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Abstract
A new, modern ionospheric radar, called EISCAT3D, is under construction in north-
ern Fennoscandia. In the first stage, the radar will have three sites, one combined
transmit/receiver site shouth of Skibotn, and receiver sites in Kaaresuvanto and
Kaiseniemi. The radar will consist of large groups of dipole antennas that are
steered by shifting the phase of the transmitted or received signal. The beam steer-
ing is performed by a computer such that the radar can form several receive beams
simultaneously.

The antenna field of EISCAT3D can be divided into groups that can receive sepa-
rately. This can be used to image how the received signal intensity varies in the
area covered by the receiver beam. For EISCAT3D, it will be possible to image the
electron density in the E region if the signal is strong enough. Then, imaging can
be done with a resolution of around 100 m x 100 m per pixel at a distance of 100
km. Such measurements enable researching the spatial variation for instance in
auroral arcs.

EISCAT3D will be able to measure the ion velocity with greater presition in time
and space than earlier radars. Together with fast antenna steering, this gives new
possibilities to estimate electric field and neutral wind in the ionosphere. A newly
developed technique shows that EISCAT3D measurements can be used to obtain
spatially resolved estimates of electric field and neutral wind in three dimensions.
The technique builds upon theory about inverse problems, Maxwell’s equations,
and assumptions about continuity and small variations in the neutral wind. With
this technique. It will become possible to study how the electric field varies in and
around aurora.
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Sammendrag
En toppmoderne ionosfæreradar, kalt EISCAT3D, er under bygging på Nordkalot-
ten. I første omgang får radaren tre lokasjoner, en kombinert sender og mottaker
sør for Skibotn og renemottakere i Kaaresuvanto og Kaiseniemi. Radaren kommer
til å bestå av store grupper av dipolantenner som styres ved å forskyve fasen i sig-
nalet hver antenne sender ut eller mottar. Stråleretninga styres av en datamaskin
slik at radaren kan danne flere mottakerstråler samtidig.

Antennefeltet til EISCAT3D kan deles opp i grupper som tar imot signal hver for
seg. Dette gjør det mulig å avbilde hvordan den mottatte signalstyrken varierer i
området som dekkes av mottakerstrålen. Det vil bli mulig for EISCAT3D å avbilde
elektrontetthet i E-laget dersom signalet er sterkt nok. Da kan avbildninger gjøres
med ei oppløsning på rundt 100 m x 100 m per piksel ved en avstand på 100 km.
Slike målinger gjør det mulig å undersøke den romlige variasjonen i f.eks. nordlys-
buer.

EISCAT3D kommer til å måle ionevinden med større presisjon i tid og rom enn
tidligere radarer. Sammen med rask antennestyring gir dette nye muligheter for
å estimere elektrisk felt og nøytralvind i ionosfæren. En nyutvikla teknikk viser at
EISCAT3D-målinger kan gi romlig oppløste estimat av elektrisk felt og nøytralvind
i tre dimensjoner. Teknikken bygger på teori om inversjonsproblemer, Maxwells
likninger og antakelser om kontinuitet og små variasjoner i nøytralvinden. Med
denne teknikken vil det bli mulig å undersøke hvordan det elektriske feltet ender
seg i og rundt nordlys.
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Chapter 1

Introduction

This thesis presents three techniques to study variations in the ionosphere, caused
by for example aurora, currents or electric fields. These techniques will allow for
wider andmore detailed studies onhow the ionosphere varies in three dimensions.
The thesis focuses on the application with the upcoming EISCAT3D radar, which is
expected to start operations in near future.

The ionosphere is a layer in Earths atmosphere. It starts at about 60 km altitude
and extends many hundred kilometers upwards. In this layer, incoming radiation
ionized the gas to a plasma where the positively charged particles are ions and
the negatively charged are mainly electrons. At low altitudes, there are also some
negative ions. At daytime, the number of electrons per volume increases with in-
creasing altitude until it reaches a peak at around 300 km. During auroral activity
at night, the density profile is more variable.

The high plasma density in the ionosphere influences electromagnetic waves trav-
elling through it. Waves are refracted and those with the lowest frequencies are
reflected. Small scale structures cause scintillation, which perturbs for instance
satellite navigation signals (e.g. Davies 1969; Karttunen et al. 2007).

Incoherent scatter radars (ISRs) and ionosondes use these effects to investigate the
ionosphere. Rockets and satellites can investigate the ionosphere directly. How-
ever, their measurements are restricted to the trajectory of the spacecraft. Be-
cause of high air resistance at low altitudes, satellite measurements are restricted
to higher altitudes (e.g. Sarris et al. 2020).

EISCAT3D (E3D) is an ISR under construction. It will have one site capable of both
transmitting and receiving signals and initially two sites that only can receive. It
will thereby be a multistatic system. Each site will be able to form several receive
beams at the same time. This combination of ISR properties is new and allows for
new types of measurements of the ionosphere.

This work investigates three types of measurements that are possible to do with
E3D. Two of these have been performed beforewith other ISRs. These are aperture
synthesis radar imaging, estimation of neutral winds and electric fields. E3D should
allow improvement of these aspects. Volumetric inversion of neutral wind and
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14 CHAPTER 1. INTRODUCTION

electric field is a new technique that will be unique to E3D.

Aperture synthesis radar imaging (ASRI) is a method to obtain the spatial distribu-
tion of scattered signals within the radar beam. Normally, radar measurements
are averaged over an area with the size of the radar beam width, which prevents
investigations on ionospheric features smaller than the beam width. With ASRI,
smaller-scale structures canbe resolved similar to an image (Hysell andChau2006).

The ion velocity is one of the important ionospheric parameters measured with
ISR. The ion velocity is connected to electric field through the Lorentz force and
neutral wind velocity through collisions. However, to find these two from only the
ion velocity, further assumptions are needed. The traditional approach has been
to assume that the electric field along a magnetic field line is constant, which may
not necessarily be the case.

The fast beam steering of an electronical steerable radar array allows fast scans
of larger areas of the sky to be made. The existing AMISR radars can use this to
produce volumetric images of the main plasma parameters (Semeter et al. 2009),
except for the ion velocity. Because of its initially three sites, E3D will be able to
produce volumetric images of the ion velocity vector field as well.

The ion velocity is connected to electric field through the Lorentz force and neu-
tral wind velocity through collisions. However, to find these two from only the ion
velocity, further assumptions are needed. The traditional approach has been to
assume that the electric field along a magnetic field line is constant, which may not
necessarily be the case. An expansion of this problem into three dimensions can
be used to find volumetric estimates of electric field and neutral wind.

For these types of measurements, there is a task to estimate the desired physi-
cal quantity from the radar measurements. It is the physical process that is the
ground base for the measurements. Finding its properties (back) from the mea-
surements is an inverse problem. Often, inverse problems are difficult to solve be-
cause several different solutionsmight fit themeasurements, and the solutionmay
be severely affected by measurement noise. Handling inverse problems therefore
makes out a great part of this thesis.

The thesis is organized as follows: The concept of inverse problems is introduced
in chapter 2. Chapter 3 introduces ISR and its measurements. The EISCAT3D radar
and the new measurement methods are presented in chapter 4, followed by im-
plications for other work.



Chapter 2

Inverse problem

In this chapter, we will describe inverse problems and techniques for solving them.
Methods to handle measurement noise by regularization of the problem are pre-
sented. These involve a number of choices. These and their consequences are
discussed in this chapter.

In physicalmodelling, a usual task is to relatemeasured (or theoretically calculated)
measurement 𝑚 to an unknown physical quantity or model 𝑥. When one uses
the physical quantity to estimate or predict measurements, one solves a forward
problem. Here, one has to find the forwardmodel, that is the relationship between
unknowns andmeasurements (Aster et al. 2013; Mueller and Siltanen 2012; Kaipio
and Somersalo 2010).

The inverse problem is the opposite. One has a set of measurements and wants
information about the unknown 𝑥. An example is shown in figure 2.1. Using the
physical quantity, which here is the distribution of electron density, to find themea-
surements is the forward problem. Using the measurements to find the electron
density distribution is the inverse problem. In both cases, the relationship between
unknowns and measurements is the same, but the direction is reversed.

Figure 2.1: Forward and inverse problem. Here, the forward problem is to simulate mea-
surements based on the quantity, in this case the electron density distribution. The inverse
problem is to find an estimate of the then unknown quantity using the measurements
made.
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16 CHAPTER 2. INVERSE PROBLEM

Mathematically, we can write the problem as

𝑚 = 𝐴(𝑥) + 𝜀, (2.1)

where 𝐴 is the forward model and 𝜀 is noise. In the general case, the unknown
𝑥 varies continuously over time and/or space while 𝐴 depends on this variation,
possibly non-linearly.

Linear inverse problem and discretization
If the measurements 𝑚⃗ = [𝑚1, ⋯ , 𝑚𝑀 ] depend linearly on the unknown quantities,
the operator 𝐴 is linear. It is easier to solve an inverse problem that is discrete.
We then have to discretize it. The discretization can be chosen very freely, but the
choice influences the results. A common approach is to use a box-car on a regular
grid which is simply evaluated in the centers or nodes (Aster et al. 2013). A more
general way is to use a set of basis functions 𝑏1 ⋯ 𝑏𝑁 to represent the continuous
unknown(s). The discretized model can then be written as

𝑥 ≈
𝑁

∑
𝑛=1

𝛽𝑛𝑏𝑛. (2.2)

This is now inserted to (2.1). When the problem is linear, the constant coefficients
𝛽1 ⋯ 𝛽𝑁 and the sum can be re-arranged such that

𝑚⃗ =
𝑁

∑
𝑛=1

⃗𝐴(𝑏𝑛)𝛽𝑛 + ⃗𝜀. (2.3)

The first term on the right-hand side can now be interpreted as a matrix multipli-
cation of a theory matrix 𝔸 which consists of columns on the form [ ⃗𝐴(𝑏1) ⋯ ⃗𝐴(𝑏𝑁)]
with a vector ⃗𝑥 consisting of the coefficients 𝛽1 ⋯ 𝛽𝑁 . The inverse problem can now
be written as

𝑚⃗ = 𝔸 ⃗𝑥 + ⃗𝜀. (2.4)

Solving of inverse problems
The naive solution of the linear discrete inverse problem (2.4) would be to simply
invert the theory matrix 𝔸. However, this is in general not possible because of the
properties of the theory matrix and also the noise (Aster et al. 2013; Mueller and
Siltanen 2012). More specifically, there are three problems that can appear:

First, to find a solution of a problem, theremust exist a solution. If the theory is too
simplified or incorrect, there might not exist any solution to the problem. Another
possibility is that the measurements are too noisy to give useful solutions.

Even if there exists one solution, a bunch of other solutionsmay exist aswell, mean-
ing that the solution is not unique. An example of this is positioning: If one knows
the distance to two navigational satellites, there are still at least two possible loca-
tions on the surface of the Earth that give the same distances to the satellites.
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The last issue is to find stable solutions. It is desired that a small change in the
physical process causes a small change in the measurements and conversely that
a small change in the measurements leads to a small change in the solution. In
general, this is not always the case, which means that the solution becomes very
sensitive to measurement noise. The problem is then said to be ill-conditioned
(Aster et al. 2013).

If the noise is assumed to be proper complex normally distributed (e.g. Schreier
and Scharf 2010) with zero mean and covariance ΣΣlllm, one solution of the inverse
problem may be found with the method of least squares (LS). This method finds
an estimate ⃗̂𝑥 such that the weighted sum of squared errors

(𝑚⃗ − 𝔸 ⃗̂𝑥)
H

ΣΣlll−1
m (𝑚⃗ − 𝔸 ⃗̂𝑥) (2.5)

is as small as possible. Here, the symbol H denotes Hermitian transpose. The ex-
pression for the LS estimate of the unknowns has the analytical solution

⃗̂𝑥 = (𝔸HΣΣlll−1
m 𝔸)

−1
𝔸HΣΣlll−1

m 𝑚⃗. (2.6)

It can be shown that the solution is unbiased (Aster et al. 2013). There are also
other methods to define and find the best solution in some sense, but this thesis
focuses on those based on LS.

2.1 Regularization
If some of the issues described above occur, it might be hard or impossible to solve
the inverse problemwith the LSmethod. Adding more information to the problem
may help to solve the issues. Regularization puts constraints on the problem and
its solution. It is therefore used to stabilize the problem.

Singular value decomposition
One issue that can occur is that several of the parameters that we want to esti-
mate are correlated so strongly that some of the eigenvalues of 𝔸HΣΣlll−1

m 𝔸 are zero
or close to zero. This makes it difficult to find the inverse of that matrix. This is-
sue is called rank deficiency because the theorymatrix does not have full rank or
multicollinearity when the correlation between the unknowns is too high.

The singular value decomposition (SVD) is both a tool to investigate the amount of
multicollinearity and there are some methods that use SVD for regularization. Us-
ing the SVD requires that all measurements have the same uncertainty. Else, both
measurements and theorymatrix must be weighted with the measurement uncer-
tainty. By using the SVD, the theorymatrix 𝔸 is decomposed into three matrices
such that

𝔸 = 𝕌𝕊𝕍H. (2.7)

Here, the matrix 𝕌 contains the basis vector for the vector space of the measure-
ments (Aster et al. 2013), also called the left singular vectors (Anton and Rorres
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2011), or data space eigenvectors. Matrix 𝕊 contains the singular values of 𝔸, which
are equal to the square root of the eigenvalues of 𝔸H𝔸. The matrix 𝕍 contains the
basis vectors for the vector space of the unknowns, which also are called the right
singular vectors or model space eigenvectors.

By looking at the distribution of singular values, one can obtain information on
the amount of ill-conditionness and multicollinearity of the discretized problem.
The ratio between the largest and smallest singular value is called the condition
number. This can be used as a measure of the stability of a solution (Aster et al.
2013). If the singular values span over few orders of magnitude, the problem is
well-conditioned. With increasing condition value, the problem is more and more
unstable and sensitive to noise. When some of the singular values become zero,
no solution can be found.

Real-world problems in nearly all cases have finite number of measurements and
continuous unknowns, meaning an infinite number of unknowns. Then, the con-
dition number will be infinitely high. The choice of discretization is therefore an
implicit regularization of the problem. This means that if one selects a discretiza-
tion that gives fewer unknowns than measurements, the solution is constrained in
some way. The implied constraint may not be wanted.

With the SVD, it is possible to find a general inverse of the theorymatrix 𝔸. If no
singular value is equal to zero, the Moore-Penrose pseudoinverse is (Aster et al.
2013)

𝔸† = 𝕍𝕊−1𝕌H. (2.8)

It can be shown that it equals to the LS solution with assumption that ΣΣlllm = 𝜎2
m𝕀,

where 𝕀 is the identity matrix (Aster et al. 2013). However, if some of the singular
values are zero, 𝕊 can be truncated to only contain the non-zero singular values.
Then, the corresponding rows or columns from 𝕌 and 𝕍 are truncated as well. The
truncation enables one to find a solution, but it is no longer unbiased because the
basis for the vector space of the unknowns is no longer complete.

For sensitive ill-conditioned problems, their singular values will approach, not nec-
essarily reach zero. A solution can then be found, but it is vulnerable to noise.
One technique to stabilize the solution is to treat the smallest singular values as
they were zero, and truncate them out and the corresponding basis vectors from
𝕌 and 𝕍. This technique of truncating the singular values is called the truncated
SVD (TSVD) method. An important question here is where to truncate the singular
values. Keeping toomany of the singular valuesmakes the solution noisy. Truncat-
ing too early gives solutions that lack details from the ignored basis vectors (Aster
et al. 2013).

Tikhonov regularization
Another method for regularizing the problem is the Tikhonov regularization. The
solution found with the LS solution is that which minimizes the sum of squared
errors, Eq. (2.5) the most. The Tikhonov regularization adds a term to the function
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to minimize. Then it becomes

(𝑚⃗ − 𝔸 ⃗̂𝑥)
H

ΣΣlll−1
m (𝑚⃗ − 𝔸 ⃗̂𝑥) + ⃗̂𝑥

H
𝕃H𝕃 ⃗̂𝑥 (2.9)

The regularization matrix 𝕃 can be formed in several ways that constrains the so-
lution in different ways. There are also multiple interpretations of the Tikhonov
regularization that influence the way of how to find the solution.

Zeroth order Tikhonov regularization

For zeroth order Tikhonov, the regularization matrix consist of the regularization
parameter 𝛼 multiplied with a discretized Dirac delta function for each of the 𝑁
unknowns. It is therefore diagonal:

𝕃0 = ⎡
⎢
⎣

𝛼1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛼𝑁

⎤
⎥
⎦

(2.10)

Often, the regularization parameters are equal for all 𝑁 unknowns. Then, 𝕃0 = 𝛼𝕀.
In statistics, this method is also known as ridge regression (as in f.e. Saleh et al.
2019).

Higher orders of Tikhonov regularization

For first order Tikhonov regularization, the Delta function in the regularization ma-
trix is derivated once. In discrete problems, this corresponds to the discrete first
order difference operator. For one-dimensional problems, the regularization ma-
trix is on the form

𝕃1 =
⎡
⎢⎢⎢
⎣

−𝛼1 𝛼1 0 ⋯ 0 0
0 −𝛼2 𝛼2 ⋯ 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ −𝛼𝑁−1 𝛼𝑁−1

⎤
⎥⎥⎥
⎦

. (2.11)

If the unknowns are some parameter distributed over several dimensions, as for
instance in tomography, the regularization matrix has to be set up accordingly.

For higher orders of Tikhonov regularization, the Delta function is derived equal to
its order, that is second order is second derivative and so on (see Roininen et al.
2011).

Interpretations of regularization
The TSVD and Tikhonov regularizations have two ways in how they can be inter-
preted. They are equally correct, but the interpretation influences the way of im-
plementing the regularization.
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SVD interpretation

The SVD interpretation requires that the requirements for using the SVD are ful-
filled. For Tikhonov regularization it needs that the regularization parameter is
equal for every order, that is 𝛼1 ⋯ 𝛼𝑁 = 𝛼. It can then be shown that adding
Tikhonov regularization terms to the least squares problem leaves the basis vec-
tors of the SVD as they are. Only the singular values are changed. For zeroth order
Tikhonov, the singular values are inverted as

1
𝑠 ⋅ 𝑠2

𝑠2 + 𝛼2 (2.12)

instead of 1/𝑠. The factor 𝑠2/ (𝑠2 + 𝛼2)damps the inverted singular values. The con-
sequence is that the largest singular values are approximately unchanged, but the
influence of smallest ones on the estimates is damped. As a result of the damping,
noise is amplified less on the cost of a smaller resolution of the result (Aster et al.
2013).

With the SVD interpretation, one can calculate the SVD once and toggle the regu-
larization parameter in hindsight. The SVD itself, or the corresponding matrix in-
version, is computationally intensive. Solving the problem this way has therefore
the advantage of reducing the computation time drastically while the best regular-
ization parameter is searched.

Extra measurements interpretation

The other method to use the Tikhonov regularization is to extend the theorymatrix
with the regularization matrix while inverting. Then the inverse problem becomes

[ 𝑚⃗
⃗0 ] = [ 𝔸

𝕃 ] ⃗𝑥 + ⃗𝜀 (2.13)

which revokes the implicit assumption that there are added ”virtual” measure-
ments which are equal to zero (Roininen et al. 2011). Implementing the regular-
ization this way requires an assumption of the uncertainty of the virtual measure-
ments. Else, the uncertainty has to be equal for all measurements, both real and
virtual, as they have in the SVD interpretation. This approach is very flexible as
it allows for mixing of different orders of regularization and it does not requires
all regularization parameters to be equal and it can be used to only regularize for
some unknowns.

With this interpretation, a row with zeroth order Tikhonov regularization corre-
sponds to a measurement directly of the corresponding unknown 𝑥𝑛. This virtual
measurement is normally distributedwithmeanand variance as in the correspond-
ing entry of measurement vector, usually zero, and covariance matrix, 𝛼−2

𝑛 𝜎2
𝑥𝑛
. In

other words, we expect 𝑥𝑛 to be zero, but also that it 95 % of the time is within
±2𝜎𝑥𝑛

𝛼𝑛.

The first order Tikhonov regularization is in the same way interpreted as measure-
ments of the difference between two unknowns that may (or may not) be neigh-
bouring values of some physical parameter. It thereby adds correlation between
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these two unknowns. If this regularization is added to a series of neighbouring
values, the result will be that these values will become more similar. Since this
smooths out the result, the 𝕃 sometimes is called a roughening matrix (Aster et al.
2013).

Often, the unknowns represent some physical quantity in some sequence, for ex-
ample a 1D altitude profile of electron density, a 2D slice of radar backscatter, or a
3D vector field. Then, the first order Tikhonov regularization may also be regarded
as the assumption of some derivative being expected to be zero and a variance of
𝜎2
d𝑥.

The interpretation of extra measurements is heavily used in papers II and III where
the added constraints are differential equations. In paper I, the SVD interpretation
is used, not least because of the large theorymatrices.

In paper II, the regularizations added to the problem are based upon Maxwell’s
equations, which are differential equations. In a one-dimensional discretized form,
they look similar to Eq. (2.11). Paper III extends this regularization into three di-
mensions.





Chapter 3

Incoherent scatter radar

The incoherent scatter radar (ISR) is one of the most powerful tools to investigate
the ionosphere. This chapter gives an overview over the ISR, how it measures and
what parameters can be deduced from its measurements. The chapter ends with
showing properties of some ISRs.

3.1 Historical introduction
The start of modern research on aurora is considered to be Kristian Birkeland’s
hypotheses on how auroras are formed, published in 1896. To find support for
this theories, he started observations on aurora, the sun and the atmosphere, and
built his famous terrella-experiment (Holtet 2009). The research was continued by
Carl Størmer. From 1910 on and over the years, he used triangulation to find the
height distribution of auroras (Størmer 1955).

In 1902, Kenelly and Heaviside came with an explanation for why radio waves are
reflected in the atmosphere. They proposed an electrically charged layer in the
atmosphere. This was later proven by Appleton and Barnett (1925). Shortly there-
after, Breit and Tuve (1925) used the travel time of a radio wave to find the height of
this layer, which now is known as the E region. From the frequency where the radio
wave is reflected, one can determine the electron density 𝑛e. When transmitting a
chirp, a signal with increasing or decreasing frequency, parts of the electron den-
sity profile of the ionosphere can be found. This technique to find the reflection
height of the ionosphere at different frequencies is today used by ionosondes.

William Gordon (1958) proposed to study the ionosphere by transmitting a radio
wave and then investigating the signal scattered by free electrons in the iono-
sphere. The power spectrum of the backscattered signal would represent the ve-
locity distribution of free electrons, so it should be possible to find electron density
𝑛e and temperature 𝑇e. With such a radar it would be possible obtain a profile of
the electron density through the whole ionosphere. Later, radars were built and it
turned out that the power-spectrum actually represented electrons that are influ-
enced by ions (Bowles 1958; Dougherty and Farley 1960), at least under the con-
ditions observed. More specifically, the radar wavelength was much longer than

23
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the Debye length of the plasma. This made it possible to use the radar to measure
ion temperature 𝑇i in addition to the other parameters. Further, the Doppler shift
of the signal gives information on the ion velocity, making this type of radar an
evenmore powerful tool for investigating the ionosphere. Since the backscattered
signal initially was believed to be incoherent because it was scattered by free elec-
trons, these radars were named incoherent scatter radar (ISR) which is the term
still in use.

Rockets and satellites have also been used to investigate the ionosphere. Their
advantages are that they can perform in-situ measurements, that is at the same
place as themeasured phenomena, as opposed to remotemeasurements as done
with radars. However, rockets make local measurements along their trajectory.
Satellites canmeasure over longer time, but due to atmospheric drag, they typically
operate at altitudes above 300 km. Still, there are proposals for spacecrafts to
investigate the ionosphere (e.g. Sarris et al. 2020)

3.2 Measuring with an ISR
Simplified, ISR measurements are performed by transmitting an electromagnetic
wave with power 𝑃t andwavelength 𝜆 towards the ionosphere. We consider that at
a distance (range) from the transmitter 𝑅t, the somewhat free electrons will scatter
the signal. Because electrons are tiny, every electron will only scatter a very small
fraction of the transmitted signal. We assume that the signal is only scattered once
(Born approximation) and ignore signal losses on the travel. The power of the re-
ceived signal is then given by the following radar equation (Sato 1989)

𝑃S = 𝑃t
𝐺t𝐺r𝜆2𝜎tot

(4𝜋)3 𝑅2
t 𝑅2

r
, (3.1)

where𝐺t and𝐺r are transmit and receive gain, 𝜎tot is the total scattering crossection
of the probed plasma and 𝑅r is the distance (range) from the scattering volume to
the receiver.

The backscattered signal of every electron will be Doppler-shifted in frequency due
to its motion. The velocity of the electrons can be seen as a superposition of two
motions: The collective motion of the plasma 𝑤, called the Doppler shift, and the
random motion of the single electron, which is called Doppler broadening. The
signal scattered from all electrons is therefore a distribution of the velocities with
mean at 𝑤. It turns out that the velocity distribution can be explained with elec-
trons shielding out the charge of different ion species (Dougherty and Farley 1960;
Kudeki and Milla 2011), the so-called Debye shielding. The shielding works like
that if there is a test charge with charge 𝑞e in a plasma, through Columb forces, the
charges in the plasma will react such that it neutralizes the test charge (Inan and
Gołkowski 2011). The order of magnitude where this happens is the Debye length

𝜆D = √𝜖0𝑘B𝑇e
𝑛e𝑞2

e
, (3.2)



3.2. MEASURING WITH AN ISR 25

where 𝜖0 is the permittivity of vacuum, 𝑘B is Boltzmanns constant, 𝑇e is electron
temperature and 𝑛e is electron density. When being at a distance from the test
charge much larger then the Debye length, the charge does not have a noticeable
influence on the rest of the plasma anymore. As seen from there, the charge is
neutralized.

The measured Doppler broadening is mainly influenced by the thermal motion of
the ions. This is because the measurements see the fluctuation in electron density
greatly influenced by the Debye shielding, which happens when the radar wave-
length is much larger than the Debye length (Dougherty and Farley 1960).

Measuring ISR spectrum
Theparameters that the ISRmeasures are taken from thepower spectrum, which is
the Fourier transform of the Autocorrelation function (ACF) of the received signal.
One major task of the measuring is therefore to find the power spectrum from
the measurements. This can be described with the following model, which has
several similarities with the model in Lehtinen and Damtie (2013). Let the radar
transmit a signal 𝑠(𝑡) = 𝜖(𝑡)𝑒𝑖𝜔𝑡, where 𝑡 is time, 𝜔 is the angular frequency and 𝜖(𝑡)
an envelope of the signal. The envelope changes over time and includes the coding
of the signal. In the ionosphere, the signal is scattered, and the phase is changed.
In the model, this is performed by multiplying with with an complex (stochastic)
gain 𝑧 which varies over range 𝑟. The receiver receives the signal from all ranges.
After reception, the carrier wave can be removed, and the measurement of the
induced voltage 𝑉 in receiver 1 at time point 𝑡 can be written as

𝑉1(𝑡) = ∫
𝑟

𝜖 (𝑡 − 𝑟i + 𝑟s1
𝑐 ) 𝑒−𝑖𝜔 𝑟i+𝑟s1

𝑐 𝑧(𝑟, 𝑡 − 𝑟s1/𝑐) + 𝑛1(𝑡), (3.3)

where 𝑛1(𝑡) is the receiver noise of receiver 1 at time 𝑡, 𝑟i is the distance between the
scattering volume and the transmitter, 𝑟s1 is the distance between the scattering
volume and receiver 1 and the integral is over all illuminated ranges.

The next step is to correlate the signals for different receivers at different time
steps. This will be the basis for our measurements

𝑚12(𝑡, 𝜏) = 𝑉1(𝑡) ̄𝑉2(𝑡 + 𝜏) =

∫
𝑟

∫
𝑟′

𝜖 (𝑡 − 𝑟i + 𝑟s1
𝑐 ) ̄𝜖 (𝑡 − 𝑟′

i + 𝑟′
s2

𝑐 ) 𝑒𝑖𝜔 𝑟i+𝑟s1−(𝑟′
i +𝑟′

s2)
𝑐 𝑧(𝑟, 𝑡 − 𝑟s1/𝑐) ̄𝑧(𝑟′, 𝑡 + 𝜏 − 𝑟s2/𝑐)

+ ∫
𝑟

𝜖 (𝑡 − 𝑟i + 𝑟s1
𝑐 ) 𝑒−𝑖𝜔 𝑟i+𝑟s1

𝑐 𝑧(𝑟, 𝑡 − 𝑟s1/𝑐)𝑛̄2(𝑡 + 𝜏)

+ ∫
𝑟′

𝜖 (𝑡 − 𝑟′
i + 𝑟′

s2
𝑐 ) 𝑒𝑖𝜔 𝑟′

i +𝑟′
s2

𝑐 ̄𝑧(𝑟′, 𝑡 − 𝑟s2)𝑛1(𝑡) + 𝑛1(𝑡)𝑛̄2(𝑡 + 𝜏) (3.4)

Most ISRs are monostatic radars. These are radars where transmitting and receiv-
ing is done by the same antenna. If the transmit and receive antennas are at differ-
ent locations, the radar is called multistatic. For a monostatic radar, the transmit
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and receive gain is the same, as is also the range. This means that the range may
be written as 𝑟 = 𝑟i = 𝑟s1, and the above equation can be simplified to

𝑚(𝑡, 𝜏) = 𝑉 (𝑡) ̄𝑉 (𝑡+𝜏) = ∫
𝑟

∫
𝑟′

𝜖 (𝑡 − 2𝑟/𝑐) ̄𝜖 (𝑡 − 2𝑟/𝑐) 𝑒2𝑖𝜔(𝑟−𝑟′)/𝑐𝑧(𝑟, 𝑡−𝑟/𝑐) ̄𝑧(𝑟′, 𝑡+𝜏−𝑟/𝑐)

+ ∫
𝑟

𝜖 (𝑡 − 2𝑟/𝑐) 𝑒−2𝑖𝜔𝑟/𝑐𝑧(𝑟, 𝑡 − 𝑟/𝑐)𝑛̄(𝑡 + 𝜏)

+ ∫
𝑟′

𝜖 (𝑡 − 2𝑟/𝑐) 𝑒2𝑖𝜔𝑟/𝑐 ̄𝑧(𝑟′, 𝑡 + 𝜏 − 𝑟/𝑐)𝑛(𝑡) + 𝑛(𝑡)𝑛̄(𝑡 + 𝜏). (3.5)

When transmitter and receiver are at the same location, signal can not be transmit-
ted and received simultaneously because then, the transmitter would overpower
the desired signal. As a consequence, the signal is transmitted in pulses. In order
to improve the resolution, every pulse is divided into 𝑇 bauds with constant length
(Lehtinen 1986). Inside of every baud, the envelope 𝜖 of the signal is constant and
the sequence of numbers in the envelope is called the pulse code. Following this
approach gives that the range resolution is determined by the baud length. Lastly,
this means that Eq. (3.5) can be discretized as

𝑚𝑝
𝑡,𝜏 =

𝑅
∑
𝑟=1

𝑅
∑
𝑟′=1

𝜖𝑝
𝑡−𝑟 ̄𝜖𝑝

𝑡+𝜏−𝑟′𝑒2𝑖𝜔(𝑟−𝑟′)/𝑐𝑧𝑝
𝑡,𝑟 ̄𝑧𝑝

𝑡+𝜏,𝑟′ +
𝑅

∑
𝑟=1

𝜖𝑝
𝑡−𝑟𝑧𝑝

𝑟 𝑛̄𝑝
𝑡+𝜏

+
𝑅

∑
𝑟=1

̄𝜖𝑝
𝑡+𝜏−𝑟 ̄𝑧𝑝

𝑡+𝜏,𝑟𝑛𝑝
𝑡 + 𝑛𝑝

𝑡 𝑛̄𝑝
𝑡+𝜏 (3.6)

where 𝑝 denotes the pulse. The expectation (E[·]) of this expression (the measure-
ments) is the ACF of the received signal. It describes the expected correlation be-
tween the signal at time 𝑡 and time 𝜏 later (Sprott 2003).

To analyze the statistical properties of the measurements, we want to find the ex-
pectation 𝜇 and variance 𝜎2 of the measurements. We begin with the expectation.
The expectation of a sum is the sum of their expectations. Additionally, the pulse
coding may be moved out of the expectation since it is known. Then,

𝜇𝑝
𝑡,𝜏 =

𝑅
∑
𝑟=1

𝑅
∑
𝑟′=1

𝜖𝑝
𝑡−𝑟 ̄𝜖𝑝

𝑡+𝜏−𝑟′𝑒𝑖𝜔(𝑟−𝑟′)/𝑐E [𝑧𝑝
𝑟 ̄𝑧𝑝

𝑟′] +
𝑅

∑
𝑟=1

𝜖𝑝
𝑡−𝑟E [𝑧𝑝

𝑟 𝑛̄𝑝
𝑡+𝜏] +

𝑅
∑
𝑟=1

̄𝜖𝑝
𝑡+𝜏−𝑟E [ ̄𝑧𝑐

𝑟𝑛𝑝
𝑡 ]

+ E [𝑛𝑝
𝑡 𝑛̄𝑐

𝑡+𝜏 ] . (3.7)

When the noise is assumed white and has variance 𝑃N, the last term becomes 𝑃N𝛿𝜏
where 𝛿 is a Kronecker-delta. When assuming that the signal is independent on
noise, the middle terms become zero. We assume that the signal 𝑧 from non-
overlapping ranges is uncorrelated, which means that the first term only is non-
zero if 𝑟 = 𝑟′, so the double sum can be simplified. What remains in the expecta-
tion parentheses is the ACF of the signal 𝜌𝑝

𝑟,𝜏 = E [𝑧𝑝
𝑟 ̄𝑧𝑝

𝑟 ], which is what we desire.
Then, Eq. (3.7) can be written as

𝜇𝑝
𝑡,𝜏 =

𝑅
∑
𝑟=1

𝜖𝑝
𝑡−𝑟 ̄𝜖𝑝

𝑡+𝜏−𝑟𝜌𝑟,𝜏 + 𝑃N𝛿𝜏 . (3.8)
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The uncertainty in the measurements is found by their variance 𝜎2. It is found with

𝜎𝑝
𝑡,𝜏

2 = Var [𝑚𝑝
𝑡,𝜏] = E [𝑚𝑝

𝑡,𝜏𝑚̄𝑝
𝑡,𝜏] − E [𝑚𝑝

𝑡,𝜏]E [𝑚̄𝑝
𝑡,𝜏] . (3.9)

Every measurement 𝑚 are products of the receiver voltage at two time points. As
the voltages are proper complex-normally distributed with zero mean, the first
term can be expanded with Isserlis’ Theorem (e.g. Bär and Dittrich 1971). Finally,
the uncertainty of one measurement can be written as

𝜎𝑝
𝑡,𝜏

2 = 𝜇𝑝
𝑡,0 ̄𝜇𝑝

𝑡,0 = (𝑃S + 𝑃N)2 . (3.10)

Themeasurements are complex random variables withmean as shown in Eq. (3.8)
and noise variance as in Eq. (3.10). Thus, themeasurement equation can bewritten
as

𝑚𝑝
𝑡,𝜏 =

𝑅
∑
𝑟=1

𝜖𝑝
𝑡−𝑟 ̄𝜖𝑝

𝑡+𝜏−𝑟𝜌𝑟,𝜏 + 𝑃N𝛿𝜏 + 𝑛𝑝
𝑡,𝜏 , (3.11)

where the first two terms is a linear combination of the signal and 𝑛𝑝
𝑡,𝜏 = 𝑛𝑝

𝑡 𝑛̄𝑝
𝑡+𝜏 is

noise. This equation can also be written on matrix form

⃗𝑚𝑝
𝜏 = 𝔸𝑝

𝜏
⃗𝜌𝑝

𝜏 + 𝑃N𝛿𝜏 + ⃗𝑛𝑝
𝜏 , (3.12)

that can be expanded to

⎡
⎢⎢⎢
⎣

𝑚𝑝
1,𝜏

𝑚𝑝
2,𝜏
⋮

𝑚𝑝
𝑇 −𝜏,𝜏

⎤
⎥⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

𝜖𝑝
1 ̄𝜖𝑝

1+𝜏 𝜖𝑝
0 ̄𝜖𝑝

0+𝜏 ⋯ 𝜖𝑝
2−𝑅 ̄𝜖𝑝

2−𝑅+𝜏
𝜖𝑝

2 ̄𝜖𝑝
2+𝜏 𝜖𝑝

1 ̄𝜖𝑝
1+𝜏 ⋯ 𝜖𝑝

3−𝑅 ̄𝜖𝑝
3−𝑅+𝜏

⋮ ⋮ ⋱ ⋮
𝜖𝑝

𝑇 −𝜏 ̄𝜖𝑝
𝑇 𝜖𝑝

𝑇 −𝜏−1 ̄𝜖𝑝
𝑇 −1 ⋯ 𝜖𝑝

𝑇 −𝜏−𝑅+1 ̄𝜖𝑝
𝑇 −𝑅+1

⎤
⎥⎥⎥
⎦

⎡
⎢⎢⎢
⎣

𝜌𝑝
1,𝜏

𝜌𝑝
2,𝜏
⋮

𝜌𝑝
𝑅,𝜏

⎤
⎥⎥⎥
⎦

+𝑃𝑁𝛿𝜏+
⎡
⎢⎢⎢
⎣

𝑛𝑝
1,𝜏

𝑛𝑝
2,𝜏
⋮

𝑛𝑝
𝑇 ,𝜏

⎤
⎥⎥⎥
⎦

,

(3.13)
similar to Virtanen et al. (2008a). It is important to remember that some of the
values in thematrix 𝔸𝑝

𝜏 are zero because the coding 𝜖𝑝
𝑡 is zero outside of its domain.

Also, a sum over different code-products could average to zero. When estimating
⃗𝜌𝑝
𝜏 for 𝜏 = 0, one has to subtract the noise power and then also that has to be
estimated. This can be done by using the time between the pulses when only noise
is received. In the case here where the autocorrelation function is constant for all
time lags, the case 𝜏 = 0 can be ignored. Additionally, we assume that the radar
pulses 𝑝 = 1, … , 𝑁P measure the same state of the ionosphere so ⃗𝜌𝑝

𝜏 = ⃗𝜌𝜏 for all
pulses 𝑝. This means that electron density, -temperature and so on do not change
between pulses. Even if the assumption sounds unreasonable, it is necessary to
get measurements with low enough uncertainty. With the equations for different
pulses combined into one equation, the problem to solve becomes

⎡⎢⎢
⎣

⃗𝑚1𝜏
⋮
⃗𝑚𝑁P𝜏

⎤⎥⎥
⎦

= ⎡
⎢
⎣

𝔸1
𝜏
⋮

𝔸𝑁P𝜏

⎤
⎥
⎦

⃗𝜌𝜏 + 𝑃N𝛿𝜏 + ⎡⎢⎢
⎣

⃗𝑛1𝜏
⋮
⃗𝑛𝑁P𝜏

⎤⎥⎥
⎦

, (3.14)

or shortened
⃗𝑚𝜏 = 𝔸𝜏 ⃗𝜌𝜏 + 𝑃N𝛿𝜏 + ⃗𝑛𝜏 . (3.15)
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An estimate of the ACF can be foundwith the least squaremethod. With alternating
codes the measurements, or lag-products, will in general have some correlation
(Huuskonen and Lehtinen 1996). Here we will presume that the signal is much
weaker than the noise. Then, the lag-products will be uncorrelated (Lehtinen and
Häggström 1987). For the cases 𝜏 ≠ 0 and assuming that the measurements have
the same uncertainty, the solution is

⃗ ̂𝜌𝜏 = (𝔸H
𝜏 𝔸𝜏)−1 𝔸H

𝜏 ⃗𝑚𝜏 . (3.16)

By using known plasma theory, some ionospheric parameters can be estimated
from the ACF (Lehtinen and Huuskonen 1996).

If one wants to find the zero lag of the ACF, that is ⃗𝜌0, the noise power has to be
subtracted from the measurements first. Before that the noise power has to be
estimated, which can be done by using the time after receiving the last signal and
before the transmission of the next pulse (Virtanen et al. 2008a). In this case, the
estimate becomes

⃗̂𝜌0 = (𝔸H
0 𝔸0)−1 𝔸H

0 ( ⃗𝑚0 − ̂𝑃N) . (3.17)

Uncertainty of ACF estimate
In addition to having an estimate of the ACF, it is important to know its uncertainty.
The covariance matrix of the least square estimate in (3.16) is

ΣΣlll𝜌𝜏
= (𝔸H

𝜏 𝔸𝜏)−1 𝜎2
𝑚. (3.18)

When using measurements including one or multiple complete runs of alternating
code sets, (𝔸H

𝜏 𝔸𝜏) becomes diagonal with values ∑𝑇 −𝜏
𝑡=1 |𝜖𝑝

𝑡 |2 ∣𝜖𝑝
𝑡+𝜏 ∣2. The measure-

ment error can be inserted from (3.10). The covariance matrix for the ACF can
then be written as

ΣΣlll𝜌𝜏
= (𝑃S + 𝑃N)2

∑𝑁P
𝑝=1 ∑𝑇 −𝜏

𝑡=1 |𝜖𝑝
𝑡 |2 ∣𝜖𝑝

𝑡+𝜏 ∣2
𝕀. (3.19)

If now all the codes have magnitude 1, that is that |𝜖𝑝
𝑡 | = 1 for all 𝑡 and 𝑝, the uncer-

tainty is

ΣΣlll𝜌𝜏
= (𝑃S + 𝑃N)2

𝑁P(𝑇 − 𝜏) 𝕀. (3.20)

In the case of the zeroth lag, the noise power had to be estimated. If this estimate
has variance 𝜎2

𝑃N
, the uncertainty becomes

ΣΣlll𝜌0
=

(𝑃S + 𝑃N)2 + 𝜎2
𝑃N

𝑁P(𝑇 − 𝑅) 𝕀. (3.21)

Case of constant ACF

In the E region, the correlation time is longer than in other places of the ionosphere
(Virtanen et al. 2008b), whichmeans that the ACF looks constant for short pulses. If
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only one ACF lag is needed, all non-zero lags can be used to estimate the ACF. The
reason for not including the zero lag is that it has higher uncertainty, as described
above and in Vallinkoski (1988). A use case is when one only wants to measure the
backscattered power, which was considered in paper I for the aperture synthesis
radar imaging. In that case, in Eq. (3.15), the measurements from all non-zero lags
are stacked as

⎡
⎢
⎣

⃗𝑚1
⋮
⃗𝑚𝑇 −1

⎤
⎥
⎦

= ⎡
⎢
⎣

𝔸1
⋮

𝔸𝑇 −1

⎤
⎥
⎦

⃗𝜌 + ⎡
⎢
⎣

⃗𝑛0
⋮
⃗𝑛𝑇 −1

⎤
⎥
⎦

, (3.22)

of shortened
𝑚⃗ = 𝔸 ⃗𝜌 + 𝑛⃗. (3.23)

The covariancematrix for the powers from the different ranges can then bewritten
as

ΣΣlll𝜌 = (𝑃S + 𝑃N)2

∑𝑇 −1
𝜏=1 ∑𝑁P

𝑝=1 ∑𝑇 −𝜏
𝑡=1 |𝜖𝑝

𝑡 |2 |𝜖𝑡+𝜏 |2
𝕀. (3.24)

With still assuming that |𝜖𝑝
𝑡 | = 1 for all 𝑡 and 𝑝, the equation is simplified to

ΣΣlll𝜌 = 2 (𝑃S + 𝑃N)2

𝑁P𝑇 (𝑇 − 1) 𝕀. (3.25)

3.3 Measured parameters with ISR
The electron density 𝑛e is the main parameter to measure with ISR. Measuring it
throughout the ionosphere was also the origin for building the first ISR. It is still
often the main parameter to measure. Other important parameters are electron
temperature 𝑇e, ion temperature 𝑇i andDoppler shift𝑤. Also other parameters can
be estimated from the ISR spectrum (Virtanen et al. 2021). Additional information
on the ionosphere may be calculated from the directly estimated parameters.

The parameter estimates are be found from the ISR spectrum. Figure 3.1 shows
several examples of theoretical ISR spectra for different underlying plasma param-
eters. The ACF, which is the Fourier transformof the ISR, can be used for parameter
estimation too, but the spectrum is easier to visualize. In the included papers, the
ionospheric parameters are assumed to be derived from the ACF.

The following overview of parameters that are possible to estimate from the ISR
spectrum is based on the review of Beynon andWilliams (1978) which gives amore
complete overview on the topic.

Electron density
There are several methods to estimate the electron density from the ISR spectrum.
The focus here will be on using the backscattered power which was assumed for
the calculations in this work. In general, free electrons scatter incoming electric
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Figure 3.1: Examples of ISR spectra. The default spectrum (blue) assumes electron density
1011 m-3, ion temperature 300 K, electron temperature 400 K, ion mass 31 u (for a mixture
of NO+ and O2

+) and field-aligned measurements. The other spectra deviate from this in
one parameter, the red one in that the ion mass is 16 u (for O+), the green one in that the
electron temperature is 800 K and the purple in that the angle between beamandmagnetic
field line is 45°. The power of the spectra is unnormalized, but that of the red and purple
spectra is divided by two to make them easier to distinguish.

fields with a scattering cross-section of

𝜎e = 4𝜋𝑟2
e sin

2 𝜒, (3.26)

where 𝜒 is the angle between the direction of the incoming electric field and the
observer, and 𝑟e is the classical electron radius given by

𝑟e = 𝜇0𝑞2
e/𝑚e, (3.27)

where 𝜇0 is the permeability in vacuum, 𝑞e is the unit charge, and 𝑚e is the electron
mass. The scattering cross-section 𝜎e is called the Thomson scattering crossection
and means that the electron is regarded as an isotropic radiator, reradiating ev-
erything that hits its scattering cross-section equally in all directions. The electrons
in the ionosphere are influenced by Columb forces and are therefore not free. The
expression for a such scattering cross-section is simplified if the radar wavelength
is much longer than the Debye length. If the illuminated volume has size 𝑉 , the
scattering cross-section of all electrons in the volume combined is

𝜎tot = 𝑉 𝑛e𝜎𝑒
1 + 𝑇e/𝑇i

. (3.28)
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This expression can be inserted into Eq. (3.1) to calculate the backscattered power
as a function of electron density. In the lower part of the ionosphere, in the E region
and below, the ion and electron temperatures are very similar, which simplifies the
electron density estimation.

The backscattered power is not only influenced by the electron density in the vol-
ume. Also some other effects influence the power, for example polar mesospheric
summer and winter echoes (PMSE and PMWE) which give a strong backscattered
signal without being dependent on electron density directly (e.g. Rapp and Lübken
2004). Also, sometimes the ion line is enhanced by other causes than thermal fluc-
tuations only. One such phenomenon is known as natural enhanced ion-acoustic
lines (NEIALs) (e.g.. Grydeland et al. 2004). In these cases, the backscattered power
is not a measure of electron density. However, ISRs can be used to investigate
these phenomena.

Electron and ion temperatures and ion masses
The shape of the ion lines in the ISR spectrum can be used to find electron and ion
temperatures and ion mass. The parameters influence the spectrum together in a
complexmanner and estimating them requires strong and clearmeasurements, or
independent assumptions (Virtanen et al. 2021; Beynon and Williams 1978). One
assumption could be that the ion composition at certain altitudes is quite known
in beforehand, either by experience or by models.

Doppler shift
The collective motion of the probed plasma Doppler-shifts the ISR spectrum. The
shift corresponds to the projection of the plasma motion 𝑣 along the Bragg scat-
tering vector 𝑘⃗, see figure 3.2. The scattering vector is the difference between the
wave vectors of the incoming and scattered wave vector

𝑘⃗ = ⃗𝑘s − ⃗𝑘i (3.29)

where ⃗𝑘i = 4𝜋𝑅⃗t/𝜆 and ⃗𝑘s = 4𝜋𝑅⃗r/𝜆. The Doppler shift is therefore influenced
by the positions of both transmitter and receiver. Additionally, it appears that the
Doppler shift is the plasma velocity measured along neither the incoming wave or
scattered wave, but perpendicular to the mirroring plane.

Without the Doppler shift, the power spectrum is usually symmetric. Then, the
Fourier transform, the ACF, is purely real. The Doppler shift is therefore one im-
portant cause for the ACF being complex, which also means that it should be easy
to measure it (Evans 1969).

With three independent measurements of the Doppler shift, that is measured in
three linearly independent directions, one can determine the whole ion velocity
vector. The relationship betweenmeasurement 𝑝 of theDoppler shift𝑤𝑝 measured
with geometry with scattering vector 𝑘⃗𝑝 and the ion velocity 𝑣 is

𝑤𝑝 = ⃗𝑘𝑝 · 𝑣/ ∣ ⃗𝑘𝑝∣ + 𝜀𝑝, (3.30)



32 CHAPTER 3. INCOHERENT SCATTER RADAR

⃗𝑘𝑖
⃗𝑘𝑠2

⃗𝑘𝑠1

⃗𝑘1
⃗𝑘2

⃗𝑣
𝑤2

𝑤1

Figure 3.2: The figure shows the geometry of Bragg scattering vectors and how they are
related to the wave vectors of incoming and scattered wave in addition to the relationship
with measurements of Doppler shift and ion velocity.

where 𝜀𝑝 is noise. With several measurements, the measurements can be stacked
in a vector 𝑤⃗⊺ = [𝑤1, ..., 𝑤𝑃 ] for 𝑃 measurements, and similar for the scattering
vectors and the noise, resulting in the equation

𝑤⃗ = 𝕂 ⃗𝑣 + ⃗𝜀. (3.31)

Under the conditions mentioned, the equation can be solved with the method of
least squares.

There exist two methods of obtaining the independent measurements of the
Doppler shift. The classical method is to use beam-swing measurements. Here,
a (monostatic) radar measures the Doppler shift in one direction. Then the beam
is moved and a measurement performed in another direction. After enough mea-
surements, the ion velocity for one time step can be inverted and the measure-
ments for the next time step can begin. With this method, the radar measures the
Doppler shift in completely different regions and slightly different times. By us-
ing the measurements, one assumes that the ion velocity is equal everywhere and
varies slowly. In addition, rotating a dish antenna takes time, and therefore only
allows for slow time variations (Williams et al. 1984). With a phased array, the beam
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steering is done between transmitted pulses, so the temporal restriction does not
apply here (Heinselman and Nicolls 2008).

With multistatic radars, there are several receivers to measure the Doppler shift in
the same volume simultaneously from different directions. For dish antennas, the
measurement can only be done in one point at the time. However, in contrast to
the beam-swing experiments, the same volume is measured. In order to measure
the velocities along a line or in a volume, all antennas have to be steered, which
takes time (Williams et al. 1984; Risbeth and Williams 1985).

Other parameters
In addition to the ”easy” parameters to measure, there are some that are more
difficult. They often need that the backscattered signal is strong so that their effect
on the measurements become significant.

One of these is the frequency of collisions between ions and neutrals. While it can
be measured, especially at lower altitudes (Nicolls et al. 2014), it is rarely done.

When not only analyzing the ion lines for parameter estimates, but also including
the plasma lines, there are more possible parameters to estimate. Among these
is the field-aligned electric current (Akbari et al. 2017). Also, the plasma lines may
be used to improve parameter estimates found with the ion lines, especially the
electron density (e.g. Rexer et al. 2018).

Derived parameters
To make this section short, it only discusses the parameters relevant for the the-
sis, neutral wind and electric field. Through collisions, the ion velocity is coupled
with the neutral wind. The Lorentz force makes also the electric field influence ion
velocity.

At the highest altitudes, the number of collisions is very low. Therefore the Lorentz
force influences the ions more than collisions, and the electric field can be esti-
mated. Because the electrical conductivity along a magnetic field line much higher
than in perpendicular direction, the electric field is assumed to remain constant
along a field line. Using these two assumptions is a method to estimate the neu-
tral wind velocity in the ionosphere. This method was first used by Brekke et al.
(1973) and Brekke et al. (1974), and is has been used and improved over the years
(Nygrén et al. 2011, and references therein).

The estimation starts with the momentum equation for ions, assuming only one
ion species and neglecting Coriolis effects:

𝑛𝑖𝑚𝑖
d ⃗𝑣
d𝑡 = −∇ℙ𝑖 + 𝑛i𝑚i ⃗𝑔 + 𝑞i𝑛𝑖 ( ⃗𝐸 + ⃗𝑣 × 𝐵⃗) − ∑

𝑘
𝑛𝑖𝑚𝑖𝜈𝑖𝑘 ( ⃗𝑣 − ⃗𝑣𝑘) , (3.32)

where 𝑛𝑖 is the particle density of ions, 𝑚𝑖 is the ion mass, ℙ𝑖 is the pressure tensor
for ions, ⃗𝑔 is the gravitational acceleration, 𝑞𝑖 is the ion charge, ⃗𝐸 is the electrical
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field, 𝐵⃗ is themagnetic field, 𝜈𝑖𝑘 is the collision frequency between ions and particle
species 𝑘, and ⃗𝑣𝑘 is the velocity of particle species 𝑘.
Since the ion velocity changes as slow or fast as does the collision frequency, the
system can be assumed to be in steady state, d ⃗𝑣/d𝑡 = 0 (Brekke et al. 1974). When
the pressure is isotropic, it can be written as a scalar 𝑝𝑖. Then, one can use the ideal
gas law, 𝑝i = 𝑛i𝑘B𝑇i, charge neutrality 𝑛i = 𝑛e and assume that the ion temperature
gradient is much smaller than the electron density gradient ∇𝑛e/𝑛e ≫ ∇𝑇i/𝑇i, to
approiximate the gradient in ion pressure as ∇𝑝𝑖 = 𝑘B𝑇𝑖∇𝑛𝑒. The neutral particles
are far the most common other species and the momentum exchanged in ion-
electron collisions is small. Collisionswith other species thanneutrals are therefore
neglected. Finally, single-charged ions are assumed. Themomentum equation can
then be simplified as

0 = −𝑘B𝑇i∇𝑛e + 𝑛e𝑚i ⃗𝑔 + 𝑞e𝑛e ( ⃗𝐸 + ⃗𝑣 × 𝐵⃗) − 𝑛e𝑚i𝜈in ( ⃗𝑣 − 𝑢⃗) , (3.33)

where 𝑢⃗ is the velocity of neutral particles. The influence of gravity and density
gradients is commonly neglected (Brekke et al. 1973; Brekke et al. 1974; Brekke
et al. 1994; Heinselman and Nicolls 2008; Nygrén et al. 2011) since they often are
small or hard to measure. Here, they will not be neglected in the first part to see
how they would influence results later. To simplify the equation, these two terms
are combined into the vector

𝐺⃗i = −𝑘B𝑇i∇𝑛e
𝑛e𝑚i𝜈in

+ ⃗𝑔
𝜈in

, (3.34)

We also introduce the ion mobility

𝜅i = 𝑞e𝐵
𝑚i𝜈in

. (3.35)

The equation (3.33) is now solved for the ion velocity:

⃗𝑣 = 𝐺⃗i +
𝜅i
𝐵 ( ⃗𝐸 + ⃗𝑣 × 𝐵⃗) + 𝑢⃗, (3.36)

The cross product with the magnetic field 𝐵⃗ can be written as a matrix multiplica-
tion

⃗𝑣 × 𝐵⃗ = ⎡
⎢
⎣

0 𝐵𝑧 −𝐵𝑦
−𝐵𝑧 0 𝐵𝑥
𝐵𝑦 −𝐵𝑥 0

⎤
⎥
⎦

⃗𝑣 = 𝔹 ⃗𝑣, (3.37)

which is inserted to equation (3.36), such that

⃗𝑣 = 𝐺⃗i +
𝜅i
𝐵

⃗𝐸 + 𝜅i
𝐵𝔹 ⃗𝑣 + 𝑢⃗. (3.38)

When collecting the ion velocity on the left side, the equation becomes

(𝕀 + 𝜅i
𝐵𝔹) ⃗𝑣 = 𝐺⃗i +

𝜅i
𝐵

⃗𝐸 + 𝑢⃗, (3.39)
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where 𝕀 is the identity matrix. Finally, the solution is found by inverting the matrix
on the left side. Letting this inverse be equal to (𝕀 + 𝜅i

𝐵𝔹)−1 = ℂ, the solution ends
up on the same form as in Heinselman and Nicolls (2008), which is

⃗𝑣 = ℂ (𝐺⃗i + 𝑢⃗) + 𝜅i
𝐵ℂ ⃗𝐸. (3.40)

It can be shown that

ℂ = 1
1 + 𝜅2

i

⎡⎢⎢
⎣

1 + 𝜅2
i

𝐵2 𝐵2
𝑥 −𝜅i

𝐵𝐵𝑧 + 𝜅2
i

𝐵2 𝐵𝑥𝐵𝑦 −𝜅i
𝐵𝐵𝑦 + 𝜅2

i
𝐵2 𝐵𝑥𝐵𝑧

𝜅i
𝐵𝐵𝑧 + 𝜅2

i
𝐵2 𝐵𝑥𝐵𝑦 1 + 𝜅2

i
𝐵2 𝐵2

𝑦
𝜅i
𝐵𝐵𝑥 + 𝜅2

i
𝐵2 𝐵𝑦𝐵𝑧

𝜅i
𝐵𝐵𝑦 + 𝜅i

𝐵
2𝐵𝑥𝐵𝑧 −𝜅i

𝐵𝐵𝑥 + 𝜅2
i

𝐵2 𝐵𝑦𝐵𝑧 1 + 𝜅2
i

𝐵2 𝐵2
𝑧

⎤⎥⎥
⎦

, (3.41)

where 𝑥,𝑦 and 𝑧 are three axes in a right-handed coordinate system. If the z-axis is
chosen so that it is aligned with the magnetic field, the matrix is simplified to what
is used in Heinselman and Nicolls (2008), namely

ℂ =
⎡⎢⎢
⎣

1
1+𝜅2

i

−𝜅i
1+𝜅2

i
0

𝜅i
1+𝜅2

i

1
1+𝜅2

i
0

0 0 1

⎤⎥⎥
⎦

. (3.42)

As can be seen from equation (3.38), the terms of gravity and electron density gra-
dient 𝐺⃗i reduce the ion velocity with ℂ𝐺⃗i when finding electric field and neutral
wind.

3.4 Overview over ISRs
Over the years, several ISRs have been built. Some were built primally for studying
incoherent scatter, but others also have other proposes. For example the Arecibo
radar was largely used for radio astronomy. Additionally, the ISRs can be used for
other things, like meteors, space debris and other celestial bodies. In the long his-
tory of ISR, several radars also have been closed. This section gives a short overview
over some ISRs and their properties.

The oldest ISR still in use is the Jicamarca ISR close to Lima, the capital of Peru. It
began observations already in 1961 and consists of an phased array (Beynon and
Williams 1978). It is therefore useful for doing aperture synthesis radar imaging
(ASRI), which has been done here for many years (e.g. Kudeki and Sürücü 1991;
Hysell and Chau 2006; Urco et al. 2018).

When opened, the Arecibo radar in Puerto Rico had the largest dish antenna in the
world with a diameter of 305 m. This allows for detecting very weak signals, which
made it possible to investigate details of the plasma lines (Beynon and Williams
1978). The radar is not in use anymore after several storms destroyed parts of the
infrastructure.

The firstmultistatic observationswere doneby the St. Santin radar and theUK inco-
herent scatter radar. The St. Santin radar consisted of dish antennas located at up
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to four sites. It was configured such that one couldmeasure the three-dimensional
ion velocity vector at three heights simultaneously (Beynon and Williams 1978).

In 1981, the European incoherent scatter (EISCAT) began operating its UHF radar.
At that point it consisted of three dish antennas located in Ramfjordmoen, Norway,
Kiruna, Sweden and Sodankylä, Finland. The main transmit and receive site is on
Ramfjordmoen. Its three sites makes it suitable for observing the complete ion
velocity vector in one point (Risbeth and Williams 1985). In 1984, a second radar in
the VHF band was constructed as a monostatic radar (Risbeth and Williams 1985).
Due to issueswith interfering signals, in 2012 the receivers in Kiruna and Sodankylä
were turned to receivers of the EISCAT VHF instead (Kero 2014).

EISCAT also has a radar on Svalbard, the EISCAT Svalbard radar (ESR) which opened
in 1996 (Holtet 2020). It consists of two parabolic dishes and is located in the au-
roral oval at daytime.

The advanced modular incoherent scatter radar (AMISR) project is a newer type
of ISR. It consists of an electronically steered phased array which is controlled re-
motely (Valentic et al. 2013). This allows for steering the beam inbetween two trans-
mit pulses. There are three radars of this type running, the Poker Flat ISR (PFISR)
and two in Resolute bay (RISR-N and RISR-C).

The Middle Atmosphere Alomar Radar System (MAARSY) on Andøya, Norway has
been in use since 2010. It is not built as an ISR, but ISR functionality was planned
as an extension (Latteck et al. 2012). The radar is a phased array which can be
steered electronically as the AMISR radars, but in contrast to those, it consists of
smaller parts which can transmit and receive independently. This enables for use
of MAARSY for ASRI with both one or more transmitters (Latteck et al. 2012; Urco
et al. 2019).



Chapter 4

EISCAT3D and new measurement
techniques

This chapter introduces the upcoming EISCAT3D (E3D) radar. It starts with describ-
ing important parameters and new capabilities of E3D. Afterwards, the measure-
ment techniques this thesis builds upon are presented.

When the EISCAT mainland radars were constructed, the technological solutions
from that time were used. At time of writing, this is 41 years ago (38 for VHF).
In the mean time, the ionospheric research has become more advanced, which
demands more from the instrument of measure. In order to meet the demands,
the planning on a new ISR started with a design study in 2005, followed by more
studies. The concept is a flexible multistatic phased array called E3D with several
new capabilities (McCrea et al. 2015). At time of writing, groundworks are mostly
finished and some construction has begun (Andersson 2021). First measurements
are expected for 2022.

4.1 Description and layout of EISCAT3D
The information in this section is based on the latest E3D design known to the
undersigned. Between time of writing and finalization of E3D, the design might
still change.

The plans for building up E3D consist of several stages, where the first stage is the
one currently built. This thesis focuses on the first stage, as it is the only one that
has concrete plans for building at time of writing.

In the first stage, E3D will consist of three sites, which are shown in figure 4.1. Each
site is located in a different country, like the existing EISCAT VHF radar, but the sites
are different from E3D. The site in Norway will be the main site which can both
transmit and receive, while remote receivers are built in Sweden and Finland. With
a location close to Skibotn in Storfjord, Troms (69.340 °N, 20.313 °E), the main site
will be in an area with less cloud cover (EISCAT 2021) and precipitation than Ram-
fjordmoen. The Finnish site will be located at Karesuvanto in Enontekiö, Lapland
(68.463 °N, 22.458 °E). In Kaiseniemi at the lake Torneträsk in Kiruna, Norrbotten

37
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Figure 4.1: Locations of the three sites built for the first stage of E3D in Skibotn, Karesu-
vanto and Kaiseniemi (left) and geometry for measuring ion velocity vectors (right). All ve-
locity measurements shown are carried out with one transmit beam. For this to work, the
receivers are able to form all the needed receiver beams simultaneously. Figures courtesy
of Björn Gustavsson.

(68.267 °N, 19.448 °E), the Swedish site will be located (Kero et al. 2019). The plans
for further stages involve more receiver sites.

In contrast to the existing EISCAT radars, E3D will consist of electronically steered
phased arrays. This enables the possibility to steer the transmit beam between
two transmit pulses, like the AMISR radars. It also allows for forming several re-
ceive beams simultaneously. This technique was tried out with the Kilpisjärvi At-
mospheric Imaging Receiver array (KAIRA) for receiving the signal transmitted from
EISCAT VHF scattered at heights up to practically 400 km (McKay-Bukowski et al.
2015).

The fast beam steering and the simultaneous receive beams enable E3D to make
measurements of the ion velocity vector over a large volume for the first time. Ear-
lier, this was only possible for scalar quantities or with including the slow steering
time of the antenna dishes.

The antenna field of the E3D sites is divided into groups, called a subarray. One
example of an E3D subarray is shown in figure 4.2. The subarrays have a hexago-
nal shape and each consists of 91 crossed dipole antennas. Each subarray will be
possible to steer separately. The arrays at all three E3D sites will consist of 109 sub-
arrays formed in a circle-like shape as shown in figure 4.3. When transmitting, the
subarrays use a slightly different phase, which gives a constructive interference in
the desired direction, forming the final beamshape. In addition to the core array,
in Skibotn there will be built 10 outrigger subarrays for interferometry (Kero et al.
2019).

The total transmit power of the radar is connected to the power of each trans-
mit antenna. In the first time, not all subarrays will be equipped with transmit
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Figure 4.2: Sample of E3D subarray located at EISCAT site at Ramjordmoen. Image courtesy
of Björn Gustavsson
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Figure 4.3: Distribution of E3D subarrays. The core is shown to the right and the position
of the outriggers is shown to the left. All coordinates are relative to the central antenna of
the core array. The shown configuration is that of the Skibotn site. The remote receivers
will have the same configuration, but without the outrigger subarrays.
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power, which gives a total transmit power of around 3MW. There are plans to equip
more antennas with transmit power to increase the total transmittable power in
the future up to 10 MW. Transmit and receive gain for the whole antenna field
will be around 38 dB. Each subarray has a gain of 22 dB. The configuration gives a
half-power beamwidth of about 2°. When all subarrays can transmit, the transmit
power increases to 5 MW, the gain to 43 dB and the beamwidth narrows to 1°. E3D
will have a transmit frequency of 233 MHz.

Newmeasurement techniques
The design of E3D allows for using many techniques to investigate ionospheric
phenomena. The key capabilities of E3D and important research questions are
summed up in the E3D science case by McCrea et al. (2015). In this thesis, the ca-
pabilities of E3D in two areas are investigated: Aperture synthesis radar imaging
and volumetric inversion of electric field and neutral wind.

4.2 Aperture synthesis radar imaging
When most radars measure, the measurements at every range are averaged over
the whole beamwidth. Therefore, one can not resolve structures smaller than the
beamwidth with the radar. The beamwidth of E3Dwill be around 1°, which is larger
than some relevant structures in the ionosphere Figure 4.4 illustrates this by com-
paring a structured auroral arc with the beamwidth of three radars: The upcoming
E3D, the existing EISCAT UHF and the former Arecibo radar. Everything inside of
the circle is considered as a point.

With aperture synthesis radar imaging (ASRI), this limitation can be overcome. The
technique of ASRI can be seen as a combination of two techniques, aperture syn-
thesis and (radar) imaging. Aperture synthesis is a technique to use a sparse ar-
ray to emulate the narrower beam of a larger array. Radar imaging uses cross-
correlations between receivers to form a spatially resolved image of the backscat-
tered radiation. Aperture synthesis imaging has been used successfully in radio
astronomy in many years (e.g. Junklewitz et al. 2016).

History of ASRI
The probably first use of ISR as an interferometer is the experiment described by
Woodman (1971) which used phase differences in signals received by two differ-
ent parts of the Jicamarca radar to find the inclination angle of the magnetic field
at different altitudes. Farley et al. (1981) extended the technique to study the vari-
ation of plasma in east-west (zonal) direction. Later, the technique was extended
to multiple antennas and two dimensions by Kudeki and Sürücü (1991).

Since then, ASRI has been used widely for imaging atmospheric and ionospheric
phenomena causing strong backscatter. Examples here are field-aligned irregular-
ities above Jicamarca (Hysell and Chau 2012), PMSE above MAARSY (e.g. Latteck et
al. 2012) or precipitation above the middle and upper atmosphere radar in Japan
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EISCAT 3D
EISCAT UHF
Arecibo

Figure 4.4: An image of optical aurora emission in magnetic field direction showing a com-
parison of theHPBWof E3D, EISCATUHF and Arecibo radars. Their approximate beamsizes
are 1°, 0.5° and 0.16°. The image is from the Auroral structure and kinetics (ASK) instru-
ment (Ashrafi 2007), courtesy of D. K. Whiter.

(Palmer et al. 1998). Efforts have also been made to make use of EISCAT Svalbard
radar for imaging (Grydeland et al. 2004; Grydeland et al. 2005). This was later
installed, and Schlatter et al. (2015) used it to image NEIALs.

Measurement theory
When doing imaging, one uses the cross-correlation between signals received by
two receivers. The procedure is the similar as for finding the ISR spectrum in chap-
ter 3. Now, a radar with a single transmitter located in the origin is presumed for
simplicity. The radar transmits a signal 𝜖(𝑡)𝑒𝑖𝜔𝑡. The radiated signal will have a beam
pattern 𝜙( ⃗𝑟) perpendicular to the beam direction. At time 𝑡, receiver 1 at location

⃗𝑟1 from the transmitter receives a signal

𝑉1(𝑡) = ∫
⃗𝑟
𝜖 (𝑡 − 𝑟i + 𝑟s1

𝑐 ) 𝑒−𝑖𝜔 𝑟i+𝑟s1
𝑐 𝑧( ⃗𝑟, 𝑡 − 𝑟s1/𝑐) + 𝑛1(𝑡), (4.1)

where 𝑟i = | ⃗𝑟| is the distance between scattering volume and transmitter, and
𝑟s1 = | ⃗𝑟 − ⃗𝑟1| is the distance between scattering volume and receiver 1. The other
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variables have the samemeaning as in Eq. (3.3). As for the non-imaging case, mea-
surements at two points in time, 𝑡 and 𝑡 + 𝜏 , are correlated, but here we also take
the separation between receivers into account, giving

𝑚12(𝑡, 𝜏) = 𝑉1(𝑡) ̄𝑉2(𝑡 + 𝜏) =

∫
⃗𝑟
∫

⃗𝑟′
𝜙( ⃗𝑟)𝜙( ⃗𝑟′)𝜖 (𝑡 − 𝑟i + 𝑟s1

𝑐 ) ̄𝜖 (𝑡 − 𝑟′
i + 𝑟′

s2
𝑐 ) 𝑒𝑖𝜔 𝑟i+𝑟s1−𝑟′

i −𝑟′
s2

𝑐

· 𝑧( ⃗𝑟, 𝑡 − 𝑟s1/𝑐) ̄𝑧( ⃗𝑟′, 𝑡 + 𝜏 − 𝑟s2/𝑐)

+ ∫
𝑟

𝜙( ⃗𝑟)𝜖 (𝑡 − 𝑟i + 𝑟s1
𝑐 ) 𝑒−𝑖𝜔 𝑟i+𝑟s1

𝑐 𝑧( ⃗𝑟, 𝑡 − 𝑟s1/𝑐)𝑛̄2(𝑡 + 𝜏)

+ ∫
𝑟′

𝜙( ⃗𝑟′) ̄𝜖 (𝑡 + 𝜏 − 𝑟′
i + 𝑟′

s2
𝑐 ) 𝑒𝑖𝜔 𝑟′

i +𝑟′
s2

𝑐 ̄𝑧( ⃗𝑟′, 𝑡 − 𝑟s2)𝑛1(𝑡) + 𝑛1(𝑡)𝑛̄2(𝑡 + 𝜏). (4.2)

For the non-imaging case, we now discretized the problem with using the bauds
the signal is divided into. When doing imaging, this is not as simple. One approach
is to divide the illuminated volume into basis functions and use these to discretize
the problem. With assuming that the basis functions are stationary boxcars, with𝐷
boxcars in range (Distance) direction and 𝑄 in both horizontal directions together,
𝑧( ⃗𝑟, 𝑡) ≈ ∑𝐷

𝑑=1 ∑𝑄
𝑞=1 𝑧 [𝑞, 𝑑, 𝑡]box(𝑞, 𝑑, ⃗𝑟). When inserted, Eq. (4.1) becomes

𝑚12(𝑡, 𝜏) =
𝐷

∑
𝑑=1

𝐷′

∑
𝑑′=1

𝑄
∑
𝑞=1

𝑄′

∑
𝑞′=1

∫
⃗𝑟
∫

⃗𝑟′
𝜙( ⃗𝑟)𝜙( ⃗𝑟′)𝜖 (𝑡 − 𝑟i + 𝑟s1

𝑐 ) ̄𝜖 (𝑡 − 𝑟′
i + 𝑟′

s2
𝑐 ) 𝑒𝑖𝜔 𝑟i+𝑟s1−𝑟′

i −𝑟′
s2

𝑐

· 𝑧 [𝑞, 𝑑, 𝑡 − 𝑟s1
𝑐 ] ̄𝑧 [𝑞′, 𝑑′, 𝑡 + 𝜏 − 𝑟′

s2
𝑐 ]box(𝑞, 𝑑, ⃗𝑟)box(𝑞′, 𝑑′, ⃗𝑟′)

+
𝐷

∑
𝑑=1

𝑄
∑
𝑞=1

∫
𝑟

𝜙( ⃗𝑟)𝜖 (𝑡 − 𝑟i + 𝑟s1
𝑐 ) 𝑒−𝑖𝜔 𝑟i+𝑟s1

𝑐 𝑧 [𝑞, 𝑑, 𝑡 − 𝑟s1
𝑐 ] 𝑛̄2(𝑡 + 𝜏)box(𝑞, 𝑑, ⃗𝑟)

+
𝐷′

∑
𝑑′=1

𝑄′

∑
𝑞′=1

∫
𝑟′

𝜙( ⃗𝑟′) ̄𝜖 (𝑡 + 𝜏 − 𝑟′
i + 𝑟′

s2
𝑐 ) 𝑒𝑖𝜔 𝑟′

i +𝑟′
s2

𝑐 ̄𝑧 [𝑞′, 𝑑′, 𝑡 + 𝜏 − 𝑟′
s2
𝑐 ] 𝑛1(𝑡)box(𝑞′, 𝑑′, ⃗𝑟′)

+ 𝑛1(𝑡)𝑛̄2(𝑡 + 𝜏). (4.3)

The next step is simplifying the equation. We assume that outside of the radar
beam, the beam pattern is zero while it is one inside of the beam. We also only use
basis functions that are zero outside of the beam. Threeby, the beam pattern can
be regarded as equal to 1. We also assume that the basis functions, the ”boxes”,
are so small that the content of the integral can be regarded as constant inside of
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one basis function. The equation is then simplified to

𝑚12(𝑡, 𝜏) =
𝐷

∑
𝑑=1

𝐷′

∑
𝑑′=1

𝑄
∑
𝑞=1

𝑄′

∑
𝑞′=1

𝜖 (𝑡 − 𝑟i + 𝑟s1
𝑐 ) ̄𝜖 (𝑡 − 𝑟′

i + 𝑟′
s2

𝑐 ) 𝑒𝑖𝜔 𝑟i+𝑟s1−𝑟′
i −𝑟′

s2
𝑐

· 𝑧 [𝑞, 𝑑, 𝑡 − 𝑟s1
𝑐 ] ̄𝑧 [𝑞′, 𝑑′, 𝑡 + 𝜏 − 𝑟′

s2
𝑐 ]

+
𝐷

∑
𝑑=1

𝑄
∑
𝑞=1

𝜖 (𝑡 − 𝑟i + 𝑟s1
𝑐 ) 𝑒−𝑖𝜔 𝑟i+𝑟s1

𝑐 𝑧 [𝑞, 𝑑, 𝑡 − 𝑟s1
𝑐 ] 𝑛̄2(𝑡 + 𝜏)

+
𝐷′

∑
𝑑′=1

𝑄′

∑
𝑞′=1

̄𝜖 (𝑡 + 𝜏 − 𝑟′
i + 𝑟′

s2
𝑐 ) 𝑒𝑖𝜔 𝑟′

i +𝑟′
s2

𝑐 ̄𝑧 [𝑞′, 𝑑′, 𝑡 + 𝜏 − 𝑟′
s2
𝑐 ] 𝑛1(𝑡) + 𝑛1(𝑡)𝑛̄2(𝑡 + 𝜏).

(4.4)

As in chapter 3, the transmitted signal is sent out in pulses divided into bauds.
We will again mark the pulse with a superscript 𝑝. To make the expression in Eq.
(4.4) similar to equation (3.6), we assume that the pulse coding is independent of
the horizontal position 𝑞. If this would not be the case, the imaging will be more
complicated because the range deconvolution and imaging have to be performed
at the same time. In other words, the variation in the travel time (𝑟i + 𝑟s1)/𝑐 inside
of one range element 𝑑 must be smaller than one baud length. By assuming this,
the pulse coding is only dependent on the range as in the non-imaging case and
will be written in the same way as there. The resulting equation becomes

𝑚𝑝
12(𝑡, 𝜏) =

𝐷
∑
𝑑=1

𝐷′

∑
𝑑′=1

𝜖𝑝
𝑡−𝑑 ̄𝜖𝑝

𝑡+𝜏−𝑑′

𝑄
∑
𝑞=1

𝑄′

∑
𝑞′=1

𝑒𝑖𝜔 𝑟i+𝑟s1−𝑟′
i −𝑟′

s2
𝑐 𝑧𝑝 [𝑞, 𝑑, 𝑡 − 𝑟s1

𝑐 ] ̄𝑧𝑝 [𝑞′, 𝑑′, 𝑡 + 𝜏 − 𝑟′
s2
𝑐 ]

+
𝐷

∑
𝑑=1

𝜖𝑝
𝑡−𝑑

𝑄
∑
𝑞=1

𝑒−𝑖𝜔 𝑟i+𝑟s1
𝑐 𝑧𝑝 [𝑞, 𝑑, 𝑡 − 𝑟s1

𝑐 ] 𝑛̄2(𝑡 + 𝜏)

+
𝐷′

∑
𝑑′=1

̄𝜖𝑝
𝑡+𝜏−𝑑′

𝑄′

∑
𝑞′=1

𝑒𝑖𝜔 𝑟′
i +𝑟′

s2
𝑐 ̄𝑧𝑝 [𝑞′, 𝑑′, 𝑡 + 𝜏 − 𝑟′

s2
𝑐 ] 𝑛1(𝑡) + 𝑛1(𝑡)𝑛̄2(𝑡 + 𝜏). (4.5)

With some effort, one can see that Eq (4.5) is similar to Eq. (3.6). This suggests
that finding the signal statistics and the following range deconvolution can be per-
formed in the same way as for the non-imaging case in chapter 3. Again, we use
that signals from non-overlapping volumes are uncorrelated and that signal and
noise do not correlate. Then, the expected value of the upper expression is

𝜇𝑝
12(𝑡, 𝜏) =

𝐷
∑
𝑑=1

𝜖𝑝
𝑡−𝑑 ̄𝜖𝑝

𝑡+𝜏−𝑑𝜂𝑝
12(𝑑, 𝑡, 𝜏) + 𝑃N𝛿12(𝜏) (4.6)

where

𝜂𝑝
12(𝑑, 𝑡, 𝜏) =

𝑄
∑
𝑞=1

E [𝑒𝑖𝜔 𝑟s1−𝑟s2
𝑐 𝑧𝑝(𝑑, 𝑞, 𝑡) ̄𝑧𝑝(𝑑, 𝑞, 𝑡 + 𝜏)] (4.7)
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is the ACF of signal from range 𝑑 measured with the cross-correlation between
receivers 1 and 2 at time 𝑡 and time lag 𝜏 . Here, the ACF is discretized in time steps
as the pulse code. Because the second term in the lag dependence, 𝑟s1−𝑟s2

𝑐 , already
was assumed to be smaller than the discretization, it could be neglected.

The variance of Eq. (4.5) is

𝜎𝑝
12

2(𝑡, 𝜏) = (𝑃S + 𝑃N)2 . (4.8)

Here, it should be noted that 𝑃S is equal to the signal power from the whole range,
like before.

Now, the range deconvolution can be performed like described in chapter 3. We
are then left with estimates of every cross-correlation 𝜂𝑝

12(𝑑, 𝑡, 𝜏) between two re-
ceivers for a certain range 𝑑 for time 𝑡, time lag 𝜏 and pulse 𝑝. Since the procedure is
independent of range from here, the range index will be skipped. We now assume
independence of three more variables: Time 𝑡, time lag 𝜏 and pulse 𝑝. Assuming
independence on pulse means that the stochastic properties of the signal do not
change faster than the integration time of the measurements. Neglecting time in
the ACF implicitly assumes that the signal is weakly stationary. Finally, assuming
that the ACF does not depend on time lag means that we assume that the ACF,
E [𝑧(𝑞) ̄𝑧(𝑞)] = 𝐾𝑞, is constant. This latter assumption restricts the imaging to the
electron density and is only applicable in the E region.

For the imaging itself, each correlation between two receivers 𝜂𝑖𝑗 is ameasurement
of the linear inverse problem

𝜂𝑖𝑗 =
𝑄

∑
𝑞=1

𝐾𝑞E [𝑒𝑖𝜔 𝑟s𝑖−𝑟s𝑗
𝑐 ] . (4.9)

To solve the inverse problem, the set of the correlations are used to find the im-
age, that is the variation of electron density perpendicular to range direction. The
uncertainty of these measurements is given by Eq. (4.8).

Continuing from here, we assume that all the signal from the box (one pixel of the
image) can be regarded as if it came from its center only. By doing this, we can
remove the expectation brackets from Eq. (4.9).

Approximations of optical path length
When imaging is used in astronomy, all measurements are taken of objects far
further away than the Fraunhofer distance of the radio telescope, that is in the
far field. This has also been the case with the imaging experiments with ISRs so
far. For a radar transmitting (or just receiver receiving) at wavelength 𝜆 and largest
aperture size D, the Fraunhofer distance 𝑑F is given by

𝑑F = 2𝐷2

𝜆 . (4.10)

All ISRs constructed before E3D which can do ASRI have a Fraunhofer distance
shorter than the range to the targets. For most radars this is shorter than 10 km,
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except Jicamarca with around 50 km and ESR with 57 km, which is still nearer than
the E region at 90 km. The plane wave approximation can then be made to sim-
plify the calculations. When using E3Dwith the outriggers, the aperture diameter is
about 1300 m large, which gives a Fraunhofer distance of over 2500 km. If includ-
ing the outriggers, the E3D imaging experiments will always be in the near field.
Therefore, the plain wave approximation can not be made and the curvature in
the scattered electric field must be taken into account.

If the measurements are taken of targets in the farfield, one can simplify the ex-
pression for the optical path length, that is the length of the path the beam takes.
The expression usually used can be found with by approximating the optical path
length as a Taylor polynomial. Then the exponent has to be written out first:

𝑖𝜔𝑟s1 − 𝑟s2
𝑐 = 𝑖2𝜋

𝜆 (| ⃗𝑟s1 − ⃗𝑟𝑞| − | ⃗𝑟s2 − ⃗𝑟𝑞|) (4.11)

Next, the Taylor approximation around ⃗𝑟𝑞 is found. In general for a function | ⃗𝑟 ± ⃗𝑟𝑞|
the 2. order approximation is

| ⃗𝑟 ± ⃗𝑟𝑞| ≈ 𝑟 ± ⃗̂𝑟
⊤

⃗𝑟𝑞 + 𝑟2
𝑞

2𝑟 −
( ⃗̂𝑟

⊤
⃗𝑟𝑞)

2

2𝑟 . (4.12)

We insert Eq. (4.12) into Eq. (4.11) and the expression on the right hand side gets
approximately

𝑖2𝜋
𝜆

⎛⎜⎜⎜⎜
⎝

𝑟s1 − ⃗̂𝑟s1
⊤

⃗𝑟𝑞 + 𝑟2
𝑞

2𝑟s1
−

( ⃗̂𝑟s1
⊤

⃗𝑟𝑞)
2

2𝑟s2
− 𝑟s2 + ⃗̂𝑟s2

⊤
⃗𝑟𝑞 − 𝑟2

𝑞
2𝑟s2

+
( ⃗̂𝑟s2

⊤
⃗𝑟𝑞)

2

2𝑟s2
⎞⎟⎟⎟⎟
⎠

. (4.13)

Using only uses the first order terms, is an execution of the plain wave approxima-
tion. Then, not only the second order terms are gone, but also the leading terms
vanish. Additionally, the expression 2𝜋

𝜆 times the unit vector for direction of the
scattered signal, ⃗̂𝑟s1 or ⃗̂𝑟s2, is equal to the scattering wave vector ⃗𝑘s1 or ⃗𝑘s2. This
makes the expression even simpler, leaving

𝑒𝑖𝜔 𝑟s1−𝑟s2
𝑐 ≈ 𝑒( ⃗𝑘1− ⃗𝑘2)⊤ ⃗𝑟𝑞, (4.14)

which is the commonly used expression.

By using the second order approximation, the curvature of the wave front is taken
into account. Alternatively, one can use the second order terms to correct for the
curvature of the wavefront, and then use the plain wave approximation. This is a
technique proposed by Woodman (1997).

The simplifications of the path length are not used in paper I. Here, the exact optical
path length is used in the calculations, but the comparison to the simplified ones
is included here because nearfield imaging has not been done with ISR yet.
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Inverse problem of imaging
The measurements and unknowns can now be set up as an inverse problem

⃗𝜂 = 𝔸 ⃗𝑥 + ⃗𝜀 (4.15)

where
⃗𝜂⊤ = [𝜂11, ⋯ , 𝜂𝑁𝑅𝑁𝑅

] (4.16)

for 𝑁𝑅 receivers (for E3D these are the subarrays),

𝔸 =
⎡⎢⎢
⎣

𝑒𝑖𝜔 𝑟s1(1)−𝑟s1(1)
𝑐 ⋯ 𝑒𝑖𝜔 𝑟s1(𝑄)−𝑟s1(𝑄)

𝑐

⋮ ⋱ ⋮
𝑒𝑖𝜔 𝑟s𝑅𝑁 (1)−𝑟s𝑅𝑁 (1)

𝑐 ⋯ 𝑒𝑖𝜔 𝑟s𝑅𝑁 (𝑄)−𝑟s𝑅𝑁 (𝑄)
𝑐

⎤⎥⎥
⎦

(4.17)

is the theory matrix,
⃗𝑥⊤ = [𝜌1, ⋯ , 𝜌𝑞] (4.18)

is the unknown vector with the backscattered power from every box, or pixel, 𝑞,
and

⃗𝜀⊤ = [𝜀11, ⋯ , 𝜀𝑁𝑅𝑁𝑅
] (4.19)

is the noise vector for every measured cross-correlation. With the assumptions
made above, the covariance of the cross-correlations is given by (3.25).

The solvation of the imaging problem is described in paper I. Since some of the
imaging techniques rely on that the target is in the farfield, which is not the case
for E3D, these techniques give poor results. These might be improved with using
the second order terms of the Taylor approximation as described above.

MIMO imaging
With few exceptions, all ASRI experiments made use of a single-input multiple-
output (SIMO) system. This means they used a single transmitter, but multiple
receivers. In recent years, ASRI became extended to make use of multiple trans-
mitters, giving a multiple-input multiple-output (MIMO) system (Urco et al. 2018).

With MIMO, more baselines can be made, including longer ones. Use of MIMO can
therefore increase the horizontal resolution. A disadvantage of the MIMO tech-
nique is that it needs to divide the radar into independent transmitters, which re-
duces the transmit power available. MIMO is therefore only possible where the
signals are strong enough (Urco et al. 2018). Still, there are radars that are able to
use MIMO, and among these are Jicamarca, where it was tested, and MAARSY for
PMSE (Urco et al. 2019).

Paper I makes a short investigation on the use of MIMO imaging with E3D. A result
is that this requires very strong signals and is therefore only possible to do for the
strongest targets, such as NEIALs PMSE or strong auroral arcs.
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Figure 4.5: Geometry and assumptions for volumetric velocity measurements with E3D.
The figure is not to scale or angle.

4.3 Volumetric inversion of electric field and
neutral wind

As a multistatic phased array, the remote receivers of E3D will be able to form
several receiver beams simultaneously. This enables measurements of three in-
dependent components of the ion velocity vector at every range in the transmit
beam at once. As a consequence, the ion velocity can be measured with a higher
time and range resolution and with fewer assumptions.

Using the momentum equation for ions to estimate neutral wind velocity and elec-
tric field has a tradition since the method was introduced by Brekke et al. (1973).
The deduction of thematrix form of themomentum equation is described in chap-
ter 3. The rest ofmethod is in general describedwell in e.g. Heinselman andNicolls
(2008) or Paper II and therefore not repeated here. The method relies on the as-
sumption that the electric field is constant along a magnetic field line.
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Paper II investigates how to estimate neutral wind and electric field with E3D. An
important part is the study on if it is possible to relax the traditional assumption on
a constant electric field. By introducing regularization of the smoothness of neutral
wind and electric field profiles, the influence of the assumption can be controlled.
A conclusion of the study is that electric field and neutral wind can not be found at
the same altitudes with high accuracy because of the underdetermined nature of
the problem.

The fast beam steering of electronically steered phased arrays, enables measure-
ments of volumetric variations in scalar quantities, such as electron density and
temperature, over a volume (Semeter et al. 2009). Thesemeasurements are some-
times called volumetric imaging. However, opposed to ASRI, volumetric imaging
does not involve interferometry, nor does it give sub-beam resolution.

The addition of the remote receivers to E3D enables volumetric imaging of vector
quantities, such as the ion velocity. One idea is therefore to steer the E3D beam
into different directions and so investigate the vector field of ion velocity over a
volume (McCrea et al. 2015). Properties of and assumptions needed for using such
measurements to estimate neutral wind and electric field are investigated in paper
III.

A goal of the investigation is to use only physics-based constraints to regularize
the problem. Gauss’ law and Faraday’s law constrain the electric field while the
continuity assumptions are used for the neutral wind, see figure 4.5. The function
to minimize becomes

(𝑚⃗ − 𝔸 ⃗𝑥)⊤ ΣΣlll−1
𝑚 (𝑚⃗ − 𝔸 ⃗𝑥) + 𝜎−1

F ∥∇ × ⃗𝐸∥2
2

+ 𝜎−2
G ∥∇ ⋅ ⃗𝐸∥2

2
+ Σ−2

K ‖∇ ⋅ (𝜌𝑢⃗)‖2
2

+ 𝜎−2
d𝑢⃗
d𝑟⃗

∥d𝑢⃗
d ⃗𝑟 ∥

2

2
+ 𝜎−2

d𝑢⃗
d𝑡

∥𝑢⃗ − 𝑢⃗prev∥
2
2 . (4.20)

All these are differential equations. When discretized, derivatives are replacedwith
finite differences. Then, they become similar to a first order Tikhonov regulariza-
tion in three dimensions.



Chapter 5

Implications

The research presented in the articles contained in this thesis are strongly theo-
retical, where discussion and simulations have been the way to confirm results.
This is reasoned by that the real measurements can not be made until E3D starts
its service. Despite this, there can be made some conclusions for future research,
both with E3D and, in some cases, other ISRs. The work with aperture synthesis
radar imaging for E3D revealed that when receiving with the outriggers, the iono-
sphere is closer than the Fraunhofer distance, that is in the nearfield of E3D. The
techniques for recovering the spatial brightness distribution often come from radio
astronomy, where all images are taken in the farfield. They can therefore simplify
calculations by substituting the optical path length from transmitter to receivers
with a simple scalar product of Bragg scattering vector and direction of the target,
see chapter 4. This difference between earlier applications causes that the imaging
techniques used in radio astronomymust be adjusted for nearfieldmeasurements.
Otherwise they may give poor results, as shown in Paper I.

The possibility of nearfield imaging was already pointed out by Woodman (1997),
which also introduced a term that corrects for some difference in the optical path
length. Paper I shows that when using techniques for solving an inverse problem,
the total optical path length can be used directly. Since E3D is the first ionospheric
radar with the target in the nearfield, nearfield imaging has not been a concrete
problem before.

A partial study of paper I was to investigate if the outrigger subarrays of E3D would
be close enough for using them for ASRI. Then, backscattered signals from the sub-
arrays must have some correlation between each other. This study was especially
important for using E3D as a MIMO system. For all subarrays at the Skibotn site,
there is some correlation between all transmit-receive pairs. Also a theoretical pos-
sibility of using also the remote receive sites in Kaaresuvanto and Kaiseniemi to
synthesize an even larger array for ASRI was investigated. Here, the remote re-
ceivers are too far to be able to correlate backscattered signals in-between the
sites. However, since correlations within a single site can be used, there remains
a possibility to perform ASRI at every site of E3D and average the image to obtain
better accuracy. This investigation is left for future work.

49
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In paper II, a new method to estimate neutral wind and electric field from ion drift
data is investigated. Instead of simply assuming a constant electric field, it is al-
lowed to vary over altitude. The results show that the assumption of a completely
constant electric fieldmakes the estimates of electric fieldmore constant than they
are, as expected. However, then also the uncertainty in the neutral wind estimates
is underestimated. This indicated that when studies use the assumption of a con-
stant electric field to estimate neutral wind, caution must be taken to not underes-
timate its uncertainty.

The framework in paper II was specialized to E3D because of its ability to make fast
and local measurements of the complete ion velocity. Even if other ISRs do not
have this ability, the framework can be used elsewise.

The results in paper III indicate that even with ion velocity vectors measured along
multiple beams in a tight configuration and imposing physics-based constraints,
these measurements can not be used to obtain reasonable estimates of neutral
wind and electric field at the same altitude. However, with such a configuration,
there can be made estimates of the electric field varying both horizontally and ver-
tically. The estimates also have a reasonable uncertainty. Since making such mea-
surements was one important reason for planning and constructing E3D, it is good
news that the radar is able fo fulfil this dream to a good degree.

The constraints in paper III make use of Gauss’ law ∇ ⋅ ⃗𝐸 ≈ 0 and Faraday’s law
∇ × ⃗𝐸 ≈ 0 for electric field. One additional constraint which was not used is to use
conservation of charge, ∇ ⋅ ⃗𝐽 ≈ 0. This can be combined with Ohm’s law ⃗𝐽 = 𝜎C

⃗𝐸,
where 𝜎C is the electrical conductivity. Conductivity estimates can be inferred from
electron density data (e.g. Brekke 2013). Together these will constrain electric field
estimates further. This investigation and implementation is left for future work.
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Abstract. A new incoherent scatter radar called EISCAT 3D
is being constructed in northern Scandinavia. It will have
the capability to produce volumetric images of ionospheric
plasma parameters using aperture synthesis radar imaging.
This study uses the current design of EISCAT 3D to ex-
plore the theoretical radar imaging performance when imag-
ing electron density in the E region and compares numeri-
cal techniques that could be used in practice. Of all imaging
algorithms surveyed, the singular value decomposition with
regularization gave the best results and was also found to be
the most computationally efficient. The estimated imaging
performance indicates that the radar will be capable of de-
tecting features down to approximately 90×90 m at a height
of 100 km, which corresponds to a ≈ 0.05◦ angular reso-
lution. The temporal resolution is dependent on the signal-
to-noise ratio and range resolution. The signal-to-noise ratio
calculations indicate that high-resolution imaging of auroral
precipitation is feasible. For example, with a range resolution
of 1500 m, a time resolution of 10 s, and an electron density
of 2× 1011 m−3, the correlation function estimates for radar
scatter from the E region can be measured with an uncer-
tainty of 5 %. At a time resolution of 10 s and an image reso-
lution of 90×90 m, the relative estimation error standard de-
viation of the image intensity is 10 %. Dividing the transmit-
ting array into multiple independent transmitters to obtain a
multiple-input–multiple-output (MIMO) interferometer sys-
tem is also studied, and this technique is found to increase
imaging performance through improved visibility coverage.
Although this reduces the signal-to-noise ratio, MIMO has
successfully been applied to image strong radar echoes as
meteors and polar mesospheric summer echoes. Use of the
MIMO technique for incoherent scatter radars (ISRs) should
be investigated further.

1 Introduction

One of the measurement challenges in the study of the
Earth’s ionized upper atmosphere when using incoherent
scatter radars (ISRs) is that the measurements often do not
match the intrinsic horizontal resolution of the physical phe-
nomena that are being studied. Conventional ISR measure-
ments are ultimately limited in the transverse beam axis di-
rection by the beam width of the radar antenna, which is de-
termined by the diffraction pattern of the antenna. Even for
large antennas, the beam width is typically around 1◦. The
mismatch between geophysical feature scales and horizontal
resolution obtained by a typical ISR antenna is demonstrated
in Fig. 1, which shows an image of auroral airglow taken in
the magnetic-field-aligned direction. Overlain on the image
are the antenna beam diameters of three incoherent scatter
radar antennas, namely EISCAT ultra-high frequency (UHF),
EISCAT 3D, and Arecibo. It is clear that the auroral precipi-
tation has an appreciable structure on scales smaller than the
beam size. A conventional ISR measurement in this case will
provide plasma parameters that are averaged over the area of
the radar beam, preventing the observation of a small, sub-
beam-width-scale structure. Only a radar with an antenna the
size of the Arecibo Observatory dish (305 m) would provide
an antenna beam width that approaches the scale size of au-
roral precipitation.

Another measurement challenge for ISRs is temporal sam-
pling of the spatial region of interest. Single-dish radar sys-
tems can only measure in one direction at any given time,
and the ability to move the beam into another direction de-
pends on the speed at which the antenna can be steered. In
addition, there is the minimum integration time required to
measure one position. It takes a long time to sample a large
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Figure 1. An image of auroral optical emission in the magnetic-
field-aligned direction, showing the horizontal distribution of the
auroral precipitating electron flux. Overlain on the image are the
beam widths of the EISCAT UHF, Arecibo, and EISCAT 3D radars,
with approximately 0.5◦, 0.16◦, and 1.0◦ beam widths. The image is
from the Auroral Structure and Kinetics (ASK) instrument (Ashrafi,
2007), courtesy of Daniel K. Whiter.

horizontal region, and even then, the measurements of differ-
ent horizontal positions are obtained at different times.

In order to increase the spatial resolution of radio mea-
surements without resorting to constructing an extremely
large continuous antenna structure, a technique called aper-
ture synthesis imaging can be used (e.g. Junklewitz et al.,
2016). It relies on a sparse array of antennas to estimate a
radio image with a horizontal resolution equivalent to that of
a large antenna. The correlation between the received signals
can be used to produce an image of the brightness distribu-
tion of the radio source. This technique is widely used in
radio astronomy to image the intensity of radio waves origi-
nating from different sky positions.

The application of aperture synthesis imaging for radar,
i.e. ASRI, has been used in space physics to observe high
signal-to-noise ratio targets (Hysell et al., 2009; Chau et al.,
2019). There is a good amount of literature on ASRI tech-
niques in two dimensions (range and one transverse beam
axis direction) for imaging field-aligned irregularities (e.g.
Hysell and Chau, 2012, and references therein). There has
also been much research on the imaging of atmospheric
and ionospheric features in three dimensions; for example,
Urco et al. (2019), who applied it to observations of polar
mesospheric summer echoes (PMSE) with the Middle At-
mosphere Alomar Radar System (MAARSY); Palmer et al.
(1998), who applied it on the middle and upper atmosphere
radar in Japan; Yu et al. (2000), who applied it in a simulation
study; and Chau and Woodman (2001), who applied it to ob-
servations of the atmosphere over Jicamarca. The currently
available horizontal resolution of ASRI is around 0.5◦ with
Jicamarca, but down to 0.1◦ for strong backscatter (Hysell
and Chau, 2012) in the case of field-aligned ionospheric ir-

regularities, and 0.6◦ with MAARSY for PMSE (Urco et al.,
2019).

However, there is little literature directly on the incoherent
scatter in three dimensions, but some approaches have been
made, like Schlatter et al. (2015), who used the EISCAT aper-
ture synthesis imaging array and the EISCAT Svalbard radar
to image the horizontal structure of naturally enhanced ion
acoustic lines (NEIALs) and Semeter et al. (2009), who in-
terpolated sparse independent Poker Flat Incoherent Scatter
Radar (PFISR) measurements to estimate the electron den-
sity variation over a 65×60 km area during an auroral event.

In radar imaging, the measurements are in the so-called
visibility domain. Ensemble averages of the cross-correlation
of complex voltages between two antennas represent a single
sample of the visibility (Woodman, 1997; Urco et al., 2018).
Throughout this article we will use the term “far field” for
the region further away than the Fraunhofer limit of the radar.
The region closer than the Fraunhofer limit we will call the
“near field”. If the radar target is in the far field of the radar,
the visibility domain is related via a Fourier transform to the
horizontal brightness distribution or the radio image. Then,
the measurements are samples of the Fourier transform of the
spatial variation of backscatter strength, or brightness distri-
bution, of the target (Woodman, 1997). The measurements
are used to calculate the brightness distribution, or image, of
the target.

So far, most of the incoherent scatter radar imaging has
been done with a single transmitter and multiple receivers,
thereby using a single-input–multiple-output (SIMO) sys-
tem. The number of measurements and degrees of freedom
is here determined by the number of receivers and their rel-
ative locations. Instead of using only one transmitter, mul-
tiple transmitters can be used when performing radar imag-
ing. This allows one to increase the number of visibilities
that can be measured, which can result in improved imag-
ing performance – as long as the signal-to-noise ratio is
sufficiently high. This technique is called multiple-input–
multiple-output (MIMO) radar (Fishler et al., 2006). The
MIMO technique for increasing spatial resolution has re-
cently been demonstrated with the Jicamarca radar, when
imaging equatorial electrojet echoes (Urco et al., 2018), and
also with the MAARSY radar for imaging PMSE (Urco et al.,
2019). The primary technical challenge with MIMO radar is
separating the scattering of the signals corresponding to mul-
tiple transmitters once they have been received.

EISCAT 3D, from here on referred to as E3D, is a new
multi-static incoherent scatter radar that is being built in Nor-
way, Sweden, and Finland (McCrea et al., 2015; Kero et al.,
2019). The core transmitting and receiving antenna array will
be located in Skibotn, Norway (69.340◦ N, 20.313◦ E). There
will be additional bi-static receiver antenna sites in Kaise-
niemi, Sweden (68.267◦ N, 19.448◦ E), and Karesuvanto,
Finland (68.463◦ N, 22.458◦ E). The core array of E3D will
consist of 109 sub-arrays, each containing 91 antennas. The
one-way half power full beamwidth (HPBW) or illuminated

Ann. Geophys., 39, 119–134, 2021 https://doi.org/10.5194/angeo-39-119-2021



J. Stamm et al.: Radar imaging with EISCAT 3D 121

angle of the core array will be 1◦. On transmission, the array
is capable of transmitting up to 5 MW of peak power at a fre-
quency of 233 MHz. Additionally, there are 10 receive-only
outrigger antennas around the core array, providing longer
antenna spacings that can be used for high-resolution ASRI.
Imaging will already be necessary to maintain the perpendic-
ular resolution constant in the transition from EISCAT very
high frequency (VHF) and UHF to E3D. It is possible that
the EISCAT 3D radar can also be configured as a MIMO
system, where the core array is separated into smaller sub-
arrays which act as independent transmitters at slightly dif-
ferent locations. During the design phase, Lehtinen (2014)
investigated the imaging performance of possible layouts of
E3D in the far field. The study, however, does not include the
current layout that is being built.

EISCAT 3D will not be able to measure radar echoes from
magnetic-field-aligned irregularities, so it will not be possi-
ble to assume that the scattering originates from a 2D plane
where the radar-scattering wave vector is perpendicular to
the magnetic field. All radar imaging will need to be done
in 3D and mostly for incoherent scatter. This poses the fol-
lowing two main challenges: 1) the signal-to-noise ratio will,
in typical cases, be determined by incoherent scatter, which
is much smaller than that used conventionally for ASRI; and
2) there are more unknowns that need to be estimated as, at
each range, there is a 2D image instead of a 1D image that
needs to be estimated.

For E3D, the Fraunhofer limit is at 2D2/λ≈ 2000 km,
where D ≈ 1.2 km is the longest baseline and λ= 1.3 m is
the wavelength of the radar. Measurements of the ionosphere
are therefore taken in the near field of the radar. Woodman
(1997) describes a technique to correct for the curvature in
the backscattered field with an analogy of lens focusing. In
this study, a different approach has been taken, where the
near-field geometry is directly included in the forward model
of the linear inverse problem formalism. In this case, it is
not possible to resort to frequency domain methods to di-
agonalize the forward model. This comes at an increase in
computational complexity, but this is not prohibitive in terms
of computational cost with modern computers.

In this study, we will simulate the radar imaging measure-
ment capabilities of the upcoming EISCAT 3D radar. The
study is divided into the following sections. In Sect. 2, we
investigate the achievable time and range resolution of E3D,
and how they are connected. An expression for the cross-
correlations between the received signals, taking into account
the near-field geometry, is derived in Sect. 3. Section 4 de-
scribes the near-field forward model for radar imaging and
describes several numerical techniques for solving the linear
inverse problem. This section also includes a study of imag-
ing resolution based on simulated imaging measurements.

2 Time resolution

In this section, we will calculate the required integration time
for a certain range resolution with E3D. The elementary radar
imaging measurement is an estimate of the cross-correlation
of the scattered complex voltage measured by two antenna
modules. The integration time in this case is the minimum
amount of time that is needed to obtain a measurement er-
ror standard deviation (SD) for the cross-correlation estimate
that is equal to a predefined limit. The estimation error of
the cross-correlation determines the measurement error for
the imaging inverse problem. By investigating the variance
of the cross-correlation estimate, using statistical properties
of the incoherent scatter signal, we can decouple the problem
of the time and range resolution from imaging resolution, al-
lowing us to study the performance of the imaging algorithm
with a certain measurement error SD.

Our signal-to-noise calculations will be based on an obser-
vation of incoherent scatter from ionospheric plasma, which
is the case with the smallest expected signal-to-noise ratio.
We have ignored self-clutter, as the combination of the E3D
core transmitter illuminating the target and a single receiv-
ing sub-array receiver module will inevitably be within a
low signal-to-noise ratio regime that is dominated by receiver
noise.

We will first deduce an expression for the measurement
rate, that is, how many measurements are taken per second.
There are the following two factors that determine the maxi-
mum rate at which independent observations of the scattering
from the ionosphere can be made: (1) the minimum inter-
pulse period length, which we set to d/τp, with d as the duty
cycle and τp as the pulse length; and (2) the incoherent scat-
ter decorrelation time, which is inversely proportional to the
bandwidth of the incoherent scatter radar spectrum B. The
maximum of these two timescales determines the frequency
of the independent measurements that can be made as fol-
lows:

Fm =min
(
dτ−1

p ,B
)
. (1)

If a transmitted long pulse is divided into NP bits, the
number of measurements per long pulse can be multiplied
by NP. In the E region, we can assume that the autocorre-
lation function is constant for the purpose of estimating the
variance. Then, the number of lagged product measurements
per transmit pulse is NP(NP− 1)/2 because we also can use
measurements with different time lags. For the sake of sim-
plicity, we assume that all lags within a radar transmit pulse
are equally informative. This is approximately the case for
E-region plasma measured using E3D. The number of mea-
surements per second is then as follows:

Fc = FmNP(NP− 1)/2. (2)

Next, we will estimate the number of measurements
needed to reduce the measurement error of an average cross-
correlation measurement to a certain level. We consider a

https://doi.org/10.5194/angeo-39-119-2021 Ann. Geophys., 39, 119–134, 2021



122 J. Stamm et al.: Radar imaging with EISCAT 3D

measurement model in which a measurement m is described
by a linear combination of the parameter we want to estimate,
m= x+ ξ , where x and ξ are considered as proper complex
Gaussian random variables with zero mean and variance of,
respectively, PS and PN. The noise power estimate PN is as-
sumed to have no error. We estimate the signal power with
the following:

P̂ =

K∑
i=1

mim̄i

K
−PN, (3)

where the bar denotes complex conjugation. It can then be
shown that, in the following:

Var(P̂ )= (εPS)
2
=
(PS+PN)

2

K
, (4)

where ε is the relative SD and K is the number of measure-
ments (Farley, 1969). If we require the correlation function
to have a relative uncertainty under a certain level ε, e.g.
ε = 0.05= 5%, the equation can be solved for K in order
to obtain the number of needed samples as follows:

K =
(PS+PN)

2

(εPS)
2 =

(
SNR+ 1
ε ·SNR

)2

, (5)

where SNR is the signal-to-noise ratio. The integration time
required to obtain a measurement with a certain level of un-
certainty is now the following:

T =
K

Fc
=
(PS+PN)

2

(εPS)
2

2
FmNP(NP− 1)

, (6)

or is written as a function of SNR, as follows:

T =

(
SNR+ 1
ε ·SNR

)2 2
FmNP(NP− 1)

. (7)

The received signal power PS can be found by the radar equa-
tion as follows:

PS =
PtxGtxGrxλ

2σ

(4π)3R2
txR

2
rx
, (8)

where Ptx is the transmitted power, Gtx is the transmit and
Grx the receive gain, λ is the radar wavelength, σ is the scat-
tering cross section, andRtx andRrx are the distance from the
scattering volume to the transmitter and receiver (e.g. Sato,
1989). Assuming that the Debye length is much smaller than
the radar wavelength, the effective scattering cross section
for a single electron in plasma (Beynon and Williams, 1978)
is the following:

σp = σe(1+ Te/Ti)
−1. (9)

Here, σe is the Thomson scattering cross section σe = 4πr2
e ,

Ti is the ion, and Te is the electron temperature.

The total scattering cross section can be found by adding
up the cross sections of all electrons in the illuminated vol-
ume NeV as follows:

σ = VNeσp. (10)

The scattering volume can be approximated using a spherical
cone as follows:

V =
2π1r (1− cos(θ/2))

3
(3r2
+ 3r1r +1r2). (11)

Here, 1r = cτb/2 is the range resolution of the measure-
ment, where τb = τp/Np is the baud length, r is the range
of the volume, and θ is the HPBW angle of the radar. By
range, we mean the range from the centre of the core array in
Skibotn to the target.

We assume that the noise is constant through the ion line
spectrum. The noise power is then given by the following:

PN = kBTsysB, (12)

where Tsys is the system noise temperature, B is the band-
width of the incoming ion line, and kB is the Boltzmann con-
stant. The bandwidth we assume to be equal to 2 times the
ion thermal velocity times wave number (2vthk) or the in-
verse of the pulse length τ−1

b , depending on which one is the
largest. The ion thermal velocity is given by the following:

vth =

√
kBTi

mi
, (13)

where mi is the ion mass, which we set equal to 31 u, cor-
responding to a mixture of O+2 and NO+. These are the two
most dominant ion species in the E region (Brekke, 2013).
The system noise temperature we set to 100 K. For all bit
lengths investigated here, τ−1

b exceeds 2vthk by at least 1 or-
der of magnitude. The bandwidth is therefore independent
of the ion composition as long as the measurements are re-
stricted to the E region.

We can now use this to calculate the integration time of
the electron density measurements in the E layer at 150 km
for different range resolutions. The SD requirement is set at
5 %. The electron and ion temperatures we set to 400 and
300 K, respectively. We assume a monostatic radar with fre-
quency f = 230 MHz, HPBW of θ = 1◦, and a transmitter
with power of 5 MW. The transmitter gain for the core ar-
ray we set to 43 dB and the receiver gain to 22 dB for one
sub-array of the imaging array. The inter-pulse period τIPP
is 2 ms, and the long pulse length is 0.5 ms. The results are
shown in Fig. 2.

The figure shows that the integration time decreases with
increasing electron density and decreasing range resolution.
This confirms the expected trade-off between range and time
resolution. If the electron density is not too low, a time res-
olution of a few seconds is possible. This, however, assumes
a relatively low range resolution of 1000–2000 m, which still
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Figure 2. Integration time of targets in the E region observed us-
ing the E3D core for transmitting and a single 91 antenna element
module for receiving.

provides some useful information about the E-region plasma.
When keeping a constant SD, an enhanced electron density
can be used to improve either the time or range resolution.

When using MIMO imaging, the core array is divided into
multiple independent groups when transmitting. This pro-
vides more baselines and increases the maximum antenna
separation. In this case, the imaging resolution will be im-
proved by having a larger aperture. One of the challenges in
this case will be to separate the signals from different trans-
mitters in the case of overspread radar targets. We assume
that separate transmitters operate at the same frequency, and
that the transmitted signals are distinguished using radar-
transmit coding. This can be achieved in practice by using
a different pseudorandom transmit code on each transmit
group (Sulzer, 1986, Vierinen et al.; in preparation). Then,
the transmit power is spread over the transmitters. How-
ever, since the scattering volume increases and then includes
more scatterers, the power adds up again. Because of the
smaller antenna area, the transmit gain must be divided by the
number of transmitters. Additionally, there could be cross-
coupling between antennas, which might cause buffer zones
between transmitters. Then, the antenna area and gain de-
crease furthermore. In conclusion, the integration time for
MIMO will at least be the number of transmitters times the
integration time for SIMO.

The calculations do not include echoes other than those
from incoherent scatter or enhancements other than electron
density. In the case of PMSE (e.g. Urco et al., 2019) and
NEIALs (e.g. Grydeland et al., 2004; Schlatter et al., 2015),
the echo is significantly stronger than for incoherent scatter.
These enhancements will also make shorter integration times
available and will be more promising candidates for the use
of MIMO imaging.

Figure 3. Set-up for calculating the cross-correlation function. The
box represents an ionospheric feature with size L. The figure is
based on the assumptions at the end of Sect. 2 but is not to scale.

3 Baseline cross-correlation

In this section, we calculate the correlation between sig-
nals from two different baselines that are transmitter–receiver
pairs. The aim is to determine which baselines provide infor-
mation about the ionospheric features of a certain scale size
and to determine how the near-field geometry affects this cor-
relation.

We consider a case with one transmitter and two receivers
placed equidistant from the transmitter in every direction.
This configuration is shown in Fig. 3.

Let the transmitter be placed in the origin and the receivers
at |P 1〉 and |P 2〉. Let the transmitter transmit a signal of the
form V0 =Ke

iωt , where K is a time-independent constant,
ω is the transmit frequency, and t is time. The electrical po-
tential induced to the receiver antenna r then becomes the
following:

Vr =K

N∑
n=1

Ge−iω(Tin+Tsrn), (14)

where Tin = ||Ri+rn〉|/c is the time delay from the transmit-
ter to scatterer n and Tsrn = ||Rsr− rn〉|/c is the time delay
from scatterer n to receiver r. Here, |Ri〉 is the vector from the
transmitter to the centre of the illuminated plasma volume,
|Rsr〉 is the vector from the centre of the plasma volume to
receiver r, and |rn〉 is the vector from the centre of the plasma
volume to scatterer n, like in Fig. 3. N is the number of scat-
terers in the scattering volume, and G ∈ < is the scattering
gain, which includes the free-space path loss. The gain may
be dependent on the position of the scatterer, the scatterer
itself, and on time, but we neglect these dependencies. We
also neglect that the distance to the scatterer varies between
the transmitter–receiver baselines. This has an order of mag-
nitude of≈ 10 m, which is lower than the best available range
resolution.
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The cross-correlation function for time lag τ = 0 can then
be written as follows:

RV1V2 (t, t + 0)= E
[
V1V̄2

]
(15)

= E
[
K

N∑
n=1

Ge−iω(Tin+Tsrn) (16)

K̄

N∑
n′=1

Geiω(Tin′+Tsrn′ )

]
.

By taking the first-order Taylor approximation of the

time delays around |rn〉 = |0〉, we find that Tin ≈
Ri+〈R̂i |rn〉

c

and Tsrn ≈
Rsr+〈R̂sr|rn〉

c
, where the hat denotes a unit vec-

tor. Carrying out this approximation is essentially the same
as assuming plane waves. When also keeping the second-
order terms, the near-field correction described by Wood-
man (1997) can be deduced. We note that −ω

c
〈R̂i − R̂s1| =

−〈ki | + 〈ks1| = 〈k1|, which is the Bragg scattering vector.
Equation 16 can then be written as follows:

RV1V2(0)= |K|
2G2

N∑
n=1

N∑
n′=1

(
e−i

ω
c
(Rs2−Rs1) (17)

E
[
ei〈k1|rn〉−i〈k2|rn′ 〉

])
.

We assume that the scatterer positions are independent, iden-
tical, and normally distributed with a mean |µ〉 and covari-
ance L that is like a Gaussian blob, as follows:

f|rn〉(|rn〉)=
e
−〈rn−µ|L−1

|rn−µ〉
2

(2π)
3
2 |det(L)|

. (18)

We use the definition of expectation and then solve the in-
tegral. Since the positions of the scatterers are assumed to
be independent, the expectation becomes zero when n 6= n′.
In addition, in a first-order approximation, Rs2−Rs1 ≈ 0 be-
cause D� h. The result then becomes the following:

RV1V2(0)= |K|
2G2Nei〈k1−k2|µ〉e−

〈k1−k2|L|k1−k2〉
2 . (19)

The normalized cross-correlation function, in the following:

ρ12 =
RV1V2√

RV1V1RV2V2

,

becomes the following:

ρ12(0)= ei〈k1−k2|µ〉e−
〈k1−k2|L|k1−k2〉

2 . (20)

We note that if the transmitter(s) and all receivers lie in a hor-
izontal plane, then the vertical components of the Bragg scat-
tering vectors are exactly equal and make the vertical compo-
nents of |µ〉 and L, namely µz, Lxz, Lyz, and Lzz arbitrary.

This means that the horizontal resolution is independent of
the vertical resolution.

Equation 20 for 〈µ| = [0,0,0] and L= (L/2)2I is plot-
ted in Fig. 4, where L is the extent of the ionospheric fea-
ture in all dimensions, and I is the identity matrix. Figure 4
also shows the numerically simulated normalized correlation
based on a direct simulation of Eq. (16), which does not
significantly differ from the analytical expression. The plot
shows that, for a height of 105 m (100 km) and a baseline
of 211 m, the correlation crosses 0.95 at a blob size of 70 m
and 0.5 at a blob size of 250 m. At 100 km height, the radar
beam of E3D is about 1800 m wide. This means that, when
considering a maximum baseline of 200 m and a ionospheric
feature that is larger than 250×250 m, the addition of longer
baselines contributes less in terms of recovering the image.
The E3D core has a maximum baseline of 75 m. We can sim-
plify these calculations by setting the magnitude of the de-
sired least cross-correlation to R, as follows:

R= |ρ12|. (21)

We assume that the scatterers have equal variance in the x
and y direction (Lxx = Lyy = (L/2)2) and that all directions
are uncorrelated (Lxy = Lxz = Lyz = 0). By using the geom-
etry as in Fig. 3, we obtain the following:

〈k2− k1|L|k2− k1〉 =
4π2D2

λ2
(
h2+ D2

4

)(L
2

)2

. (22)

By combining Eqs. 20, 21, and 22, we obtain the follow-
ing:

lnR2
=−

(
L

2

)2 4π2D2

λ2
(
h2+ D2

4

) ,
which can be rewritten to an expression for the feature size
L as follows:

L=
λ

πD

√(
D2

4
+h2

)
ln

1
R2 . (23)

For short baselines or long distances D.h/5, the expression
can be simplified. Thus, we solve for the baseline D and ob-
tain the following:

D =
λh

πL

√
ln

1
R2 . (24)

The resulting expression shows how long the baseline can be
to still make a contribution to recovering the feature. Equa-
tion 24 is plotted in Fig. 5.

A longer baseline can contribute to recover smaller fea-
tures, but the improvement will decrease the longer the base-
line is. For example, if we want to resolve a feature with a
size of 100 m, baselines up to 200 m have large contribu-
tions to the imaging. Adding longer baselines will improve
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Figure 4. Cross-correlation between the signals in EISCAT 3D re-
ceivers displaced by distance d. The solid lines show the magni-
tude of the normalized cross-correlation function; see Eq. (20) with
L= (L/2)2I. The dots show the numerical estimations of the cross-
correlation; see Eq. 16.

the resolving less and stop slightly above 1 km. This means
that the improvement of the imaging quality by including the
E3D outriggers will be large for the closest outriggers. The
signal received by furthest ones will correlate little with the
signal received by the core. From Fig. 5, we see that the cor-
relation in the longest E3D baseline of 1.2 km is about 5 %.
This means that if one wants to use E3D to invest in iono-
spheric features with an extent of around 100 m at 100 km
range, there is no need to add longer baselines because the
furthest outriggers are far enough. Also, it could be possi-
ble to improve the imaging quality in this example by having
more baselines with lengths of around 100 m. This is one rea-
son to use the E3D core as multiple transmitters to add new
baselines.

When inserting R= 0.01, Eq. (24) shows that the diffrac-
tion limit is the same as for planar scatter under the assump-
tions mentioned in the deduction.

Baselines between the receiver sites in Skibotn, Karesu-
vanto, and Kaiseniemi are so long that they cannot be used
for imaging, as signals will not be correlated anymore. The
baseline cross-correlation calculations also do not claim that
the image is well recovered if the largest baseline is included.
This is more dependent on which baselines are used, how
they are distributed, and how the image is recovered.

4 Radar imaging model

We consider a radar that may have single or multiple in-
puts (transmitters), and multiple outputs (receivers; SIMO or
MIMO). The radar illuminates a plasma volume at range R
with thickness dr and inside of the one-way HPBW θ . We

Figure 5. Largest baseline for recovering ionospheric features of a
certain size. Measurements in the area under the blue line have high
(> 95 %) correlation, while over the orange line the correlation is
lower than 5 %. Longer baselines cannot be used to resolve features
of this size.

Figure 6. Example of multiple-input–multiple-output (MIMO)
radar and plasma volume in its line of sight.

imagine that the volume is divided into M parts or pixels
(see Fig. 6).

The signal transmitted from transmitter A and spread
by plasma element/pixel q causes a voltage fluctuation in
the receivers. The voltage fluctuation of receiver D, due
to transmitter A and plasma pixel q, is denoted as V qAD =

FVAe
2πif T qAD , where VA is the amplitude of the signal sent

by transmitter A, F is a function of the received signal am-
plitude, f is the radar-transmitting frequency, and T qAD is the
time delay of the signal due to travelling from transmitter

https://doi.org/10.5194/angeo-39-119-2021 Ann. Geophys., 39, 119–134, 2021



126 J. Stamm et al.: Radar imaging with EISCAT 3D

A, via pixel q, to receiver D (see Fig. 6). The correlation
between the signals from two different baselines, AD and
HB, due to an infinitesimal scattering volume dV , can be de-
scribed as follows:

dρADHB =
PtGt(|r〉)Gr(|r〉)λ

2σpne(|r〉)

(4π)3R2
t (|r〉)R

2
r (|r〉)

e
2πif

(
T
|r〉
AD−T

|r〉
HB

)
dV, (25)

where Pt is transmit power,Gt is transmit gain,Gr is receiver
gain, λ is the radar wavelength, σp is the scattering cross sec-
tion for a single electron given by Eq. (9), ne is the electron
density, Rt is the distance from transmitter to the scattering
volume, Rr is the distance from the scattering volume to the
receiver, and |r〉 is the position of the scattering volume. We
integrate over the whole scattering volume to determine the
whole measurement. At a certain time lag, we obtain the cor-
relation for the range of interest. We assume that the gains
are constant inside of the radar beam and zero otherwise and
neglect the dependency of Rr and Rt on the exact position of
the scattering volume. The correlation can then be written as
follows:

ρADHB =
PtGtGrλ

2σp

(4π)3R2
t R

2
r

∫
V

ne(|r〉)e
2πif

(
T
|r〉
AD−T

|r〉
HB

)
dV. (26)

We assume that the electron density (or brightness) distribu-
tion can be written as a sum of its discretized parts with con-
stant electron density. We neglect variations in the phase shift
inside of one part. The integral can then be replaced with a
sum as follows:

ρADHB =
PtGtGrλ

2σp

(4π)3R2
t R

2
r

dr
(

2R tan
θ

2

)2

(27)

Q∑
q=1

ne[q]

Q
e2πif

(
T
q
AD−T

q
HB
)
.

The first factor here is constant and can be normalized
away. The number of discretizations Q is still needed in the
simulations if the original image has a resolution other than
the reconstructions. The series of measurements can be writ-
ten on a matrix form, as follows:

|m〉 = A|x〉+ |ε〉. (28)

Here, |x〉 = [ne[1],ne[2], . . .,ne[Q]]T becomes the follow-
ing:

A=


e2πif

(
T 1

AA−T
1
AA
)
· · · e

2πif
(
T
Q
AA−T

Q
AA

)
...

. . .
...

e2πif
(
T 1

KK−T
1
KK
)
· · · e

2πif
(
T
Q
KK−T

Q
KK

)

 ,
and is the theory matrix, and |ε〉 =

[εAAAA,εAAAB, . . .,εKKKK]H is the complex normally
distributed noise vector.

Sometimes it is more convenient to have the cross-
correlations in a matrix form. The measurements can be
transferred from the one form to the other simply through
reshaping the vector |m〉 to a matrix M, or the opposite, as
follows:

M=


ρAAAA ρAAAB · · · ρAAKK
ρABAA ρABAB · · · ρABKK
...

...
. . .

...

ρKKAA ρKKAB · · · ρKKKK

 . (29)

To obtain an estimate of the intensities of the plasma in the
image, Eq. (28) has to be inverted so that, in the following:

|x̂〉 = B|m〉, (30)

where B is a matrix that reconstructs the image |x〉 from the
measurements |m〉. When inserting Eq. (28) into Eq. (30) and
neglecting noise, we obtain |x̂〉 = BA |x〉. We would like the
reconstructed image to be as close to reality as possible, and
so, taking B= A−1 would give a perfect solution. However,
since we have an underdetermined problem, A cannot be di-
rectly invertible. Other attempts are therefore needed.

4.1 Matched filter

When the scatterers are behind the Fraunhofer limit in the
far field, Eq. (28) represents a Fourier transform. One ap-
proach to reinstating the original image would be the inverse
Fourier transform, which can be represented as the Hermitian
conjugate of the theory matrix, B= AH like a matched filter
(MF). Unfortunately, the samples of the Fourier-transformed
image that are the visibilities are sparsely and incomplete
scattered, and the problem becomes underdetermined (Hysell
and Chau, 2012; Harding and Milla, 2013). The approach can
be interpreted as steering the beam after the statistical aver-
aging and is therefore also called beam forming.

4.2 Capon method

Another approach is the Capon method (Palmer et al., 1998).
The purpose of this method is to minimize the intensities in
all directions other than the direction of interest, i.e. to min-
imize the side lobes of the antenna array in directions with
interfering sources. The result is to invert the matrix of cor-
relation measurements M (Palmer et al., 1998). In order to
continue using the notation in this article, M−1 is reshaped
back to a vector |m−1

〉. The estimated intensities from the
Capon method can then be written as follows:

|x̂capon〉 =
1

AH |m−1〉
, (31)

where the fraction denotes element-wise division.

4.3 Singular value decomposition

The problem in Eq. (28) is overdetermined if the number of
unknowns, i.e. the number of discretizations, is less than the
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number of measurements. This can be the case if we solve for
an imaging resolution that is low enough. We can then use the
method of least squares to solve it, obtaining the following:

|x̂LS〉 =
(

AH A
)−1

AH |m〉.

One can also use the singular value decomposition (SVD) on
the theory matrix, A= U SVH , where S is a diagonal ma-
trix containing the singular values that are square roots of the
eigenvalues of AH A, V contains the normalized eigenvec-
tors of AH A, and U contains the normalized eigenvectors of
AAH . The inversion matrix B can then be written as follows:

B= VS−1 UH , (32)

which, as can be shown, still gives the same solution as or-
dinary least squares but with increased numerical accuracy
(Aster et al., 2013). Because of the inversion of the singular
values, the eigenvectors corresponding to the smallest values
contribute the most to the variance of the solution and make
the solution sensitive to noise. Also, the problem can be rank
deficient, i.e. that several columns in the theory matrix are
nearly linear dependent on each other. The problem is then
said to be ill-conditioned or multicollinear.

In such cases, some singular values will be practically
zero, and the solution may be hidden in the noise. To prevent
the noise sensitivity, the solutions can be regularized. This
makes the reconstruction biased towards smoothness and
zero but less noisy (Aster et al., 2013). We here consider two
regularization techniques, namely truncated SVD (TSVD)
and Tikhonov regularization. In TSVD, the inverse of the sin-
gular values below some limit is set to zero. The eigenvec-
tors corresponding to the smallest singular values will then
not contribute to the result. These eigenvectors often contain
high-frequency components. Ignoring them makes the solu-
tion smoother. Tikhonov regularization or ridge regression
can be done in several ways. In this article, we use zeroth-
order Tikhonov regularization, where the singular values si
are inverted with the following:

si

s2
i +α

2
, (33)

where α is a regularization parameter. By using SVD, we
also can obtain the variance |6x̂〉 of the estimates. For pure
least squares, it is diag

((
AH A

)−1
)

, and for regularized least
squares it is as follows:

|6x̂〉 = diag(BBH ). (34)

4.4 CLEAN

The CLEAN algorithm is another attempt at reducing side
lobes. It is based on the matched-filter approach but itera-
tively finds the real structure in the field of view (Högbom,
1974). It supposes a source where the image reconstructed

by the matched filter is brightest. The source is added to an
image that only contains the suspected sources, which will
be the reconstructed image. Then, the measurements that the
radar would have measured if the reconstructed image were
the true image are subtracted from the real measurements,
and the next suspected source is found. This procedure is
repeated until there are no clear sources left in the measure-
ments (Högbom, 1974). The method is a special case of com-
pressed sensing and requires an assumption on how the mea-
sured sources appear (Harding and Milla, 2013). For sparse
sources, a Dirac delta function could be appropriate but may
lead to sparse solutions.

4.5 Performance of the radar layouts

We considered different radar layouts. The layouts, together
with plots of the visibilities and the point spread function, are
shown in Fig. 7.

When considering a layout with multiple transmitters and
multiple receivers (MIMO), it is assumed that the signals
from different transmitters can be distinguished. This in-
creases the number of virtual receivers and thereby the vis-
ibilities become more widespread and denser (see Fig. 7).
However, using multiple transmitters increases the integra-
tion time, as described in Sect. 2. We note that when receiv-
ing with the outriggers, the main beam becomes narrower.
Also, there are gaps in the visibilities. This is due to the
sparse locations of the outriggers and makes the point spread
function look more irregular (cf. Fig. 7c and f). With multi-
ple transmitters, the main beam becomes even narrower (cf.
Fig. 7c and i). When both using multiple transmitters and
receiving outriggers, the gaps in the visibility domain are
partially filled, and the side lobes are clearly reduced. The
MIMO layout used here could possibly be improved by us-
ing positions of the transmitters so that gaps in the visibility
are filled more.

4.6 Performance of the imaging techniques

We simulate E3D measurements using Eq. (28) with the pre-
sented antenna configurations. For the original image, we use
part of Fig. 1. A section of 97× 97 pixels was cut out of the
figure, and the greyscale values were scaled to the range be-
tween 0 and 1. From the measurements, we reconstructed the
images with the matched filter (MF), Capon, truncated sin-
gular value decomposition (TSVD) and CLEAN techniques.
For TSVD, the singular values below 0.02 of the maximum
singular value were truncated. This value gives a good com-
promise of the resolution and low noise level (regulariza-
tion). For CLEAN, we used a gain of 1 and a threshold of
1.36 times the average value. We tried both Dirac delta and
Gaussian functions in the CLEAN kernel. In Capon filter-
ing, it so happens that the correlation measurement matrix
M is singular. In such cases, TSVD is used to invert the ma-
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Figure 7. E3D transmitter–receiver layouts considered. Panels (a), (d), (g), and (j) show the layouts, panels (b), (e), (h), and (k) show the
visibilities, and panels (c), (f), (i), and (l) show the point spread function in the near field at 100 km range. The point spread function was
calculated by reconstructing a 1× 1 one-valued central pixel in a 129× 129 zero-valued pixel image with a matched filter. Panel (a–c) uses
the whole core array as a single transmitter and receives with each of the 109 antenna groups in the core array. Panel (d–f) also includes
the interferometric outriggers. In panel (g–i) only the core is used, but it is divided into three transmitters. Finally, panel (j–l) uses both the
outriggers and multiple transmitters.

trix. This truncation ignores singular values that are less than
0.03 % of the largest singular value.

Noise is added to all cross-correlations, which corresponds
to white complex Gaussian noise with a zero mean and 5 %
SD in each receiver. The noise is equal for every reconstruc-

tion of a single resolution but varies between reconstruction
in different resolutions. The results for the SIMO layout is
shown in Fig. 8.

Of the reconstruction techniques, TSVD clearly gives the
best results. It is also the only method that fairly reproduces
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Figure 8. Comparison of reconstructions. All antennas are transmitting together, like one transmitter, but receiving separately. The intensities
are normalized to be between 0 and 1. Panel (a) shows the true image. The others show the reconstructed image, namely the matched filter
(b), TSVD (c), and Capon (d). For TSVD, the singular values below 0.02 of the maximum singular value were ignored.

Figure 9. Comparison of reconstructions, using SVD for the SIMO case only, using the core antennas. Panel (a) shows the true image. Panel
(f) shows the inverse of the singular values of the theory matrix. The other figures show reconstructions with different weightings of the
singular values. Panel (b) has no weighting and corresponds to the ordinary least squares method. In panel (c), the singular values below
2 % of the largest singular value are ignored/truncated away. In panels (d) and (e), the inverse of the low singular values are damped, like in
Eq. (33), with regularizing parameters α of 10 and 100, respectively. The reconstructions consider an image resolution of 20× 20 pixels, at
100 km altitude, where one pixel corresponds to 100× 100 m. White spaces in the colour plots correspond to negative values.

https://doi.org/10.5194/angeo-39-119-2021 Ann. Geophys., 39, 119–134, 2021



130 J. Stamm et al.: Radar imaging with EISCAT 3D

the shape of the true image. Capon also partly reproduces the
shape but far worse than TSVD. The matched filter appar-
ently only reproduces something similar to the point spread
function. The performance of CLEAN (not shown here) is
accordingly poor. In terms of calculation time, CLEAN is
the slowest algorithm followed by TSVD. MF and Capon
are relatively fast. These differences become stronger when
also considering MIMO. Most of the computation time of
TSVD is used to invert the theory matrix. Since the theory
matrix only varies from experiment to experiment, it must
only be inverted once and can be saved afterwards. The com-
putation time, therefore, is reduced to a simple matrix mul-
tiplication, and it is not considered as a problem for the real
radar. We therefore concentrate on images reconstructed with
techniques using SVD. Here, we compared ordinary least
squares, TSVD with truncating singular values under 2 %,
like before, and Tikhonov regularization with the regulariz-
ing parameter α = 10 and 100. These results are shown in
Figs. 9 to 12 for the four layouts, shown in Fig. 7a, d, g and j,
which are SIMO without and with outriggers and one MIMO
case without and with outriggers, respectively.

For all layouts, at a considered resolution of 20× 20 pix-
els in the radar main beam (here, 1 pixel≈ 100× 100 m),
the image reconstruction with the method of least squares is
very noisy. The singular values of A vary over several orders
of magnitude, which is a sign that columns in A are linearly
dependent on each other. The regularized solutions look con-
siderably better, with a regularization parameter of 10, and
the recovered images are still a bit noisy but with stronger
regularization as the images become smoother and closer to
the original.

When comparing the strongly regularized images (panels
c and e in Figs. 9–12), we see that, when including the out-
riggers, the images contain stripes. This is probably because
the visibility in some regions has gaps (see Fig. 7). When
only considering the core array, there are no gaps other than
the spacing between antennas. The recovered images without
the outriggers look smoother than those including the outrig-
gers, but when including the outriggers, more details of the
original image can be seen. Also, in the MIMO case with
outriggers, the feature in the southeast can be seen in the re-
construction. For the other layouts, it is less visible and not
clearly distinguishable from the main feature in the north.

The uncertainty of the reconstruction itself is given by
the variance of the recovered image; see Eq (34). The mean
SD for the different layouts and reconstruction techniques
is shown in Fig. 13. The plots of the least square variance
are comparable to the variance plots in Lehtinen (2014). We
note that, while Lehtinen (2014) investigates far-field imag-
ing, Fig. 13 shows near-field imaging.

By using the SD, we neglect errors introduced by the dis-
cretization because they are not included in the variance.
This assumption is true if the true image has the same res-
olution as the reconstruction, but that is only for the case of
what Kaipio and Somersalo (2010) call an “inverse crime”.

In reality, the target of E3D, the electron fluctuations in the
ionosphere, is not discrete with steps of several metres. Also,
by regularization, bias is introduced to the solution, which
the variance does not take into account. Therefore, we also
used the similarity with the true image for uncertainty esti-
mation. As a measure, we used the mean square deviation,

s =
∑N
i=1

(x̂i−xi)
2

N
, so that a low value of s means great sim-

ilarity. Because the original image and the reconstruction
have different resolutions, the smallest is scaled up. The scal-
ing was done by Lanczos resampling with a cos2 kernel. A
drawback with the mean square error (MSE) is that it could
be influenced by the target, while the variance is not. The
mean SD and the similarity to the original image are shown
in Fig. 13 for all layouts considered here and reconstruction
resolutions up to 100× 100 pixels.

The variance of the recovered image is strongly increasing
with the resolution we assume/would want the radar target
to have. Image recovering with LS gives the highest variance
for all layouts. The reason is the multicollinearity in the the-
ory matrix, which amplifies the noise in the recovered image.
At small resolutions, the variances are equal for the different
reconstruction techniques but diverge when the regulariza-
tion starts to influence the results. This divergence happens
later, when including the outrigger antennas, and later still,
when using MIMO rather than SIMO. For high resolutions,
the variance of the TSVD solution is the lowest. However,
since bias is introduced by regularizing the solution, this does
not necessarily mean that the TSVD solution is the best.

The mean square error (MSE) of the recovered images is,
in general, higher than their mean variance. For small resolu-
tions, it decreases with increasing resolution until it reaches
a bottom point. The error then increases again. For LS and
Tikhonov with α = 10, the minimum is at 10–20 pixels per
direction. When including the outriggers, the minimum is at
a later stage. Also, the error is lower. We also note the dip
of the error at 97× 97 pixels. This is exactly where the res-
olution of the recovered image matches the resolution of the
original image, so these dips are the effect of inverse crimes
and, therefore, not transferable to the real radar. For high res-
olutions, the MSE is higher for MIMO than for SIMO when
using Tikhonov. This could indicate that, for MIMO, more
regularization is required.

The original image contains values between 0 and 1 m−3,
with a mean of about 0.5 m−3. In reality, the values will be far
higher, and the uncertainty will increase accordingly. There-
fore, the SD and the MSE are plotted relative to the mean
value of the original image. In order to have a good recovery,
the relative mean error should be below 1 and, if possible,
far below that. All regularized solutions would fulfil this cri-
terion, but the two strongest regularizations clearly have the
lowest MSE. The minimum of MSE seems to be somewhere
between 60× 60 pixels for MIMO and 90× 90 pixels for
SIMO. In practice, the image reconstructions for higher reso-
lutions look very similar to low resolution (20×20), without
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Figure 10. Comparison of reconstructions, using SVD for the SIMO case, including the outriggers. The plots correspond to Fig. 9.

Figure 11. Comparison of reconstructions, using SVD for the MIMO case only, using the core antennas. The plots correspond to Fig. 9.

adding more details but with a better quality reconstructed
image.

In the MSE plots, the curves flatten out to a minimum rel-
ative MSE at about 10 %. At 100 km range, 20× 20 pixels
correspond to a resolution of around 90× 90 m. The TSVD
indicates that the recovered image with MIMO could be im-
proved with stronger Tikhonov regularization, but this has
not been investigated.

The MSE of TSVD does not decrease significantly from
SIMO to MIMO. Therefore, it seems that there is little gain
in using the MIMO layouts considered here, as compared to

SIMO. However, the feature in the southeastern part of the
image in Figs. 10 and 12 becomes clearer with MIMO. For
other targets, these results may look different. When com-
paring the point spread functions in Fig. 7, it could be that
the MIMO configuration is better for point-like targets, like
space debris or meteors, but this is beyond the scope of this
article.

In this article, the MIMO approach to ISR and E3D has
only been treated superficially. There are still some questions
that must be answered. To distinguish between the transmit-
ters, we assumed code diversity. However, there is a need to
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Figure 12. Comparison of reconstructions, using SVD for the MIMO case, including the outriggers. The plots correspond to Fig. 9.

study how well the signals can be distinguished. This can
influence the possible number of transmitters. The placing
of the transmitters was not investigated here; the example in
this article is a simple proposal. At the same time, the trans-
mitter locations can have a great influence on the visibility
coverage. Also, the SNR and integration time calculations
for MIMO would need to be investigated more thoroughly.

5 Conclusions

In this article, we have studied the temporal and spatial res-
olution of the upcoming E3D radar in the case of aperture
synthesis radar imaging, primarily focusing on the feasibility
of imaging the incoherent scatter radar return from the E re-
gion. The most up-to-date radar design specifications at the
time of writing this article was used as a basis of this study.

We find that the range and time resolutions are dependent
on each other. When keeping the uncertainty level constant, a
better range resolution goes on the cost of the time resolution.
With an increase in the electron density, the resolution in time
and/or range can be improved without increasing the noise
level. Under normal conditions in the E layer (Te ≈ 400 K,
Ti ≈ 300K, ne ≈ 1011 m−3), with a desired integration time
of 10 s, the achievable range resolution is slightly more above
1500 m.

The horizontal (imaging) resolution depends on the radar
layout and the imaging technique. The imaging techniques
that were evaluated were matched filter, least squares (using
singular value decomposition without and with regulariza-
tion), Capon, and CLEAN. Of these techniques, only regu-
larized least squares gave satisfactory results. The two regu-

larization techniques of either truncating or damping of the
inverse singular values both worked and gave similar results.

These image reconstructions can be reduced to a simple
matrix multiplication by saving the inverted theory matrix.
Regularized SVD is therefore among the fastest reconstruc-
tion techniques amongst the ones evaluated. With Tikhonov
regularization with a damping coefficient of 100, or truncat-
ing away singular values below 2 % of the largest value, the
relative error of the recovered image can go down to 10 %.
The resolution of the recovered image is about 60×60 pixels;
at a 100 km range this corresponds to 30×30 m, but features
smaller than 90× 90 m will be blurred out.

The simulation results show that using the outriggers in-
creases the imaging accuracy. Dividing the core array into
multiple transmitters to obtain a MIMO system seems to in-
crease the imaging resolution if the target is smooth. MIMO
also has the drawback that it needs stronger signals or more
integration time to keep the same measurement accuracy as
SIMO. However, this needs further investigation as MIMO
may be useful for very bright targets, such as PMSE, and
point-like targets, like space debris or meteors, but the latter
needs further investigation.

We conclude that radar imaging with EISCAT 3D is feasi-
ble.
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Figure 13. Comparison of regularization techniques. Mean SD of the result is shown in panels (a) and (c). Panels (b) and (d) show the
similarities between the recovered image and the true image. Both are shown relative to the mean intensity of the original image. Panels (a)
and (b) show the relative SD and the similarity for the SIMO cases and the lower plots for the MIMO cases. The solid lines show recoveries
when only using the core array, and the results with dashed lines include the outriggers. The line colour shows the type of regularization; blue
is not regularized (ordinary least squares), orange is TSVD (including only singular values higher than 2 % of the greatest singular value),
and green and red lines are Tikhonov damped singular values with α = 10 and 100, respectively.
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Abstract. Measurements of height-dependent electric field
(E) and neutral wind (u) are important governing parame-
ters of the Earth’s upper atmosphere, which can be used to
study, for example, how auroral currents close or how energy
flows between the ionized and neutral constituents. The new
EISCAT 3D (E3D) incoherent scatter radar will be able to
measure a three-dimensional ion velocity vector (v) at each
measurement point, which will allow less stringent prior as-
sumptions about E and u to be made when estimating them
from radar measurements. This study investigates the feasi-
bility of estimating the three-dimensional electric field and
neutral wind vectors along a magnetic field-aligned profile
from E3D measurements, using the ion momentum equation
and Maxwell’s equations. The uncertainty of ion drift mea-
surements is estimated for a time and height resolution of 5 s
and 2 km. With the most favourable ionospheric conditions,
the ion wind at E region peak can be measured with an accu-
racy of less than 1 m/s. In the worst case, during a geomag-
netically quiet night, the uncertainty increases by a factor of
around 10. The uncertainty of neutral wind and electric field
estimates is found to be strongly dependent on the prior con-
straints imposed on them. In the lower E region, neutral wind
estimates have a lower standard deviation than 10 m/s in the
most favourable conditions. In such conditions, also the F re-
gion electric field can be estimated with uncertainty of about
1 mV/m. Simulated measurements of v are used to demon-
strate the ability to resolve the field-aligned profile of E and
u. However, they can only be determined well at the heights
where they dominate the ion drift, that is above 125 km forE
and below 115 km for u. At the other heights, the results are
strongly dependent on the prior assumptions of smoothness.

1 Introduction

One of the main parameters that incoherent scatter radars
(ISRs) measure is ion drift velocity v. This can be related
primarily to electric field E and neutral wind u, making it
possible to use ISR measurements for estimating these pa-
rameters, which are of interest when, for example, studying
the electrodynamics of the aurorae borealis (e.g. Takahashi
et al., 2019), determining how auroral currents close within
the ionosphere, and studying how energy is transferred be-
tween the ionosphere and the neutral atmosphere (e.g. Aikio
and Selkälä, 2009; Kosch et al., 2011; Cai et al., 2016).

The method for simultaneously estimatingE and u for the
auroral ionosphere using an incoherent scatter radar was first
described by Brekke et al. (1973). Since then, this technique
has been used and improved (see Nygrén et al., 2011, and
references therein). The velocity of both the ion and neu-
tral wind is related to other ionospheric parameters, such as
ion-neutral collision frequency and electric field through the
momentum equation of the ions. Some parameters can be
measured, while others need to be taken from models. The
terms with pressure gradients and gravitation are commonly
neglected. The electric field can be deduced from measure-
ments higher up where ion-neutral collisions are negligible
and used further down by assuming that electric field along
the magnetic field line is constant (Brekke et al., 1994; Hein-
selman and Nicolls, 2008).

Currently ion drifts are measured with a monostatic radar
by pointing the transmit beam in three or more different di-
rections and measuring the projection of the ion-velocity vec-
tor onto these directions. If the ion velocity then is assumed
constant or slowly changing in the horizontal direction for all
of the pointing directions, an estimate of the ion drift can be
made (Heinselman and Nicolls, 2008; Nicolls et al., 2014b).
If the observations are made with slowly moving dish-based
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radars, making the measurements in different pointing direc-
tions might take several minutes (Williams et al., 1984). With
modern phased array systems, the scanning time can be re-
duced (Heinselman and Nicolls, 2008).

Multistatic radars can contribute to the measurement chal-
lenge by simultaneously measuring a common scattering vol-
ume from multiple different directions. Provided there are at
least three linearly independent ion velocity measurements,
the full vector can be determined. With dish antennas, the
ion velocity is obtained only from one intersection volume at
a time (Williams et al., 1984; Risbeth and Williams, 1985). In
order to obtain measurements along a line or over a volume
of space, the antennas need to be steered, which again takes
time. In 2008, only the EISCAT UHF system could offer
multistatic measurements (Heinselman and Nicolls, 2008).
Later, the receiver antennas in Kiruna and Sodankylä were
converted to receive the signals from EISCAT VHF instead
(Kero, 2014; Mann et al., 2016). Earlier, there were also other
ISRs that were multistatic (Williams et al., 1984).

One of the capabilities of the upcoming EISCAT3D (E3D)
incoherent scatter radar is that it can simultaneously observe
scatter from ionospheric plasma from at least three different
geographically separated receiver sites, each using multiple
simultaneous receiver beams that intersect the transmit beam
at multiple heights; see Fig. 1. This is made possible by the
use of phased array technology (e.g. Wirth, 2001), which al-
lows for fast beam steering and allows the receivers to form
multiple simultaneous beams. A measurement of the ion ve-
locity vector along the radar transmit beam is then possi-
ble without any other assumptions than homogeneity of ion
velocity within the common scattering volumes where the
transmit and receive beams intersect (McCrea et al., 2015;
Virtanen et al., 2014).

In this article, we study the ion velocity measurement ca-
pability of EISCAT3D. Since ion velocity depends on both
electric field, through the Lorentz force, and neutral wind,
through collisions, the ion velocity contains information on
both electric field and neutral wind. At each range along
the transmitted beam, we therefore have six unknowns, three
electric field and three neutral wind components, but only
three observed ion velocity components. This makes the
problem slightly underdetermined. The traditional approach
to handle this problem has been to assume a constant elec-
tric field along the magnetic field line. Here, we relax this
assumption and investigate the physical nature of the prob-
lem, showing that physics-based constraints give us addi-
tional equations similar to first-order Tikhonov regulariza-
tion. The ion velocity estimations and the corresponding un-
certainty calculations are described in Sect. 2. The inverse
problem of determining electric field and neutral wind from
the ion velocities is described in Sect. 3. In Sect. 4, model
calculations are used to illustrate the resolution and accuracy
that are possible.

2 Ion wind

ISR measurements mainly provide four ionospheric param-
eters: electron density ne, electron temperature Te, ion tem-
perature Ti, and the ion velocity component along the Bragg
scattering vector wp. The connection between wp and the
Bragg scattering vector kp for the transmit–receive pair p
and the ion velocity v is

wp = kp · v/|kp| + εp, (1)

where εp is a random variable that models the velocity mea-
surement errors.

The basis for finding the velocity of the uncharged wind
and electric field is through the ion velocity. The measure-
ments wp and the unknown velocity v can be set up as a lin-
ear inverse problem (Heinselman and Nicolls, 2008; Nygrén
et al., 2011):

w =Kv+ ε, (2)

where w> = [w1, . . .wP ] is a vector containing independent
measurements of ion-line Doppler shift, K> = [k1. . .kP ] is
the theory matrix, and ε is the noise vector. We assume that
the noise is independent and identically normal distributed
with zero mean and variance of σ 2

w, which means that we
assume that the line-of-sight (LOS) ion velocity measured
with different receivers has the same uncertainty.

With the first stage of E3D, there will be P = 3 measure-
ments of the ion velocity at every range, as shown in Fig. 1.
Since the theory matrix then is quadratic, it will be possi-
ble to find v with low uncertainty and without restrictions if
the measurements are sufficiently independent linearly (see
Aster et al., 2013; Risbeth and Williams, 1985). The Bragg
scattering vectors can be calculated from the preliminary po-
sitions of E3D as mentioned by Kero et al. (2019). We as-
sume a target in the direction of the magnetic field at iono-
spheric range, extending outwards from the Skibotn trans-
mitter site.

As it later will become an advantage to have the ion veloc-
ity in magnetic field coordinates, we have to transform the
scattering vector matrix K. The transformation matrix from
geographic to local magnetic coordinates is

Rgeo→gmag =

 cosδ −sinδ 0
sinI sinδ cosδ sinI cosI
−cosI sinδ −cosI cosδ sinI

 , (3)

where δ is the declination, and I is the dip angle of the mag-
netic field (Heinselman and Nicolls, 2008). We note that the
transform is a rotation, meaning that it is orthonormal, and
Rgeo→gmagR>geo→gmag is equal to the identity matrix. The
LOS velocities in geographic coordinates are then related to
the ion velocity in local magnetic coordinates as follows:

w =KR>geo→gmagv+ ε. (4)
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Figure 1. Locations of the initial three E3D sites in Skibotn, Karesuvanto, and Kaiseniemi (a) and geometry for measuring ion velocity
vectors (b). All velocity measurements shown are carried out with one transmit beam. For this to work, the receivers are able to form all the
needed receiver beams simultaneously.

We find the ion velocity by solving the inverse problem by
using the linear least-squares method:

v̂ = Rgeo→gmag

(
K>K

)−1
K>w. (5)

The uncertainty of the ion velocity estimate is quantified us-
ing the following covariance matrix:

6v = Rgeo→gmag

(
K>K

)−1
R>geo→gmagσ

2
w. (6)

We will use this uncertainty later when estimating electric
field and neutral wind.

2.1 Uncertainty of ion wind velocity

Vallinkoski (1989) describes a method for finding the uncer-
tainty of ISR parameter estimates. Our procedure is similar.
Like the other ionospheric parameters, the ion velocity com-
ponent along the Bragg scattering vector wp is estimated
from the autocorrelation function (ACF) that is measured
by the radar. The ACF ρ =

[
ρ(τ0),ρ(τ1), . . .,ρ(τT−1)

]> is
described by the theory for incoherent scatter (Kudeki and
Milla, 2011). Here, τ is the time lag. The theory provides
a non-linear relationship between the parameters θ and the
ACF ρ.

ρ = f (θ)+ ε (7)

The parameters θ include ionospheric plasma parameters and
parameters specific to the radar experiment. In this relation-
ship, there are also measurement errors, which are modelled
with a random variable ε.

To simplify the uncertainty calculations, we linearize the
relationship between ACF and the parameters measured with
the ISR. The first-order Taylor polynomial for the ACF
around a parameter estimate θ ′ is

ρ = f (θ ′)+ J(θ − θ ′)+ ε, (8)

where

J=


dρ0
dθ1

· · ·
dρ0
dθn

...
. . .

...
dρT−1

dθ1
· · ·

dρT−1
dθn


θ=θ ′

(9)

is the Jacobian of f evaluated at θ = θ ′. We move the con-
stant parameters over to the left side and get an inverse prob-
lem with the solution

θ̂ =
(

JH6−1
ρ J

)−1
JH6−1

ρ

(
ρ−f (θ ′)+ Jθ ′

)
, (10)

where the superscript H denotes Hermitian transpose. The
linearized covariance matrix quantifying the uncertainty of
the estimate is

6
θ̂
=

(
JH6−1

ρ J
)−1

. (11)

The uncertainty is dependent on how well the ACF is mea-
sured. This depends on the signal-to-noise ratio. The signal
strength is dependent on the ionospheric plasma parameters
as mentioned above, the radar equation, and the experiment
design with pulse length and coding, etc. The noise level is
determined by the system noise temperature, which depends
on the implementation of the receiver electronics and the sky
noise temperature at the radar frequency.

To determine the ACF, we calculate the ISR spectrum
as described by Kudeki and Milla (2011) and take its in-
verse Fourier transform. We then multiply it with the signal
strength, which we take from the radar equation

PS =
PtGtGrλ

2sin2χ

(4π)3R2
t R

2
r
·Vne ·

(4πr2
e )

1+ Te/Ti
, (12)

where Pt is transmit power,Gt is transmit gain,Gr is receive
gain, λ is the radar wavelength, Rt and Rr are the distance
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between the target and transmitter and receiver, χ is the po-
larization angle, and re is the classical electron radius. The
scattering volume V is approximated as a spherical sector

V =
2π1r

3

(
1− cos

ϕ

2

)(1r2

4
+ 3R2

t

)
, (13)

where 1r is the resolution in range direction, and ϕ is the
one-way half-power beamwidth of the radar. For bistatic
cases when receiving in Karesuvanto or Kaiseniemi, we as-
sume that the receiver sees the whole scattering volume such
that we do not need to include possible losses because the
radar beams do not overlap completely. The noise power PN
is obtained using the Nyquist–Johnson noise model as fol-
lows:

PN = kBTsysfB, (14)

where kB is the Boltzmann constant, Tsys is the system noise
temperature, and fB is the bandwidth of the signal, which is
given by fB = c/(21r), where c is the speed of light.

The calculations require that measurements of the differ-
ent lags of the ACF are uncorrelated. This means that the
covariance matrix of the measurement errors 6ρ is diago-
nal. We can make this assumption if the different lags are
measured using a coded long pulse with a low signal-to-
noise ratio (Lehtinen and Häggström, 1987). A solution for
cases with signal-to-noise ratio over 1 can be to shorten the
baud length and so increase the resolution in range direc-
tion (Lehtinen and Damtie, 2013). This results in a weaker
signal from every range but provides more independent mea-
surements that can be averaged to obtain the desired range
resolution.

We can use this outline to calculate the uncertainty in wp
for several representative cases. For the radar parameters of
E3D, we use frequency f = 233 MHz, one-way half-power
beamwidth 2◦, both transmit and receive gain equal to 38 dB,
transmit power 5 MW, and a noise temperature of 200 K.
These are, to the best of our knowledge, the performance
parameters of the latest revision of the EISCAT 3D design,
which may still change before the final implementation. We
use a scattering angle of 90◦, even if it is not absolutely cor-
rect when receiving in Karesuvanto and Kaiseniemi.

In order to investigate the performance of the radar in dif-
ferent geophysical conditions, we have studied three different
cases: (1) daytime; (2) night-time without auroral precipita-
tion, as modelled by IRI (quiet night-time); and (3) night-
time with auroral precipitation. Each of these cases have dif-
ferent ionospheric plasma parameter profiles consisting of
ne, Te, Ti, and mi. The key parameter that influences ob-
servability is ne, as the signal-to-noise ratio is to first or-
der proportional to this parameter. The temperatures and the
ion mass also influence the uncertainty somewhat but much
weaker than the electron density. For the representative cases,
we used the plasma parameters for 20 February 2014 at three
times: 14:00, 23:00, and 21:20 UTC. The profiles are calcu-
lated by the IRI-2016 model (Bilitza et al., 2017), except for

the aurora case at 21:20, where we used data from EISCAT
UHF for electron density and the temperatures. We integrated
the EISCAT data over 10 min in order to obtain plasma pa-
rameters with smooth profiles. For calculating the magnetic
field, we use the international geomagnetic reference field
(see Thébault et al., 2015). The ionospheric parameter pro-
files for the three representative cases are shown in Fig. 2.
In this article, these profiles are only used for calculating the
uncertainty in the ion velocity measurements.

For the analysis, we assumed an experiment where the
baud length is 15 µs, the pulse consists of 51 bauds, and there
is an interpulse period of 5 ms and an integration time of 5 s.
We use an analysis range resolution of 2250 m, correspond-
ing to the baud length. This range resolution we see as a com-
promise for an experiment investigating both the E and F re-
gion. For simplicity, we kept the range resolution constant.

The uncertainty of the LOS ion velocities is shown in
Fig. 3. According to the figure, the uncertainty at daytime
and auroral night-time is considerably lower than at night-
time without aurora. While the uncertainty varies from about
5 m/s at 100 km to 20 m/s at 140 km altitude in the non-aurora
night case, for daytime and auroral night-time conditions, the
uncertainty is smaller than 3 m/s. In general, the uncertainty
is smaller where the signal-to-noise ratio is high. This occurs
primarily at E region heights, where the electron density is
comparatively high. At F region heights, the electron den-
sity is also high. However, this is about twice as far as the E
region, and the backscattered signal is therefore weaker.

It is worth noting that the test case is close to a solar maxi-
mum, which means that the electron density is comparatively
high. At solar minimum, the electron density in the iono-
sphere is in general about a factor of 2 lower (e.g. Brekke,
2013), and the uncertainty in ion velocity will be higher. One
can compensate for this by integrating the LOS ion velocity
over a larger number of range gates, leading to a reduced
range resolution. For example, Nygrén et al. (2011) used
10 km range resolution at E region heights in an experiment
with EISCAT UHF.

Using Eq. (6), we obtain the uncertainties of the ion ve-
locity components, which are plotted in Fig. 3b–d. The un-
certainty in magnetic field-aligned component is very similar
to the LOS uncertainties. This is expected because all lines
of sight do not differ much from the magnetic field line di-
rection. Therefore, the uncertainty of the ion velocity com-
ponents perpendicular to the magnetic field line is a factor
of 3–5 times higher. At the highest altitudes, the scattering
vectors are even more similar, which leads to an increased
uncertainty.

3 Neutral wind and electric field

The velocity of ion and neutral wind are coupled through
collisions as described by the ion momentum equation. This
can be found by taking the first moment of the Boltzmann
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Figure 2. Ionospheric parameter profiles we used to calculate the ion velocity errors.

Figure 3. 1σ uncertainty in line-of-sight velocity (a), and the hence following three components of the ion velocity vector in magnetic field
coordinates: perpendicular east (b), perpendicular north (c), and field-aligned direction (d).
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equation (e.g Inan and Gołkowski, 2011). We assume that we
can treat the ions as a single fluid. The momentum equation
is

nimi

[
dv
dt
+ (v · ∇)v

]
=−∇Pi+ nimig+

qini (E+ v×B)−∑
k

nimiνik (v− vk) , (15)

where ni is the number density of ions,mi is the ion mass, Pi
is the ion pressure tensor, g is the gravitational acceleration,
qi is the ion charge, E is the electric field, B is the back-
ground magnetic field, νik is the momentum transfer colli-
sion frequency between ions and particle species k, and vk
is the velocity of particle species k. We assume that spatial
variations of the ion velocity are small such that we can ne-
glect the term (v · ∇)v. Further we assume that the pressure
is isotropic, so we can write the pressure tensor as a scalar pi.
Only collisions between ions and neutrals are of importance
to change the ion velocity (Brekke, 2013); other collision
terms can be neglected. If the ions obey the ideal gas law, the
ion pressure pi can be written as pi = nikBTi. Additionally,
we neglect local temperature variations such that ∇Ti = 0.
Finally, as in previous work, we also neglect the contribution
from pressure gradients and gravity. With all these assump-
tions, Eq. (15) can be rewritten as

nimi
dv
dt
= qini (E+ v×B)− nimiνin (v−u) , (16)

where u is the neutral wind velocity.
For steady-state conditions

(
dv
dt = 0

)
, the ion velocity in

the magnetic field coordinate system becomes (see Brekke,
2013; Heinselman and Nicolls, 2008)

vx = ux +
1

1+ κ2
i

[κi
B
Ex − κi

(
uy +

κi

B
Ey

)
− κ2

i (ux)
]

(17a)

vy = uy +
1

1+ κ2
i

[κi
B
Ex + κi

(
ux +

κi

B
Ex

)
− κ2

i
(
uy
)]

(17b)

vz = uz+
κi

B
Ez. (17c)

Here, κi is the ion mobility

κi =
qiB

miνin
, (18)

where the subscript z denotes the direction along (antiparallel
to) the magnetic field, x horizontally towards east, and y per-
pendicular to the other two directions, giving a right-handed
system. Since in this article we are only considering the ion
mobility, we will drop the subscript i from now on and just
write κ instead.

The component equations can be combined into a compact
matrix equation (see Heinselman and Nicolls, 2008).

v =
κ

B
CE+Cu, (19)

where C is the matrix

C=

 1
1+κ2

κ

1+κ2 0
−κ

1+κ2
1

1+κ2 0
0 0 1

 . (20)

When estimating the neutral wind and electric field at a cer-
tain altitude, Eq. (19) has to be solved. This is an underde-
termined inverse problem with six unknowns, which are all
components of both the electric field and the neutral wind ve-
locity. For measurements, we only have the three components
of the ion velocity. To resolve this, some a priori assumptions
or constraints are required.

The original solution of Brekke et al. (1973) was to use the
fact that κ � 1 at F region altitudes; therefore the ion drift is
determined only by the electric field. Then this is assumed to
be constant along the magnetic field line. However, the elec-
tric field may not be constant in reality (e.g. Sangalli et al.,
2009). Such an assumption then affects the neutral wind es-
timates.

It is possible to assume that the neutral wind and electric
field vary smoothly in the whole range of interest and use the
full profile of all ion wind measurements to obtain estimates
of the neutral wind and electric field. We will outline a proce-
dure to specify a smoothness constraint based on Maxwell’s
equations in order to give a physically feasible solution.

We start by discretizing the problem as follows: we have a
set of ion wind velocity vectors vi . . .vH which are measure-
ments of Eq. (19) integrated over a height range defined by
the weighting functions di(h)

vi =

∞∫
−∞

[ κ
B

CE+Cu
]
di(h)dh+ εi, (21)

where εi is the noise in measurement i and assumed to
be normally distributed with zero mean and covariance de-
scribed by Eq. (6) (in magnetic field coordinates). We as-
sume that the unknowns can be described by a set of basis
functions

E(h)=

NE∑
j=1

κ(h)βjbj (h)/B(h) (22)

and

u(h)=

NE+Nu∑
j=NE+1

βjbj (h). (23)

This allows Eq. (21) to be written as

vi =

N∑
j=1

aij (h)βj + εi, (24)
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where

aij =


∞∫
−∞

κ(h)C(h)bj (h)di (h)
B(h)

dh for 1≤ i ≤NE
∞∫
−∞

C(h)bj (h)di(h)dh for NE < i ≤N
, (25)

which can be calculated before solving the problem and
therefore can be regarded as constants.

We assume that the weighting functions di(h) for the
ion wind measurements are boxcars with centre at a certain
height and extending exactly halfway to the centre of the
nearest box in both directions. At the ends, the measurement
height boxes are symmetric around their centre. The basis
functions for the unknowns bj (h) are also boxcars. Other
basis functions could also be used. We further assume that
κ , B, and the rotation matrix C are constant throughout our
measurement height boxes d(h).

Equation (24) in matrix form then can be written as fol-
lows:

V = Ax+ ξ , (26)

where V > = [v>1 , . . .,v
>

H ], A=

 a1,1 · · · a1,N
...

. . .
...

aH,1 · · · aH,N

,

x> = [β1, . . .,βN ], and ξ> = [ε>1 , . . .,ε
>

H ].
In order to regularize the problem, we use Gauss’ and

Faraday’s laws. Faraday’s law for a static magnetic field,
∇×E = 0, gives us three equations for the gradient of the
electric field:

dEy
dz
−

dEz
dy
= 0 (27a)

dEx
dz
−

dEz
dx
= 0 (27b)

dEy
dx
−

dEx
dy
= 0. (27c)

Gauss’ law for a charge-neutral plasma, ∇ ·E = 0, can be
written as

dEx
dx
+

dEy
dy
+

dEz
dz
= 0. (28)

Equations (27a), (27b), and (28) are added to the theory
matrix A to regularize the electric field. The derivatives dEx

dz ,
dEy
dz , and dEz

dz are approximated with finite differences, with
dz equal to the range step.

The horizontal gradients
(

dEx
dx +

dEy
dy ,

dEz
dx ,

dEz
dy

)
are not

specified by our measurements. We therefore treat them as
Gaussian random variables ξj,(x,y,z) with zero mean and
some variance α−2

j,(x,y,z). Eqs. (27a), (27b), and (28) then re-
sult in

Ej,(x,y,z)−Ej+1,(x,y,z)

1hE
= ξj,(x,y,z). (29)

These equations are added to the theory matrix. This im-
plies that we assume these three derivatives of the electric
field to be smaller than 2/αj,(x,y,z) 95 % of the time. For a
box size of1hE , this means that (Ej,(x,y,z)−Ej+1,(x,y,z))∼

N (0,1h2
Eα
−2
j,(x,y,z)), which is similar to first-order Tikhonov

regularization but with a regularization constant αj,(x,y,z)
that varies with both height and electric field component (see,
for example, Roininen et al., 2011). It is worth pointing out
that the constraints are obtained from Maxwell’s equations
and therefore have a physical interpretation.

Constraints, such as Eq. (29), will favour smoother solu-
tions that are closer to being constant-valued (Aster et al.,
2013). Throughout this paper, we will loosely use “flatness”
to describe how close a function is to a constant value, as
the magnitude of the left-hand side of Eq. (29) is minimized
when the function is constant.

For the neutral wind, we also use first-order Tikhonov reg-
ularization as described for the electric field above. In addi-
tion, we use zeroth-order Tikhonov regularization to restrict
the neutral wind to smaller magnitudes. This corresponds to
the following statistical assumptions

uj,(x,y,z)− uj+1,(x,y,z) = ζ1,j,(x,y,z)
uj,(x,y,z) = ζ0,j,(x,y,z),

(30)

where ζ1,j,(x,y,z) ∼N (0,1h2
uγ
−2
1,j,(x,y,z)) and ζ0,j,(x,y,z) ∼

N (0,γ−2
0,j,(x,y,z)). The first row regularizes to the flatness of

the profile, and the second constrains the magnitude.
This procedure can be interpreted as adding equations for

the derivatives of the unknowns to the theory matrix, where
these equal to zero with some uncertainty variance justi-
fied by physics. This gives us a problem with smooth, well-
behaved solutions provided that the constraints are strong
enough.

The regularized linear least-squares solution of the inverse
problem is then

x̂ =
(

A>R6
−1
m AR

)−1
A>R6

−1
m m, (31)

wherem is the extended measurement vectorm> = [V >0>],
and AR is the theory matrix A extended with the constraints
(29) and (30). We will discuss the measurement error covari-
ance matrix 6m in the next subsection.

3.1 Uncertainty calculations

The measurement uncertainty of the ion wind vector estimate
at a range i is quantified by the covariance matrix in Eq. (6).
When we combine measurements from different heights to a
single vector, the covariance matrix becomes a block matrix
with all individual covariances 6vi along the diagonal,

6V =

 6v1 · · · O
...

. . .
...

O · · · 6vH

 , (32)
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Figure 4. 1σ uncertainty of estimates of electric field (a, c, e) and neutral wind (b, d, f). The left column (a, b) shows the perpendicular
east components, the middle column shows the perpendicular north components (c, d), and the right column shows the field-aligned compo-
nents (e, f). The solid lines shows the results for the daytime profile, the dashed lines are for the night profile, and the dashed–dotted lines
show results for the night-time profile with aurora. The colours show different regularization parameters. The cyan lines use the numbers
derived from Sangalli et al. (2009), the yellow line shows results where the variation in electric field is one-tenth, and the blue lines show a
thousandth of these.

where O is the zero matrix. This assumes that measurements
from different heights do not correlate.

When expanding the theory matrix to include the regular-
izations, we also have to expand the covariance matrix. The
inverse problem is regularized with a set of values αj,(x,y,z),
and γ(0,1),j,(x,y,z) which control the smoothness of electric
field and neutral wind as a function of height. The values
we use for the regularization also form the uncertainty of the
added measurements. They are, however, not assumed to be
co-varying, and therefore these only add diagonal terms:

6L = diag
{
α−2

1,x,α
−2
1,y,α

−2
1,z, · · ·,α

−2
N,x,α

−2
N,y,α

−2
N,z

}
. (33)

The covariance matrix of the regularized measurements then
becomes

6m =

[
6V O
O 6L

]
. (34)

As the inverse problem then should be solvable using
Eq. (31), the uncertainty of the solution is given by

6x̂ =
(

A>R6
−1
m AR

)−1
. (35)

This can be considered as the a posteriori estimation error
covariance for the electric field and neutral wind.

3.2 Regularization parameters

Before calculating the electric field and neutral wind esti-
mate uncertainties by inserting values into the equation, as-
sumptions must be made on how strongly the problem should
be regularized. With ISR, the variation in electric field and
the neutral wind have typically been measured in their own
height ranges, neutral wind up to around 140 km, and elec-
tric field above that. Knowledge on the variation at the other
heights is sparse, and it is therefore not obvious what good
choice for the regularization constants α for the electric field
or γ for the neutral wind would be.

Simultaneous observations of electric field and neutral
wind have been made with sounding rockets. However, there
are not sufficiently many of such measurements to fully char-
acterize the statistics of the altitude variation of electric fields
and neutral winds. Altitude profiles of electric field and neu-
tral wind can still be used for estimating typical magnitudes
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of their gradients in order to find suitable values for the reg-
ularization parameters α and γ . Here, we will use measure-
ments from the Joule II rocket campaign, where altitude pro-
files from 85 to 210 km of electric field and neutral winds
below 130 km were derived (Sangalli et al., 2009). Since
the rocket did not travel exactly along the magnetic field
line, the variation of the electric fields along the trajectory is
larger than along the magnetic field. Therefore, the variance
of the electric field gradient will be overestimated, leading to
a softer regularization.

At higher altitudes, the electric field is expected to be
constant along the magnetic field because of the high field-
aligned conductivity. We therefore use two estimates of the
variation of the electric field, one for high and one for low
altitudes. We assume that the variance is the same for the
three components. Based on the Sangalli et al. (2009) mea-
surements, we estimate that the largest electric field variation
is 20 mV/m over a 2.5 km range at about 90 km and 5 mV/m
over the same range at 190 km altitude. We set the regulariza-
tion parameters to match these variations. This means that we
assume that the largest variations in electric field measured
by the rocket experiment are relatively rare (occur 5 % of
the time). Our regularization of the field-aligned gradient is
then α−1

j,(x,y,z)= 1 µV/m2 at 190 km and 4 µV/m2 at 90 km alti-
tude. In between these, we interpolate the variation linearly.
We choose our measurement region to be similar, between
80 and 200 km height, and can also extrapolate the variation
linearly. This we will call the “measurement-based” regular-
ization. Additionally, we have calculated the uncertainty for
two cases where we constrain the electric field more strongly
towards flatness. This can be seen as more similar to the com-
monly used assumption that the electric field is constant. We
do this by dividing the regularization for the E field by 10
and 1000.

We assume a 1σ variation of the neutral wind gradient of
20 m/s/km for all heights. In addition, we add an assump-
tion that the neutral wind estimates follow a normal distribu-
tion with zero mean and standard deviation of 200 m/s, which
corresponds to using 0.005 s/m as the zeroth-order Tikhonov
regularization parameter.

3.3 Ion-neutral collision frequency

Use of the correct ion-neutral collision frequencies is cru-
cial for calculating the ion mobilities correctly. Therefore
accurate collision frequencies are necessary for estimating
the electric field and neutral wind. The ion-neutral collision
frequency can be calculated theoretically (see Schunk and
Nagy, 2009) or measured with ISR (Nicolls et al., 2014a;
Davies et al., 1997). Both methods will result in uncertainty
of the collision frequency on the magnitude of 50 % but
somewhat lower for the ISR measurements. In this study, we
will ignore this uncertainty. Any uncertainty in the collision
frequency will add to the error budget.

In this study, we have calculated the collision frequencies
using

νin =

∑
i,j si,jninj∑

ini
, (36)

where si,j is the collision frequency coefficient (CFC) be-
tween ion species i and neutral species j . We use the CFCs
from Schunk and Nagy (2009) for the most usual neutral and
ion species N2, O2, and O and NO+, O+, and O+2 . Where the
collision is resonant, we simply assume a reduced tempera-
ture of 400 K to calculate the CFC. The particle densities are
calculated by the MSIS atmospheric model (see Picone et al.,
2002).

3.4 Electric field and neutral wind uncertainty

We can now investigate the expected performance of E3D
for estimating electric fields and neutral winds as a function
of height. The variances of the estimates are the diagonal
of the a posteriori covariance matrix, Eq. (34). As the per-
formance depends on ionospheric conditions, we study the
same three ionospheric conditions as for the ion velocity un-
certainty (see Fig. 2). The performance also depends on the
a priori smoothness constraints. Figure 4 shows these 1σ un-
certainties for the different ionospheric conditions and reg-
ularization constraints. The ionospheric conditions are indi-
cated with line style, and the different smoothness assump-
tions are indicated with colour. Cyan is the measurement-
based regularization α, which is defined in Sect. 3.2. We also
use two increasingly stronger regularization constraints for
the electric field; the yellow line uses 10α, and the blue uses
1000α. This means that yellow and blue lines are assuming
the horizontal gradients of the electric field to be a factor of
10 or 1000 smaller in magnitude than the cyan line.

The uncertainties of the perpendicular electric field
(Fig. 4a and c) can be divided into two regions: above and be-
low approximately 125 km. Above 125 km, the electric field
uncertainty is primarily defined by measurement uncertainty.
Below this height, it is primarily constrained by the regular-
ization as ion velocity is less dependent on electric field due
to ion demagnetization. For the parallel E field (Fig. 4e), the
ionospheric conditions play a smaller role.

At low altitudes the uncertainty is above 10 mV/m for the
measurement-based regularization. For the higher altitudes,
its size depends on the ionospheric conditions but is around
1 mV/m in the perpendicular directions and approximately a
factor of 3 lower in the field-aligned direction. With stronger
constraints towards flatness, the uncertainty decreases, but
one has to remember that this comes at the cost of blurring
out smaller scale variations. For the lowest range, the yellow
and cyan lines indicate estimates of the electric field with too
large an uncertainty to be useful. This means that we can not
measure electric field with a useful accuracy below 125 km
unless we can make assumptions of horizontal gradients be-
ing less than approximately 4 nV/m2 (blue line).
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The uncertainties of the neutral wind components are
shown in Fig. 4b, d, and f. The neutral wind is best esti-
mated to an accuracy of approximately 10 m/s between 90
and 125 km. Below 90 km, the electron density is typically
lower, which increases LOS ion velocity measurement er-
rors. Above 125 km, the ion-neutral collision frequency de-
creases rapidly, which makes the ion drift increasingly in-
dependent of the neutral wind. At highest altitudes, the un-
certainty is merely constrained by our assumptions on neu-
tral wind amplitude (200 m/s). Best estimates are obtained at
around 100 km altitude.

The usable range of neutral wind measurements depends
strongly on the prior assumption on the smoothness of the
electric field. The strongest regularization, corresponding to
the smallest horizontal electric field gradient assumption, in-
dicated with the blue line, leads to a neutral wind uncertainty
of less than 30 m/s up to 150 km. However, this altitude is
greatly reduced with less strict prior assumptions on the elec-
tric field gradient; see yellow and cyan lines.

Typical values for the perpendicular electric fields are on
the order of tens of millivolts per metre (e.g. Nygrén et al.,
2011; Sangalli et al., 2009). Sometimes they are smaller, as
reported by Nygrén et al. (2012), but can also be an order of
magnitude larger during active auroral conditions, as seen by
Dahlgren et al. (2011). Such electric fields are larger than the
measurement uncertainties of the possible E3D estimates at
high altitudes, even without restrictive regularization. Even
for our worst case, quiet night-time conditions, the E3D ion
velocity uncertainties are smaller than typical ion drifts. At
lower altitudes, the electric fields grow.

Typically the horizontal components of the neutral wind
are on the order of tens of metres per second. However, it is
not uncommon with stronger neutral winds (Heinselman and
Nicolls, 2008; Nygrén et al., 2011, 2012; Brekke, 2013). At
collision-dominated altitudes below 115 km, the uncertain-
ties are smaller than these typical values, so accurate neutral
wind measurements should be achievable. The vertical com-
ponent of the neutral wind is smaller but can in extreme cases
reach 100 m/s (Nygrén et al., 2011, 2012; Brekke, 2013).
Only in the lowest part of the E region is the expected un-
certainty smaller than typical vertical winds.

It is important to remember that the results and their un-
certainties presume that all assumptions of the flatness of the
electric field or neutral wind profile are true. If our assump-
tions on the magnitude of the electric field gradients or neu-
tral wind gradients are too small, the uncertainties presented
are overly optimistic.

We can compare our results with earlier measurements of
Dahlgren et al. (2011), which used the tristatic EISCAT UHF
to measure the electric field at 220 km altitude under similar
conditions as we used for our aurora case. The experiment
setup was similar, except for the radar itself. If we look at the
time period between 19:28 and 19:36, the horizontal elec-
tric field components had a magnitude of up to 250 mV/m
but mostly around 30 mV/m. Typical standard deviations are

tens of millivolts per metre. With our model and E3D, such
electric fields should be measurable with a factor of 10 im-
provement of uncertainty down to approximately 125 km.

The earlier mentioned Joule II rocket experiment was ac-
companied with ion velocity measurements at PFISR, which
were used to estimate the neutral wind at the same heights
(Heinselman and Nicolls, 2008). Also here, the ionospheric
conditions look most like our aurora example, but the radar
pointed in seven directions to find the different ion wind com-
ponents. The neutral wind profiles were integrated over 15
min, and their uncertainties are similar to those in Fig. 4b
and d at the highest altitudes but somewhat higher further
down.

4 Simulated measurement

In order to demonstrate what a electric field and neutral wind
estimate profile could look like, we have simulated a E3D
measurement and analysed it. We based the simulations on
the Joule II rocket measurement presented in Sangalli et al.
(2009). During the downleg flight, the rocket measured neu-
tral wind at altitudes 90–130 km by tracing chemical re-
leases. The electric field was measured already from 210 km
altitude. Since Sangalli et al. (2009) did not include field-
aligned components, we used a synthetic profile. We used the
electric field and neutral wind profiles to simulate E3D ion
velocity measurement with noise added from Eq. (26). These
simulated ion velocity measurements were used to estimate
electric field and neutral wind. By comparing these with the
original data set, we can visualize how good the E3D esti-
mates are. The results are shown in Fig. 5. We use the same
regularization schemes as for Fig. 4.

The results confirm that the electric field is estimated well
above 125 km, as predicted by the uncertainty estimates in
Sect. 3.4. Below 125 km the electric field is not estimated
well. For all regularization schemes, the behaviour at lower
altitudes is similar. The electric field is estimated to be a
constant value corresponding approximately to the value at
125 km altitude, indicating that the regularization contributes
with all information of the electric field where ions are de-
magnetized.

The neutral wind is in general better estimated below
120 km altitude, where it is the largest influencer of the ion
wind. Above approximately 125 km, the neutral wind is not
well measured in any of the cases. This is not surprising as
the neutral wind has little effect on the ion velocity at higher
altitudes.

When using the strongest flatness constraints on the elec-
tric field, this causes the estimates of the neutral wind to be
more fluctuating than the original values (see, for example,
Fig. 5b). We believe that the reason is that the model tries to
fit the unknowns to the ion wind measurements but “knows”
a priori that the electric field is constant, so all the variation
in ion velocity must be explained by the neutral wind instead
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Figure 5. Example simulation of electric field and neutral wind estimates. The estimates were calculated from simulations of ion velocity
based on measurements of Sangalli et al. (2009). The layout of the figure is as in Fig. 4. The colours show different regularization parameters.
The cyan line uses the numbers derived from Sangalli et al. (2009), the yellow line shows results where the variation in electric field is one
tenth, and the blue line shows a thousandth of these. The black line shows the values which were used to simulate the ion velocity. We note
that the axes on the plots are different.

of the electric field. If the constraints on the electric field are
relaxed, the estimate of all unknowns is closer to the original
values.

At the heights where the regularization plays a smaller
role, the deviation from the original values seems similar to
the predicted uncertainties shown in Fig. 4.

5 Discussion

Earlier ISR studies on neutral wind have assumed that the
electric field is exactly constant along the magnetic field –
mainly due to the lack of three-dimensional ion vector ve-
locity measurements along the whole radar transmit beam.
The technique presented in this paper allows us to relax this
assumption with a scheme that arises from Maxwell’s equa-
tions and assumption of horizontal smoothness of electric
field. A special case of our regularization scheme is the case
where the electric field is approximately constant as a func-
tion of height along a magnetic field line. This corresponds
to a very strong smoothness assumption on horizontal gradi-
ents of electric field (see dark blue line in Figs. 4 and 5). The

technique presented in this study can be thus seen as a gen-
eralization of the commonly used technique for estimating
electric field and neutral wind.

In addition to studies of electric fields and neutral winds
separately, a use case of the technique presented here is in-
vestigation of Joule heating. For Joule heating, both electric
fields and neutral winds are necessary (e.g. Aikio et al., 2014,
and references therein). With improved estimates of electric
field and neutral wind, the Joule heating can be calculated
with higher accuracy.

Our results indicate that it will be possible to observe an al-
titude profile of electric field and neutral velocity using E3D.
However, it is only possible to reconstruct either the electric
field or the neutral wind at any given altitude region. This is
ultimately due to the fact that above an altitude of approxi-
mately 125 km, the ion drift is to a large extent determined by
electric field and nearly unaffected by neutral velocity. Simi-
larly, below 125 km, the ion drift is primarily determined by
neutral wind.

For future measurements, one important question to solve
is what regularization parameters should be used. If the con-
straints are too weak, the problem is underdetermined and
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the solution noisy. The classical approach is to assume that
the electric field is constant along the magnetic field line.
However, the electric field may not always be the constant.
Then, as the example shows, the neutral wind estimates have
to compensate for variations in the ion drift measurements
due to under-resolved electric field variability. Relaxing the
assumption of a constant electric field will in these cases im-
prove the results.

Adjusting the regularization constants must be done with
caution, since the problem easily becomes underdetermined.
Therefore it is important to justify the choices of regulariza-
tion. For the electric field, we used regularization parame-
ters, which are estimated from in situ rocket measurements.
However, the optimal values of the regularization parameters
for general use are still to be found. For the values we used,
only constraining the electric field was not enough, and we
also constrained the gradient of the neutral wind in the same
way. Here too, the exact values can be discussed. Forcing
the neutral wind velocity gradients to be too small causes
the estimates of the neutral wind to fit worse to the ion wind
at collision-rich heights. This then increases the noise in the
electric field here. If the variation is allowed to be too large,
the problem is not solvable. In order to allow for higher vari-
ations in the neutral wind but also to use all information we
have about it, we added a size constraint of 200 m/s. As can
be seen in the uncertainty plots, this restricts the size of the
neutral wind components to become smaller.

In future work, the model can, for example, be improved
in one of the following ways. If somehow measurements of
neutral wind or electric field exist, these can be added addi-
tionally as constraints. Such measurements could, for exam-
ple, be the movement of meteor smoke, polar mesospheric
summer echoes, or other measurements of events in the iono-
sphere that imply size or direction of neutral wind or electric
field. An independent measurement of mean neutral wind can
often be obtained up to about 100 km using meteor radars
(e.g. Stober et al., 2018).

In this work, we used the same resolution in time for both
electric field and neutral wind. The large mass in the neutral
atmosphere causes the neutral wind to vary more slowly than
the electric field. Nygrén et al. (2011) took advantage of this
to use different time resolutions for the different parameters.
In the future, it would be an advantage to include this for our
model as well.

The technique discussed in this study can be extended fur-
ther. With the help of phased array technology, E3D will al-
low fast beam scanning to be used to measure how ion vector
velocity and electron density vary within a volume of space.
This type of measurement may potentially result in improved
estimates of electric field and neutral wind, as more physics-
based regularization can be added. We can use Gauss’ and
Faraday’s laws without the need to treat the horizontal gra-
dients as unknown random variables, as they will be deter-
mined by the measurements. We can also introduce con-
straints that are not possible for a one-dimensional profile.

It will be possible to apply Ampere’s law to enforce current
continuity. We can also apply the Navier–Stokes equations
to enforce that the neutral wind is approximately consistent
with anelastic flow. Estimating electric field and neutral wind
within a volume is a topic of future work.
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Abstract. Volumetric measurements of the ionosphere are important for investigating spatial variations of ionospheric features,

like auroral arcs and energy deposition in the ionosphere. In addition, such measurements make it possible to distinguish

between variations in space and time. While spatial variations in scalar quantities such as electron density or temperature have

been investigated with ISR before, spatial variation in the ion velocity, which is a vector quantity, has been hard to measure.

The upcoming EISCAT3D radar will be able to do volumetric measurements of ion velocity regularly for the first time. In5

this article, we present a technique for relating volumetric measurements of ion velocity to neutral wind and electric field. To

regularize the estimates, we use Maxwell’s equations and fluid-dynamic constraints. The study shows that accurate volumetric

estimates of electric field can be achieved. Electric fields can be resolved at altitudes above 120 km which is the altitude range

where auroral current closure occurs. Neutral wind can be resolved at altitudes below 120 km.

1 Introduction10

It would be of huge importance to measure the how electric fields in and around auroral arcs vary in time and space. This

would allow us to gain new knowledge on the evolution of currents in Cowling-channels, the closure of Birkeland currents

and ultimately the dynamics of magnetosphere-ionosphere coupling in the auroral regions. To investigate the spatial variation

of the ionospheric electrical fields and currents, it is necessary to measure how physical quantities vary over a volume in the

ionosphere (e.g. McCrea et al., 2015).15

Investigating the spatial variation of the ionosphere can be done in two different ways: multi-beam scanning or aperture

synthesis radar imaging (ASRI). With multi-beam scanning/volumetric imaging (Semeter et al., 2009; Nicolls et al., 2014;

Swoboda et al., 2014, 2017), the radar beam is pointed in different directions to measure the local states in the ionosphere.

Multi-beam scanning covers a large region in the ionosphere, and is thereby useful for investigating large-scale structures. With

ASRI, the phase difference in received signal between receivers is used to investigate small-scale structures inside of the radar20

beam (see e.g. Hysell and Chau, 2012). In this paper, we investigate the multi-beam scanning with E3D. For ASRI with E3D,

we refer to Stamm et al. (2021b).

A phased array is an array of (dipole) antennas where the beam can be steered by changing the phase of the transmitted

or received signals. Combined with electronic control of the phases at every antenna, the beam steering can be performed

between two consecutive pulses (e.g. Wirth, 2001). The AMISR radars (Valentic et al., 2013; Heinselman and Nicolls, 2008)25

were the first ISRs that combined these two, making it possible to perform measurements of scalar ionospheric parameters,

1
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such as electron density ne, electron temperature Te and ion temperature Ti in some tens of seconds (Semeter et al., 2009). By

assuming that the electric field along magnetic field lines is constant and that the field-aligned ion flow is completely constant,

the variation in Doppler shift can be used to estimate horizontal variations in electric field (Nicolls et al., 2014). However, full

volumetric measurements of vector parameters require multiple receivers. At least one receiver for every component of the ion30

velocity vector is needed. This will be able with E3D when it is finished (McCrea et al., 2015).

With the first three sites of E3D, volumetric measurements of ion velocity will become possible. The core site with combined

transmitter and receiver is going to be in Skibotn, Norway, and two remote receiver sites are built in Kaaresuvanto, Finland and

Kaiseniemi, Sweden. Each site will have a phased array, which will be built with up to 109 hexagonal subarrays consisting of

91 crossed dipole antennas each. In Skibotn, additional 10 outrigger subarrays are built for interferometry (Kero et al., 2019).35

The technique for estimating electric field and neutral wind from ion velocity has been based on determining the electric field

at high altitudes where the ion drift is dominated by ExB drift. Then, the electric field has been assumed to be constant along

the magnetic field line so the neutral wind could be estimated at lower altitudes. This technique was introduced by Brekke

et al. (1973) and has been used in many studies of the neutral wind (Brekke et al., 1974, 1994; Brekke, 2013; Heinselman and

Nicolls, 2008; Nygrén et al., 2011, 2012). However, for analyzing a vector field, the method has to be adjusted because only40

one beam will be field-aligned.

In this work we present a technique to estimate the three-dimensional variation of electric fields and neutral winds from

multi-static ISR measurements of ion velocities. A volumetric model makes it possible to use Maxwell’s equations and the

continuity equation for the neutral wind to constrain the estimates. The work is a three-dimensional generalization of the

work of Stamm et al. (2021a) that investigated the possibility of using an field-aligned profile with E3D measurements of ion45

velocity to find estimates of electric field and neutral wind. When generalizing, one has to take into account that most of the

measurements are not aligned with the magnetic field. With the improvements of Heinselman and Nicolls (2008); Nygrén et al.

(2011); Stamm et al. (2021a), we will develop a model which can be used to analyze the three-dimensional vector fields of

neutral wind and electric field.

The paper is organized as follows: The general technique to obtain neutral wind and electric field from ion velocity measure-50

ments is described in Sect. 2. The framework for volumetric measurements and estimates is described in Sect. 3. Our chosen

setup of the measurements and discretization of the neutral wind and electric field estimates is shown in Sect 4. Section 4.1 dis-

cusses the uncertainties in the measurements, applicability of the assumptions and uncertainties of the estimates. A simulation

of ion drift measurements is given in Sect. 5 , followed by a discussion in Sect. 6.

2 Velocity of ions and neutrals and electric field55

The estimation of neutral wind and electric field consists of three steps: First measuring Doppler shifts, then finding the ion

velocity vectors, and finally estimating neutral wind and electric field.

Incoherent scatter radar measurements are performed by transmitting a powerful radio wave and measuring the spectrum of

the scattered signal, which at frequencies much larger than the plasma frequency contains information about the plasma that

2
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scatters the radio waves. Due to collective motion of the ions, the spectra are Doppler shifted. This shift is used to obtain the60

ion velocity component parallel to the Bragg scattering vector kB which is equal to the difference between wave vectors of the

scattered and transmitted wave (see also Beynon and Williams, 1978). Figure 1 illustrates the characteristic geometry of E3D

together with the wave vectors that the ion velocity is measured along.

The relationship between a measurement of the Doppler shift w and the ion velocity vector for transmitter-receiver pair p is

wp =
kp
|kp|
·v. (1)65

A set of Doppler shift measurements w> = [w1, ...wP ] of the same volume from P pairs can be combined to system

w = Kv+ ξw, (2)

where K> = [k1/ |k1| , ...,kP / |kP |] is the theory matrix, and ξw is a vector containing the noise terms. If the measurements

are sufficiently linearly independent, the ion velocity can be found with the method of least squares (cf. Aster et al., 2013;

Risbeth and Williams, 1985).70

Ion velocity is determined by the ion momentum equation. At ionospheric altitudes, the dominant terms are Lorentz force and

collision with neutrals while the terms for advection, gravity and pressure gradients are negligible. When assuming steady-state

conditions, the ion momentum equation can be written as

0 = qene (E+v×B)−nemiνin (v−u) , (3)

where qe is the unit charge, ne is the electron density, E is the electric field vector, B is the magnetic field, mi is the average75

mass of ions, νin is the momentum transfer collision frequency between ions and neutrals, and u is the neutral wind velocity.

To simplify the algebra, we rewrite the cross product with a matrix multiplication. We introduce the matrix

Bg =




0 Bz −By
−Bz 0 Bx

By −Bx 0


 , (4)

where x,y and z are the axes of the geographic coordinate system, that are east, north and up. This allows us to rewrite the

cross product as v×B = Bgvg where the subscript g shows that the matrix and vector are in geographic coordinates.Now, the80

momentum equation can be rewritten as
(
I− κ

B
Bg

)
vg =

κ

B
Eg +ug, (5)

where

κ=
qeB

miνin
. (6)

is the ion mobility and I is the identity matrix. Inverting the matrix on the left side is simplified by transforming into local85

magnetic coordinates perpendicular to the magnetic field towards east and antiparallel. The third component completes the
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Skibotn Kaiseniemi

Kaaresuvanto

k1

k2

k3

Figure 1. The figure shows geometry and assumptions on E3D volumetric measurements. The figure is not to scale or angle.
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right handed system and will be referred to as northward. The transformation matrix from local geomagnetic to geographic

coordinates is

R =




cosδ sinI sinδ −cosI sinδ

−sinδ sinI cosδ cosI cosδ

0 cosI sinI


 (7)

for declination δ and magnetic dip angle I (Heinselman and Nicolls, 2008). The matrix R is a rotation matrix, which means90

that R−1 = R>. The matrix on the left hand side of Eq. (5) can then be written as RC−1
m R>, where

Cm =
1

1 +κ2




1 −κ 0

κ 1 0

0 0 1 +κ2


 . (8)

The momentum equation can now be written as

vg = R>CmRug +
κ

B
R>CmEm, (9)

indicating that we will estimate the electric field in local magnetic coordinates.95

3 Vector field estimation model and grid

This section defines the model that will be used to estimate electric field and neutral wind from multi-beam multistatic ISR

observations of ion velocity. The electric field and neutral wind have three components each which have to be found from a

discrete set of three components of ion wind. This gives six unknowns for three measurements. In addition to relating the ion

velocity with the electric field and neutral wind, therefore also constraints are applied to find a more stable solution.100

The discretization of the problem should keep most of its important features. The volume unknown is represented by discrete

basis functions where we use a discretization corresponding to boxcars (voxels) in a desired coordinate system. This simplifies

the search for discretization to find one coordinate system for each unknown. It is an advantage for computation speed to let

the discretization be as coarse as possible because fewer parameters have to be estimated.

The electric field is strongly affected by the electric conductivities. This means that the fields are stronger in directions105

where the conductivity is low. Since the conductivity is much higher along the magnetic field than perpendicular to it (Brekke,

2013), electric fields and their variations are expected to mainly be in the perpendicular direction for higher altitudes. To avoid

aliasing-type problems it is preferable to use a discretization that is aligned with the magnetic field.

The neutral wind is expected to vary predominantly perpendicular to gravity and therefore following the surface of Earth. A

geographic oriented coordinate system is therefore an advantage for the neutral wind.110

This means that the preferred coordinate systems for the discretization of electric field and neutral wind are different. We

introduce now the discretization. We start with the measurements of the ion velocity. Here, for measurement `, the measured

5
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ion velocity υ` is considered as an integral over the probed volume indicated with the function β`. The measurement can be

written as

υ` =
∫∫∫

V

v (r)β` (r)dV + ξ`, (10)115

where ξ` is a vector which contains the errors of the ion velocity vector measurements, that are the errors of the solution of Eq.

(2). Equation (10) can be expanded using the momentum equation, Eq. (9). This gives

υ` =
∫∫∫

V

R>CmRug (r) |detJu|β` (r)dV +
∫∫∫

V

κ

B
R>CmEm |detJE |β` (r)dV + ξ`, (11)

where J is the Jacobian from the coordinate system of the ion velocity to that one indicated by the subscript, u for neutral

wind and E for electric field. Then, the unknown continuous vector fields are discretized by replacing them with sums of basis120

functions Φj and Ψj :

E ≈
NE∑

j=1

ηjΦj (12)

and

u≈
Nu∑

j=1

ΓjΨj . (13)

This converts the continuous vectorfield to a discrete form where the coefficients ηj and Γj are our new set of unknowns. They125

are constant over the integrated volume and can therefore be taken out of the integral. We will now define the variables

aE`j =
∫∫∫

V

κ

B
R>CmΦj |detJE |β` (r)dr (14)

and

au`j =
∫∫∫

V

R>CmRΨj |detJu|β` (r)dr. (15)

Equations (14) and (15) let us write Eq. (11) as130

υ` =
Nu∑

j=1

au`jΓj +
NE∑

j=1

aE`jηj + ξ` (16)

which can be recognized as a matrix equation υ = AEη+ AuΓ + ξ. If we define the unknowns as one single vector x> =
[
Γ>,η>

]
and stack the matrices A> =

[
A>u ,A

>
E

]
, the equation relating the measurements to the unknowns becomes

υ = Ax+ ξ. (17)

The equation, can be recognized as a standard linear inverse problem, and is what we develop a general physics-based solution135

to in this paper.
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The nature of the problem is underdetermined as shown by the earlier works (e.g. Brekke et al., 1973; Semeter et al.,

2009; Nygrén et al., 2011, 2012; Nicolls et al., 2014; Swoboda et al., 2017; Stamm et al., 2021a). We therefore have to use

regularization. Here, we will show that for the electric field and neutral wind we can use fundamental physical law to obtain

regularization terms similar to Tikhonov regularization. This both gives a less noisy solution and a forces it to be physically140

reasonable.

By using Gauss’ law ∇ ·E = 0 for a charge-neutral plasma and Faraday’s law ∇×E = 0 for a time-stationary magnetic

field, we are adding 4 equations for every unknown vector of the electric field.

For the neutral wind, we use the continuity equation∇· (ρu) = 0, where ρ is the mass density of neutral particles. Also, we

assume that the acceleration of the neutral wind is small. This means that when the same particles have moved for some time,145

and thereby distance, they have the same velocity. Further on, this implies that the spatial variation of the neutral wind vector

field is small. We implement this approximation by assuming that the first order differences of the neutral wind components

in all directions are smaller than some parameter 1/α. These constraints are mathematically equivalent to first order Tikhonov

regularization (Aster et al., 2013; Roininen et al., 2011).

With small neutral wind accelerations, one can also argue to use previous estimates of the neutral wind as prior assumption150

of the next estimate of neutral wind. This corresponds to a zeroth order Tikhonov regularization and would then be similar to

a Kalman filter, or to the approach introduced by Nygrén et al. (2011).

Many of the regularization termswe introduce contain spatial derivatives in multiple dimensions at the same time. For

example, each component of Faraday’s law uses derivatives in two directions, as illustrated in Fig. 2. Since these derivatives in

this case are not symmetrical, we use a weighting of the derivatives in both directions. They are approximated by155

dEx
dy

(y)≈W1
Ex(y+ ∆y1)−Ex(y)

∆y1
+W2

Ex(y)−Ex(y−∆y2)
∆y2

. (18)

for the example of electric field in x-direction. In the equation, W1 and W2 are weights. We note that the separation in the grid

is varying because the grid may be curved and stretched. Therefore we have to take into account that ∆y1 6= ∆y2.

Additionally, when differentiating in different dimensions, there appear border issues since in some cases the derivatives can

only be found in some directions, see Fig. 2. Mathematically, the solutions to this problem differ in which weights W1 and W2160

are used. We are aware of three possible solutions. The first is to ignore the derivatives passing the border. Then, one of the

weights is zero, which is shown as the blue line in Fig. 2.

Another possibility is to take the border-passing derivatives as stochastic variables, that is that e.g.

Ex(y)−Ex(y−∆y2)
∆y2

∼N
(
0,σ2

∆E

)
. (19)

A third possibility is to weigth the two derivatives in another way, for example by focusing on those inside of the borders. An165

example is illustrated by the cyan arrows in Fig. 2.

The problems described above do not apply to the one-dimensional derivatives in the first order Tikhonov regularization for

the neutral wind. In this case we simply use the definition of the derivative.
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Figure 2. Problems that arise at the borders of the grid. When using the definition of the derivative, at the one side, the derivative over the

border can not be included directly (black arrows). Possible solutions to the border problem for symmetric derivatives are also shown in the

figure (cyan, blue, brown arrows).

These regularizing constraints add several terms to our inverse problem. The physics-based regularized function we are

minimizing is170

(m−Ax)>Σ−1
m (m−Ax) + (∇×E)>Σ−1

F (∇×E) + (∇ ·E)>Σ−1
G (∇ ·E) + (∇ · (ρu))>Σ−1

K (∇ · (ρu))

+
(

du
dr

)>
Σ−1

du
dr

(
du
dr

)
+ (u−uprev)>Σ−1

du
dt

(u−uprev) . (20)

Here, the covariance matrices in the different regularization terms fill the same role as the regularization parameter in a

standard Tikhonov regularization.They balance how tightly the solution fits the constraints relative to how well they fit the175

observations.
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It is possible to rewrite this on matrix form as

υR = ARx+ ξR. (21)

where the extended theory-matrix is A>R =
[
A>,L>

]
. Here, the matrix L is the regularization matrix which contains all the

regularization terms constraining the problem.180

4 Model simulation

To analyze the resolution and accuracy the proposed estimation technique provides, we perform a simulation of the system.

Here we use different grids for ion drifts, electric field and neutral wind.

For the simulated measurements, we use an experiment consisting of 5x7 beams, as illustrated in Figs. 3 and 4. The beams

are pointed evenly as a fan with zenith angles from 13° southward (approx. magnetic field-aligned), with a spacing of 3° to 5°185

northward, and every 2.5° between 5° westward and 5° eastward. In every beam, we measure with ranges every five km range

resolution from 90 to 210 km range.

We model the measurements using Gaussian beam-pattern perpendicular to the range direction and triangular weights along

range. The vertices of the triangle are placed in the center of the next range gate. At the nearest and furthest range, the triangles

are symmetric. The Gaussian functions are centered around the line of sight with an standard deviation of 1° corresponding to190

the HPBW. The Gaussian is truncated at 2 standard deviations and normalized such that it still integrates to 1.

The grid for the neutral wind uses geographic coordinates, as shown in Figs. 3 and 4. The grid centers are placed every 0.15°

between 68.9° and 69.5° latitude and every 0.3° between 19.8° and 20.7° longitude. In altitude, we place the centers every

tenth kilometer between 90 and 210 km.

For the electric field, we choose a special coordinate system. One axis is field-aligned and therefore slightly curved, as the195

magnetic field is not completely straight. However in a short height range, as in Figs. 3 and 4, the curvature is not visible.

The other axes consist of geographic latitude and longitude at the surface of Earth. We place the horizontal grid centers for

the electric field every 0.1° within 69.3°-69.9° in latitude and every 0.2° within 20.0° and 21.0° in longitude on the surface of

Earth. The grid contains 7 voxels in latitude and 6 voxels in longitude. Along the magnetic field axis, the centers are placed

every tenth km between 90 and 210 km.200

4.1 Uncertainties in ion velocity vectors

In this section we will calculate the uncertainty in estimates of electric field and neutral wind for the example setup outlined

in Sect. 4. In order to find the accuracy of the solution, we must first estimate the uncertainty in the measurements, that is in

both observations and constraints. The accuracy of ion-drift observations is well understood, but depend on the ionospheric

conditions, primarily the electron density. Thus, the uncertainty varies over time, space and with the component considered205

(e.g. Stamm et al., 2021a). Some assumptions are therefore necessary. Here, we performed similar calculations as Stamm et al.

(2021a), but using parameters of E3D when the full first stage is finished, that is a HPBW of 1°, transmit power of 5 MW, and
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Figure 3. Longitude-height-view of experimental layout. The radar beams are shown in blue, the grid for neutral wind in black and the grid

for electric field in red.
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Figure 4. Latitude-height-view of experimental layout.
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transmit/receive gains of 43 dB. We also increased the averaging in range of the measurements to 4500 m in order to fit better

to the setup in this study. With an integration time of 2 s, the horizontal ion drift can be measured with around 20 m/s accuracy

in horizontal and 5 m/s in vertical direction. This makes a full loop over all 35 beams take 70 seconds.210

When we calculate the uncertainties, we have neglected the effects of cases where transmit and receive beam only overlap

partially, decreased transmit/receive gains for tilted beams and scattering angles below 90°. All these effects will increase the

uncertainty in ion drift observations, but not significantly.

4.2 Regularization parameters

The next step is to select suitable weights for the regularization terms, that are Maxwell’s laws, the continuity equation and the215

assumption of low neutral wind acceleration. This can be interpreted as estimating the uncertainty in uncovered terms or the

additional constraints they impose. The equations for Gauss’ law are equivalent to saying that the expected ionospheric charge

density is zero with a variance that corresponds to some value of ρ/ε0, where ρ is the net charge density and ε0 is the permittivity

in vacuum. The uncertainty in the Gauss’ law regularization is thereby decided by the amount of plasma charge-neutrality. We

can, for example, assume that the usual deviation from charge neutrality is 1 to a million, meaning that for 106 electrons one220

is missing a positive charge. If the electron density is 1011m−3, around 105 electrons do not have a corresponding positive

charge. Then, the net charge in the plasma is on the size of 10−14 C/m³. In sum, we assume that∇·E ∼N (0,(10−3V/m2)2).

In Faraday’s law, the uncovered term is the time derivative of the magnetic field. In general, time variations in the magnetic

field are mostly quite slow, but sometimes it changes very rapidly, for instance during substorms. To include also these condi-

tions, we will use a rapid changing magnetic field as a measure. As an example, we use ground-based magnetometer data for225

interplanetary shock in 2012 as shown by Belakhovsky et al. (2017). Of the shown magnetometer measurements, the strongest

change in the magnetic field was measured in Ivalo. There, in one minute, the x-component of the magnetic field increased

by 600 nT, giving an increase of 10 nT/s. Through testing, even this rapid change seems too small. We will assume that the

time-derivative of any magnetic field component is distributed as dB(x,y,z)

dt ∼N (0,(300nT/s)2).

The continuity equation for neutrals is230

dρ
dt

+∇ · (ρu) = 0 (22)

We assume that the strongest changes in neutral density are caused by gravity waves which in turn affect the electrons in a

similar manner, one can use changes in electron density to obtain information about the change in neutral density. When doing

this, it is very important to be cautious of changes that would only affect the electron density. Therefore it will be advantageous

to estimate the slope of neutral density over a short time period and in geomagnetically quiet conditions. One example of this235

was measured with EISCAT UHF in the of 10. September 2005. There, in the F region, the electron density varied up to 50

% in around 10 minutes (Nygrén et al., 2015). Transferring this to neutral density at 100 km altitude, this would correspond

to a change in the order of 50 %, which is about 0.6 kg/m³, provided that the assumptions hold. We therefore assume that
dρ
dt ∼N (0,(10−3kg/m3s)2). This corresponds to about 1022 molecules of molecular oxygen per cubic meter and seconds.
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In sum, with these variances, we assume that in 67% of the time, the net charge density in the plasma volume is lower than240

10-14 C/m³, the magnetic field varies less than 300 nT/s and the neutral mass density varies less than 1 g/(m³s).

In addition, we need to have some estimate for the cases where we consider the derivative of electric field or neutral wind over

the borders of our grid and for the constraint of small neutral wind accelerations. We implement both of these in the same way

where we let the gradient be a stochastic variable with a variance as in Eq. (19). For the electric field, we use the uncertainties

that Stamm et al. (2021a) used in the field-aligned one-dimensional case and extend the use to all three dimensions. This245

corresponds to assuming that the standard deviation of the electric field in the corresponding cases is smaller than 20 mV/m

per 2500 m.

For the variance of the neutral wind gradients we use approximate variations in measurements taken with a scanning Doppler

imager as shown by Zou et al. (2021). Here, it appears that the latitudinal variation in the horizontal neutral wind components

is mostly below 100 m/s per degree latitude, corresponding to about 2 m/s per 10 km. We tighten this constraint to 1 m/s per250

km. In vertical direction we use a looser constraint of 20 m/s per km to allow for wind shear. This constraint of the neutral

wind is applied to the whole volume and corresponds directly to first order Tikhonov regularization.

In addition, we constraint the magnitude of neutral wind components. For the horizontal wind, we assume that the estimates

follow a normal distribution of mean zero and uncertainty of 200 m/s. However, we expect that the vertical neutral wind

components are somewhat smaller, and decrease the uncertainty to 100 m/s. These constraints correspond to zeroth order255

Tikhonov regularization of the neutral wind with using 0.005 s/m and 0.01 s/m as the regularization parameter.

4.3 Boundary problems

With these statements, we can proceed with finding the uncertainty in estimated electric field and neutral wind. The different

solutions to handle the boundary problems also impose some properties of the neutral wind and electric field estimates. We

did a short investigation of the different solutions as shown in Fig. 2. Except for ignoring all border-crossing non-symmetric260

derivatives, all solutions give results. The best of the solutions in terms of estimate accuracy is the symmetric derivative where

we ignore those passing boundaries. When including them as stochastic variables the uncertainty is increased. This might be

the most correct way of doing it, but further on we will ignore the boundary-passing derivatives because of simplicity, that is

we are using the dark blue arrows in Fig. 2.

4.4 Accuracy of neutral wind and electric field estimates265

The resulting uncertainties in the estimates of electric field for the coordinate system, measurements and regularization de-

scribed in this section are shown in Figs. 5-7. Like in the one-dimensional case investigated by Stamm et al. (2021a), the

estimates of the electric field are somewhat accurate above 125 km altitude, while being quite uncertain below 125 km. Ac-

cording to the figures, estimates of the electric field is possible with a accuracy in the range of few millivolts per meter down

to 110-120 km altitude inside of the measured volume. Outside of the observed region, the electric field uncertainties grow.270

This is understandable since the measurements do not include information about the electric field at those locations. There, all

information comes from the constraints.
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Figure 5. Uncertainty in electric field in local magnetic east direction.

Figure 6. Uncertainty in electric field in local magnetic north direction.
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Figure 7. Uncertainty in electric field infield-aligned direction.

The uncertainties in neutral wind estimates are shown in Fig. 8. Also here, the same effect is observed, the neutral wind can

be estimated with a high accuracy at low altitudes with a variance that increases rapidly above 110 km. The lowest estimates

for the neutral wind have accuracy of lower than 20 m/s below 120 km. These neutral wind estimates are slightly better than for275

the one-dimensional case. A reason could be our assumption on that the neutral wind has little variation horizontally because

then, there are more measurements (beams) measuring the "same" neutral wind volume. As in the one-dimensional case, the

accuracy of neutral wind measurements decreases with increasing altitude. It also seems to end at around the same value,

namely 50 m/s.

5 Simulation results280

In order to illustrate the results, we performed a simulation of vector field of neutral wind and electric field. We generated a

vector field where the electric field in north-south direction points inward to a certain latitude, thereby simulating an auroral

arc, similar to Nicolls et al. (2014). Inside of the arc, the field is zero. Also the other components of the electric field are set to

zero. This can be compared to the Cowling channel model by Fuiji et al. (2012). The neutral wind is set to zero everywhere.

We used the generated fields to simulate the ion velocities in the coordinate system example described in Sect. 4. Then,285

normally-distributed noise is added with standard deviation of 20 m/s in the horizontal directions and 5 m/s in the vertical
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Figure 8. Uncertainty in neutral wind estimates. Because the uncertainties vary little horizontally, the values are averaged for every altitude.

direction. Finally, the simulated ion velocities are used to find estimates of neutral wind and electric field. Here, we use the

same grids as for the generated fields and the regularizations as described in Sect. 4.1.

The generated vector fields for electric field and neutral wind are shown in Fig. 9 along with the ion wind measurements

simulated from these. The estimated vector fields are shown in Fig. 10. The estimates where the uncertainty in at least one290

electric field component is above 10 mV/m are not plotted. Neither are those of neutral wind where at least one component has

uncertainty above 30 m/s.

First of all, we note that the simulated ion velocity at the highest altitudes is perpendicular to the generated electric field.

This is expected because at these altitudes, it is mainly influenced by the ExB-drift which was used by Brekke et al. (1973) to

find electric field estimates. At lower altitudes, the ion drift becomes increasingly more dependent on the neutral wind.295

The shown estimate of the electric field in Fig. 10 is quite close to the starting point at 125 km and upwards, but only inside

of the measured volume. This is the same result as found in the one-dimensional case by Stamm et al. (2021a). We note that in

the eastern boundary region of Fig. 10, there is a small curving artifact that is caused by Faraday’s law.
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Figure 9. Electric field (blue) and neutral wind (red) used for simulations. Simulated ion wind measurements (green) are also shown.

Because the neutral wind is set to zero it is not seen in the plot. The vertical spacing in the plot is chosen so that the first plot covers our

model and measurements between 100 and 110 km range along the magnetic field, the second between 110 and 120 km and so on. Since

there are measurements every fifth kilometer, each subplot contains two sets of measurements. For example, the 105 km plot contains the

measurements from the line-of-sight ranges 100 km and 105 km. The plots for the uppermost and lowermost ranges look similar to their

neighbour range and are not plotted.
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Figure 10. Estimated neutral wind (blue) and electric field (red) together with ion wind measurements (green). The plots for the uppermost

and lowermost ranges look similar to their neighbour range and are not plotted. Also electric field vectors where at least one component has

an uncertainty larger than 10 mV/m are not shown. Likewise, neutral wind vectors are not shown if one component has an uncertainty larger

than 30 m/s.

Also, the neutral wind estimates can be described as somewhat correct below 125 km altitude. Those estimates above this

become increasingly worse, like in the one-dimensional study.300

6 Discussion and summary

This study introduces a method to estimate electric fields and neutral winds from multistatic multi-beam ISR measurements of

ion velocity. We show that electric field uncertainties of few millivolts per meter can be achieved at altitudes above 120 km.

Neutral wind estimate uncertainties should be small below 120 km. It is the extension into three dimensions which makes out

the difference between this studies and Stamm et al. (2021a). The estimates from this three-dimensional technique give a more305

stable solution than in the one-dimensional case. Even if the study is more sophisticated in three dimensions, the approaches
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give similar results which depend on the how the regularization is performed. In both cases, the results indicate that even with

adding regularization, electric field and neutral wind cannot be estimated well at the same altitudes without further assumptions.

For the presented estimates from the simulated ion drifts, the advantage of using the previous neutral wind estimate is not

used. By using the previous neutral wind estimates as a prior knowledge of the state of the neutral wind, the time-variation of310

the neutral wind estimates will be smoothed. This is similar to a Kalman-filtering approach. This approach allows us to take

into account that the neutral wind changes slowly with time.

The inverse problem in this study involves a large scale of regularization parameters, and thereby parameters that can

be adjusted. This results in some freedom in tuning the regularization parameters. When possible, we used weights for the

regularization terms that were taken from measurements of related parameters. Elsewhere, physical models or reasoning was315

used. However, it is possible that there are slightly better ways of constraining the problem or adjustments of the regularization

parameters that, in some sense, give better results.

In the case of Faraday’s law, we decided to increase the uncertainty of the time-derivative of the magnetic field from those

values given by magnetometer data. We do this to allow for finer variations in the electric field estimates than else would be

allowed by our coarse grid.320

As a performance test of the technique, we removed three of the central measurement beams, and estimated electric field and

neutral wind from the remaining measurements. The estimates with measurements between 180 and 190 km altitude are shown

in Fig. 11a, and the Ex uncertainties in Fig. 11b. The deviations relative to the estimates using the full set of measurements

(cmp. with Fig. 10) are small. Maybe more importantly, the uncertainties do not increase by much. This shows that this type of

Tikhonov regularization leads to solutions that degrade gracefully while satisfying Maxwell’s equations. A consequence of this325

is that it should be possible to use sparser beams to estimate electric field and neutral wind. This can be used to either improve

the time resolution or to expand the observed volume. However, the removal of beams comes with a cost of slightly increased

uncertainties, which can be seen by comparing Fig. 11b and Fig. 5.
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Figure 11. Estimates of electric field with measurement gap. Three central measurement beams have been removed. Figure a shows the

remaining measurements and new estimates of electric field between 180 and 190 km. At other altitudes, the estimates show similar changes

compared with Fig. 10. Figure b shows the corresponding uncertainties in "northward" electric field. At other altitudes, these show similar

changes compared to Fig. 5.

20

https://doi.org/10.5194/angeo-2022-11
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.



Acknowledgements

This research has been supported by the Tromsø Science Foundation as part of the project "Radar Science with EISCAT3D"335

and the Research Council of Norway, grant 326039. The publication charges for this article have been funded by a grant

from the publication fund of UiT The Arctic University of Norway. EISCAT is an international association supported by

research organisations in China (CRIRP), Finland (SA), Japan (NIPR and ISEE), Norway (NFR), Sweden (VR), and the

United Kingdom (UKRI)

21

https://doi.org/10.5194/angeo-2022-11
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.



References340

Aster, R. C., Borchers, B., and Thurber, C. H.: Parameter Estimation and Inverse Problems, Academic Press, Waltham, 2 edn., 2013.

Belakhovsky, V. B., Pipipenko, V. A., and Sakharov, Y. A.: Geomagnetic and ionospheric response to the interplanetary shock on January

24, 2012, Earth, Planets and Space, 69, https://doi.org/10.1186/s40623-017-0696-1, 2017.

Beynon, W. and Williams, P.: Incoherent scatter of radio waves from the ionosphere, Reports on Progress in Physics, 41, 909–947, 1978.

Brekke, A.: Physics of the upper polar atmosphere, Springer, Heidelberg, 2 edn., 2013.345

Brekke, A., Doupnik, J. R., and Banks, P. M.: A Preliminary Study of the Neutral Wind in the Auroral E Region, Journal of Geophysical

Research, 78, 8235–8250, 1973.

Brekke, A., Doupnik, J. R., and Banks, P. M.: Incoherent Scatter Measurements of E Region Conductivities and Currents in the Auroral

Zone, Journal of Geophysical Research, 79, 3773–3790, 1974.

Brekke, A., Nozawa, S., and Sparr, T.: Studies of the E region neutral wind in the quiet auroral ionosphere, Journal of Geophysical Research,350

99, 8801–8826, https://doi.org/10.1029/93JA03232, 1994.

Fuiji, R., Amm, O., Vanhamäki, H., Yoshikawa, A., and Ieda, A.: An application of the finite length Cowling channel model to auroral arcs

with longitudinal variations, Journal of Geophysical Research, 117, https://doi.org/10.1029/2012JA017953, 2012.

Heinselman, C. J. and Nicolls, M. J.: A Bayesian approach to electric field and E-region neutral wind estimation with the Poker Flat Advanced

Modular Incoherent Scatter Radar, Radio science, 43, https://doi.org/10.1029/2007RS003805, 2008.355

Hysell, D. L. and Chau, J. L.: Aperture Synthesis Radar Imaging for Upper Atmospheric Research, in: Doppler Radar Observations - Weather

Radar, Wind Profiler, Ionospheric Radar, and Other Advanced Applications, edited by Bech, J. and Chau, J. L., pp. 357–376, IntechOpen,

Rijeka, 2012.

Kero, J., Kastinen, D., Vierinen, J., Grydeland, T., Heinselman, C. J., Markkanen, J., and Tjulin, A.: EISCAT 3D: the next generation

international atmosphere and geospace research radar, in: Proceedings of the First NEO and Debris Detection Conference, edited by360

Flohrer, T., Jehn, R., and Schmitz, F., ESA Space Safety Programme Office, Darmstadt, 2019.

McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., Engler, N., Gustavsson, B., Heinselman, C., Kero, J., Kosch, M.,

Lamy, H., Leyser, T., Ogawa, Y., Oksavik, K., Pellinen-Wannberg, A., Pitout, F., Rapp, M., Stanislawska, I., and Vierinen, J.: The science

case for the EISCAT_3D radar, Progress in Earth and Planetary Science, 2, https://doi.org/10.1186/s40645-015-0051-8, 2015.

Nicolls, M. J., Cosgrove, R., and Bahcivan, H.: Estimating the vector electric field using monostatic, multibeam incoherent scatter radar365

measurements, Radio Science, 49, 1124–1139, 2014.

Nygrén, T., Aikio, A. T., Kuula, R., and Voiculescu, M.: Electric fields and neutral winds from monostatic incoherent scatter measurements

by means of stochastic inversion, Journal of Geophysical Research, 116, https://doi.org/10.1029/2010JA016347, 2011.

Nygrén, T., Aikio, A. T., Voiculescu, M., and Kuula, R.: Statistical evaluation of electric field and neutral wind results from beam-swing

incoherent scatter measurements, Journal of Geophysical Research, 117, https://doi.org/10.1029/2011JA017307, 2012.370

Nygrén, T., Aikio, A. T., Voiculescu, M., and Cai, L.: Radar observations of simultaneous traveling ionospheric disturbances and atmospheric

gravity waves, Journal of Geophysical Research: Space physics, 120, 3949–3960, https://doi.org/10.1002/2014JA020794, 2015.

Risbeth, H. and Williams, P. J. S.: The EISCAT Ionosphere Radar: The System and its Early Results, Royal Astronomical Society, Quarterly

Journal, 26, 478–512, 1985.

Roininen, L., Lehtinen, M. S., Lasanen, S., and Orispää, M.: Correlation priors, Inverse problems and imaging, 5, 167–184,375

https://doi.org/10.3934/ipi.2011.5.167, 2011.

22

https://doi.org/10.5194/angeo-2022-11
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.



Semeter, J., Butler, T., Heinselman, C., Nicolls, M., Kelly, J., and Hampton, D.: Volumetric imaging of the auroral atmosphere: Initial results

from PFISR, Journal of Atmospheric and Solar-Terrestrial Physics, 71, 738–743, https://doi.org/10.1016/j.jastp.2008.08.014, 2009.

Stamm, J., Vierinen, J., and Gustavsson, B.: Observing electrical field and neutral wind with EISCAT 3D, Annales Geophysicae, 39, 961–974,

2021a.380

Stamm, J., Vierinen, J., Urco, J. M., Gustavsson, B., and Chau, J. L.: Radar Imaging with EISCAT 3D, Annales Geophysicae, 39, 119–134,

2021b.

Swoboda, J., Semeter, J., and Erickson, P.: Space-time ambiguity functions for electronically scanned ISR applications, Radio Science, 50,

415–430, https://doi.org/10.1002/2014RS005620, 2014.

Swoboda, J., Semeter, J., Zettergren, M., and Erickson, P.: Observability of ionospheric space-time structure with ISR: A simulation study,385

Radio Science, 52, 215–234, https://doi.org/10.1002/2016RS006182, 2017.

Valentic, T., Buonocore, J., Cousins, M., Heinselman, C., Jorgensen, J., Kelly, J., Malone, M., Nicolls, M., and van Eyken, A.: AMISR

the advanced modular incoherent scatter radar, in: 2013 IEEE International Symposium on Phased Array Systems and Technology, pp.

659–663, https://doi.org/10.1109/ARRAY.2013.6731908, 2013.

Wirth, W.-D.: Radar techniques using array antennas, The institution of Electrical Engineers, London, 2001.390

Zou, Y., Lyons, L., Conde, M., Varney, R., Angelopoulos, V., and Mende, S.: Effects of Substorms on High-Latitude Upper Thermospheric

winds, Journal of Geophysical Research: Space physics, 126, https://doi.org/10.1029/2020JA028193, 2021.

23

https://doi.org/10.5194/angeo-2022-11
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.





Appendices

117





Appendix A

Abbreviations

The following is a list of acronyms and abbreviations used in this work.

ACF Autocorrelation function
ALOMAR Arctic LIDAR Observatory for Middle Atmosphere Research
AMISR Advanced Modular Incoherent Scatter Radar
ASRI Apertude synthesis radar imaging
E3D EISCAT3D
EISCAT European Incoherent Scatter
ESR EISCAT Svalbard radar
ISR Incoherent Scatter Radar
KAIRA Kilpisjärvi Atmospheric Imaging Receiver Array
LIDAR Light detection and ranging
LS Method of least squares
MAARSY Middle Atmosphere ALOMAR Radar System
NEIAL Natural enhanced ion-acoustic line
NIPR National Institute of Polar Research
PFISR Poker flat ISR
RADAR Radio detection and ranging
RISR Resolute bay ISR
SVD Singular value decomposition
TSVD Truncated SVD
UiT Universitetet i Tromsø
UHF Ultrahigh frequency (300 MHz – 3 GHz)
VHF Very high frequency (30 MHz – 300 MHz)

119





Appendix B

List of figures

2.1 Forward and inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Examples of ISR spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Geometry of measuring Doppler shift and ion velocity . . . . . . . . . . . 32

4.1 Locations of E3D and geometry for tristatic measurements . . . . . . . . 38
4.2 Sample of E3D subarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Distribution of E3D subarrays . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Comparison of beamsize of E3D, EISCAT UHF and the former Arecibo radar 41
4.5 Scattering vectors and assumptions for volumetric velocity measurements 47

121



_


	Abstract
	Sammendrag
	List of papers
	Introduction
	Inverse problem
	Linear inverse problem and discretization
	Solving of inverse problems

	Regularization
	Singular value decomposition
	Tikhonov regularization
	Interpretations of regularization


	Incoherent scatter radar
	Historical introduction
	Measuring with an ISR
	Measuring ISR spectrum
	Uncertainty of ACF estimate

	Measured parameters with ISR
	Electron density
	Electron and ion temperatures and ion masses
	Doppler shift
	Other parameters
	Derived parameters

	Overview over ISRs

	EISCAT3D and new measurement techniques
	Description and layout of EISCAT3D
	New measurement techniques

	Aperture synthesis radar imaging
	History of ASRI
	Measurement theory
	Approximations of optical path length
	Inverse problem of imaging
	MIMO imaging

	Volumetric inversion of electric field and neutral wind

	Implications
	References
	PAPER I
	PAPER II
	PAPER III
	Appendices
	Abbreviations
	List of figures

