare ground (Figs. 1, 2). The suggested moss-dominated

state has a relatively high productivity and capability to

retain nutrients and moisture. A deep moss layer, often

with species from the genera Aulacomnium, Tomentypnum,

and Sanionia, (Eurola and Hakala 1977; Vanderpuye et al.

2002; Van der Wal and Brooker 2004) insulates the soil,

keeping it cool and with shallow active layer (Gornall et al.

2007). The suggested herbaceous state has abundant gra-

minoids, e.g. Alopecurus magellanica, Poa spp., forbs, e.g.

Saxifraga spp., Bistorta vivipara, and dwarf shrubs, par-

ticularly Salix polaris, growing in a moss matrix (Eurola

and Hakala 1977; Vanderpuye et al. 2002). Soils tend to be

warmer and the active layer is consequently deeper than in

the moss-dominated state (Van der Wal and Brooker 2004).

The critical functions of the vegetated states of moss tun-

dra, supporting vertebrate communities and regulating

ecosystem processes, depend on the level of grazing,

manuring, and disturbance imposed by the herbivorous

animals [Figs. 2, 3 (van der Wal et al. 2004; Van der Wal

and Brooker 2004; Van der Wal 2006)], but also by fer-

tilization from colony nesting birds (Eurola and Hakala

1977; Vanderpuye et al. 2002). The suggested bare ground

state can be either exposed organic soil, including

decomposing moss, or mineral soil (sandy, or silty); and

bare areas can range from small (\ 1 m2) to large (10’s of

m2). In this state, the soil organic carbon content is lower

than in the other two alternative states, and erosion and

leaching may cause nutrient depletion (Van der Wal et al.

2007).

Summer temperature and soil moisture are likely the

most important abiotic press drivers that affect moss tundra

vegetation (Fig. 2, pathway 1). In Svalbard, summers have

warmed moderately over the last 50 years, while spring,

autumn and particularly winter temperatures have had a

stronger warming trend (winter 1.6�C/decade) (Vikhamar-

Schuler et al. 2016). We hypothesize that the warmer

summers in central Spitsbergen during the last 50 years

(Van Pelt et al. 2016) can, in the future, exert a press

impact in favour of the herbaceous state over the moss-

dominated state.

A climate-related pulse driver that influences the ter-

restrial ecosystem on Svalbard are rain-on-snow events in

winter, leading to ground-ice formation (Fig. 2, pathway

1). The effects of ground-ice on plant communities have

been mostly studied in dwarf shrub species that have sen-

sitive organs exposed above-ground, revealing high spatial

variability in damage from winter weather (Milner et al.

2016; Bjerke et al. 2017). The spatial extent and longer-

term effects of winter damage to shrubs remains a question

for future research and monitoring. The extent of winter

damage in herbaceous and mossy vegetation states is cur-

rently undocumented. The frequency of ‘‘rain-on-snow’’

events has increased and the precipitation and snow cover

patterns are expected to change (Adakudlu et al. 2019;

Peeters et al. 2019). We therefore hypothesize that also

plants with all sensitive organs below or at the soil surface

may suffer from winter climate events, and integrate

measurements of winter damage and extreme winter

weather into the vegetation monitoring (Table 1).

It is hardly possible to predict climate impacts on moss

tundra without considering the activities of herbivores,

whose populations are dynamic and changing. Resident

herbivores (Svalbard reindeer, Rangifer tarandus pla-

tyrhynchus and Svalbard rock ptarmigan, Lagopus muta

hyperborea) are affected by changes in winter climate

(Hansen et al. 2013; Albon et al. 2017). Mild winter

weather (pulse driver), leading to ground-ice formation,

results in reduced reindeer population growth rates (Albon

et al. 2017). By contrast, longer and warmer summers

(press driver), given they result in higher primary produc-

tion, appear to increase population growth rates (Hansen

et al. 2013). Similar positive effects of longer summers in

the Arctic likely will act on the migratory geese (Jensen

et al. 2008), whose populations have increased dramati-

cally during the last decades because of reduced hunting

pressure and greatly improved food availability in the

wintering areas (Fox et al. 2005; Fox and Madsen 2017) .

A major way through which herbivores impact the

vegetation is through physical disturbance (Fig. 2, path-

ways 2 and 3). Particularly, the moss-dominated state is

sensitive to changes in disturbance by reindeer and geese

(Van der Wal and Brooker 2004; Speed et al. 2009) (Fig. 2,

pathway 2). In early spring and summer, pink-footed geese

(Anser brachyrhynchus) grub for below-ground plant parts

of particularly grasses (Dupontia spp.) and sedges (Erio-

phorum scheuchzeri), but also Equisetum arvense and

Bistorta vivipara, disrupting the moss layer (Fox et al.

2006; Anderson et al. 2012). Pink-footed goose grubbing

affects an increasing proportion of the vegetated ground,

and the effect of their activities is found in nearly all

vegetation and landscape types (Pedersen et al. 2013).

Patches opened by the grubbing activity of geese are cur-

rently mostly small but highly frequent in the landscapes

(nearly 50% of 20,000 m2 of moss tundra transects sur-

veyed in 2018 had signs of grubbing disturbance; Ravo-

lainen et al. unpublished data). Re-growth of moss is slow

relative to vascular plants, which makes the moss state

more sensitive to trampling than the herbaceous state.

Timing of snowmelt modulates the impact of pink-footed

geese on tundra vegetation since it controls the spatial
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distribution of feeding geese (Anderson et al. 2016). It is

not known what degree of grubbing intensity leads to

changes in hydrology and other local abiotic factors.

Whether the extent of grubbing (see Speed et al. 2009 for

spatial predictions) continues to increase, whether there is

potential for it affecting food availability for the year-round

resident herbivores, and how dynamic the different vege-

tation states are in their responses and recovery remain to

be addressed in future work.

Thaw slumps, ice wedge polygon collapses, and active

layer detachments are pulse driver disturbances related to

permafrost processes occurring on Svalbard. Yet, their

impacts on vegetation state shifts lack documentation.

From other Arctic areas, we know that eroding gullies

(Perreault et al. 2016) and permafrost thaw slumps (Sluijs

et al. 2018) can influence landscape structure and vegeta-

tion as local pulse drivers. The bare ground created by

permafrost-related processes differs from that opened by

geese in one fundamental way: landslides, thaw slumps,

and thermokarsts remove or move soils, while geese

remove the vegetation while leaving the soil largely in

place. Thus, the respective formation mechanism of the

bare ground patches could lead to different plant recruit-

ment potential. We therefore hypothesize that habitats

disturbed by geese will in the future support different

vegetation states than bare ground created by permafrost-

related erosion.

Another press driver in moss tundra is increasing

nutrient turnover (Fig. 2, pathways 2 and 3). Both geese

and reindeer enhance nutrient turnover (Van der Wal and

Hessen 2009; Sjogersten et al. 2010), but direct compar-

isons of their relative effects are lacking. What level of

nutrient availability is necessary to maintain the different

tundra states remains to be investigated. At high levels of

nutrient input by seabirds moss tundra shifts to the herba-

ceous state (Eurola and Hakala 1977) (Fig. 2, pathway 4).

Given that more than three million pairs of altogether 20

species of seabird breed on Svalbard, their influence should

be considerable, as they are a significant driver of nutrient

transfer from the marine to the terrestrial realm (Zwolicki

et al. 2013). Vegetation development under climate change

scenarios in moss tundra can be expected to be inherently

tied to trends in seabird populations—particularly in

coastal areas—in addition to the above-mentioned effects

by herbivores.

Proportions of plant biomass consumed by reindeer

across larger units of vegetation are generally low, and

likely not dissimilar to estimates obtained for muskoxen

Ovibos moschatus in NE Greenland although effects on

vegetation are measurable when muskoxen are excluded

(Mosbacher et al. 2016). In line with this, the few short-

term exclosure studies of Svalbard reindeer herbivory have

not found strong impacts on plant biomass (Wegener and

Odasz-Albrigtsen 1998; Dormann et al. 2004). Studies on

geese, on the other hand, have shown locally strong sup-

pression of vascular plant biomass, which could ultimately

drive the system to a moss-dominated state (for a review,

see Van der Wal and Hessen 2009). Were intense grazing

to cease, then the herbaceous state would re-emerge

(Sjogersten et al. 2011). Studies looking at the cumulative

effects of these key herbivores at current population levels

are lacking. The reindeer population in Svalbard has dou-

bled since 1980’s (Le Moullec et al. 2019) and the pink-

footed goose population increased by 36% between 2007

and 2013 (Anderson et al. 2016). We can hypothesize that

changing population sizes of reindeer and pink-footed

geese, as they share spring and summer habitat and forage

plants, may be an additive press driver, shifting the system

from cryptogam to herbaceous state and potentially, if

grazing pressure become high enough, to a bare ground

state (Fig. 2 pathways 2 and 3).

ARCTIC VEGETATION STATES: ECOSYSTEM-

SPECIFIC SHIFTS

Warmer summer temperature (Schmidt et al. 2012),

extreme winter weather (Bjerke et al. 2017), disturbance

from herbivores (Olofsson et al. 2012), and permafrost-

related processes, such as deeper thaw and active layer

detachment (Myers-Smith et al. 2019), can all lead to

vegetation state shifts. On a general level, we suggest that

these drivers are important, and transitions towards more

deciduous shrubs or more herbaceous vegetation at the cost

of cryptogams can happen across the Arctic. However, we

hypothesize that habitat differences (notably terrain, water

regime, substrate, and snow distribution), as well as the

assemblage of herbivores—of different-sized species with

distinct feeding modes—will continue to dictate which

states are possible and which transitions happen. For

instance, the impact of very large herbivores like muskoxen

will likely manifest partly through their trampling effect on

mosses. Muskoxen trampling of wet habitats has been

documented to decrease soil temperatures (Mosbacher

et al. 2016), which is opposite to what has been observed in

drier habitats concerning reindeer (Van der Wal and

Brooker 2004; Van der Wal 2006). Further, bare ground

patches caused by e.g. permafrost thaw slumps will in

moist habitats probably revegetate within the course of

some years (Lantz et al. 2009). Yet, we hypothesize that in

drier habitats re-colonization might take longer and

potentially even be hampered by increased frequency of

extreme winter events such as ice encasement. These

examples highlight the need for habitat and region specific,

ecosystem-based conceptual models to guide future moni-

toring and research on Arctic vegetation states.
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INTEGRATION OF DRIVERS IN VEGETATION

MONITORING

The implementation of monitoring following a conceptual

model as outlined above requires establishment of inte-

grated measures capturing vegetation ‘response variables’,

as well as measurements of the respective drivers. The

variables monitored in Svalbard moss tundra (Table 1)

provide an example of how monitored variables link to the

above-unfolded conceptual model (Fig. 2). The relative

importance of grazing, trampling, grubbing, and abiotic

disturbances as drivers of vegetation state shifts warranted

the selection of variables to monitor. More work is needed

before we fully understand what drivers are best catego-

rized as pulse and press in the changing Arctic terrestrial

ecosystems. Our focus here has been on climate and her-

bivores as drivers of vegetation state shifts, while impacts

of vegetation change on the herbivores are described

elsewhere in models focussed on reindeer and geese (Ims

et al. 2013). While being specific to the focal ecosystem,

the conceptual model and the variables presented here are

at the same time in correspondence with the focal

ecosystem components suggested for monitoring in the

international Circumpolar Biodiversity Monitoring Plan

within CAFF (Christensen et al. 2013). A difference

between the concept models of the international plan and

the models we outline here and in the Climate-ecological

Observatory for Arctic Tundra—COAT (Ims et al. 2013) is

that we explicitly describe expected directional impacts of

individual drivers on tundra vegetation states and other

ecosystem components such as the respective herbivores.

This hopefully facilitates understanding of the linkages

between the ecosystem components, in line with ambitions

given in the CBMP plan (Christensen et al. 2013) and other

international assessments (Ims and Ehrich 2013). Moni-

toring data that allow for directly linking the variables

describing ecosystem state and drivers of state shifts can

give insights into climate–ecosystem dynamics (Post et al.

2009; Ims et al. 2013).

Conceptual models should be re-visited at regular

intervals to adapt them and the respective monitoring

programme to new knowledge (Lindenmayer et al. 2011).

For instance, changes in environmental conditions may

suggest that new impact pathways have gained importance.

Currently, the occurrence of alien plant species, identified

as a Focal Ecosystem Component by CBMP (Christensen

et al. 2013), is largely confined to Svalbard’s settlements

(Alsos et al. 2015) similar to the situation in the circum-

polar Arctic (Wasowicz et al. 2019). Should alien plant

species become more frequent in natural habitats, then they

and their drivers would be included in the monitoring. By

contrast, variables that are central for monitoring climate

change impacts on vegetation, such as weather variables

and peak season biomass, are continuing time-series. While

adjustments to the sampling protocols of these time-series

will need to be considered at regular intervals, any change

should be made without risking the integrity of long-term

time-series. For instance, changes to new methods should

be calibrated against previously used methods. One of the

strengths of relying on the adaptive monitoring paradigm is

the active consideration of new elements in context with

the established programme, while maintaining time-series

of core variables (Lindenmayer et al. 2011). Currently,

very few monitoring programmes use adaptive monitoring,

and we suggest that more active usage of this approach is

warranted given the rapid change of Arctic ecosystems.

KEY FINDINGS AND RECOMMENDATIONS

FOR THE CIRCUMPOLAR BIODIVERSITY

MONITORING PLAN

Based on known and expected vegetation state changes in

High Arctic Svalbard, we propose the use of conceptual

models as basis for monitoring tundra vegetation. Current

understanding of our worked up, and implemented case,

moss-graminoid tundra, suggests that additive effects of a

warmer climate and increasing herbivore pressure are

likely to drive this system from a moss-dominated state

with cool soils towards either a herbaceous state or a bare

ground state, both having warmer soils and deeper active

layers. We developed an ecosystem-specific conceptual

model to determine the variables currently included in the

long-term adaptive ecosystem monitoring on Svalbard. The

examples of possible vegetation state transitions described

for Svalbard moss-graminoid tundra are intended to

encourage discussion and development of a broader set of

conceptual models and potential vegetation states for other

rapidly changing Arctic regions. We propose that devel-

opment of a comprehensive set of conceptual models, with

built-in best estimates of potential shifts in vegetation

states, should become a priority of international monitoring

bodies as they would help to link local and regional

monitoring efforts in a circumpolar context.
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In the processing of writing the introduction of this thesis I discovered a mistake that I made when 

reporting some of the classification results in the follwing study. In Figure 6, the value for the point 

JAN – optimized – optical and terrain has a higher F1-macro score than originally reported and is now 

at 88.5 %. The class specific F1 scores in Table 2 in the JAN row are also higher than originally 

reported (I had accidentally reported the values for the classifier using optical variables only). In the 

introduction section to this thesis, I have reported the correct values. I will also send these 

corrections to the journal. The online version of this paper should therefore have the correct values 

by the date of the defense. The confusion matrices (in supplementary materials) were and are 

correct. 

 

 

F1- scores of ground-cover classifications at the three study sites on Svalbard using the optimized classes and all 
predictor variables (optical and terrain). Class names in order from left to right: moss-graminoid, moss-equisetum, 
wetland, moss-brown-wetland, Carex subspathacea, heath, dryas, cassiope, winter-damage-woody/biological 
crust, grubbing, bare ground, gravel, water, snow.  

Class 

site mgr meq wet mbw csu hea dry cas wdc gru bgr gra wat sno 

JAN 85.2 89.3 92.3 - - 76.5 94.9 80.7 83.1 90.5 92.8 91.3 89.3 100 
SAS 70.5 83.8 92.8 - - 77.3 80.2 92.0 88.7 86.1 75.0 84.0 93.4 - 
TOD 84.7 85.9 80.8 86.4 97.7 95.6 80.7 74.7 77.5 78.3 88.9 74.0 98.9 - 
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Abstract: The Arctic is under great pressure due to climate change. Drones are increasingly used
as a tool in ecology and may be especially valuable in rapidly changing and remote landscapes, as
can be found in the Arctic. For effective applications of drones, decisions of both ecological and
technical character are needed. Here, we provide our method planning workflow for generating
ground-cover maps with drones for ecological monitoring purposes. The workflow includes the
selection of variables, layer resolutions, ground-cover classes and the development and validation of
models. We implemented this workflow in a case study of the Arctic tundra to develop vegetation
maps, including disturbed vegetation, at three study sites in Svalbard. For each site, we generated a
high-resolution map of tundra vegetation using supervised random forest (RF) classifiers based on
four spectral bands, the normalized difference vegetation index (NDVI) and three types of terrain
variables—all derived from drone imagery. Our classifiers distinguished up to 15 different ground-
cover classes, including two classes that identify vegetation state changes due to disturbance caused
by herbivory (i.e., goose grubbing) and winter damage (i.e., ‘rain-on-snow’ and thaw-freeze). Areas
classified as goose grubbing or winter damage had lower NDVI values than their undisturbed
counterparts. The predictive ability of site-specific RF models was good (macro-F1 scores between
83% and 85%), but the area of the grubbing class was overestimated in parts of the moss tundra. A
direct transfer of the models between study sites was not possible (macro-F1 scores under 50%). We
show that drone image analysis can be an asset for studying future vegetation state changes on local
scales in Arctic tundra ecosystems and encourage ecologists to use our tailored workflow to integrate
drone mapping into long-term monitoring programs.

Keywords: classifier; disturbance; drone; ecological monitoring; GLCM; herbivore; random forest;
Svalbard; winter climate effect; grubbing

1. Introduction

Rapid climate change is altering abiotic and biotic disturbance processes in the Arctic
and could therefore lead to ecosystem state changes in tundra ecosystems [1–4]. Abi-
otic disturbances to the Arctic tundra may increase due to summer warming, leading to,
e.g., permafrost collapse and erosion, whereas changes in the winter climate cause, for in-
stance, rain-on-snow events and ground ice, permafrost thaw and changes of hydrological
regimes [2,5–11]. In addition, climate change can also modify the intensity and frequency
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of biotic disturbances to tundra, e.g., via herbivore grazing [12,13]. The cumulative effect
of changes in multiple drivers can thus alter the state of tundra ecosystems [14]. Ecosystem
state changes can be detected by mapping vegetation or tundra surface types, quantifying,
for example, increases in forest or shrub cover [15,16], or assessing variables such as vegeta-
tion type composition and percentage of bare ground-cover [17,18]. While these examples
illustrate that some ecosystem state changes have happened in the Arctic, it remains to
be documented by means of long-term monitoring, which ecosystem states continue to
develop in an Arctic landscape that is facing rapid environmental change [14].

High Arctic tundra, such as in Svalbard, represents an ecosystem in high demand
for monitoring [3,13], as new biotic and abiotic conditions are evolving fast with rapid
climate change. In particular, the winter climate in Svalbard has, since the late 1990s,
seen a regime shift towards more frequent rain-on-snow events due to mild temperatures
and, consequently, more pronounced formation of basal ice [19] that encapsulates and
damages plants [20]. This commonly occurs in low-land tundra with, e.g., dwarf shrub
vegetation [21]. Additionally, increasing herbivore populations (e.g., goose and reindeer)
can cause biotic disturbances [12,22]. In Svalbard, a mode of herbivory with particular
importance to the tundra is pink-footed goose (Anser brachyrhynchus) grubbing, which
disrupts the vegetation by removing plants and the moss layer [23–25]. The population
of pink-footed geese has increased dramatically since the 1990s [26], and heavy grubbing
can remove enough vegetation to cause patches of bare ground, potentially leading to soil
erosion, destabilizing permafrost and changes in the soil-carbon cycle [14,27–29]. Warmer
summers can destabilize the permafrost further but simultaneously also lead to higher
primary production and above-ground biomass [30]. Effects of summer warming, changed
winter climate and altered herbivory are expected to change the current state of this high
Arctic ecosystem [14]. The disturbances described above commonly cover only small areas
but occur frequently across the landscape, resulting in a heterogeneous tundra where
the vegetation is interspersed with different types of disturbed patches. Detecting such
disturbances at the landscape scale requires new, improved monitoring methods [14].

Drones have become more accessible in recent years and allow researchers to cover
larger spatial extents at multiple temporal scales [31]. Drone images provide spatial grain
sizes that allow studying ecological processes at local scales in highly heterogeneous
landscapes. They can help transferring from local and detailed knowledge to broad-
scale environments with more spatial and temporal complexity and can improve the
interpretation of satellite imagery [32]. In the Arctic, drones have been used for vegetation
mapping [33–35], measurements of cryosphere characteristics [36–45], observations of
permafrost thaw [46,47] and to help bridge the gap between field- and satellite-derived
data [32,35,48]. Long-term monitoring is stated as a goal in many recently published drone
studies (e.g., [49,50]), but as the technology is quite new, few current studies have compared
results from drone data between years or even within the same season [32,35].

Ecological monitoring is based on comparable, repeated measurements and requires
robust methodology at all steps from data collection to statistical inference. Monitoring that
is based on comparisons of drone images across time (seasons, years) or space (between
different areas) faces methodological challenges for obtaining consistent and comparable
data [51–53]. Recent studies have developed guidelines for drone data acquisition, ge-
ometric processing and radiometric calibrations [31,53,54]. This helps ecologists obtain
high-quality images that would allow for temporal and spatial comparison. There has
been less attention on how to systematically analyze these images to extract ecological
variables relevant for monitoring an ecosystem state’s changes resulting from environ-
mental drivers. Arctic ecological monitoring programs (e.g., [55–58]), networks [59] and
drone ecologists, in general, are tasked with finding the balance between their scientific
interests and technical remote sensing abilities. The use of drones as a tool in ecology will
therefore benefit from shared protocols that go beyond the first steps of image acquisition
and processing. To better capture ecosystem changes, we need to include further steps
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in the overall workflow, such as variable selection, layer resolution, ground-cover class
selection and model development, including ground calibration and validation [31,53].

The overall aim of our study is to test ways of using drone imagery to collect variables
that will be important to describe vegetation state changes resulting from abiotic and
biotic disturbance factors that currently frequently occur at our study sites in Svalbard.
For this purpose, we develop a method planning workflow with a focus on the steps after
image acquisition (Table 1) to serve as guidance for the use of drone images in tundra
ecological monitoring.

Table 1. Method planning workflow for drone flight campaigns and image classifications in a tundra landscape. Studies for
the steps where guidance has been published are referenced. Asterisks indicate the steps we included in our study.

Topic Solution

(1) Flight planning

What to consider when planning
field work?

Choose appropriate image overlap and camera angles for desired final
product. *

Ensure that the type of the drone, the camera and flight speeds integrate
well with one another to obtain high-quality images of suitable
resolution and avoid blurring due to slow rolling shutter speeds [60]. *

Follow appropriate radiometric calibration guidelines. See guidelines
from Aasen et al. [31], Assmann et al. [54] and Tmušic et al. [53] with
advice for choices of flight line, (image) overlap, camera type, drone
type, weather and sun, radiometric calibration, geolocation, ground
control points and ground truthing. *
Ensure accurate geolocation of images and groundtruthing data. *

(2) Variable selection

Which variables to derive from
the drone images?

A priori knowledge of the landscape is important to select appropriate
data layers and resolutions that represent ecologically explainable
heterogeneity in the terrain. *

How to assess which of the
available variables to include in
a classifier?

Variable importance can be ranked in a preliminary classifier using a
subset of the available data [61,62]. *

Which variables best
discriminate between
ground-cover classes?

Exploratory data analysis via visual inspection of data via plotting to
detect patterns important for the classification. *

What neighborhood size to
select?

Neighborhood size can be ranked in a preliminary classifier using a
subset of the available data [61,62]. *

Appropriate neighborhood sizes for secondary layers can be
computationally derived using a minimum entropy approach [63].

Computational limits may define the minimum resolution or maximum
possible neighborhood sizes [64]. *
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Table 1. Cont.

Topic Solution

(3) Ground-cover class selection

How to define the first choice of
ground-cover classes for the
classifier?

Data-driven—Cluster analysis to see the separability of data without
human input (unsupervised classification).

Research-driven—Considering data-driven results define classes that
are present in the area of interest for monitoring or expected to change
over time (supervised classifications). *

How to choose between
classifier robustness and
ground-cover class detail?

Pre-define the ecological context of the ground-cover classes to
determine which ones are meaningful to merge due to ecological
similarities. *

How to increase transparency
on class selection and its effects
on classification accuracy?

Define documentation of how the final classes, explain class merges and
the research consequences of mixing classes. *

(4) Classifier development and
validation

How to choose groundtruthing
points?

Choose areas that are representative for the ground-cover classes and
large enough sample sizes [65]. *

Aim for a training data cover of approximately 0.25% of the study
site [66] (recommendation based on medium-coarse grain satellite data).

Avoid spatial autocorrelation of groundtruthing points by stratified
random sampling in a blocked design [67]

How to avoid overfitting the
classifier?

Split the dataset into training and validation datasets (such as K-fold
mechanism or using random resampling) [64]. *

How to assess classifier
robustness? Use an independent validation dataset for external validation [68]

If an independent dataset is not available, repeat runs of the classifier
though multiple K-fold runs or repeat sampling of training and
validation dataset [68]. *

Additional map validation by local experts can help discover issues that
go undetected by classifier evaluation statistics. This can be conducted,
for example, by visually comparing the classified map with the drone
images, pictures or revisits to the site. *

(5) Transferability of classifier

How to assess the potential for
transferability?

Exploratory data analysis via visual inspection of data via plotting to
detect trends/shifts in values across sites or time intervals. *

How to test the transferability of
the classifier?

Repetition of data collection in new area, creation of independent
classifier and test in other area. *

How to improve the
transferability of the classifier?

Tree pruning, simplification of the classifier, transferability
functions [69,70]

2. Material and Methods
2.1. Study System

Svalbard is a high Arctic archipelago (74◦–81◦N, 10◦–35◦E), where only 15% of the
land is vegetated [71,72]. Our three study sites (Janssonhaugen (JAN), Sassendalen (SAS)
and Todalen (TOD)) are located in Nordenskiöld Land in the center of the main island,
Spitsbergen (Figure 1). The area is characterized by glacial valleys with continuous vegeta-
tion at low elevations and sparse to no vegetation at higher elevations and on mountain
slopes [73]. The study sites have similar plant community compositions, and each spans
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a gradient from moist-mesic tundra mires to dry-mesic ridges [74]. More information on
the plant communities can be found in Appendix A. Annual precipitation is around 190
mm [75], and soils range from hyperskeletic cryosols in the moist moss tundra, haplic
cryosols in the dry ridges and turbic cryosols where thaw-freeze cycles perturbate the
ground (based on descriptions of Migala et al. [76]).

Todalen (TOD)

Sassendalen (SAS)

Janssonhaugen (JAN)

¯

0 2
km

20° E

80° N

70° N

60° N

Figure 1. Location of drone flights of the case study in Central Spitsbergen, JAN: 78.16996◦N,
16.300685◦E, 0.3 km2; SAS: 78.331412◦N, 16.974537◦E, 1 km2; TOD: 78.188762◦N, 15.82335◦E, 1 km2.
Ground sampling distances (GSD) are listed for each site and camera (AeriaX RGB/Sequoia+ 4Band):
JAN: 1.9 cm/9.8 cm; SAS: 2.2 cm/13.2 cm; TOD: 1.2 cm/10.3 cm. Aerial orthophoto provided by the
Norwegian Polar Institute.

2.2. Study Preparation

We developed a workflow (see Table 1) to systematically plan the data collection and
analysis steps of our study.

2.3. Data Collection

Our data collection choices are based on considerations presented in Table 1—(1)
Flight planning. We captured aerial images during plant biomass peak season (20–28 July
2019) at the three study sites (Figure 1). We used a fixed wing drone (eBeeX by Sensefly)
rigged with an AeriaX RGB camera and Sequoia+ four band camera (red, near infrared,
red edge and green bands). As the Sequoia+ camera model is radiometrically calibrated
automatically [77], we only took pictures of a spectral calibration target (Zenith Lite—
SphereOptics) as backup. Image overlap was 70% or higher for the AeriaX RGB camera,
while for the Sequoia+, side overlap was 60% and horizontal overlap 80%. We flew in
perpendicular lines to the main slope of the terrain and kept a constant height over the
ground (between 70 and 100 m above ground, depending on the camera and site) and
speeds between 8–15 m/s).

Ground sampling distance (GSD) varied slightly between sites, see Figure 1. We flew
around noon (earliest 10:00 latest 15:00) to have similar light conditions and avoid shadows
on sunny days. We only flew on days with stable light conditions, such as blue skies (for
study sites TOD, SAS) or continuous overcast (study site JAN), and wind speeds below
7 m/s. We used a Leica GS10 base station (Leica Geosystems) with an in-flight RTK (real
time kinematic) link to the drone to obtain camera positions in real time and thus readily
georeferenced images. We placed four ground control points (GCPs) in the area to validate
spatial location accuracy, for which the maximum error was 5 cm.
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We collected ground truth (GT) information, i.e., ground-cover class validation points,
with the help of an accurate GPS system (Leica GS10 base station and rover) at 2 cm accuracy
and real time correction. We aimed at collecting GT points spread throughout each of the
study sites, with ca. 40 GT points per ground-cover class for each site, resulting in a total of
1782 GT points. We identified a total of 17 ground-cover classes, but not all classes were
present at all sites. For each GT point, we noted the dominant ground-cover type in a
ca. 7.5 cm radius around the point. Figure 2 illustrates the variation of the ground-cover
classes. See Appendix A for detailed descriptions of each of the ground-cover classes.

a b c d

1

2

3

4

Figure 2. Images of 16 ground-cover classes that were included in the initial classification scheme.
row 1: moss-graminoid, moss-equisetum, wetland, moss-brown-wetland; row 2: Carex subspathacea, heath-
moss, heath-graminoid, dryas; row 3: cassiope, winter-damage-woody, biological crust, grubbing; row 4:
winter-damage-moss, bare ground, gravel, water. The class snow is not shown in this graphic. Detailed
information for each class can be found in the Appendix A.

2.4. Data Preparation

Using Pix4D Mapper [78], we generated five orthomosaics with images from the Se-
quoia+ sensor (four optical bands and the normalized difference vegetation index (NDVI)).
With the same software, we created a digital surface model (DSM) using the 3D point
cloud from the images of the AeriaX RGB camera. Our AeriaX RGB camera switched
from manual to automatic settings during several instances and could therefore not be
radiometrically calibrated. As a result, we used RGB images only to generate the DSM. We
used the R (version 4.0.0.) software for all further analyses [79], and scripts can be found in
the Supplementary Materials. To obtain textural information from our orthomosaics, we
calculated gray level co-occurence matrices (GLCMs), as conducted in Wang et al., 2015 [61],
using the R package glcm [80]. We calculated seven types of GLCMs for the NDVI, green
and red edge orthomosaics and using four different neighborhood sizes (0.3 m, 0.9 m, 1.5 m,
2 m) with equal offsets in all directions as we did not expect any specific directionality in
our data. Larger neighborhood sizes for the GLCMs were not computationally feasible
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with our setup, as processing times per variable reached multiple days. We did not include
the DSM in our analysis because we found that the absolute height above sea level is not a
useful predictor for generalizing across sites as it is too specific for each study site. Instead,
we used it to calculate several of the terrain variables that were tested and discussed in [81]:
slope at 1 m, 5 m and 10 m resolution, vector ruggedness, dissection, several curvature
functions and terrain ruggedness (R package: SpatialEco [82]), all of the latter at 0.2 m and
1 m resolution using a range of neighborhoods sizes (0.6 m–2.2 m for the 0.2 m resolution,
with 0.4 m intervals, and 3 m–131 m for the 1 m resolution, with 10 m intervals). We chose
the smaller resolutions to capture the local heterogeneity of the terrain, such as tussocks and
grubbing craters, and the larger resolutions to describe more general terrain positioning at
the study sites.

2.5. Variable Selection

To reduce the number of drone-imagery-derived variables for further analyses, we
used two exclusion criteria. First, we visually investigated the potential of the terrain
variables to distinguish ground-cover classes by plotting maps and generating boxplots.
This led us to exclude the curvature functions and terrain ruggedness and only continue
with slope, vector ruggedness and dissection. Both GLCMs and terrain functions are
dependent on the analysis window size (neighborhoods). For each site, we explored the
GLCMs and terrain variable neighborhoods in preliminary models to assess their predictive
ability for at least one of the ground-cover classes. This way we reduced the number of
GLCMs from 84 to 39 and the terrain variables from 61 to 21. More detailed information on
variable selection considerations can be found in Table 1—(2) Variable selection.

2.6. Ground-Cover Class Selection

We used a research-driven class selection approach (see Table 1—(3) Ground-cover
class selection). Since the final ground-cover classes were not pre-defined, we created
a flowchart to guide our decision making on how to systematically test our ability to
detect ground-cover classes (Figure 3a) at different levels of detail. As a starting point of
selecting ground-cover classes, we created two lists of class detail (Figure 3b). Our scheme
with initial classes included all the ground-cover classes that we identified as ecologically
relevant to characterize the ground. We were mostly interested in detecting disturbance
ground-cover classes, and our class selection is oriented towards that. We further created
a simplified classes scheme that would fulfill our minimum requirements of detecting
the disturbance-related classes (bare ground, grubbing, winter damage, biological crust) and
merged all vegetated classes into one. After running the classification algorithm on both
schemes and evaluating the results, we created a third, optimized classes list (Figure 3b).
The optimized classes differ from initial classes in three ways: (i) heath vegetation is grouped
into a single class, (ii) the winter-damage-moss class is excluded as it was a very localized
phenomena and challenging to validate, and (iii) the biological crust and winter damage
classes are grouped into a single (mixed) class.

2.7. Data Analysis
2.7.1. Disturbance Detection Based on NDVI

In an exploratory examination, we investigated our ability of using drone images
and a GSD of approximately 10 cm to detect pink-footed goose grubbing, winter damage
(i.e., grey areas of dead vegetation) and bare ground (open soil). We compared the NDVI
value differences of the GT points in both disturbed and undisturbed areas within the same
vegetation type: For dry-mesic habitats, we compared cassiope and dryas against biological
crust and winter damage. For moist-mesic habitats, we compared wetland and graminoid moss
against both grubbing and bare ground. We use box-and-whisker plots to show the range of
NDVI values for each study site and ground-cover class.
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(a) Class selection process

initial classes simplified classes

resultsbefore 1st

classification 

after 1st

classification optimized classes possible reassessment

(b) Class selection Svalbard case study

moss-equisetum

wetland 

moss-brown-wetland1

heath-moss

heath-graminoid

dryas

cassiope

winter-damage-woody

biological crust

grubbing

winter-damage-moss2

bare ground

gravel

moss-graminoid

water

snow3

carex subspathacea1

-wdw

-mgr

-meq

-wet

-mbw

-csu

-hmo

-hgr

-dry

-cas

-cru
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-wdm

-bgr
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Initial

winter-damage-woody

biological crust

grubbing

bare ground-gravel

water

snow3

vegetated
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-cru

-gru

-bgg

-wat

-sno

Simplified

moss-equisetum

wetland 

moss-brown-wetland1

heath

dryas

cassiope

winter-damage-woody
+ biological crust

grubbing

bare ground

gravel

moss-graminoid

water

snow3

carex subspathacea1

-wdc

-mgr

-meq

-wet

-mbw

-csu

-hea

-dry
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-gru

-bgr

-gra

-wat

-sno

Optimized

Only present in 1Todalen, 2Janssonhaugen, 3Sassendalen 

Figure 3. Ground-cover class selection schemes. (a) Stages to determine ground-cover classes
balancing class detail and classification accuracy. The first stage includes testing two class schemes:
one with the most possible detail and one with the minimum required class detail. In the second
stage, the optimal classes are determined by merging the classes that improve the classification
accuracy using the simplified class scheme as a guideline for meaningful merges. (b) The initial,
simplified and optimized ground-cover classes and class abbreviations used in the case study to
classify tundra vegetation on Svalbard.

2.7.2. Classifier Development and Validation

See Table 1 for considerations on (4) Classifier development and validation. We used a
random forest (RF) classifier [83] to develop ground-cover classification models for each
of the study sites. We selected the RF classifier as it has been shown to be successful for
spatial vegetation data [84]. For each of the study sites, we generated six RF models using
three levels of detail for output classes (initial, simplified and optimized) and two sets of input
variables (optical and terrain and optical only). Note that the ground-cover classification
schemes differed slightly between study sites as not all classes were present at each site
(Figure 3b). We used our field ground truthing (GT) data as training data by extracting
the pixel values for each layer that were within the 7.5 cm radius at each GT coordinate.
For some classes (snow, water, Carex subspathacea, dryas, cassiope), we lacked sufficient GT
points and therefore obtained additional training data from the drone imagery. To do this,
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we drew polygons of the classes with insufficient training data using the RGB orthomosaics
and field recordings and added all pixels within those polygons to our GT dataset.

Each RF model was developed as follows (Figure 4): we first split the extracted GT
data 70–30% (stratified random, i.e., random 70–30% split within ground-cover class) into
a training dataset and a validation dataset. As each GT coordinate encompassed several
pixels, we reduced autocorrelation by not using any of the pixels from the same GT point
for both training and validation. We then trained the RF model with the training dataset
using the “fit” function (“rminer” package [85]) with ntree = 500 and a default set of
mtry = 8. We tested the classifier output on the independent validation dataset using the
“predict” function in “rminer”. To assess the robustness of each RF model, we repeated
the process (i.e., the dataset split, model fitting and validation) thirty times. We used F1
scores to compare model performances because this measure captures both observation
accuracy (recall, i.e., proportion of correctly classified pixels of a ground-cover class among
all pixels belonging to that class) and prediction accuracy (precision, i.e., proportion of
correctly classified pixels of a ground-cover class among all pixels classified to of that class)
in a single score (F1 = 2 · precision·recall

precision+recall ). F1 scores range from 0 to 100%, with values close
to 100% representing high observation and high prediction accuracy. We calculated mean
F1 scores for each ground-cover class and the mean macro-F1 score (arithmetic mean of all
ground-cover class F1 scores) to summarize the results of the 30 cross-validation runs. We
used confusion matrices to assess in more detail where class mixing occurred. In addition,
we assessed the selection of predictor variables by analyzing variable importance in each
of the RF models.

We created classified maps for each site with the optical and terrain option with the
optimized classes. We then computed maps from these model outputs for each site using the
predict function (“raster package” [86]) with parallel processing to speed up the process
(ClusterR package [87]). We validated the classification by comparing the classified maps
with the drone orthomosaics and hand-held pictures taken in the field.

Stratified random 
split by class

repeat 30 times

dataset

training data (70%)

validation data (30%)

trained random 
forest

train random 
forest (500 runs)

predicted landcover 
classification

evaluation:
- predictive ability of 

validation data
- variable importance

Figure 4. Data selection process, model validation and evaluation. The classifier was developed
using 70% of the dataset as training data and 30% as validation data. The dataset split and classifier
was run 30 times. Classifier performance mean and variance as well as variable importance values
were calculated from the outputs.

2.7.3. Spatial Transferability

We tested how accurately a model, trained with the optimized classes developed
for one study site, performed at the other two sites. First, we reduced the dataset to the
ground-cover classes by excluding classes that were not present in all three sites. Then we
ran the training on RF for each layer selection set (optical and terrain and optical only). Finally,
we used these models to predict the ground-cover class for each pixel at the two other sites
that were left out. We only tested the RF classifier transferability “as is” and did not adjust
the RF trees by pruning or using transfer functions. See Table 1—(5) Transferability of classifer
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for more information. We used macro-F1 scores to compare the prediction outputs with
one another. To gain a better understanding of the similarities between the classifiers, we
compared their variable importance rankings using the mean decrease accuracy measure.

3. Results
3.1. Disturbance Detection Based on NDVI

Disturbed and associated undisturbed ground-cover types differed in their median
normalized difference vegetation index (NDVI) values but had overlapping interquartile
ranges. This was consistent for the three study sites (Figure 5). Most of the wetland GT
points had NDVI values of 0.75 or higher, and the median of registered moss graminoid
points was around 0.7. Most grubbing GT points had NDVI values that were lower than
the undisturbed classes and had median values between 0.53 and 0.58. The bare ground
class had the lowest NDVI, and none of the values overlapped with the undisturbed
classes except for the outliers (Figure 5a). Among the drier ground-cover classes, dryas and
cassiope had NDVI value medians between 0.59 and 0.75 across the three sites, whereas
the classes winter damage and biological crust had median values between 0.30 and 0.48
(Figure 5b). The difference in NDVI values between the undisturbed and disturbed classes
in the dry-mesic habitat was less pronounced in TOD compared to JAN and SAS.

3.2. Class and Layer Selection

Comparisons of the RF classifier performances between the three classification schemes
and two sets of variable selections at each site (Figure 6) showed that the ground-cover
classifications based on both the terrain and optical layers had higher macro-F1 scores than
the ones using only optical layers. The magnitude of the difference depended on the study
site and chosen classification scheme. The classifiers using terrain and optical variables
showed that: (i) the optimized classification schemes performed similarly (macro-F1 score
82–83%) in all three sites, and (ii) sites differed in terms of performance of the simplified and
initial classification schemes. In site TOD, the simplified classification scheme performed
better than in the sites JAN and SAS. The optimized classifier improved (compared to the
initial and simplified) macro-F1 scores most in TOD.

3.3. Variable Importance

The order of importance values (measured as the mean decrease accuracy for each
variable in the RF) varied between the three study sites. Among the optical variables,
NDVI-based gray level co-occurence matrices (GLCM) variables were important in all
three sites. NDVI was the most important layer for SAS and JAN, but ranked 19th in
TOD. The terrain variables that were most important were dissection (especially at large
neighborhoods) for JAN and TOD and slope for SAS. Terrain variables that were calculated
at 0.2 m resolution were among the least important for predicting ground-cover classes.
Complete lists with all importance values can be found in the Supplementary Materials.

3.4. Ground-Cover Classification

Most ground-cover classes of the optimized classifier had F1 scores of 70% or higher,
often over 80–90% (Table 2). The scores were generally highest for the classes snow, Carex
subspathacea, water and wetland. The classes heath and gravel had the largest variation in F1
scores between study sites. There was no consistent bias in model-misclassification of the
ground-cover classes in the three classifiers. Confusion matrices that show the ground-
cover class distributions for each of the classifiers can be found in the Supplementary
Materials. The two disturbance classes grubbing and winter damage/crust had higher obser-
vation accuracy (recall) than prediction accuracy (precision) in all three sites. Classification
errors occurred mainly within the moist-mesic and the dry-mesic habitats: For example,
in JAN, the most common example of misclassification was that cassiope (precision: 91.9%,
recall: 72.1%) was classified as heath (precision: 67.1%, recall: 83.2%) or winter damage/crust
(precision: 80.2%, recall: 87.1%). In TOD, grubbing (precision: 78.6%, recall: 78.3%) was
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most commonly falsely misclassfied (both directions) with the wetland (precision: 78.6%,
recall: 83.0%) and graminoid-moss (precision: 88.8%, recall: 81.4%) classes.

(a)

(b)

Figure 5. The distribution of NDVI values of selected ground-cover classes and their associated
disturbances in the three study sites: The disturbed associates of classes wetland and moss graminoid
are grubbing and bare ground, and the associated disturbed classes of dryas and cassiope are winter
damage and biological crust. The boxes denote the interquartile ranges of NDVI values around the
median for all registered ground-truthing pixels for each ground-cover class, and dots represent
outliers. The order of the images (up-down) follows the x-axis from left to right for each plot.
(a) Moist-mesic habitat; (b) Dry-mesic habitat.
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Figure 6. Comparison of site, classification scheme and layer selection. Black symbols represent
mean macro-F1 scores after 30 runs, the colored boxes indicate confidence intervals of 0.5 and the
bars represent the interval at 0.95.

Table 2. Macro-F1 scores of ground-cover classifications at the three study sites on Svalbard using
the optimized classes and all variables (optical and terrain). Explanations to the class abbreviations can
be found in Figure 3b.

Class

site mgr meq wet mbw csu hea dry cas wdc gru bgr gra wat sno

JAN 70.5 82.3 91.4 - - 57.9 93.7 80.6 81.9 83.8 84.2 90.7 83.6 100
SAS 75.0 83.8 92.8 - - 77.3 80.2 92.0 88.7 86.1 75.0 84.0 93.4 -
TOD 84.7 85.9 80.8 86.4 97.7 95.6 80.7 74.7 77.5 78.3 88.9 74.0 98.9 -

3.5. Visual Evaluation of Predicted Ground-Cover

Based on visual inspection, the classified maps (Figures 7–9) captured all ground-cover
classes well. The graminoid moss tundra, the wetlands and the drier Dryas and barren classes
were predicted as expected from our knowledge of the sites. Pink-footed goose grubbing
was detected in graminoid moss tundra and in wetland vegetation (e.g., Figures 8b and 9b,d).
Winter damage/crust was detected in dry ridges, within Cassiope belts and on top of polygonal
moss tundra (e.g., Figures 8c and 9b). Based on our detailed in-field knowledge of the sites,
there were site-specific misclassifications in “brown rugged terrain” (see discussion).
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Ground-cover classes
moss-graminoid (mgr)

moss-equesitum (meq)

wetland (wet)

heath (hea)

dryas (dry)

cassiope (cas)

winter damage-crust (wdc)

grubbing (gru)*

bare ground (bgr)

gravel (gra)

water (wat)

snow (sno)

a)

b)

c)

¯

50 m

5 m

Janssonhaugen (JAN)

5 m

10 m

Figure 7. Classified map of Janssonhaugen (JAN). Zoomed areas highlight examples of classifica-
tions: (a) The classification of dry-mesic habitat with dryas, cassiope, gravel and winter damage/crust.
(b) Wet, brown-colored mosses classified as grubbing. (c) Winter-damaged moss, classified as grubbing
and water.
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Ground-cover classes
moss-graminoid (mgr)

moss-equesitum (meq)

wetland (wet)

heath (hea)

dryas (dry)

cassiope (cas)

winter damage-crust (wdc)

grubbing (gru)*

bare ground (bgr)

gravel (gra)

water (wat)

snow (sno)

a)

c)

b)

¯

120 m

30 m

Sassendalen (SAS)

5 m

5 m

Figure 8. Classified map of Sassendalen (SAS). Zoomed areas highlight examples of classifications.
(a) Dry and moist habitats: On the left, classification of dry-mesic habitat with gravel and a cassiope
belt. On the right, moist habitat, classified as wetland and moss-graminoid, brown and rugged mosses
classified as grubbing. (b) Grubbing detection in wetland area. (c) Zonation of dry-mesic ground-cover
classes along a gravel ridge.
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Ground-cover classes
moss-graminoid (mgr)

moss-equesitum (meq)

wetland (wet)**

heath (hea)

dryas (dry)

cassiope (cas)

winter damage/crust (wcd)

grubbing (gru)*

bare ground (bgr)

gravel (gra)

water (wat)

a)

c)

b)
¯

100 m

5m

Todalen (TOD)

5m

5 m

d)

10 m

Figure 9. Classified map of Todalen (TOD). Zoomed areas highlight examples of classifications.
(a) Cassiope classified as grubbing. (b) Grubbing and winter damage/crust on ice wedge polygons.
(c) A dry-mesic habitat with dryas, gravel and winter damage/crust classified as winter damage/crust.
(d) Grubbing in moss-graminoid habitat.

3.6. Spatial Transferability

In all cases, the models provided less accurate ground-cover classifications if trained in
another site (transferred models (Figure 10). Transferability was generally highest between
the sites JAN and SAS, and using only optical variables was sufficient. The highest macro-
F1 score was found when using the model developed for SAS (optical variables only) to
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predict vegetation at JAN (macro-F1 score of 45.4%, Figure 10). Generally, transferability
did not differ between using optical and terrain variables or using optical variables only.
Ground-cover classes in TOD had the lowest prediction accuracy using models trained at
the other study sites. Likewise, the model trained in TOD did not perform well in either
of the other two study sites. The classifiers for JAN and SAS shared more of the top ten
variable importance scores (see supplementary materials for details).

JAN
83%

SAS
74%

TOD
69%

JAN
83%

SAS
84%

TOD
85%

23%

17%

25%

22%

a) optical b) optical and terrain

Figure 10. Classifier transferability between the three sites using the optimized classification scheme.
Numbers inside the squares show the mean macro-F1 scores for in-site classifiers.The arrows indicate
the direction and macro-F1 scores of using the classifier on the other sites. (a) Optical variables and
(b) optical and terrain variables

4. Discussion

Our case study, using drone imagery in a high Arctic tundra landscape, showed that
the classification of images can be reliably used to detect both vegetation types and small-
scale disturbances from herbivory and winter weather events. The workflow we developed
evaluates which combination of spatial variables and ground-cover classes yields random
forest (RF) models with high predictive ability. Our suggested workflow emphasizes
steps in drone image processing that have previously received less attention in ecological
applications. The poor transferability of models between different sites highlights that RF
models are spatially specific and degrade in accuracy when applied in different spatial
contexts (sites). A point worth noting is that replicability is related to the method and that
each of our RF models needs to be trained with site-specific data and care must be taken
when using it in another context.

The lower normalized difference vegetation index (NDVI) values for the disturbed
classes winter damage/crust and grubbing compared to their non-disturbed counterparts
suggest that small-scale disturbances of tundra vegetation in Svalbard can be detected
correctly using drone images. However, a range of NDVI values is commonly not exclusive
to a certain vegetation class (see, e.g., Raynolds et al. [88]). This was also the case for the
vegetation classes and their disturbed associates in our study that had partly overlapping
ranges, especially in the site TOD. A classification approach is therefore needed to distin-
guish among the different classes, especially in cases where repeated NDVI measurements
before and after the disturbance occurred are not available.

The F1 scores for the disturbed classes were generally high (77.5–88.7%), but reaching
this classifier performance required merging winter damage and biological crust to one class.
More work is thus needed to distinguish the different types of biological crust that have
varied coloring from white to gray and dark brown/black from winter damage in the form
of dead plants that make up a gray layer on the ground. Consistently higher recall than
precision values for the disturbance classes grubbing and winter damage/crust suggest high
detection rates coupled with slight but consistent overestimation of these classes. Field
assessments supported these findings. We detected the following inconsistencies in the
predicted map compared to knowledge from the field. We recognize that grubbing was
overestimated in areas with brown-colored mosses where the surface of the tundra has
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small-scale ruggedness due to soil movements, surface runoffs or reindeer trampling. The
overestimation of grubbing also occurs in brown-colored, senescent cassiope areas and in
patches of muddy water (e.g., Figures 7b,c, 8a and 9a, Eischeid, Ravolainen, personal
observation). Winter damage/crust can be overestimated in areas with small, interspersed
patches of healthy vegetation (e.g., Figure 9c, Eischeid, Ravolainen, personal observation).
A mountain side shadow in the southern side of TOD was classified as water. These
examples illustrate the need for additional ground-truthing and further fine-tuning of
classification of the tundra vegetation types, particularly related to small-scale disturbances.

The overall high classification accuracy with macro-F1 values of over 80% for all three
sites suggests that the classification performed well, comparable or better than other drone-
based classifications in the high Arctic, such as Fraser et al. [89] and Thomson et al. [48]. We
found no consistent bias in the misclassification of the ground-cover classes. Those misclas-
sifications that occurred were between classes that are ecologically similar (e.g., within dry
or wet habitats). The high detection of the classes moss-graminoid, moss-equisetum, wetland,
Carex subspathacea and grubbing suggests that drone classification of tundra vegetation can
be used to detect vegetation classes important to monitor future state changes in Svalbard’s
tundra ecosystem [14]. Increases in horsetails (Equisetum spp.) and Carex subspathacea abun-
dances were recently reported from a revisit study in central Spitsbergen [90], highlighting
the importance of developing image-based methods to support field-surveys to better
obtain area estimates of such changes.

Our workflow (Table 1) builds on recent publications that aimed at systematiz-
ing the collection of drone images for research in natural systems. Review articles by
Aasen et al. [31], Assmann et al. [54] and Tmušic et al. [53] focused on improving repro-
ducibility and quality of drone-based surveys, including spectral calibration, standardized
data collection and general quality control. With our workflow, we expanded this set of
available guidelines, focusing on variable and class selection in an ecological context of
Tundra ecosystems that can help researchers make decisions on drone data processing
and image analysis. With our case study, we show how the workflow helped us to make
systematic choices in planning our methods, as well as testing the limitations of our data,
thereby ensuring ecologically sound research that is suitable for long-term monitoring.

Variable selection can be a very time-consuming process due to the large number
of variables that can be retrieved from the original high-resolution layers and requires
an understanding of the studied ecosystem to pre-select suitable variables. Relevant
neighborhood sizes are an aspect of this process adding to selection/weight given to
terrain and optical layers. We adapted the approach of Fan and Wang et al. [61,62], who
systematically pre-tested different neighborhood sizes to find the most relevant ones.
Analyzing three study sites simultaneously complicated the variable selection process
and increased the total number of variables used for our analysis. Common systematic
approaches to reducing the number of variables often rely on reruns with lower numbers of
variables to find the smallest error rates [91]. These approaches were, however, not suitable
when evaluating three classifiers (three study sites) simultaneously, and we, therefore, kept
all the variables after the pre-test we determined to be important in at least one of the
three study sites. Similarly, we kept the feature set size (mtry = 8) constant for all sites and
classifiers to reduce the possible number of model outputs and comparisons. Further work
on optimizing the site-specific models would allow us to find the most important predictor
variables and optimized feature set.

As part of our workflow, we compared the RF classifier outputs that were based
on optical and terrain variables or optical variables only. Using both terrain and optical
variables improved in-site classifications compared to using only optical variables. In other
contexts, different combinations of variables can lead to the best classification. For instance,
drone surveys of structural landscape changes, such as landslides or river morphology,
have achieved good results using terrain information only [92,93]. The optimal set of
variables will depend on plant community composition, the ground-cover classification
detail needed and the types of sensors available [89,94–96]. We therefore recommend future
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drone-based ground-cover classification studies to include a wide range of variables and
utilize our suggested selection procedures to find the most suitable ones for analysis.

Ground-cover classification maps have become a key resource in institutional, policy
and law-making practice, but so far, there is a lack of conceptual frameworks and agreeable
standards for map based monitoring [97]. Structuring ground-cover classes (i.e., in a
hierarchical approach) can help with choosing appropriate class level detail and allow
transferring across scales [97]. In our study, we found a structured selection approach,
in line with adaptive monitoring goals [98], appropriate to find the optimal class level
detail. It allowed us to focus on the ecological relevance of each of the ground-cover classes.
We can therefore recommend our ground-cover class selection framework as a tool to create
purpose-specific maps and find the balance between model accuracy and obtaining classes
relevant for the monitoring goals.

Our results indicated low model transferability between study sites. Low regional
transferability has also been reported in other RF classification studies [81,99]. Transfer-
ability can be improved by either reducing the number of classes [95], applying algorithm
transfer functions, such as transformation matrices or tree pruning mechanism [69,70],
or using different classifier types (e.g., [100,101]. Some deep learning approaches have
recently been shown to provide classifications of drone and satellite data with reasonable
transferability across space [102,103]. These approaches were outside the scope of our
study as transferability was not the central goal. The right balance between a locally precise
or transferable classifier will depend on the site-specific use-case, and a multi-approach
framework may be needed to satisfy both local and regional monitoring requirements.

5. Conclusions

This study provides a planning workflow for generating vegetation cover maps
with drones for ecological monitoring purposes in high Arctic tundra. Using random
forest classifiers, we were able to successfully distinguish up to 15 different ground-cover
classes, including two disturbance classes, goose grubbing and winter damage, which had
lower NDVI values than their undisturbed counterparts. Although the models indicate
a high predictive ability for the disturbance classes, field assessments have shown an
overestimation of disturbances in parts of the moss tundra landscape. We show that a
direct transfer of the models between study sites was not possible without further fine-
tuning of methodologies. Future work might benefit from focusing separately on locally
optimized maps and developing more generalized, transferable models. We have shown
that it is possible to map the ground-cover classes that will likely be important to study state
changes in Svalbard’s tundra ecosystem. Future drone times-series are necessary to work
on the detection of state transitions. We encourage closer interdisciplinary collaboration
between experts of remote sensing, informatics and ecology to combine the knowledge-base
and further improve the quality of map-based ecological monitoring.
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Appendix A. Ground-Cover Class Descriptions

The three sites for the drone flights were chosen so that they include ground-cover
classes that are of high importance in tundra plant–herbivore interactions and have effects
on plants from extreme winter weather events [14]. The meso-topography of mountainous
tundra landscapes causes differentiation in vegetation types within relatively short dis-
tances (e.g., Mörsdorf et al. [104]), enabling study of dry, mesic, moist and wet ground-cover
classes at the the same sites.

In the high Arctic Svalbard, the drier habitats of convex landscape forms are often
dominated by Dryas octopetala heath [105] that is an available and important foraging
habitat to the Svalbard reindeer and rock ptarmigan in the winter [106,107]. In a lower belt,
below the ridges, in central parts of Spitsbergen, there is often Cassiope tetragona vegetation
that is snow-covered during the winter. Winter extreme weather with rain-on-snow events
have been shown to cause damage to these dwarf shrubs [20,21], although the area extent
of such damage remains to be documented. Mountain sides and slightly sloping parts of
the landscapes are often covered with a thick moss layer where herbaceous plants dominate
alongside Salix polaris. In the lower parts of the landscapes, the moss tundra gradually
changes to wetlands with cotton grasses and grasses adapted to wet conditions. The moss
tundra and wetland parts of the landscapes are important summer foraging areas for all
the vertebrate herbivores [14].

These landscapes encompass a selection of functionally important habitats with high
potential for change due to climate change and the dynamic herbivore populations [14,58].
The expected trajectories of change differ between the dry, moist and wet habitats and
between the disturbance types [14]. This highlights the importance of developing tools to
quantify changes in areas of vegetation states and areas effected by the disturbances.

Vegetation types in Svalbard have been described in various sources earlier, includ-
ing a vegetation map based on satellite data [72], plant sociological and classification
studies [73,108] in Svalbard’s flora [105] and in other research literature [22,30,109,110].
The previously defined vegetation state or type descriptions differ from each other de-
pending on the purpose of the study. For our purpose of mapping especially the dwarf
shrub vegetation types and the moss tundra, in combination with the most important
disturbance to them (winter damage and herbivory by goose, respectively), we defined the
following initial list of ground-cover classes so that it allowed us to work on vegetation
and disturbances in combination.

(1a) Moss-graminoid
A common denominator for this class is a layer of mosses (typically 10–30 cm,

or deeper) in moist terrain. Typical vascular plants are grasses in the genera Poa, Festuca,
Alopecurus and Dupontia, the deciduous dwarf shrub Salix polaris, forbs in different genera
such as Ranunculus, Saxifraga, Micranthes and Pedicularis, as well as some sedges (Carex).
Moss flora is diverse, with dominant species from genera Aulacomnium, Tomentypnum
and Sanionia.

(1b) Moss-equisetum
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This class appears in habitats similar to the class moss-graminoid and in areas transi-
tioning to wetland, but Equisetum arvense and Equisetum scirpoides dominate the vascular
plant community.

(1c) Wetland
The wetlands in our study sites are located in slightly sloping areas and intermixed or

downslope from the moist moss tundra. This class includes wetland dominated by mosses
(such as Drepanocladus spp. and Scorpidium spp.) and graminoids such as Eriophorum spp.
and Dupontia fisheri.

(1d) Moss-brown-wetland
This class is a specific type of wetland with less graminoids and mostly covered by

wet, brown-colored mosses, giving the patches a potentially different spectral signature
from 1c. This class was only mapped in TOD but also occurs in JAN and SAS, although
less frequent there. These patches can be covered in water during wet years and dry out
during drier years or seasons.

(2a) Carex subspathacea
This class occurs in habitats that otherwise would be classified as wetland but is

characterized by a dense cover of C. subspathacea. It is one of the main arctic salt marsh
plant species and has been documented to replace graminoids in areas of intensive pink-
footed goose grubbing [90]. We only mapped this class in TOD, although it is also present
in SAS and to a smaller extent in JAN.

(2b) Heath-moss
This class is typically found in slight depressions between ridges on the slopes and is

characterized by a thin (approx. 1–5 cm) and drier moss layer often dominated by Sanionia
spp. Vascular plants are usually sparse but include Salix polaris, Saxifraga oppositifolia or
Cerastium spp.

(2c) Heath-graminoid
The heath-graminoid class is similar to the heath-moss class, with the difference that

the moss layer is covered by graminoids, typically Luzula confusa, or in dry and convex
terrain, such as Carex species.

(2d) Dryas
We assigned this class to ridges where open Dryas octopetala vegetation is found.

The substrate in our dryas class is of gravel or thin silty soils on mainly alluvial deposits or
terraces. Dryas octopetala occurs also in tussock tundra in Svalbard, but such Dryas areas
were not common in the study sites.

(3a) Cassiope
We assigned this class if the dominant vegetation was Cassiope tetragona. This class

is typically found downslope from the convex Dryas areas but above moss tundra and
wetland areas where snow cover is stable in the winter.

(3b) Winter-damage-woody
This class is the disturbed counterpart to the dryas and cassiope classes. Periodic warm

periods during winter result in sequential freezing that damages plant tissue, and coupled
with rain, encapsulate plants with an ice coat. In addition, extreme winter warming can
lead to desiccation when plants leave hibernation but cannot access water due to frozen
soils [21]. Freezing temperatures after snow melt can damage plant tissues and decrease
flowering success [20]. If the vegetation within a 15 cm circle was more than 80% damaged
(gray), it was recorded for this class.

(3c) Biological crust
A layer of micro-organisms can cover bare soils, in which case, it is usually called

biotic soil crust [111], but can also grow on damaged plants, in which case, it can be called
biotic film. The biotic crust/film that is composed of a variety of bacteria, lichens and algae
can grow over areas or that have been opened due to disturbances or over plants that
were damaged. In our classification, we combined these two types of cryptogamic cover.
The color of biotic crust can vary from almost white to gray or brown and black.
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(3d) Grubbing
The grubbing class is the disturbed counterpart to the moss tundra and wetland classes.

While grubbing, pink-footed geese often remove large amounts of moss in order to access
the desired plant parts and opening up bare ground [27]. Grubbing can occur at different
intensities. Our grubbing class describes areas where geese have removed enough moss to
result in a continuous surface of dried moss interspersed with holes created by their beaks.
We did not record singular holes (lighter intensity than our grubbing class). If grubbing
has removed all vegetation and erosion processes have begun (higher intensity than our
grubbing class), this would have been recorded as bare ground as it would not be possible
to distinguish these patches from other bare areas that may have formed differently.

(4a) Winter-damage-moss
In one of our study sites, we recorded large patches of black/gray, previously moss-

covered areas, probably disturbed by winter weather events. The most important process
is not known but could include prolonged anaerobic conditions, freeze damage, perhaps
combined with drought, but no apparent signs of fungal infections. This class was only
recorded for JAN. These areas were black in color and different in appearance from the
“winter-damage-woody” class.

(4b) Bare ground
This class encompasses all areas that are not covered with vegetation and have a

soil substrate.
(4c) Gravel
This classes describes gravel substrates, pebbles and up over in size. It also in-

cludes rocks.
(4d) Water
The class water includes lakes, rivers, streams and surface run-offs. The water can

either be clear or (in most cases) enriched with sediments and brown in color.
Snow
A small snow field was only present in JAN.
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76. Migała, K.; Wojtuń, B.; Szymański, W.; Muskała, P. Soil moisture and temperature variation under different types of tundra
vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena 2014, 116, 10–18.
[CrossRef]

77. Cubero-Castan, M.; Schneider-Zapp, K.; Bellomo, M.; Shi, D.; Rehak, M.; Strecha, C. Assessment Of The Radiometric Accuracy In
A Target Less Work Flow Using Pix4D Software. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–4. [CrossRef]

78. Pix4Dmapper. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 1
November 2021).

79. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2013.

80. Zvoleff, A. glcm: Calculate Textures from Grey-Level Co-Occurrence Matrices (GLCMs). R Package Version 1.6.5. Available
online: https://cran.r-project.org/web/packages/glcm/glcm.pdf (accessed on 1 November 2021).

81. Maxwell, A.E.; Warner, T.A.; Strager, M.P. Predicting Palustrine Wetland Probability Using Random Forest Machine Learning and
Digital Elevation Data-Derived Terrain Variables. Photogramm. Eng. Remote Sens. 2016, 82, 437–447. [CrossRef]

82. Evans, J.S. spatialEco: Spatial Analysis and Modelling Utilities. R Package Version 1.3-2. Available online: https://cran.r-project.
org/web/packages/spatialEco/spatialEco.pdf (accessed on 1 November 2021).

83. Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning: Methods and Applications; Zhang, C., Ma, Y.,
Eds.; Springer: Boston, MA, USA, 2012; pp. 157–175. [CrossRef]

84. Karami, M.; Westergaard-Nielsen, A.; Normand, S.; Treier, U.A.; Elberling, B.; Hansen, B.U. A phenology-based approach to the
classification of Arctic tundra ecosystems in Greenland. ISPRS J. Photogramm. Remote Sens. 2018, 146, 518–529. [CrossRef]

85. Cortez, P. rminer: Data Mining Classification and Regression Methods. R Package Version 1.4.6. Available online: https:
//cran.r-project.org/web/packages/spatialEco/spatialEco.pdf (accessed on 1 November 2021).

86. Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R Package Version 3.3-13. Available online: https://cran.r-project.
org/web/packages/raster/raster.pdf (accessed on 1 November 2021).

87. Mouselimis, L. ClusterR: Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans, K-Medoids and Affinity Propagation
Clustering. R Package Version 1.2.2. Available online: https://cran.r-project.org/web/packages/ClusterR/ClusterR.pdf
(accessed on 1 November 2021).

88. Raynolds, M.K.; Comiso, J.C.; Walker, D.A.; Verbyla, D. Relationship between satellite-derived land surface temperatures, arctic
vegetation types, and NDVI. Remote Sens. Environ. 2008, 112, 1884–1894.

89. Fraser, R.H.; Olthof, I.; Lantz, T.C.; Schmitt, C. UAV photogrammetry for mapping vegetation in the low-Arctic. Arct. Sci. 2016,
2, 79–102. [CrossRef]

90. Van der Wal, R.; Anderson, H.; Stien, A.; Loe, L.E.; Speed, J. Disturbance, Recovery and Tundra Vegetation Change Final Report
project 17/92—to Svalbard Environmental Protection Fund. 2020. Available online: https://aura.abdn.ac.uk/bitstream/handle/
2164/16573/SMF_Distrubance_recovery_veg_change.pdf;jsessionid=65802B34A907DB989FF65BD2D7FDB248?sequence=1 (ac-
cessed on 13 September 2021).

91. Hapfelmeier, A.; Ulm, K. A new variable selection approach using Random Forests. Comput. Stat. Data Anal. 2013, 60, 50–69.
[CrossRef]

92. Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV surveys for landslide mapping and
characterization. Landslides 2018, 15, 1045–1052. [CrossRef]

93. Özcan, O.; Özcan, O. Multi-temporal UAV based repeat monitoring of rivers sensitive to flood. J. Maps 2021, 17, 163–170.
[CrossRef]

http://dx.doi.org/10.1111/ecog.02881
http://dx.doi.org/10.1109/TPAMI.2016.2618118
http://dx.doi.org/10.1016/j.artint.2018.11.004
http://dx.doi.org/10.1111/j.1654-1103.2005.tb02365.x
http://dx.doi.org/10.1017/S0032247411000647
http://dx.doi.org/10.1127/0340-269X/2005/0035-0951
http://dx.doi.org/10.2307/3236194
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00946
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00946
http://dx.doi.org/10.1016/j.catena.2013.12.007
http://dx.doi.org/10.1109/WHISPERS.2018.8746910
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://cran.r-project.org/web/packages/glcm/glcm.pdf
http://dx.doi.org/10.14358/PERS.82.6.437
https://cran.r-project.org/web/packages/spatialEco/spatialEco.pdf
https://cran.r-project.org/web/packages/spatialEco/spatialEco.pdf
http://dx.doi.org/10.1007/978-1-4419-9326-7_5
http://dx.doi.org/10.1016/j.isprsjprs.2018.11.005
https://cran.r-project.org/web/packages/spatialEco/spatialEco.pdf
https://cran.r-project.org/web/packages/spatialEco/spatialEco.pdf
https://cran.r-project.org/web/packages/raster/raster.pdf
https://cran.r-project.org/web/packages/raster/raster.pdf
https://cran.r-project.org/web/packages/ClusterR/ClusterR.pdf
http://dx.doi.org/10.1139/as-2016-0008
https://aura.abdn.ac.uk/bitstream/handle/2164/16573/SMF_Distrubance_recovery_veg_change.pdf;jsessionid=65802B34A907DB989FF65BD2D7FDB248?sequence=1
https://aura.abdn.ac.uk/bitstream/handle/2164/16573/SMF_Distrubance_recovery_veg_change.pdf;jsessionid=65802B34A907DB989FF65BD2D7FDB248?sequence=1
http://dx.doi.org/10.1016/j.csda.2012.09.020
http://dx.doi.org/10.1007/s10346-018-0978-0
http://dx.doi.org/10.1080/17445647.2020.1820387


Remote Sens. 2021, 13, 4466 25 of 25

94. Chen, J.; Yi, S.; Qin, Y.; Wang, X. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the
Qinghai–Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [CrossRef]

95. Miranda, V.; Pina, P.; Heleno, S.; Vieira, G.; Mora, C.; Schaefer, C.E. Monitoring recent changes of vegetation in Fildes Peninsula
(King George Island, Antarctica) through satellite imagery guided by UAV surveys. Sci. Total Environ. 2020, 704, 135295.
[CrossRef] [PubMed]

96. Morgan, B.E.; Chipman, J.W.; Bolger, D.T.; Dietrich, J.T. Spatiotemporal Analysis of Vegetation Cover Change in a Large
Ephemeral River: Multi-Sensor Fusion of Unmanned Aerial Vehicle (UAV) and Landsat Imagery. Remote Sens. 2021, 13, 51.
[CrossRef]

97. Cullum, C.; Rogers, K.; Brierley, G.; Witkowski, E. Ecological classification and mapping for landscape management and science:
Foundations for the description of patterns and processes. Prog. Phys. Geogr. 2015, 40, 38–65. [CrossRef]

98. Lindenmayer, D.B.; Likens, G.E. Adaptive monitoring: A new paradigm for long-term research and monitoring. Trends Ecol. Evol.
2009, 24, 482–486. [CrossRef] [PubMed]

99. Juel, A.; Groom, G.B.; Svenning, J.C.; Ejrnæs, R. Spatial application of Random Forest models for fine-scale coastal vegetation
classification using object based analysis of aerial orthophoto and DEM data. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 106–114.
[CrossRef]

100. Kalantar, B.; Mansor, S.B.; Sameen, M.I.; Pradhan, B.; Shafri, H.Z.M. Drone-based land-cover mapping using a fuzzy unordered
rule induction algorithm integrated into object-based image analysis. Int. J. Remote Sens. 2017, 38, 2535–2556. [CrossRef]

101. Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree
Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [CrossRef]

102. Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. Joint Deep Learning for land cover and land use
classification. Remote Sens. Environ. 2019, 221, 173–187. [CrossRef]

103. Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-cover classification with high-resolution remote sensing
images using transferable deep models. Remote Sens. Environ. 2020, 237, 111322. [CrossRef]

104. Mörsdorf, M.A.; Ravolainen, V.T.; Yoccoz, N.G.; Thórhallsdóttir, T.E.; Jónsdóttir, I.S. Decades of Recovery From Sheep Grazing
Reveal No Effects on Plant Diversity Patterns Within Icelandic Tundra Landscapes. Front. Ecol. Evol. 2021, 8, 502. [CrossRef]

105. Rønning, O.I. Svalbards Flora; Norsk Polarinstitutt: Tromsø, Norway, 1996.
106. Pedersen, Å.Ø.; Overrein, Ø.; Unander, S.; Fuglei, E. Svalbard Rock Ptarmigan (Lagopus Mutus Hyperboreus): A Status Report;

Norwegian Polar Institute (Norsk Polarinstitutt): Tromsø, Norway, 2005.
107. Pedersen, Å.; Paulsen, I.; Albon, S.; Arntsen, G.L.; Hansen, B.; Langvatn, R.; Loe, L.E.; Le Moullec, M.; Overrein, Ø.; Peeters, B.;

et al. Svalbard Reindeer (Rangifer Tarandus Platyrhynchus): A Status Report; Rapportserie—Norsk Polarinstitutt, Norwegian Polar
Institute: Tromsø, Norway, 2019.

108. Vanderpuye, A.W.; Elvebakk, A.; Nilsen, L. Plant communities along environmental gradients of high-arctic mires in Sassendalen,
Svalbard. J. Veg. Sci. 2002, 13, 875–884. [CrossRef]

109. Eurola, S.; Hakala, A. The bird cliff vegetation of Svalbard. Aquil. Ser. Bot 1977, 15, 1–18.
110. Jónsdóttir, I.S. Terrestrial ecosystems on Svalbard: Heterogeneity, complexity and fragility from an Arctic island perspective. In

Biology and Environment: Proceedings of the Royal Irish Academy (JSTOR); Royal Irish Academy: Dublin, Ireland, 2005; pp. 155–165.
111. Agnelli, A.; Corti, G.; Massaccesi, L.; Ventura, S.; D’Acqui, L.P. Impact of biological crusts on soil formation in polar ecosystems.

Geoderma 2021, 401, 115340. [CrossRef]

http://dx.doi.org/10.1080/01431161.2016.1165884
http://dx.doi.org/10.1016/j.scitotenv.2019.135295
http://www.ncbi.nlm.nih.gov/pubmed/31836216
http://dx.doi.org/10.3390/rs13010051
http://dx.doi.org/10.1177/0309133315611573
http://dx.doi.org/10.1016/j.tree.2009.03.005
http://www.ncbi.nlm.nih.gov/pubmed/19409648
http://dx.doi.org/10.1016/j.jag.2015.05.008
http://dx.doi.org/10.1080/01431161.2016.1277043
http://dx.doi.org/10.3390/rs10091419
http://dx.doi.org/10.1016/j.rse.2018.11.014
http://dx.doi.org/10.1016/j.rse.2019.111322
http://dx.doi.org/10.3389/fevo.2020.602538
http://dx.doi.org/10.1111/j.1654-1103.2002.tb02117.x
http://dx.doi.org/10.1016/j.geoderma.2021.115340


Supplementary Materials - Isabell Eischeid - Disturbance Mapping in Arctic
Tundra Improved by a Planning Workflow for Drone Studies: Advancing Tools
for Future Ecosystem Monitoring

1



1 Variable importance

Table 1: Variable importance values (0-1) for the optical variables in the op-
timized classification scheme. The numbers in the variable names indicate
neighbourhood sizes: 03 (0.3m), 09 (0.9m), 1-5 (1.5m), 2 (2m)

Variable JAN SAS TOD
green 0.029 0.048 0.018
green_glcm_03_mean 0.023 0.030 0.025
green_glcm_03_variance 0.025 0.037 0.025
green_glcm_09_mean 0.033 0.031 0.037
green_glcm_09_variance 0.027 0.028 0.026
green_glcm_1-5_mean 0.036 0.025 0.044
green_glcm_1-5_variance 0.038 0.026 0.033
green_glcm_2_contrast 0.007 0.006 0.036
green_glcm_2_dissimilarity 0.009 0.006 0.028
green_glcm_2_entropy 0.014 0.007 0.024
green_glcm_2_homogeneity 0.008 0.009 0.031
green_glcm_2_mean 0.041 0.024 0.030
green_glcm_2_second_moment 0.011 0.007 0.019
green_glcm_2_variance 0.037 0.023 0.029
ndvi 0.145 0.164 0.042
ndvi_glcm_03_mean 0.084 0.101 0.074
ndvi_glcm_03_variance 0.123 0.126 0.043
ndvi_glcm_09_mean 0.044 0.056 0.093
ndvi_glcm_09_variance 0.043 0.063 0.077
ndvi_glcm_1-5_mean 0.048 0.042 0.083
ndvi_glcm_1-5_mean 0.040 0.043 0.080
ndvi_glcm_2_contrast 0.054 0.038 0.019
ndvi_glcm_2_dissimilarity 0.046 0.047 0.018
ndvi_glcm_2_entropy 0.030 0.021 0.014
ndvi_glcm_2_homogeneity 0.032 0.034 0.020
ndvi_glcm_2_mean 0.078 0.045 0.071
ndvi_glcm_2_second_moment 0.026 0.013 0.012
ndvi_glcm_2_variance 0.069 0.049 0.064
near_infrared 0.074 0.068 0.011
red 0.034 0.084 0.040
red_edge 0.058 0.054 0.008
red_edge_glcm_03_mean 0.050 0.033 0.012
red_edge_glcm_03_variance 0.061 0.040 0.010
red_edge_glcm_09_mean 0.024 0.017 0.023
red_edge_glcm_09_variance 0.025 0.018 0.021
red_edge_glcm_1-5_mean 0.018 0.018 0.038
red_edge_glcm_1-5_variance 0.020 0.017 0.032
red_edge_glcm_2_contrast 0.010 0.012 0.017
red_edge_glcm_2_dissimilarity 0.009 0.010 0.015
red_edge_glcm_2_entropy 0.012 0.008 0.014
red_edge_glcm_2_homogeneity 0.008 0.009 0.016
red_edge_glcm_2_mean 0.020 0.015 0.039
red_edge_glcm_2_second_moment 0.011 0.007 0.015
red_edge_glcm_2_variance 0.019 0.019 0.031

2



Table 2: Variable importance values (0-1) for the terrain variables in the opti-
mized classification scheme. The first numbers in the variable names indicate
the pixels size: 02 (0.2m) and 1 (1m). The second numbers in the variable names
indicate the neighbourhood sizes in meters.

Variable JAN SAS TOD
dissection_02_1 0.004 0.004 0.013
dissection_02_1-8 0.010 0.005 0.013
dissection_02_2-2 0.013 0.005 0.016
dissection_1_11 0.017 0.021 0.022
dissection_1_121 0.065 0.016 0.087
dissection_1_131 0.093 0.020 0.100
dissection_1_21 0.022 0.040 0.068
rugged_02_1 0.005 0.011 0.010
rugged_02_1-4 0.006 0.016 0.014
rugged_02_1-8 0.006 0.014 0.021
rugged_02_2-2 0.007 0.013 0.022
rugged_1_101 0.052 0.027 0.035
rugged_1_11 0.014 0.051 0.048
rugged_1_131 0.056 0.022 0.027
rugged_1_21 0.028 0.035 0.054
rugged_1_31 0.031 0.041 0.061
rugged_1_41 0.021 0.046 0.051
rugged_1_51 0.021 0.058 0.035
slope_1 0.016 0.060 0.034
slope_10 0.015 0.052 0.047
slope_5 0.013 0.074 0.057
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Figure 1: Variables importance, ten highest values for each site using the opti-
mized classification scheme.
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2 Ground-cover classification

2.1 Confusion matrices

a) Initial classification scheme 

 

 

b) Simplified classification scheme 

 

 

c) Optimized classification scheme 

 

bgr cru cas dry gra hea wdm meq hmo sno wat gru wdw mgr wet observation accuracy (%)

bgr 112 3 0 0 0 0 0 0 0 0 14 11 0 0 0 80.0

cru 0 283 5 0 121 0 0 0 3 0 7 21 60 0 0 56.6

cas 0 12 1469 0 0 240 0 0 49 0 17 29 164 0 0 74.2

dry 0 0 0 971 3 39 0 0 2 0 0 0 0 0 0 95.7

gra 0 51 0 2 1022 0 0 0 0 0 0 0 0 0 0 95.1

hea 0 6 4 44 1 502 0 0 0 0 0 0 0 0 0 90.1

wdm 0 6 0 0 3 0 429 0 0 0 0 29 0 0 0 91.9

meq 0 0 0 0 0 0 0 377 0 0 0 0 0 32 15 88.9

hmo 0 0 14 6 0 31 0 0 170 0 0 16 30 14 0 60.5

sno 0 0 0 0 0 0 0 0 0 113 0 0 0 0 0 100

wat 1 0 12 0 18 0 5 0 0 0 1078 35 0 0 9 93.1

gru 0 29 0 0 0 3 11 0 0 0 0 1132 0 44 32 90.5

wdw 0 465 112 0 0 0 0 0 82 0 3 3 1089 0 0 62.1

mgr 0 0 0 0 0 1 0 43 0 0 0 18 0 622 60 83.6

wet 0 0 0 0 0 0 0 0 0 0 0 58 0 21 1094 93.3

prediction accuracy (%) 99.1 33.1 90.9 94.9 87.5 61.5 96.4 89.8 55.6 100 96.3 83.7 81.1 84.9 90.4

predicted

o
b

se
rv

ed

cru sno wat veg bgg gru wdc observation accuracy (%)

cru 272 0 2 11 112 33 59 55.6

sno 0 132 0 0 0 0 0 100

wat 7 0 933 86 35 27 71 80.5

veg 1 0 2 5984 18 21 115 97.4

bgg 65 0 5 4 1133 11 0 93

gru 16 0 2 94 2 1138 0 90.9

wdc 445 0 8 230 0 8 941 57.7

prediction accuracy (%) 33.7 100 98 93.4 87.2 91.9 79.3

predicted

o
b

se
rv

ed

bgr cas dry gra meq sno wat gru wdc hea mgr wet observation accuracy (%)

bgr 131 0 0 0 0 0 5 0 4 0 0 0 93.6

cas 0 1443 0 0 0 0 24 39 216 279 0 0 72.1

dry 0 0 1015 8 0 0 0 0 0 32 0 0 96.2

gra 0 0 4 1024 0 0 0 0 49 1 0 0 95.0

meq 0 0 0 0 383 0 0 0 0 0 22 17 90.8

sno 0 0 0 0 0 116 0 0 0 0 0 0 100

wat 7 4 0 14 0 0 913 6 130 0 0 8 84.4

gru 0 0 0 0 1 0 4 1144 28 0 45 32 91.2

wdc 0 108 0 118 0 0 16 16 1936 29 0 0 87.1

hea 0 16 62 0 0 0 0 7 50 698 6 0 83.2

mgr 0 0 0 0 50 0 0 16 2 2 623 50 83.8

wet 3 0 0 0 1 0 0 50 0 0 22 1096 93.5

prediction accuracy (%) 92.9 91.9 93.9 88.0 88.0 100 94.9 89.5 80.2 67.1 86.8 91.1

o
b

se
rv

ed

predicted

Figure 2: Confusion matrices for JAN with all variables (optical and terrain)
using the a) initial, b) simplified and c) optimized classification scheme
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a) Initial classification scheme 

 

 

b) Simplified classification scheme 

 

 

c) Optimized classification scheme 

 

bgr cru cas dry gra hea meq hmo wat gru wdw mgr wet observation accuracy (%)

bgr 149 25 0 0 18 0 0 0 1 9 7 0 0 71.3

cru 2 178 6 1 23 8 0 2 0 25 142 0 0 46.0

cas 0 1 587 4 0 0 7 21 0 57 6 4 0 85.4

dry 0 1 4 258 3 6 14 1 0 8 7 17 0 80.9

gra 18 36 0 0 380 2 0 0 0 0 12 0 0 84.8

hea 0 3 9 9 0 222 0 25 0 0 16 0 0 78.2

meq 0 0 1 3 0 0 152 2 0 0 0 7 11 86.4

hmo 0 0 28 0 0 17 2 96 0 42 10 14 0 45.9

wat 8 0 0 0 5 0 0 0 228 11 0 0 0 90.5

gru 0 21 1 4 0 2 0 0 0 820 2 34 15 91.2

wdw 2 120 24 9 5 26 0 0 0 0 895 0 0 82.8

mgr 0 1 0 7 0 0 15 0 0 40 0 264 19 76.3

wet 0 0 0 0 0 0 1 0 0 14 0 18 456 93.3

prediction accuracy (%) 83.2 46.1 88.9 87.5 87.6 78.4 79.6 65.3 99.6 79.9 81.6 73.7 91.0

o
b

se
rv

ed
predicted

bgg cru wat gru wdw veg observation accuracy (%)

bgg 546 51 3 6 14 1 87.9

cru 60 149 0 17 122 39 38.5

wat 13 0 240 8 0 1 91.6

gru 2 22 0 775 0 103 85.9

wdw 16 128 0 0 980 58 82.9

veg 0 0 0 38 28 2474 97.4

prediction accuracy (%) 85.7 42.6 98.8 91.8 85.7 92.5

predicted

o
b

se
rv

ed

bgr cas dry gra meq wat gru wdc hea mgr wet observation accuracy (%)

bgr 143 0 0 17 0 2 5 41 0 0 0 68.8

cas 0 614 10 0 1 0 30 9 5 3 0 91.4

dry 0 4 235 2 11 0 13 14 7 8 4 78.9

gra 17 0 0 370 0 0 0 57 1 0 0 83.1

meq 0 2 5 0 151 0 0 0 1 8 8 86.3

wat 4 0 0 8 0 219 15 0 0 0 0 89.0

gru 0 1 9 0 0 0 824 28 6 19 11 91.8

wdc 9 20 8 37 0 0 21 1340 25 0 0 91.8

hea 0 22 8 0 4 0 46 52 339 20 0 69.0

mgr 0 0 7 0 12 0 52 8 0 253 15 72.9

wet 0 0 0 0 4 0 12 0 0 16 455 93.4

prediction accuracy (%) 82.7 92.6 83.3 85.3 82.5 99.1 80.9 86.5 88.3 77.4 92.3

o
b

se
rv

ed

predicted

Figure 3: Confusion matrices for SAS with all variables (optical and terrain)
using the a) initial, b) simplified and c) optimized classification scheme
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a) Initial classification scheme 

 

 

b) Simplified classification scheme 

 

 

c) Optimized classification scheme 

 

bgr cru cas csu dry gra hea mbr meq hmo gru wdw mgr wet wat observation accuracy (%)

bgr 709 27 6 0 0 11 0 0 0 6 25 14 0 0 8 88.0

cru 0 1138 2 0 1 46 59 0 0 5 22 64 1 42 0 82.5

cas 0 17 974 0 26 1 0 0 0 0 23 222 0 33 17 74.2

csu 0 0 0 534 0 0 0 0 0 0 0 0 0 0 0 100

dry 0 8 4 0 973 22 0 0 0 0 21 109 6 70 0 80.2

gra 7 65 0 0 16 411 2 0 0 0 44 13 17 0 0 71.5

hea 0 4 0 0 0 0 1406 0 0 59 0 0 0 23 0 94.2

mbr 0 0 25 0 0 0 0 242 0 0 6 0 0 72 0 70.1

meq 0 0 16 0 3 0 0 0 1079 0 30 8 90 41 0 85.2

hmo 0 0 8 0 0 0 8 0 0 832 14 15 0 45 0 90.2

gru 12 31 21 25 32 0 7 0 71 0 2071 47 85 242 0 78.3

wdw 0 100 204 0 44 0 0 0 0 0 24 1153 0 5 0 75.4

mgr 0 0 34 0 21 19 0 0 40 1 132 12 1662 149 0 80.3

wet 0 12 0 0 0 0 0 0 29 14 240 19 25 2308 0 87.2

wat 1 0 1 0 0 0 0 3 0 0 0 22 0 0 2593 99.0

prediction accuracy (%) 97.3 81.2 75.2 95.5 87.2 80.6 94.9 98.8 88.5 90.7 78.1 67.9 88.1 76.2 99.0

predicted
o

b
se

rv
ed

cru veg bgg wat gru wdw observation accuracy (%)

cru 709 27 6 0 0 11 74.3

veg 0 1138 2 0 1 46 96.1

bgg 0 17 974 0 26 1 80.6

wat 0 0 0 534 0 0 97.5

gru 0 8 4 0 973 22 66.8

wdw 7 65 0 0 16 411 51.9

prediction accuracy (%) 78.4 87.3 78.0 99.7 86.2 73.0

predicted

o
b

se
rv

ed

bgr cas csu dry gra mbr meq gru wdc mgr wet hea wat observation accuracy (%)

bgr 695 0 0 0 19 0 0 44 32 0 3 11 3 86.1

cas 0 1020 0 29 0 0 0 26 198 0 19 3 10 78.2

csu 0 0 534 0 0 0 0 0 0 0 0 0 0 100

dry 0 11 0 976 12 0 4 16 184 2 49 0 0 77.8

gra 15 0 0 25 409 0 0 11 112 3 0 0 0 71.1

mbr 0 9 0 0 0 284 0 1 0 0 50 1 0 82.3

meq 0 14 0 11 0 0 1071 19 10 105 37 0 0 84.5

gru 18 28 30 33 8 0 85 2073 102 71 183 15 0 78.3

wdc 19 348 0 44 43 0 2 44 2420 1 40 49 0 80.4

mgr 0 19 0 11 22 0 17 104 69 1685 138 6 0 81.4

wet 0 0 0 0 0 1 49 286 64 31 2198 18 0 83.0

hea 0 0 0 11 0 1 0 13 2 0 80 2307 0 95.6

wat 4 2 0 0 0 0 0 0 17 0 0 0 2708 99.2

prediction accuracy (%) 92.5 70.3 94.7 85.6 79.7 99.3 87.2 78.6 75.4 88.8 78.6 95.7 99.5

o
b

se
rv

ed

predicted

Figure 4: Confusion matrices for TOD with all variables (optical and terrain)
using the a) initial, b) simplified and c) optimized classification scheme
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###DATA EXTRACTION 
 
# Load libraries (not sure if all are needed) 
library(raster) 
library(rgdal) 
library(glcm) 
library(rgeos) 
library(snow) 
library(rminer) 
library(splitstackshape) 
library(data.table) 
 
 
#Stack all the raster files 
sas_image_map<-stack(sas_4band, sas_4band_glcm, sas_slope, sas_dis_vrm1, 
sas_dis_vrm02) 
 
 
###Extract data 
 
#set directory name 
 
shp.dir <- "shapefile" 
 
#Load ground truthing data point shapefile 
gt2019sas  <- readOGR(dsn = shp.dir,layer="gt_sas_2019") 
 
#Create buffer to extract data around ground truthing points 
gt2019sas_15cm<-gBuffer(gt2019sas,width=0.075, byid = TRUE) 
gtpts_sas<-gt2019sas_15cm ## Change name for more general code, so that the buffer 
size can be changed 
 
#Load ground truthing data 
sas_gt <- read.delim("gt_sassendalen_summer2019_2020_02_06.txt") 
#add unique ID 
sas_gt$ID<-1:nrow(sas_gt) 
 
#Extract values at buffer locations (cluster number needs to be adjusted) 
beginCluster(50) 
gtpts_value_sas=extract(x=sas_image_stack_all, y=gtpts_sas, df=TRUE) 
endCluster() 
extracted_data_sas<-merge(gtpts_value_sas, sas_gt, by="ID", sort = TRUE) 
 

 

Figure 5: R script: data extraction from raster stack with buffers around point
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### RANDOM FOREST 
 
#make a simple dataset to reduce to one entry per ground truth point (ID column and 
class column) 
sas_sub_data<-sas_data[,c(1,78)] 
sas_sub_data$class<-as.factor(sas_sub_data$class) 
sas_sub_data<-unique(sas_sub_data) 
 
#Split dataset into training set (in this case 70%), here you need  
#to adjust for splitting you want to do, depending on the class  
#number you need to change the matrix size. And adjust the columns  
#used for the random forest, in this example I only used the optical  
#layers and not terrain for example. 
sas_output<-list()  
sas_all.scores<-c() 
sas_c_matrix = matrix(0, 11, 11) 
sas_all_cm<-c() 
 
for(run.int in 1:30 ){ 
  run<-as.character(run.int) 
  out_sas <- stratified(sas_sub_data, c("class"), 0.7) 
   
  #create training dataset from the "out dataframe" 
  sas_training.data<-sas_data[sas_data$ID %in% out_sas$ID,] 
   
  #create validation dataset from the remaining data 
  sas_validation.data<-sas_data[!sas_data$ID %in% out_sas$ID,] 
  sas_validation.data<-sas_validation.data[,c(5:48,78)] 
   
  #remove rows not to be included 
  sas_training.data<-sas_training.data[,c(5:48,78)] 
  sas_training.data$class<-as.factor(sas_training.data$class) 
   
  #Run random forest model 
  M_sas=rminer::fit(class~.,sas_training.data,model="randomForest", task = "class") 
  sas_output[[run]]<-list(model=M_sas) 
  #create dataframe whilst extracting the descriptor  
  sas_table_res <- as.data.frame(M_sas@object$importance) 
   
  #change order of values in column from highest to lowest 
  sas_table_res_S <- sas_table_res[order(sas_table_res$MeanDecreaseAccuracy),]  
     
  sas_output[[run]][["importance"]]<-sas_table_res_S 
   
  # use the model to predict the classes in the validation dataset 
  sas_validation.data$pred.class=rminer::predict(M_sas,sas_validation.data) 
   
  sas_validation.data$class<-as.factor(sas_validation.data$class) 
   
  # compare predicted versus observed data 
  sas_c.m<-rminer::mmetric(sas_validation.data$class, 
sas_validation.data$pred.class, metric=c("ALL")) 
  sas_c.m1<-rminer::mmetric(sas_validation.data$class, 
sas_validation.data$pred.class, metric=c("CONF")) 
   
  # add all metrics to outputs and make table 
  sas_output[[run]][["accuracy"]]<-sas_c.m 
  sas_all.scores<-rbind(sas_all.scores, sas_c.m) 
   
  # make a extra output for confusion matrix and total summed confusion matrix 
  sas_output[[run]][["cfm"]]<-sas_c.m1$conf 
  sas_c_matrix<-sas_c_matrix + sas_c.m1$conf 
   
  # make a long table with all confusion matrices 
  sas_all_cm<-rbind(sas_all_cm, sas_c.m1$conf) 
} 
dev.off() 
 

 
 Figure 6: R script: Random forest as loop (30 repeats) with a new dataset split

for each loop
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### RF MODEL WITH ALL DATA (not splitting and therefore no loop necessary 
 
#change the class values from numbers to being factors 
 
sas_rf_data<-sas_data[,c(5:69,78)] 
 
M_sas=rminer::fit(class~.,sas_rf_data,model="randomForest", task = "class") 
 
savemodel(M_sas,"model_name") # saves to file 
 
 
### Creating a map from the model 
 
#load model 
M_sas_reload<-loadmodel("model_name")  
 
#load the raster stack you want to use (in this case sas image map), be careful the 
raster stack and model use the same column names 
 
closeAllConnections()  
beginCluster() 
sas_preds_rf <- clusterR(sas_image_map, raster::predict, args = list(model = 
M_sas_reload)) 
endCluster() 
 
#save the output 
writeRaster(sas_preds_rf, "sas_result_optimized.tif", overwrite=TRUE) 
 

 

 

Figure 7: R script: basic random forest without dataset split and mapping model
predictions
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###DATA EXTRACTION 
 
# Load libraries (not sure if all are needed) 
library(raster) 
library(rgdal) 
library(glcm) 
library(rgeos) 
library(snow) 
library(rminer) 
library(splitstackshape) 
library(data.table) 
 
 
#Stack all the raster files 
sas_image_map<-stack(sas_4band, sas_4band_glcm, sas_slope, sas_dis_vrm1, 
sas_dis_vrm02) 
 
 
###Extract data 
 
#set directory name 
 
shp.dir <- "shapefile" 
 
#Load ground truthing data point shapefile 
gt2019sas  <- readOGR(dsn = shp.dir,layer="gt_sas_2019") 
 
#Create buffer to extract data around ground truthing points 
gt2019sas_15cm<-gBuffer(gt2019sas,width=0.075, byid = TRUE) 
gtpts_sas<-gt2019sas_15cm ## Change name for more general code, so that the buffer 
size can be changed 
 
#Load ground truthing data 
sas_gt <- read.delim("gt_sassendalen_summer2019_2020_02_06.txt") 
#add unique ID 
sas_gt$ID<-1:nrow(sas_gt) 
 
#Extract values at buffer locations (cluster number needs to be adjusted) 
beginCluster(50) 
gtpts_value_sas=extract(x=sas_image_stack_all, y=gtpts_sas, df=TRUE) 
endCluster() 
extracted_data_sas<-merge(gtpts_value_sas, sas_gt, by="ID", sort = TRUE) 
 

 



### RANDOM FOREST 
 
#make a simple dataset to reduce to one entry per ground truth point (ID column and 
class column) 
sas_sub_data<-sas_data[,c(1,78)] 
sas_sub_data$class<-as.factor(sas_sub_data$class) 
sas_sub_data<-unique(sas_sub_data) 
 
#Split dataset into training set (in this case 70%), here you need  
#to adjust for splitting you want to do, depending on the class  
#number you need to change the matrix size. And adjust the columns  
#used for the random forest, in this example I only used the optical  
#layers and not terrain for example. 
sas_output<-list()  
sas_all.scores<-c() 
sas_c_matrix = matrix(0, 11, 11) 
sas_all_cm<-c() 
 
for(run.int in 1:30 ){ 
  run<-as.character(run.int) 
  out_sas <- stratified(sas_sub_data, c("class"), 0.7) 
   
  #create training dataset from the "out dataframe" 
  sas_training.data<-sas_data[sas_data$ID %in% out_sas$ID,] 
   
  #create validation dataset from the remaining data 
  sas_validation.data<-sas_data[!sas_data$ID %in% out_sas$ID,] 
  sas_validation.data<-sas_validation.data[,c(5:48,78)] 
   
  #remove rows not to be included 
  sas_training.data<-sas_training.data[,c(5:48,78)] 
  sas_training.data$class<-as.factor(sas_training.data$class) 
   
  #Run random forest model 
  M_sas=rminer::fit(class~.,sas_training.data,model="randomForest", task = "class") 
  sas_output[[run]]<-list(model=M_sas) 
  #create dataframe whilst extracting the descriptor  
  sas_table_res <- as.data.frame(M_sas@object$importance) 
   
  #change order of values in column from highest to lowest 
  sas_table_res_S <- sas_table_res[order(sas_table_res$MeanDecreaseAccuracy),]  
     
  sas_output[[run]][["importance"]]<-sas_table_res_S 
   
  # use the model to predict the classes in the validation dataset 
  sas_validation.data$pred.class=rminer::predict(M_sas,sas_validation.data) 
   
  sas_validation.data$class<-as.factor(sas_validation.data$class) 
   
  # compare predicted versus observed data 
  sas_c.m<-rminer::mmetric(sas_validation.data$class, 
sas_validation.data$pred.class, metric=c("ALL")) 
  sas_c.m1<-rminer::mmetric(sas_validation.data$class, 
sas_validation.data$pred.class, metric=c("CONF")) 
   
  # add all metrics to outputs and make table 
  sas_output[[run]][["accuracy"]]<-sas_c.m 
  sas_all.scores<-rbind(sas_all.scores, sas_c.m) 
   
  # make a extra output for confusion matrix and total summed confusion matrix 
  sas_output[[run]][["cfm"]]<-sas_c.m1$conf 
  sas_c_matrix<-sas_c_matrix + sas_c.m1$conf 
   
  # make a long table with all confusion matrices 
  sas_all_cm<-rbind(sas_all_cm, sas_c.m1$conf) 
} 
dev.off() 
 

 
 



### RF MODEL WITH ALL DATA (not splitting and therefore no loop necessary 
 
#change the class values from numbers to being factors 
 
sas_rf_data<-sas_data[,c(5:69,78)] 
 
M_sas=rminer::fit(class~.,sas_rf_data,model="randomForest", task = "class") 
 
savemodel(M_sas,"model_name") # saves to file 
 
 
### Creating a map from the model 
 
#load model 
M_sas_reload<-loadmodel("model_name")  
 
#load the raster stack you want to use (in this case sas image map), be careful the 
raster stack and model use the same column names 
 
closeAllConnections()  
beginCluster() 
sas_preds_rf <- clusterR(sas_image_map, raster::predict, args = list(model = 
M_sas_reload)) 
endCluster() 
 
#save the output 
writeRaster(sas_preds_rf, "sas_result_optimized.tif", overwrite=TRUE) 
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Abstract 23 

Arctic tundra vegetation is affected both by rapid climatic change and fluctuations in 24 

herbivore population sizes. Geese, such as pink-footed goose (Anser brachyrhynchus), are 25 

major herbivores in high Arctic Svalbard. After arrival in spring, they feed intensively, using 26 

a specialized technique called grubbing, on belowground rhizomes, causing soil erosion and 27 

disturbances to vegetation. Moss tundra is preferred over dwarf-shrub vegetation, but to 28 

predict future Arctic vegetation development, it is important to also understand how snowmelt 29 

timing drives habitat selection, use and vegetation disturbance likelihoods. Here we analyzed 30 

habitat selection and habitat use of geese using GPS telemetry data (n=12 geese) and field 31 

observations by applying predictors on vegetation (moss tundra and dwarf shrub heath) and 32 

snow melt progression derived from drone and satellite images at two spatial scales (fine 33 

scale: 5 cm, 0.3 km2; valley scale: 10 m, 30 km2) during a three-week period in 2019. We 34 

confirmed that habitat selection, use and disturbance was higher for moss tundra than dwarf-35 

shrub heath vegetation. Habitat selection did not differ between areas that were free from 36 

snow early or late in the season, therefore habitat use was highest for the areas that were free 37 

of snow earliest. Vegetation disturbances were also highest for early snow-free areas so that 38 

habitat use and vegetation disturbance were positively correlated for both vegetation types. 39 

The disturbance patterns we observed at the fine and valley-scale level corresponded well 40 

with one another and led to an estimate of 23% moss tundra and 10% of dwarf-shrub heath 41 

vegetation in the valley being disturbed by pink-footed geese. This study shows that both 42 

vegetation class and snowmelt date are important predictors for habitat use and disturbance. 43 

With the uncertainty around how snowmelt timing will develop, this provides us with better 44 

tools to study and predict goose behavior and habitat disturbances in the future. Pending local 45 

calibration with field assessments and drones, using satellite images and telemetry data can 46 

provide a tool to detect disturbance hotspots caused by avian Arctic herbivores. 47 

 48 

Keywords: Anser brachyrhynchus, drone, grubbing, moss tundra, Pink-footed goose, satellite, 49 

Sentinel 2, snowmelt, UAV  50 
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1. Introduction 51 

The Arctic is one of the regions on Earth that is most rapidly changing, with warmer 52 

temperatures, greater levels of precipitation, and a general increase in variability and 53 

unpredictability of weather (Bintanja 2018, IPPC 2019). Climate change affects herbivores 54 

and their habitats, through direct and indirect effects, such as changes in plant biomass or 55 

predator abundances (Hastings et al. 2007, Mysterud and Sæther 2011, Ims et al. 2013). In 56 

turn, impact herbivores their bio-physical environment, e.g., through grazing (Peth and Horn 57 

2006), trampling (Tuomi et al. 2021) and fertilization (Stark and Grellmann 2002). To better 58 

understand and predict how Arctic ecosystems develop in the future we need to quantify both 59 

the climatic drivers of landscape change and how this changes herbivore behavior and their 60 

impact on the landscape (Jones et al. 1994, Wilby et al. 2001, Hastings et al. 2007, Smit and 61 

Putman 2011). Studying landscape-herbivore interactions in rapidly changing and 62 

heterogenous landscapes, demands monitoring methods at appropriate spatial and temporal 63 

extent and resolution (Post et al. 2009, Ims et al. 2013, Ims and Yoccoz 2017, Ravolainen et 64 

al. 2020, Eischeid et al. 2021). 65 

 66 

One of the many climate-related variables that are currently changing is snow, which is an 67 

important driver of availability and quality of habitat for herbivores in several ways (Rixen et 68 

al. 2002). It is expected that precipitation in the Arctic will increase by 50-60% during the 69 

21st century (Bintanja 2018). Small regional and interannual temperature fluctuations around 70 

the freezing point can therefore have large consequences on the duration, physical properties 71 

and distribution of the snow cover (Bokhorst et al. 2016). Changes in snow cover can have 72 

large consequences for herbivore spring ecology, including vulnerability to trophic mismatch 73 

between food availability (Gauthier et al. 2013, Doiron et al. 2015, Lameris et al. 2017) and 74 

increased reproductive success when breeding habitats become available earlier (Madsen et 75 

al. 2007, Tveraa et al. 2013, Jensen et al. 2014). Long distance migratory herbivores, such as 76 

geese, cannot time their departure from spring staging areas in the temperate zone based on 77 

environmental conditions at their destination (Fox et al. 2006, Kölzsch et al. 2015) and snow 78 

cover in the spring therefore shapes habitat availability and the impact these herbivores exert 79 

on the ecosystem during that time. 80 

 81 

Several species of Arctic-breeding geese have increased in numbers, benefitting from 82 

favorable overwintering conditions in recent decades (Abraham et al. 2005, Fox et al. 2018, 83 
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Heldbjerg et al. 2021). In the Arctic some of the larger-billed species can impact the state of 84 

the vegetation of their Arctic summer habitats. Their beaks are strong enough to remove 85 

below ground plant parts when above ground biomass is not available (Fox and Bergersen 86 

2005). This behavior (termed grubbing) leads to vegetation loss and moss removal which 87 

increases exposure for erosion and can alter carbon pools in both moist and dry tundra 88 

habitats (Wal 2006, Speed et al. 2010a, Petit Bon et al. 2021). For instance, increases in lesser 89 

snow geese populations (Chen caerulescens caerulescens) have caused severe habitat 90 

degradation and changing the long-term ecological state of salt marsh wetlands by 91 

significantly reducing graminoid and shrub cover (Jefferies et al. 2003, Abraham et al. 2005, 92 

Peterson et al. 2013). In dry Arctic tundra habitats, goose disturbances can cause long lasting 93 

ecosystem impacts because vegetation growth and recovery generally are slow (Forbes et al. 94 

2001, Jefferies et al. 2003, Wal 2006, Speed et al. 2009). Selective feeding for preferred 95 

vegetation (Speed et al. 2009) and variations in snow cover will therefore play a role in 96 

determining which parts of the tundra will be most exposed to goose disturbances (Anderson 97 

et al. 2015), but explicit documentation of snow cover impact on habitat use, selection and 98 

vegetation disturbance are as of yet lacking. 99 

 100 

The numbers of Svalbard breeding pink-footed geese have tripled during the last four decades 101 

(Heldbjerg et al. 2021). They leave their last staging areas, on mainland Norway, without the 102 

possibility to predict the snow cover extent at their destination on Svalbard but utilize pre-103 

breeding sites to wait and feed until their breeding grounds are free from snow (Fox et al. 104 

2006, Duriez et al. 2009, Hübner et al. 2010, Anderson et al. 2015). Upon arrival, low lying 105 

moist and wet habitats are preferred feeding grounds for this species, but extensive snow 106 

cover can often prevent access to forage in these areas (Pedersen et al. 2013b, Anderson et al. 107 

2016). Population increases and early snowmelt in south-west exposed dry habitats are 108 

thought to favor feeding in habitats other than moist or wet moss tundra (Pedersen et al. 109 

2013a, Pedersen et al. 2013b). Although several studies have addressed the importance of 110 

snow in habitat selection and grubbing intensity (Wisz et al. 2008, Speed et al. 2009, Pedersen 111 

et al. 2013a), have previous studies not investigated how changes in snow cover across the 112 

snowmelt season influence habitat selection and vegetation disturbance. As changing habitat 113 

availability across different spatial and temporal scales is expected to elicit dynamical pattern 114 

of habitat use and selection (Mysterud and Ims 1998, Holbrook et al. 2019), it is important 115 

also use methods for mapping habitat availability that take into account relevant spatial scales 116 

and temporal dynamics. 117 
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Recent studies have shown promising results of measuring Arctic herbivore disturbances with 118 

drone images (Barnas et al. 2019, Eischeid et al. 2021, Siewert and Olofsson 2021) but rely 119 

on differences in reflection values (e.g. NDVI) between disturbed and undisturbed parts of the 120 

vegetation. This method is not suitable to detect pink-footed goose grubbing early in the 121 

vegetative season or in dry habitats where disturbances are less visible (Eischeid et al. 2021) 122 

but nevertheless frequent (Pedersen et al. 2013a, Pedersen et al. 2013b). The dynamic nature 123 

of spring snow-herbivore interactions requires data both on herbivores and their habitat that 124 

appropriately capture these dynamics in time and space. During spring, pink-footed geese 125 

spend a large proportion of the day feeding, therefore it is likely that telemetry positions that 126 

have thus far been used for studying for instance migratory patterns (Glahder et al. 2006), can 127 

be used to not only infer their nesting habitat selection (Schreven et al. 2021) but also where 128 

they cause disturbance. Drones can be used to map characteristics of snow (Schirmer and 129 

Pomeroy 2020, Masný et al. 2021) including snow melt progression (Niedzielski et al. 2018) 130 

and satellite images can help to upscale results to larger spatial scales (Dash et al. 2018, 131 

Miranda et al. 2020, Assmann et al. 2020). Mapping snowmelt progression and goose habitat 132 

selection by combining field data with remote sensing solutions at multiple scales will likely 133 

provide new insights into the dynamic nature of snow-goose interactions during spring. 134 

 135 

In this study, spanning snowmelt during the pre-breeding period of 2019, we used detailed 136 

GPS-tracking data and visual observations of pink-footed goose combined with remote sensed 137 

data (drone and satellite imagery) to assess goose habitat selection and vegetation disturbance 138 

two spatial scales. We used remote sensing to quantify the availability of two major tundra 139 

habitats and date of snowmelt through the spring snowmelt season, because we expected both 140 

to be the drivers of pink-footed goose habitat use and vegetation disturbance at their pre-141 

breeding site. Specifically, we aimed at 1) combining field observations with remotely sensed 142 

data at two spatial scales in order to estimate how habitat selection, use and vegetation 143 

disturbance are driven by the progression of spring snowmelt, and then 2) use these estimates 144 

to produce a fine-scale and a valley-wide vegetation disturbance likelihood map, and 3) assess 145 

whether our estimates of habitat use correspond to estimates of vegetation disturbance rates. 146 



6 

 

2. Methods 147 

2.1 Study system 148 

2.1.1 Study area 149 

We conducted our study in the southern side of Adventdalen, one of the largest valleys in 150 

Nordenskiöld land in Svalbard (Figure 1), in the snow melting period (10 May – 03 June) in 151 

2019. This area is one of the major pre-breeding sites that pink-footed geese use as a staging 152 

and feeding area before their nesting grounds become free of snow (Hübner et al. 2010, 153 

Anderson et al. 2012). The study area (valley-scale) covered 30 km2 (78.19°N, 15.85°E) and 154 

was accessible via gravel roads. 155 

 156 

Adventdalen is a u-shaped glacial valley with different habitat types, situated along an 157 

elevation gradient: A river and wetlands in the bottom of the valley, moist moss tundra in the 158 

lower slopes and drier habitat types with species such as Dryas octopetala interspersed with 159 

gravel in the upper ranges of the slopes. Rocks and gravel dominate steeper slopes and 160 

elevations above (Elvebakk 1994, 2005). Annual precipitation is around 190 mm (Lawrimore 161 

et al. 2021) and snowmelt timing varies between years and stretches through the months of 162 

May and June (Anderson et al. 2015). In the study year (2019), snow melted out late and by 163 

the beginning of June still 50 % of the study area was snow covered. Svalbard’s terrestrial 164 

ecosystem is characterized by low vertebrate biodiversity but is supplemented by large 165 

populations of migratory birds such as pink-footed geese during the summer months (Ims and 166 

Fuglei 2005, Ims et al. 2013, Descamps et al. 2017). 167 

 168 

2.1.2 Study species - pink-footed geese 169 

The pink-footed goose is the most numerous goose species on Svalbard (Fox et al. 2010). The 170 

population has increased from c. 40,000 in the 1980s to c. 80,000 in 2015-2019 (Heldbjerg et 171 

al. 2021). They migrate from wintering grounds in Belgium, the Netherlands and Denmark 172 

via Norway and Finland to breed in Svalbard. The first individuals arrive around in the second 173 

week of May and by the fourth week of May most birds have arrived (Glahder et al. 2006). 174 

Geese mate in late May - early June, and shortly after incubate for approximately four weeks 175 

(Madsen et al. 2007). During the pre-breeding period, there is little available above-ground 176 

forage and pink-footed geese therefore use their beaks to access plant rhizomes below the 177 

ground, a foraging mode called grubbing (Fox and Bergersen 2005, Anderson et al. 2012). In 178 

dry areas, geese target rhizomes directly, leaving distinct holes that can still be visible many 179 
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years later, whereas in wet areas, geese simultaneously remove large areas of the moss layer 180 

(Wal et al. 2020) (Figure 2). In the following, we refer to pink-footed geese as ‘geese’ and 181 

grubbing activity as ‘disturbance’. 182 

2.2 Study design 183 

We applied a multi-method, spatially nested approach to obtain data for the analyses of 184 

habitat selection, habitat use and vegetation disturbance of pink-footed goose in the pre-185 

breeding period (Figure 3,4). The data was gathered during the spring thaw from 10 May to 186 

03 June in 2019. Drone and satellite images as well as field plots were used to obtain 187 

predictor variables on snowmelt date and vegetation class. A habitat was defined by the 188 

combination of vegetation class (i.e., moss tundra and dwarf-shrub heaths) and the date of 189 

snowmelt. A fine scale study site (0.3 km2 extent, 5 cm resolution) was nested within the 190 

“valley scale” (30 km2, 10 m resolution) study area (Figure 1). The two major vegetation 191 

classes (i.e., moss tundra and dwarf-shrub heath) here were well represented both at the fine-192 

scale site and valley scale study area. We applied two methods for obtaining data on goose 193 

habitat selection and habitat use that covered both spatial scales. A number of birds that 194 

previously have used the area of Adventdalen valley were equipped with GPS collars and 195 

provided data with high temporal resolution. The number of collared geese was limited 196 

(n=12) and because these local resident birds do not necessarily represent the full range of 197 

behaviors, we also conducted field-based observations. These observations yielded a second, 198 

less temporally resolved data set based on census counts and positioning of geese multiple 199 

times throughout the pre-breeding period. We generated a vegetation disturbance model from 200 

field plots assessments and combined it with the remote sensed predictor variables to generate 201 

vegetation disturbance maps. Finally, we compared the results of the habitat use assessment 202 

and the vegetation disturbance maps. 203 

2.3 Data collection and processing 204 

2.3.1 Field plots (vegetation class, snowmelt date, disturbance) 205 

We marked 320 field plots on 18 May 2019 (Julian day 138) at the fine-scale study site 206 

(Figure 1, 3) to assess vegetation disturbance and snowmelt progression. Plots were placed in 207 

20 groups of 16 plots each. Twelve of these groups were in moss tundra vegetation, and four 208 

in the dwarf shrub heath vegetation, four covered both vegetation types. The minimum 209 

distance between groups was approximately ten meters. To capture differences in snow melt 210 

timing, we placed the groups in snow free terrain (n= 6), along the snow edge (n= 5) and on 211 
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ground that was still covered in snow (n= 9). Within each group, the plots were placed in a 212 

perpendicular cross with four plots in each direction. This minimized the number of markers 213 

we needed to establish in the frozen ground. For each of the plots we registered the vegetation 214 

class (moss tundra, dwarf-shrub or barren), and every fourth day, we noted the status of the 215 

snow cover in the plot (snow or snow-free) and presence of goose disturbance (none or 216 

disturbed). Disturbed plots had to have at least one clearly identifiable grubbing hole. 217 

Prior to analysis, we removed the plots that either were placed on barren ground or still 218 

covered in snow by the end of the pre-breeding period. As a result, we had 285 plots, 211 in 219 

moss tundra and 74 in dwarf-shrub heath used for further analysis. We started the field survey 220 

on 18 May but because we had already a drone images available for 14 May, we used the 221 

images to distinguish which of the plots that were snow free on 18 May were already snow 222 

free on 14 May. 223 

 224 

2.3.2 Goose telemetry 225 

We used goose telemetry data, obtained from a mark-recapture campaign in 2018-2019, to 226 

investigate the migration ecology of pink-footed geese, a total of 56 adult geese, primarily 227 

adult females, have been caught and marked with GPS-GSM transmitter neckbands (Ornitela 228 

UAB, Lithuania). Captures took place on a spring staging site in Tyrnävä, Oulu, Finland in 229 

April-May 2018 and 2019, and during molt on brood rearing sites Daudmannsøyra, western 230 

Spitsbergen, and on Isdammen in Adventdalen in July-August 2018 (Schreven et al. 2021). Of 231 

these geese, 42 geese were present on Svalbard during 10 May to 03 June 2019, of which we 232 

selected only include GPS positions that were within the range of the fine-scale and valley-233 

scale study sites. To exclude geese that were moving too fast to be feeding, we excluded GPS 234 

positions with accelerometer speeds of over 1 km/h. In the fine-scale site, a total of seven 235 

tagged individuals (GPS positions n= 36934) and in the valley-scale site, twelve tagged 236 

individuals (GPS positions n= 142158) were available for further analyses. These were 11 237 

females and 1 male (1 from Oulu, 1 from Daudmannsøyra, 10 from Isdammen). Of these, two 238 

bred in Adventdalen and adjacent side valleys, while one bred in Sauriedalen (35 km NNW) 239 

and others did not attempt to breed in 2019. Inferred from the movement of GPS-tagged geese 240 

(Schreven 2021), the egg-laying commenced on 1 June on average (range: 29 May-4 June). 241 

The collars recorded a GPS position (and speed) every 10 minutes, with an accuracy of 24% 242 

within 5 m, 47% within 10 m, 74% within 20 m and 96% within 50 m. For more details on 243 

handling procedures of geese and the GPS transmitters, see (Clausen et al. 2020, Schreven et 244 

al. 2021). 245 
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2.3.3 Visual goose observations 246 

We counted goose numbers along the roads in the Adventdalen valley in May 2019. After the 247 

first small groups of pink-footed geese were observed on the 10 May, we counted them 248 

systematically from Julian day 131 (11 May) until day 151 (31 May) (daily until 16 May and 249 

every 2-3 days thereafter). For each counting day, two observers slowly drove along the same 250 

route and stopped every time a goose or a group of geese was observed. We counted geese 251 

within a maximum distance of 600m. For each observation we noted: 1) The number of geese, 252 

2) their activity according to three categories (feeding = grazing or grubbing if identifiable, 253 

sitting or walking) and 3) snow cover at the observation site according to three coarse classes 254 

(on snow, snow-free or at snow-edge) and 4) a GPS position of the observer, a compass 255 

course and measured distance, using distance binoculars. We calculated the positions of each 256 

goose (or group of geese), using the observer’s position as well as distance and angle to the 257 

goose. We excluded observations where the geese were walking without feeding or were on a 258 

snow-covered area. This resulted in 1300 observations and a total of 6676 geese available for 259 

further analysis. 260 

 261 

2.3.4 Developing and extracting environmental predictors from drone and satellite data 262 

2.3.4.1 Drone-imagery 263 

Throughout the snow melt period (14 May - 02 June 2019) we used a fixed-wing drone 264 

(eBeeX, Sensefly) to collect aerial images of the fine-scale study site. The drone was rigged 265 

with a RGB camera (AeriaX, Sensefly). On two dates, we additionally flew with a pre-266 

calibrated (Cubero-Castan et al. 2018) multispectral camera (Sequoia+, Sensefly) to obtain 267 

green, red, near-infrared, and red-edge images. We flew in perpendicular lines to the main 268 

slope of the terrain and kept a constant height over the ground (between 50 and 100 m above 269 

ground (depending on the camera and date) and speeds between 8–15 m/s. Image overlap was 270 

75% or higher for the AeriaX camera, while for the Sequoia+, side overlap was 60% and 271 

horizontal overlap 80%. We flew around noon and only on days with stable light and wind 272 

conditions (max 7 m/s). We aimed to fly every fourth day but because of variable weather 273 

conditions that was not always possible. We flew on the following dates 14 May, 18 May, 22 274 

May and 02 June. We logged the GPS positions with a Leica GS10 (Leica Geosystems) 275 

differential GPS base station in vicinity of the study site and used these for kinematic post-276 

processing (PPK) of the drone images. Through the PPK workflow, we obtained an accuracy 277 
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of 5 cm for the drone images and verified our results using ground control points (GCPs) as 278 

checkpoints. 279 

 280 

2.4.1.2 Snow cover maps (drone images, fine scale) 281 

We generated orthomosaics from the drone imagery using structure for motion with Pix4D 282 

mapper software (Pix4Dmapper 2021) to produce snow cover maps at the fine scale. To do 283 

so, we generated RGB orthomosaics for all drone flight days, and additional multispectral 284 

orthomosaics for the days we had those available (18 May, 02 June). To classify the images 285 

into snow/no-snow, we generated a classification training dataset by drawing a minimum 50 286 

of polygons (for snow and no-snow) and extracting the values for each RGB and multispectral 287 

orthomosaic. Using rminer (Cortez 2020), we then used the training dataset to train random 288 

forest (RF) models to predict the two classes (snow/no-snow) for the entire meso-scale study 289 

site. This method is described in Eischeid et al. (2021) in more detail. We visually inspected 290 

the snow classification results and used masks to manually fix some obvious 291 

misclassifications that occurred in areas such as “dirty snow,” GCP targets, cable car pillars 292 

and their shadows, and a stitching error on the 22 May that resulted in a thin black stripe. 293 

Finally, we resampled each of the snow maps to the same extent and 5 cm resolution and 294 

extracted the snow/no snow variables for each pixel cell. 295 

 296 

2.4.1.3 Vegetation class map (drone images, fine scale) 297 

We used a simplified version of the drone-imagery based ground-cover classification map of 298 

(Eischeid et al. 2021) that overlapped with our fine-scale study site. We grouped the ground-299 

cover classes into three major vegetation classes: moss tundra, dwarf shrub heath and bare 300 

ground/water. The moss tundra class included the ground-cover types (as described in 301 

Eischeid et al. (2021)) moss-graminoid, wet moss tundra, Carex subspathacea, brown moss 302 

and moss-equisetum. The dwarf shrub class included the classes dryas, cassiope, heath-303 

graminoid and heath-moss, the bare ground/water class included areas covered with gravel, 304 

rocks, bare ground, biological crust or water. 305 

 306 

2.4.1.4 Satellite-imagery 307 

We created snow cover and vegetation cover maps of the valley-scale site using Google Earth 308 

Engine (GEE) and Sentinel 2A images with the bands red, green, blue and near-infrared at 10 309 
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m resolution. We filtered for cloud free days within the timespan of the study by calculating a 310 

cloud probability band (MSK_CLDPRB) and manually checking the quality of the images. 311 

 312 

2.4.1.5 Snow cover maps (satellite images, valley-scale) 313 

To generate snow cover maps from satellite images at the valley-scale we used GEE. For each 314 

date we had a Sentinel 2A image available (n=6), we drew 30 snow/no snow training 315 

polygons to train a classifier. We used the GEE integrated classification and regression trees 316 

(CART) classifier (Breiman et al. 1984) to generate six snow cover maps. We had two larger 317 

time data-gaps, therefore we used the images before and after the gaps, to interpolate 318 

estimated snow cover maps for the dates 18 May and 30 May. 319 

 320 

2.4.1.6 Vegetation class map (satellite images, valley scale) 321 

We generated a vegetation class map for the valley using Sentinel 2A image (27 July 2019) 322 

and a random forest (RF) classifier based on the red, green, blue and near-infrared (NIR) 323 

bands. In the fine-scale vegetation map, we marked 50 points for each the three classes (moss 324 

tundra, dwarf-shrub graminoid, bare ground/water) and extracted the values to use them for 325 

training the RF classifier. To test classification robustness, we trained 30 RF with subsets of 326 

the dataset and obtained an average macro-F1 score of 95% (same method as described in 327 

Eischeid et al. (2021)). We generated a final RF with 100% of the training data (as variation 328 

between the 30 subsets was small) and used the final RF to predict vegetation classes across 329 

the valley-scale study area. 330 

2.5 Data analysis 331 

2.5.1. Extracting environmental predictors from drone and satellite imagery to assess habitat 332 

selection and habitat use 333 

Prior to analysis, we extracted the environmental predictors (vegetation class and date of 334 

snowmelt) for each GPS location and field observation coordinate. GPS locations or 335 

observations that occurred in an area before it became snow free or on bare ground/water 336 

were removed from the analysis. To account for the absence of daily drone or satellite images, 337 

and temporally uneven field observations, we included geese GPS positions that were 338 

registered in an area that was snow free in an image up to one day later and goose 339 

observations that were registered snow free in an image up to two days later. For the GPS 340 

telemetry dataset, we only included a maximum of one location per hour (always choosing the 341 

earliest observation within each hour) to reduce spatial-temporal autocorrelation. For the fine-342 
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scale analysis we had a total of 609 goose locations available for analysis, while for valley-343 

scale there were 1981 observations/locations. Uncertainties in the estimation of the position of 344 

the field-based goose observations and the 10 m resolution of the satellite map resulted in that 345 

some observations, noted as snow-free habitat in the field, were assigned to snow covered 346 

areas on map. In such cases, we assigned the observation to a snow-free patch of the same 347 

vegetation class within a 20 m radius of the original location. In cases with multiple snow-free 348 

patches within the 20 m radius, we selected the closest one and the one with the most similar 349 

snow-free date compared to the original assigned location. If no snow-free patches were 350 

within the 20 m radius, the observation was excluded. This resulted in a total of 630 field 351 

observations of geese or goose groups (total number geese = 3655) that were used for habitat 352 

selection and use analysis. 353 

 354 

We grouped all GPS locations or goose observations together and treated each combination of 355 

vegetation class (moss tundra and dwarf shrub heath) and snowmelt date (four dates - in the 356 

fine scale analysis, eight dates- in the valley scale analyses) as its own habitat class. In the 357 

fine-scale analysis, we therefore had a total of eight habitat classes, and for the valley-scale 358 

analyses we had 16 habitat classes. Although time-specific maps of habitat availability and 359 

snowmelt form the basis of the habitat selection analysis, the timing of the goose 360 

observations/positions did not enter directly the analysis. We chose this approach of grouping 361 

all goose positions because it allowed us to compensate for irregular drone and satellite image 362 

availability. It made it also possible to compare habitat use with the vegetation disturbance 363 

likelihoods that were calculated for the entire pre-breeding period and not a day-by day basis. 364 

 365 

2.5.2 Analyzing the impact of snowmelt and vegetation class on habitat selection and habitat 366 

use 367 

We analyzed both geese habitat selection and habitat use. For both approaches, we adapted 368 

the habitat selection estimation method by (Manly et al. 2002) and used the R package 369 

adehabitatHS (Calenge 2006) to calculate habitat selection coefficients and confidence 370 

intervals (95%) according to Manly’s design 1, where there is no unique identification of 371 

animals, but where the proportions of available habitat classes are known (Thomas and Taylor 372 

2006). Habitat preference (positive selection) is indicated by values above one and has no 373 

maximum limit. Habitat avoidance (negative selection) is indicated by habitat selection ratios 374 

between one and zero. The metrics habitat selection and habitat use differed in how we 375 

defined habitat availability (Figure 4). First, we calculated habitat use by dividing the 376 
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proportional number of geese per habitat class by the proportional area size of each habitat 377 

class. We converted the resulting Manly habitat selection ratios into percentages by dividing 378 

each ratio by the sum of all selection ratios. Habitat use thus represents the proportion of time 379 

did geese spend in a habitat type. Second, we calculated habitat selection to assess which 380 

habitats geese preferred, thus taking into account that habitat classes had different durations of 381 

habitat availability. We determined Manly selection coefficients by calculating the percentage 382 

of goose occurrences per habitat class and dividing it by the percentage of available habitat 383 

class, which was defined by the area of each habitat class multiplied by the days the habitat 384 

was available throughout the study period. With equal habitat selection, we would therefore 385 

expect that habitat use is highest for the areas that are available the longest. Thus, the level of 386 

habitat use should represent the level of vegetation disturbance. 387 

 388 

2.5.3 Impact of vegetation and snow melt on vegetation disturbance 389 

We assessed the impact of vegetation class and snow-free days on presence of goose 390 

disturbance (i.e. beak holes or moss removal) using the data obtained from the field plots 391 

(n=282). We applied a logistic regression model with a binomial (Bernoulli as observations 392 

were binary, 0 not disturbed, 1 disturbed) distribution, but allowing for the asymptote to be 393 

less than 1, as all plots do not necessarily reach 100% disturbance by the end of the pre-394 

breeding period. We treated goose disturbance as the response variable, vegetation class 395 

(moss tundra and dwarf-shrub heath) as a categorical predictor variable and snow-free days as 396 

a continuous predictor variable. We used the drm() function R package drc (Ritz et al. 2015). 397 

We chose the LL2.3 parameterization to fit a logistic curve that starts at zero and reaches an 398 

asymptote that is estimated as a separate parameter. The LL2.3 parameterization is defined as 399 

(𝑥) =
𝑑

1+exp⁡(𝑏(log(𝑥)−𝑒))
 , with d as the asymptote, b the logistic regression slope and we used 400 

x=exp(snow-free date) as a predictor in the function. Because the slope for dwarf-shrub heath 401 

and moss tundra were similar, we simplified the model to a common slope for both vegetation 402 

classes. We assessed the predictive power of the model by calculating the correlation between 403 

the observed and predicted proportions (Zheng and Agresti 2000). 404 

 405 

2.5.4 Vegetation disturbance likelihood maps 406 

We used the disturbance likelihood model, developed with plot-scale data, to predict grubbing 407 

likelihood across the fine-scale and valley-scale study extents. To do this, we used the predict 408 

function of the R package rminer (Cortez 2020) and the raster layers of vegetation class and 409 
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snow-free days to generate disturbance likelihood maps. These were scaled from zero (no 410 

likelihood of disturbance) to one (100% likelihood of disturbance). To estimate the total 411 

amount of disturbed areas, we summed the frequencies of each habitat type (each vegetation 412 

class and snow-free day combination) and multiplied it with its disturbance likelihood, i.e., 413 

habitat class area x disturbance likelihood = area disturbed (e.g., 200 m2 habitat x 0.8 414 

disturbance likelihood= 160 m2 disturbed vegetation). 415 

 416 

2.5.5 Habitat use and disturbance 417 

Finally, we assessed the correspondence between the habitat use and vegetation disturbance 418 

estimates by means of Spearman correlation coefficients (Figure 3). 419 

 420 

3. Results 421 

3.1 Weather characteristics and spring phenology of geese 422 

In 2019, a late snowmelt year, temperatures were mostly sub-zero during the study period 423 

with two warmer spells at Julian days 133-138 and 148-154 (13-18 May and 28 May – 03 424 

June) (Figure 5a). During the first days of June, 50% of the valley extent was still covered in 425 

snow (Figure 5b). Moss tundra and dwarf shrub heath within the study area became snow-free 426 

at a similar speed throughout the season. The first geese were counted on day 130 (10 May) 427 

and their numbers continued to increase until day 147 (27 May) (Figure 5c). At day 151 (31 428 

May) goose numbers were lower than on day 147, as the geese started leaving the pre-429 

breeding areas. The first GPS collared goose arrived in the study area on day 136 (16 May) 430 

(Figure 5c). The maximum of GPS collared geese (10 individuals) was reached at day 142 (22 431 

May). 432 

3.2 Habitat selection and habitat use 433 

Geese showed positive habitat selection (preference) for moss tundra and negative selection 434 

(avoidance) for dwarf-shrub heath (Figure 6). This was broadly consistent across both spatial 435 

scales and goose census methods (GPS telemetry and field observation), with some 436 

exceptions (Figure 6). Using GPS telemetry data, overall habitat selection was independent of 437 

the snowmelt date. The field-based goose observations suggested that areas free of snow early 438 

in the season were overall more selected for. Habitat was therefore generally highest for the 439 

areas that became snow free early in the season (Figure S1), and most profound when 440 

measured with goose field observations at valley scale (Figure S1c). 441 
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3.3 Impact of vegetation and snow melt on vegetation disturbance 442 

For both habitats, the disturbance likelihood was lowest for the plots that became snow free 443 

late in the season (Figure 7). Vegetation disturbance was highest (disturbance rates of above 444 

80%) for moss tundra plots that became snow free relatively early, i.e., Julian date 142 (22 445 

May), but dropped steeply after and reached 10% for the plots that became snow-free by the 446 

end of the study period. For plots in the dwarf-shrub heath, disturbances where highest for 447 

plots that became snow free before Julian date 146 (May 26) with disturbance rates around 448 

50%. Disturbance likelihoods were continually above zero for both vegetation classes within 449 

the pre-breeding period. The logistic regression model with habitat-specific asymptotes fitted 450 

the data well (correlation between observed and predicted values: R=0.92). The slope (b) was 451 

0.58 (SE=0.17) and asymptotes (d) of 0.44 (with SE=0.071) for dwarf-shrub heath and 0.89 452 

(SE=0.035) for moss tundra. The value of date for which the proportion is half the asymptote 453 

was 148 Julian days for dwarf-shrub heath and 150 Julian days for moss tundra. 454 

3.4 Vegetation disturbance likelihood maps 455 

At both study scales, disturbance likelihoods were unevenly distributed across the landscape 456 

(Figure 8). In the fine-scale study site 21.4% (32.8% of moss tundra habitat and 11.5% of 457 

dwarf-shrub heath) of the vegetated area was predicted to be disturbed by pink-footed geese. 458 

At the fine-scale site, the highest disturbance (over 80%) was predicted to occur in the early 459 

snow free moss tundra areas at low elevations. Within the extent of valley-scale area, the fine-460 

scale study site was one of the areas with most disturbance. In the valley-scale study area, 461 

4.75% of the total area was predicted to be disturbed, 23.1% of moss tundra (0.5 km2) and 462 

10.1% of dwarf-shrub heath (0.94 km2). Areas in the vicinity of roads were snow free early in 463 

the season and therefore had high predicted disturbance rates for both vegetation classes. At 464 

the end of the pre-breeding period, snow-free vegetated areas comprised 52.8% of the fine-465 

scale site and 37.6% of the valley-scale area. Areas that were predicted to have disturbance 466 

likelihood of zero, were either in the class bare ground/water (excluded in the model) or were 467 

still covered in snow by the end of the pre-breeding period. 468 

3.5 Habitat use and vegetation disturbance 469 

Habitat use was positively correlated to vegetation disturbance at both spatial scales and using 470 

both methods (GPS telemetry and field observations) of measuring goose habitat use (Figure 471 

9, Table 1). Habitat use values above 10% were generally associated with the highest 472 

disturbance rates. 473 
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4. Discussion 474 

Our analysis of habitat use and vegetation disturbance by pink-footed goose, showed that 475 

habitat use was predicting vegetation disturbance during the pre-breeding period. This trend 476 

was consistent across vegetation classes, spatial scales and methods of assessing habitat 477 

selection (GPS telemetry and field observations). Moss tundra was preferred over dwarf-shrub 478 

heath and more often disturbed by pink-footed geese. Both habitat use and vegetation 479 

disturbance was highest for areas that were free of snow early in the season. Our disturbance 480 

predictions showed that pink-footed geese had disturbed about 23% of moss tundra during a 481 

single pre-breeding period at the Adventdalen valley site indicting that the role of geese in 482 

modifying tundra vegetation is significant. 483 

 484 

This study supports the findings of previous studies that have shown that pink-footed geese 485 

prefer moist over dry habitats (Speed et al. 2009, Anderson et al. 2012, Pedersen et al. 2013a, 486 

Pedersen et al. 2013b) and expands on knowledge of the role of snowmelt on habitat selection 487 

and vegetation disturbance that has not been explicitly addressed earlier. Previous studies on 488 

pink-footed goose disturbance were unable to include snow as a predictor (but see Anderson 489 

et al. (2016)) due to the coarse temporal or spatial scales (Wisz et al. 2008, Speed et al. 2009) 490 

or had to rely on proxies for snowmelt timing, like air temperature (Fox et al. 2006) or slope 491 

direction (Pedersen et al. 2013a). For example, a Svalbard-wide goose disturbance likelihood 492 

model from 2006 and 2007 (Speed et al. 2009) predicted highest disturbance likelihood in 493 

those areas in Adventdalen valley that were never free of snow in the pre-breeding period of 494 

2019, a year with relatively late snowmelt. Our finding that areas being snow free during the 495 

first two weeks of the pre-breeding period were used most and therefore had highest 496 

vegetation disturbance intensities support the study of (Pedersen et al. 2013a) that suggests 497 

elevated levels of goose disturbance in south-east facing slopes of dry habitats which were 498 

thought to be free of snow early in the season. Our study documents the importance of 499 

snowmelt for spring ecology of tundra vegetation and an avian herbivore, providing empirical 500 

evidence to general notions about implications of climate change and snow season changes in 501 

particular (Post and Forchhammer 2002, Rixen et al. 2002, John et al. 2020). 502 

 503 

Our vegetation disturbance map predicted that 23.1% of moss tundra and 10.1% of the dwarf-504 

shrub heath habitats at the Adventdalen valley pre-breeding site had been disturbed by pink-505 

footed geese in a single season. The effects of grubbing on vegetation varies greatly, intensity 506 
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and frequency of the disturbance influences how quickly the habitat recovers or new plant 507 

community structures evolve (Kerbes et al. 1990, Wal et al. 2020). Experimental studies have 508 

shown that carbon loss due to (simulated) goose disturbance vary greatly between years, 509 

habitats and plant functional group (Speed et al. 2010b, Petit Bon et al. 2021). In a simulated 510 

goose disturbance experiment, (Speed et al. 2010b) estimated carbon loss of 343.47 g/m-2 for 511 

dry habitats (low intensity) and 625.46 g/m-2 in mesic habitats (medium disturbance levels), 512 

compared to controls without disturbance. If these numbers were to be extrapolated to our 513 

predicted disturbed area in Adventdalen valley, they could result in approximately 300 tons 514 

carbon lost for each of the two vegetation classes, i.e., a total of 600 tons carbon lost in the 515 

time span of about three weeks. Higher carbon emissions per m2 in moss tundra were 516 

therefore outweighed by the larger spatial extent of the dwarf-shrub heath. Our study suggests 517 

that disturbance estimates via satellite and drone images, given intensities of disturbance 518 

experiments like that of (Speed et al. 2010b) and the actual disturbance documented in the 519 

field are equivalent, could provide a useful tool to approximate carbon emissions as the result 520 

of pink-footed goose disturbance. 521 

 522 

The tight linkage between habitat use and vegetation disturbance that we observed indicates 523 

that habitat use of geese nicely reflects the degree of disturbance. This means that GPS 524 

telemetry derived estimates of habitat use can be a good predictor for pink-footed goose 525 

disturbance extent and intensity and can be a promising alternative for extensive field 526 

campaigns. In addition to snow cover, that we focused on in this study, soil and air 527 

temperatures during snow melt can influence if habitats are available for feeding. In 2019, a 528 

late snowmelt year, were habitats grubbed shortly after they were free from snow, whereas 529 

early snowmelt but cold air and soil temperatures can prevent geese from grubbing (Fox et al. 530 

2006, Anderson et al. 2012). Alternatively, persistent warm May temperatures and early 531 

snowmelt can advance graminoid growth so that grazing can become more advantageous over 532 

grubbing (Fox et al. 2006). Earlier timing of the switch from grubbing to grazing can thus 533 

weaken the link between habitat use and predicted vegetation disturbances via grubbing, 534 

hence snowmelt and preferably soil, or air temperatures (as a proxy), need to be taken into 535 

account in future monitoring. Similar approaches of linking habitat use and vegetation 536 

disturbance are likely applicable for other broad-billed geese, such as Anser cygnoides and 537 

Chen caerulescens that show seasonally intensive grubbing (Gauthier et al. 2005, Fox et al. 538 

2008) or avian herbivores in general, because they tend to feed large proportions of the day 539 

(Gils et al. 2007). 540 
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Only few studies have combined aerial images from drones or planes to study animal habitat 541 

selection via telemetry e.g., Stark et al. (2018) because the target species need to be confined 542 

to a rather small area. Although pink-footed geese at the population level migrate long-543 

distance and inhabit areas that span from western Europe to Svalbard, Iceland and Russia 544 

(Alisauskas 2009), drones and GPS telemetry were useful tools because we studied their 545 

behavior in a very defined place in space and time. A similar approach may be valuable for 546 

migratory animals that gather and feed intensively in confined spaces along their migration 547 

route (e.g. Nolet et al. (2001)).  548 

 549 

The high-resolution images and the associated predictors provided a good tool to capture 550 

snowmelt progression in detail that earlier studies in the same region have not been able to 551 

(see e.g. Anderson et al. (2016)). Drone images are promising tools to derive ecologically 552 

relevant habitat variables to study animal habitat selection (Mangewa et al. 2019) or improve 553 

the interpretation of satellite images (Assmann et al. 2020). The ten-meter resolution of the 554 

Sentinel 2 image-based snow maps was too coarse to capture smaller snow-free patches, and 555 

almost 50% of our field-based observations had to be excluded because we could not assign 556 

them to a snow-free patch in vicinity. However, this could be alleviated by using drone 557 

images that provided spatial resolutions that allow for more detailed ecological analyses. 558 

Pink-footed goose habitat selection, habitat use, and vegetation disturbance estimates were 559 

consistent at both spatial scales chosen for this study. This suggests that Sentinel 2 satellite 560 

images could provide adequate estimates of pink-footed goose disturbances at a valley 561 

(management relevant (Stark et al. 2018)) scale. Similarly, the same habitat selection and 562 

habitat use trends were detected through both methods of locating the birds, with the 563 

exception for the last week of the pre-breeding period where they showed contradicting 564 

trends. The telemetry-based approach indicated positive habitat selection for vegetation that 565 

became snow-free in the last week of the pre-breeding period whereas the field observation-566 

based method showed that they selected against these areas. An explanation to these opposing 567 

trends can be that different groups of geese showed different behavior at this time of the 568 

season and GPS collared geese – mainly birds that remained local – were not representative 569 

for the entire goose population. The field-based observations included geese that gathered in 570 

large flocks to leave the pre-breeding site and go elsewhere to breed or spend the summer. 571 

The main gathering sites that we identified had already been free of snow for several days or 572 

weeks. Several of the GPS collared geese stayed to breed in Adventdalen and continued 573 

grubbing and expanding their habitat to newly snow-free areas. Thus, pending local 574 
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calibration with field assessments and drones, using satellite images and telemetry data is a 575 

method that requires only minimal presence in the field and can provide a tool to detect 576 

disturbance hotspots caused by herbivores. 577 

 578 

There are several methodological considerations that arose from our results that can help 579 

future successful detection of habitat selection, habitat use and prediction of vegetation 580 

disturbance based on remote-sensed and telemetry data. Because goose numbers in the valley 581 

site were not constant throughout the pre-breeding period, the method of grouping all 582 

observations to evaluate habitat selection may skew results in favor for habitats that were 583 

snow-free when most geese were present. We showed that our method of mapping at two 584 

spatial scales worked well in a late snowmelt year with small, but highly disturbed, early 585 

snow-free areas. In years of early snowmelt, geese may be more spread out in different parts 586 

of the landscape (Anderson et al. 2016), and thus more difficult to capture through drone-587 

based, fine-scaled analyses. Cloud cover reduces the availability of optical satellite data, more 588 

work would be needed to assess the minimum number of images needed to adequately predict 589 

habitat use and vegetation disturbance in the future. By choosing a multi-data approach which 590 

showed consistent results across methods and spatial scales, we were able to minimize the 591 

effect of the limitations. 592 

 593 

5. Conclusion 594 

In this study we used an approach integrating multiple sources of data on habitat availability, 595 

snow melt and pink-footed goose spring area use to study habitat selection, use and vegetation 596 

disturbance. To our knowledge this is the first study in the Arctic that combines remote-597 

sensed snowmelt mapping with ecological habitat selection analysis, documenting that 598 

snowmelt timing and vegetation were important drivers for both habitat selection, use and 599 

vegetation disturbance. Our results, with an 80% vegetation disturbance likelihood in the most 600 

used habitats, detail and document how abiotic conditions play a role in in how and where 601 

biotic factors like herbivores can alter tundra ecosystems. Mapping where in the landscape 602 

vegetation disturbances occur can initiate new studies that assess how vegetation, terrain, and 603 

snowmelt over consecutive years influence vegetation recovery. We underline the importance 604 

of detailed high temporal and spatial data on snow melt patters to understand the impacts of 605 

goose grubbing on Arctic tundra ecosystems. And we encourage the integration of drone 606 
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imagery as a tool to improve the information that can be gained from using satellite images 607 

and GPS telemetry. 608 

 609 
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 7. Figures and Tables 621 

 622 
Figure 1: Location of this pink-footed goose habitat selection and vegetation disturbance 623 

study, May-June 2019, in Adventdalen, Svalbard. Upper-left panel: Map of northern Europe, 624 

showing the location of Svalbard. Lower-left panel: Map of Svalbard, showing the location of 625 

the study area in the center of Nordenskiöld Land. Right panel: Satellite image (Sentinel 2A, 626 

27.07.2019) of the study area showing the extent of the valley-scale and the fine-scale study 627 

sites. 628 

 629 

  630 
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 631 
Figure 2: a) Dwarf-shrub heath and b) moss tundra vegetation class in late May 2019. Inserts 632 

show the vegetation disturbances typical for the two vegetation classes: Single, isolated 633 

grubbing holes in dwarf-shrub heath (left) and continuous grubbing removing the moss carpet 634 

in moss tundra vegetation. 635 

  636 
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 637 

Figure 3: Study design for pink-footed goose habitat selection, use and vegetation disturbance 638 

survey during the pre-breeding season in Adventdalen Valley, Svalbard (2019). The study 639 

was conducted at two spatial scales, fine-scale (5 cm resolution) and valley-scale (10 m 640 

resolution). Drone and satellite images as well as field plots were used to obtain predictor 641 

variables on snowmelt date and vegetation class. 1a) Habitat selection and use were assessed 642 

using goose GPS telemetry or goose field observations and the remote sensed predictor 643 

variables. 1b) A vegetation disturbance model was generated from field plots assessments and 644 

2) combined with the remote sensed predictor variables to generate vegetation disturbance 645 

maps at two spatial scales. 3) The results of the habitat use assessment and the vegetation 646 

disturbance maps were compared in the final step.  647 
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 648 

 649 

Figure 4: Schematic presentation of habitat use and habitat selection analysis. A habitat is 650 

defined by the two variables vegetation class and the snowmelt date. To calculate habitat use, 651 

the proportion of the number of goose positions was divided by the proportion of area size for 652 

each habitat class. The habitat selection assessment, as opposed to habitat use, considered 653 

differing duration of habitat availability. Habitat area sizes were therefore multiplied with the 654 

number of days they were available throughout the pre-breeding period. For example, the 655 

moss tundra and dwarf-shrub heath habitats that were free of snow earliest, were multiplied 656 

with 22 (days) and habitats that became available eight days later were multiplied by 14 657 

(days). Habitat selection was therefore calculated with the proportion of the number of goose 658 

positions divided by the proportion of area size of each habitat multiplied with the temporal 659 

availability of the habitat. 660 

 661 
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 662 
Figure 5: Seasonal development in Adventdalen valley (10 May to 03 June, 2019. a) Daily 663 

mean temperature (C°, black line) at Longyearbyen airport (ca. 6 km from the study site). The 664 

gray field shows the min-max temperature range for each day. b) The proportion of snow-free 665 

area in the valley-scale study area, as measured from satellite imagery. c) The arrival of pink-666 

footed geese to the Adventdalen valley. The turquoise bars show the number of geese counted 667 

during the field survey and the blue dots indicates the daily number of GPS collared geese 668 

that were within the spatial extent of the valley-scale study area. 669 
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 671 

Figure 6: Manly’s habitat selection ratios (wi) and 95% confidence interval (CI) for pink-672 

footed goose in the pre-breeding season (May-June 2019) in Adventdalen valley (Svalbard). 673 

Habitats are defined by vegetation class (moss tundra and dwarf shrub heath) and snowmelt 674 

date (Julian date: 134 -153). Positive selection (preference) is indicated by CI > 1, and 675 

negative selection (avoidance) is indicated by CI < 1. Habitat selection at a) fine-scale (5 cm 676 

resolution), based on predictors derived from drone images and goose GPS telemetry data, b) 677 

valley-scale (10 m resolution), based on predictors derived from satellite images and goose 678 

GPS telemetry data, c) valley-scale (10 m resolution), based on predictors derived from 679 

satellite images and field-based observations. 680 
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 682 

Figure 7: Field assessment (dots) and predicted (lines) vegetation disturbance likelihood, 683 

based on logistic regression model, in moss tundra and dwarf-shrub heath vegetation in 684 

Adventdalen valley, Svalbard as response to snowmelt (indicated by Julian day) between 14 685 

May and 03 June. 686 

 687 



28 

 

 688 

Figure 8: Pink-footed goose vegetation disturbance likelihood predictions, based on the 689 

logistic model (see Figure 7) and field surveys of snowmelt date and vegetation disturbance 690 

for moss tundra and dwarf-shrub heath vegetation at the fine-scale and valley-scale study 691 

areas site in Adventdalen valley (Svalbard) in May-June 2019. 692 
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 693 
Figure 9: Pink-footed goose proportional habitat selection use and predicted disturbance 694 

likelihood during pink-footed goose pre-breeding season (May-June 2019) in Adventdalen 695 

valley (Svalbard). Habitat use and vegetation disturbance measured at a) fine-scale (5 cm 696 

resolution), based on predictors derived from drone images and GPS telemetry data, b) valley-697 

scale (10 m resolution), based on predictors derived from satellite images and GPS telemetry 698 

data, c) valley-scale (10 m resolution), based on predictors derived from satellite images an 699 

field-based observations. 700 
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 702 

scale observation  vegetation class rho 

fine-scale GPS telemetry all 0.88 

fine-scale GPS telemetry moss tundra 0.20 

fine-scale GPS telemetry dwarf-shrub heath 1.00 

valley-scale GPS telemetry all 0.79 

valley-scale GPS telemetry moss tundra 0.93 

valley-scale GPS telemetry dwarf-shrub heath 0.60 

valley-scale field observation all 0.81 

valley-scale field observation moss tundra 0.90 

valley-scale field observation dwarf-shrub heath 0.83 

 703 

Table 1: Spearman rank correlation coefficients of pink-footed goose proportional habitat 704 

selection use and predicted vegetation disturbance likelihood during pink-footed goose pre-705 

breeding season (May-June 2019) in Adventdalen valley (Svalbard). Habitat use and 706 

vegetation disturbance measured at fine-scale (5 cm resolution), based on GPS telemetry data 707 

and predictors derived from drone images, and valley-scale (10 m resolution), based on GPS 708 

telemetry data or field observations and predictors derived from satellite images. 709 

 710 

  711 
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9. Appendix 1 712 

 713 
Figure S1: Proportional habitat use (out of 100%) by pink-footed geese during pre-breeding 714 

season (May-June 2019) in Adventdalen valley (Svalbard). Habitat use at a) fine-scale (5 cm 715 

resolution), based on predictors derived from drone images and GPS telemetry data, b) valley-716 

scale (10 m resolution), based on predictors derived from satellite images GPS telemetry data, 717 

c) valley-scale (10 m resolution), based on predictors derived from satellite images field-718 

based observations. 719 
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ABSTRACT: 

Increasingly advanced and affordable close-range sensing techniques are employed by an ever-broadening range of users, with varying 

competence and experience. In this context a method was tested that uses photogrammetry and classification by machine learning to 

divide a point cloud into different surface type classes. The study site is a peat scarp 20 metres long in the actively eroding river bank 

of the Rotmoos valley near Obergurgl, Austria. Imagery from near-infra red (NIR) and conventional (RGB) sensors, georeferenced 

with coordinates of targets surveyed with a total station, was used to create a point cloud using structure from motion and dense image 

matching. NIR and RGB information were merged into a single point cloud and 18 geometric features were extracted using three 

different radii (0.02 m, 0.05 m and 0.1 m) totalling 58 variables on which to apply the machine learning classification. Segments 

representing six classes, dry grass, green grass, peat, rock, snow and target, were extracted from the point cloud and split into a training 

set and a testing set. A Random Forest machine learning model was trained using machine learning packages in the R-CRAN 

environment. The overall classification accuracy and Kappa Index were 98% and 97% respectively. Rock, snow and target classes had 

the highest producer and user accuracies. Dry and green grass had the highest omission (1.9% and 5.6% respectively) and commission 

errors (3.3% and 3.4% respectively). Analysis of feature importance revealed that the spectral descriptors (NIR, R, G, B) were by far 

the most important determinants followed by verticality at 0.1 m radius.  

1. INTRODUCTION

In the past decades a step change in close range remote sensing 

technologies has allowed techniques such as photogrammetry to 

be employed by an increasingly diverse range of users, not only 

the specialist (Eltner et al., 2016; Westoby et al., 2012). The 

inevitable result of this proliferation has been an abundance of 

high-quality data for which automated processes of classification 

have become a practical necessity (Grilli et al., 2017), since 

manual labelling and classification are cost- and time-demanding 

and unfeasible for large datasets. In this context, at the 2019 

Innsbruck Summer School, Obergurgl (Rutzinger et al., 2018, 

2016), a team of researchers applied machine learning (ML) to a 

point cloud derived from dense image matching of a terrestrial 

photogrammetric survey. This came as part of a larger survey in 

in a mountain environment with also a remotely piloted aircraft 

system (RPAS) over the whole valley (Scaioni et al., 2018). Near 

infrared and RGB information was collected from both RPAS 

and terrestrial surveys, as previous literature has largely proven 

that any vegetation component can validly be labelled with 

spectral features (Alba et al., 2011).  

The fields of interest of the participants comprise a diversity of 

applications that can benefit from close-range sensing: from 

primary colonisation of recently deglaciated ground, through 

slope stability and evolution, to the surveying and interpretation 

of rarely preserved 700-million-year-old landforms. These users 

represent some of the numerous examples that may benefit from 

common data manipulation techniques, allowing statistical data 

to be derived from classifications within point cloud data. 

Within this study the aim was to i) classify relevant surface types 

within a small section of a mountain valley floor, ii) compare the 

efficacy of optical and geometric properties in distinguishing 

between key surface types and finally iii) to evaluate 

photogrammetric methods and machine learning approaches with 

respect to the group members’ research interests. 
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A terrestrial photogrammetry survey was undertaken on a 

partially snow-covered river bank comprising peat, loose soil, 

rock and vegetation and these different components were each 

assigned a class. Point cloud segments representative of each 

were used for training a machine learning model, subsequently 

used to classify areas within the entire point cloud with a degree 

of reliability. 

 

 

2. STUDY SITE 

The study area is located at the main alpine divide of the Austrian 

Alps at the border between the State of Tyrol (Austria) and the 

Province of South Tyrol (Italy). The Rotmoos valley (46° 50' 24'' 

N, 11° 01' 59'' E) extends c.  6 km from SE to NW and covers an 

area of c. 1 km² with an altitudinal range from c. 2240 m to c. 

3400 m. The area is characterised by an inner alpine climate and 

surrounded and protected by mountains. The nearby weather 

station (Obergurgl, 1938 m) shows a low mean annual 

precipitation of c. 819 mm, with maxima from June to August. 

Mean annual air temperature is + 2.2 °C, with the highest 

monthly means of around + 16 °C in July and the lowest mean of 

-8.3 °C in February (data period 1971-2000; ZAMG - Austria’s 

national weather service 2018). 

 

 
 

 

 
Figure 1.  Location of study area (red star) and Obergurgl (circle 

on middle image). The bottom image shows a close-

up of the erosion feature surveyed for this study. 

  
During the last glacial, the valley was shaped by glacial erosion 

through multiple advances of the Rotmoos glacier. The last 

glaciation of the valley floor was during the Younger Dryas 

period. After the retreat of the Younger Dryas glacier, the valley 

was filled with up to 40 m of sediment (Patzelt, 1995) and 

remained ice free during the last re-advance of the Rotmoos 

glacier during the Little Ice age. The attributed prominent 

terminal moraine complex is located c. 1 km up valley from the 

study site. In the distal and central part of the valley, a peat bog 

developed that covers an area of c. 800 by 120 m. The peat 

deposits are up to 2.65 m thick and radiocarbon dates from the 

base and top of the peat are c. 5994 and 1629 years before present 

respectively (Bortenschlager, 2010). Today, the peat bog is 

dissected and eroded by the river Rotmoosache, a tributary of the 

river Ötztaler Ache. A c. 20 m stretch of its bank is the object of 

this study (for location see Figure 1, red star). The study section 

comprises steep peat faces, which are highly water saturated and 

partly covered by snow and vegetation (Figure 1 bottom). 

 

 

3. METHODS 

Data acquisition was planned together with a team that acquired 

UAV imagery. Three of their ground control points (GCPs) were 

measured with differential GNSS (Global Navigation Satellite 

System) in order to georeference the final product in a projected 

coordinate system. A control measurement between points 

revealed sub-centimetre accuracy of the GCPs. In the study area 

for this investigation eleven GCPs were placed on the eroding 

scarp (Figure 1 bottom) and georeferenced using a total station 

positioned on one of the measured UAV GCPs.  

 

Terrestrial photogrammetry was used to survey the eroding scarp 

surface. Images were acquired using a consumer-grade RGB 

camera Canon EOS 450D (27mm) and a NIKON D-200 with 

HOYA R72 filter, modified to operate in the Near-Infrared region 

(NIR) of the electromagnetic spectrum (750 – 1,500 nm). The 

modification allowed the CCD sensor to record reflected 

radiation above 720 nm. As shown in Figure 2, the natural 

sensitivity of the CCD sensor includes wavelengths up to 950 nm, 

but these are filtered out by the camera filter. By removing this 

filter and adopting an external filter, NIR information can be 

recorded in the image. 

 

 

Figure 2.  CCD sensitivity of Nikon D200.  

 

3.1 Pre-processing 

In total 24 images were imported to Agisoft Metashape (AM). 

The GCPs were automatically detected and located by the 

●OBERGURGL 
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software. The coordinates of the GCPs that were measured using 

the total station in the field, were loaded into AM. After camera 

alignment, dense image matching was performed in order to 

obtain a dense point cloud. The same workflow was applied to 

the NIR imagery acquired with the modified camera. 

 

The point clouds from the RGB and NIR imagery were imported 

to CloudCompare software. First, NIR information was merged 

to the RGB point cloud using three nearest neighbours. The 

software finds, for each point in the RGB cloud, the three closest 

points in the NIR cloud, and appends the average from the three 

NIR values to the RGB point. Additionally, 18 geometric features 

were calculated within CloudCompare (see Table 1). A 

description on the computation of the eigenvalue and vector 

based features is given by Hackel et al. (2016). 

 

1. Roughness 2. Mean curvature 

3. Gaussian curvature 4. Normal change rate 

5. Number of neighbours 6. Surface density 

7. Volume density 8. Eigenvalues sum 

9. Omnivariance 10. Eigenentropy 

11. Anisotropy 12. Planarity 

13. Linearity 14. PCA1 

15. PCA2 16. Surface variation 

17. Sphericity 18. Verticality 

Table 1.  List of geometric features calculated from the point 

cloud.   

 

The geometric features are calculated by considering a number 

of neighbours. In CloudCompare the neighbours are identified 

using a user-defined radius. In this work three radii were tested: 

0.02 m, 0.05 m and 0.1 m. Respectively each distance had the 

following number of neighbouring points – average (standard 

deviation): 4.8(3.1), 12(8), 24.12(16). The final cloud had ~2.16 

million points. The final cloud was exported as a text file with 

information on the coordinates (x, y, z), RGB and NIR values and 

the 18 geometric features for each radius. The final feature count 

was therefore 54 geometric features and four spectral features 

(NIR, R, G, B), for a total of 58 descriptive features that can be 

used for classification. Further analysis was carried out using the 

statistical software R and R Studio. 

 

3.2 Classification 

The final cloud was imported in a text file format as a table 

(data.frame) in R 3.6 (R Core Team, 2018). A random  forest 

classifier was used as previous tests  have shown positive results 

(Pirotti et al., 2016; Pirotti and Tonion, 2019) and initial tests run 

on the data of this study supported the use of this classifier. This 

choice is however debatable as many factors must be taken into 

consideration and the issue is expanded upon in the Discussion 

Section. For the random forest model, the number of trees in the 

ensemble was set to 200 and the number of variables to split a 

node was set to 16, after tuning the model trying a grid of 6x6 

reasonable values of number of trees and number of variables. 

Six surface classes were defined, dry grass, green grass, peat, 

rock, snow and target (Table 2). This last class is represented by 

the 11 black and white targets used for GCPs.   

 

For classification with machine learning (ML), manually labelled 

(classified) points were used for training and testing. Manual 

labelling was a crucial task. For this study, subsets for each of the 

six classes were extracted from the original point cloud by 

manually clipping regions with points having a defined unique 

class. Table 2 shows that the number of labelled points per class 

is quite balanced, except for the “rock” class. The rock class is 

under-represented in the study area, as the surveyed area is 

mostly covered with grass, peat or snow. It was nevertheless 

included as it does represent a class of its own and cannot be 

reasonably merged in the other classes. 

 

 

ID Class N. Points 

1 dry grass 10932  

2 green grass 6494  

3 peat 13344  

4 rock 1621  

5 snow 5476  

6 target 12198  

Table 2.  List of classes with number of points in the labelled 

subset and colour related to Figure 4 . 

 

The labelled point set was further split into training (50%) and 

testing (50%) subsets. Random Forest was used to create a 

classification model based on the training data. The efficacy of 

each variable in creating the model was reported as Mean 

Decrease Accuracy (MDA). To assess accuracy of the model, the 

points in the test dataset were classified and the predicted classes 

compared to the labelled classes using a confusion matrix and 

accuracy metrics. Finally, the fitted Random Forest model was 

used to classify the entire point cloud, to generate a labelled 3D 

model of the study area (Figure 4). 

 

  

4. RESULTS 

The machine learning approach provided a very high overall 

classification accuracy of 98% across all classes, with a Kappa 

index of 97%. These figures are related to the independent testing 

dataset. Predictor accuracy was highest for the following classes: 

target, peat and snow, followed by rock and dry vegetation. 

Green and dry vegetation had both highest commission and 

omission errors, thus showing a likely mutual misclassification. 

Accuracy was high for snow, rock, peat and targets (> 98%). 

However, when dividing vegetation into dry and green, the 

observer’s accuracy drops to below 98.1% and 94.4% 

respectively (Table 3).  

 

 
 1 2 3 4 5 6   

1 4183 72 4 1 0 2 4262 1.9% 

2 132 2384 9 0 0 0 2525 5.6% 

3 5 11 5119 0 0 4 5139 0.4% 

4 0 0 0 633 0 0 633 0.0% 

5 0 0 0 0 2139 2 2141 0.1% 

6 6 1 6 0 9 4806 4828 0.5% 

 4326 2468 5138 634 2148 4814 19528  

 3.3% 3.4% 0.4% 0.2% 0.4% 0.1%  
 

         

Table 3.  Confusion matrix: columns=IDs of predicted classes, 

rows=IDs of real classes, commission errors (red) and 

omission errors (green) for each class. Class names 

are listed in Table 2. 

 

Feature importance over the whole classification process was 

also analysed (Figure 3). Figure 3 revealed that spectral 

descriptors were the most influential in classification. Within 

these, NIR ranked highest followed by red and then overall RGB. 

The next most-important non-spectral descriptor was the 

verticality at 0.1 m radius. 
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Figure 3. Overall variable importance of first ten most important 

features. 

 

 

 

  
  

Figure 4.  Classified results over the full point cloud (left) and 

RGB point cloud (right). 

 

 

Looking at importance of each feature for class scale (Table 4) 

shows that verticality at the highest radius size (0.1 m) was 

particularly important for the “target ” and “green grass” classes, 

along with point density features (features 5, 6 and 7  - i.e. 

number of neighbours, surface and volume density – see Table 

1). Surface variation (16) and sphericity (17) at 0.1 m showed a 

moderate, but relatively constant importance over all classes. 
 

 

Feature  

dry 

grass 

green 

grass peat rock snow target 

R 1,00 0,85 1,00 0,87 0,97 1,00 

G 1,00 0,83 1,00 0,89 0,97 1,00 
B 0,98 0,87 1,00 0,95 0,87 0,98 

NIR 1,00 0,92 0,91 0,81 1,00 1,00 

1 (0.05) 0,59 0,59 0,67 0,59 0,59 0,57 
2 (0.05) 0,60 0,60 0,64 0,60 0,60 0,58 

3 (0.05) 0,65 0,65 0,76 0,65 0,65 0,59 

4 (0.05) 0,69 0,69 0,82 0,69 0,69 0,62 
5 (0.05) 0,60 0,83 0,82 0,60 0,60 0,83 

6 (0.05) 0,60 0,83 0,82 0,60 0,60 0,83 

7 (0.05) 0,60 0,83 0,82 0,60 0,60 0,83 
8 (0.05) 0,51 0,54 0,52 0,51 0,51 0,54 

9 (0.05) 0,58 0,58 0,81 0,64 0,58 0,54 

10 (0.05) 0,51 0,54 0,51 0,52 0,52 0,54 
11 (0.05) 0,70 0,70 0,83 0,70 0,70 0,62 

12 (0.05) 0,59 0,59 0,59 0,59 0,59 0,59 

13 (0.05) 0,54 0,59 0,54 0,56 0,54 0,59 
14 (0.05) 0,54 0,57 0,60 0,54 0,54 0,57 

15 (0.05) 0,58 0,59 0,58 0,58 0,58 0,59 

16 (0.05) 0,69 0,69 0,82 0,69 0,69 0,62 
17 (0.05) 0,70 0,70 0,83 0,70 0,70 0,62 

18 (0.05) 0,82 0,94 0,77 0,70 0,71 0,94 

1 (0.02) 0,53 0,53 0,64 0,56 0,53 0,53 
2 (0.02) 0,58 0,58 0,72 0,58 0,58 0,55 

3 (0.02) 0,59 0,59 0,70 0,59 0,59 0,56 

4 (0.02) 0,58 0,58 0,81 0,63 0,58 0,55 
5 (0.02) 0,55 0,82 0,74 0,55 0,55 0,82 

6 (0.02) 0,55 0,82 0,74 0,55 0,55 0,82 
7 (0.02) 0,55 0,82 0,74 0,55 0,55 0,82 

8 (0.02) 0,51 0,54 0,52 0,51 0,51 0,54 

9 (0.02) 0,58 0,58 0,81 0,64 0,58 0,54 
10 (0.02) 0,51 0,54 0,51 0,52 0,52 0,54 

11 (0.02) 0,58 0,58 0,82 0,63 0,58 0,54 

12 (0.02) 0,62 0,66 0,52 0,52 0,61 0,66 
13 (0.02) 0,61 0,65 0,56 0,51 0,62 0,65 

14 (0.02) 0,60 0,60 0,60 0,53 0,62 0,60 

15 (0.02) 0,62 0,66 0,53 0,51 0,61 0,66 
16 (0.02) 0,58 0,58 0,81 0,63 0,58 0,55 

17 (0.02) 0,58 0,58 0,82 0,63 0,58 0,54 

18 (0.02) 0,76 0,87 0,75 0,66 0,65 0,87 
1 (0.1) 0,62 0,62 0,62 0,62 0,62 0,60 

2 (0.1) 0,63 0,61 0,61 0,61 0,61 0,63 

3 (0.1) 0,69 0,71 0,69 0,69 0,69 0,71 
4 (0.1) 0,77 0,77 0,80 0,77 0,77 0,70 

5 (0.1) 0,67 0,92 0,89 0,67 0,67 0,92 

6 (0.1) 0,67 0,92 0,89 0,67 0,67 0,92 
7 (0.1) 0,67 0,92 0,89 0,67 0,67 0,92 

8 (0.1) 0,54 0,57 0,54 0,60 0,56 0,57 

9 (0.1) 0,76 0,76 0,80 0,76 0,76 0,71 
10 (0.1) 0,57 0,60 0,55 0,59 0,56 0,60 

11 (0.1) 0,77 0,77 0,80 0,77 0,77 0,71 

12 (0.1) 0,57 0,57 0,57 0,60 0,57 0,57 
13 (0.1) 0,53 0,54 0,52 0,62 0,53 0,54 

14 (0.1) 0,63 0,60 0,60 0,64 0,60 0,63 

15 (0.1) 0,56 0,57 0,56 0,60 0,56 0,57 
16 (0.1) 0,77 0,77 0,80 0,77 0,77 0,70 

17 (0.1) 0,77 0,77 0,80 0,77 0,77 0,71 

18 (0.1) 0,85 0,98 0,80 0,73 0,79 0,98 

 

Table 4.  Variable importance for each class and feature. 

Numbers in first column are related to Table 1, values 

in parenthesis in first column is radius for 

neighbourhood definition. 
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5. DISCUSSION 

The primary objective of this investigation was to test the 

performance of a well-known machine learning algorithm, 

Random Forest, for classification of point clouds from a 

terrestrial photogrammetric survey. The following discussion 

will focus on the strengths and weaknesses of the techniques 

applied and their resulting outputs, allowing suggestions for 

future improvements. Moreover, consideration will be given to 

the replicability of the method used herein, to address the 

respective research questions of other fields of research. 

 

5.1 Effectiveness of methods and outputs 

Visual comparison of the classified point cloud and original 

images immediately reveals a striking qualitative similarity, 

(Figure 4) which is supported by the confusion matrix and the 

Kappa index of agreement and other accuracy metrics which 

have high values. It must be noted that the accuracy metrics are 

calculated over an independent set, but still over a small number 

of points, i.e. ~50 thousand labelled points from a total of a point 

cloud with ~2 million points (~2.5%). The points have been 

chosen from across the dataset, to avoid spatial autocorrelation 

(see Figure 5), and further splitting into training and testing 

datasets have been done with stratified random sampling (strata 

according to classes), thus keeping independency, but still 

training and testing data are limited to a small dataset. This 

implies that classification accuracy metrics can be very high, but 

not necessarily reflect the performance over all the area.  A visual 

analysis from the classified set (Figure 4) shows that some points 

of snow patches are erroneously classified as targets. This is 

probably due to similarity in colour (white target and white snow) 

and in shape of the object, as a snow patch around a 10 cm radius 

will appear close to flat, just like a target. Since colour and 

verticality are the most important features (Figure 3), a similarity 

in these features will result in class mixing.  

 

 
Figure 5.   Red points represent labelled points used for training 

on the whole dataset. 

 

Moreover, there is a lack of point cloud data within the snow 

patches (Figure 4); a more quantitative approach reveals that, 

whereas discrimination between rock, snow, soil and vegetation 

was reliable, the distinction between wet and dry vegetation was 

more problematic (Table 3). 

 

The weakness discriminating between the two classes of 

vegetation (green and dry vegetation) is likely due to the 

gradational boundaries between the two classes, where one 

blends into the other. This is exacerbated by their physical 

proximity, as they do not occur in discrete areas of dry and wet 

vegetation. In any case this distinction between wet and dry is 

somewhat arbitrary, using qualitative colour choices within the 

image for the selection of training data. Future workers should 

consider the ground truthing of wet and dry areas by touch or 

using a more quantitative approach with moisture detection 

equipment. 

 

The lack of data cloud points within the snow areas results from 

the high snow albedo in contrast to the relatively dark remainder 

of the images, resulting in over-exposure of the former. This 

could be overcome by multiple images from the same position 

using different exposure settings (i.e. ISO, shutter speed, F-stop), 

or by using a camera with greater bit depth. The former is 

potentially labour intensive if images require merging by hand 

before construction of the point cloud, whereas the latter solution 

is limited by the available camera. Other options might be taking 

images in the RAW format and using post-processing in order to 

fix the over-exposed spots or using a polarizing filter, which 

increases contrasts and the overall colour saturation. These 

solutions may however be equally labour or cost intensive and 

have their limitations. 

 

5.2 Descriptors 

The importance of NIR and red descriptors suggests that the 

Normalized Difference Vegetation Index (NDVI) could be used 

as a proxy for changes along the eroding riverbank. Although 

generally much less important than spectral features, verticality 

was the highest non-spectral descriptor and especially useful in 

dividing rocks from other classes. 

 

5.2.1 Geometric descriptors: as seen in Table 4, verticality 

and density-based descriptors like surface and volume density 

and number of neighbours do have importance for the Random 

Forest method. It must be noted that correlation does not 

necessarily indicate causation and therefore importance might 

not be related to class-intrinsic information, but to a coincidental 

relationship. For example most targets were placed vertically 

thus verticality might support classification, yet this would not be 

useful in a scenario where targets were placed at different angles. 

An important rule is that machine learning and artificial 

intelligence in general work as well as the similarity to trained 

data. Care must be taken when applying a model trained with a 

dataset which has different characteristics than the dataset to be 

classified. 

 

5.2.2 Neighbourhood size: The questions of ideal radius size 

and ideal number of neighbours are important when considering 

descriptors that use neighbours to describe shape and 

morphology (Pirotti and Tonion, 2019; Weinmann et al., 2015). 

The ideal method would involve finding the best number of 

neighbours for each point from a range by adopting a minimal 

entropy approach. Although effective this requires very intensive 

calculation as entropy has to be determined for a range of 

neighbours for each point. For this study therefore three radii 

were tested, instead of adopting the minimal entropy method. As 

a compromise, considering that a number of geometric features, 

including verticality, showed highest importance at the largest 

chosen radius, (0.1) the study could be extended to test if even 

larger radii could give better results. 

 

5.3 Class definition  

In general, the choice of classes within any point cloud will be 

guided by the research question at hand. However practical 

limitations of the data may restrict what can be distinguished by 

the machine learning process. With this in mind it is suggested 

that future work could attempt unsupervised classification of the 

point cloud data. On the one hand this may provide insights into 

the type of further classifications that could reliably be made and 

on the other it may reveal patterns that are not otherwise obvious. 

This would overcome a limitation of the technique employed 

herein. Specifically, spectral attributes (i.e. examination of the 

photographs) were used to select classes and training segments 

therefore it is unsurprising that spectral descriptors are the most 

influential. 
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5.4 Data acquisition 

In terms of practicalities two potential obstacles were 

encountered, both relating to time. First the terrestrial 

photography of the survey team took place within the UAV flying 

area of another team, allowing our data to be placed into a broader 

context. However, both teams worked on the area at the same 

time, resulting in significant waiting time during which the area 

could not be accessed whilst imaged from the air. Improved 

coordination would significantly reduce time in the field 

improving efficiency. Second, although only a small area was 

imaged for terrestrial photogrammetry, it was time consuming in 

terms of processing time.  Caution must be applied in similar 

surveys in determining the ideal scale for surveying the area of 

interest as a function of required detail and objects to be 

classified.  

 

5.5 Future work 

Several aspects can be further investigated. An interesting aspect 

is the impact of point density on results. As mentioned in the 

previous section, the processing time does impact significantly 

on the method. Depending on the study area size and types of 

classes it is very likely that there is an ideal density below which 

the classification accuracy drops unacceptably. Addressing this 

is relatively simple, as the method can be applied to gradually 

decimated point clouds. The presented workflow could also be 

preceded by a point cloud segmentation to enable an object-based 

classification. As outlined by Vosselman, (2013), this would 

allow for the computation of additional features such as shape, 

which could be well suited for discriminating targets from other 

classes. If rocks have a common morphological appearance in the 

study area due to their transport history, descriptors of size and 

shape could also improve the classification. 

As outlined in Section, 5.2.1, the importance of some features is 

likely related to peculiarities of the research area. Therefore, 

future work should also assess the transferability of the proposed 

method. This could for example include alteration of class 

definitions, size of the research area and environmental 

characteristics. Additionally, the study design should be tested 

for robustness under different weather conditions. At the day of 

the study most surfaces were relatively dry. Moist weather could 

change the surfaces reflectance, making it harder to distinguish 

certain classes (for example dry and green vegetation or rocks 

and peat). 

 

5.6 Relevance to the research interests  

The potential applications of these methods are diverse, in terms 

of both scale and classification type. At the metre to ten-metre 

scale, classification techniques can distinguish categories of 

surface features upon boulders, to help elucidate their transport 

history. At the kilometre scale this method may be used to 

classify bedrock surfaces using UAV data, that may be host to 

subglacially striated areas. The advantage of machine learning in 

this approach is that these surfaces have distinct 

geomorphological characteristics, of roughness and curvature, 

but are often in remote areas. The resulting classification could 

allow targeting of the most likely areas for ground examination. 

Machine learning techniques based on the Random Forest 

algorithm are used to detect landslides and to assess landslide 

susceptibility maps for large regions e.g.Catani et al., 2013; Kim 

et al., 2018; Stumpf and Kerle, 2011; Taalab et al., 2018). In 

terms of monitoring and predicting landslide movements, these 

methods can be of great help for civil protection and risk 

mitigation. 

 

Distinguishing between biotic and abiotic classes to better 

understand their relative influences on a recently deglaciated 

landscape could also be a target for a classification framework of 

point cloud data. Moreover, integration of the classification with 

spatial data can be used to investigate the relationship between 

primary succession and relief. More environmental applications 

can be distinguishing between healthy and damaged vegetation, 

for example due to icing events in Arctic tundra environments. 

 

 

6. CONCLUSIONS 

During the course of the Summer School the participants 

captured, constructed and merged geo-referenced point clouds 

that contained NIR and RGB data respectively and used these to 

train a machine learning process that segregated the merged 

cloud into six classes. The target, snow, rock and peat classes 

were reliable whereas distinguishing between wet and dry 

vegetation classes was more problematic, likely due to 

ambiguous training segments. Optical descriptors were far the 

most important attributes in classification, although, this is pre-

determined by the selection of training areas based on visible 

light properties. Shape features from 3D points clouds bring some 

improvement over the overall classification results, and this can 

be further addressed including the laser scanning data (Pirotti, 

2019) from the RPAS survey of the area.  During data 

acquisition, processing and analyses each of the participants 

learned new skills and identified practical applications of those 

skills in their own study areas. 
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