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Abstract: Mucous membranes such as the gill and skin mucosa in fish protect them against a
multitude of environmental factors. At the same time, changes in the molecular composition of
mucus may provide valuable information about the interaction of the fish with their environment,
as well as their health and welfare. In this study, the metabolite profiles of the plasma, skin and
gill mucus of freshwater Atlantic salmon (Salmo salar) were compared using liquid chromatography
coupled to high-resolution mass spectrometry (LC-HRMS). Several normalization procedures aimed
to reduce unwanted variation in the untargeted data were tested. In addition, the basal metabolism
of skin and gills, and the impact of the anesthetic benzocaine for euthanisation were studied. For
targeted metabolomics, the commercial AbsoluteIDQ p400 HR kit was used to evaluate the potential
differences in metabolic composition in epidermal mucus as compared to the plasma. The targeted
metabolomics data showed a high level of correlation between different types of biological fluids
from the same individual, indicating that mucus metabolite composition could be used for fish health
monitoring and research.

Keywords: gill mucus; skin mucus; Atlantic salmon; biomarkers; non-invasive sampling; data
normalization

1. Introduction

In order to obtain and maintain high standards in aquaculture, and to reduce mortality,
non- or low-invasive methods to monitor fish health are required [1]. In recent years, omics-
type applications have accelerated the research in the field of aquaculture. Metabolomics
is the holistic study of small molecules, and commonly makes use of advanced analytical
chemistry techniques to explore the dynamic metabolic responses of living systems to
genetic or environmental factors [1,2]. By using high-resolution mass spectrometry (HRMS)
systems coupled with liquid chromatography (LC) or nuclear magnetic resonance spec-
troscopy (NMR), metabolomics has been successfully used to explore suitable biomarkers
for specific conditions, and to identify the particular metabolic pathways that are involved
in e.g., disease mechanisms or exposures with certain chemicals [3].

As a result of the increasing focus on animal welfare, the interest in monitoring
health biomarkers, e.g., for disease prediction or treatments effects in samples obtained by
non-invasive strategies is growing [2]. Blood samples could reflect physiological and/or
pathological conditions as it circulates through organs [4,5]. Although blood testing has
become one of the most informative screening methods in metabolomics, there is a trend
towards using even less invasive samples, like mucus [1]. Considering that the mucus
has a wide range of functions including protection, disease resistance, ionic and osmotic
regulation and communication, the skin and gill mucus of fish may provide useful and
important molecular information on the health state [6]. However, several issues attributed
to the sampling of mucus have a strong influence on the validity of metabolomics data [2,7].
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Considering the rapid changes in the metabolome, it is crucial to minimize the biological,
technical and experimental variability caused by the sampling procedure. Therefore, nor-
malization of the data is highly important to improve reliability and biological relevance of
collected data [7]. Taking into account that the mucus layer acts as a barrier between fish
and water, an adequate normalization strategy may help to control the variable dilution
of mucus samples that greatly affects the concentration of metabolites. In order to over-
come this challenge, the comparison of several normalization strategies using untargeted
metabolomics data has been shown previously [7,8].

Different mucus components such as proteins, carbohydrates, lipids and other metabo-
lites have been linked to regulatory processes in fish such as osmoregulation, respiration,
nutrition or locomotion as well as defense against pathogens [6,9]. Therefore, the idea to
use the total metabolic profile of fish mucus to monitor the physiological status of fish and
potential responses to environmental disturbances could be promising. However, there are
several challenges regarding the suitability of mucus to reflect fish physiology. Recently,
it has been demonstrated that gill mucus composition was considerably influenced by
several fish life-history traits including the diet, presence of parasites and phylogeny [9].
Epidermal mucus was assumed to better reflect the environmental status of the fish habitat.
Several skin mucus metabolites such as free amino acids, glucose, lactate and cortisol were
linked to body odor due to the comparable feeding habits and physiological response
to stress [10,11]. Furthermore, a recent study reported the positive correlation of stress
biomarkers in plasma and skin mucus [12]. Interestingly, the levels of exuded cortisol
in mucus were stressor dependent, indicating a physiologically specific response. An
earlier study, performed in rainbow trout (Oncorhynchus mykiss), reported that amino acid
mobilization and metabolism was rapidly affected by elevated plasma cortisol following
exhaustive exercise [13]. Thus, altered levels of alanine, glutamine, glutamic acid, and
branched-chain amino acids (BCAA), i.e., isoleucine, leucine and valine, were detected in
plasma as well as in liver and muscle [13]. For salmonids, a correlation between stress,
plasma cortisol levels and several mucus enzymes/proteins has been reported [14]. All
this evidence indicates the interrelationship between biological fluids and skin mucus in
response to a stimulus. Therefore, one of the goals of the present study was to explore
the metabolic profile of skin and gill mucus of salmon by using targeted and untargeted
metabolomics. Another aim was to compare metabolite profiles in the mucus with that of
plasma samples in order to assess to what degree the mucus metabolome reflects the plasma
metabolome. Furthermore, an overdose of benzocaine was used to map the metabolic
pathways that could be affected by acute stress associated with the treatment of the fish and
hypoxia in order to obtain baseline data for studies that include such (or similar) treatment.

2. Results
2.1. Untargeted Analyses
2.1.1. Normalization of Data from Skin and Gill Mucus

Considering that the data normalization is a known challenge in metabolomics ap-
proaches, several normalization strategies were tested in order to reduce within-class
variability attributed to the variable dilution status of individual mucus samples. A total
of 20 mucus samples from four biological groups (i.e., n = 5 for each of the four groups,
gill/skin and control/benzocaine treated) were included in untargeted HILIC–HRMS re-
sulting in the detection of 1605 compounds following pre-processing of the raw data in
Compound Discoverer software. In order to find the optimal normalization method to
control the impact of variable dilution in the two types of mucus, the dataset was normal-
ized by using the sum of peak areas, sample median, total protein content and median fold
change methods. The performance of applied normalization techniques was evaluated
by comparing the relative standard deviation (RSD) values of all metabolites within each
experimental group. In order to compare the quality of the normalization between different
normalization approaches, we calculated the number of metabolites with a RSD ≤ 30%
within each group, and the intra-group’s RSD median. Thus, the least successful nor-
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malization approach (i.e., resulting in a dataset with high within-group variability) was
normalization by total protein content (Table 1). The normalization by using the sample
median and median fold change method demonstrated a clear improvement in the data
set thereby reducing the variability across sample replicates within the four experimental
groups (Table 1).

For the purpose of direct visual comparison of the normalized data, the four nor-
malization methods in addition to the dataset without normalization were compared in
unsupervised principal component analysis (PCA) score plots (Figure 1).
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Figure 1. Two-dimensional score plots from PCA of the raw data (A) and data normalized by
total protein content (B), sum (C), median (D) and median fold change (E). The different groups
correspond to skin and gill mucus samples collected following percussive stunning (“Control_Skin”
and “Control_Gills”) or benzocaine overdosing (“Benzocaine_Skin” and “Benzocaine_Gills”).

All tested normalization methods resulted in small QC sample offsets (Figure 1). This
was also the case for the original data set indicating appropriate quality of the raw data
and adequate data filtering in Compound Discoverer software based on 50% QC presence
and ≤30% RSD in QCs. When the data was normalized to total protein content (Table S1),
the gill and skin mucus samples clustered less clearly (Figure 1). Interestingly, normal-
ization to total protein content slightly deteriorated the clustering between experimental
groups, compared to when no normalization was applied. Normalization-by-sum was
superior to normalization by protein content. However, the benzocaine and percussive
stunning sub-groups were not clearly separated in the PCA score plots and in separate
MetaboAnalyst dendrograms generated by using the Euclidean distance (Figures 1 and
S1). Normalization-by-median or median fold change resulted in PCA score plots and
hierarchical clustering dendrograms that clearly separated the two types of mucus, and
also distinguished the samples that were obtained following either benzocaine overdosing
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or percussive stunning (Figures 1 and S1). The observed trends were confirmed by creating
supervised orthogonal partial least squares discriminant analysis (OPLS-DA) models that
significantly discriminated between the two types of mucus, as well as between percussive
stunning and benzocaine-treated sub-groups (Table 2). The results of permutation tests
consisting of 100 permutations confirmed the lack of overfitting. The quality parameters of
constructed OPLS-DA models associated with top-performing normalization methods are
summarized in Table 2 indicating the reliable discrimination between groups. Considering
that comparable levels of the variance (R2Y) and predictability (Q2Y) were demonstrated
for both top-performing normalization methods (i.e., normalization-by-median and median
fold change), we decided to select the normalization-by-median approach to further explore
general metabolic variations between skin and gill mucus and dysregulation followed by
anesthesia.

Table 1. The number of metabolites with an intra-group variation RSD ≤ 30% from untargeted
HILIC–HRMS.

Normalization Method
N (RSD ≤ 30%) 1 Median RSD (%) 2

Controls 3 Benzocain Controls 3 Benzocaine

Gills Skin Gills Skin Gills Skin Gills Skin

Non-normalized 719 724 811 909 32 33 30 24
Sum of peak areas 845 807 825 894 28 30 29 27

Protein content 358 170 72 868 40 48 66 28
Median 853 908 815 932 28 25 30 25

Median fold change 853 913 838 938 28 25 29 24
1 Number of metabolites with an intra-group RSD ≤ 30%; 2 Intra-group median RSD; 3 Fish killed by percussive
stunning.

Table 2. The quality parameters of OPLS-DA models associated with normalization-by-median and
median fold change (MFC) methods.

OPLS-DA 1 R2Y Q2Y CV-ANOVA [p Value] Permutation

Median MFC Median MFC Median MFC Median/MFC

Control_Skin vs. Benzocaine_Skin 0.927 0.929 0.833 0.834 0.0019 0.0019 Valid
Control_Gills vs. Benzocaine_Gills 0.95 0.948 0.757 0.756 0.0071 0.0071 Valid

Benzocaine_Skin vs. Benzocaine_Gills 0.906 0.905 0.874 0.873 0.0007 0.0007 Valid
Control_Skin vs. Control_Gills 0.927 0.935 0.833 0.863 0.0019 0.0010 Valid

1 All models were generated with one predictive component and zero orthogonal components.

2.1.2. Metabolic Pathways: Functional Analysis

The pathway analysis module in MetaboAnalyst 5.0 (functional analysis, https://
www.metaboanalyst.ca, access on 24 December 2021) was used to explore the differences in
general metabolism between skin and gill mucus. In addition, we mapped the potential
metabolic pathways that could be affected by fish manipulations associated with the mucus
harvesting and the use of anesthetic during the sampling procedure. By using an anesthetic
(i.e., benzocaine) overdose, we aimed to determine the baseline effect from stress associated
with the cessation of breathing which, in turn, reduces gas transfer leading to hypoxia and
respiratory acidosis [15].

In general, we found that the major differences in the expression of metabolic path-
ways, as assessed based on the gill and skin mucus samples, were attributed to the
metabolism of free amino acids (Table 3).

https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
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Table 3. The major metabolic pathways that were expressed differently in skin and gill mucus or
disturbed due to the exposure to benzocaine.

Groups Comparison Metabolic Pathways p Value Significant Hits

Control_Skin vs.
Benzocaine_Skin

Aminoacyl-tRNA
biosynthesis 0.009 L-phenylalanine, L-alanine, L-lysine, L-isoleucine, L-aspartate, L-proline

Control_Gills vs.
Benzocaine_Gills

Fructose and mannose
metabolism 0.021 D-fructose, D-mannose, D-glyceraldehyde, 6-deoxy-L-galactose,

D-glucose, 2-dehydro-3-deoxy-L-fuconate, D-lactic acid
beta-Alanine
metabolism 0.022 glycerone, D-lactate, D-glyceraldehyde, 3-hydroxypropanoate, β-alanine,

L-aspartate, 3-aminopropanal, L-alanine

Benzocaine_Skin vs.
Benzocaine_Gills

Alanine, aspartate and
glutamate metabolism 0.006

N-acetyl-L-aspartate, L-aspartate, D-aspartate, L-alanine,
L-glutamic acid, 4-aminobutanoate, L-glutamine, fumaric acid,
β-citryl-L-glutamate

Aminoacyl-tRNA
biosynthesis 0.028 L-phenylalanine, L-glutamine, glycine, L-aspartate, L-alanine, L-isoleucine,

L-leucine, L-threonine, L-proline, L-glutamic acid

Pyrimidine metabolism 0.033 L-glutamine, thymine, (R)-3-ureidoisobutyrate, β-alanine,
(R)-3-aminoisobutyrate

Glutathione metabolism 0.033 glutathione, glycine, L-glutamic acid, 5-oxoproline, L-ornithine
Selenocompound

metabolism 0.041 L-alanine, β-alanine, sarcosine

Control_Skin vs.
Control_Gills β-Alanine metabolism 0.024 3-hydroxypropanoate, β-alanine, L-aspartate,3-ureidopropionate,

dihydrouracil
Aminoacyl-tRNA

biosynthesis 0.039 L-asparagine, L-phenylalanine, glycine, L-aspartate, L-methionine,
L-alanine, L-lysine, L-isoleucine, L-leucine, L-glutamic acid

An overdose of benzocaine resulted in the disturbance of several metabolic pathways
attributed to energy metabolic pathways and amino acid metabolic pathways (Table 3).

It is well known that amino acids regulate key metabolic pathways that are crucial in
growth, development and health of fish [16]. Considering that differences in free amino
acid metabolism were observed between gill and skin mucus, we decided to use targeted
metabolomics based on the AbsoluteIDQ p400 HR kit to evaluate the performance both
approaches.

2.2. AbsoluteIDQ® p400 HR Kit
2.2.1. Comparing Mucus and Plasma Samples Using Targeted Metabolomics

In order to characterize if the skin and gill mucus metabolome reflected the physiolog-
ical status of fish, the plasma and mucus samples from the same individuals (n = 3) were
analyzed by using a targeted approach, and the individual correlations between plasma
and mucus metabolites were established.

The final mucus-related dataset, following data filtering described in Section 4.4
included 38 out of the 408 metabolites that are targeted in the AbsoluteIDQ p400 HR kit
(Biocrates Life Science AG, Innsbruck, Austria) (Table 4). The median concentrations of all
quantified metabolites are presented in the Supplementary Information (Table S2).

The number of metabolites detected in salmon plasma by using the targeted approach
was substantially higher than that in gill or skin mucus. Thus, a total of 163 out of
408 metabolites could be quantified in the salmon plasma samples (Table 4). The median
values of quantified plasma metabolites are summarized in Table S3. With exception of SM
(42:3) and fumarylcarnitine (AC (4:1-DC)), all metabolites detected in epidermal mucus
samples were present in plasma samples. In general, the concentration of metabolites
detected in plasma was significantly higher as compared with the skin and gill mucus
samples. Clear associations were found between the metabolites that were detected in the
three tissues studied. Pearson’s correlation coefficients ranged from 0.85 to 0.99 (Figure 2),
indicating that metabolites in epidermal and gill mucus reflect the concentrations in blood,
and thus could be used similarly as blood to assess general physiological status of fish.
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Table 4. Number of detected metabolites, organized by compound class, and the most abun-
dant metabolite per class in salmon gill, skin mucus and plasma samples detected by using the
AbsoluteIDQ® p400 HR kit.

Total Number
of Metabolites

Detected Most Abundant

Mucus Plasma Gill Skin Plasma

Acylcarnitines [AC (X:Y)] 55 3 10 L-Carnitine

Amino Acids [AA] 21 19 20 L-Glutamic
acid L-Valine L-Valine

Biogenic Amines [BA] 21 5 10 Taurine
Lysophosphatidylcholines[LPC (X:Y)] 24 - 12 ND ND LPC (22:6)

ConfirmedPhosphatidylcholines [PC (X:Y)] 172 8 54 PC (38:6) PC (34:2) PC (38:6)
Ceramides [Cer (X:Y)] 9 - 1 ND ND Cer (42:2)

Sphingomyelins [SM (X:Y)] 31 1 10 SM (42:3) SM (42:3) SM (42:2)
Sum hexoses [including glucose] 1 1 1 Sum hexoses

Cholesteryl Esters [CE (X:Y)] 14 - 7 ND ND CE (22:6)
Diglycerides [DG (X:Y)] 18 - 10 ND ND DG (36:2)
Triglycerides [TG (X:Y)] 42 1 28 TG (52:7) TG (52:7) TG (56:7)

ND: Not detected.
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on a logarithmic scale.

2.2.2. Skin and Gill Mucus: General Considerations

In general, the overall metabolite concentration in gill mucus was at least twice as
compared to the skin mucus samples, which at least in part could be a result of different
dilution during the sampling procedure (Table S2). Therefore, the data were additionally
normalized by using the median method, which performed best for the untargeted data, in
order to allow direct comparison of skin and gill mucus.

Free amino acids were relatively abundant in skin and gill mucus (Table S2 and
Figure S2). We detected 19 amino acids in gill mucus, while lysine was not detected in skin
mucus, and thus only 18 amino acids were detected in the latter. The amino acid profiles of
gill and skin mucus were rather similar, though the gill mucus contained relatively higher
amounts of glutamic acid and alanine (Figure S2). In contrast, the skin mucus contained
relatively more valine compared to gill mucus. Other metabolites detected in the gill and
skin mucus using the AbsoluteIDQ® p400 HR kit included three acylcarnitines and five
biogenic amines (Table 4). The group of biogenic amines was largely dominated by taurine
that was detected in the 90–500 µM range. Sarcosine was not detected in the skin mucus as
compared to the gill mucus. Although it was not expected to find substantial amounts of
lipids in skin and gill mucus, we detected eight phosphatidylcholines (PC), one triglyceride
(TG) and one sphingomyelin (SM) using the AbsoluteIDQ® p400 HR kit (Table S2).

The quantitative data were further used to calculate sums and ratios for several de-
tected metabolites, as such ratios in some cases provide more biological information [17].
Thus, the sum of all glucogenic amino acids and biogenic amines were detected in signifi-
cantly higher concentrations in gill mucus samples compared to the skin mucus samples
(p-values of 0.014 and 0.006, respectively; Table S4). In addition, the ratios of glutamic
acid to glutamine, sum of putrescine and spermidine to ornithine, as well as putrescine
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to ornithine demonstrated similar trends (Figure 3). In contrast, the ratios of methionine
to phenylalanine and that of ornithine to arginine were significantly lower in gill mucus
samples as compared to the skin mucus (Figure 3 and Table S4).
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Figure 3. The ratios of metabolites that significantly differentiated the skin and gill mucus samples
(Glu, glutamic acid; Gln, glutamine; Met, methionine; Phe, phenylalanine; Orn, ornithine; Arg,
arginine; ∑polyamines = (putrescine + spermidine)).

2.2.3. Univariate and Multivariate Analysis: Comparing the Gill and Skin
Mucus Metabolome

The pre-processed data were subjected to univariate statistical analyses. Volcano plots
showed that three metabolites, i.e., AC (4:1-DC), ornithine and alanine were present in
statistically different concentrations in gill and skin mucus (false discovery rate (FDR)-
adjusted p-value ≤ 0.1 and fold change (FC) ≥ 2) (Table S5). Benzocaine treatment prior to
sampling resulted in significantly different concentrations of carnitine (AC (0:0)), alanine,
sarcosine, glutamic acid, acetylcarnitine (AC (2:0)), PC (36:5), PC (41:5) and PC (35:2) in
skin mucus as compared to the gill mucus (FC = 2; FDR-adjusted p = 0.0234; Table S6).
A heatmap for visualization of the top 10 most differential metabolites (t-test/ANOVA)
distinguishing the gill and skin mucus from salmon, euthanized using benzocaine or
percussive stunning, can be found in Figures 4 and S3.

Although a PCA score plot revealed a clear separation between gill and skin mu-
cus samples, it did not show obvious variation in the data associated with benzocaine
treatments (Figure 5).

Supervised orthogonal partial least squares discriminant analysis (OPLS-DA) to infer
metabolites that were discriminant between skin and gill mucus, collected following
percussive stunning, did not result in valid models. In addition, OPLS-DA was not able
to distinguish between skin and gill mucus collected with or without anesthetics (data
not shown). This could be attributed to the limited number of samples used for targeted
metabolomics. Although the metabolic profiles of benzocaine treated groups was not
clearly distinguishable from control groups, the observed differences between skin and gill
mucus were in accordance with the data from untargeted metabolomics, especially with
regard to several amino acids, such as alanine, isoleucine and leucine.
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Figure 4. Top 10 most differential metabolites that contributed to differences between gill and skin
mucus from salmon euthanized using benzocaine or percussive stunning (“Control”). The metabolite
levels (µM) detected with the AbsoluteIDQ® p400 HR kit were normalised by median. The data are
presented as the mean, error bars are the standard error. Metabolites that were found in significantly
different (FDR-adjusted p ≤ 0.1) concentrations with a fold-change ≥2: (*) in skin mucus as compared
to the gill mucus and (•) in skin mucus followed by benzocaine treatment. AC (0:0), carnitine; AC
(2:0), acetylcarnitine; Ala, alanine; Gln, glutamine; xLeu, sum leucine + isoleucine; Met, methionine;
Orn, ornithine.
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3. Discussion

The use of skin and gill mucus to monitor and study the health state of fish is of
growing interest [1,2,10,11]. Mucus samples may be collected using a non-invasive sam-
pling strategy and provide the opportunity to potentially discover early stages of disease
or responses to environmental challenges in general [18]. Although the application and
integration of several “omics” techniques could improve the understanding of fish mucus
composition, there are several challenges associated with their application in general, es-
pecially with metabolomics [1,18]. Special consideration should be given to the sampling
procedure, which is a critical source of experimental variability. Several methods could be
suitable for the collection of mucus, e.g., gently moving whole fish in plastic bags containing
ammonium bicarbonate buffer, scraping of mucus using sterile glass slides, or absorption of
mucus using a medical wipe [11,19,20]. Considering that the composition and physical char-
acteristics of both skin and gill mucus can be influenced by several external factors such as
dilution with water, the raw data from instrumental analyses must be normalized suitably.
Recently, the mucus samples from three model species, meagre (Argyrosomus regius, Asso
1801), European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.)
was studied with regard to physiological responses associated with anoxia, infection with
Vibrio anguillarum and fasting [9]. This study showed that both glucose, lactate and cortisol
could serve as mucus biomarkers to monitor physiological responses to environmental
or anthropogenic challenges. However, the glucose-to-protein ratio was the most reliable
biomarker, indicating the importance of normalization. We therefore compared several
normalization strategies to reduce unwanted experimental variability before statistical anal-
yses. Normalization to total protein did not reduce the variability within the experimental
groups in our data set. This could in part be explained by the fact that the soluble proteins
that were covered by total protein quantification include both proteins that are related
to metabolite abundance, such as enzymes, but also transcription factors and structural
proteins, which are not related to metabolite abundance directly [7]. In addition, poor
protein recovery in mucus, sampled by absorption of the water phase, can be another factor
that reduces the suitability of total protein for normalization of metabolite abundance [21].

Although the use of skin mucus as a non-invasive sample for the collection of health-
related parameters could be attractive, a clear correlation between the metabolic profile
of blood plasma, which is an excellent biofluid for bio-monitoring, and skin mucus has
not yet been shown. To our knowledge, only few studies addressed the relation between
plasma and mucus metabolites. Such a relation has to some extend been studied for stress
biomarkers under different stress conditions [12,22]. Although cortisol was demonstrated
to be a more stressor dependent and species-specific biomarker compared to glucose,
a strong correlation was demonstrated between the plasma and mucus for both stress
biomarkers (r = 0.77) showing the potential of mucus samples to monitor fish welfare [12].
A positive correlation between plasma and mucus cortisol levels in Greater amberjack
(Seriola dumerili, Risso 1810) was reported by Fernández-Montero et al. (2020) when the
fish were exposed to temperature or handling stress, as well as fasting [22]. Although these
examples are merely related to stress response and some very few metabolites, our targeted
metabolomics data show that mucus metabolite profiles very well reflect those in the
plasma. We noticed considerable differences in the abundances of individual metabolites
in plasma and mucus, but this did not disrupt the strong correlation between metabolite
patterns in these biofluids.

To our knowledge, this study is the first to compare the baseline skin and gill mu-
cus metabolic profiles in fish. The sum of glucogenic amino acids and sum of biogenic
amine concentrations were significantly different in the two types of mucus. Thus, the
concentrations of amino acids were higher in gill mucus relative to skin mucus, which
might be attributed to the increased protein metabolism capacities and osmotic potential of
gills [23]. Among the top 10 metabolites that differentiated gill and skin mucus, several
amino acids such as alanine, glutamine and glutamic acid were more abundant in gill
mucus as compared to skin mucus, which could be related to functions like osmoregu-
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lation and ammoniagenesis of gill tissue [23,24]. By using the japanese medaka (Oryzias
latipes) as a model species, the important functions of the glutamic acid/glutamine cycle
in controlling osmoregulation in gills has been reported [25]. The rapid accumulation of
glutamic acid in gills was closely correlated both with the elevated levels of nitrogenous
ammonia (NH3/NH4

+) and urea after salinity challenge, contributing to the energetics of
well-developed osmoregulatory abilities in euryhaline teleosts [25]. As an effective ammo-
nia detoxification strategy reported in Chinese loach (Paramisgurnus dabryanus) followed by
aerial exposure, glutamic acid was partially converted to alanine without releasing ammo-
nia via transamination [26]. Considering that gills are a primary site of osmoregulation and
excretion of nitrogenous waste, we assumed that metabolism of glutamic acid is higher
in gill epithelium as compared to skin. One cannot exclude the possibility that increased
glutamate levels in gill mucus may originate from both the gill tissue as well as from the
serum. This assumption is supported by the observed correlation between biological fluids
in the present study. In addition, the concentrations in biogenic amines were higher in
gill mucus compared to skin mucus. This could indicate a higher capacity of the urea
cycle and relatively increased activity of enzymes such as ornithine decarboxylase and
S-adenylosyl methioninedecarboxylase that are involved in the generation of polyamines
from ornithine [27]. Considering that the activities of those enzymes in skin and gill mucus
of salmon are poorly investigated, additional studies should be initiated to explain the
observed differences in the levels of these bioactive molecules that are derived from the
urea cycle.

Outputs from the pathway analyses, based on the untargeted data, revealed several
metabolites that could be affected by the anaesthetic benzocaine. These were alanine,
isoleucine, leucine, glutamic acid, aspartate, proline and glucose. This is similar to another
study in which sedation with clove oil affected the levels of glucose, alanine, proline,
4-hydroxyproline, leucine, isoleucine, and glutamic acid in the plasma of Chinook salmon
(Oncorhynchus tshawytscha) [28]. Considering the correlation between biological fluids
demonstrated in the present study, our findings support the use of non-invasive samples
as mucus for the standardization of the sampling protocol minimizing the potential bias
associated with the use of anesthetics.

4. Materials and Methods
4.1. Chemicals and Reagents

Benzocaine (BENZOAK, ACD Pharmaceuticals AS, Leknes, Norway), Optima LC−MS
grade water, acetonitrile, isopropanol and methanol were provided by Fisher Scientific
(Oslo, Norway). Ammonium carbonate was from Fluka (Steinheim, Germany), whereas
phenyl isothiocyanate (PITC; ≥99%), was purchased from Sigma-Aldrich (St. Louis, MO,
USA). The AbsoluteIDQ® p400 HR Kit was provided by Biocrates Life Sciences AG (Inns-
bruck, Austria).

4.2. In Vivo Treatments and Fish Sampling

Atlantic salmon (Salmo salar; n = 10) weighing between 70–80 g were used in the
current study. Fish were randomly divided into two groups (5 fish/each), and fish in
one group were euthanized before sampling. For euthanization of fish, an overdose of
benzocaine (200 mg/L) was used. Fish in the second group were killed using percussive
stunning [29] and was considered as a control group. Skin and gill mucus samples were
collected from both groups using absorption, according to Tartor et al. [30]. In brief, fish
were placed on one side, and skin mucus was absorbed by covering the exposed surface
with a piece of medical wipes (2.5 × 7 cm each; Kimberly-Clark, Irving, TX, USA). Mucus
saturated wipes were gently removed and placed into the upper compartments of a 0.45 µm
cellulose acetate Costar Spin-X centrifuge tube filters (Corning Inc., NY, USA). The Spin-X
tubes were kept on ice until centrifugation (13,000× g, 4 ◦C, 10 min) to collect mucus filtrate.
For gill mucus sampling, a single piece of medical wipe (0.5 × 1 cm) was placed for 5 s
on the lateral surface of the gill filaments on each gill arch in both the left and right gill of
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each fish. The gill mucus-containing wipes were then processed as described above. Blood
samples were collected from the caudal vein of the euthanized fish using vacutainer tubes
(VACUETTE®, Greiner Bio-One, Frickenhausen, Germany) and were kept on ice prior to
centrifugation (3000× g, 4 ◦C, 15 min) to separate plasma from blood cells. The mucus and
plasma samples were kept at −80 ◦C until further processing and analyses.

4.3. Targeted and Untargeted Metabolomics
4.3.1. Untargeted Metabolomics

At the day of the analysis, samples (n = 5, biological replicates) were thawed on ice
and vortexed thoroughly for 15 s. Aliquots were transferred to the HPLC vials and placed
randomly in the autosampler tray, which was kept at 8 ◦C.

4.3.2. Targeted Metabolomics Using the AbsoluteIDQ® p400 HR Kit

A targeted metabolomic analysis was performed by using the Biocrates kit to quantify
up to 408 metabolites from eight metabolite classes including glycerophospholipids (196),
glycerides (60), acylcarnitines (55), sphingolipids (40), amino acids (21), biogenic amines
(21), cholesteryl esters (14) and sum hexoses (usually largely dominated by glucose) [31].
Considering the broad analyte coverage, Biocrates platform was chosen to improve the
knowledge regarding to the metabolic composition of the epidermal mucus and correlate
the metabolic profiles of epidermal mucus and plasma. The kit was prepared by following
the detailed protocol provided by Biocrates. The total workflow was composed of six
steps including addition of internal standards to the sample, derivatisation of amino acids
using 5% phenyl isothiocyanate solution (PITC), filtration, extraction and dilution before
instrumental analysis (see below).

The frozen (−80 ◦C) gill mucus, skin mucus and serum samples were placed on ice
until completely thawed. The sample loading volume was 10 µL for both serum and
mucus samples. The serum samples were additionally centrifuged at 2750× g for 5 min
at 4 ◦C before loading on the plate. All samples were stored at −80 ◦C immediately after
processing for the Absolute IDQ p400 HR kit. All measurements were carried out on three
biological replicates.

Three quality control samples at three different levels (QC1, QC2 and QC3) were
provided by Biocrates and used to ensure that quantification of the metabolites performed
in this study was generally accurate and reproducible. QC2 samples were measured in
replicates of 4 and used further for the normalization purpose.

4.3.3. High-Resolution-Mass Spectrometry Analyses (HRMS)

All samples included in the present study were analysed using a Vanquish Horizon
ultrahigh-performance liquid chromatography system (UHPLC) coupled to a Q-Exactive
Fourier-transform high-resolution mass spectrometer (both Thermo Fisher Scientific, Bre-
men, Germany), equipped with a heated electrospray interface (HESI-II). The AbsoluteIDQ
p400 HR kit allows simultaneous quantification of 408 metabolites by using two different
instrumental approaches, i.e., UHPLC using a octadecylsilane column (ODS; Biocrates) and
flow injection analysis (FIA), followed by HRMS analysis [31]. Amino acids and biogenic
amines were separated on the ODS column using a water/acetonitrile (both containing
0.2% formic acid) gradient according to the manufacturer’s protocol. Total UHPLC analysis
time was approximately 6 min per sample. All other substances including acylcarnitines,
glycerophospholipids, sphingolipids, sum hexoses, cholesterol esters and glycerides were
analysed using a shotgun approach by FIA–HRMS with a total analysis time of approxi-
mately 3.8 min per sample. The mobile phase was prepared according to the manufacture
instruction diluting the FIA mobile phase buffer with LC−MS grade methanol. The source
parameters used for LC–HRMS analysis were as follows: sheath gas flow rate 60, auxiliary
gas flow rate 30, sweep gas flow rate 1, spray voltage 3 kV, capillary temperature 300 ◦C,
S-lens RF level 60, and auxiliary gas heater temperature 550 ◦C. The source parameters
used for FIA–HRMS were as follows: sheath gas flow rate 15, auxiliary gas flow rate 5,
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sweep gas flow rate 1, spray voltage 2.5 kV, capillary temperature 300 ◦C, S-lens RF level
60, and auxiliary gas heater temperature 120 ◦C. The data collection was performed in
the full scan mode both for the LC–HRMS and FIA–HRMS analyses. Prior to the HRMS
analyses, the instrument performance was confirmed by the system stability test completed
according to the manufacture instructions.

For the untargeted analysis, a zwitterionic SeQuant ZIC-pHILIC column (Merck,
Kenilworth, NJ, USA; 150 × 4.6 mm, 5 µm) was employed for hydrophilic interaction
chromatography (HILIC) using a mobile phase consisting of 20 mM ammonium carbonate
(pH 8.3; (A) and acetonitrile (B). The flow rate was set to 0.3 mL/min, and the column
eluted using the following gradient: 80% B for 1 min followed by a decrease to 20% B over
29 min. After flushing the column with 8% B for 5 min, the mobile phase composition was
returned to starting conditions and equilibrated for 9 min. The injector flushing solvent
was 50% acetonitrile, the seal wash solvent consisted of 75% isopropanol, 25% water and
0.1% formic acid.

The mass spectrometer was run in positive and negative ion mode using fast polarity
switching (i.e., alternating positive and negative ion scans), and scanned in the mass range
m/z 58–870. The mass resolution was set to 70,000 at m/z 200. The spray voltage was 2.8
and 3.0 kV (positive and negative mode, respectively), the transfer capillary temperature
was 280 ◦C, and the sheath and auxiliary gas flow rates were 35 and 10 units, respectively.
Xcalibur software (Thermo Fisher Scientific, Waltham, MA, USA) was used for instrument
control (version 2.3) and calculation of elemental compositions and mass errors (version 4.2).

4.4. Data Post-Processing

The data processing is divided into two parts. The targeted and untargeted metabolomics
data were proceed separately as presented in Figure 6.
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4.4.1. Targeted Metabolomics: AbsoluteIDQ® p400 HR Kit

The MetIDQ software (Biocrates, Life Science AG, Innsbruck, Austria) was used to
process raw data prior to the statistical analyses. Considering the potential differences in
metabolic signature, separate sets of data were prepared for mucus and plasma samples.
As we were interested in all potential metabolites that might be present in skin and gill
mucus samples, a considerable proportion of low abundance metabolites (<LOD values)
was allowed. Furthermore, we retained only metabolites with 100% non-zero replicate
measurements within at least one of the groups included in the present study, and/or
metabolites that were detected in concentrations above the LOD for all individuals within
at least one of the groups studied. Missing values were filled with one-third of the calculated
LOD values.

Both for mucus and plasma samples, the raw data were normalized in order to
control and correct for technical variability. This was achieved by using metabolite-specific
correction factors that were calculated using the plates’ replicated QC2 samples (n = 4).
For each metabolite, the median QC2 concentration (above LOD) was divided by the
metabolite target value, given by the assay manufacturer and available in the MetIDQ
database. Then, the sample concentrations (only for samples above LOD) were divided
by the metabolite-specific correction factors. An additional filtration step was introduced
into the workflow excluding metabolites with a relative standard deviation (RSD) of >30%
among QCs. For mucus samples, the data were then normalized by median to reduce
impact of differential dilution during the sampling procedure.

4.4.2. Untargted Metabolomics

The Compound Discoverer 3.1 software was used to process untargeted raw data
(Table S7). The workflow included, among others, spectra selection, retention time align-
ment, detection and grouping of unknown compounds, filling of missing values and
compounds annotation, while the list of potential targets was generated and manually
curated (Figure 6) before using MeatboAnalyst 5.0 and SIMCA 16.0 (Sartorius Stedim
Biotech, Umeå, Sweden) for statistical analysis.

4.5. Statistical Analysis

The processed targeted and untargeted data were evaluated using univariate and
multivariate statistical analyses. In our final workflow, the data was median-normalized,
log-transformed and Pareto scaled. The univariate analyses were performed using Metabo-
Analyst 5.0 [26] and included one-way ANOVA followed by t-test, fold change analysis
and volcano plots. Volcano plot analysis included a false discovery rate (FDR) adjusted)
p-value ≤ 0.1 and fold change cut-off of 2, respectively. MetaboAnalyst was used to gener-
ate heatmaps to visualise the top 10 discriminant metabolites selected by the t-test/ANOVA.
Multivariate modelling of the Pareto-scaled data, including unsupervised principal compo-
nent analysis (PCA) and supervised orthogonal partial least squares discriminant analysis
(OPLS-DA), were used to assess the general distribution of the samples and identify poten-
tial outliers, and find metabolites with discriminating power, respectively.

5. Conclusions

Fish mucus has recently received significant interest as a non-invasive tissue for
biochemical analyses. Mucus on accessible mucosal surfaces including skin and gills can be
collected in a relatively simple and non-invasive manner, providing relevant information
about the health status of the fish. Although it is well known that epidermal mucus
contains several components associated with innate immunity, there is still a significant
gap of knowledge regarding the potential of epidermal mucus to reflect the physiological
responses of fish in general. Contrary to the proteomic profile associated with the immune
mechanisms, the fish mucus metabolome is poorly investigated and there is a clear lack
of data regarding to the functional interactions between biological fluids of fish. To our
knowledge, for the first time the basic metabolic profiles of skin and gill mucus were
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compared with the metabolic profile of plasma by using quantitative metabolomics. A
high level of correlation between plasma and mucus was demonstrated, opening new
possibilities for non-invasive, quick and simple sampling protocols to collect information
on fish health and welfare.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12010028/s1, Figure S1: Clustering skin and gill mucus samples represented as
a dendrograms, Figure S2: Relative differences between gill and skin mucus metabolites from
salmon euthanized using benzocaine or percussive stunning (“Control”), Absolute IDQp400 kit,
Figure S3 Heatmap (t-test/ANOVA) exhibiting different concentration patterns of metabolites in
skin and gill mucus, Absolute IDQp400 kit, Table S1: Total protein content in gill and skim mucus
samples, Table S2: Metabolite concentrations in skin and gill mucus, Absolute IDQ p400 kit, Table
S3: Plasma metabolites detected using the Absolute IDQ p400 kit; Table S4: The ratios of metabolites
that significantly differentiated the skin and gill mucus samples; Table S5: Significantly different
metabolites, gill vs. skin mucus, Volcano plot; Table S6: Significantly different metabolites, gill vs.
skin mucus collected following benzocaine treatment; Table S7: Compound Discoverer 3.1 software
key settings used for untargeted data processing.
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