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SUMMARY

In the environmental field, the problems of noise reduction have become a
major preoccupation, particularly on the noise generated by the acoustic
radiation pressure produced by wind turbines. This paper is aimed at
presenting the investigation on the application of variational indirect
boundary element method for study the acoustic radiation pressure
produced by vertical-axis wind turbine. For this initiative, we considered
Neumann boundary condition. The formulation has two advantages: the
first one is to avoid the meshing of the fluid domain; the second advantage
is to treat the singular integral of the Green's function, solution of
fundamental solution of the wave equation in frequency domain.

Keywords: Wind Turbine Noise, Variational indirect boundary element
method, Singularity, Sound pressure

1. INTRODUCTION
In the environmental field, the noise pollution has become a major concern, particularly on
the noise generated by the acoustic radiation pressure from wind turbines. In this sector, the
audible noise is caused by the wind gliding over the blades and by the vibration of the generator
(the noise reflects lost of energy). Modern wind turbines produce significantly less noise than
older designs. Among these modern turbines, the vertical axis wind turbine is considered as a
good solution to overcome the noise nuisance in urban environments where they are considered
safer due to their lower rotational speeds. Vertical axis wind turbines can catch the wind from all
directions at a lower wind speed than their horizontal axis counterparts. Indeed, vertical axis wind
turbines are designed to spin at a slower speed than Horizontal Axis Turbines. Spinning at slower
speeds allows the turbines to function at much higher wind speeds. It also reduces noise and
vibrations, making Vertical Axis Wind Turbines a good alternative for noise reduction [1, 2].
Most noise sources that are of concern to engineers can be modeled in terms of simple
sources such as spheres, pistons in infinite bafflers, cylinders or combinations of these. In the
case of wind turbines, the acoustic radiation pressure is modeled by experimental tests
(acoustic and vibration). These techniques have remained empirical in that the design of the
blades are determined largely by trial and error methods which are very costly as a lot of
experience is required in order to estimate acoustic pressure radiation. It is therefore
worthwhile to develop more efficient methods based, for example, on reliable numerical
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predictive tools to analyze and optimize the acoustic radiation emitted by wind turbines. This
is enabled by the current development of precise sophisticated models that describe acoustic
radiation and diffraction phenomena.

To accurately simulate the acoustic radiation pressure produced by a vertical-axis wind
turbine, computational fluid dynamics in a moving fluid domain as well as fluid structure
wind turbine interaction algorithms need to be performed.

In the present work, and as part of linear acoustics, we are interested in analyzing the
acoustic radiation pressure produced by a vertical-axis wind turbine. The 3D variational
indirect boundary element method and the Neumann boundary condition are considered for
this purpose [3-6]. The problem of interaction between a turbine structure (is assumed to be
perfectly rigid) and the surrounding fluid is not considered. The fluid is supposed to be ideal
and homogeneous medium.

The variational indirect boundary element method is extensively used in numerical
acoustics, especially for solving radiation and scattering problems in infinite domains [3, 7].
This technique is based on integral equations that avoid the discretization of the fluid domain.
Traditionally, methods based on integral formulation are known as boundary element
methods. They generally use a collocation procedure [8—9] combined with a boundary finite
element to generate full and asymmetrical system matrices, leading to inefficient treatment of
the fluid and fluid-structure interaction problems [10—13]. Moreover, these methods involve
singular and hypersingular integrals (finite part) that are difficult to evaluate precisely thus
leading to inaccurate results. The above difficulties can be circumvented by formulation of a
variational boundary integral equation for the compressible fluid [3—4, 10, 14].

The main idea behind the formulation of a variational boundary integral equation consists of
deriving a bilinear form defined on a bounded domain that leads to a positive definite quadratic
form with a strong coerciveness property that guarantees the existence of a unique solution.
However, this most desirable feature (strong coercivity) is not always attainable if the quadratic
form satisfies the Garding’s inequality. Fredholm’s alternative may be applied so that uniqueness
implies existence. The proposed formulation has several advantages: i) Over the finite element
methods; it avoids the discretization of the fluid domain and ii) Over the collocation BEM
formulation; it avoids explicit calculation of the finite part of singular integrals and leads after
discretization by boundary element techniques to a small symmetrical algebraic system.

However, the BEMVI suffers from the singularity problem, which occurs when the double
integral surface involves the same element. In previous years, effort have been made to calculate
efficiently the singular integrals without sacrificing accuracy. In fact, special numerical
treatment or analytical rearrangement of the resulting singular integrals is needed to eliminate
difficulties related to their integrability. On the other hand, various approaches, mixing
numerical and analytical quadrature methods have been successfully developed [3,4, 11]. In this
work, we used the technique proposed by Alia et al, triangular element mesh [11].

2. GOVERNING EQUATIONS
For an harmonic disturbance of frequency “f” without any source or loss mechanisms, the
pressure p satisfies the Helmholtz equation:

Ap(x)+k*p(x)=0 ey

where k=2 denotes the wave number, ¢ is the sound velocity, w = 2af is the pulsation
c

and x is the field point position. For Neumann boundary condition which implies that the
velocity is continuous across the boundary surface S:
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the pressure at any point within either one of the two acoustic domains can be expressed as
following:

P f u ) EED gs

3)

where p is the fluid density, V, is the normal velocity, u = p; — p, is the double potential layer,
- jkR

is the Green’s function

ny is the unit normal at the location of the source point, G = TR
b4

with j = J-1 and R = Hx - y|| is the distance between the field point x and the source point y.

For infinite domains we assume the pressure p satisfies the Sommerfeld condition:
. ap .
lim| || 5 -ikp| =0 @)
= R

Equation (3) states that the sound pressure at any point inside the acoustic domain can be
obtained by integrating the equation on the boundary. This is the main idea of the BEM in
which only the boundary information is needed to obtain the solution. However, equation (3)
is not ready to be used because the double potential layer u on the boundary is unknown. In
order to find it, we applied in what follows the boundary condition on the surface of the
acoustic domain.

By taking into account Neumann boundary condition given by equation (2), an integral
equation can be derived for the velocity from equation (3).

¥ G(x, Y 4s

-jpwV, = HFPf ()a (6))

)c

This integral over the single surface Sy, which is associated with the second derivative of
the Green function, should be defined in the sense of Hadamard Finite Part (HFP) [4].

An increasing number of researchers have focused on hypersingularity and proposed both
analytical and numerical techniques to handle it. A summary on regularisation methods for
hypersingularity can be found in ref. [4].

In order to solve simultaneously interior and exterior problems, we will associate to
equation (4) a variational formulation that presents a double advantage. First, it allows
avoiding evaluation of HFP. In the other hand, it leads to a symmetric algebraic system.

The variational formulation can be derived by multiplying the integral equation [eq. 5] by
u(x) and integrating it over the BE model with velocity boundary condition on S. This
formulation is based on the principle that the solution of the obtained equation will also
minimize the following functional:

=2 =iponV,ods, + [ o | LOD) ) as yas, )

X y
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The singularity which appears in the functional F can be reduced to a less singular form
that is better suited to numerical calculations [1-3]:

F(u) =2 [ jpaV,u)ds, + [ (K (n, - n)up, - (Vu()x n)(V,u()x n,)) G(x.y)ds, ds, (7)
S, Se Sy

By discretising equation (6) using BEM, the final numerical system is derived by
imposing a stationary condition on F with respect to unknown primary variable u. Solving
the obtained system allows to get the double layer potential at the boundary. Consequently,
equation (3) can be used to compute the pressure at any point in the acoustic domain.

2.1 SOUND POWER

The sound power can be calculated by integrating the intensity over an imaginary surface
surrounding the radiating object. Acoustic intensity, /,, is the time average of the rate of
sound energy flow per unit area normal to the direction of propagation of the wave. It is a
vector quantity in the direction of velocity. For time-harmonic waves, where the time
dependence of pressure and velocity can berepresented by ¢, the intensity reduces to:

= %Re{ vl ®)

where * denotes the complex conjugate and Re indicates the real part. The radiated power W
is given by following expression:

W=f]n dr 9)

3. DISCRETIZATION

In order to achieve a numerical solution of stationary functional (eqn.7), the surface is
divided into finite boundary elements. The double potential layers u(x) and u(y) on the
surface of the boundary element model are expressed as a product between their unknown
nodal values and the element shape functions N. The discretized form of the functional
J; may then be written as:

1
Ty = 5 () TAT {ua} = () {53 (10)
Imposing stationary condition on J, with respect to unknown primary variables u:
8, =0 [A]-{u} = {b} (1)

The components of the elementary matrices A; of the matrix [A] and the elementary
vectors b; of the Vector{b} are given by the flowing expressions:

*G ‘x—y|
A, =er nyNiNj%}1:),u(x)dI‘xdI‘y,V(x,y)EI‘xF,éuEF (12.2)
b, =—ja)pr/.vn dr, (12.b)
Iy

The global matrix [A] is resulting from assembling the elementary matrices A;; and the right-
hand side {b} results from assembling the elementary vectors b;. The complex matrix [A] is
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square and symmetric since it is derived using a variational formulation. Once the double
potential layer is calculated by solving the linear system given by Eqn (11), the acoustic
pressure at any field point in the domain can be computed via integral equation (3).

4. NUMERICAL INTEGRATION

For the boundary finite element discretization of the fluid, we consider a triangulation T
covering the boundary I', with linear triangular element Aj,, where A denotes the largest
dimension of each element. For numerical integration purpose, four cases can be distinguished

for a given pair of triangular elements {t‘g ,tj,} €, Wherei,j= {1,2,....,ne}.ne is
the total number of boundary elements covering the surface I':

Case 1: elements t' and t/ are congruent

Case 2: elements t' and t' have only one common edge
Case 3: elements t' and t have a common node (vertex)
Case 4: elements t' and t/ are disjoint.

Two types of integrals have to be evaluated during the formation of elementary vectors

and matrices on the set of pairs of triangles {tjs ,t,j?} :

I = ff@dtg dt, (13.a)

tod

J= f(b(g)dt% (13.b)

where @(&) is a regular function on its domain of integration while ql(g,n) is not

necessarily regular. Utilizing local coordinates & = {El ,52} and n ={n, 1, }, integrals (24.a)

and (24.b) can be written on the reference element as:

i 1 pl- 1 piey, PUE,
A W L P PEPE 142
V= [ [ oE) dg, ¢, (14b)

For the case where elements t' and t/ are disjoints and located at relatively large distance
r from each other, we use standard Gauss-Radau integration formula [3—4]:

V= o0 e ds, g = Swe) (1

where m is the total number of integration points required to exactly integrate a polynomial
of order n(2n-1)>m >n’ on the triangle and ®(§) is a regular function on its domain of
integration corresponding to the product of kernels, shape functions and jacobian.

To evaluate the singular integrals, various approaches, mixing numerical and analytical
quadrature methods have been successfully developed; useful references are cited in
Reference [14]. In this work, we proposed the Wang and Atalla [15] integration technique,
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Table 1: Numerical results validations

Triangular configuration Exact integration Wang and Error %
Attala (4 NpG)
1,003 0,9853 1,76
0,4853 0,5041 426
0,26833 0,26838 0,02

proposed for quadratic elements and be extended to triangles elements by Alia and al [11].
To demonstrate the accuracy and the efficiency of the numerical approach for evaluating the
singular integral:

I=f, J:Z%dt, dt, (16)

1

we consider there different situations: two triangles are coincident, two triangles have a
common edge and two triangles have a common vertex. The results of the above and their
situations are presented in the Table 1. From this table, when the integration is evaluated on
the same element, the error is about 1.76%. However, it is about 4.26% when the singularity
is concentered at the common edge of two adjacent elements and it becomes very weak (less
than 0.2%) when the elements have one node in common. We can conclude that the presented
method leads to good results. In what follows it will be seen that these errors do not affect
the calculated acoustic pressure.

5. NUMERICAL VALIDATION

The indirect variational boundary element method (VBEMI) outlined in the previous section
was implemented in the general purpose boundary finite element code developed by the
author. This code was developed to study the acoustic radiation pressure produced by the
three dimensional structure. All computations were performed on the PC in double precision.

51 ACOUSTIC RADIATION FROM A TRANSVERSELY OSCILLATING
CIRCULAR DISK

For this application, we consider a circular disk of radius @ = 1.0m. The fluid medium
surrounding the disk is air with sound speed ¢ = 343.0 m/s and means density p=1.21 kg/m>. The
disk is oscillating with a unit transverse velocity, perpendicular to the plane of the disk, in the
normal direction; that is v, = —1m/s. The linear triangular mesh of the disk is shown in Figure 1.
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Figure 1: Boundary element model of oscillating circular disk mesh (1015 nods and
1976 elements)

The analysis is performed for a frequency range of f, = {nc/2z} with n = {1,2,3,4,5}.
The VBEMI model solves for the surface double potentials layer. These are used to compute
surface pressures.

For validation, we consider the results in [16]. In [16], the variational formulation derived
for acoustic radiation and diffraction problems is solved using the Rayleigh-Ritz method.
The basic functions are selected such that they satisfy certain characteristics of the exact
solution for a disk. For example, the tangential derivative of the surface pressure is infinite
at the edge of the disk and this knowledge is used in selecting appropriate basis functions.
The treatment of this problem is described in details in Reference [16].

Figures 2.1 to 2.5 shows comparison of the surface real pressure and imaginary pressure from
VBEMI method and from the results extracted from the numerical solutions published by
Wau et al [16]. The dimensionless surface pressures p/pv,c are plotted against dimensionless r = a
for various ka = (1, 2, 3, 4,5}, where r is the distance from the center of the disk. Figure 6.6
show the surface absolute pressure distribution from VBEMI. At the free edge, the pressures
reduce to zero and the slopes of the curves tend to infinity. VBEMI solutions capture these
characteristics well, and show good comparisons with the published numerical results [16].

5.2 PULSATING SPHERE

For the first case of validation, we consider the problem of a pulsating sphere of radius
a = 1.0 m. The fluid medium surrounding the sphere is air with sound speed ¢ = 343.0 m/s and
mean density p = 1.21 kg/m?. The wave number at a frequency w is given as k = w/c. The
sphere is pulsating with a radial velocity v, = 1 m/s. The linear triangular mesh of the sphere
is shown in Fig. 3. The pulsating sphere with a uniform radial velocity has exact solutions. For
the exterior problem, the pressure at a distance r from the center of the sphere is given by:

P =% 77 ik -a)) (29)
r 1- jka

Z is the characteristic impedance of air (Z = pc). For the interior problem, the pressure at
a distance r from the center of the sphere is given by:
.a kasin (kr
R’nt =J _er ( ) (30)
r ka cos (ka) - sin (ka)
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Figure 3: Boundary element model of pulsating sphere mesh (458 nods and 912
elements)

The analytical expression for the radiated power by a pulsating sphere is given by the
following expression:
2 4

W =2mpev; 1k a

+k%a®

€2y

The analysis is performed at a frequency f = 54.59Hz using the VBEMI to solve for the
double-layer potential u. This one, in turn, is used to compute field pressures at the specified
points. The VBEMI solution on the sphere surface is (207.231 + 0.029, -961.143 = 0.115)
for all nods, compares well with the analytical solution (207.515, -952.087).

Figure 4 shows field point pressure variation with distance from both VBEMI and Analytical
methods. Since VBEMI solves both the interior and exterior problems simultaneously, we can
compute field point pressures anywhere in the space from the double layer surface potentials.
Forr=a <1 and r = a = 1 the analytical solution from the interior and exterior problems is
compared respectively with the VBEMI solutions. The comparisons show very good agreement
between the solutions. The radiated power computed by VBEMI is 129291 Watts, which
matches well with the exact analytical solution of 1303.86 Watts for an exterior problem.
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Figure 4: Internal and external sound pressure radiated by pulsating sphere
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Figure 5: Sound pressure radiated by pulsating sphere

Figure 5 depicts the variation of the radiated pressure with the radial distance computed
analytically and by VIBEMI. Good agreement is observed between numerical and analytical
solutions.

In a third example, let us calculate the radiated pressure for different frequencies at a point
located at » = 4 m from the sphere center. From Figure 4, many peaks occur. They are related
to the resonance of the interior volume of the sphere. These peaks (so-called critical or
irregular frequencies) do not have any physical meaning at the considered frequencies. These

special frequencies are related to eigen frequencies of the interior region and will be present
if an interior BEMI problem is used. Since the interior region resonates and since both
interior and exterior problems share the same integral operator, the integral equation
governing the exterior problem should break down at the natural frequencies of the interior
problem. Away from irregular frequencies, the presented numerical result shows good
correlation with analytical solution as seen in Figure 6. The numerical algorithm for solving
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Figure 6: Irregular frequencies effect on sound pressure radiated by unit pulsating

sphere at a pointr = 4m
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irregular frequencies is not implemented yet in the code we developed to validate the
presented the singular integration method. It is our goal to implement in the near future an
algorithm to solve the irregular frequencies problem. The treatment of this problem is
described in details in Reference [17].

6. ACOUSTIC RADIATION PRESSURE PRODUCED BY
VERTICAL-AXIS WIND

This section is aimed at presenting the investigation on the application of VBEMI for
study the acoustic radiation pressure produced by the experimental vertical-axis wind
turbine of the Dermond Company”; which is in an area belonging to the University of
Quebec at Abitibi-Temiscamingue (see Figure 7). The geometric characteristics of the
wind turbine are presented in Figure 7. The fluid medium surrounding the vertical-axis
wind turbine structure is air. The vertical-axis wind turbine is excited at a frequency f by
a normal velocity v, = V,,,, (|n-i]). n is the unit normal vector, i is the unit vector in the
x-direction and V,,,, is the maximal amplitude of normal velocity. The remaining parts of
the structure of wind turbine are assumed to be perfectly rigid. For numerical analysis,
the wind turbine is replaced by a simple geometrical model and meshes using triangular
elements (see Figure 7).

In first step, for analysis, we will look the effect of the mesh element aspect on the results.
For this, two different meshes are used: mesh 1 (2781 nodes and 4450 elements) and mesh
2 (2289 nodes and 3696 elements). The meshl1, involving 2781 nodes, is shown in Figure 8.
In Figure 9, we presented the acoustic pressure radiated in exterior vertical-axis wind turbine
obtained by the mesh 1 and mesh 2. According to this, which illustrates the results obtained,

Ay
=1200 f
- / || X
D=142m
<
8 IL=1.75m
A/ 6=1200
/
__________________ | A4
9.275m

=4.960 m

Figure 7: Geometric model of vertical-axis wind turbine
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Figure 8: Boundary element models of vertical-axis wind turbine, mesh : 486
triangles

60

50 |

Mesh 1 (2781 nodes)
40

= = =Mesh 2 (2289 nodes)

20

Pressure (Db)

0 10 20 30 40 50 60 70
Position (m)

Figure 9: Effect of mesh to sound pressure radiated by a Vertical-axis wind turbine
(1Hz)

we note that both results coincides radiated pressure. This confirms the quality of mesh used.
In the rest of the work, we consider only a mesh 1.

For analysis, four cases are considered to calculate the acoustic radiation pressure:

1. On sphere surface radius a = 20 m centered at point located at (0., 0.,0.); see Figure 12.

2. On vertical plaque surface located at XZ plane (the surface plane is a square of side
L = 5m); see Fig. 13.
3. On two circulars curves (far-field distribution pattern) in XZ and YZ planes and

centered at point located at (0., 0., 0.).; see Figure 14.
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6.1 EFFECT OF NORMAL VELOCITY AND FREQUENCY ON THE
ACOUSTIC RADIATION

In this part we analyze two situations: the effect of the normal speed and frequency of the
vertical axis wind turbine on the field of sound pressure (in dB). In the first case, the wind
turbine is at frequency 1Hz. In the second case, the maximal normal velocity is (0.01 m/s).
Figure 10 illustrate the effect of velocity (0.005 m/s and 0.01 m/s) of the radiated pressure
and Figure 11 illustrates the effect of frequency (0.1 Hz, 0.25 Hz and 0.5 Hz). Note that the
radiated pressure depending on the distance increases with velocity and frequency. However,
the values remain low.

50 L — — =0.005m/s

0.010 m/s

Pressure (Db)

Position (m)

Figure 10: Effect of normal velocity to sound pressure radiated by a Vertical-axis
wind turbine (1Hz)

70

Pressure (Db)
[=%
o

Position (m)

Figure 11: Effect of frequency to sound pressure radiated by a Vertical-axis wind
turbine



434 Numerical investigation of vibration and dynamic pressure of a vertical axis wind turbine

6.2 SOUND PRESSURE DISTRIBUTION BY VERTICAL-AXIS WIND
TURBINE IN SPHERE SURFACE AND XZ PLANE

In Figures 12-13, we presented the acoustic pressure radiated in exterior of the wind turbine
(sphere surface radiation distribution) and interior of the wind turbine wind in the XZ plane.
We see that the noise generated on sphere-surface is very low for a distance of 20 m (the
maximum is 3,3 Db). However, the acoustic pressure distribution in ZX plane is very
important and the maximum is 87.9 db.

6.3 FAR-FIELD RADIATION PATTERNS OF THE VERTICAL-AXIS WIND
TURBINE

Having solved the acoustic pressure on the surface of the wind turbine, we are able to predict
the far-field radiation patterns. Here, we calculate the far-field acoustic pressure field from
the rigid wind turbine at frequency 1 Hz. The values of the amplitudes of the far-field
acoustic pressures given by VBMEI are plotted against the angle o. which is measured from
the central axis of the planes geometry projection wind turbine (XZ and YZ planes), such that
a = 0 corresponding to the z axis direction (See figure 13). In order to depict the acoustic
radiation beam patterns, we have plotted all values of the amplitudes of the far-field acoustic
pressures in polar coordinates and normalized the result with respect to the maximal values
evaluated at position (0, —6.366, 0.) in first far-field radiation patterns (YZ plane) and at
position (6.761, 0., 0.) in second far-field radiation patterns in XZ plane. These results are
presented at Figure 15.

Pressure (Db) | Tﬂ“lt
cale Of Pressuse e
o Scale Of Pressuse -
[

' 55

-7.125

-17.55 .17.55

-27.975

-27.975

-38.4

Figure 12: Sound pressure distribution on sphere surface from a Vertical wind
turbine (f = 1Hz)
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2.382637 2.382637

-26.134 B 2613

Figure 13: Sound pressure distribution on plane from a Vertical-axis wind turbine
(f=1H=z)
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Figure a (YZ plane) Figure b (XZ plane)
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Figure 14: Plans YZ and XZ of wind turbine projection

Figue a (YZ plane) Figue b (XZ plane)

Figure 15: Field point pressure comparisons

7. CONCLUSIONS
In the environmental field, difficulties with noise have become a major issue, particularly
concerning the noise generated by the acoustic radiation pressure produced by wind turbines.
This paper is aimed at presenting the investigation on the application of a 3D variational
indirect boundary element method for study the acoustic radiation pressure produced by
vertical-axis wind turbine. For this initiative, we considered the Neumann boundary condition.
The formulation has distinct advantages: it avoids the discretization of the fluid domain as well
as avoiding the explicit calculation of the finite part of hyper-singular integrals.

Following this study, we found that the intensity of the noise structure is not significant. At this
point, it will be useful in future work to induce rotation of the turbines in the analysis of acoustic
radiation. Subsequently, a strong coupling fluid-structure vibroacoustic will be desirable.
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