


 



Contents

Acknowledgments v

1 Synthesis 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Background and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Summary of essays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Essay I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Essay II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.3 Essay III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.4 Essay IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 The background of the essays . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Essay I 15

2.1 Innledning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Modellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Generelle betraktninger . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Uregulert markedsløsning . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Regulert markedsløsning . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Numeriske eksempler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Regulert versus uregulert markedsløsning . . . . . . . . . . . . . . 24
2.3.2 Lineær versus ikke-lineær rensefunksjon . . . . . . . . . . . . . . . 25
2.3.3 Virkning av diskontering . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Oppsummering og konklusjoner . . . . . . . . . . . . . . . . . . . . . . . . 29

i



Contents

2.5 Referanser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Essay II 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Numerical procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Policy and value iterations . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Interpolating first-order conditions . . . . . . . . . . . . . . . . . . . 37

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Example 1: A 2d investment model with relative adjustment cost . 38
3.3.2 Example 2: Optimal harvest of two species . . . . . . . . . . . . . . 39
3.3.3 Example 3: Interpolation in the first-order conditions . . . . . . . . 40

3.4 Range of use for the numerical procedure . . . . . . . . . . . . . . . . . . . 42
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Essay III 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 The optimal management model . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Solving the management model . . . . . . . . . . . . . . . . . . . . 52
4.2.4 The simulation model - Bifrost . . . . . . . . . . . . . . . . . . . . . 53

4.3 Three/six management strategies . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Strategy A: Optimal management with feedback-Policy . . . . . . . 53
4.3.2 Alternative sub-optimal strategies . . . . . . . . . . . . . . . . . . . 57

4.4 Simulations with Bifrost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Simulations assuming constant herring influence . . . . . . . . . . 58
4.4.2 Simulations with SeaStar integrated in Bifrost . . . . . . . . . . . . 63

4.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 The characteristics of the management model . . . . . . . . . . . . 65
4.5.2 Simulations with Bifrost . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Essay IV 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Management model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ii



Contents

5.2.2 Biological growth model . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Economic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.5 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 The optimal value function . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Optimal Catches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.3 Paths towards equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.1 Biological model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 The optimal value function . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 Optimal catch policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Appendix essay I 125

A.1 Sosialt optimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2 Eksistensbevis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.3 Formulering av modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.3.1 Feedback-formulering . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.3.2 To randverdiproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B Appendix essay II 131

iii





Acknowledgments

First of all I would like to thank my supervisor in Bergen, Prof. Leif K. Sandal, who in-
troduced me to dynamic programming and was of vital support during the PhD period
at the Institute of Marine Research in Bergen. Without his support I would have quitted
the work before it began. Thanks also to my Tromsø supervisor, Arne Eide, for good
discussions and critical remarks and to Knut Heen for recruiting me to the position and
being a pleasant companion. I would also like to thank all the people at the Institute of
Marine Research for providing a comfortable and inspiring environment. Discussions
with Samuel Subbey have been particularly interesting.

Sigurd Aanestad
Stavanger

April 23, 2009

v





Chapter 1

Synthesis

1.1 Introduction

The main scope of this thesis is modeling and optimizing motivated by real-world prob-
lems in fishery and environmental economics. The work is interdisciplinary and the
emphasis is on combining economics with biology, mathematics and numerics. Key
words are the art of modeling and optimal control theory.

Optimal control theory is a well-established concept for the solution of management
problems where one has to maximize/minimize some objective or function subject to
the state of a dynamic system dependent on the level we choose for the free variables,
the control variables. Control theory formulations are used in a variety of areas, including
process control, robotics, bioengineering, economics, finance and management science.
In resource economics such formulations are very popular, e.g. in deciding maximum
sustainable yield of specific fish resources. More curious applications can also be found
which show that the concept of optimal control is suitable for a wide range of decision
problems. An example is Metric and Weitzman (1998) who uses optimal control theory
to decide which crane bird species one should put most resources into preserving in
order to maintain maximum biological diversity. Optimal control theory formulations
have limitations, however, to which we will return later in this section.

In the essays of this thesis the focus is somewhat phenomenological, but adaptations
that rest on econometrics and employ multivariate regression analysis and parameter
estimations are also made. Since solving the models demands extensive use of numeri-
cal methods, some attention is also paid to operational analysis and mathematical tech-
nicalities. All in all the thesis is a cross between bioeconomics and applied mathematical
modeling.

There are several attributes of a good model. Perhaps the most important are re-
alism/accuracy and usefulness. A famous quote by the industrial statistician George
Box (1979) is straight to the point. "All models are wrong; some are useful". Between
accuracy and usefulness, usefulness should come first, since only a model that brings
light to some shade is worthwhile. For optimizing problems that need to be simplified
in a model, incorporating the full complexity of the real world is rarely possible, but the
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model should be a window on reality and present a clear and concise view of that real-
ity. In this sense one could say that the art of modeling is the art of simplifying. First,
important characteristics must be identified. Next, one or more of these characteristics
should be incorporated in the problem formulation. Which characteristics to choose is
mainly a question about their contribution to the realism of the formulation, but if they
add much complexity one must find out if they are absolutely necessary. Solvability is
essential since a problem formulation that cannot be solved loses much of its purpose
regardless of how realistic it might be.

When considering using optimal control theory formulations for the purpose of
managing complex systems, one has to weight up the importance of an accurate sys-
tem description against the need to find the exact, one and only, optimal solution to a
formulated problem. Control theory formulations usually have an exact solution, but
the concept of usefulness is not fulfilled if the system description has no realism. Even
with the best computer technology available, system complexity very often is too over-
whelming for a model to allow optimizing when acceptable accuracy and realism are to
be maintained. In many cases it is impossible to tell which strategy is the best; either to
relax model complexity so that one can use e.g. optimal control theory to find the op-
timal solution, or to raise complexity to gain more realism and search for an acceptable
strategy rather than an optimal one.

1.2 Models

The problem formulations of the essays in this thesis consist of one or more ordinary
differential equations expressing the current state of the system, x(t), and of an objective
function that is to be maximized over time. The system is controlled by the control
variable(s), u(t). Typically, in the case of a fishery x(t) could be a vector of biomasses
and u(t) could be a vector of catches. If we assume current profit given by Π(x(t), u(t)),
discount rate δ and an infinite time horizon, the problem is given by

max
u

∫
∞

0

Π(x(t), u(t)) e−r t dt (1.1)

subject to
x′(t) = f(x(t), u(t)). (1.2)

In other words, we have to find optimal controls that maximizes the sum of all future
discounted profit on condition that the state vector changes according to eq. (1.2). A
related problem also explored in this thesis (essay I) is when the time horizon is finite
but unknown. Instead of maximizing eq. (1.1), one maximizes

max
u

∫ T

0

Π(x(t), u(t)) e−r t dt+ ψ(x(T ), T ), (1.3)
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where ψ(x(T ), T ) is some kind of salvage value remaining when the period [0, T ] of
optimizing is ended. Since T is unknown, however, it is part of the problem to find its
size.

The rest of the model formulations are specific to each essay and are therefore not
described here.

An important common characteristic of all the models in this thesis is that the objec-
tive functions (eq. (1.1)) are autonomous (independent of time) when one disregards the
discount factor. In addition, the state equations (1.2) are not explicitly time-dependent.
These properties are very important since they allow us to find an autonomous "feed-
back solution" to the problems. The autonomous feedback u = u(x) is a class of solu-
tions that defines the optimal control, u, for every admissible state, x. The autonomity
simplifies the solution. It makes it possible to find the optimal control without worry-
ing about the optimal time-path, and is essential in all the solution procedures of this
thesis. Without it, the feedback would have had the form u = u(x, t), which would have
increased the complexity considerably.

1.3 Background and perspectives

Two of the papers in this thesis concern management of capelin and cod in the Barents
Sea (essay III and essay IV) and a third essay (II) regards the techniques used to solve the
models in these essays. The first essay is, however, somewhat different. Its theme is
carbon taxes and management of the resources of fossil fuel. This is currently a much
hotter topic than it was when the essay was written. The climate question rose to the
top of the world media’s agenda when the Intergovernmental Panel of Climate Change
and Al Gore shared the Nobel Peace Price of 2007. In the UN climate conference on Bali
the participants finally reached an agreement on negotiations for a new agreement in
Copenhagen in 2009 to replace the existing Kyoto agreement. There is now a consensus
that emissions must be reduced. The battle now is about how and how much.

Basically, there are two leading approaches to how emissions can be reduced. Car-
bon markets and carbon taxes (see Essay I). In January 2005 the European Union Green-
house Gas Emission Trading Scheme (EU ETS) emerged, but it is not working very well
because the supply of emission permits is too large. Most economists also favor carbon
tax over other approaches (54% according to a Wall Street Journal Survey in February
2007). The advantage with carbon taxes is that the extra costs are passed downstream
to all the consumers in a way that does not unreasonably favor particular companies or
countries. Although they do not set an actual limit on emissions, they turn the market
in a more environment-friendly direction.

The British government addressed the time scale and volume of an optimal reduc-
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tion in emissions with their publication of the Stern Review (Nordhaus 2007 a). The
Stern Review claims that the current situation demands an immediate response. If we
do not act, the report estimates all risks and impacts will cost 20% of GDP (gross domes-
tic product) or more. Moreover, it suggests global emission reductions of between 30%

and 70% over the next two decades. The Stern Review is, however, strongly criticized by
Nordhaus (2007 a), who points out that the results rely heavily on an unrealistic model
parameterization. In his opinion, answers in the Stern report are too bombastic and too
dramatic: "How much, how fast, and how costly - remain open" (Nordhaus 2007 b).

In many of the world’s fisheries the need for immediate management and control is
even more urgent than in the fossil fuel market. Typically, knowledge about the situa-
tion is lacking just as much as the willingness to reach agreements. Fortunately, in the
case of the Barents Sea fisheries the situation is much better. Norwegian and Russian
scientists know much about the present state of the ecosystem, and assessment data are
available for the most important stocks. Although unreported unlicensed fishery has
been a considerable problem, the two countries more or less agree on the management.

The Norwegian-Russian cooperation was prepared by the introduction of Exclusive

Economic Zones (EEZ) in 1977, where Norway extended its geographical area by approx-
imately six times its land territory (Hoel 2005). Since then, The Mixed Norwegian-Russian

Fisheries Commission (established in 1976) has played a decisive role in the management
of cod, haddock and capelin in the area. Their conclusions are largely based on state-
ments from The International Council for the Exploration of the Sea (ICES), which provides
a "quality control" on the advices from Norwegian and Russian scientists.

In spite of the well-established management of the fish resources in the Barents Sea,
improvements are still possible. Much more could be done in combining biologicals
and economic aspects in a multi-species setting. The Barents Sea fisheries are of great
economic importance, yet the management of the most important species, capelin and
cod, is not founded on scientific economic advice. The total allowable catch (TAC) of
capelin determines a fishery from January to February and is decided on the basis of
the expected size of the spawning stock when predation by cod is taken into account.
Similarly, the catch of cod is based on the stock size, but in a single-species context
with an aim of not changing the TAC too much from year to year. The cod stock is
shared evenly between Norway and Russia with a small allocation to third countries
(Hannesson 2006), and the division key for capelin is 60-40 in favor of Norway.

Failure of previous management made it clear in the early 1980s that traditional sin-
gle species models for many species were incapable of predicting future stock sizes ade-
quately for management purposes (Mehl 1986). Analysis of stomach content gave a bet-
ter understanding of the dynamics in the fisheries (Mehl 1991), and the collapse of the
capelin stock in the middle of the 1980s was understood and explained by the dynamics
between capelin, cod, herring (Clupea harengus) and man (Hopkins and Nilssen 1991).
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Hjermann, Ottersen and Stenseth (2004) conclude that capelin, cod and herring should
be managed at a multi-species/community level, and that the "one-way" multi-species
approach currently used should be extended to jointly decide harvest levels for all three
stocks. The need of a multi-species perspective, however, was already addressed in
Models for multi-species management (Rødseth 1998).

In both essay III and essay IV the management has a multi-species perspective. Only
capelin and cod are considered in the former, but in essay IV the perspective is extended
to include juvenile herring. Such an extension is rather challenging from a computa-
tional perspective, and the methods used are the theme of essay II, which establishes a
technical basis for the next two essays.

The economic model used in both essay III and essay IV acknowledges the fact that
the Barents Sea is jointly managed by Norway and Russia. This model assumes that
the TACs of both Norway and Russia can be controlled by a social planner, and the
objective of the planner is to maximize Norwegian surplus. In spite of the promising
cooperation between Norwegian and Russian scientists today, there have been several
disputes between the two countries during the last thirty years. Owing to pressure
from the Russian side, TACs have often been set far above the level recommended by
scientists. Moreover, in the beginning of the 1990s overfishing by the Russian TACs was
a threat to the joint fishery, but after 1993 cooperation between Norwegian and Russian
coast guards has eased the problem. There are, however, still problems with unreported
fishing on both sides. Nevertheless, p.t. (in 2009) the stock situation in the Barents Sea
is very encouraging.

The common basis of all the essays is the optimizing problem stated in eq. (1.1) and
(1.2). Moreover, all the essays solve it using different variants of optimal control theory.
These variants are Pontryagin’s maximum principle (see Kamien and Schwarz 1991),
which we make use of in essay I, and dynamic programming (see Bertsekas 2005) that
we employ in the other works. Unfortunately, these methods impose some limits on the
degree of complexity one can choose for the system to be optimized. In e.g. the case
of multi-species fishery management one has to moderate the number of interacting
species in the growth model describing the state of the system. The reason for this mod-
eration is that the numerical cost (throughput) grows very fast with the dimensionality
of the system. This also limits the possibility of working with year classes within each
species. Although a lot of work has been done in the field of operational analysis, there
is still a long way to go before optimal control theory is well suited for general prob-
lems in more than four dimensions, such as a three-species management model with
two year classes per species, which results in a six-dimensional state space.

For natural systems, like the marine ecosystem in the Barents Sea, it is impossible to
model all attributes. One has to set a limit for the complexity. Where one sets this limit
determines whether it is possible or impossible to find the optimal solution to the model.
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If the model gets a much better assessment of the real system when more complexity
is added to it, such an extension could also be evaluated when this means that it is
impossible to find an exact solution to the model. In such cases scenario-modeling (see
Schweder 2006), which we use in essay III, is a good method for evaluating different
management strategies. One cannot expect to find the best strategy, but by evaluating a
number of strategies one can choose the best strategy tested.

There is always room for fundamental stylized models that investigate new princi-
ples in management, but there is also much to be done in the field of applied research
where real data analysis is given priority. The optimal control theory methods we make
use of in essay II, essay III and essay IV can be employed in a wide range of applied stud-
ies as long as the dimension of the state space (fish species, year classes, geographical
areas, etc.) is fairly restricted. A modest rise in dimensions is possible, but introduction
of stochastics and applications in models with marine protected areas (MPAs) are more
striking extensions of the work in this thesis.

1.4 Overview of the thesis

The thesis consists of four essays, all based on optimal control theory. The subject of
essay I is optimal exploration of fossil fuel when negative externalities regarding CO2

emissions are accounted for. In this essay, a Pontryagin approach is used to solve the
optimal control problem described by eq. (1.1) and (1.2). The objective is to study how
a tax on fossil fuel may shift total world exploitation of fossil fuel to a level that is
optimal for society when negative externalities from exploitation and consumption are
accounted for.

Essay II focuses on dynamic programming approaches to solving similar problems.
This is most of all an essay about technicalities demonstrating the techniques employed
in essays III and IV, but a few examples of concrete problems are also solved.

Essay III is a scenario-model. Optimal TACs of capelin and cod are found based on
a top-down biological growth model from Agnarsson et. al. (2008).Consequences of
this catch strategy are compared with regard to a bottom-up growth model from the
Institutes of Marine Research in Bergen (IMR) as the real growth. Priority is largely
given to stock scenarios resulting from the different strategies tested.

In essay IV a three-species top-down growth model for capelin, cod and herring in
the Barents Sea is established on the basis of historical stock data. In accordance with
this growth model optimal TACs for capelin and cod are found, and long-term effects
of following this policy are investigated.



1.5. Summary of essays 7

1.5 Summary of essays

1.5.1 Essay I

In this essay a principal model for optimal management of the world’s resources of fos-
sil fuel is constructed. The profit function is defined as the sum of consumer surplus
and producer surplus, and the objective is to maximize discounted profit for the fu-
ture. Negative externalities associated with emissions resulting from production and
use of fossil fuel are, however, also accounted for. Atmospheric level of CO2 and the
remaining reserves of fossil fuel represent the environmental state of the system as a
two-dimensional state vector, and a convex damage function damps down the profit.

Accumulation of CO2 in the atmosphere is modeled to grow linearly with the world
production of fossil fuel and decline non-linearly with a purification function f(a) that
has a skew normal distributed form and represents the self-cleaning ability of the ecosys-
tem. Similar models have been made previously, but with a linear function representing
this ability. With a linear f(a) it is not possible to model scenarios with irreversible pol-
lution. The coefficients of the function we use are calibrated from real historical data for
emission and atmospheric CO2 levels.

Since fossil fuel is a non-renewable resource in all practical interpretations of the
term, there comes a time t = T when either all fossil fuel is exhausted or a new technol-
ogy replaces fossil fuel. Therefore the maximizing problem is given above by eq. (1.3),
where the time of the technology shift T is decided endogenously.

We study the pure market solution and compare it with the optimal solution ad-
justed for externalities. The unregulated solution results in irreversible pollution since
the CO2-levels becomes so high that the modeled self-cleaning ability of the ecosystem
collapses. When f(a) is replaced by a linear purification function the optimal tax level
is highly reduced compared with the non linear case. The reason is that linear purifi-
cation over estimates the cleaning ability of the ecosystem for high levels of CO2 in the
atmosphere.

The influence of the discount rate factor is considerable in this model. Low discount
rate gives higher tax and earlier shift in technology and, in the first years especially, tax
is higher.

1.5.2 Essay II

This essay concentrates on a specific dynamic programming approach well suited for a
lot of optimal control problems in fishery management. Since the term "curse of dimen-
sionality" is frequently used in connection with dynamic programming, the approach
was developed with the intention of solving optimal control problems with three- or
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four-dimensional state spaces within reasonable time.
Standard discretization of the state space and well-known fixed-point iterative meth-

ods are employed, but the main idea is to avoid discretization of the control space. In-
stead our method finds the optimal controls from first-order conditions on an approxi-
mated discrete version of the Hamilton-Jacobi-Bellman equation. This method can only
be effectively used when the optimal value function is at least piece-wise differentiable.
Other characteristics are that we shift between policy and value iteration and use inter-
polation to find approximated values of the value function to state values between the
nodes of the state space grid. Such values are used in the iterative process when we
calculate the optimal value function.

Interpolation is also used in the process of solving the first-order conditions. For
many problems the first-order conditions cannot be solved algebraically, and then solv-
ing of the first order conditions is in itself a task deserving the attention of operational
analysis experts. In stead of solving the exact first-order condition problem, we interpo-
late one or both of the functions in the equation to be able to find an algebraic solution
to a related problem. This way an approximately optimal control can be found compu-
tationally cheaply.

At the end of the essay, three examples are solved with our methods. These are one
investment problem and two problems for optimal management of fishery resources.

1.5.3 Essay III

The issue in this essay is optimal management of Barents Sea capelin (Mallotus villo-

sus) and North East Arctic cod Gadus morhua). A two-species management model with
pure economical objectives is presented, and its biological consequences are explored
through growth simulations with an independent simulator, the Bifrost simulator. A
growth model is also integrated in the management model, but the approach in the two
growth models is very different. Although the growth of the management model is
multi-species, it has a top-down approach, whereas the Bifrost simulator is much more
bottom-up. The simulations are therefore a powerful validity test for the management
model.

In order to find out how the management model performs compared with existing
strategies, many different simulations are done. Four of them are based on the manage-
ment model and two are inspired by existing management.

A simulation period of 565 years with 2006 as a starting year is chosen. The results
show that the strategies revealed from the management model perform surprisingly
well. First of all, none of the strategies leads to extinction of any of the stock. Second,
with regard to long-term average of spawning stock biomasses and TACs of cod, the
two best strategies are picked from the management model. It also emerges that when



1.5. Summary of essays 9

the herring assessment model Seastar runs concurrently with Bifrost to simulate a dy-
namical herring influence, the management model performs relatively better compared
with existing strategies than it does when herring influence is constant.

The positive results from the simulations of this work indicate that further studies
with both biologically and economically-based multi-species management should be
performed. It is not a given that the biologically-based management is more fish-stock
preserving and aware than economically-based management, and the multi-species ap-
proaches may contribute much.

1.5.4 Essay IV

In this essay we develop a three dimensional Barents Sea growth model for the key
species capelin, cod and herring. This growth constitutes the state equations in an op-
timal control problem of the form defined in eq. (1.1) and (1.2). The profit function is
derived from a Nordic ministry report (Agnarsson et. al. 2008), and represents the Nor-
wegian fraction of profit from the Russian and Norwegian fishery of capelin and cod in
the Barents Sea.

Logistic growth modified by predation is assumed as the overall structure of the
growth model. Herring enters the model only for age groups one to three, since her-
ring aged three to four years leave the Barents Sea area and join the mature part of the
population further south-west (Huse 2002) and the zero group of herring is of little im-
portance as far as predation relationships are concerned (Hjermann 2004). The inflow
of herring is exogenous to the model, but the growth also depends on the size of the
Barents Sea fraction.

Coefficients of the growth model are found through regression analysis based on
data from 1973 to 2004. The statistical results are quite good, and both the equilibrium
levels resulting from fishery closure and the equilibrium levels resulting from optimal
harvest make sense. One should be careful, however, to extrapolating growth when
stock sizes are very far from historical ones.

Optimal control problems are not usually considered suitable when the state space
is three-dimensional because of high computational expenses, but with the methods
presented in essay II this is no problem. As far as the concrete results are concerned,
we find that according to this model optimal TACs of capelin are very dependent on
the size of the capelin stock itself, the cod stock and also the herring stock. Cod is the
top-predator in the model and therefore optimal TACs of cod are less dependent on
the size of the capelin and herring stock. The most important finding in this work is
that it indicates that historic TACs have been much too high for both capelin and cod.
Starting with stock data from 1973 as initial condition, the biologic growth model and
the feedback-catch solution would gives a cod stock on average more than 100 % bigger
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than actual historic average between the years 1973 to 2005. In spite of the huge cod
average, the capelin stock given by the feedback solution is more also than 10 % bigger
than historic average.

The feedback-solution implies that capelin to a greater extent should be left as food
for cod, which is more valuable on the market of fish. That gives better growth con-
ditions for cod, and a higher cod stock increase the cost effectivity for each unit of cod
fished. The total harvested biomass of cod with the feedback solution is slightly lower
than actual harvest, but the profit is much bigger due to lower costs. The conclusion
is that from an economical point of view, the capelin and god stocks must be managed
jointly.

From initial conditions with sensible combinations of stock sizes, optimal manage-
ment leads to a single stable equilibrium with rather high stocks of all the species in
the model. Another interesting finding is that a moderate presence of herring has a
positive influence on the sum of yield from the capelin and cod fishery of the Barents
Sea. According to the biological growth model a moderate herring stock stimulates cod
growth without harming the capelin stock critically much. An obvious conclusion of
this finding is that a focus on only the capelin-predator role of herring is too narrow.

1.6 The background of the essays

The four essays of this work are fully written by the main writer. However, parts of
them are also read through and commented by one or both of the supervisors. As far as
the models are concerned, there have been more contributions from the supervisors. A
detailed description follows below. With regard to the amount of contribution by these
essays to existing knowledge, the reader is referred to the introduction of each essay for
details.

Essay I

The model was originally given by the second supervisor, Professor Leif K. Sandal, but
some modeling details are provided by the main writer, who also is responsible for all
the numerics and the writing. The mathematical principles behind the solution proce-
dures are the end product of discussion between Sandal, Professor Emeritus Gerhard
Berge and the undersigned. Whereas Sandal was the main contributor in the discus-
sions, Berge was responsible for much of the proof readings.

Essay II

The essay is fully produced by the main author. However, the principals behind the
solution procedure are a result of discussions with Sandal, who i.a. introduced the
article by Grüne and Semmler (2004). All the examples are found by the main author,
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who also is responsible for the numerics.

Essay III

The idea of working with a capelin and cod model was suggested from the main su-
pervisor, Arne Eide. The starting point was, however, a bottum-up biological model,
which turned out to be a poor basis for economical optimizing performed by dynamic
programming. Discussions with Geir Huse at the Institute of Marine Resource in Bergen
did for a while lead the work in the direction of so-called individual based modelling.
This work was left when Sandal in a meeting introduced the undersigned with some of
the work behind Agnarsson et.al (2008), where a two dimensional growth model is pre-
sented along with a utility/profit model and a feedback-solution for optimal catch. We
agreed that the undersigned should start working to improve the numerical algorithms
in order to form the basis for solutions of similar models in more than two dimensions.
E.g models with a three- or four-dimensional state space.

In a meeting between Eide and the undersigned, the improved numerical method
was introduced to Eide, and in the proceeding discussions we agreed on the final model
structure for Essay III, which came up as an approach that combined the starting point
of bottum-up biological modelling with the two-species top-down management model.
A scenario model was to be made to test the flexibility of the feedback solution. The
flexibility should be tested by simulating possible stock scenarios when an independent
assessment model was used as input for the biomass development of capelin and cod.
In the coming weeks investigations were done concerning the availability of several
assessment models in use at the Institute of Marine Research. Finally, it turned out that
researcher Sigurd Tjelmeland had two assessment models that fitted the project well,
namely Bifrost and SeaStar. The feedback-solution was integrated into the assessment
models, and Tjelmeland provided figures that showed simulated scenarios.

Essay IV

The model in Essay IV, with a three-dimensional state space (capelin, cod and herring),
is a natural extension of the two-dimensional model presented in Agnarsson et. al.
(2008). Several discussions with the working environment at the Institute of Marine
Research convinced the undersigned that a three-dimensional growth model is a signif-
icant improvement to existing two-dimensional models, as juvenile herring demonstra-
ble impacts the capelin-cod system considerably.

On the way, several growth models were made, tested and discussed. Early in the
process Eide had some very useful critical comments and Sandal had some good advices
concerning both software to use and statistical methods. However, the final growth
model is fully made and discussed by the undersigned. Both Sandal and Eide has done
a very good job in proof-reading parts of the text. In addition Sandal has provided
some assistance concerning interpretation of the feedback solution and choice of figures
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to present.
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