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1 Introduction

Radial transport of filamentary structures in the outer boundary region of magnetically con-
fined plasmas has been of great research interest in the last years, [27, 18]. Experimental
data reveals, that in different confinement modes of the plasma, radial transport is mediated
by radially elongated structures that appear as blobs in the drift plane, [20] They carry ex-
cess particle density and head radially outwards from the fusion plasma, thus contributing
significantly to particle and heat losses from the fusion plasma. They further contribute sig-
nificantly to plasma recycling processes at the main chamber reactor shield. Blob transport
will be a significant loss source in future Tokamak reactors, as ITER. Thus it is of great
interest to characterize blob dynamics and develop a sound theoretical understanding of the
dominant physical mechanisms behind blob motions.

Tokamaks A tokamak is a toroidal device designed to confine a fusion plasma. Typical
parameters for this plasma is a temperature of 100-200eV in the core of the confined plasma,
and electron densities of ca. 1020/m3. These high temperature plasmas are confined by a
strong magnetic field. Characteristic for a tokamak is its toroidal field geometry. Experiments
with many geometries have shown that the tokamak has a favorable geometry for confining
these plasmas. The general setup for a tokamak machine is depicted in fig.(1). The principal
field responsible for plasma confinement is the poloidal field, created from the poloidal field
cores around the plasma walls. A toroidal field alone will not confine a plasma. It creates
pressure gradients that force the plasma out over. In addition, a poloidal field is needed. To
create the poloidal field, one induces a current in the plasma along the poloidal magnetic
field. Commonly a current coil in the center of the tokamak is used to induce this current.
The magnetic field of this coil induces a current along the toroidal direction in the tokamak
plasma. It is this current that creates a secondary toroidal field to confine the plasma in the
tokamak.
The plasma particles are confined within these magnetic fields, but are still free to move out
over. During the design of the tokamak principle, one thought that transport across the field
lines is mainly due to Bohm diffusion, where particles gyro center jumps from field line to field
line due to collisions. Thus, the cross field transport was thought to be low and negligible.

The magnetic field from the primary poloidal field coils is some 10T in modern reactors.
For these strong fields one need superconducting magnets to avoid enormous ohmic heating
losses, that makes the magnetic field coils the most expensive parts of the whole reactor.
One finds also several toroidal field coils around the tokamak. They provide a weaker magnetic
field for positioning and shaping purposes.
Around the plasma one finds a blanket. Its purpose is to absorb the fast neutrons emitted
from the fusion reaction and transforms them into heat, used for electricity production. Its
other tasks may include the breeding of Tritium when one uses Tritium as a fuel. The shield
is to protect equipment on the outside and especially the magnets from the neutron flux of
the reactor.
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1 INTRODUCTION

(a) The tokamak principle showing the
mechanisms how the two major magnetic fields
are created. Source: [1].

(b) Poloidal cross section

Figure 1: The tokamak confinement principle

Modern Tokamak reactors There are many tokamaks reactors installed where experi-
mental work is conducted. Two prominent examples the ASDEX tokamak in Garchingen,
Germany and the JET in Culham, England.
The ASDEX tokamak was built in the 1980s with an major upgrade installed in 1991. Its
a minor radius a = 0.5m and its major radis us R0 = 1.5m allow it to hold ca. 14m3 of
a mixture of hydrogen, deuterium and helium plasma with temperatures between 5000 and
8600 eV. The plasmas total mass is some 3 mg and the electron density in the plasma is
approx.. 1020cm−3. In 1982 a new plasma confinement was discovered at the ASDEX toka-
mak by Wagner et al. [35]. This high confinement mode, or H mode, presents with longer
confinement times at increased particle densities. It does this by forming a transport barrier
at the outer plasma edge, which shows characteristic steep particle density gradients. The
drawback of this confinement mode is, that it introduces a new type of MHD edge instability,
edge localized modes or ELMs. This mode is characterized by a quasi-periodic relaxation of
the particle density profile in the outer region of the Tokamak, thus rapidly ejecting large
amount of particles and heat from the fusion plasma.
The JET tokamak in Culham is at the moment the largest operational one ever built. Its
minor radius is a = 1.25m, its major radius is R0 = 3.0m, and holding ca. 80 − 100m3 of
plasma. The main toroidal magnetic field’s strength is some 4T and the main plasma current
ca. 7MA. JET currently holds the record for highest ever measured peak fusion power. An
experiment in 1997 recorded 16MW with an energy gain factor of Q = 0.7 [1].

Scrape off layer The outer regions of a magnetically confined plasma are also called for
the scrape off layer, or SOL. It is designed to remove plasma entering this region from the
confined plasma in a controlled fashion, before it comes in contact with the main chamber
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1.1 Scrape off Layer instabilities

walls, plasma is scraped off.
The outer regions of a fusion plasma have different characteristic plasma parameters than
the inner core. Densities typically fall from 1020m−3 to 1016m−3 over only some 10 cm in
the outer regions. Accompanying are temperature drops from some 100 eV to some few
eV, also a fall over several orders of magnitude. Here we also find both, open and closed
magnetic field lines. Plasma confined in L and H mode have different characteristic pressures
and temperatures in the scrape off layer, as presented in (Fill me out!). For a plasma in low
confinement mode, or L-mode, the radial particle density gradients are broad, where as a
plasma in the H-mode features large radial particle density gradients.
Due to the large temperature of the plasma no known material can withstand direct contact
with it for any longer time period. When plasma particles come in contact with the wall,
they can either be absorbed or be backscattered into the plasma. When they are absorbed,
the particle, along with its kinetic energy diffuses into the wall, causing a net heat flux out of
the reactor. In the wall, the plasma particle collides with the solid atoms, may scatter them
into the plasma, or may diffuse itself back into the plasma. This process is known as plasma
recycling.
Wall erosion causes impurities to collect in the plasma and the outwards heat flux are both
inhibiting fusion reactions, they need to be minimized. In many reactors one finds a divertor
for this. The idea of an divertor is as follows: The flux surfaces in the tokamak are closed,
up to some point close to the walls. Open field lines in the wall region inside the reactor
are designed not to go through the wall, but to a designated remote region, where plasma
particles can collide with a special material surface, the divertor targets. The temperature at
the divertor targets is usually some orders of magnitude less than at the core plasma, usually
10-0.1 eV. The length of a field line between two intersections is called the connection length.
For Jet, the connection length varies between 30 and 150 m, [1].
The magnetic field lines in a tokamak are never aligned exactly along the toroidal direction,
they are usually tilted by a small angle. This results in field lines, that spiral around the
tokamak many times before they connect to themselves again. For a good confinement, these
field lines do not intersect any material walls. Charged particles spiraling along field lines
can follow them without any extra work, and are lost of they collide with walls. Since there
is always some cross field transport for the particles, some will hit the wall eventually. To
do this in a controlled fashion, some field lines are designed to intersect with the divertor
targets. These field lines are called open field lines. In tokamak reactors, open and closed
field lines are found in different regions, separated by the separatrix.
Fig. 1 shows these regions. Within the separatrix no field lines intersect the wall. The last
closed flux surface is also depicted. The term flux surface comes from MHD stability theory,
one can show that in MHD the magnetic field lines are along surfaces of constant pressure,
which are called flux surfaces. Outside of the separatrix all field lines intersect the divertor.

1.1 Scrape off Layer instabilities

Turbulence in the SOL The fluctuating parameters of the boundary region in magneti-
cally confined plasmas have been the subject of thorough investigation.
In an early review article, Wootton et al. characterized SOL turbulence by comparing plasma
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1 INTRODUCTION

(a) Tokamak cross section showing the topology of the
magnetic field lines. The separatrix separates
open from closed field lines.

Figure 2: Scrape off layer in a tokamak

parameters from many experiments and show the broad range over which the parameters vary
[38]. In other early work, Wagner et al. find that instabilities give a major contribution to
radial ion and electron transport in different toroidal confinement devices, [36].
In this confinement mode, one observes intermittent radial transport which is associated to
large scale turbulent structures, called blobs. This radial transport causes the loss of particles
and heat from the fusion plasma.

A short description of ELMs Edge localized modes are an instability that occur in plas-
mas in H-mode. They are an explosive event, leading to ejection of large particle numbers
and large amounts of energy. Experimental observations show a strong correlation between
ELMs and plasma filaments travelling radially outwards from the outer mid-board region.
They also show a significant extension along the magnetic field lines in the SOL region of a
plasma, [25, 7]. A key feature of ELMs is that with rising turbulence amplitude, they deposite
less energy in the divertor areas. In [29] Fig. 11 we see, that with increasing ELM density,
the fraction of the ELM total energy that is deported into the divertor decreases with rising
ELM energy. The fraction of the energy that is not lead to the divertor is transported into
the main chamber wall.

Cross field transport by isolated filament structures Turbulent structures moving
radially outwards towards the main chamber wall have been experimentally measured in any
radial confinement machine. Experimental data from the TCV tokamak shows that edge
plasma fluctuations show a universal statistical properties for a broad range of experimental
data , [23, 17]. Conditional averaging of the measured particle density, show densities that
present a steep front and heavy tails, features that are characteristic of radially elongated
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1.1 Scrape off Layer instabilities

structures. An example of the diagnostics is shown in Fig. 3. We see, that the density time
series presents a steep increase, followed by a long tail. This is a characteristic of radially
elongated structures. Gas puffing images from different Tokamaks[34, 24], Fig. 4, where
these turbulences are visualized, suggest the existence of localized density perturbations in
the cross field domain that move radially outwards with large velocities. Structures observed
for plasmas in high and low confinement mode share qualitative similarities as discussed in
[24]. In [3], Antar et al. present that statistical properties of turbulent signals from turbulent
transport in the SOL has universal. This suggests, that the mechanism behind the radial
transport is common to confinement device they analyzed.

Figure 3: Conditionally averaged particle density time series, recorded from the TCV toka-
mak. It is compared to turbulence simulations on the SOL with the ESEL code. Reproduced
from [18].

Figure 4: A Plasma blob transported radially outwards at the NSTX device. Time between
each image is 8 µs. Image from Princeton Plasma Physics Laboratory

A solid mechanism for radial transport of coherent structures is given by the blob mechanism.
It models the elongated plasma filaments as isolated blob-like structures in the drift plane.
Their dynamics have been discussed thoroughly in literature, [26, 11, 6, 16, 15]. The results
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1 INTRODUCTION

found from these studies, agree favorably with experiments. Results from numerical studies
yield radial blob velocities, comparable to experimental findings, [15, 31]. Also measurements
of the electrostatic potential from radially outwards moving filament structures, presented by
[20], heavily suggest that the theory presented with the blob mechanism is the driving force
behind radially propagating structures. Common blob models employ model closures, that
include sheath parallel currents as a loss mechanism, as presented in [11, 15]. Experimental
findings as discussed in [22] present strong correlations between sheath parallel currents and
radial plasma transport caused by blobs.

1.2 Motivation

The radial blob velocity and its scaling are an important piece of information for estimating
cross field energy and particle transport in toroidally confined plasmas. In this thesis we study
a sheath connected blob model with variable amplitude. By means of numerical simulations,
we quantify the effect both parameters have on radial blob dynamics. By comparing results
from parameter studies to experimental results, we can assess the quality of the model and
the range of parameters over which the theory is valid. It also presents the weak points of
the theory and suggests further work.
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2 Two field fluid equations

In this thesis we do numerical simulations of collective motions in a magnetized plasma. The
model equations we simulate can readily be derived from the standard fluid description of a
plasma. In the discussion below, we present the derivation of the model equation.
This section is structured as follows: Starting from the momentum equation of fluid theory, we
present and discuss the various drift terms in the first subsection. We continue by calculating
expressions for these drifts in toroidal geometry, where we assume local slab coordinates.
With these expressions, we then present the resulting model equations in drift ordering. In the
last subsection we discuss sheath dissipation, which is the dominant dissipation mechanism
discussed in this thesis.

2.1 Physical setting

We are interested in simulating radial filament motion in the mid-outboard plane of toroidal
confinement devies. A sketch of the setting is presented in Fig. 5(b). The toroidal confinement
has a curvature vector κ pointing radially inward and a toroidal magnetic field pointing out
of the paper plane. The strength of the toroidal magnetic field is assumed to decay with the
radial coordinate R, thus ∇B points radially inward, in the same direction as the curvature
vector of magnetic field κ. In local slab coordinates, we identify the radial coordinate R
with the cartesian coordinate x and the poloidal angle with the cartesian coordinate y. The
simulation domain is denoted by the dashed square and is not to scale. Characteristic SOL
filament lengths in the radial-poloidal domain are found to be l ∼ 1cm.

(a) Particles confined along a magnetic field.
Source: www.jet.efda.org.

(b) Physical domain where the presented
model equations are valid.

Figure 5: Principle of magnetic confinement and simulation domain.

We now continue with describing the plasma in the confinement device. A plasma is confined
in a strong magnetic field, thus we call it magnetized. The particles feel no force when they
move along magnetic field lines, and their gyration radius around them is small as presented in
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2 TWO FIELD FLUID EQUATIONS

Fig. 5(a). We consider a plasma consisting of electrons and one ion species. Fusion reactors
are commonly fueled with a mixture of 1H and 2H, for simplicity we only consider singly
charged ions with mi = 1u.

The dynamics of both particle species are described by their respective momentum equation

mn

Å
∂

∂t
+ u · ∇

ã
u = qn (E + u×B)−∇p−∇π +mnνα,β

Ä
uα − uβ

ä
. (1)

We denote particle mass with m, particle density with n, velocity with u, charge with q,
the electric field with E, the magnetic field with B with unit vector b, the scalar pressure
with p and the viscous stress tensor with π. The last term describes collisions between two
different particle species which occur with a collision frequency να,β, where the subscripts
α and β denote particle species. We use α = e, i do denote electrons and ions. In general
we omit particle species indices, and include them at the first position when we discern
between particle species. The subscripts ‖ and ⊥ on vector quantities denote the components
parallel and perpendicular to the magnetic field respectively. For example, u‖ = b · (u · b) and
u⊥ = b× (u× b).
Strongly magnetizes plasmas have a high gyration frequency ωc = qB/m, they complete
several larmor gyrations before they collide with another particle:

ν � ωc. (2)

We use this in the following approximation of the viscous stress tensor:

∇π ∼ η⊥∇2
⊥u+ η‖∇2

‖u.

This term describes momentum transfer of the velocity due to changes in velocity along
different directions. The expression itself has a complex structure, as it is a tensor quantity.
Its single elements can be ordered in terms proportional to either 1/ν, ν/ω or proportional
to 1/ω. When calculating the full expression, we find that ∇⊥π ∝ η⊥, where the diffusion
coefficient perpendicular to the magnetic field is the largest, O(η⊥) = ν/ωc. A derivation of
this tensor is shown in [8, 21].

2.2 Computation of the drift terms in toroidal geometry

We continue by identifying the important drifts in the fluid equation and computing suitable
expressions for them. Crossing Eqn. (1) with the magnetic field vector, B, we find for the
velocity perpendicular to the magnetic field:
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2.2 Computation of the drift terms in toroidal geometry

B ×
Å
mn

d

dt
u

ã
= +B × [qn(E + u×B)] +B × (−∇p) +B ×

Ä
−∇π

ä
+B ×mnνα,β

Ä
uα − uβ

ä
⇔ B × d

dt
u⊥ = − q

m
(B ×∇φ)− T

mn
(B ×∇n) +

qB2

m
u⊥ −B ×

Ä
∇π
ä

+ να,βB ×
Ä
uα − uβ

ä
⇔ u⊥ =

(b×∇φ)

B
+
T (b×∇n)

qnB
+
b×
Ä
∇π
ä

ωc
+
mnνα,β
ωc

b×
Ä
uα − uβ

ä
+

1

ωc

Å
b× d

dt
u

ã
.

(3)

Here we introduced the electrostatic potential φ via E = −∇φ, which gives∇×E = 0. Further
we divided the fluid velocity in components parallel and perpendicular to the magnetic field.
Eqn. (3) describes plasma dynamics perpendicular to the magnetic field and assumed an
isothermal plasma.
Motions perpendicular to the magnetic field are constituted of

1. 1
B (b×∇φ): The E × B drift or electric drift, caused by the electric field disturbing
the particle gyrating motion. This is a drift of the plasma particles guiding center and
independent of particle charge.

2. T
qnB (b×∇n): This term describes the diamagnetic drift, a macroscopic flow due to an
uneven spatial distribution of gyrating particles. Note that this flow is not caused by
guiding center motion.

3. ∇π: Viscous drift due to viscous stress on the plasma.

4.
mnνα,β
ωc

b ×
Ä
uα − uβ

ä
: Resistive drift caues by momentum transfer between particle

species.

5. 1
ωc

Ä
b× d

dtu
ä
: This term has order of magnitude O(ω/ωc

2), where ω denotes the char-
acteristic scale of perpendicular dynamics. This term is computed by inserting the
solution u to order O(ω/ωc).

The parallel part of the particle velocity is treated separately for both particle species. We
assume that the ions have no velocity along the magnetic field, ui,‖ = 0. If we assume that
the electrons are Boltzmann distributed,

n = n0 exp

Å
−qφ
T

ã
, (4)

it follows, that the parallel motions of the electrons is zero, ue,‖ = 0.

If we assume a force balance for the electrons, mened/dtue,‖ = 0, and neglect the viscous and
resistive drift, we find:

ue,‖ =
e∇‖φ− T∇‖ lnn

meνei
. (5)
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2 TWO FIELD FLUID EQUATIONS

For a magnetized plasma we can assume that the larmor gyration is the dominant motion
perpendicular to the magnetic field. Any change in a particles perpendicular velocity happens
over a larger time scale than gyration happens. Therefore, we neglect the time derivative,
the viscous and resistive drift in Eqn. (3) to obtain a solution of order O(ω/ω3

c ) for u⊥:

u⊥ = uE + ud + uπ + ur +O
Ç
ω

ω3
c

å
(6)

where ω is the characteristic frequency of perpendicular dynamics, corresponding to the time
derivative in Eqn. (3).

The drift uπ caused by the divergence of the viscous stress tensor is not of lowest order
because the tensor itself is O (ν/ωc). The viscous stress tensor is also proportional to the
particle mass, resulting in larger viscosity effects on the ions than on the electrons. We ne-
glect it for the electron momentum equation and include it in the ion momentum equation.

Inserting these first order drifts only for u in the time derivative term in Eqn. (3), we find
the polarization drift:

up =
m

qB
b×
Å
∂

∂t
+ uE · ∇+ ud · ∇+ u‖ · ∇

ã Ä
uE + ud + u‖

ä
(7)

Now we make further assumptions and begin to distinguish between electrons and ions. For
the electrons, we use the fact that they are much lighter than the ions. The lightest positively
charged ion, a proton has a mass mp which is approximately 1836 times the mass of an
electron, me. In the equation for the electron dynamics we therefore neglect the polarization
drift term. We also assume cold ions, Ti = 0, and neglect the diamagnetic drift term in the
ion equation.
The ion momentum equation reads now:

ui =
1

B
(b×∇φ)− m

qB2

Å
∂

∂t
+ uE · ∇

ã
∇⊥φ+ uπ (8)

where we have rewritten the polarization drift for the ions as:

ui,p =
m

qB
b×
Å
∂

∂t
+ uE · ∇

ã
uE

= − m

qB2

Å
∂

∂t
+ (b×∇φ) · ∇

ã
∇⊥φ (9)

Here we used that the cross product commutes with both differential operators for a magnetic
field that is constant in time and space. This is not trivial, as the convective derivative uE ·∇
is different in direction and magnitude in every point in physical space.
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2.2 Computation of the drift terms in toroidal geometry

We also expresse the polarization drift, which is a vector quantity, through one scalar variable,
the electric potential φ.
In the electron momentum equation we neglect the polarization drift because it is proportional
to the electron mass and is thus a mechanism that transfers only little momentum:

ue =
1

B
b×∇φ− T

qnB
b×∇n. (10)

When we ignore atomic reactions that create charged particles, the charge continuity equa-
tions holds:

∂ρ

∂t
+∇j = 0 (11)

where ρ is a charge density:

ρ =
∑
α

qα
∂nα
∂t

.

An electrical current is then given by j
α

= nαuα. The index α is used to label particle species,
in our case electrons and ions α = e, i. Writing the continuity for α = e, i, we get:

∂ne
∂t

+∇
Ä
neuE + neue,d + neue,‖

ä
= 0 (12)

∂ni
∂t

+∇
Ä
niuE + niui,p + niui,π

ä
= 0. (13)

The viscous drift uπ comes from the divergence of the viscous stress tensor in Eqn. (2.1),
where first order solutions for u are assumed. Next we invoke quasi neutrality, as each physical
system strifes towards its lowest energy state, a plasma moves against charge separation. We
find approximately as many ions as electrons in a plasma volume element: ne ≈ ni. Therefore
the first term in Eqn. (11) vanishes.
With the vanishing diamagnetic drift for ions and vanishing polarization drift for electrons
we now have:

∇ ·
Ä
nue,d + nue,‖ − nui,p − nui,π

ä
= 0 (14)

where we subtracted the continuity equations for each particle species.
The plasmas we are considering, are quasi neutral, therefore the equation above expresses
that the electric current in the plasma is divergence free,

∇j = ∇
(
j⊥ + j‖

)
= 0 (15)

holds. We do not have a fixed expression for the parallel part of the particle motions. For
the derivation of the model equations we will close Eqn. (15) with ∇j‖ = 0. That is, we

11



2 TWO FIELD FLUID EQUATIONS

construct the model equations from the condition ∇⊥j = 0 Later on we will consider other
closures for the parallel current of the system.
Let us note, that for a uniform magnetic field, the difference between Eqn. (12) is given by:

d

dt
(eni − ene) +

Å
mini +mene

ε0B2

ã
dρ

dt
= 0 (16)Å

1 +
ρm
ε0B2

ã
dρ

dt
= 0, (17)

where we ignored diamagnetic currents, used the Laplace equation ∇2φ = ε0ρ and defined
the mass density ρm = mini + mene. Inserting common values for a plasma yield, give
ρm/ε0B

2 ≈ 100. Thus, quasi neutrality yields, that E × B advection is smaller than polar-
ization currents.

We continue with Eqn. (12) and Eqn. (14) by deriving explicit expressions for each single
term. Our goal is to obtain two independent time evolution equations from them that de-
scribe a plasma.

Let us look at Eqn. (12) first. Recall that we neglected the collision term in Eqn. (1). We now
invoke it for the electron density equation only. Collisions between electrons and ions result
in a random deflection of the electron velocity vector while the heavy ions remain almost
unaffected. This results in a net drift acting on the electrons, the resistive drift. It is given
by:

ur = menνe,i (ue − ui) (18)

= meνe,ib× ue,d, (19)

where νe,i is the collision frequency between electrons and ions and where ue and ui are
approximated with first order drifts and the ion diamagnetic drift is ignored as before. This
allows us to readily derive an expression for the divergence of this drift:

∇ (nur) = ∇
Å
mn2νe,ib×

T

qnB
b×∇n

ã
' mνe,iT

qB
∇2
⊥n.

We have neglected (∇n)2 as a small quantity for this expression. We see that the resistive
drift divergence acts as a diffusion in real space for the particle density. Its coefficient is of
order O(νe,i/ωc), low values mean high collisionality.
We continue by rewriting Eqn. (12) as :

12



2.2 Computation of the drift terms in toroidal geometry

∂n

∂t
+∇ ·

Ä
nuE + nue,d + nue,‖

ä
=

Å
∂

∂t
+ uE · ∇

ã
n+∇ ·

Ä
nue,d

ä
+∇ ·

Ä
nue,‖

ä
=

Å
∂

∂t
+

1

B
b×∇φ · ∇

ã
n+∇ ·

Ä
nue,d

ä
∇ ·
Ä
nue,‖

ä
.

= 0

We see that the divergence of the diamagnetic drift occurs, let us derive an expression for
this term that suits our purposes. We start out with the last term from Eqn. (10):

∇(nue,d) = ∇
Å
T

eB
b×∇n

ã
=

2T

eB
b×∇ lnB · ∇n, (20)

where we used that b× κ = b×∇ lnB:

∇×B = ∇×Bb = B (∇× b) + (∇B) b = 0

⇔ ∇× b = (−∇B × b)/B = b× (∇B/B) = b×∇ lnB

with ∇× κ = b× κ.

When we continue by assuming that the magnetic field is a toroidal one, i.e. B = −B0R0
R θ̂,

we can rewrite ∇ lnB as:

∇ lnB =
∇B
B

=
1

B

∂

∂R

Å
B0R0

R

ã
R̂ = − 1

R
R̂.

In this geometry we also have R̂× θ̂ = ẑ. Inserting this expression in Eqn. (20), we get for the
divergence of the diamagnetic electron drift in a homogeneous toroidal magnetic field with
the magnetic field along the θ̂-axis:

∇
Ä
nud,e

ä
=

2T

eBR

∂n

∂z
. (21)

For Eqn. (14) we need the divergence of the ion polarization drift, Eqn. (9)

∇ · (nui,p) = ∇
Å
−mn
qB2

Å
∂

∂t
+ uE

ã
∇⊥φ

ã
=
mn

qB2
(∇ lnn+∇)

Å
∂

∂t
+

1

B
b×∇⊥φ · ∇

ã
∇⊥φ. (22)

13



2 TWO FIELD FLUID EQUATIONS

The divergence operator at the beginning acts both on the particle density n and on φ,
whereas it commutes with the total time derivative in the parenthesis.
We also compute an expression for the viscous drift:

∇ · (nuπ) = ∇ · (nη⊥b× uE)

=
n

B
η⊥∇4

⊥φ. (23)

For this drift, we neglect density gradients and approximate it with uπ ≈ η⊥∇4
⊥φ.

In the same manner we compute the divergence of the E ×B drift:

∇ · uE = ∇ ·
Å

1

B
×∇φ

ã
=

1

B
b×∇ lnB · ∇φ+

1

B
∇× b · ∇φ,

the first term is caused by the divergence of the current, the second term arises from field
curvature. We again assume a toroidal field along the θ̂ axis: B = −B0R0/Rθ̂ and find:

∇uE = − 2

B0R0

∂φ

∂z
(24)

Let us now introduce a new physical quantity, the vorticity Ω, which is defined as Ω = ∇×u.
In fluid dynamics one often reformulates the equation of motion in terms of the vorticity, by
taking the curl of the velocity equations. If we consider only the E×B drift velocity, we can
show that Ω = 1

B b∇
2φ holds:

∇× uE = ∇×
Å

1

B
b×∇φ

ã
=

1

B
(∇ · ∇φ)−∇φ

Å
∇ · 1

B
b

ã
+ (∇φ · ∇)

1

B
b−
Å

1

B
b · ∇

ã
φ

=
1

B
∇2φ+O

Å
l

L

ã
,

because O(B) = L, and O(φ) = l, where l
L � 1. This is, because we previously assumed a

homogeneous magnetic field, thus the characteristic scales on which B varies are much larger
than the scales on which the electrostatic potential varies. We use that the gradients of the
fields are of the same magnitude as the fields them self: O(∇B) = L, O(∇φ) = l.
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2.3 Two field equations in drift ordering

2.3 Two field equations in drift ordering

When we insert the Eqn. (21) and Eqn. (22) into Eqn. (12) and Eqn. (14) and we obtain:Å
∂

∂t
+ uE · ∇

ã
n+

2

B0R0

∂φ

∂z
+

2T

eBR

∂n

∂z
=

Te
meνei

∇2
‖

Å
eφ

T
− lnn

ã
+
mνe,iT

qB
∇2
⊥n

(25)

mn

qB2
(∇ lnn+∇)

Å
∂

∂t
+ uE · ∇

ã
∇⊥φ+

2T

eBR

∂n

∂z
=

Te
meνei

∇2
‖

Å
eφ

T
− lnn

ã
+ η⊥∇4

⊥φ. (26)

This is a two field model for strongly magnetized, low β plasmas. They are two coupled
non-linear partial differential equations for evolution of the physical fields of density n and
electrostatic potential φ. Note that Eqn. (14) is the evolution of the ion density in the
case that ni ' ne, we obtained it by taking a linear combination of the particle continuity
equations for each particle species. In the further discussion, we assume the length on which
the density varies is small compared to the length scales of the electrostatic potential. This
allows us to approximate

∇ lnn ≈ 0.

we thus ignore this term in Eqn. (26). To relate the potential and the density back to the
single species densities, we have to close our model with an equation relating these parameters
back to each other. This does the Poisson equation,

ε∇2φ = ene − eni.

The E × B drift advection terms uE · ∇n and uE × ∇2
⊥φ are non-linear and introduce a

coupling between all length scales of the system. To see this, we write the fields n and φ as
their Fourier series, n =

∑
k nk exp i(kx − ωt) and φ =

∑
k φk exp i(kx − ωt). Inserted into

the term uE · ∇n, this yields:

uE · ∇n =
1

B
b×∇φ · ∇n

=
1

B
(∂yφ∂xn− ∂xφ∂yn)

=
1

B

Ñ
∂y
∑
k

φke
i(kx−ωt)∂x

∑
k′
nk′e

i(k′x−ωt) − ∂x
∑
k

φke
i(kx−ωt)∂y

∑
k′
nk′e

i(k′x−ωt)

é
=

1

B

Ñ
−
∑
k,k′

φknk′kyk
′
xe
i((k+k′)x−ωt) +

∑
k,k′

φknk′kxk
′
ye
i((k+k′)x−ωt)

é
This shows explicitly that all length scales of n and φ couple via the products of k and k′. A
numerical computation of this term has to conserve energy to give accurate results.
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2 TWO FIELD FLUID EQUATIONS

2.4 Dissipation mechanisms

The model equations derived above include cross field viscosity and molecular diffusion as the
major dissipation mechanisms. Both of these are intrinsic to the plasma. Confining a plasma
magnetically within a toroidal confinement device, causes other dissipation mechanisms arise.
In this thesis we study the effect of sheath dissipation. These are electric current channels
along open magnetic field lines that intersect the divertor targets.

Open field lines are localized in the SOL of tokamak reactors. The general approach to
incorporate such dissipation mechanisms in two field models is to describe the ∇J‖ term as
an differential operator acting on φ:

∇‖J‖ → σφ+ ν∇2
⊥φ+ µ∇4

⊥φ. (27)

Sheath dissipation and other dissipation mechanisms that are described by an operator of
this form are presented in [27]. We continue our discussion, by modeling the effects of sheath
parallel currents on the electrostatic potential. The discussion follows the introduction of [28,
ch. 6].

2.4.1 Sheath dissipation

The presence of divertor targets has strong influence on the ion and electron density and
velocity and on the electrostatic potential in their immediate surroundings. Secondary effects
at material walls include plasma recycling and recombination among others. We ignore these
effects and describe the effects of a biased surfaces in a hot plasma has on the electrostatic
potential.
A sketch of the situation is presented in Fig. 6. Assume that at x = 0 is a boundary surface

Figure 6: Electrostatic potential in the half space 0 < x bounded by a material surface. The
sheath region is characterized by a sharp decay of φ.

to the plasma with zero potential. The sheath surface is at negative potential φsh = −1, the

16



2.4 Dissipation mechanisms

plasma potential φplasma is at zero potential and perturbations to the plasma potential are

denoted with φ̂. Consistently with our assumptions for the two field model described above,
we assume cold ions (Ti = 0) and Maxwellian distributed electrons and neglect collisions.
Debye shielding in the plasma effectively shields the potential over the length of some Debye
lengths λD. For electrostatic potential φ(x) from the figure, this gives limx→0 φ(x) = −1 and
limx�λD = 0. The electrons are assumed to be Boltzmann distributed. Further do they have
to overcome a repulsive potential to enter the sheath region, thus we find that only electrons
with a kinetic energy larger than the repulsive potential enter the sheath region:

ne = ne,0 × exp
Ä
e(φ̃)/T

ä
.

Here ne,0 is the electron density at the entry point to the sheath region and φ is the elec-
trostatic potential within the sheath region. Since φ < 0, we see that the electron density is
decreasing. One can calculate, that the net flux of electrons toward the surface is given by
Je,‖ = nCs

»
mi/me2π exp

Ä
eφ̃/T

ä
, where we defined the ion acoustic speed, Cs =

»
Te/mi.

Integrating the electron velocity distribution function over real space shows, that the electron
density decreases towards the sheath.
A similar behavior of the ion particle density is observed, although for a different reason.
The ion velocity ui increases towards the negatively biased surface. Flux conservation reads
ni,0ui,0 = ni(x)ui(x), where ni,0 and ui,0 are the ion density and velocity at the sheath entry
region. This gives, that for increasing ui(x), ni(x) must be decreasing. An energy conserva-
tion argument can now be used, to show, that the Poisson equation is only fulfilled in the
sheath region, when ui(x) ≥ C2

s .
This gives a net current of

J‖ = n0eCs

(
1−
 

1

2π

 
mi

me
exp

Å
eφ

T

ã)
.

In a situation where no net currents flow to the surface, we can compute, that the potential
φ is given with φ = kT/2e ln(mi/me2π). This potential is called the floating potential, we
denote it with φfl and is experimentally accessible. With this, we write the parallel electric
currents at the divertor targets as:

J‖ = −enCs
Å

1− exp

Å
−eφ
T

ãã
. (28)

In this expression, φ is the difference between the plasma potential and the floating po-
tential of the divertor targets. We also see, that it is the heavy particle species, that give
the characteristic velocity of this phenomena in a similar matter as ambipolar diffusion for
example.
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2 TWO FIELD FLUID EQUATIONS

2.5 Model equations from the two field equations

In this section we rewrite the two field equations in MHD ordering which allows significant
simplification. We argue why we can neglect some terms and present a simplified, dimension-
less equation set. Two model equation set are derived from these equations. One model set is
linearized for small particle density perturbations and has a reduced free parameter set. The
second model allos for arbitrary particle density perturbations and includes an extra model
parameter.

2.6 Two field equations in MHD ordering

When we derived the two field equations, we assumed drift ordering, we find that both the
E × B drift and the diamagnetic drift are lowest order solutions for u⊥. What we wish to
do now, is to reduce these equations to models, for which MHD ordering is sufficient. Let us
compare the magnitude of the different drifts in both orderings:

Drift ordering : uE ≈ ud ≈ utδ
MHD ordering : uE ≈ ut ≈ ud/δ,

here ut =
»
T/m denotes thermal velocity. We see that the diamagnetic drift is one order

smaller than the major drifts in MHD ordering than they are in drift ordering. The crucial
difference between MHD and drift ordering is, that in MHD, the E×B drift is the only drift
of lowest order, it is of the same order as the acoustic velocity: uE ≈ cs ≈

»
Te/mi. We

therefore neglect the n∇ud term in the Eqn. (26)).

Since we are interested in the interchange mechanism for blob transport, we can make another
simplification. We saw earlier that blob transport is driven by the ∇B and curvature drifts.
These drifts are the expressed by diamagnetic current in MHD which is of lowest order. For a
MHD equilibrium we have J ×B = ∇P , which yields J⊥ = 1/B2B×∇P as the lowest cross
term current. Assuming isothermal electrons, this is the diamagnetic current for the electrons.

From the MHD momentum equation we obtain the Ohm’s law:

E + V ×B − 1

nee
(V ×B − T∇ne) = ηJ. (29)

The last term on the right hand side is called the hall term. We say we are using resistive
MHD when we can that term. Resistive MHD is different from ideal MHD, because it features
the diamagnetic drift as a lowest order drift. This is incompatible with the MHD velocity
ordering, where the E × B drift is of lowest order. This is what we find when we compare
the order of the E ×B and the diamagnetic current term:

T∇n
ne

J ×B
∼ T

veBl
=
rL
v

T

vlm
∼ O(δ). (30)

18



2.6 Two field equations in MHD ordering

We can thus neglect the diamagnetic term with the density gradient in Eqn. (29). This
gives the resistive Ohm”s law, from which we readily compute the divergence of the parallel
currents:

E + J ×B = ηJ (31)

⇒ ∇ · J‖ = −1

η
∇2
‖φ.

This result shows that in MHD ordering the divergence of the parallel current is given by
an operator acting on the electrostatic potential only. Comparing this to Eqn. (25) and
Eqn. (26), we neglect the ∇2

‖ lnn terms when we rewrite the model in MHD ordering.

It turns out, that the compression of the E×B drift and the diamagnetic drift in the density
equation can be neglected and one still retains the relevant physics from this model. Thus
we neglect the ∂φ/∂z term in Eqn. (26) and the ∂n/∂z term in Eqn. (25). This gives two
simplified model equations: Å

∂

∂t
+ uE · ∇

ã
n =

Te
meνei

∇2
‖

Å
eφ

T

ã
+
mνe,iT

qB
∇2
⊥nÅ

∂

∂t
+ uE · ∇

ã
∇2
⊥φ+

2T

mnR

∂n

∂z
=

Te
meνei

∇2
‖

Å
eφ

T

ã
+ η⊥∇4

⊥φ.

Earlier we assumed, that the electrons are isothermal and the ions are cold. A derivation of
the equations above can be done without the assumption that Te = const. One finds the same
equation set for a general thermodynamic variable θ, which can represent both, temperature
and particle density. In our discussion, we let θ denote particle density. We write the parallel
current as J‖ to denote, that we have not made a special assumption on the character of
parallel currents. The model equations read now:Å

∂

∂t
+

1

B
z ×∇φ · ∇

ã
n = χ∇2

⊥n+∇‖J‖ (32)Å
∂

∂t
+

1

B
z ×∇φ · ∇

ã
Ω +

2T

mnR

∂n

∂y
+ = η∇2

⊥Ω +∇‖J‖ (33)

The model above incorporates all important mechanisms to study interchange motions in
strongly magnetized plasma. It features the interchange instability since we included a di-
vergence of the diamagnetic drift in the vorticity equation. Both equations feature also the
non-linear divergence of the E × B drift. The dissipation coefficients η is the kinematic vis-
cosity of the fluid. The other dissipation coefficient χ is the collisional diffusivity.
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2.6.1 Dimensionless model equations

We proceed by introducing dimensionless variables for every quantity we wish not to vary.
Recall, that each physical quantity can be written as:

p = p[p̃], (34)

where p̃ is a dimension, as meters or seconds for example, and p is a dimensionless number.
Introducing a characteristic scale for a variable and dividing by it, we replace for example
the magnetic field via: B → B′ = B/B̂. Since both, B and B̂ are dimensional quantities, B′

is dimensionless. Let us define the following new variables:

t′ = γt x′ =
1

l
x φ′ =

1

ϕ
φ η′ =

1

γl2
η (35)

R′ =
R

l
ρ′ =

l2

M0
ρ B′ =

γl2

ϕ
B

By substituting these into the vorticity Eqn. (33), we obtain new dimensionless equations:Å
∂

∂t′
+ ẑ ×∇′ϕ′ · ∇′

ã
Ω′ +

2T

γ2mlnR

∂

∂y′
n = η′∇2

⊥Ω′ (36)Å
∂

∂t′
+ ẑ ×∇′ϕ · ∇′

ã
n = κ′∇2

⊥n. (37)

We now drop the prime from the new variables and introduce the Poisson bracket formalism:

{φ, ψ} =
∂φ

∂x
× ∂ψ

∂y
− ∂φ

∂y
× ∂ψ

∂x
.

The model equations read now:

∂Ω

∂t
+ {φ,Ω}+

2T

ρRlγ2

∂n

∂y
= κ∇2

⊥Ω (38)

∂n

∂t
+ {φ, n} = µ∇2

⊥n. (39)

With proper boundary conditions, these two coupled equations can now be solved numeri-
cally as an initial value problem. Adding additional expressions for the parallel current is
done by applying the same normalization as in Eqn. (35) to the corresponding terms.

They are friction coefficients for each variable and related to the Rayleigh number, Ra, and
Prandtl number of classical hydrodynamics via:

Ra =
1

κµ
Pr =

κ

µ
.
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2.6 Two field equations in MHD ordering

The Rayleigh number is ratio of buoyancy and diffusion rates of momentum. While diffusion
acts as a stabilizing force to the system, buoyancy tends to destabilize the system.
The Prandtl number is a measure for the ratio of viscosity and collisional diffusion.
These parameters are not to be confused with collisional frequencies between ions, electrons
and neutrals.

The free parameters in the model equations Eqn. (38) and Eqn. (39) are the electron temper-
ature T , mass density ρ, major radius of the tokamak R, the characteristic length l, the ideal
interchange time 1/γ and the diffusion parameters κ, µ. By defining the ideal interchange
time 1/γ correctly, we can absorb most of these parameters into the normalization of the
model. This leaves us with two models, that have two and three free parameters respectively.

2.6.2 Model for small blob amplitude.

First we present a minimalistic model with diffusion coefficients for θ and Ω as the only two
free parameters. We start with separating the full plasma particle density n into a constant
background particle density N and a variable perturbation term η(x, y):

n = N + η. (40)

We insert this for the interchange term and assume small particle density perturbations,∣∣∣ ηN � 1
∣∣∣. This gives us:

2T

ρRlγ2

∂n

∂y
=

2T

mRNlγ2

∂η

∂y
.

We now introduce the characteristic particle density perturbation amplitude, ∆n, defined by:
O(η/∆n) = 1:

2T

mRlγ2

∆n

N

∂

∂y

η

∆n
.

The obvious definition for the ideal interchange time is

γ =

 
2T

mRl

∆n

N
,

this choice gives unity as a factor for the interchange term in Eqn. (38). Using this, and
defining the dynamic field θ in Eqn. (39) as the normalized particle density perturbation:

θ =
η

∆n
, (41)

we obtain the model equations:

21



2 TWO FIELD FLUID EQUATIONS

∂Ω

∂t
+ {φ,Ω}+

∂θ

∂y
= µ∇2

⊥Ω (42)

∂θ

∂t
+ {φ, θ} = κ∇2

⊥θ. (43)

The free parameters in this model are the diffusion coefficients µ and κ. From the dimensional
model equations we see, that κ is the non-dimensional diffusion coefficient, and µ is the non-
dimensional viscosity coefficient.
The dynamical field θ is the particle density perturbation on a uniform background plasma.
This quantity is normalized to a characteristic perturbation and assumed to be small.

2.6.3 Model for large blob amplitude

If we do not linearize the interchange term for small particle density perturbations, we write
with the full particle density from Eqn. (40):

2T

mR(N + η)lγ2

∂

∂y
η =

2T

mRlγ2

∂ (N + η)

∂y

1

N + η
=

2T

mRlγ2

∂ ln (1 + η̂)

∂y
.

We obtain a factor of unity for the interchange term by choosing:

1

γ
=

 
2T

mRl
.

Dividing Eqn. (39) by the full particle density n, we obtain for the non-linearized model:

∂Ω

∂t
+ {φ,Ω}+

∂ lnn

∂y
= µ∇2

⊥Ω (44)

∂ lnn

∂t
+ {φ, lnn} = κ

Ä
∇2
⊥ lnn− (∇⊥ lnn)2

ä
. (45)

For this model, the dynamic field in Eqn. (39) corresponds to the logarithm of the full particle
density:

lnn = ln

Å
1 +

η

N

ã
= ln (1 + η̂) . (46)

Here we defined the normalized particle density perturbation η̂ = η/N . This dynamic variable
is not the same, as the normalized particle density perturbation θ for the linearized model.
They relate as:

η̂ =
∆n

N
θ lnn = ln

Å
1 +

∆n

N
θ

ã
.
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2.6 Two field equations in MHD ordering

Together with the diffusion coefficients for vorticity and particle density, this model has three
free parameters.

A comparison of the parameters in both models is listed in Tab. 1. Note that we use the
effective gravity defined by g = 2C2

s/R, with the ion acoustic speed Cs = Te/mi, for describing
the ideal interchange time. Note that this implies a different normalization of the diffusion
coefficients κ and µ in both models. Their numerical values are not directly comparable.

Model Free Parameters Inverse ideal interchange time γ

Linearized 2: κ, µ γl = γ0
√
η̂ =

»
g
l η̂

Non linearized 3: κ, µ, ∆n/N γ0 =
»

g
l

Table 1: Free parameters for both models.

2.6.4 Sheath dissipation

As a parallel current divergence, we include this effect by adding an additional term to the
vorticity equations for the respective model, Eqn. (42) or Eqn. (44). Our approach is to take
the average these equations along a magnetic field line. We define an averaging operator:

〈·〉 =
1

2L‖

∫ L‖

L‖

dl.

where 2L‖ is the connection length of a magnetic field line and dl is a line element of the field
line.
The vorticity equation of the linearized model reads with the parallel current term included:

∂Ω

∂t
+ {φ,Ω}+

∂θ

∂y
= ∇‖J‖.

Assuming that the such defined averaging operator commutes with all spatial derivatives, we
write

〈∂Ω

∂t
〉 =

∂〈Ω〉
∂t

, 〈{φ,Ω}〉 = {〈θ〉, 〈Ω〉}, 〈 ∂
∂y
θ〉 =

∂

∂y
〈θ〉.

Note that in general the averaging operator does not commute with the Poisson brackets. By
assuming that do commute, we implicitly assume that the structures do not vary along the
field lines. We need to compute 〈∇‖J‖〉 explicitly. Assuming only slow variations along mag-
netic field lines assuming small potential perturbations, we Taylor expand all terms including
φ and find:

〈∇‖J‖〉 =
enCs
L‖

eφ

T
.
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2 TWO FIELD FLUID EQUATIONS

We employ the normalizations from Eqn. (35) and find for the physical sheath dissipation
parameter

σphys =
2Cs
L‖ρ2

s

,

where Cs =
»
T/m and ρs = Cs/ωc,i. The dimensionless, field averaged model equations

read:

∂Ω

∂t
+ {φ,Ω}+

∂θ

∂y
= µ∇2

⊥Ω− σφ (47)

∂θ

∂t
+ {φ, θ} = κ∇2

⊥θ.

where the sheath dissipation parameter σ is given by:

σ =
2Csl

2

γL‖ρs
. (48)

The physical picture is presented in Fig. 7. While the blob travels radially outwards with
VX , sheath currents stretch the blob along open field lines towards the divertor targets. Both
processes happen simultaneously and on different characteristic scales. Radial blob transport
is of order VX with a characteristic blob length scale l, introduced in Eqn. (35). This defines
a characteristic blob transit time scale t = l/VX . A similar scale is introduced for the parallel
dynamics via the connection length L‖ and the acoustic velocity Cs, τ‖ = Cs/L‖.

Figure 7: Simplified picture of the current system in the SOL. While the blob travels radially
outwards with VX , sheath currents expand the blob along the open field lines running into the
divertor targets. The sheath currents have velocity Cs and are separated by the connection
length L‖.
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3 Method

To numerically solve the model equations, we develop a Fourier-Galerkin method on a two
dimensional, rectangular domain with periodic boundary conditions. This is implemented in
the 2dads program, a solver for two dimensional advection diffusion problems. Documenta-
tion for the code is found under [2]. In this chapter we present the spectral Fourier-Galerkin
method, and time integration method used, for solving the model equations. Spectral meth-
ods for hydrodynamical problems are a well known tool and one finds many excellent discus-
sions on this topic, as in [9] and [37]. We further describe the diagnostic and output routines
of the 2dads code. We choose a spectral method to solve the model equations, because their
rate of convergence is usually better than any finite difference formula.

3.1 Simulation domain setup

The rectangular physical domain we simulate is [−Lx : +Lx]× [−Ly : +Ly]. Periodic bound-
ary conditions on this domain read then u(x, y) = u(x+2Lx, y) = u(x, y+2Ly), where u may
be θ or Ω. We discretize this grid by using a cell centered grid, using Nx equidistant points in
the x direction and My equidistant points in the y direction. A cell centered grid, the values
of the physical field lie between two adjacent grid points. The position of the gridpoints in
physical space is then given by:

xn = −Lx +

Å
n− 1

2

ã
4x for n = 0, . . . , N+1

ym = −Ly +

Å
m− 1

2

ã
4y for m = 0, . . . ,My + 1. (49)

This gives a spacing of 4x = 2Lx/Nx between two adjacent points in the x direction and
a spacing of 4y = 2Ly/My between two adjacent points in the y direction. For an easy
implementation of periodic boundary conditions, we also include ghost points in the domain,
therefore we define My + 1 × Nx + 1 grid points in Eqn. (49). Ghost points are positioned
around the simulation domain at the same distance as the points in the physical domain,
as shown in Fig. 8(a). In Fig. 8(b) we present a periodic function with period 2Lx = 2.0.
Assigning the ghost points xN+1 := x1 and x0 := xN guarantees that the function has the
same value at x = 0 and x = 2 × Lx and is thus periodic. Extending this principle to a
two-dimensional domain is straight forward.

3.2 Spectral discretization

The partial differential equation system we are simulating is given by:

∂Ω

∂t
+ {φ,Ω}+

∂θ

∂y
= µ∇2

⊥Ω + LΩ(φ) (50)

∂θ

∂t
+ {φ, θ} = κ∇2

⊥θ + Lθ(φ).
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3 METHOD

(a) Simulation grid for 2dads . The physical domain is
within the black dashed rectangle. Discretization
points of the physical domain are denoted with
filled black circles. Ghost points are denoted in
blue.

(b) A function with period L = 2.0 on a cell centered
grid discretized with 8 gridpoints on the domain
(0.0, 2.0).

Here, the terms Lu(v) means any (non-)linear operator, acting on the field u and v. In praxis
we substitute terms for sheath dissipation, and additional terms for the linearized model
Eqn. (44) here. Periodic boundary conditions are assumed in both directions and initial
conditions for θ and Ω are given explicity:

θ(x, t = 0) = θ0(x), (51)

Ω(x, t = 0) = 0,

in case of no initial flow. A discretization with a spectral method consists of multiple steps
and are well documented, as for example in [9]. We first define a linear space of test functions
XN in which we expand the function Ω and θ we wish to solve for. We also need to define a
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3.3 Spectral Fourier Galerkin method

linear space of trial functions YN and discrete representation of the non-linear operator {·, ·}
and the linear operators ∇2

⊥ and ∂
∂y . We continue by expanding the fields Ω and θ in the

base of the test space XN . We denote the fields expanded in this function space with ΩN

/ θN and substitute them into the model equations. The residual of these equations is then
defined as

∂Ω

∂t

N

+ {φN ,ΩN}+
∂θn

∂y
− µ∇2

⊥ΩN − LΩ(φN )

∂θ

∂t

N

+ {φN , θN} − κ∇2
⊥θ

N − Lθ(φN ).

Demanding that the residuals vanish, when projected on the space of test functions YN is the
crucial demand that all spectral methods have in common. By defining a proper orthogonal
projection operator 〈·, ·〉, we write this as:Æ

∂Ω

∂t

N

+ {φN ,ΩN}+
∂θn

∂y
− µ∇2

⊥ΩN − LΩ(φN )v

∏
= 0,Æ

∂θ

∂t

N

+ {φN , θN} − κ∇2
⊥θ

N − Lθ(φN ), v

∏
= 0,

whereΩN , θN , φN ∈ XN and ∀v ∈ YN . One is free to choose any set of test functions XN

and trial functions YN which give rise to many different spectral methods. For our study
of biperiodic domains, the truncated Fourier series is suitable, as their base functions arise
naturally for periodic problems. Their base functions all satisfy the boundary conditions
individually and form a complete orthogonal base for continuous, infinitely smooth functions
on R2. The physical fields Ω and θ are assumed to be included in this space. We can also
make use of readily available implementations of the discrete Fourier transformation.

3.3 Spectral Fourier Galerkin method

For a Fourier-Galerkin method we choose the trial space XN ⊗ XM and the space of test
functions YN ⊗ YM to be the product of all trigonometric polynomials with degree ≤ N/2
and ≤M/2, respectively.

XN ⊗XM = YN ⊗ YM = {eiknxeikmy | n = −N/2, . . . , N/2− 1, m = −M/2, . . . ,M/2− 1}.

The operator ⊗ denots the vector space product. This basis set is associated with the discrete
Fourier transformation. It is well discussed in standard literature, [37, 9] present a thourough
and well written discussion. Along with these functions, we introduce the wave numbers kn
and km

kn =

{
n4kx , for n = 0 . . . Nx/2,

(n−Nx)4kx , for n = Nx/2 + 1 . . . Nx − 1,
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3 METHOD

with km is defined analog. We also define the spacing between two wavenumbers as 4kn =
2π/2Nx and 4km = 2π/2My.

The expansion of a field u(x, y, t) in these base functions defines the discrete Fourier coeffi-
cients of a real valued function on the domain [−Lx : Lx]× [−Ly : Ly]:

ûkn,km =
Nx∑
j=1

My∑
l=1

u(xj , yl)e
−iknxje−ikmyl . (52)

From the definition of kn and km above, we note, that Eqn. (52) is periodic in n and m
with length Nx and My. Asuming O(N) = O(M), which we do for the rest of this section,
the operation count according to this formula in O(N2). In praxis one uses Fast Fourier
transformations (FFT) which have an operation count O(N logN). The inversion formula is
given by:

u(xj , yl) =
1

NxMy

Nx/2−1∑
kn=−Nx/2

My/2−1∑
km=−My/2

ûkn,kme
iknxjeikmyl , (53)

which presumes the orthogonality relation

1

Nx

Nx−1∑
j=0

e(−ipxj) =

{
1 if p = Nz, z ∈ Z
0 otherwise

(54)

Note that in Eqn. (53), kn and km respectivly vary over negative and positive values, whereas
in Eqn. (52) i and j in Eqn. (52) vary over positive values only. This is due to the periodicity
of kn: kn(n) = kn(n + N), a summation kn = 1 . . . Nx in Eqn. (53) is equivalent to our
formulation. This hold for km respectively. We choose this convention since it is often found
in literature, [9].

Inverse Fourier transformation are also computed with a FFT algorithm and have an opera-
tion count of O(N logN). In this thesis we use the discrete Fourier transform, DFT , for the
transformation from the field grid point values in real to their Fourier coefficients in Eqn. (52)
and the inverse discrete Fourier transformation, IDFT for the transformation of the Fourier
coefficients to the field grid points in Eqn. (53). Assuming that the u(xj , yl) are real, the
presented discrete Fourier transformation maps NxMy real values to NxMy complex values.
One can compute, that the discrete Fourier transformation has a hermitian symmetry for
real values:

u(xj , yl) is real→ û(kx, ky) = û†(−kx,−ky). (55)

This shows, that half of the numbers in the Fourier series are rendundant, and we can inter-
pret the discrete Fourier transformation as 1 : 1 mapping between NxMy real valued numbers
and NxMy/2 complex numbers. Implementations, as [13] used for our work, use this to save
half the memory used for storing Fourier coefficients.
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3.3 Spectral Fourier Galerkin method

Approximating the fields θ and Ω with their truncated Fourier series gives:

ΩNx,My(xj , yl) =

Nx/2−1∑
n=−Nx/2

My/2−1∑
m=−My/2

Ω̂kn,kme
(iknxj)e(ikmyl) (56)

θNx,My(xj , yl) =

Nx/2−1∑
n=−Nx/2

My/2−1∑
m=−My/2

θ̂kn,kme
(iknxj)e(ikmyl), (57)

where we use the same number Nx and My of modes for the Fourier transformation along
the x and y direction as we use for grid points. Notice that the ghost points are not included
in the Fourier Transformation. The fields are to be periodic with lengths 2Lx, 2Ly. Includ-
ing these points in the Fourier transformation will consider the function to be periodic with
lengths 2(Lx +4x), 2(Ly +4y), thereby introducing artificial ringing artefacts.

We obtain an ordinary differential equation (ODE) for each Fourier coefficient “Ωkn,km and

θ̂kn,km by inserting the truncated Fourier series representation of the fields ,Eqn. (56) and
Eqn. (57), into the model equations and require that the residual is orthogonal to every test
function in Yn × Ym,Æ

∂Ω

∂t

Nx,My

+ {φNx,My ,ΩNx,My}+
∂θNx,My

∂y
− µ∇2

⊥ΩNx,My − LΩ(φNx,My), Yn × Ym
∏

= 0

(58)Æ
∂θ

∂t

Nx,My

+ {φNx,My , θNx,My} − κ∇2
⊥θ

Nx,My − Lθ(φNx,My), Yn × Ym
∏

= 0.

(59)

As an orthogonal projection operator for 〈·, ·〉 we use the scalar product

〈u, v〉 =

∫ Ly

−Ly
dy

∫ Lx

−Lx
dx u× v†,

where † denotes complex conjugation. With this definition, the test and trial functions obey
the orthogonality relation 〈XnXm, Yn′Ym′〉 = δn,n′δm,m′ . Applying this to the demand that
the residuals of the discretized partial differential equations (PDEs), vanish when projected
on the trial functions, Eqn. (58), and Eqn. (59), we obtain a system of 2×Nx ×My coupled
ODEs

∂Ω̂kn,km

∂t
+ ¤�{φNx,My ,ΩNx,My}kn,km + knθ̂kn,km = −µ(k2

n + k2
m)Ω̂n,m + ¤�LΩ(φNx,My)kn,km (60)

∂θ̂kn,km
∂t

+ ¤�{φNx,My , θNx,My}kn,km = −κ(k2
n + k2

m)θ̂kn,km + ¤�Lθ(φNx,My)kn,km ,

(61)
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Array index 1 . . . N
2

N
2 + 1 . . . N − 1 N

Pos. frequency 0 . . . 1
2

N
2 . . . N−1

N 1

Neg. frequency 0 . . . 1
2 −1

2 . . . 1− 1
N − 1

N

Table 2: Position of frequency elements in 1 dimensinoal arrays used in 2dads

one equation for each single Fourier coefficient “Ωn,m and θ̂n,m.

The initial condition for the Fourier Coefficients θ̂kn,km and “Ωkn,km are given by the truncated
Fourier Series of Eqn. (51):

θ̂kn,km(t = 0) =
Nx∑
j=1

My∑
l=1

θ0(xj , yl) exp(−iknxj) exp(−ikmyl) (62)“Ωkn,km(t = 0) = 0. (63)

This is a well defined initial value problem that can be solved by time integration of the
Fourier coefficients. In our implementation we employ the FFTW library which readily provides
routines for arbitrary size DFTs. Special attention is payed to the order in which the Fourier
coefficients are stored to correctly implement spatial derivation routines. Spatial derivation
is given for Fourier series by:

∂

∂x
ûN = ikxû

N .

The position in which the Fourier coefficients for each frequency is stored is presented in
Tab. 2. The frequencies are stored in rising order, and the associated negative frequencies
are listed below. When this scheme is extended to two dimensions, only the first N

2 + 1
frequencies are stored along the first array dimension, due to the hermitian property of the
Fourier coefficients for real fields from Eqn. (55).

A special treatment is required for the Fourier coefficients of the poisson brackets. They are
given by:

¤�{φNx,My ,ΩNx,My} =
∂

∂x
φNx,My

∂

∂y
ΩNx,My − ∂

∂y
φNx,My

∂

∂x
ΩNx,My

=

Å
2πin

Nx

ãÑ Nx/2−1∑
n=−Nx/2

My/2−1∑
m=−My/2

“Ωkn,km

é
×
Ç

2πim′

My

åÑ Nx/2−1∑
n′=−Nx/2

My/2−1∑
m′=−My/2

φ̂kn′ ,km′

é
−
Ç

2πim

My

åÑ Nx/2−1∑
n=−Nx/2

My/2−1∑
m=−My/2

“Ωkn,km

é
×
Ç

2πin′

Nx

åÑ Nx/2−1∑
n′=−Nx/2

My/2−1∑
m′=−My/2

φ̂kn′ ,km′

é
.

This is a convolution in spectral space, with an operation cost of approxemately O(N4).
By transforming the fields into real space, performing a component-wise multiplication of
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3.3 Spectral Fourier Galerkin method

the spatial derivated fields there and transforming the product back into Fourier space, the
operation cost for the evaluation of the term reduces to O(N2 logN).

¤�{φNx,My ,ΩNx,My} =DFT (IDFT

Å
∂

∂x
φNx,My

ã
× IDFT

Å
∂

∂y
ΩNx,My

ã
)

−DFT (IDFT

Å
∂

∂y
φNx,My

ã
× IDFT

Å
∂

∂x
ΩNx,My

ã
).

By doing this, we introduce an aliasing error, which arises since we use truncated Fourier
series and not their infinite counterpart. Let a general quadratic product term be

w(x, y) = u(x, y)v(x, y),

where u and v are real valued two-dimensional fields. Assuming that both u and v are
represented by their infinite Fourier series, we find for the truncated Fourier Series of w:“wk,l =

∑
kx+k′x=k

∑
ky+k′y=l

ûkx,ky v̂k′x,k′y .

In this summation, kx, k
′
x = −Nx/2 . . . Nx/2− 1 and ky, k

′
y = −My/2 . . .My/2− 1.

If we instead assume, that u and v are given by their truncated Fourier series, we get:

“wk,l =
∑

kx+k′x=k

∑
ky+k′y=l

ûkx,ky v̂k′x,k′y +
∑

kx+k′x=k±N

∑
ky+k′y=l±M

ûkx,ky v̂k′x,k′y . (64)

The second term on the right hand side is called the aliasing error. It arises because the
inverse transformation back to Fourier space of the product ûkx,ky v̂k′x,k′y wraps large frequen-
cies back to the frequencies included in the original transform. Summation over ky and k′y,
or kx and k′x respectively, give additional terms that satisfy Eqn. (54), and are non-zero. For
example, if N = M = 128, the frequency k = 3 includes contributions from the frequency
pairs (kx, k

′
x) = (−61,−64), (−62,−63), (−63,−62) and (−64,−61) for Eqn. (64). This is

schematically drawn in Fig. 8. We read from the figure, that the power of large frequencies
are artificially increased. This source of artificial energy shows that energy is not exactly
conserved in the method we use.

There are many methods used to remove the aliasing error. One method is to zero pad all
frequencies |k|, |l| ≥ 2N/3, 2M/3. Other approaches are to multiple the Fourier coefficients
with a filter function. We choose not to remove the aliasing error, as in prominent opinion,
it is not needed for good accuracy in Pseudospectral methods. (Reference: Spectral methods
in hydrodynamics, p.211). Our simulations are aliased.

In order to evaluated the advection terms in configuration space, we use the arakawa scheme,
presented in [4]. It is a finite difference scheme for the poisson bracket, which exactly conserves
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(c) Interpretaion of the aliasing error. Frequencies
|k| ≥ N/2 for the infinite Fourier transformation
are wrongly assigned to frequencies |k| < N/2 for
the discrete Fourier transformation. Taken from
[37]

Figure 8: Aliasing error
.

energy and enstrophy. This is important, as non-linear terms couple all different length scales
of the system, and thereby have the possibility to exchange energy between them. It is
implemented via:

{u, v} = − 1

124x4y
((ui,j−1 + ui+1,j−1 − ui,j+1 − ui+1,j+1)× (vi+1,j − vi,j)

+ (ui−1,j−1 + ui,j−1 − ui−1,j+1 − ui,j+1)× (vi,j − vi−1,j)

+ (ui+1,j + ui+1,j+1 − ui−1,j − ui−11,j+1)× (vi,j+1 − vi,j)
+ (ui+1,j−1 + ui+1,j − ui−1,j−1 − ui−1,j)× (vi,j − vi,j−1)

+ (ui+1,j + ui,j+1)× (vi+1,j+1 − vi,j)
+ (ui,j−1 + ui−1,j)× (vi,j − vi−1,j−1)

+ (ui,j+1 + ui−1,j)× (vi−1,j+1 − vi,j)
(ui+1,j + ui,j−1)× (vi,j − vi+1,j−1)).

The error of this scheme is of order O(44). We read that it only depends on the nearest neigh-
bors on the simulation grid. To evaluate this expression for the nodes xn,1 for n = 1 . . . Nx

and ym,1 for m = 1 . . .My, we need ghost points. This is another reason to include ghost
points in the simulation.
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3.3 Spectral Fourier Galerkin method

Order α0 α1 α2 α3 β1 β2 β3

1 1 1 0 0 1 0
2 3/2 2 −1/2 0 2 −1 0
3 11/6 3 −3/2 1/3 3 −3 1

Table 3: Values for the α and β coefficients for stiffly stable time integration for first, second
and third order accuracy.

Time integration Time integration is done by a Kth order stiffly stable time integration,
presented in [14]. It is used to integrate the generalized diffusion equation:

∂U

∂t
(x, t) = κ

∂2U

∂2x
+ L(U), (65)

where L is a well defined differential operator, acting on U . Let u denote a discretization of
U , a stiffly stable time integration scheme for u is then defined by:

1

4t

(
α0u

i −
K∑
k=1

αku
i−k
)

= κδ2
xu

i +
K∑
k=1

βkL(ui−k) +O(4K
t ).

In the equation above, the operator δx denotes spatial differntiation. Upper indices denote
the time index. In the form above, the scheme has an error4K

t , where K is a natural number.
The coefficients αk and βk are determined by the order of the scheme K. In Tab. 3 we present
the coefficients used for first, second and third order time integration.

Choosing K = 1 yields a first order forward finite difference scheme, which converges for any
choice of 4t. Due to its low accuracy, a higher order scheme is commonly used. In all appli-
cations of this time integration scheme, we use third order accuracy whenever possible. The
first K timesteps have to be integrated with lower accuracy though. Starting with K = 1,
one succesively increases accuracy for each time integration in the first K − 1 time steps.

We see that the diffusion part of Eqn. (65) is treated implicitly, whereas all other terms in
the equation are treated explicitly. Solving the previous equation for ui, we get:

ui =
1

α0 − κδ2
x

K∑
k=1

Ä
αku

i−k + βkL(ui−k)
ä

+O(4K
t ). (66)

Extending the above scheme to two spatial dimensions, we get a stiffly stable scheme for the
time integration of the Fourier coefficients ûik of the two fields by:

ûik =
1

α0 + κ(k2
x + k2

y)

K∑
k=1

Ä
αkû

i−k + βkL(ûi−k)
ä

+O(4K
t ). (67)

When we integrate the Fourier coefficients θ̂kn,km and “Ωkn,km with Eqn. (66), the spatial

derivative operator is replaced with the exact relation δ2
xθ̂kx,ky = −(k2

x + ky)
2θ̂kx,ky .
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Parameter Name Description

xleft xleft Left simulation domain boundary
xright xright Right simulation domain boundary
yup xup Upper simulation domain boundary

ydown xdown Lower simulation domain boundary
Nx Nx Number of discretization points along x direction
My My Number of discretization points along y direction
tlevs K Time levels used for time integration
deltat ∆t Time step length
tend tend Time when simulation ends
tout tout Time between full solution output
tdiag tdiag Time between diagnostic output
nthr nthread Number of threads
chunk chunk Chunksize

Table 4: Input parameters, their symbols and their description used in the 2dads program.

3.4 Simulation setup

To run a simulation with 2dads , we need to provide proper initial conditions for the fields θ
and Ω, and we need to provide parameters to the simulation, time step and simulation domain
size among others. Simulation parameters are listed in Tab. 4. The first four parameters are
used to set the simulation domain. They are related to the lengths in x– and y–direction via
Lx = xright − xleft and Ly = yup − ydown . The number of discretization points Nx and My

determine the number of Fourier modes that are computed for the fields θ, Ω and φ. This
corresponds to the number of grid points used in configuration space for the discretization.
The order of the stiffly stable time integration scheme is given by K . The first i, i < K steps
are integrated with a lower order of i. By choosing a time step length of ∆t , diagnostic output
is written out every tdiag /∆t time integrations, and full output is written out every tout /∆t

time integrations. Parallelization is supported by the FFTW library and has been implemented
with OpenMP by 2dads as a part of this thesis. The number of threads working on a problem
is set by nthread . For loop parallelization, this is divided among the nthread threads in 2dads ,
so that each thread works on chunk matrix elements parallel.
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3.5 Full output

3.5 Full output

HDF5 was chosen as a data container, because the output grows very large and this data
format is designed to handle large and complex data sets. It allows hierarchical data storage
and allows data to be stored in a binary format.

The 2dads program is rewritten to include output routines for the full solutions of the fields
θ, Ω and φ in the HDF5 format. Setting the parameter tout in file input.ini configures in
which time intervalls the full output of the solution is written. In cases when we integrate
the two parameter model with linearized interchange term, we write

θ(xn, ym)n = 1 . . . Nx m = 1 . . .My

Ω(xn, ym)n = 1 . . . Nx m = 1 . . .My

φ(xn, ym)n = 1 . . . Nx m = 1 . . .My

to the output file.
The dynamic variable θ is the normalized particle density perturbation of a background
particle density for the linearized model:

θ =
η

∆n

and the full normalized particle density for the non-linearized model:

θ = 1 +
η

N
.

A HDF5 container file output.hdf5 is created when the 2dads program starts. In this file, we
create a data tree with nodes omega, theta and strmf. Each time step where full output is
to be written, we append the output as a new dataset in the according group and enumerate
them, starting from 0. The data tree in the file looks like:

output.hdf5 / Omega / 000 - (Nx * My) array of double precision numbers

/ 001 - (Nx * My) array of double precision numbers

...

/ Omega / (tend/dtout) - (Nx * My) array of double precision numbers

/ Theta / 000 - (Nx * My) array of double precision numbers

/ 001 - (Nx * My) array of double precision numbers

/ (tend/dtout) - (Nx * My) array of double precision numbers

...

/ Strmf / 000 - (Nx * My) array of double precision numbers

/ 001 - (Nx * My) array of double precision numbers

/ (tend/dtout) - (Nx * My) array of double precision numbers

...

A method to read data as initial conditions for θ and Ω from the HDF5 container file has
also been developed. This allows simulations to resume if they are aborted for any reason. A
drawback is that the first K time steps have to be integrated with lower order time integration
schemes.
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3.6 Diagnostic output

The original 2dads code writes many diagnostic output data. A full list is presented in
Tab. 3.6. The parameter tdiag in the input file gives the time intervall, in which diagnostic
output is written to the according files. The output format for the files is plain ascii, with
tab delimited values. All output for one time step is written in one line.

In this thesis we discuss blob motions with the help of COM coordinates. Here we motivate
the use of these coordinates and discuss them briefly.
The center of mass coordinates XCOM and YCOM are defined via:

XCOM =
1∫
dxθ

∫
dxxθ (68)

YCOM =
1∫
dxθ

∫
dxyθ

and the respective velocities are their time derivatives:

VX =
dXCOM

dt

VY =
dYCOM

dt

To describe the dynamics of a spatially extended structure, one could use other definitions
of position and velocity. One could think of the dynamics of a pronounced, typical feature
of the whole structure, as a trailing front for example. One advantage of using center of
mass coordinates is that they are independent of any parameter. One can also show, that for
a domain with periodic boundary conditions in both directions, the radial COM velocity is
proportional to the convective radial flux:

∂Xc

∂t
= Vx =

1

Q

∂

∂t

∫
dxxθ (69)

= − 1

Q

∫
dxθφy. (70)

The radial flux is the plasma density transported with the radial component of the E × B
drift, φy. The equation states, that all properties of the convective radial flux of the simulated
plasma filaments are given by the radial COM velocity.
The integrated particle density is written out in the variable tint :

tint =
Nx∑
n=1

My∑
m=1

θ(xm, ym)x ×∆y (71)

Since θ is used for different dynamic variables in the linearized and non-linearized model, the
COM velocity has is not directly comparable between the two models. When we assume an
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3.6 Diagnostic output

Variable Explanation Defined in eq.

XCOM Radial center of mass coordinate Eqn. (68)
VX Radial center of mass velocity Eqn. (69)
tint Integrated dynamic variable θ for particle density Eqn. (71)

Table 5: Compendium of 2dads diagnostic output

initial condition θ(t = 0) = exp
(
−x2/2

)
for the linearized model and n̂ = 1+∆n/N×θ(t = 0)

for the non-linearized model, we find:

V lin
X =

1

2π

∫
dx xθ (72)

V nonlin
X =

∆n
N

A+ ∆n
N

× V lin
X . (73)

To obtain comparable diagnostic output for both models, we compute the COM velocity for
the non-linear model with the field n̂ − 1. Using this in the equations for V nonlin

X above,
we eliminiate the factor in front of the integral and both COM velocities are of the form in
Eqn. (72).
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4 VARIATION OF RAYLEIGH NUMBER

4 Variation of Rayleigh number

Varying the Rayleigh number allows us to categorize the motions that the two fluid model
allows. We study the blobs dynamic and evolution under variation of the Rayleigh number,
which is defined as.

Ra =
1

κµ
.

Here κ is the dimensionless viscosity parameter and µ is the non-dimension diffusion param-
eter of the model. It can be interpreted as the ratio between buoyancy forces to dissipative
forces. Buoyancy forces are the strength of the effective gravity mechanism in our model.
We begin by presenting convergence studies of the spectral 2dads code. Here, we determine
parameters, such as resolution, and number of Fourier modes we need, for a converged sim-
ulation. We continue by presenting a discussion of the simulation results. This covers blob
evolution, where we discuss the phenomena we see in the simulation, as well as center of mass
dynamics of the structures.
The simulation results are then be compared to results from the original 2dads code, where
periodic boundary conditions are used in the radial direction. A final result of this chapter
is the scaling of VX with increasing Rayleigh number.

4.1 Simulation setup and convergence tests

A plasma blob structure is modelled by an initial gaussian density profile without any initial
vorticity:

θ(x, y) = exp

Ç
−x

2

2
− y2

2

å
Ω(x, y) = 0.

Vorticity will be generated by the interchange term in Eqn. (26)), the y derivative of the
initial particle density.
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4.1 Simulation setup and convergence tests

(a) Density perturbation at t = 0.0 (b) Vorticity at t = 1× 10−3

(c) Electrostatic potential at t = 1× 10−3

Figure 9: Initial development of the phyical fields. Simulation parameters: κ = µ = 10−2,
∆t = 10−3, 512× 512 modes on a 50× 50 domain.

Low resolution parameter scan To qualitatively asses the variety of motions that occur
by variation of the Rayleigh number, we run the parameter scan in Tab. 6). In all simulations
the Prandtl number is held to unity. We do not use the results of these simulations for
parameter scaling studies, as we run all simulations with low resolutions and have not achieved
convergence.

The result of these simulations are used for convergence tests with different parameters. We
need to determine box size and number of modes for which the simulation results change
little when increased further. Contour plots of θ and Ω show, that with increasing Rayleigh
number structures on increasingly smaller scales evolve. They demand a increasingly high
resolution, an increasing number of modes. Before we discuss these structures, we determine
box sizes and number of modes, for which these structures are resolved well enough with
a fixed Rayleigh number. These so determined parameters are used for simulations with
smaller Rayleigh number, to give a converged simulation.
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4 VARIATION OF RAYLEIGH NUMBER

Run # Resolution Domain ∆t κ µ Ra(κ, µ)

1 256× 256 [−5 : 30]× [−15 : 15] 1.0× 10−3 5× 10−1 5× 10−1 4× 100

2 256× 256 [−5 : 30]× [−15 : 15] 1.0× 10−3 2× 10−1 2× 10−1 2.5× 101

3 256× 256 [−5 : 30]× [−15 : 15] 1.0× 10−3 1× 10−1 1× 10−1 1× 102

4 256× 256 [−5 : 30]× [−15 : 15] 1.0× 10−3 5× 10−2 5× 10−2 4× 102

5 256× 256 [−5 : 30]× [−15 : 15] 1.0× 10−3 2× 10−2 2× 10−2 2.5× 103

6 256× 256 [−5 : 30]× [−15 : 15] 1.0× 10−3 1× 10−2 1× 10−2 1× 104

7 256× 256 [−5 : 30]× [−15 : 15] 1.0× 10−3 5× 10−3 5× 10−3 4× 104

8 384× 384 [−5 : 30]× [−15 : 15] 1.0× 10−4 2× 10−3 2× 10−3 2.5× 105

9 384× 384 [−5 : 30]× [−15 : 15] 1.0× 10−4 1× 10−3 5× 10−3 1× 106

10 512× 512 [−5 : 30]× [−15 : 15] 1.0× 10−4 5× 10−4 5× 10−4 4× 106

11 512× 512 [−5 : 30]× [−15 : 15] 1.0× 10−4 2× 10−4 2× 10−4 2.5× 107

12 512× 512 [−5 : 30]× [−15 : 15] 1.0× 10−4 1× 10−4 1× 10−4 1× 108

Table 6: Rayleigh number parameter scan with a low resolution parameter set.

Test for convergence, Ra = 102 A low Rayleigh number means that dissipative forces
dominate over effective buoyancy forces. The blob evolves slowly shows pronounced disper-
sion, damping the evolution of small scale structures, due to collisional diffusion. In Fig. 4.1
we present the radial COM position and velocity of the plasma blob. It has a sharp peak at
t ≈ 6, aftwards the velocity decreases uniformly.

(a) Radial COM coordinate (b) Radial COM velocity

Figure 10: Center of mass coordinates for blob simulation on 35x30 domain with 256 × 256
modes resolution

The influence of the domain size on VX can be understood by Fig. 4.1. In physical space,
θ and Ω have exponentially decaying tails in both directions whereas the potential φ has
an algebraically decaying tail. This can cause φ to become box filling. On a finite domain
size with biperiodic boundary conditions we always have to enforce an artificial zero crossing
for the potential. This effects the shape of the potential over the whole domain, causing
unphysical effects in the advection terms {φ, θ} and {φ,Ω}.

We have to increase the box size so far, that φ has sufficiently enough decayed towards the
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4.1 Simulation setup and convergence tests

simulation domain boundaries, so that the enforced zero crossing has no significant influence
on the shape of φ. On the other hand, the resolution decreases linearly with the simulation
domain when the number of modes is fixed. Therefore the simulation domain should not be
made too big, just big enough.

A simulations is converged with respect to box size, when the finite size effects influences on
the electrostatic potential is negligible. In Fig. 4.1 we present the decay of the electrostatic
potential along the poloidal direction at the radial position where φ assumes its maximum.
For a domain size of 50 × 50 we see a strong forced zero crossing, along with a gradient of
O(10−2) at the domain boundaries. With increasing resolution, the gradient of the tail of the
potential decreases to O(10−4) on a 400 × 400 domain. The finite size effect on the radial
COM velocity is shown in Fig. 11, comparing run #2, #3, #4 and #12 from Tab. 7. For
a domain size of 50 × 50, the time and position of the velocity peak is strongly affected by
finite size effects. For run #3, #4 and #12, the variation of max(VX) is of order O(104) and
the time of peak velocity varies from 7.09 - 7.16 ideal interchange times. We see that finite
size effects have less impact on max(VX) than they have on the time where the blob reaches
its peak velocity, t(VX = max(VX)) .

Figure 11: Finite box size effects on radial COM velocity peaks for Ra = 102. We see a
variation in peak velocity amplitude and position.

In Fig. 4.1 we see that the COM velocity decreases when we keep increasing the domain
size. We see a decrease in VX with increasing box size. For simulation with 512 × 512 the
differences between the curves is larger than for 1024× 1024, because the Nyquist frequency
is lower for 1024×1024. This shows the demand for a high number of modes for large domain
sizes. Simulations with a domain sizes over 200× 200 are too craving to be considered.

Next, we increase the number of modes until the simulation is converged with respect to
resolution. For Ra = 102 we have done this procedure for different simulation domains to
estimate the resolution needed on a broader variety of domains. In Fig. 14 we present the
radial COM velocity for an increasing number of modes on different simulation domains. We
see that the velocity increases with increasing mode number. With decreasing number of
modes the velocity decreases, as was found with increasing simulation domain. From Tab. 7
we see that max(VX) is a robust quantity, it varies little even when the simulation has not
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4 VARIATION OF RAYLEIGH NUMBER

(a) Domain 50× 50, Gradient
φy ≈= −0.027 for t = 7.0, at the left
boundary

(b) Domain 100× 100, Gradient
φy ≈= −0.007 for t = 7.0, at the left
boundary

(c) Domain 200× 200, Gradient
φy ≈= −0.001 for t = 7.04, at the left
boundary

(d) Domain 400× 400, Gradient
φy ≈= −0.0008 for t = 7.0, at the left
boundary

Figure 12: Decay of φ for increasing box sizes, Ra =102, resolution: 512× 512 modes.

(a) Ra =102, resolution: 512× 512 (b) Ra =104, resolution: 1024× 1024

Figure 13: Variation for radial COM velocity VX with increasing simulation domain.

converged yet.

For the radial COM velocity curves in Fig. 14 we find exactly the same behaviour. The COM
velocity increases for increasing resolution and decreases for insufficient resolution. The COM
velocity increases very little above a resolution of 512 × 512 on a 200 × 200 domain. When
we increase the domain size, the convergence is slower. On a 400× 400 domain, one needs at
least 1024× 1024 modes resolution for convergence.
For high resolution simulations with Ra ≤ 102 we therefore use a resolution of 512 × 512
modes on a 200× 200 domain.
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4.1 Simulation setup and convergence tests

run # Domain size Resolution max(VX) t(v = max(VX) ) change of max(VX)

1 30× 30 256× 256 0.56751984 6.74 –

2 50× 50 512× 512 0.58279198 6.98 –
3 100× 100 512× 512 0.58873445 7.09 101,02% rel. to run #2
4 200× 200 512× 512 0.58792788 7.15 100,88% rel. to run #2
5 300× 300 512× 512 0.58470076 7.19 100,32% rel. to run #2
6 400× 400 512× 512 0.58140004 7.26 99,76% rel. to run #2

7 200× 200 768× 768 0.58974326 7.13 100,31% rel. to run #4
8 300× 300 768× 768 0.58823854 7.16 100,61% rel. to run #5
9 400× 400 768× 768 0.58604425 7.18 100,80% rel. to run #6

10 200× 200 1024× 1024 0.59040397 7.12 100,42% rel. to run #4
11 300× 300 1024× 1024 0.58965820 7.14 100,84% rel. to run #5
12 400× 400 1024× 1024 0.58834738 7.16 101,19% rel. to run #6

Table 7: Convergence test for Ra = 102, presenting max(VX) and t(VX = max(VX)) for
different resolutions. The last column shows the change in max(VX) relative to other runs
from column 1.

(a) 200× 200 Domain (b) 400× 400 Domain

Figure 14: Convergence behaviour on different domains, Ra =102

Test for convergence, Ra = 104 Increasing the effective buoyancy will cause smaller
scale structures to develop. To resolve this numerically we need a higher resolution than for
Ra = 102. The initial blob velocity has the same characteristics as the previous run, but it
reaches its peak velocity quicker, already at t ≈ 5.0 as shown in Fig. 15. We also see that the
peak velocity has increased from about 0.6 with Ra = 102 to about 0.82. After it has reached
its maximum velocity, the blob quickly decelerates, reaches a plateau and decelerates again.
These are effects due to dispersion of the blob structure.

In Fig. 16 we study convergence for the box size. We again demand that the potential and
its gradient are negligible at the boundaries of the simulation domain in the time where the
blob approaches its maximum velocity. Keeping the number of modes fixed to 512 × 512,
we study the decay of φ for a 50 × 50, 100 × 100 and 200 × 200 domain. For a domain size
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4 VARIATION OF RAYLEIGH NUMBER

Figure 15: COM velocity for unconverged run, 256× 256 modes, domain: 30x35

of 50 × 50, the forced zero crossing leads to a large gradient of φ in the poloidal direction.
A simulation domain of 100 × 100 shows also a negligible value of φ at the boundaries, Its
gradient is φy ≈ 0.005 at the boundaries for t = 5.0 when the blob has reached peak velocity.
After reaching peak velocity, the blob will diffuse which leads to a larger spatial extension
of the potential (red curve in Fig. 16 ). A domain size of 200 × 200 shows am even better
decay, the gradient of φ is negligible value at the boundary. We can gain further insight in the
magnitude of the finite size effects by comparing φ at y = 50 for simulations with different
resolutions. Comparing φ(y = 50) for 200× 200 with 100× 100, we find that for 200× 200,
it has decayed to ca. 0.01. This gives an estimate, of how strong the finite size effect are
for a simulation domain of 100 × 100. The increasing demand for a number of modes and
the decayed value at φ(y = 50) for the simulations on 200 × 200 are reasons for choosing a
domain size of 100× 100 for simulations with Ra =102.

(a) Domain 100× 100, Gradient
φy ≈= −0, 0045 for t = 5.0, at the left
boundary

(b) Domain 200× 200, Gradient
φy ≈= −0, 0013 for t = 5.0, at the left
boundary

Figure 16: Decay of φ for increasing box sizes, Ra =104, resolution: 512× 512 modes

We now continue by increasing the number of modes on the 100 × 100 domain, these are
run # 5 – run # 7 in Tab. 8. Increasing the number of modes gives an increasing value of
max(VX) , although it is very little. Increasing the resolution increases max(VX) by 0.5%.

The full curves are presented in Fig. 17(a), they show that although the simulations have
converged with respect to max(Vcom), the further evolution of the blob differs. For converged
simulations we use 1536 × 1536 modes on a 100 × 100 domain when 102 < Ra ≤ 104. A
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run # Domain size Resolution max(VX) change of max(VX) rel. to run 3

1 30× 30 256× 256 0.80242860 98.33 %
2 50× 50 512× 512 0.81462723 99.83 %
3 100× 100 512× 512 0.81604481 – %
4 200× 200 512× 512 0.80446297 98.58 %

5 100× 100 768× 768 0.81855297 100.31 %
6 100× 100 1024× 1024 0.81943268 100.41 %
7 100× 100 1536× 1536 0.82006007 100.48 %

Table 8: Convergence with number of modes for Ra = 104, presenting max(VX) for different
resolutions. The last column shows the change in max(VX) relative to run #3 in column 1.

particle density profile for this simulation is shown in Fig. 17(b).

(a) max(VX) curves for an increasing
number of modes, Ra = 104, 100× 100
simulation domain.

(b) Particle density at t = 8.0, 1536× 1536
on a 100× 100 domain

Figure 17: COM dynamics for an increasing number of modes and contour plot of particle
density for convergence test simulations, Ra = 104.

Test for convergence, Ra = 106 In this regime,increased effective buoyancy drives the
evolution of even finer scale structures. We test again for convergence on the VX curves. In
Fig. 18 we present the result from the low resolution simulation run # 9 from Tab. 6. It
shows the characteristic initial acceleration and deceleration, with an increased velocity peak
compared to run # 6 from the same table. The evolution after the peak velocity is also
different than the previous curve.

Fig. 19 shows the amplitude of φ along the poloidal direction at the radial coordinate where
φ = max(φ). The gradient of φ is negligibly small for a box size of 100×100. On the smaller
50× 50 domain, the potential shows a larger gradient. Using a larger domain is favorable to
eliminate the effects of introducing an artificial decay of φ. Therefore we use a simulation
domain of 100 × 100 for simulations with Ra =106, even though the simulations demand a
large number of Fourier modes.
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4 VARIATION OF RAYLEIGH NUMBER

Figure 18: COM velocity for Ra =106. 384× 384 modes, domain: 30x35

(a) (b)

Figure 19: Decay of φ for increasing box sizes, Ra =106, resolution: 512× 512

run # Domain size Resolution max(VX) relative to. #3

1 30x35 384× 384 0.84110719 98.71%
2 50× 50 512× 512 0.85087442 99.86%
3 100× 100 512× 512 0.85203522 –
4 200× 200 512× 512 0.83409464 97.89

5 100× 100 1024× 1024 0.85676980 100.56%
6 100× 100 1536× 1536 0.85804659 100.71 %
8 100× 100 2048× 2048 0.85851866 100.76 %
8 100× 100 3072× 3072 0.85886526 100.80 %

Table 9: Convergence with number of modes for Ra = 106, presenting max(VX) for different
resolutions. The last column shows the change in max(VX) relative to run #3 in column 1.

Tab. 9 shows the variation in the maximal radial COM velocity when varying the number of
modes. The complex small scale structures begin evolving after the blob has reached maxi-
mum velocity. Velocity curves for the test runs are presented in Fig. 20(a). We find that the
curves are very close and hardly differ. But looking at the contour plots for θ we still find
artefacts for resolutions ≤ 3072. In Fig. 20(b) we show cross section of the particle density
at the symmetry axis y = 0. The artifacts in the plot for 1536 × 1536 modes show that the
simulation has not converged. This is not evident from the velocity curves and underlines
the importance of analyzing the fields themselves when testing for convergence.
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A converged simulation is shown in Fig. 4.1 for 3072 × 3072 modes on a 100 × 100 domain.
We choose this resolution for simulations where 104 < Ra ≤ 106.

(a) Convergence with number of modes on a
100× 100 domain.

(b) Cross section of particle density θ at y = 0,
t = 8.0, Ra =106

Figure 20: Convergence with respect to number of modes for Ra = 106

4.2 Parameter scan

We now redo the simulations from Tab. 6 with the previously identified simulation parameters.
This parameter scan is listed in Tab. 10.

Run Resolution Domain ∆t κ µ Ra(κ, µ)

1 512× 512 200× 200 10−3 5× 10−1 5× 10−1 4× 100

2 512× 512 200× 200 10−3 2× 10−1 2× 10−1 2.5× 101

3 512× 512 200× 200 10−3 10−1 10−1 102

4 1024× 1024 100× 100 10−3 5× 10−2 5× 10−2 4× 102

5 1024× 1024 100× 100 10−3 2× 10−2 2× 10−2 2.5× 103

6 1024× 1024 100× 100 10−3 10−2 10−2 104

7 3072× 3072 100× 100 10−3 5× 10−3 5× 10−3 4× 104

8 3072× 3072 100× 100 10−4 2× 10−3 2× 10−3 2.5× 105

9 3072× 3072 100× 100 10−4 10−3 10−3 106

10 4096× 4096 100× 100 10−4 5× 10−4 5× 10−4 4× 106

11 4096× 4096 100× 100 10−4 2× 10−4 2× 10−4 2.5× 107

12 4096× 4096 100× 100 10−4 10−4 10−4 108

Table 10: Rayleigh number parameter scan with a low resolution parameter set.

For different regions of Rayleigh numbers we find quiet a different behavior of the blob. We
begin by discussing some characteristic blob evolutions for different Rayleigh numbers.
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4 VARIATION OF RAYLEIGH NUMBER

Discussion of blob evolution for Ra = 102 Blob movement with low Rayleigh numbers
is characterized by dominant collisional diffusion. This diffusion inhibits the charge polar-
ization of the interchange mechanism, so that radial advection is damped. The radial COM
coordinate and velocity for simulation # 3 are presented in Fig. 21.

(a) COM position (b) COM velocity

Figure 21: COM coordinates for Ra =102, simulation # 3 from Tab. 10.

The blob is immediately advected radially outwards by interchange motions as shown in
Fig. 22. At t = 5 we see that the initially gaussian blob structure has shifted its peak some
4 units radially outward and measures now some 8 units along the poloidal and some 6 units
along the radial direction. At the front a density peak has developed with a steeper gradient
radially outwards than inwards. Its vertical gradients cause faster interchange motions by
which vorticity is created. At the same time the plasma follows the electrostatic field lines.
Differential rotation with different directions of rotation in the upper and lower half plane
cause a poloidal spreading of the blob structure.
The vorticity profile has also diffused. It is drawn together to the center front of the blob
and has spread apart at the right end of the blob.
At t = 15 the blob is bulged out in the radial direction, at the front there is a large horizontal
density gradient. The vertical density gradients that have formed in the arms cause advection
of vorticity outwards in the poloidal direction. The vorticity extrema are positioned right
behind the high density plateau of the bulge structure. Notice that the vorticity has grown
in amplitude from some 0.3 at t = 0.5 to some 0.9 at t = 15, this causes a growing swirling
in the upper and lower part of the blob.
The electric potential gives the flow lines for the plasma.

At t = 20 we see that the particle density peak amplitude of the blob has decayed to ca 0.1,
which is 10% of the initial maximum. More plasma is transported to the vorticity maxima
centers, which is right behind the maximum density of the plasma.
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4.2 Parameter scan

(a) Initial density, t = 0.0 (b) Density, t = 5.0

(c) Density, t = 15.0 (d) Density, t = 20.0

Figure 22: Evolution of density for Ra = 102
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(a) Vorticity, t = 5.0 (b) Potential, t = 5.0

(c) Vorticity, t = 15.0 (d) Potential, t = 15.0

Figure 23: Evolution of vorticity and potential for Ra = 102
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Discussion of blob evolution for Ra = 104 Increasing the effective buoyancy forces, re-
produces the initial blob evolution for the low Rayleigh number case. We see a radial motion
of the blob structure due to plasma polarization. During first 5 interchange time units, the
evolution is comparable to the previous case. At later times though we see some significant
changes. The upper and lower arms of the blob curl inwards and have large gradients for
θ, the density increases and decreases over a very small spatial scale in the arms. This be-
havior creates a vorticity double layer through the interchange term and also contributes to
increased mixing in the arm region.
Vorticity is also carried along the plasma outwards into the arms, where it causes a spiraling
behavior of the arms.

(a) COM position (b) COM velocity

Figure 24: COM coordinates for Ra =104, simulation # 6 from Tab. 10.

At t = 10.0 we see that the blob as curved more than it did for Ra = 102 as shown in
Fig. 25(a) The arms have curled inwards and we see a slight trail going radially inwards from
the mushroom C cap. Plasma transport along the potential curves has increased causing the
poloidal gradients in θ to generate more vorticity.
In the upper half it has curled counterclockwise inwards, and has stretched some 2 units
further outward along the poloidal direction. This movement of the vorticity maxima is what
causes the (counter–) clockwise curling of the blob arms. The vorticity structure has moved
along with the particle density front as shown in Fig. 25(c).
At t = 15.0 we find that the particle density peak at the front of the blob has decreased
considerably. The density profile for t = 15 is presented in Fig. 25(b), the vorticity profile is
presented in Fig. 25(d).

Most of the plasma has been transported into the upper and lower lobe . Differential rota-
tion has been transported into the curled up structures and inhibits secondary polarization
of these structures. The connecting bridge between the upper and lower lobe has thinned
out. The density has now spread over some 12 units in the poloidal and over some 8 units
along the radial direction.
At later times the diffusive character of the plasma begins to dominate. We see further
spreading of the structure which reduce poloidal density gradients, thus dampening inter-
change motions and vorticity generation.
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(a) Density, t = 10.0 (b) Density, t = 15.0

(c) Vorticity, t = 10.0 (d) Vorticity, t = 15.0

Figure 25: Evolution of density and vorticity for Ra = 104

Discussion of blob evolution for Ra = 106 Increasing the Rayleigh number to 106 gives
a similar initial blob evolution as in the previous cases. The COM velocity in Fig. 29 presents
a distinct maximum, that is followed by a region, where VX varies only little. This is different
from Fig. 24, where the COM velocity decreases continuously after the blob has reached its
peak velocity.

(a) COM position (b) COM velocity

Figure 26: COM coordinates for Ra =106
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(a) Particle density, at
t(VX = max(VX)) t = 5.0

(b) Emission of a secondary blob at
t = 18.0

Figure 27: Blob evolution for Ra = 106, simulation # 9 from Tab. 10.

A major difference is the density distribution. Due to a more rapid radial velocity, most
of the plasma accumulates at the blob front. Steeper gradients in the poloidal and radial
direction are the result. The curling behavior in the arms is the same, but the evolution of
the front differs. Due to charge polarization at the center of the front, a plasma accumulation
forms and leaves the first plasma blob with a high velocity in the radial direction. In Fig. 27
we show the blob at its time of maximum velocity and when it emits the secondary blob.
We see that it is strongly dissipated and shows fine scale structures at the lobes. In Fig. 28
we present cross section at the symmetry axis y = 0 for the blob structure and the radial
component of the electric drift, −φy. This shows that the maximal velocity lags behind the
blobs density front, amounting particles at the front. The maximum electric drift velocity
increases, leading to a steep front. At t = 18.0, when a secondary blob is emitted from the
front, we see a local increase in the radial electric drift component at the same position,
where the density front is. We also observe a local maximum at t = 18.0 in the COM velocity
curves in Fig. 26.

(a) t = 5.0 (b) t = 18.0

Figure 28: E × B velocity and θ cross sections at y = 0 for simulation with Ra = 106 on a
100× 100 domain with 3072× 3072 modes resolution.
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4.3 Scaling properties

Quantifying the changes the blob makes over the range of Rayleigh numbers we simulated
gives an insight into the nature of the blob dynamics. Comparing velocity curves in Fig. 29 we
find, that the maximum for VX becomes more pronounced with increasing Rayleigh number.
Depending on the strength of the collisional forces, the time where the blob reaches its
peak velocity decreases. Also does max(VX) increase with increasing Rayleigh number. The
evolution after its peak velocity is also different for various Rayleigh number. For lower
Rayleigh numbers, the curve is smooth and shows only slight variations from a uniform
decline. This is what we saw in the surface plots for the density in the earlier discussions. For
larger Rayleigh numbers, we saw a different behavior. Here the strong collisional diffusion
prevents the blob structure from distorting due to non-linear mixing. Ths blob structure
maintains a coherent blob-like shape.

Figure 29: Radial COM velocities for all simulations from Tab. 10. The velocities increase
with increasing Rayleigh number.

In Fig. 30(a) we present the scaling of VX with Ra and compare our results to earlier results
from [15]. At about Ra = 105 we see a transition into a regime, where the velocity varies only
little with increasing Rayleigh number. Here max(VX) approaches a limit velocity slightly
less than one. Averaging max(VX) for Ra ≥ 105 from this figure yields 0.858 as a limit. We
find a similar behavior for t(VX = max(VX)) . For Ra & 105, the plasma blob reaches its
peak velocity at t ≈ 5 ideal interchange units. The results obtained in this parameter study
agree with earlier obtained numerical results. This indicates that results from the developed
numerical code are reliable.
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4.3 Scaling properties

(a) max(VX) scaling with Rayleigh number (b) t(VX = max(VX)) scaling with Rayleigh
number

Figure 30: Scaling of max(VX) and t(VX = max(VX)) with increasing Rayleigh number
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5 SHEATH DISSIPATION EFFECTS

5 Sheath dissipation effects

Here we study the effects of the parallel sheath current on the blob dynamics. Our interest
is a quantitative figure of the blob dynamics and velocity scaling with the sheath dissipation
parameter. We introduce the sheath dissipation term on the right hand side of the model
equations as discussed in Sec. 2.6.4. The most obvious effect this parameter has on blob
dynamics, is the dampening of long wavelengths. Neglecting the non-linear terms of Eqn. (47),
its Fourier transformation reads:

∂Ω̂k

∂t
= −ky θ̂k − µk2

⊥ −
σ

k2
⊥

Ω̂k.

This shows that the time evolution of long wavelength terms are attenuated. Equivalent to
this is a attenuation of large scales structures on blob dynamics. The strength with which
long wavelengths are damped increases with increasing sheath dissipation parameter.
First in this section, we present a convergence scan for blob simulations with sheath dissi-
pation for the linear model. We proceed by discussing the simulation results, focusing on
blob evolution and radial COM dynamics of the blob. We then present results for a scaling
analysis for the observed parameters with σ and Ra . A physical interpretation of the results
is presented in Sec. 8.4.

5.1 Convergence test

Dampening of large length scales causes the electrostatic potential φ to decay strongly in
magnitude towards the simulation domain boundaries. Its length scale is now given by the
blob size and not the initial size. This allows the domains we test for convergence on to be
much smaller than in the previous sections. It also decreases the demands on the number of
modes we have to use to achieve convergence. Tab. 11 lists the simulation parameters we
test for convergence. Since the dampening of long wavelengths in the system increases with
increasing sheath dissipation parameter, we extrapolate the found simulation parameters for
a converged simulation to the next value of σ we tested for convergence. For a given Rayleigh
number, we use the simulation parameters we determined for σ = 0.01 for simulations with
0.1 ≥ σ < 0.1, the simulation parameters determined for σ = 0.1 for all simulations with
0.1 ≥ σ < 1.0 and so on.

run # Ra σ Domain size Resolution

1 a/b/c 102 /104 /106 0.01 /1 30× 30 512× 512
2 a/b/c 102 /104 /106 0.1 /1 50× 50 512× 512

3 a/b/c 102 /104 /106 1.0 /1 30× 30 768× 768
4 a/b/c 102 /104 /106 10.0 /1 30× 30 1024× 1024

Table 11: Convergence test for sheath dissipation. All runs have tend = 10.
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5.1 Convergence test

Convergence for Ra = 102 Analyzing the domain variation we find, that already for
a sheath dissipation parameter of σ = 0.1, the electrostatic potential has vanished at the
boundaries of the simulation domain on a 30× 30 domain. Consequently, a lower resolution
than in simulations without sheath dissipation is sufficient for convergence. The COM velocity
curves for resolutions 512×512, 768×768 and 1024×1024 modes resolution are presented in
fig.(31(b)). No significant difference is recognizable, the surface plots for all three simulation
also show no signs of artifacts from insufficient resolution. For Rayleigh numbers Ra = 102

we use a resolution of 1024× 1024 modes on a 100× 100 domain for all values of σ < 0.1 and
a resolution of 768× 768 modes on a 30× 30 domain for all values of σ ≥ 0.1.

(a) Decay of the electrostatic potential φ. (b) Convergence for number of modes,
max(VX) is marked with a vertical line.

Figure 31: Decay of φ and convergence with respect to number of modes for Ra = 102, σ = 10
.

Convergence for Ra = 104 and Ra = 106 Increasing the Rayleigh number does not affect
the spatial scales of the potential as discussed before. We find the same convergence behavior
with respect to domain size for all higher Rayleigh numbers. Convergence with respect to
number of modes is shown in Fig. 5.1. We use a resolution of 2048×2048 modes on a 100×100
domain for σ < 0.1 and a resolution of 1024× 1024 on a 30× 30 domain for σ ≤ 0.1.

(a) Convergence for Ra = 104, σ = 0.2 (b) Convergence for Ra = 106, σ = 0.2

Figure 32: Convergence for radial COM velocity with number of modes.

57



5 SHEATH DISSIPATION EFFECTS

5.2 Sheath dissipation parameter scan

We proceed by analyzing blob dynamics with varying the sheath dissipation parameter σ for
a fixed Rayleigh number and unity Prandtl number. We use the determined resolution from
the convergence studies and vary σ for different Rayleigh numbers, as shown in tab.(5.2).
Solutions of the two field model are written out every 0.5 time units, diagnostic output is
written out every 0.01 time units. A uniform time step of ∆t = 10−3 was used for all
simulations.

Run Ra σ tend

1 / 11 / 21 102 /104 /106 1× 10−2 30
2 / 12 / 22 102 /104 /106 2× 10−2 30
3 / 13 / 23 102 /104 /106 5× 10−2 30
4 / 14 / 24 102 /104 /106 1× 10−1 30
5 / 15 / 25 102 /104 /106 2× 10−1 30
6 / 16 / 26 102 /104 /106 5× 10−1 30
7 / 17 / 27 102 /104 /106 1× 100 30
8 / 18 / 28 102 /104 /106 2× 100 30
9 / 19 / 29 102 /104 /106 5× 100 30
10 / 20 / 30 102 /104 /106 10× 101 30

Table 12: Sheath dissipation parameter scan in σ

Discussion, σ = 0.1 In Fig. 33 we present simulations with a sheath dissipation coefficient
σ = 0.1 for Ra = 102 and Ra = 106. Blobs with a small Rayleigh number and low sheath
dissipation parameter show a pronounced diffusive behavior. They move radially outwards
with a low velocity and bend only slightly into the characteristic mushroom shape. For
medium Rayleigh number the mushroom shape evolves clearly. The structure is elongated in
the radial direction and the front is unstable to the Rayleigh Taylor mode. We see the forma-
tion of a secondary blob structure that disconnects from the front region of the initial blob.
The curling of the arms is strongly dampened as they are transported vertically outwards.
For large Rayleigh numbers we see an increased curling behavior of the arms compared to
medium Rayleigh numbers. At the front we observe a cascade of secondary blob emissions
due to Rayleigh Taylor instabilities. Due to small scale flows, the blob structures show large
dispersion in the radial direction.
Additionally, we see that the electrostatic potential has local extrema both, at the primary
and the secondary blob structure. Plasma is coherently transported along the radial direction
within the blob structure along the potential lines.

In Fig. 34 we compare the center of mass coordinates between all three simulations. At low
Rayleigh number there is a distinct peak velocity followed by a monotonous deceleration
phase. Simulations with medium Rayleigh numbers show the same behavior, but also feature
additional acceleration phases after the deceleration, after t ≈ 12. Emissions of secondary
blobs from the unstable blob front cause the variations with multiple peaks. Emissions of
these blobs are shown in Fig. 33(b).
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5.2 Sheath dissipation parameter scan

(a) Particle density Ra = 102, t = 15.0 (b) Particle density Ra = 106, t = 15.0

(c) Electrostatic potential Ra = 102,
t = 15.0

(d) Electrostatic potential Ra = 106,
t = 15.0

Figure 33: Particle density and electrostatic potential profiles with sheath dissipation param-
eter σ = 0.1. The simulation with Ra = 102 shows little blob movement, the simulation with
Ra = 106 has emitted a secondary blob structure at the front.

(a) COM position (b) COM velocity

Figure 34: Center of mass coordinates for simulations with σ = 0.1
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5 SHEATH DISSIPATION EFFECTS

(a) Particle density n, Ra = 102, t = 30.0 (b) Electrostatic potential φ, Ra = 102,
t = 30.0

(c) Particle density n, Ra = 106, t = 30.0 (d) Electrostatic potential φ, Ra = 106,
t = 30.0

Figure 35: Blob evolution for σ = 1.0, Ra = 102 and Ra = 106.

Discussion, σ = 1.0 Intermediate sheath dissipation parameters have significant influences
on blob evolution. In Fig. 35 we present the particle density for Ra = 102 and Ra = 106 to
demonstrate the effect of sheath connected currents on the blob evolution.
For small Rayleigh number we observe that the blob shows a dominant diffusive behaviour.
Its diameter has nearly doubled and the peak amplitude has decayed from 1.0 at t = 0 to
max(θ) ≈ 0.135 at t = 30.0. The blob presents no significant radial elongation and keeps its
initial radial shape for 30 ideal interchange time units, shown in Fig. 35(a).
For intermediate Rayleigh numbers we see a strong dampening of dissipation along the
poloidal direction. Lobes that were observed in previous simulations for Ra = 104 do not
emerge from the initial gaussian structure and the diffusion in the poloidal direction is weak.
We observe a strong horizontal elongation of the blob structure. For large Rayleigh numbers,
the simulations show a blob structure that shows pronounced radial dispersion. Lobes form
along the poloidal direction, but are not transported outwards, due to attenuated large scale
transport, as it happens without sheath dissipation. The front of the blob develops a typical
mushroom shape and is hastily transported radially outwards. A cascade of Rayleigh Taylor
instabilities lead to the development of several secondary plasma blobs that eject themselves
from the front of the mushroom.
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5.2 Sheath dissipation parameter scan

In Fig. 36 we present the center of mass coordinates for different Rayleigh numbers with
σ = 1.0. The small Rayleigh number simulation features a distinct peak velocity in the initial
motion and a monotonic deceleration afterwards. Sheath dissipation has a strong influence
on the blob velocity, its peak velocity has decreased from approximately max(VX) ≈ 0.6 at
t ≈ 7.5 without sheath dissipation, to max(VX) ≈ 0.1 at t ≈ 1.5 with σ = 1.0, compared to
Fig. 21.

The medium Rayleigh number features a velocity plateau from t ≈ 4 − 8 ideal interchange
times. In this phase the blob front travels outwards faster than the surrounding of the blob,
ejecting itself from the bulk plasma. This behavior can be interpreted as a Rayleigh-Taylor
instability where the formation of a blob is enhanced and the bulk plasma is accelerated
outwards. This accelerated plasma leaves behind a particle density tail that moves at a low
velocity, further elongating the plasma filament. In Fig. 37 we present the evolution of the
cross section of particle density and radial drift velocity at the symmetry axis y = 0. For
t = 10.0 the velocity profile has two peaks. At x = 2 the velocity peak is stationary while
the peak at x = 4 is moving radially outwards. It grows in amplitude and comes to a stop at
t = 20. It extends in spatial extension and at t = 30 we see that it splits up, with another
peak moving radially outwards. The particle density profile develops accordingly. We see an
increased density to the right of the velocity peaks.
This form of behavior can also be found in Fig. 35(c). In this simulation the blob structure
has been subject to multiple emissions of secondary blobs from the blob front.

Simulations with a large Rayleigh number show a velocity curve with more peaks after the
initial peak.
We see the same characteristic behavior as for Ra = 104, with increased occurrence of blob
emissions from the structures front. The velocity curve evolution is comparable to the curves
with lower Rayleigh number, instabilities begin to occur at t ≈ 5.0. After this time, we
observe that the front is subject to a cascade of Rayleigh Taylor instabilities. Due to small
collisional diffusion and viscosity, lobes form in the regions where secondary blobs left the
bulk plasma.

(a) Radial COM position (b) Radial COM velocity

Figure 36: Center of mass coordinates for simulations with σ = 1.0.
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5 SHEATH DISSIPATION EFFECTS

(a) Particle density

.
(b) Radial E ×B velocity

Figure 37: Evolution of profiles at the symmetry axis y = 0 for Ra = 104 and σ = 0.1

(a) COM position (b) COM velocity

Figure 38: Center of mass coordinates for simulations with σ = 10.0

Discussion, σ = 10.0 The effect of large sheath dissipation on radial blob dynamics is
shown in Fig. 38. For all Rayleigh numbers, the radial motion almost comes to a full stop.
Blob movement in this regime features a short initial acceleration phase, where the blobs
reach only low velocities.
For Ra = 102, the blob decelerates to a full stop, whereas for Ra = 104, the blob decelerates
only little after reaching its peak velocity of max(VX) ≈ 0.02 at t ≈ 1.2.

Large Rayleigh number simulations show the same initial acceleration phase. After the blob
velocity stagnates at a plateau from t ≈ 2.0− 5.0, we see a large increase in VX . The surface
plots of the blob evolution in Fig. 39 show that the blob does not move as a bulk structure,
but rather a tilting of the particle density maximum outwards. This tilting is elucidated by
Fig. 40. The figures for t = 10 show a that the particle density builds a steep front with the
maximum radial velocity being behind this front. The electrostatic potential in Fig. 39(b)
also shows that plasma is transported along the center y = 0 towards the front of the blob.
The front becomes unstable to the Rayleigh-Taylor instability and detaches from the original
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5.2 Sheath dissipation parameter scan

(a) Particle density, t = 10.0 (b) Electrostatic potential, t = 10.0

(c) Particle density, t = 20.0 (d) Electrostatic potential, t = 20.0

Figure 39: Particle density and electrostatic potential for Ra = 106 and σ = 10.0.

blob, which rests at its initial position, as shown in Fig. 39(c). The radial velocity at y = 0
is maximal at x ≈ 2 for t = 20, plasma particles are transported from the original blob to
the secondary blob front.
The further evolution of the blob is shows a cascade of secondary blobs being emitted from
the front. At t = 30 we see multiple local particle density maxima in Fig. 40(a). The particel
density at the origin has decayed to less than half its initial value, while the particle density
at the front of the structure is larger than the initial particle density maximum. The radial
velocity cross section in Fig. 40(b) shows multiple velocity peaks.

All simulations with σ = 10 have shown the strong dampening, coherent plasma structures
experience in their radial motion due to sheath currents. They act as a sink for the kinetic
energy in the simulation domain.
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5 SHEATH DISSIPATION EFFECTS

(a) Particle density cross sections (b) Radial E ×B velocity

Figure 40: Evolution of profiles at the symmetry axis y = 0 for Ra = 106 and σ = 10

5.3 Scaling behavior

In Fig. 5.3 we present the COM velocity curves for all simulations in Tab. 5.2. We clearly see
the dissipative effect parallel currents have on the blobs initial dynamics. Both, max(VX) and
the length of the initial acceleration phase decrease significantly with increasing sheath dis-
sipation parameter. This effect is most pronounced for simulations with Ra = 102 and
diminishes with increasing Rayleigh number.

To quantify the effect of σ on max(VX) and t(VX = max(VX)) , we first present the method,
how we define max(VX) . Simulations for Ra = 104 and σ ≥ 1, as well as simulations for
Ra = 106 and σ ≥ 0.5 do not present a pronounced maximum velocity. Instead they present
intervalls, where blob acceleration stagnates. These intervalls are due to the radial elongation
the blobs showed in simulations. We are interested in max(VX) in the phase of blob evolution,
where the blob shows a strongly localized structure.

To do so, we define a cutoff parameter for the COM curves, tmax = minti{tiwhereVX
′(ti) =

min}. That is, we determine the time, where the derivative of VX is minimal. This assumes
that there is an inflection point in the VX curve, before blob dynamics are dominated by
instabilities. We identify max(VX) then in the interval [0 : tmax]. The cutoff parameters
are shown for simulations with all Rayleigh numbers and σ ≥ 0.5 in Fig. 45. This method
yields acceptable cutoff times, still for some simulations a cutoff was set manually. All
simulations with σ ≤ 0.2 present a clear maximum. Here we determined max(VX) over the
whole VX curve. The error we include with this method is small, max(VX) varies little over
the phase, where the blob acceleration stagnates.
The result of the analysis for the simulation from Tab. 5.2 is presented in Fig. 42. We find
that for σ ≥ 0.5, max(VX) (σ) is suitable described with a power law:

max(VX) (σ) = ασβ (74)

, with β ≤ 0. The results of a least squres fit for max(VX) on σ = [0.5 : 10] are presented
in Fig. 42(a). The obtained results from the fit are almost exact. We find that for an in-
creasing Rayleigh number, the exponent β approaches negative one, while the linear factor

64



5.3 Scaling behavior

(a) Ra = 102 (b) Ra = 104

(c) Ra = 106

Figure 41: Radial COM velocities for varying sheath dissipation parameter σ

α approaches 0.2.
An analysis of the initial acceleration phase of the blob with increasing sheath dissipation co-
efficient reveals a similar behavior. Here, the problems with determining t(VX = max(VX)) is
more significant than for determining max(VX) . The large time intervalls over which radial
blob velocity stagnates do not allow a proper determination of t(VX = max(VX)) . Due to
this large error, we choose not to quantify the functional relation t(VX = max(VX)) (σ). From
Fig. 42(b) we see, that a power law as in Eqn. (74) is a good assumption.

To further elucidate the behavior with of max(VX) for large σ, we run simulations with
Ra = 4×104, Ra = 2.5×105 and Ra = 108 and unit Prandtl number for σ = 0.5, 1.0, 2.0, 5.0
and 10.0. Simulation parameters are the same as for run # 26 – # 30 from Tab. 5.2. Deter-
mining max(VX) and t(VX = max(VX)) is done with the same procedure as for simulations
with Ra = 102, Ra = 104 and Ra = 106. The position of tmax is marked with a black circle
in Fig. 45.
We find similar decrease in max(VX) with increasing σ, as shown in Fig. 42(a), radial blob
dynamics are damped increasingly, with increasing σ.
We now study the effect the sheath dissipation parameter σ has on blob dynamics in different
regimes of Rayleigh numbers. The maximal radial COM velocity dependent on the Rayleigh
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5 SHEATH DISSIPATION EFFECTS

(a) Scaling of max(VX) with increasing
sheath dissipation parameter

(b) Scaling of t(VX = max(VX)) with
increasing sheath dissipation parameter

Figure 42: Radial COM velocity scaling properties with sheath dissipation coefficient.

number is presented for different sheath dissipation parameters in Fig. 43. We find, that
the Rayleigh number gives a significant variation of max(VX) for σ = 0.5, whereas for large
values of σ, the influence of Ra on max(VX) is negligible. For all values of σ we find that the
maximum velocity becomes independent of Ra and approaches a theoretical maximum that
is a function of σ.

Figure 43: Scaling of max(VX) with Rayleigh number for different values of σ.

This trend can also be observed in the decay of max(VX) with increasing σ for a fixed Rayleigh
number. Least squares fits for max(VX) on the interval σ = [1 : 10] for Ra = 4×104, 2.5×105

are executed and the obtained fit parameters are almost exact. In Fig. 44 we present the found
fit parameters for Ra = 102, 104, 4 × 104, 2.5 × 104 and 106. We find that the fit coefficient
α asymptotically approaches a numerical value of α0 ≈ 0.24 from below for Ra → ∞. The
fit exponent β shows a decays to a value of β0 ≈ −1.0 for Ra →∞.
The scaling found is similar to the scaling presented in Fig. 30, in the sense, that a parameter
converges to a limit for increasing Rayleigh number.
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5.3 Scaling behavior

(a) Coefficient α (b) Exponent β

Figure 44: Variation of fit parameters of Eqn. (74) with Rayleigh number.
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5 SHEATH DISSIPATION EFFECTS

(a) VX for different Rayleigh numbers and
σ = 0.5. Cutoff parameter for Ra = 106

is manually set to t = 7.0.

(b) VX for different Rayleigh numbers and
σ = 1. Cutoff parameter for Ra = 104

is manually set to t = 7.7.

(c) VX for different Rayleigh numbers and
σ = 2. Cutoff parameters for Ra > 104

are manually set to t = 4.0.

(d) VX for different Rayleigh numbers and
σ = 5. Cutoff parameter for Ra = 104

is set manually to t = 3.0

(e) VX for different Rayleigh numbers and
σ = 10

Figure 45: COM velocities used. The position of the cutoff parameter tmax for each curve is
marked with a black circle.
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6 Simulations with large blob amplitude

We now turn our attention to the non-linearized model from Sec. 2.6.3: We use the term
non-linearized, to denote that we did not linearize the interchange term. The model equa-
tions are still non-linear themselves.
Again, we simulate the evolution of an initial gaussian particle density profile. For these sim-
ulations, we have three free parameters: the relative particle density perturbation amplitude
η̂ and the diffusion coefficients for vorticity µ and particle density, κ. Initial values θ and Ω
are provided by:

θ(x, y) = 1 + η̂ exp

Ç
−x

2 + y2

2

å
Ω(x, y) = 0.

We study the effects large amplitude has on blob motions and scaling properties of the plasma
flux with this parameter. The effects of varying diffusion parameters are thoroughly discussed
for the linearized model. In Sec. 6.4 we study the effects of sheath dissipation for large blob
amplitude.
In this text we use η̂ and ∆θ/Θ synonymous for the blob amplitude. As described previously,
this model features a non-linear interchange term. This gives a different normalization for the
ideal interchange time. The parameters κ and µ, as well as the time units used in simulations
are not directly comparable between the models. When we denote the time used in the non-
linearized model with tnl and the diffusion coefficients used in the non-linearized model with
κ and µ, we find the corresponding quantities tl, κ

′ and µ′ of the linearized model via:

tl = tnl ×
√
η̂ ,

κ′ = κ/
√
η̂ ,

µ′ = µ/
√
η̂ . (75)

From the discussion in Sec. 3.6 we take, that the radial center of mass velocity, VX is directly
comparable between the models, since we remove the background particle density when com-
puting VX for the non-linearized model. Note that plots presenting simulation results from
both models simultaneously, the results are subject to a different normalization and are not
to compare directly.

6.1 Convergence study

Convergence tests for this model follow the outline presented in the previous sections. For a
fixed characteristic particle density perturbation η̂ , we increase the simulation domain until
finite size effects on the electrostatic potential are negligible. We then proceed by increasing
the number of spectral modes, until the changes in the COM velocity curve are insignificant
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6 SIMULATIONS WITH LARGE BLOB AMPLITUDE

and no evidence of an under-resolved simulation are visible in the particle density field and
its cross section at y = 0.
From the parameter scan in Sec. 4 we remember that an increasing Rayleigh number increases
the demands for the number of modes. The discussion above shows, that increasing the
particle density perturbation amplitude for the non-linearized model implies increasing the
Rayleigh number for the linearized model. Simulations with increasing values of η̂ increases
demand on computational cost in the same sense as it increases with increasing Rayleigh
number. We test convergence for simulations with η̂ = 0.1, 1.0 and 10.0. Simulations with
intermediate values of η̂ are run with parameters that yield a converged simulation for the
next larger value of η̂ we have tested convergence for.
Previous convergence runs were run until tend = 8.0, translated values of tend for the non-
linearized model are 25.0, 8.0 and 2.6 for η̂ = 0.1, 1.0, 10.0. We have chosen longer simulation
times to study convergence in the regime when the blob structure has strongly dispersed.
In Tab. 13 we present the simulation parameters that are tested for convergence in the sense
described above. Simulation parameters that have converged with respect to resolution and
domain size are denoted with a

√
.

η̂ Domain size Resolution tend Converged

0.1 / 1.0 / 10.0 200× 200 512× 512 30.0 / 10.0 / 10.0 - / - / -
0.1 / 1.0 / 10.0 200× 200 768× 768 30.0 / 10.0 / 10.0 - / - / -

0.1 / 1.0 / 10.0 100× 100 1024× 1024 30.0 / 10.0 / 10.0 - / - / -
0.1 / 1.0 / 10.0 100× 100 1536× 1536 30.0 / 10.0 / 10.0

√
/ - / -

0.1 / 1.0 / 10.0 100× 100 2048× 2048 30.0 / 10.0 / 10.0
√

/ - / -

1.0 / 10.0 100× 100 2560× 2560 10.0 / 10.0
√

/ -

10.0 100× 100 3072× 3072 10.0
√

10.0 100× 100 4096× 4096 10.0
√

Table 13: Convergence scan for non-linearized model. All simulations are run with κ = µ =
10−3 and a time step of ∆t = 10−3.

In Fig. 46 we show the cross-section of the electrostatic potential at the radial coordinate
where φ = maxφ for η̂ = 10.0. The finite size effects are visible for the smaller simulation
domain. On a 200 × 200 domain, the electrostatic potential has decayed to φ ≈ ±0.15 at
y = ±50, or ca. 0.1 % of its maximum at t = 3.0 and has a gradient of φy ≈ ±0.007.
Choosing a domain size of 100× 100 yields a gradient of φy ≈ ±0.013 at y = ±50. With this
domain size, finite size effects are larger than in simulations for the linearized model. On the
other hand, rises the computational demand with the simulation domain size, that renders
larger box sizes unfavorable.

We now determine the number of modes which give converged simulations. In fig.(47) we
present the radial COM velocity curves from the convergence scan and surface plots for θ.
The curves for VX show good convergence and the presented surface plots do not exhibit any
signs of insufficient resolution.

The simulation results show convergence for η̂ ≤ 0.1 for a resolution of 1536 × 1536 on a
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6.1 Convergence study

(a) Simulation domain 200× 200 (b) Simulation domain 100× 100

Figure 46: Decay of electrostatic potential φ for η̂ = 10

(a) Radial COM velocity for increasing
number of modes on a 100× 100
domain, η̂ = 1.0.

(b) Particle density θ for η̂ = 1.0, t = 10.0
2560× 2560 modes on a 100× 100
domain.

(c) Radial COM velocity for increasing
number of modes on a 100× 100
domain, η̂ = 10.0.

(d) Particle density θ for η̂ = 10.0, t = 10.0
3072× 3072 modes on a 100× 100
domain.

Figure 47: Results for convergence test for number of modes for the non-linearized model.

100 × 100 grid. An increased amplitude of η̂ = 1.0 requires 2560 × 2560 modes resolution,
and 3072× 3072 modes are required to converge simulations with 1.0 < η̂ ≤ 10.0, both on a
100 × 100 grid. From Fig. 46 see that a large blob amplitude has only a small effect on the
spatial extension of the electrostatic potential φ. It extends over the same spatial scales we
found in convergence studies for the linearized model.
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6 SIMULATIONS WITH LARGE BLOB AMPLITUDE

Run nr. η̂ tend max(VX) t(VX = max(VX) )

# 1 0.01 75.0 0.081880637 51.42
# 2 0.02 75.0 0.11721187 36.18
# 3 0.05 75.0 0.18684137 22.89
# 4 0.10 45.0 0.26399755 16.29
# 5 0.20 30.0 0.36993963 11.67
# 6 0.50 20.0 0.56511486 7.66
# 7 1.00 20.0 0.75994992 5.71
# 8 2.00 15.0 0.9947924 4.38
# 9 10.0 10.0 1.658917 2.80
#10 20.0 5.0 1.9743165 2.47
#11 50.0 5.0 2.399163 2.18
#12 100 5.0 2.7202127 2.03
#13 200 5.0 3.0378931 1.92
#13 500 5.0 3.4505634 1.80
#14 1000 5.0 3.7565880 1.74
#15 2000 5.0 4.0571766 1.68
#16 5000 5.0 4.4464970 1.63

Table 14: Relative amplitudes and simulation end times for non-linearized model simulations.
All simulations are run with κ = µ = 10−3.

6.2 Variation of relative amplitude

We begin by studying the effects a varying amplitude has on blob movements. All simu-
lations are run with κ = µ = 10−3 and a time step of ∆t = 10−3. Diagnostic output is
written out every 0.01 time units, full output every 0.5 time units. Resolution and domain
sizes determined in the previous section are used for the simulations. In Tab. 14 we list the
simulations executed and the time of the peak velocity. The end times of simulations #1 to
#10 are chosen, so that they roughly correspond to 15 ideal interchange times for the lin-
earized model. Simulations #10 to #17 are run with the same simulation parameters as were
determined in the convergence test for a characteristic particle density perturbation η̂ =10.
An analysis of cross sections at y = 0 and surface plots for θ showed no artefacts indicating
an under-resolved simulation.

Discussion for η̂ ≤ 1.0. Simulations with a blob amplitude of η̂ = 0.01 present all features
that were discussed in the simulation of the linearized model with Ra = 104 and Pr = 1.
Surface plots for θ and Ω for the linearized model were presented in Fig. 25. The blob moves
radially outward, the front steepens and plasma is transported along the isopotential lines
poloidally outwards to form lobes. Vorticity with different sign inherent to the lobes causes a
(counter-) clockwise rotation of the (lower) upper lobe. The lobes separate poloidally and the
mushroom shape flattens out during the radial outwards movement of the plasma filament.
In Fig. 48 we present the COM coordinates and velocities for simulations with η̂ ≤ 0.05.
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(a) COM position (b) COM velocity

Figure 48: Radial COM coordinate and velocity or η̂ = 0.01, 0.02 and 0.05.

We see a quick rise in max(VX) from 0.08 to 0.186 and the time where the blob travels at
maximum radial velocity decreases from 51.42 to 22.89 ideal interchange time units when η̂
increases from 0.01 to 0.05.
As mentioned previously, the simulation parameters κ = µ = 10−3 and η̂ = 0.01 translate to
κ′ = µ′ = 10−2 for the linearized model. When comparing blob dynamics for these models in
Fig. 49, we find that very small values of η̂ give a slightly decreased blob velocity, compared
to a simulation of the linearized model. Increasing η̂ 0.02, yields simulations, where blobs
travel faster than in the simulation with Ra = 104 in the linearized model. But η̂ = 0.02
gives also Ra′ = 2 × 104 for the linearized model. From previous discussion we know that
this yields also a slightly larger maximum radial COM velocity. The reference data used
in the plots are from run # 6 of Tab. 10. Overall, we find an excellent agreement between
simulation data from both models.

(a) COM position (b) COM velocity

Figure 49: Comparison if simulations from the linearized model to simulations of the non-
linearized model with η̂ ≤ 0.05.Times and velocities are scaled to units of the linearized
model.

For a blob amplitude of η̂ = 0.1 we see blob evolution that are similar to the previous simula-
tions. The blob develops a density front on the right side, owed to the location of the velocity
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6 SIMULATIONS WITH LARGE BLOB AMPLITUDE

peak behind the front. We also see the evolution of the lobes, which roll up in different
directions due to opposite sign of vorticity in the arms. Along the arms, a vorticity double
layer arises due to vertical particle density gradients. The features of the blob are not dif-
ferent from the features of a blob for a simulation with Ra = 104, which were shown in Fig. 25.

(a) COM coordinate (b) COM velocity

Figure 50: Radial COM coordinates for η̂ ≤ 1.0.

Discussion for amplitudes η̂ ≥ 1.0 Blob evolution for particle density perturbations
η̂ = 1.0 are similar to run #9 in Tab. 10 from Sec. 4.2. Translated to the linear model,
the viscosity and diffusion coefficients κ and µ are 10−3 in both models. Blob evolution is
characterized by a pronounced density front that is unstable to the Rayleigh-Taylor mode at
the front, and unstable to the Kelvin-Helmholtz mode at the lobes.

Blob evolution for larger values of η̂ continues the trend of thinner fronts, larger velocities
and earlier occurrence of instability driven behavior. In Fig. 51 we present the full particle
density and electrostatic potential for simulation # 9 from Tab. 14, where the blob is subject
to both discussed instabilities.

Fig. 52 presents the blob dynamics for large values of η̂ . The maximal radial COM velocity
increases with η̂ due to growing vertical gradients in the particle density for η̂ , yielding
stronger interchange motions. For η̂ ≥ 10 we find that the late blob evolution after the blob
has reached its peak show an increasing COM velocity due to Rayleigh-Taylor instabilities
at the blob front.
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(a) Particle density, θ (b) Electrostatic potential φ

Figure 51: Particle density and electrostatic potential for t = 10.0 with η̂ = 10.0, κ = µ =
10−3.

(a) COM coordinate (b) COM velocity

Figure 52: Radial COM coordinates for η̂ ≤ 20.0.

6.3 Scaling properties

The discussion above presented that the blob amplitude has a significant influence on the
blob dynamics. A comparison of the VX curves shows, that the radial velocity increases with
η̂ . In Fig. 53(a) we present the scaling of the radial COM velocity. The figure suggests a
power law relation for both max(VX) and t(VX = max(VX)) :

max(VX) = α× η̂ β

t(VX = max(VX)) = ε× η̂ ζ .

We read from the figure, that there are two regimes where the parameters α, β, ε, ζ will as-
sume different values.
For low values of relative amplitude, η̂ ∈ [0.01 : 0.2] we find α = 0.827 and β = 0.489, for
η̂ ∈ [50 : 1000] we find α = 1.380 and β = 0.146. The residuals squared per number of
degrees of freedom for the fits are of order O(10−6), which is practically exact. A larger blob
amplitude causes larger vertical particle density gradients and thereby stronger interchange
motions. One can speculate, that increasing velocity by this means is less effective for large
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6 SIMULATIONS WITH LARGE BLOB AMPLITUDE

blob amplitudes.

(a) max(VX) scaling with η̂ (b) max(VX) scaling with η̂

Figure 53: Scaling properties for η̂

Least squares fit for t(VX = max(VX)) yield ε = 5.151 and ζ = −0.499 for a fit over η̂ ∈
[0.01 : 0.2] and ε = 2.905 and ζ = 0.076 for η̂ ∈ [50 : 1000]. The residuals for this
least squares fit are of order O(10−3). From the convergence tests we discussed above in
this section we see, that on the chosen domain size of 100 × 100, finite size effects are still
relevant. Previous discussion showed that finite size effects have a more severe influence on
t(VX = max(VX)) than on max(VX) .
We found, that simulations for the non-linearized model show an excellent agreement with
simulations for the linearized model. The found prefactor α = 0.827 agrees with the limiting
velocity we found in Fig. 30, where we found 0.858 as a limit velocity. The break of the
scaling presented occurs at η̂ ≈ 1.0. This is anticipated, since our theory is valid only for
small values of η̂ , η̂ � 1.
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6.4 Sheath dissipation

6.4 Sheath dissipation

The effects of sheath dissipation on blob dynamics for the non-linearized model equations are
studied. We are interested in the velocity scaling with the sheath dissipation parameter. In
this chapter we present a short convergence test and present simulation parameters that yield
converged simulations with sheath dissipation for the non-linearized model. We proceed then
with a parameter scan for σ at fixed η̂ and discuss blob dynamics and evolution. Finally,
we investigate the scaling properties for VX . A discussion of their physical interpretation is
postponed to section Sec. 8.4.

The simulation setup is the same as in the previous section, but we include the sheath dis-
sipation term σφ in the vorticity equation. Initial conditions for the fields are the gaussian
structure for the particle density and a zero field for the vorticity.
The convergence behavior is similar to the previous sheath dissipation parameter scan. Long
spatial scales are suppressed by the φ̂k/k

2
⊥ term in the vorticity equations, thus small simula-

tion domains can be used for values of σ ≥ 0.01. The domain sizes and number of modes on
which convergence has been tested are listed in Tab. 15). The simulation domains used have
been tested for a vanishing electrostatic potential at the upper and lower poloidal boundaries
at times shortly before, at, and after the maximum velocity. Convergence with respect to
number of modes has been tested for by comparing the curves for VX and by examining
surface plots of θ for unphysical artefacts. Parameters that yield converged simulations are
marked in that table with a

√
.

η̂ σ Domain Modes Converged

0.1 1.0 20.0 0.1 50× 50 512× 512
√

0.1 1.0 20.0 0.1 50× 50 768× 768
√ √ √

0.1 1.0 20.0 0.1 50× 50 1024× 1024
√ √ √

0.1 1.0 20.0 1.0 20× 20 512× 512
√

0.1 1.0 20.0 1.0 20× 20 768× 768
√ √

0.1 1.0 20.0 1.0 20× 20 1024× 1024
√ √ √

Table 15: Convergence scan for sheath dissipation

In Fig. 54 we present COM velocity curves for several simulations to present the rate of
convergence with increasing number of modes. For all presented resolutions, max(VX) varies
very little with the change in spectral resolution. The time where the blob travels with
maximum velocity shows little variance as well. In the regime after max(VX) is attained,
the radial COM velocity curves show more variance. We therefore increase the resolution
to 1536 × 1536 modes in the parameter scan for simulations with η̂ ≥ 1 and σ ≥ 0.1. Only
max(VX) and t(VX = max(VX)) are used for quantitative analysis, we describe the late blob
evolution qualitatively.
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6 SIMULATIONS WITH LARGE BLOB AMPLITUDE

(a) COM velocity for η̂ = 0.1, σ = 0.1 (b) COM velocity for η̂ = 1.0, σ = 1.0

(c) COM velocity for η̂ = 20.0, σ = 0.1 (d) COM velocity for η̂ = 20.0, σ = 1.0

Figure 54: Convergence with respect to number of modes for different simulation parameters.
Simulation results are from the non-linearized model.

6.4.1 Parameter scan

We proceed by varying the sheath dissipation parameter σ for a fixed relative characteristic
particle density perturbation amplitude η̂ and for fixed diffusion and viscosity coefficient κ
and µ. In all simulations, we hold κ = 10−3 and µ = 10−3. A time step of ∆t = 10−3 is
used, diagnostic output is written out every 10−2 time units, full output is written out every
5× 10−1 time units. The simulations are presented in Tab. 16. We have chosen to run some
simulations with a large value of σ longer than others, so that we can discuss the late blob
evolution of these simulations.

In the previous section we have discussed that an increasing particle density perturbation has
significant influences on the time scales of the blob dynamics. Large perturbations give an
increased radial COM velocity. We now study how this effect competes with the dampening
induced by sheath dissipation.
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6.4 Sheath dissipation

η̂ σ tend

0.1 0.2 1 2 10 0.01 20 20 10 10 10
0.1 0.2 1 2 10 0.02 20 20 10 10 10
0.1 0.2 1 2 10 0.05 20 20 10 10 10
0.1 0.2 1 2 10 0.10 20 20 10 10 10
0.1 0.2 1 2 10 0.20 20 20 10 10 10
0.1 0.2 1 2 10 0.50 20 20 10 10 10
0.1 0.2 1 2 10 1.00 40 20 20 10 20
0.1 0.2 1 2 10 2.00 40 20 20 10 20
0.1 0.2 1 2 10 5.00 40 20 20 10 20
0.1 0.2 1 2 10 10.00 40 20 20 10 20
0.1 0.2 1 2 10 20.00 40 20 20 10 20
0.1 0.2 1 2 10 50.00 40 20 20 10 20
0.1 0.2 1 2 10 100.00 40 20 20 10 20

Table 16: Simulation parameters for sheath dissipation parameter scan with variable particle
density perturbation amplitude.

Discussion for sheath dissipation parameter σ = 0.1 Blob dynamics for different
values of η̂ are presented in Fig. 55. We see that small sheath currents habe a neglible effect
on the blob dynamics. Compared to Fig. 50 and Fig. 52 from the previous section, we see that
the maximal COM velocities are some 25 % lower than without sheath dissipation, through
the whole simulation, the blobs travel with a lower radial velocity. Sheath dissipation is
also responsible for the blobs reaching their maximum velocity earlier. The late evolution
of the simulation with η̂ = 10, after t ≈ 7 is dominated by a cascade of Rayleigh-Taylor
instabilities occurring at the blob front. In the late evolution, the COM velocity is strongly
reduced by sheath dissipation. Fig. 52 shows that without sheath dissipation the dispersed
blob structure travels with a COM velocity of the same magnitude as the coherent plasma
blob at peak velocity.

(a) Radial COM coordinate (b) Radial COM velocities

Figure 55: Radial COM coordinates for simulations of the non-linearized model with σ = 0.1
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6 SIMULATIONS WITH LARGE BLOB AMPLITUDE

Discussion for sheath dissipation parameters 1.0 ≤ σ < 10 .

(a) Radial COM coordinate (b) Radial COM velocities

Figure 56: Radial COM coordinates for simulations of the non-linearized model with σ = 1.0

Discussion for sheath dissipation parameter σ = 1 For sheath dissipation parameter
σ = 1, there is a strong attenuation of the blob dynamics. Comparing Fig. 56 to Fig. 50 and
Fig. 52 we see that max(VX) is some 50% slower for simulations with η̂ = 0.1, 1.0 and 10.0.
The simulations show also no deceleration of the blob after it reaches max(VX) . For η̂ =1.0,
another acceleration phase of the blob begins after t ≈ 5, where VX increases from VX ≈ 0.16
at t ≈ 5 to VX ≈ 0.19 at t ≈ 12. This acceleration is due to the blob front being subject to
the Rayleigh Taylor instability. Contour plots of the blob evolution are presented in Fig. 57.

Until t ≈ 5, the particle density maximum has moved radially outwards, whereas the bulk
plasma of the blob has moved only little. At t ≈ 5 a bulk motion of the plasma blob sets
in, giving an structure that is elongated over some 5 initial blob lengths. After 12 ideal
interchange times, the blob is a coherent structure with its bulk density traveling radially
outwards, shown in Fig. 57(a). Fig. 57(b) shows the electrostatic potential for the same time.
Compared to a simulation without sheath dissipation, Fig. 47(b), we see a fundamentally
different shape of the blob structure. Vertical gradients in particle density over a longer ra-
dial range cause the bulk plasma to build up a steep density front. This front is transported
radially outwards at a larger speed than the bulk plasma. Since the front holds large mass,
this increase is responsible for the continued increase in COM velocity. In Fig. 57(c) and
Fig. 57(d) we present the blob at t = 20 where it has been subject to a cascade of instabilities
at the front of the blob. The figure shows that the blob as a coherent structure, elongated
over some 7 initial blob length units.
Fig. 57 presents an electrostatic potential with a characteristic length scale comparable to the
blobs length scale. The spatially localized potential causes the blob to maintain a coherent
structure. Simulations without sheath dissipation and η̂ = 1.0, as in Fig. 47(b), show a blob
that extends over some 5 initial blob lengths in the poloidal direction.

A similar evolution occurs for a simulation with η̂ = 10 and σ = 1. The evolution after
the blob has reached its peak velocity at t ≈ 5 and has decelerated at t ≈ 7, is dominated
by instabilities. Large particle density gradients cause strong interchange motions that are

80



6.4 Sheath dissipation

(a) Particle density at t = 12.0 (b) Electrostatic at t = 12.0

(c) Particle density at t = 20.0 (d) Electrostatic potential at t = 20.0

Figure 57: Blob evolution for η̂ = 1.0, σ = 1.0

damped by the sheath currents. The blob structure is subject to instabilities at the front,
leading to a strong dispersion of the blob structure. From Fig. 56 we see, that at this point,
the blob has already travelled 7 initial blob length units.

Discussion for sheath dissipation parameters σ ≥ 10.0 Sheath dissipation parameters
σ ≥ 10 bring interchange motions almost to a complete halt. After a very quick initial accel-
eration, sheath dissipation damps further acceleration almost instantly and causes the blob to
travel radially outwards at a constant speed. Simulations with a particle density amplitude
η̂ ≥ 10, show that an acceleration in the COM velocity curves, presented in Fig. 58.

The secondary acceleration for η̂ = 10 is due to the finger instability, illustrated in Fig. 59.
This instability features plasma transport that is zero at the symmetry axis y = 0. Contour
plots of the electrostatic potential show a vanishing gradient φy = 0 at y = 0, so there is no
advection due to the E × B drift on this axis. Plasma is transported around this barrier at
y = 0.
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6 SIMULATIONS WITH LARGE BLOB AMPLITUDE

(a) Radial COM position (b) Radial COM velocities

Figure 58: Radial COM coordinates for simulations of the non-linearized model with σ = 10.0

(a) Particle density t = 15.0 (b) Electrostatic potential t = 15.0

(c) Particle density t = 20.0 (d) Electrostatic t = 20.0

Figure 59: Blob evolution for simulation with σ = 10.0, η̂ = 10.0. We see the finger instability
occur at the front of the blob.

6.4.2 Scaling properties

In the previous section we discussed qualitatively the dampening effect parallel electric cur-
rents have on the blob dynamics. We proceed by quantifying the effects sheath dissipation
has on blobs with variable amplitude. We then present the impacts on the velocity scaling
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with the blobs characteristic length l.
Determining max(VX) from the VX curves presents the same difficulties as discussed in
Sec. 5.3. With increasing η̂ , the blob dynamics transit into a regime that features no pro-
nounced maximum. Instead, the late blob dynamics features additional acceleration phases
and depend sensitively on the model parameters κ and µ. These are due to the instabilities
discussed in the previous subsections. We analyze the initial blob acceleration phase, since
this evolution is common to all simulations. To determine the peak velocity before the blob
enters this regime, we apply the same cutoff procedure as presented in Sec. 5.3. We define a
cut-off time tmax by determining the minimum of dVX /dt and find max(VX) on the interval
[0 : tmax]. This way, we find a good approximation for max(VX) after the initial acceleration
phase of the blob. This method yields acceptable results for t(VX = max(VX)) in most cases.
In Fig. 60 we present VX for simulations with η̂ = 10 and σ from 0.1 to 100. VX is drawn
in a solid green line, continued with a red dashed line for times t ≥ tmax. The position of
the used maxima max(VX) is denoted with a vertical black line. In case of σ = 2.0, we set
manually set tmax = 5.0 since the inflection point method was giving unusable results.

Figure 60: VX curves for η̂ =10, σ = 0.1 on the upper left plot and increases row wise over
the values listed in Tab. 16 to σ = 100 in the lowest graph. max(VX) is determined on the
interval denoted by the solid green line. For t ≥ tmax, the graph is continued with a dashed
red line. Vertical bars denote the position of max(VX) .

In Fig. 61(a) we present max(VX) as a function of the sheath dissipation parameter for
different values of the density perturbation amplitude. Values for which max(VX) could not
be exactly identified are presented by crosses not attached to the solid line. We find that
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η̂ α β ε ζ

0.1 0.023 −0.992 13.362 −0.805

0.2 0.045 −0.994 13.421 −0.809

1.0 0.175 −0.998 15.401 −0.875

2.0 0.281 −1.001 19.975 −0.977

10.0 0.584 −1.003 13.010 −1.001

Table 17: Results for least squares fit to Eqn. (76) over σ ∈ [5 : 100] and to Eqn. (77) over
σ ∈ [10 : 100].

.

max(VX) is decreasing with increasing sheath dissipation for a given value of η̂ . The form of
decrease suggests that for values of σ ≥ 5 there is a power law relation between max(VX) and
σ:

max(VX) (σ) = α× σβ (76)

The results of a least squares fit for a power law fit over σ ∈ [5 : 100] are presented in Tab. 17.
The square of the residuals per degree of freedom for this fit are typically O(10−6), the fit is
practically exact. We find that the exponent β shows only little variation while the coefficient
α shows a significant increase for increasing η̂ .
A similar fit for t(VX = max(VX)) is done on the domain σ ∈ [10 : 100]:

t(VX = max(VX)) (σ) = ε× σζ , (77)

the found fit parameters are in principle exact. The fit parameters ε and ζ are presented in
Tab. 17. The fit exponent ζ resembles the same trend as the fit exponent β, but much less
pronounced. We see a small decay of ζ from −0.992 for η̂ = 0.1 to −1.003 for η̂ = 10.0,
which indicates that this exponent approaches a limit slightly less than negative unity from
above. The fit coefficient ε increases for η̂ ≤ 2 and shows a sudden decrease for η̂ = 10. This
is anticipated from Fig. 61(b), where the VX curve for η̂ = 10 lies beneath the VX curves.
These results are discussed in context of experimental findings and results from the linearized
model in Sec. 8.4
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6.4 Sheath dissipation

(a) Scaling for max(VX) with σ. (b) Scaling for t(VX = max(VX) ) with σ.

Figure 61: COM velocity peak scaling with sheath dissipation parameter σ.
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7 Secondary instabilities in blob simulations

In the previous section we saw the formation of hydrodynamical instabilities in some sim-
ulations, the Rayleigh-Taylor instability at the front of a blob and the Kelvin-Helmholtz
instability at the arms of the blob. We now study these instabilities further. By choosing an
appropriate set of initial conditions we simulate both instabilities with the 2dads code and
determine growth rates of initial perturbations to the initial conditions.

We use the term secondary instabilities to denote instabilities with length scales of the plasma
blob. In this terms, a primary instability has a length scale associated to length scales of the
SOL is the plasma blob itself.
By providing initial conditions that are known to be unstable to the Kelvin-Helmholtz mode,
or the Rayleigh-Taylor mode respectively, and qualitatively comparing the resulting structures
to previous blob simulations, we show, that the secondary instabilities are correctly identified.

7.1 Kelvin-Helmholtz instability

Blob simulations with Ra & 106 and Pr = 1 showed that the blobs developed a mushroom
shape, which feature plasma lobes stretching along the poloidal direction. Along these lobes,
the vorticity Ω formes a double layer. It is this vorticity double layer that is unstable to the
Kelvin-Helmholtz mode and causes a twirling of the plasma in the lobes, as presented in for
example Fig. 51.

We observe that a vorticity double layer is unstable to the Kelvin Helmholtz mode. We
therefore present simulations of an isolated vorticity double layer with in initial gaussian
particle density profile. We ignore interchange motions in these simulations to present the
instability that arise only because of the instable vorticity double layer. The particle density
θ is treated as a passive scalar field and is only advected via the E×B drift. Initial conditions
for the simulations read:

Θ(t = 0) = exp(−x2/2)

Ω(t = 0) =
sinh(x)

cosh(x)2
+ δ exp(−x2/2) cos(2πλy/Ly)

The perturbation chosen has an initial wavelength λ and a perturbation strength δ as a free
parameter. The parameter λ is used to control the wavelength of the perturbation. Fig. 62
presents the E×B velocities and the electrostatic potential affiliate with the initial vorticity.
Note that since Ω = ∇2

⊥Φ = Φxx + Φyy, integrating Φ twice yields a function that is not
periodic. We subtract a linear function from Φ: Φ→ Φ′ = Φ− (max Φ−min Φ)x/Lx. With
this transformation, the electrostatic potential is periodic in x with Φ(−Lx) = Φ(Lx) = 0
as shown in Fig. 62. Solving the elliptic equations φ = ∇−2Ω in Fourier space, the periodic
solution is automatically assumed by the code.
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7.1 Kelvin-Helmholtz instability

Figure 62: Initial vorticity profiles studied for
the Kelvin-Helmholtz instability

µ λ

10−2 1 / 2 / 5 / 10
10−3 1 / 2 / 5 / 10
10−4 1 / 2 / 5 / 10

Figure 63: Parameters used for simulations
of the Kelvin-Helmholtz stability.

We study the stability of the system by varying the wavelength of the perturbation λ and
the viscosity µ, and study the growth rate of the mode λ. For this we define the quantity P
via

P (ky, t) =
∑
kx

|Ω̂k(t)|2.

For a given mode ky we summate the absolute value of the Fourier coefficients of the vorticity
over all modes kx. The initial perturbation wavelength λ is related to ky, as λ = 1 is the
lowest ky value, λ = 2 is the second lowest ky value and so on. The parameters we study are
listed in Tab. 63. Simulations are carried out with both presented initial conditions for Ω. All
simulations are run with a resolution of 1024×1024 on a 10×10 domain, with a perturbation
amplitude of ζ = 10−2. Finite size effects are not relevant, since the electrostatic potential
is forced to zero at the radial boundaries. Studies with a varying number of modes showed
that a larger number of modes has no visible effect on contour plots of the fields and on the
time evolution of P .

7.1.1 Simulations and growth rates

The simulations from Tab. 63 show, that the vorticity double layer is subject to strong
perturbations. The initially straight layer between positive and negative vorticity is subject
to elongations in the radial direction. In Fig. 64 we present vorticity and particle density
after 50 ideal interchange times. We also observe that the vorticity double layer rolls up
around a number of centers, that is equal to the number of local extrema of the initial
perturbation along the poloidal direction. These roll ups are characteristic for the Kelvin-
Helmholtz instability. The particle density rolls up in the same way, as it is advected with
E ×B velocity.

Simulations show, that both, initial perturbation wavelength λ, and viscosity have a signif-
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(a) Vorticity Ω for λ = 2 and µ = 10−4 at
t = 50

(b) Particle density θ for λ = 2 and
µ = 10−4 at t = 50

Figure 64: Contour plots for evolution of initial vorticity double layer

icant influence on the scale of the rolled up structures. This is shown in Fig. 65, where we
present the evolution of P (ky, t) for initial values of λ = 1, 2, 5, 10 and µ = 10−2, 10−3 and
µ = 10−4. The mode ky corresponds to the initial perturbation wavelength λ. For all values
of λ we read, that viscosity has a dissipative effect on the evolution of P . Further do we see
that an increasing value of λ has a stabilizing effect on the instability. For λ = 10 we see that
after a initial growth phase, P decays to values close to zero. This shows the strong non-linear
character of the instability. The initial power of this mode is transferred to other modes in
the spectrum and therefore dissipated. This causes a dampening of the initial wavelength λ
and the instability cannot grow in time as it would for small values of λ.
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(a) λ = 1 (b) λ = 2

(c) λ = 5 (d) λ = 10

Figure 65: Evolution of the initial perturbation wavelength λ for the vorticity double layer.
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7.2 Rayleigh-Taylor instability

Another observed secondary instability is observed at the blob front. Surface plots of the
particle density in Fig. 57 show that the blob front is subject to a cascade of instabilities.
These are most likely due to the Rayleigh-Taylor instability. In Sec. 6.4 we discussed that
VX in simulations for large blob amplitude and a sheath dissipation parameter σ ≥ 1 is likely
to be heavily influenced by the instability occurring at the blob front.
Simulations for small blob amplitude suggest the same instability mechanism operating at
the blob front, as can be seen from Fig. 27 in Sec. 4. In this plot, we observe that a secondary
blob detaches itself from the initial structure.

Figure 66: Phyiscal mechanism of the Rayleigh-Taylor instability observed at the blob front.

The physical mechanism of the instability is presented in Fig. 66. Vertical density gradients,
denoted by the vertical ellipses, with different signs cause the generation of vorticity according
to Eqn. (42). This vorticity implies a velocity field which is denoted by the circular arrows.
For large enough vertical particle density gradients, this mechanism causes the blob front
to drive away from the coherent structure. In simulations we see, that this can effectively
separate the front from the rest of the blob.
A more abstract point of view, describes the vertical particle density gradient as an interface
between two regions. The interchange term ∂θ/∂y is acting as an effective gravity g, causing
a net acceleration of the particle density left of the boundary towards the right.

7.2.1 Simulations and growth rates

For simulations of an isolated Rayleigh-Taylor instability we use the following initial condi-
tions:
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θ(t = 0) = θ0 ×
Ç

sinh(x)

cosh(x)
− 2x

Lx

å
+ ζ exp(−x2/2) cos(λ2πy/Ly)

Ω(t = 0) = 0.

The initial profile for the density features a sharp horizontal gradient at x = 0 and has
boundary periodic conditions θ(t = 0,−Lx) = θ(t = 0,+Lx). A perturbation with amplitude
ζ and wavelength λ is added in the y direction to create initial vorticity. Simulations are run
on a 10 × 10 domain with 1024 × 1024 modes in each direction. A time step of ∆t = 10−3

is used, tdiag is 10−2 and tout is set to 5 × 10−1. We study simulations where we set the
λ = 1, 2, 5, 10 and vary the Rayleigh number over Ra = 104, 106 and 108 for each λ.
The evolution of the instability with λ = 1 is presented in Fig. 7.2.1. We see that a velocity
profile as discussed previously is generating interchange motions, causing a motion of the
bulk plasma to the right.

(a) Particle density t = 10.0 (b) Vorticity t = 10.0

(c) Particle density t = 20.0 (d) Vorticity t = 20.0

Figure 67: Evolution of the rayleigh Taylor instability for initial perturbation wavelength
λ = 1 and initial perturbation strength of ζ = 0.01.

To study the effect of dissipation on the Rayleigh-Taylor instability we define the quantity P
in the same manner as in Sec. 7.1:

P (ky, t) =
∑
kx

|θ̂k(t)|2.
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With this, we can describe the growth of the initial perturbation with wavelength λ. In
Fig. 68 we present the evolution of P for λ = 1, 2, 5, 10. We see, that dissipative forces have
a dampening effect on the instability. We also see, that an increasing wavelength has little
effect on P . For each wavelength the instability grows on similar time scales and with equal
strength.

(a) λ = 1 (b) λ = 2

(c) λ = 5 (d) λ = 10

Figure 68: Evolution of the initial perturbation wavelength λ for the vorticity double layer.
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8 Discussion

We continue with a discussion of the simulation results and adress issues with the method.
The simulation results are set in relation to experimental measurements of plasma filaments
of SOL plasmas in low and high confinement mode. Readily available experimental data allow
the discussion of the results for plasmas in both confinement modes. Low confinement mode
measurements show intermittent radial transport due to blob structures. Plasmas in the H
mode show radial filament transport via ELMs which is due to a quasi-periodic teardown of
the plasma confinement barrier.
In the second part of this section, we discuss issues concerning the applied method. A
discussion of the aliasing error is presented, and other limiting factors on the efficiency of the
implemented spectral method.

8.1 Blob propagation mechanism

All blob simulations show the radial propagation of an initial isolated particle density pertur-
bation radially out over. The dynamic equations we simulate are in the simplest case given
by:

∂θ

∂t
+ {φ, θ} = κ∇2

⊥θ

∂Ω

∂t
+ {φ,Ω}+

∂θ

∂y
= µ∇2

⊥Ω.

The evolution equation for Ω is derived from the electric current continuity equations which
includes polarization drift for ions, the diamagnetic drift for the electrons, as well as viscous
stresses. The particle density θ is evolved with a simple advection-diffusion equation. When
we neglect diffusion in the vorticity equation, we find

∂Ω

∂t
+ {φ,Ω} = −∂θ

∂y
.

This identifies the interchange mechanism as the driving mechanism for blob motions. The
interchange mechanism causes a polarization of the initial structure. This polarization causes
an advection with the E ×B drift of the blob as a coherent structure radially outwards. We
can say, that the intertial response of the blob is due to the interchange drive.
Simulations of blobs presented in this study all show characteristic features of radial filament
transport measured experimentally. This includes most prominently a steep front of the
structure and a trailing wake. The simulations show, that the blob propagates as a coherent
structure. It develops a mushroom-like front, with a strong radial particle density gradient
at the front. In the absence of sheath dissipation we also observe poloidal stretching of the
plasma blob and the development of lobes, which curl inward and propagate at a lower radial
velocity outwards than the front of the blob.
For small values of collisional diffusion we observe small scale structures developing. The
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front of the blob is unstable to the Rayleigh-Taylor mode. At the lobes, we observe the
creation of a vorticity double layer that is unstable to the Kelvin-Helmholtz instability. We
discuss both instabilities in Sec. 7.

Simulations with sheath dissipation revealed that an increasing value of the sheath dissipation
parameter σ alters the characteristic length scales of the electrostatic potential φ. We can
interpret this by the effect of the parallel electric sheath currents. For large values of σ,
the diamagnetic currents are cancelled by parallel currents. They deplete the accumulated
spatial charges and damp radial electric drifts. This explains the decreasing radial velocities,
of the blob structures for increasing values of the sheath dissipation parameter σ.
By neglecting the electric drift advection terms and the interchange term in the vorticity
equation, we find that the dynamics of the Fourier coefficients for the electrostatic potential
are given by:

∂φ

∂t
= ∇−2

⊥ σφ.

This solution suggests a solution in Fourier space, φ̂k ∼ exp
(
−σt/k2

⊥
)
. We observe this for

the Fourier coefficients φ̂k in simulations of the linearized parameter model with Ra = 102

for values of σ ≥ 0.1, as shown in Fig. 69. The absolute value of the Fourier coefficient
decay exponentially for both values of σ. The approximate solution above describes Fourier
coefficients for the electrostatic potential only when we can neglect radial currents. The
value of σ, for which the suggested exponential decay is dominant, increases with the Rayleigh
number, due to increasing electric drift velocity of the blob structure. We also see |φ̂k| assume
smaller for σ = 10 than for σ = 0.1. Since an increasing value of σ effectively decreases the
characteristic length of φ, we find a smaller contribution to φ from Fourier coefficients from
base functions with long wavelength. The plot shows Fourier coefficients for base functions
with long wavelength.

(a) Simulation #4, σ = 0.1 (b) Simulation #10, σ = 10.0

Figure 69: Fourier coefficients |φ̂|k with small values of k⊥ for simulations with Ra = 102

from Tab. 5.2.
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8.2 Velocity scaling with Rayleigh number

8.2 Velocity scaling with Rayleigh number

In Fig. 30 we present the scaling of max(VX) and t(VX = max(VX)) with increasing Rayleigh
number. We find that for increasing Rayleigh numbers max(VX) asymptotically approaches
a numerical value close to unity. The transition into the regime, where max(VX) becomes
independent of the Rayleigh number occurs at Ra & 105. In physical terms, a large Rayleigh
number implies a regime where diffusion and viscosity are negligible. We convert the dimen-
sionless velocity into a dimensional velocity we find:

V ∼ Cs

 
2l

R

∆θ

Θ
.

Our results show that the blob velocity approaches a velocity that is of the order of the
acoustic velocity times the root of the blob amplitude and structure size.

8.3 Scaling with large blob amplitude

The simulations with variable amplitude, Sec. 6.3 present the a power law relation between
max(VX) and t(VX = max(VX)) and the blob amplitude η̂ . We find, the blobs maximal radial
center of mass velocity scales with the blob amplitude as

max(VX) (η̂ ) ∼ 0.827× η̂ 0.497.

This results agrees with previous theoretical predictions in [15]. Also note, that the factor
0.827 agrees excellent with the scaling behavior of max(VX) for large Rayleigh numbers
discussed in the previous section. This scaling is found for relative blob amplitudes η̂ ∈
[0.01 : 0.2]. Our results suggest that in this region, the blob velocity is independent of the
Rayleigh number. The Rayleigh number is defined as Ra = 1/κµ, a large Rayleigh number
indicates a low diffusion and a low viscosity.
Our results also show that this scaling breaks for blob amplitude η̂ ≥ 1.0. In this regime
we find that the velocity scales as max(VX) (η̂ ) = 1.380× η̂ 0.146, which suggests a growing
radial velocity for blobs with large amplitude. In this regime, the maximal radial blob velocity
depends weaker on the blob amplitude. The region where the scaling transits gives a limit,
for which the linearization of the interchange term is valid.

8.4 Velocity scaling with sheath dissipation

The results from Sec. 5.3 quantify the effect of the sheath dissipation parameter σ on blob
dynamics for the linearized model. We read from Fig. 42(a), that max(VX) decreases with
increasing σ and from Fig. 42(b), that the initial blob acceleration period also decreases with
increasing σ. The functional relation suggested from the data is in both cases a power law,
y = α× σβ. Due to uncertainties in determining t(VX = max(VX)) , we fit the model param-
eters α and β only for the relation max(VX) (σ) = ασβ. The fit parameters are presented in
Fig. 44, for large Rayleigh numbers we find α ≈ 0.24 and β ≈ −1.0. In the limit where diffu-
sion and viscosity becomes negligible, the dampening effect of sheath dissipation approaches
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a limit.
This limiting behavior is shown explicitly in Fig. 43 and compared to the simulation results
without sheath currents. This limit has been previously discussed in Sec. 8.2 and was orig-
inally presented in [15] in the absence of sheath currents. Our findings show the significant
reduction of max(VX) to velocities some 20% of the acoustic velocity times the blob size when
we consider sheath currents.

We now discuss the results of simulations with large blob amplitude with the non-linearized
model. The results we discuss are presented in Sec. 6.4.2. From Fig. 61 we read the damp-
ening effects of sheath dissipation on blob dynamics for different blob amplitudes. Here we
find that the dissipative effect of sheath dissipation on the blob dynamics can be quantified
in the same manner. The results from this chapter show that a functional relation suggested
for both, max(VX) (σ) and t(VX = max(VX)) (σ) is a power law.

We proceed by translating the finding for both models into a scaling for the physical blob
velocity vphys with the blob length l

vphys ∼ αlβ.

For this, note first that in both parameter studies we found a result of the form

v ∼ µακβσεη̂ ζ . (78)

In simulations with the linearized model we varied σ for a fixed Rayleigh number whereas
in simulations for the non-linearized model we varied σ for a given blob amplitude η̂ and
Rayleigh number. All the quantities but η̂ on the right hand side of Eqn. (78) depend on the
characteristic length scale l. But as discussed in Sec. 4 we know, that the blob velocity varies
only little with Ra for Ra & 104. Our simulations are all well within this ideal regime. This
allows us to neglect the influence of κ and µ in the analysis of how vphys depends on l.
As both models used feature a different normalization, we calculate the dependence of the
physical velocity vphys on l separately for both models. For the linearized model, we convert
Eqn. (74) to physical units via Eqn. (35) and find:

VX ∼ ασβ ⇒
vphys

γl
∼ α

Ç
2Csl

2

γL‖ρ2
s

åβ
⇔ vphys ∼ αγ1−β

0 l1+2β
√
η̂

Ç
2Cs
L‖ρ2

s

åβ
⇔ vphys ∼ αl

1+5β
2 g

1−β
2

√
η̂

Ç
2Cs
L‖ρ2

s

åβ
. (79)

This equations gives the scaling law for the physical velocity in case of small blob amplitudes.
Numerically computed values for the fit parameters α and β are presented in Fig. 44.
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8.4 Velocity scaling with sheath dissipation

(a) Physical length exponent β′ for vphys (b) Physical length exponent ζ′ for
t(vphys = max(vphys ))

Figure 70: Physical scaling exponents. The solid line is the scaling exponent with its scale
on the left axis ticks, the scaling coefficient is denoted by the green dashed line with its scale
on the right y axis ticks.

For large blob amplitudes, a similar analysis with the normalization of the non-linear model
yields:

vphys ∼ αl
1+5β

2 g
1−β
2

Ç
2Cs
L‖ρs

åβ
= lβ

′

t ∼ εl
−1+3ζ

2 g
1+ζ
2

Ç
2Cs
L‖ρs

åζ
= lζ

′
.

The numerically found values for fit parameters α, β, ε and ζ were presented in Tab. 17. Note
that for small blob amplitudes, we predict a velocity scaling vphys ∼

√
η̂ , which is imminent

in the model normalization. This compares favorably with the scaling we found in numerical
studies where we explicitly set the blob amplitude as a model parameter.
Values for the physical scaling law of the non-linearized model are presented in Fig. 70(b).
We read, that the scaling exponent ζ ′ approaches values of l ≈ −2 for large blob amplitudes.
For both models, we find a scaling of max(VX) (σ) ∼ σ−1. This translates to a scaling for
the physical velocity with the blob length,

vphys ∼ l−2

for both models. The result we find is well known in literature and presented in various
articles, [5, 26, 12, 11, 10, 26]. It remains to compare this scaling to analytically obtained
scaling laws and compare the velocities predicted by both models.

We continue by presenting the analytic solution.
Recall that we derived the vorticity equation Eqn. (42) from the quasi-neutrality condition:

∂Ω

∂t
+ {Ω, φ}︸ ︷︷ ︸
∇Jp

+
∂θ

∂y︸︷︷︸
∇Jd

= −∇J‖.
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For small values of σ, quasi neutrality requires, that polarization currents are cancelled by
diamagnetic currents. They give rise to strong radial electric drifts. For large values of σ,
the diamagnetic currents are cancelled by parallel currents. These deplete the accumulated
spatial charges and damp radial electric drifts. If we the neglect viscous stress, we write the
dimensional vorticity equation as

g

n

∂n

∂y
= σphysφ,

with the dimensional sheath dissipation parameter σphys = 2Cs/L‖ρ
2
s. Linearizing the inter-

change term for small blob amplitudes gives σphysφ = g/l∆n/N , where l is the characteristic
scale on which the particle density varies. We know that the dominant velocity the blob
moves with is the E×B velocity. Its radial component is given by uE,x = 1/B−φy. Assum-
ing that the electrostatic potential varies over the same length as the particle density, we find
that φ ∼ uE,xBl. Inserting this in the linearized expression gives a scaling of the physical
blob velocity:

v ∼ 1

σphys

g

l2
∆n

N
.

We find a similar analytical scaling if we do not linearize the interchange term. The equation
with neglected polarization drift term admits solution of the form:

n(x, y, t) = η(x− g

σphys
t)× exp

Ç
− y

2

2l2

å
,

where the function η(x, t) is the initial condition for the particle density, n(x, t = 0) = η(x).
The blob length scales in the poloidal direction are normalized by the blobs characteristic
length scale l. Solving this equation for φ, we find:

φ = − gy

σphys

and note that this solves the particle density evolution equation when we neglect collisions.
This shows, that the equations admit a solution that describes the radial advection of an
initial structure radially outward with a velocity that is constant in space. Further do we
note, that the electrostatic potential is uniform in the radial direction and depends only on
the poloidal coordinate. The analytical result is valid for infinite blob amplitudes only, as
the solution does not admit functions with a constant background. Also note, that vorticity
dynamics does not enter this theory, as the velocity is a gradient field.
A comparison between the velocities predicted from analytical results and our numerical
studies are presented in Fig. 71. From the figure we read, that while the l−2 scaling is
verified, the analytical overestimates the prefactors of the velocities by a significant amount.
This shows, that interchange motions and vorticity dynamics have a significant influence on
the blob dynamics.

8.5 Comparison to experiments

This sections presents a discussion of the numerical results in context with experiments.
We present experimental measurements of filament structures in the SOL of magnetically
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8.5 Comparison to experiments

(a) Linearized model (b) Linearized model

Figure 71: Comparison between analytically predicted velocity scaling and numerical results.

confined plasmas. Due to their different characteristics, we discuss SOL turbulence and ELM
filaments separately.

SOL turbulence Turbulences in the SOL of magnetically confined plasma are character-
ized by a intermittent fluctuations of the plasma. Experimental data from measurements of
SOL turbulence in various Tokamaks, see for example [30, 39, 23, 19] , present large burst
fluctuations in the time series of conditionally averaged particle density. These burst fluc-
tuations account for a large fraction of the total radial transport in the SOL. The shape of
the averaged particle density time series indicate, that the radial transport is due to radially
propagating structures. This is supported by measurements of the plasma in the plane per-
pendicular to the magnetic field in the SOL. Measurements using high speed cameras [33]
and gas puff imaging [41, 34] observe coherent structures that extend in the radial-poloidal
domain and feature a strong particle density maximum. The observed structures have a ex-
tend of ≈ 1cm, typical radial velocities are ca. 1 – 10 % of the acoustic velocity.
Physical parameters for the mid SOL of a plasma confined with the L mode are taken to be

n ≈ 1020m−3, Te = Ti = 25eV

R ≈ 1m, B ≈ 1T, L‖ ≈ 10m. (80)

Typical parameters measured for blob structures are

l ≈ 0.01m η̂ ≈ 0.5.

We take these parameters from [15]. Similar values are used elsewhere in literature, [20, 26].
With this we can compute values for the acoustic velocity Cs, the strength of the effective
gravity g, the ideal interchange time unit 1/γ and the ion thermal gyro radius, ρs = Cs/ωci:

Cs ≈ 5× 104m/s g ≈ 5× 109m/s2 γ ≈ 5× 105s−1 ρs ≈ 10−3m/s.

Values for the Rayleigh and Prandtl number are then given with Ra ≈ 6×105, Pr ≈ 20 and
the dimensional sheath dissipation parameter evaluates as σ ≈ 2. With a Rayleigh number
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this large, the blobs maximum velocity will be independent of dissipative forces. Note that
with these units, we can identify the unit velocity with 5km/s and the ideal interchange time
with 2×10−6s in the simulation results for small blob amplitude. Results from the non-linear
model can be identified with dimensional quantities if we identify unit velocity with 7km/s
and the ideal interchange time with 1.5× 10−6s.
Using these values, the results in Sec. 4 read, that the blob approaches a limiting maximum
velocity of 4.5km/s. This velocity reduces according to Fig. 43 to 0.45m/s, if we assume a
sheath-connected regime.
For the non-linearized model and neglecting sheath dissipation, we read a maximum radial
blob velocity of 4km/s from Tab. 14. Our simulations show that the blob assumes this veloc-
ity after 10× 10−6s. If we take sheath dissipation into account, simulation data from Fig. 61
give a maximal blob radial velocity of between 70 and 700m/s. As we lack simulation data
for η̂ = 0.5 we only predict it lies in between the velocity for blobs with η̂ = 0.2 and η̂ = 1.0.

The such obtained results agree favorable with experimental findings. In [33], blob motion
were measured in the NSTX tokamak by a gas puff imaging method. They measure radial
blob velocities in the range of 0 - 2km/s.
When comparing values from the simulations with sheath dissipation to experimental values,
we have to be cautious. Experimental findings suggest a limited correlation length of the
structures along the field lines, as shown in [20]. They present gass puff images from a camera
pointing radially inwards into the Alcator C-Mod tokamak. In Fig. 2 of their paper we can
see, that the turbulent structures have a limited extension along the magnetic field lines.
Our model equations on the other hand are for field-line averaged quantities. They imply
structures along the field line that extend uniformly over the connection length L‖. Along the
magnetic field lines, plasma is transported with velocities only little different than Cs. With
typical cross field transport velocities for the blobs we find, that L‖/Cs = 100 × l v. Here l
denotes the blobs characteristic length and v is the blobs radial velocity. This means, that the
blob has travelled one blob length radially outwards, before the structure can extend over one
connection length. This demonstrates a competition between the blobs radial motion outover
and a stretching along the magnetic field line. Clearly, field line averaged model equations
are only an apt model, when the filament elongates over the full connection length. The
time after which this criterion is fulfilled depends sensitively on the plasma and confinement
parameters.

ELM filaments Plasmas confined with the high confinement mode are subject to a quasiperi-
odic destruction of the edge transport barrier. The characteristic steep radial density gradient
relaxates and causes the formation of field-line elongated filaments that transport energy and
particles out of the plasma. Radially outward travelling ELM filaments have been experi-
mentally measured with velocities in a range between 1 and 10km/s. Other measurements
determining filament sizes perpendicular to the magnetic field of 1 - 5cm. Our discussion of
the simulation results compared to experimental ELM measurements is analog to the previ-
ous section. We first present typical parameters in the SOL for plasmas in high confinement
mode:
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Typical edge region plasma parameters for a plasma in high confinement mode are taken to
be

n ≈ 1019m−3, Te = 50eV Ti = 100eV

R ≈ 2m, B ≈ 2T (81)

and ELM filament dimension are taken to be

l ≈ 0.02m η̂ ≈ 5.

These values are taken from [15]. ELM filaments show a large particle density perturbation
amplitude. This implies that the linearized model makes qualitatively better predictions for
ELM dynamics than the non-linearized model.

Still, applying the results from the non-linearized model is problematic in several ways. First,
do the plasma parameters vary considerably between tha background plasma and the ELM
peak particle density as we assume η̂ ≈ 5. The electron ion collision frequency increases by
a factor five, implying different diffusion parameters in the ELM particle density peak and
the background plasma. Further will one expect large gradients in both, temperature and
density which suggests an independent treatment of the two gradient fields. This requires a
separate evolution equation for the temperature as an independent variable.

Keeping in mind these limitations when we compare our results to ELM measurements, we
evaluate the dimensional parameters as:

Cs ≈ 8× 104m/s g ≈ 7× 1010m/s2 γ ≈ 106s−1 ρs ≈ 10−3m/s.

Again, we evaluate the Rayleigh and Prandtl number as well as the dimensionless sheath
dissipation parameter, Ra ≈ 2 × 107, Pr ≈ 10 and σ ≈ 3. Evaluating these parameters at
the peak particle density yields a lowered Rayleigh number of Ra ≈ ×106 as well as a lowered
sheath dissipation parameter σ ≈ 2. The Rayleigh number at the peak particle density is still
well in the ideal regime. Note that the dimensionless sheath dissipation parameter is larger
than in the case for SOL turbulence. This implies the importance of sheath currents for radial
ELM dynamic. The results from the linearized model can be transfered into dimensional
number by identifying unit velocity with 25km/s and one ideal interchange time with 7.5 ×
10−7s. This yields a velocity of 22.5km/s for SOL structures in the ideal regime from Fig. 43.
This velocity is reduced to 2.5km/s if we consider sheath currents. Results from simulations
for the non-linearized model suggest radial blob velocities in the sheath-detached regime of
30km/s which reduces to 1.5km/s if we account for a sheath dissipation parameter of σ = 3.

Comparison to experimental scaling properties of ELMs Finally, we discuss exper-
imentally found scaling properties of ELMs and compare them to our presented results. A
scaling of the blob radial velocity with its amplitude has been suggested in [15]. Probe mea-
surements in experiments have indicated, that radial ELM filament velocity increases with
ELM filament amplitude, [32]. Recent experiments in ASDEX upgrade present a comprehen-
sive study of radial ELM filament velocity, [31]. They find that the radial filament velocity
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scales as vrad ∼
√
l
√
η̂ . As the

√
l dependence is not in compliance with blob motions in

a sheath connected regime, the found scaling with η̂ agrees favorable with our presented
scaling obtained for blobs in the sheath connected regime. On the other hand, do our numer-
ical results suggest an inverse square scaling of the blobs radial velocity with increasing blob
length. The results presented in this article also show a broadening in the radial direction
of the filament extension. This complies with our simulation results for blobs in the sheath
connected regime.
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8.5.1 Discussion of secondary instabilities

We discuss the secondary instabilities observed in blob simulations. We compare them qual-
itatively to simulations of isolated instabilities.

Kelvin-Helmholtz instability For low collisional dissipation, blob simulations present a
curled up lobes that show the formation of eddies. These are characteristic for the Kelvin-
Helmholtz instability. The same characteristic eddies are observed in simulations of the
isolated vorticity double layer. In Fig. 8.5.1 both simulations. At t = 15.0 we see that
the vorticity double layer at presents a gradient and a small perturbation from its smooth
curvature. At 20 ideal interchange time units, the region with the initial mild perturbation of
the vorticity double layer is dominated by large turbulent fluctuations in vorticity. We find
eddies or vorticity eyes, the vorticity double layer has no recognizable coherent structure. By
counting the eddies we find, that the dominant wavelength of the initial perturbation is large.
Simulations of an isolated vorticity double layer, contour plots Fig. 72(e) - Fig. 72(h), show a
similar character. We find that a small initial perturbation in the vorticity double layer leads
to the evolution of vorticity eddies similar in character to those we find in blob simulations.
The time it takes for the instability to grow is much larger than in blob simulations. This may
be attributed to the small perturbations via the initial conditions. The vorticity perturbation
amplitude used in simulations is 1 % from its peak value, blob simulations show a larger
vorticity gradient in the parts of the lobes that are subject to the Kelvin-Helmholtz instability.
Our simulation show, that a perturbed vorticity double layer is responsible for the Kelvin-
Helmholtz instability observed at the lobes of blob simulations. Computed growth rates of
the instability from Fig. 65 showed that the power from perturbations with small wavelength
are quickly dissipated to the other Fourier modes. Blob simulations suggest, that the initial
wavelength that perturbs the vorticity double layer in the lobes is large.
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(a) Vorticity Ω, t = 15.0 (b) Vorticity Ω, t = 20.0

(c) Vorticity θ, t = 15.0 (d) Vorticity θ, t = 20.0

(e) Vorticity, Ω, t = 10.0 (f) Vorticity, Ω, t = 50.0

(g) Vorticity, θ, t = 10.0 (h) Vorticity, θ, t = 50.0

Figure 72: Late evolution of simulation for small blob amplitude with Ra = 106, Pr = 1
compared to evolution of an isolated vorticity double layer. Simulation # 9 from Tab. 10.
Double layer initial wavelength λ = 2 and Ra = 106, Pr = 1.
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Rayleigh-Taylor instability In simulations with low collisional diffusion and viscosity we
find that the blob front is unstable to the Rayleigh-Taylor mode. See for example simulations
with a blob amplitude η̂ = 1.0 and a sheath dissipation parameter σ = 10 in Fig. 57, or
simulations for small blob amplitude and σ = 1 in Fig. 35. The front of the blob develops in
both simulations a light curvature which leads to vertical particle density gradients.

In Fig. 8.5.1 we compare a simulation with an unstable front explicitly to simulation results
of the Rayleigh-Taylor instability. We see that the blob simulation features horizontal par-
ticle density gradients and that the vorticity has asymmetric around the axis y = 0. The
vertical velocity sheath in Fig. 73(a) develops kinks in the radial outward direction as seen in
Fig. 73(b). Over the same time we observe that the front is unstable and emitts a secondary
blob.
A direct comparison to the vorticity and particle density evolution for the isolated Rayleigh-
Taylor instability shown in Fig. 73(e) - Fig. 73(h) strongyl suggests, that the instability
observed in blob simulations is the Rayleigh-Taylor mode.
Most simulations presented in this thesis that are unstable to the Rayleigh-Taylor mode have
an initial perturbation wavelength that has one crest. In Fig. 59 we present a simulation that
features a blob that is split in the middle and seems to reconnect in the middle, as if flowing
around an obstable. This behavior is presented elsewhere in the literature, [10]. Simulations
in this paper suggest that the blobs bifurcates completely. This instability is called the finger
instability. Surface plots from the vorticity show a different vorticity profile than we find for
simulations of a perturbed particle density sheath which are unstable to the Rayleigh-Taylor
mode. It is most likely due to the growth of a mode with ky 6= 0 at the blob front.
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(a) Vorticity Ω, t = 9.5 (b) Vorticity Ω, t = 18.0

(c) Particle density θ, t = 9.5 (d) Particle density θ, t = 18.0

(e) Vorticity Ω, t = 6.0 (f) Vorticity Ω, t = 14.0

(g) Particle density θ, t = 6.0 (h) Particle density θ, t = 14.0

Figure 73: Comparison of blob front evolution for a simulation with η̂ = 1.0, # 7 from
Tab. 14 compared to evolution of isolated particle density gradient with initial perturbation
λ = 1 and Ra = 106.
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8.6 Aliasing

We now discuss relevant issues with the numerical method used. We focus on aliasing where
we also discuss mass conservation of the implemented spectral method. We present an alter-
native method to quantify finite size effects.

8.6 Aliasing

The results of the presented numerical simulations have all been achieved without compen-
sating for aliasing. The aliasing error has briefly been described in Sec. 3.3. As discussed, it
is a effect of the finite resolution we use in Fourier space that leads to the Fourier coefficients
for a modes having erroneous contributions from other modes. With the Parseval theorem

kx=Nx/2−1∑
kx=−Nx/2

ky=My/2−1∑
ky=−My/2

|ûk|2 =
1

NxMy

Nx∑
n=1

My∑
m=1

|u(xn, ym)|2

we see, that the aliasing error directly translates into mass conservation for the field u. This
says, that we can estimate the aliasing error by the change in mass for the field u. As an
estimate for the aliasing error we study the diagnostic output thetaint .
Mass conservation for simulations of the linearized interchange term model are presented in
Fig. 74. We see that θ is conserved to machine accuracy.

(a) thetaint for a simulation with Ra = 108,
Pr = 1, simulation #12 from Tab. 10.

(b) thetaint for a simulation with Ra = 104,
σ = 10, simulation #20 from Tab. 5.2.

Figure 74: Integrated field variable θ for simulations of the linearized model and large Rayleigh
number.

We see that the integral of the particle density perturbation, θ is conserved to machine
accuracy. It also shows, the aliased Fourier coefficients have small absolute value. These
modes represent base functions with small wavelengths which are used to describe features
of the simulated structure with small spatial extend. A low aliasing error shows that the
simulations are well resolved.
Simulations of the non-linearized model require the computation of additional convolution
sums for θ, as discussed with Eqn. (45). To discuss the aliasing error, we define the quantity
Q(t) =

∑
m,n |θ(xn, ym, t)|2, which is the same, as the sum over the squares of the Fourier
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coefficients, θ̂. In Fig. 75, we present the evolution ofQ(t)/Q(t = 0) compared to the evolution
of max(VX) . For values η̂ = 1.0, we read, that the aliasing error is negligible, Q remains
constant over the whole simulation. Increasing η̂ = 10, we find that Q decreases for t ≤ 0.4
and then begins to increase significantly only after VX reached its peak. The same behavior
can be read from Fig. 75(b), for η̂ = 100 and η̂ = 1000. This shows, that an increased mass
due to aliasing error has little influence on analysis depending on max(VX) .

(a) Variation in Q for simulations of the
three-parameter model.

(b) Variation in Q for simulations of the
three-parameter model.

Figure 75: Integrated field variable θ for simulations of the non-linearized model. All simu-
lations have κ = µ = 10−3 in units of the model. Time units are in simulation time units.

8.7 Finite size effects

The discussions of the convergence with respect to simulation domain size show, that the
artificial zero crossing of φ at the domain boundary has significant influence on max(VX) .
To further elucidate this behavior we note, that the that the initial vorticity profile generated
by a plasma blob has a dipole structure, as shown in Fig. 9(b), Sec. 4. Since we close the
model equations with the Laplace equation, Ω = ∇2φ, we have that φ behaves like a dipole
potential and decays algebraically as |φ(r)| ∝ 1/r2 for r →∞. When there is no initial flow
present, the initial vorticity profile is generated by:

∂Ω

∂t
→ Ωi+1 − Ωi

∆t
=

∂

∂y
θ

Ωi+1 ∝ ∂

∂y
θ.

For an gaussian initial particle density profile, this shows that both θ and Ω decay geomet-
rically, while φ decays algebraically. This is in agreement with experiments where measure-
ments of structures propagating radially outwards in the SOL show the characteristics of a
dipole field, which has the same spatial length as the characteristic length scale of the blob,
[20].
One can use this, to determine the goodness of convergence with respect to the simulation
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8.7 Finite size effects

domain by fitting a function p(y) = α×φβ to φ along the radial direction. The dipole moment
of φ is along the poloidal direction, in this direction the monopol moments of φ still give a
significant contribution.
We proceed by analyzing simulations #4 - # 12 from Tab. 7 with this method. The fit pa-
rameter β is presented in Fig. 76(a), we used the residuals squared per degree of freedom as
an error estimate and find that the determined parameters are practically exact. The result
show, that for a domain size of 100× 100, the dipole character for φ is eminent and that an
increased simulation domain of 200 × 200 has little influence on the radial decay of φ. We
find a value lower than −2 because Ω is not a mathematical dipole. Since higher multipole
moments decay even faster than r−2 it is unlikely that we observe a significant contribution
from them.

(a) Least sqaures fit to the electrostatic
potential along the radial direction.
Data from simulation #4 , Tab. 7 with
Ra = 102, Pr = 1 and t = 7.0, every
10th data point is drawn.

(b) Fit exponent β for increasing
simulation domain size.

Figure 76: Dipole fit to decaying electrostatic potential. Simulations with Ra = 102, Pr = 1,
#2 – #6 from Tab. 7.
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9 Conclusion

In this thesis we have presented numerical studies of a two-field model for radial transport of
filament structures in the SOL of toroidal plasma confinement devices. For this we developed
a spectral method to solve a system of non-linear partial differential equations. Comparison
to previous numerical results show an excellent agreement with the method we developed.
By running extensive convergence studies, we quantify the influence of finite size effects and
spectral resolution on the diagnostic output of the code. Further was the code parallelized
with OpenMP . This allows the code to run significantly faster on modern multiprocessor CPUs.
Binary output implemented with HDF5 5 allows an efficient storage of large data output.
We present a detailed derivation of the model equations starting from the momentum equa-
tion of fluid dynamics. By linearizing the model equations for a small blob amplitude, we
motivate a reduced model with a reduced parameter set.
A parameter study for blobs with low amplitude where we vary the diffusion parameters of
the model is presented. We discuss radial interchange motions over a broad range of diffu-
sion parameters and identify secondary instabilities that have length scales comparable to
the blobs characteristic length scale. We reconstruct a known velocity scaling for the radial
blob velocity in the limit of weak collisional diffusion and viscosity. In this limit, the blob
structure approaches a limiting velocity that is proportional to the ion acoustic velocity times
the square root of the blob amplitude relative to the background plasma and proportional to
the square root of the blobs characteristic length scale.
A parameter study for simulations of radial blob motion with large amplitude blobs verify the
scaling of the radial velocity proportional to the square root of the blob for small amplitudes.
This scaling is valid for blob amplitudes smaller than unity only. For larger blob amplitudes
we find a scaling that is proportional to the blob amplitude with an exponent of about 0.15.
The effects of sheath dissipation on blob dynamics for small and large amplitude blobs is
studied and compared to experimental findings. The numerical results show that dissipative
effects due to sheath parallel currents give a significant dampening of the radial blob velocity.
We find that the limiting velocity the blob approaches in the limit of small collisional dissi-
pation is proportional to the inverse of the sheath dissipation parameter. Translating these
results to dimensional units, we find that this implies that the maximal radial blob velocity
is proportional to the inverse square of the blob characteristic length. This finding is found
for simulations of both models.
We also verify the scaling predicted by the analytic blob solution numerically. But we also
find that the pre factor of the analytic blob solution grossly overestimates radial blob ve-
locities. This indicates the importance of vorticity dynamics, which are neglected in the
analytical solution.
Secondary instabilities have been identified in blob simulations, and by isolated simulations
of their supposed driving mechanism it could be verified that the Kelvin-Helmholtz mode is
driving eddies in the blob lobes and that the blob front is unstable to the Rayleigh-Taylor
mode. Numerical simulations identify a vorticity double layer as the source for the observed
instability at the blobs lobes. Diffusion has a dampening effect on this instability as small
scale structures diffuse quickly. Numerical simulations show that for small dissipative forces,
the blob emits secondary structures from the front causing a large radial elongation of the

110



structure. Via comparison to simulations of an isolated particle density front with a pertur-
bation localized in the radial direction, we showed, that this mechanism can be attributed to
the Rayleigh-Taylor instability.

Suggestions for future work The developed spectral code shows a good performance in
simulations of small scale structures on a bi-periodic domain. Further use of the code might
include simulations of other turbulent structures in the SOL.
The comparison between our results and experimental findings confirms the importance of
sheath dissipation as an dissipation mechanism in the blob model. With field line averaging
we include sheath dissipation by a zero-dimensional approximation. This implies that the
filament simulated extends homogenously over the connection length. This is neither observed
for radial structures associated to SOL turbulence nor for ELM filaments travelling radially
outwards, both have a finite correlation length along the field lines. To give a more accurate
picture, future work might include a more detailled description of field-parallel dynamics. By
including a dynamic variable for the sheath-parallel currents, a more realistic model can be
obtained. This would help estimate radial filamentary motion in the SOL of future fusion
reactors, as ITER.
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A THE INTERCHANGE INSTABILITY

A The interchange instability

Blob motion discussed in this thesis is generated by the interchange mechanism. This mech-
anism is not distinct to blob motion, but has been well known. The fundamental innovation
with the blob mechanism is to apply the interchange mechanism to this special setting. In this
section we commpare the interchange mechanism driving radial motion in toroidal confined
plasmas to the interchange motion in classical hydrodynamics.

A.1 Interchange mechanism for blob dynamics

In radial confinement devices, one observes plasma filaments, with excess plasma pressure
and particle density. In the cross section in the radial – poloidal drift plane, perpendicular
to the field lines, they are an isolated, blob like structure, as presented in Fig. 77.
In the toroidal confinement devices, the magnetic curvature vector κ and the magnetic field
gradients ∇ lnB point both radially inwards. They cause guiding center drifts according to
Eqn. (20) that are in opposite direction for the negatively electrons and positively charged
ions. These currents cause a vertical polarization of the blob structure as shown in Fig. 77.
The polarized blob structure is then advected radially outwards by a E × B drift, that is
uniform regardless of particle charge.

Figure 77: Driving forces of the interchange mechanism for an isolated density blob in a
magnetized plasma. The bulk structure is transported radially outwards.

A.2 Analogy to classical hydrodynamics

The key feature of the interchange model is the creation of vorticity by vertical particle density
gradients, via the ∂

∂zn term in the vorticity equation of the two field model, Eqn. (26). In
classical hydrodynamics we find a similar mechanism, called baroclinic generation of vorticity.
We describe this mechanism briefly to elucidate the nature of the interchange mechanism.
Let us begin with the Naver-Stokes equation for incompressible fluids:
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A.2 Analogy to classical hydrodynamics

Å
∂

∂t
+ v · ∇

ã
= −1

ρ
+ g + ν∇2v (82)

(83)

taking the curl of it, and using v · ∇v = ∇1
2v · v − v × (∇× v), we get:

∇×
Å
∂

∂t
+ v · ∇

ã
= −∇× 1

ρ
∇p+∇× g + ν∇2∇× v (84)

⇔
Å
∂

∂t
+ v · ∇

ã
Ω = (Ω · v)v︸ ︷︷ ︸

1

+
1

ρ2
∇ρ×∇p︸ ︷︷ ︸

2

+ ν2∇2Ω︸ ︷︷ ︸
3

. (85)

We see that there are three contributions to the generation of vorticity.

1. Vortex stretching. This is characteristic to fluids in three dimensions. An increase of
the fluids velocity along the direction of the vorticity, increases the vorticity.

2. Baroclinic generation of vorticity. Whenever pressure and density gradients are not
parallel, there is a generation of vorticity in this point. When surfaces of constant
pressure and density are parallel, no vorticity is generated. Note, that for fluids where
pressure is a function of density, p = p(ρ), this term vanishes since ρ = const ⇒ p =
const holds.

3. Collisionality does also affect vorticity generation.

Recall that in a static equilibrium, the density gradients in a fluid are parallel to the gravity:

∇p = ρg.

Baroclinic generation of vorticity is elementary in fluid dynamics. Next we explain a typical
setting in which we find the mechanism. The mechanism is seen in Fig. 78. It shows a
fluid denisty agglomeration with gradients pointing radially inward to the center of the fluid
density agglomeration. Gravity and pressure gradient point downwards. On the left and the
right side are drawn to arrows denoting local fluid density gradients. They cause a generation
of vorticity Ω denoted by the arrow pointing in and out of the domain. This creates a circular
velocity field, depicted by the circular arrows for the fluid velocity v.

A setting where this mechanism is important, is for liquids with temperature gradients, as
presented in Fig. 79. Assume that we have a fluid in a glass whose temperature T is kept at
T0 at the top and at T0 + ∆T at the bottom, where ∆T > 0 and a density of ρ0 + ∆ρ at the
top and ρ0 at the bottom. The fluid at the bottom is warmer and thus the thermal motion
of the particles are larger – the fluid tries to expand. At the top the fluid is colder, here the
fluid will be compressed.
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A THE INTERCHANGE INSTABILITY

Figure 78: Scetch of baroclinic generation of vorticity for a local density perturbation ρ̃.
Density gradients leading to the center of the perturbation create vorticity via ∇p×∇ρ.

The mechanism presented above is responsible for the development of larger convection cells
as they are found often in nature. On Jupiter one observes large thermal convection cells,
as pictured in Fig. 79) for example. Instead for density it is temperature that is transported
by baroclinic generation of vorticity, but the mechanism by which the transport occurs is the
same.
In the interchange model, the ∂θ

∂y term takes the role of the baroclinic term in Eqn. (85)). In
the two field models, the E ×B drift causes a collective motion of the structure and can be
seen as an effective gravity. In the dimensional linear two fluid model, Eqn. (36)), the factor

of the interchange term is 2P
ρR . The acoustic velocity in an ideal gas is given with CS =

»
P/ρ,

defining the effective gravity

g = 2
CS
R

(86)

the interchange term in the two field model equations can be written with the same factor g
as the baroclinic vorticity term in Eqn. (85). This shows the analogy between generation of
vorticty by diamagnetic drift compression in the two field model we are working with, and
baroclinic generation of vorticity in classical hydrodynamics.
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A.2 Analogy to classical hydrodynamics

Figure 79: Illustration of large scale convection cells for temperature. Temperature is trans-
ported from the warm bottom to the cold top via large scale convection cells that form due to
baroclinic generation of vorticity. The full and dashed profile line indicate how temperature
from the reservoirs is convected along the circular convection cells.
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