
Available online at www.sciencedirect.com

f
t
m
d
p
d
©
(

P

K

p
d
e

t

d

ScienceDirect

Energy Reports 8 (2022) 916–922
www.elsevier.com/locate/egyr

2022 The 4th International Conference on Clean Energy and Electrical Systems (CEES 2022),
2–4 April, 2022, Tokyo, Japan

Noise-intensification data augmented machine learning for day-ahead
wind power forecast

Hao Chena,c,∗, Yngve Birkelundb,c, Bjørn-Morten Bataldena, Abbas Barabadia

a Department of Technology and Safety, UiT The Arctic University of Norway, Tromsø 9019, Norway
b Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9019, Norway

c Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9019, Norway

Received 14 May 2022; accepted 26 May 2022
Available online xxxx

Abstract

The day-ahead wind power forecast is essential for the designation of dispatch schedules for the grid and rational arrangement
or production planning by power generation companies. This paper specifically investigates the effect of adding noise to
he original wind data for forecasting models. Linear regression, artificial neural networks, and adaptive boosting predictive

odels based on data-intensification white noise and uniform noise are evaluated in detail and their superiority over the original
ata-based models is compared. The results demonstrate that solely injecting noise into the dataset can statistically boost the
erformance of all forecasting models with learning algorithms. The findings of this study suggest a fresh perspective for
eveloping wind power prediction models and carry certain wind energy engineering merits.
2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Wind energy is a renewable energy resource with optimal exploitation conditions and commercialization
rospects [1]. The network operation of wind power generation is an essential path to achieve the large-scale
evelopment and utilization of wind energy [2]. Wind power is characterized by volatility, intermittency, and low
nergy density. These characters affect grid balance, which may profoundly endanger grid security [3].

An effective day-ahead wind power prediction is the foundation for operations, grid-connected wind parks and
he dispatch of power systems including wind power [4].

Wind power prediction is categorized into physical and statistical models. The former is based on atmospheric
ynamics and boundary layer meteorological theory, converting the weather model output into wind information
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at the hub height of the wind turbine and considering the wake effects between turbines, and finally deriving the
wind generator power from the power curve of the turbine [5]. The data-driven latter establishes an explicit or non-
explicit relationship between historical information and power generation using the historical data, in effect viewing
the forecasting as a time-series regression problem and fitting it by statistical or machine learning methods [6].
The statistical models are generally AutoRegressive (AR), Moving Average (MA), and their combinations and its
variances, etc. Machine learning approaches, adaptively learning complex relationships between inputs and outputs,
are kernel-based, networks-based, and ensemble models, etc.

The wind data resources for data-driven approaches are typically from wind masts and turbine hub measurements
r highly accurate wind forecasts, all of which are documented deterministic data. However, there is some wind-
ata uncertainty that is caused by inherited indetermination, categorized into randomness and fuzziness, of wind
ower [7]. The mechanisms include the stochastic nature of wind volatility and intermittency and local effects such
s wake and topography; the wind conditions undergo discontinuous and rapid changes; turbulence with diverse
mplitude and frequency changes with time; and fuzziness of the wind speed-power conversion curve, especially at
he power curve turning point, etc.

The uncertainty mentioned above statistically manifests itself in wind power forecasting as follows: first,
deterministic historical wind dataset does not necessarily represent the future conditions adequately; second,

istorical data are often limited, allowing the algorithms to memorize all samples in the training set when using
achine learning for forecasting, thus resulting in overfitting.
Noise, generally representing uncertainty in data, is usually regarded as a unfavorable factor in the investigation

f wind time series, and noise in the original series is filtered in many wind forecasting studies through
ignal processing techniques [8,9]. However, in computer science, researchers realized adding noise in a neural
etwork, as a form of data augmentation. may lead to generalization improvements, which is like a regularization
peration [10,11].

Inspired by data augmentation techniques, we inject noise to input wind data, including previous power, horizontal
nd vertical wind speed, of the training set to forecast day-ahead wind power with the linear regression with
ttributes selection and the random forests in the present study.

The remainder is organized as follows. Section 2 introduces the addition of noise and used statistics and
lgorithms. Section 3 presents the experiment procedure and data. The results of the model’s performance and
ts analysis are shown in Section 4. Furthermore, a brief conclusion is demonstrated in Section 5.

. Noise injection, statistics, and algorithms

.1. Noise addition

Two types of stochastic number generators are used in this research to extend the size of the training set; one is
he most commonly used noise, i.e., white noise, and the other can be considered extensive noise, but it contains

certain amount of information. The former is the noise, for which its power spectral density remains constant in
ts full-frequency domain. In particular, when a white noise’s amplitude distribution follows a Gaussian distribution
nd its power spectral density is uniformly distributed, it is referred to as Gaussian white noise [12]. The latter
as a uniform distribution in magnitude and is usually generated with the Mersenne twister algorithm in computer
cience [13]. Both types of noise allow users to define the range, [a, b] where they are generated, the former with

99.7% of the values distribute within a range of three standard deviations cantered on the zero value, and the latter
data with a uniform distribution are completely within the defined range.

An important technique to improve machine learning model performance in supervised learning is to ensure that
the training set is as big and representative as possible. We, therefore, scale one-year training data, ninety percent
of the annual data, to five years scale, i.e., from 7884 to 39,420 samples, by injecting noise into the historical wind
data. The range for two types of noise is gradually incrementally defined as:

[a, b] = [−0.05n, 0.05n] ; n = 2, 3, 4, 5 (1)

2.2. Statistics

A whole annual wind data with the hourly temporal resolution, including measured wind speed & direction and

power, of a wind power park in the Arctic, are used to establish forecasting models. The meteorological data are
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given by the operating company, and the Norwegian Water Resources and Energy Directorate (NVE) offers power
data.

For a data population X = {x1, x2, . . ., xn}, its statistical characteristics are expressed as follows:

x̄ =
1
n

n∑
i=1

xi (2)

σ =

√1
n

n∑
i=1

(xi − x̄)2 (3)

γ̂3 =
1
n

n∑
i=1

(xi − x̄)3 /σ 3 (4)

γ̂4 =
1
n

n∑
i=1

(xi − x̄)4 /σ 4
− 3 (5)

where x̄ is the average value and σ is the standard deviation of the population. γ̂3 denotes skewness that measures
distribution shape leans to one side of the mean value. γ̂4 represents kurtosis, which shows how much does a
distribution peakedness differs from the normal distribution.

For a time series {Xt , t ∈ T}, take t, s ∈ T, and define ρ(t, s) as the AutoCorrelation coeFficient (ACF) [14],
here µt is the mean and DX t is the variance.

ρ(t, s) =
E (X t − µt ) (Xs − µs)

√
DX t · DXs

(6)

The Bonferroni method for multiple comparisons is used to statistically check whether significant differences
xist in predations of the same algorithmic models with different training sets. For the two tests, their hypotheses
re similar. H0: The mean differences are zero; Ha : At least one difference does not equal zero. The method for

the difference confidence interval is expressed as:

(
Ȳ1 − Ȳ2

)
±

tn−k,1−α/ l
√

2
·
√

M SE ·

√
1
n1

+
1
n2

(7)

here t is t distributions, k is the number of populations and n is the total size of all populations, l represents the
number of pairs needed to be compared, and MSE is the Mean Square Error within groups.

2.3. Algorithms

This study conducts wind power multivariate regression prediction by employing three representative machine
learning algorithms. The first one is Linear Regression with attribute selection (LR); the second one is Artificial
Neural networks (ANN) and the last one is Adaptive Boosting (AdaBoost) in which linear regression with attributes
selection is applied as its base learner. As this paper is not concerned with the details of these machine algorithms
and Ref. [15] provides them in detail; only a brief description of these algorithms is given below.

LR: LR is a fundamental supervised machine learning algorithm due to its simplicity and well-known properties.
It allows the use of the least-squares function or maximum likelihood estimation or even the learning approach,
harnessed in this research, to determine the linear relationship that exists between the independent and dependent
variables.

ANN: ANN represents a biomimetic intelligence algorithm that is inspired by the bio-neural. Multilayer
Perceptrons (MLP) based on backpropagation optimization is the most popular ANN. It normally includes input,
hidden, and output layers consisting of neurons. The number of neurons for input and outputs are based on the data
structure and those for hidden layers are defined by users. These neurons are connected by weights and activated
by various activation functions. The ANN structure of this paper consists of 19 neurons in the input layer, 30 in
the hidden layer, 24 in the output layer, and the activation function is sigmoid.

AdaBoost with LR: Adaboost is a representative boosting ensemble learning algorithm. It constantly creates base

learners, LR in the present study, to highlight (using larger weights) mislearning samples from previous learners
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until the number of learners hits a setting or the loss function meets a threshold. With regression issues, the weighted
averaging is employed to acquire the eventual forecast results.

3. Experiments

Statistically, day-ahead wind power prediction can be treated as a multivariate regression problem, in which wind
ower series are autoregressive, and horizontal (West-East) and vertical (South-North) wind speeds supplement
he information to this autoregression to enhance the forecast model. Since wind power is featured with daily
imilarity. [16] The similarity is more apparent for seaside wind farms because of the diurnal alternation of sea
nd land winds. Physically, therefore, wind information prior to 24 and its adjacent hours is potentially valuable
or modeling current wind power. In this study, we chose data from two hours ante- and post-days as additional
nformation for the next 24 h of multi-step prediction. Besides, to account for the effects of a substantial expansion
f the sample size, a time coefficient term T is also included in the regression. The forecast as step i + n is described

as:

P̂i+n = f (Pi−22, . . . , Pi−26; V i−22, . . . , V i−26; T ) + εn (8)

here P̂i+n is n time-step ahead forecasting wind power, n ∈ {0, 1, 2, . . . , 23, 24}, V represents the wind velocity
vector, u is defined as horizontal wind speed u = |V | × sin θ and v is as vertical wind speed v = |V | × cos θ , θ is
wind direction angle of V, εn is the error of the predictive equation.

Two metrics were used in evaluating models for wind power forecasts. Namely, Root Mean Square Error (RMSE)
and Mean Directional Accuracy (MDA). The first is based on the loss functions of our regression algorithms and
the second is a predictive error direction indicator for indexing forecasting upward or downward directions.

RMSE =

√1
n

n∑
t=1

(P − P̂)2 (9)

MDA =
1
n

n∑
t=1

1
sgn

(
P−P̂

) (10)

here P is observed wind power, P̂ is its predictive value, and 1sgn(.) represents the indicator function.
For the original dataset, 90% are selected as the training set and the remaining 876 samples, accounting 10%, are

sed as the testing set. The noise is incrementally injected into the training set to establish new training sets, which
re learned by the mentioned machine learning algorithms, and then the models are tested on the same testing set.

. Results

.1. Statistics of datasets

Table 1 shows the number of samples and the statistics, described above, for the original, white noise augmented,
nd uniform noise augmented datasets. The variables in these three sets are orderly shortened as O, N, and U
eparately, plus u, v, and P.

It is seen that the size of the dataset increases remarkably after the addition of noise, but their related statistics
re not significantly different from the original dataset, indicating the statistical stability of the augmented datasets.
ll of the above statistics are even closer for the N-enhanced and U-enhanced datasets, with differences of less

han 0.001. Specifically, the skewness and kurtosis of u and v show the historical distributions of the two speeds,
are generally symmetric and have more concentrated peaks and longer tails than the normal distribution.

4.2. Forecasts

For day-ahead wind power forecasting, we develop LR, ANN, and AdaBoost models and perform 24-step, hourly,
forecasts on the original, the white noise added and the uniform noise added datasets, respectively. These nine
models are shortened as OLR, OANN, OAD; NLR NANN, NAD; and ULR, UANN, UUN; which correspond to
the mentioned datasets in order.
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Table 1. Statistics of datasets.

Statistics Sample x̄ (m/s) σ (m/s) γ̂3 γ̂4 ρ(1, 24)

Ou 8760 0.122 6.327 0.055 1.065 −0.012
Nu 40296 0.134 6.189 0.071 1.025 −0.013
Uu 40296 0.134 6.191 0.071 1.024 −0.013
Ov 8760 0.003 6.292 −0.021 0.982 −0.019
Nv 40296 0.038 6.186 −0.015 0.998 −0.014
Uv 40296 0.037 6.187 −0.016 0.999 −0.015
O P 8760 15.239 15.858 1.020 −0.168 0.214
N P 40296 14.972 15.851 1.042 −0.124 0.226
U P 40296 14.972 15.852 1.041 −0.124 0.226

The RMSE growth related to 24 to 30 step forecast of models with original data compared with noise-enhanced
ata models are shown in Table 2. It is evident that simply injecting noise into the training set, both white and
niform, improves the performance of the original models by more than five percent. Where, the noise boosts the
R and AdaBoost forecasting models more significantly, with the RMSE reduced by more than 10%.

Table 2. RMSE growth related to 24 to 30 steps forecasts.

Growth (%) LR ANN AD

Steps O v N O v U O v N O v U O v N O v U

24 11.473 11.469 5.366 6.136 11.115 11.112
25 11.471 11.467 5.414 6.203 11.108 11.104
26 11.463 11.459 5.439 6.216 11.088 11.084
27 11.439 11.435 5.440 6.215 11.041 11.038
28 11.399 11.395 5.480 6.255 10.980 10.977
29 11.343 11.339 5.460 6.255 10.919 10.916
30 11.295 11.292 5.461 6.247 10.877 10.873
Average 11.412 11.241 5.437 6.230 11.018 10.838

The RMSE and MDA of multiple-step wind power forecasts are shown in Figs. 1 and 2. As seen in Fig. 1, all
odels’ RMSE slowly increases with the forecast steps, but there is a jumping growth after 21 steps. The OLR and
AD models have the largest RMSE, and OANN has a larger RMSE, indicating the underperformance of all three
rediction algorithms based on the original data. The RMSE of the models with the additional noise is significantly
educed, which implies a better fitting performance, with almost the same superior presentation for all models except
he ANN-based models, which show a slightly poorer result.

Fig. 1. The RMSE of wind power forecasts.
920
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Fig. 2. The MDA of wind power forecasts.

Table 3. Model comparisons with Bonferroni method.

RMSE MDA

Model comparison p Lower Upper p Lower Upper

OLR-NLR 0.000* 1.983 2.426 0.000* 0.486 1.145
OLR-ULR 0.000* 1.982 2.425 0.000* 0.689 1.347
NLR-ULR 1* −0.222 0.220 0.409 −0.127 0.532
OANN-NANN 0.000* 0.795 1.041 0.000* −3.055 −2.052
OANN-UANN 0.000* 0.944 1.190 0.000* −3.663 −2.659
NANN-UANN 0.012 0.026 0.272 0.012 −1.109 −0.106
OAD-NAD 0.000* 1.904 2.356 1* −0.520 0.533
OAD-UAD 0.000* 1.904 2.355 1* −0.429 0.625
NAD-UAD 1* −0.227 0.225 1* −0.435 0.618

For MDA, a significant effect of noise on models’ predicted direction could not be observed. Since MDA is
nly a counting indicator, through which the stability of the model can in one aspect be viewed. It is seen that all
odels show dramatic variations in MDA after 21 steps, possibly due to model collapses, which explains the rapid

eterioration of RMSE appearing on the right side of Fig. 2. It implicitly means that after 21 steps these models
an no longer reliably predict wind power.

Moreover, multiple pair comparisons of metrics with the Bonferroni method are conducted within the LR, ANN,
nd AdaBoost algorithms with different inputs. The model-comparison p-values and lower and upper bounds of for
ultiple-step RMSE and MDA are displayed in Table 3.
The p-values of RMSE comparisons reveal that the performance of new models with noise additives is statistically

ifferent from that of original models. Except for the ANN-based models, white noise and uniform noise have no
ignificant effect on RMSE. RMSE difference bounds calculated by the Bonferroni method shows, in general, the
oise-augmented LR and AdaBoost have a greater RMSE decrease than the ANN models. Specifically, UANN model
as a statistically smaller RMSE than NANN, which indicates that uniform noise is more effective in our ANN.
egarding MDA, there is no obvious pattern for multiple comparisons. However, there are statistical influences of
oise in LR and ANN forecasting algorithms. But whichever noise as a whole has no significant effect on MDA.
n particular, the MDA of the AdaBoost-based model is immune to noise.

. Conclusion

This paper systematically investigates two approaches of adding of noise to wind data and their manifestations
n three machine learning-based multiple regression day-ahead wind power forecasting models. In accordance with
he results, the following conclusions can be drawn.

First, multiple regression models based on linear regression, with attribute selection, neural networks, and
daptive boosting can all provide fairly stable and effective forecasts of day-ahead wind power within certain time

teps. Second, merely adding noise to the training set boosts the performance of the predictive models, with these
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improvements exceeding 11.3, 5.5, and 10.9 percents on average for the linear regression, the neural networks, and
the adaptive boosting, respectively. Third, the superior performance of the model based on data both white noise
and uniform noise addition is statistically remarkable, which indicates that this method has certain generalizability
and engineering applicability in other related fileds.

Future research may concentrate on developing approaches to incorporate noise injection into AI forecasting
odels and further improve predictive accuracy. The framework could also be extrapolated to cover other areas in

nergy research.
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