
Faculty of Science and Technology
Department of Computer Science

Building a Neighborhood Resource Map for IoT and Cyber-Physical sys-
tems in Resource-Constrained Environments

Sindre Sønvisen
INF-3990 Master’s Thesis in Computer Science
15 May 2022

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2022 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

In memory of Aicko

Abstract
Creating and maintaining a shared resource map between observation nodes
that have a behavior where they are mostly sleeping, and have a wake up sched-
ule that are determined at each node locally is challenging. This thesis looks
at these challenges, and possible solutions have been proposed to overcome
them.

Previous research on the topic of constrained IoT networks have looked at the
network, energy, and human constraints separately. But no one has looked at
what is needed when all the limitations have to be accounted for simultane-
ously. Three methods for exchanging resource descriptions are created in this
paper.

To evaluate the different exchange methods with different node behaviors, a
custom simulator is made. The simulator will simulate communication and
resource description exchanges between nodes.

The results show that different node behavior has a drastic affect on when each
of the exchange methods work best. The main contribution of this paper is to
guide designers of IoT and sensor networks, when they are choosing how the
nodes will behave in resource constrained environments.

And the main conclusion are that when there are complete overlap of node
behavior, the best method to spread resource descriptions is; to have everyone
just sharing description for its own resource. When the nodes are not guar-
anteed to overlap, some other techniques for exchanging information must
be used, like SLM or SLMV that are presented in this paper. Also when there
is no overlap, the node behavior becomes even more important. Structuring
the wakeup schedules even a bit can help improve overall time to create the
resource map.

Acknowledgements
Thanks to my main supervisor Professor Otto Anshus, and co-supervisor Asso-
ciate Professor Issam Raïs for the guide and inspiration when working with
this project.

I also want to thank my girlfriend Christine Sofie for being supportive through-
out this project. And a massive appreciation to my parents Jane and Karl Atle
for making this possible.

Thanks to the Research Council of Norway (IKTPLUSS program, grant number
27062) for funding the DAO project, that this thesis got its research context
from.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Definitions xv

List of Listings xvii

1 Introduction 1

2 Problem statement 3

3 Related Work 5
3.1 Telecommunication Strategies 5
3.2 Data Storage . 6
3.3 Sensor networks . 6
3.4 Collaborative Sensing . 7
3.5 Edge computing . 7
3.6 Update Distribution . 8
3.7 Peer-to-peer . 8

4 Context 9
4.1 Characteristics of the arctic tundra 9
4.2 Spreading Mechanism . 9
4.3 Parameters & Factors . 10

4.3.1 Exchange type . 10
4.3.2 Time Between Wakeup 10
4.3.3 Uptime duration . 11
4.3.4 Spread . 11
4.3.5 Resource Description size 13

vii

viii contents

4.3.6 Throughput and Latency 13
4.3.7 Number of ONs . 13

4.4 Requirements . 14
4.4.1 ON Behavior . 14
4.4.2 Energy . 14
4.4.3 Identification . 14
4.4.4 Neighbor Detection 14
4.4.5 Communication . 15
4.4.6 Assumptions . 16

5 Architecture 17
5.1 Neighbor . 18
5.2 Neighborhood . 18

5.2.1 Neighbor detection 19
5.2.2 Past . 19
5.2.3 Present . 19
5.2.4 Future . 19

5.3 Resource map . 20
5.4 Map vector . 20
5.5 Resource spreading . 20

5.5.1 Send local resource(s) with push 21
5.5.2 Send map view with push 21
5.5.3 Send local resource(s) with push pull 21
5.5.4 Send map view with push pull 21

6 Methodology 23
6.1 Architecture Exploration . 23
6.2 Quantitative method . 24
6.3 Reliability . 24
6.4 Validity . 25

7 Simulator Design 27
7.1 Overall Structure . 27
7.2 Running the Simulation . 27

7.2.1 Transferring of Resources 28
7.2.2 End of Simulation 28

7.3 Design issues . 28

8 Limitations 29
8.1 CPU-usage . 29
8.2 Disk-usage . 29
8.3 RAM-usage . 30
8.4 Network bandwidth . 30
8.5 Collisions . 30

contents ix

9 Simulation Implementation 33
9.1 Setup . 33
9.2 Python3-code . 34
9.3 C-code . 34

9.3.1 Initialization . 34
9.3.2 ON In the simulation 35
9.3.3 Simulation execution 35

9.4 Check and Exchange . 36
9.4.1 Pseudo Random Order 36

9.5 Optimization . 37
9.6 Network Characteristics . 38

10 Evaluation 39
10.1 Metric . 39
10.2 Software environment . 39
10.3 Hardware environment . 40
10.4 Experiment Design . 40
10.5 Parameter values . 40

11 Results 41
11.1 Results Throughput 320 bit/s and Latency 0 ms 41

11.1.1 SLR vs SLM vs SLMV with different spread 42
11.1.2 SLR vs SLM vs SLMV with different uptime 53
11.1.3 SLR vs SLM vs SLMV with different wakeup 65

11.2 Results Comparing Throughput 72
11.2.1 SLR 320 bit/s vs 25 kbit/s 72
11.2.2 SLM 320 bit/s vs 25 kbit/s 76
11.2.3 SLMV 320 bit/s vs 25 kbit/s 82

11.3 Results Comparing Latency 86
11.4 320 bit/s 0 ms vs 500 ms 86
11.5 25 kbit/s 0 ms vs 500 ms 92

12 Discussion 99
12.1 Set Limitations . 99
12.2 Remember Failed Transactions 99
12.3 Radio Wakeup . 99
12.4 Use Beacon for Resource Descriptions 100
12.5 Hybrid Solution . 100
12.6 Strange Behavior When Always On 101
12.7 Choosing Parameters . 101

13 Conclusion 103

14 Future work 105

x contents

Bibliography 107

A Appendix 111

List of Figures
4.1 Illustrate the different spreading types 12

5.1 The different neighborhoods 19

9.1 Equation used in uniform spread 35

11.1 Comparing exchange types with Factor spread, Wakeup 10
minutes, Uptime 1 minute 43

11.2 Comparing exchange types with Factor spread, Wakeup 20
minutes, Uptime 5 minutes 46

11.3 Comparing exchange types with Factor spread, Wakeup 40
minutes, Uptime 10 minutes 48

11.4 Comparing exchange types with Factor spread, Wakeup 1
hour, Uptime 10 minutes 50

11.5 Comparing exchange types with Factor spread, Wakeup 3
hours, Uptime 10 minutes 52

11.6 Comparing exchange types with Factor Uptime, Wakeup 10
minutes, No spread . 54

11.7 Comparing exchange types with Factor Uptime, Wakeup 1
hour, No spread . 56

11.8 Comparing exchange types with Factor Uptime, Wakeup 10
minutes, Random spread 58

11.9 Equation for probability of no overlap 59
11.10 Comparing exchange types with Factor Uptime, Wakeup 1

hour, Random spread . 60
11.11 Comparing exchange types with Factor Uptime, Wakeup 10

minutes, Uniform spread 62
11.12 Comparing exchange types with Factor Uptime, Wakeup 1

hour, Uniform spread . 64
11.13 Comparing exchange types with Factor Wakeup, Uptime 5

minutes, No spread . 66
11.14 Comparing exchange types with Factor Wakeup, Uptime 5

minutes, Random spread 68

xi

xii l ist of figures

11.15 Comparing exchange types with Factor Wakeup, Uptime 5
minutes, Uniform spread 70

11.16 SLR Throughput 320 bit/s vs 25 kbit/s, Factor Wakeup, Up-
time 1 minute, No spread 73

11.17 SLR Throughput 320 bit/s vs 25 kbit/s, Factor Uptime, Wakeup
10 minutes, No spread . 75

11.18 SLM Throughput 320 bit/s vs 25 kbit/s, Factor Spread, Wakeup
20 minute, Uptime 1 minute 77

11.19 SLM Throughput 320 bit/s vs 25 kbit/s, Factor Spread, Wakeup
40 minute, Uptime 10 minutes 79

11.20 SLMV Throughput 320 bit/s vs 25 kbit/s, Factor Spread,
Wakeup 20 minute, Uptime 1 minute 82

11.21 SLMV Throughput 320 bit/s vs 25 kbit/s, Factor Spread,
Wakeup 40 minute, Uptime 10 minutes 84

11.22 SLR Latency 0 ms vs 500 ms, Factor Spread, Throughput
320 bit/s . 87

11.23 SLM Latency 0 ms vs 500 ms, Factor Spread, Throughput
320 bit/s . 89

11.24 SLMV Latency 0 ms vs 500 ms, Factor Spread, Throughput
320 bit/s . 91

11.25 SLR Latency 0 ms vs 500 ms, Factor Spread, Throughput 25
kbit/s . 93

11.26 SLM Latency 0 ms vs 500 ms, Factor Spread, Throughput 25
kbit/s . 95

11.27 SLMV Latency 0 ms vs 500 ms, Factor Spread, Throughput
25 kbit/s . 97

List of Tables
5.1 Illustration of one ON building its RM over time 18

11.1 Table of the smallest uptime needed for different wakeup val-
ues. With Spread: Random, Throughput: 320 bit/s and La-
tency: 0 ms . 71

11.2 Table of the smallest uptime needed for different wakeup val-
ues. With Spread: Uniform, Throughput: 320 bit/s and La-
tency: 0 ms . 72

11.3 Table of the smallest uptime needed for different wakeup val-
ues. With Spread: Random, Throughput: 25 kbit/s and La-
tency: 0 ms . 85

11.4 Table of the smallest uptime needed for different wakeup val-
ues. With Spread: Uniform, Throughput: 25 kbit/s and La-
tency: 0 ms . 86

xiii

List of Definitions
1.1 Observation Node . 1

4.2 exchange type . 10
4.3 Send Local Resource . 10
4.4 Send Local Map . 10
4.5 Send Local Map Vector . 10
4.6 wakeup . 10
4.7 uptime . 11
4.8 No spread . 11
4.9 Random spread . 11
4.10 Uniform spread . 11
4.11 Bandwidth . 13
4.12 Throughput . 13
4.13 Latency . 13
4.14 duty cycle . 14

5.15 neighbor . 18
5.16 neighborhood . 18

xv

List of Listings
9.1 Implementation for the Perm function. 37

xvii

1
Introduction
Resource constrained environments like the Arctic tundra, make it difficult
to conduct data collection over a long period of time. The constraints of not
having access to a power grid, limited or no connection to a backhaul network,
and the remote location, makes the process of observation very difficult.

Simultaneously are these locations important to monitor. These areas are
some of the coldest places on earth, but have seen the highest temperature
increases[13]. The increase in temperature is not just changing the local envi-
ronment itself, but also the wildlife and biodiversity in it [9].

When the environment change because of rising temperature, it can create a
feedback loop. When the permafrost deteriorates methane is released in to the
atmosphere, and thereby interfere with the snow buildup in the winter months,
and melting in the summer months. When the layer of snow disappear earlier
in the summer, more of the energy from the sun is absorbed by the ground
rater than reflecting of the snow [9].

Getting early signals on the changes in the Arctic region can help prepare for
changes outside the Arctic region as well [11].

To do measurements and data collection small computers with sensors are
placed out in the elements, here termed Observation Node (ON). These ONs
need to be small enough to be easily transported to the tundra, meaning they
cannot just be equipped with a large battery and big antennas. They also need

1

2 chapter 1 introduction

to be non intrusive to the environment they are in, so no large installations on
site can be made.

2
Problem statement
When we do observations with ONs in the places like the Arctic tundra (AT) we
experience a lack of important resources like: energy, back-haul data network,
and humans. These limitations make it difficult to collect observation data for
a longer period of time. To mitigate these challenges ONs can utilize resources
on other ONs, and to do this they need to build up a map of available resources
and services other ONs in the neighborhood are willing to offer to them.

The challenges that must be overcome to use resources on other ONs are; First
they need to exchange information between them about the resources offered
from other ONs and build up a resource map (RM). When we take into account
that power is a constraint, and therefore the ONs follow duty cycles. The duty
cycle result in that the ONs sleep for most of the time. In addition the duty
cycles may or may not overlap. We have a problem with how we can setup the
ONs cycles, and based on the setup when we can expect to have the complete
RM present at each ON.

Some research have been done on the topics of power constraints, use of duty
cycle, network limitations, sharing resources, and deployment on remote places.
But they do not look at all constraints at the same time. Many of the solutions
also assume that there is a cheap broadcast or multicast functionality available
on the ONs, something we do not have.

3

3
Related Work
Research on the topic of resource discovery and data dissemination have been
done previously. In this chapter I will briefly describe some of the state of the art
papers written on topics, that this paper have derived inspiration from.

3.1 Telecommunication Strategies

Looking at the telecommunication industry can be a guide in which direction
to take. The telecommunication industry is moving away from a proprietary
hardware and software, and is changing from Service oriented architecture
(SOA) to a microservice architecture. [14]

In the paper "Telecom Strategies for Service Discovery in Microservice Envi-
ronments" [14] they categorize different service discovery frameworks. They
present the notion of structured directories where a single directory store the
information, or structure less directories where there is no single directory, and
hierarchy or peer-to-peer need to be used. The requests can be static where
the clients or the designer have full control of the ONs behavior. It can also be
dynamic, meaning the client or designer do not have control of the exact ON
behavior.

5

6 chapter 3 related work

3.2 Data Storage

Data dissemination problems is not a unique problem for just IoT. Everybody
that lives in the informational age and have embraced computers in their
professional and or personal life generates data, and wants to keep track of
where data is stored.

One solution to tackle the problem of multiple devices that only holds a chunk
of the users data each, is presented in a paper by Strauss et al. Eyo: Device-
Transparent Personal Storage [16]. They used what they called generation-
vectors (also known as version vectors) to spread data.

They saw the problems users had keeping track of which device held the data
they were looking for. So they wanted to create a more device transparent
solution where the same view of the data should be seen from any device.

A naive approach would be to store all the data on a centralized server, and
have all the devices make a connection to the server when they want to
retrieve or update data. This would introduce other problems like devices
not being connected all the time and storage capacity on each device may be
limited.

The solution was to not sync all the data but create metadata that can be
synced with every device. They manage this with the use of vectors. Devices
pull for changes whenever connectivity changes and push when a local object
is changed. They send the generation vectors which can be a group of many
updates. If a device receives a vector which is higher then it has seen before, it
then requests the update.

The authors claim that this solution solves the device transparency in discon-
nected devices. That it can sync between devices on any network topology and
have automatic conflict resolution. The key aspect is that they use an objects
metadata as a proxy for the actual object.

3.3 Sensor networks

Neighborhood abstractions in sensor networks have been done in a number
of ways before. A similar approach on the topic of what we try to achieve is
presented in a paper by Kamin Whitehouse [6].

In their approach each ON can have multiple neighborhoods and each neigh-
borhood holds an array of mirrors. A mirror is a reflection (cached view) of

3.4 collaborative sensing 7

the ON it represents, and holds annotations about that neighbor. To define a
neighborhood the authors write:

"A neighborhood in Hood is defined by a set of criteria for
choosing neighbors and a set of variables to be shared. A
node can define multiple neighborhoods with different
variables shared over each of them." [6]

When an attribute is shared it is always broadcast to all, and then each ON filter
for the attributes they are interested in, and cash them for later use.

3.4 Collaborative Sensing

The idea that multiple IoT devices can work together and collect and process
data in a group, instead of everyone doing it themselves is a much discussed
topic already and have the possibility to greatly reduce the power consumption
in many aspects of society.

Liu et al. presented in their paper [8] a method for IoT devices to collectively
sense context. It would act as a layer between the application layer and the
hardware. The applications would not know if the sensor reading was done
locally or at another device.

3.5 Edge computing

Edge computing is computation done on the edges of the network, so putting
smaller devices/servers closer to the end user. This architecture can reduce
latency for devices just by the data being closer to the user [3]. When we have
devices at the edge we usually call this the edge layer. Mist computing is meant
to extend IoT bellow the edge [15]. Sattari et al. present in the paper "Edge-
supported Microservice-based Resource Discovery for Mist Computing"[15] a
hybrid solution for resource discovery by using directory-based and directory-
less. Theymade themist devices first try to use a directory for resource discovery.
If the central resource directory is not reachable they switch to a multicasting
mode, where they advertise and discover resources.

8 chapter 3 related work

3.6 Update Distribution

Tollefsen et al. wrote in a paper, "Distribution of Updates to IoT Nodes in a
Resource-Challenged Environment" [17] about update distribution in resource
constrained environments. They assume that one ON in each neighborhood
have an backhaul network. In the paper they also experiment with different
metrics for ON behavior. They state that the results are sensitive to the ON
behavior.

3.7 Peer-to-peer

Distributed hash tables (DHT) is often used in peer-to-peer systems, it is re-
garded as a scalable, adaptable and fault tolerant in large dynamic environment
[18]. DHT can be deployed in many different ways, and traditionally support
key-value pairs. But to adapt a traditional DHT to a grid service, the paper
present pGridS that organize the services in two virtual organizations. Each
service description is split in to attributes and values. Then by using Chord
for consensus they can then organize the system in to an attribute overlay
network, and a value overlay network.

4
Context
The motivation for this project comes from the Distributed Arctic Observatory
(DAO) project. The aim of the project is to improve monitoring systems by
making them more efficient and robust. The project also wants to improve the
ease of use, longevity and performance [10].

4.1 Characteristics of the arctic tundra

What we consider AT in this paper is characterised to be large and cold, far from
civilisation with no power grid or backhaul network. In the winter months there
is almost no natural light, and in the summer months it never gets dark.

4.2 Spreading Mechanism

When we later in 11.1 analyze the results, it will be clear that different spreading
methods and the other parameters will affect the total amount of time to spread
from all to all, and therefore also the energy required. Four different scenarios
is therefore created to catch where each method works best, and where they
do not work.

• Scenario number 1 is called lazy, this means that we want to spread the

9

10 chapter 4 context

data but it is not essential to do it in a short amount of time. This scenario
fits well when there is no to little churn of the resources. It is fine to
use more time to reduce the energy consumption. It is fine to use weeks
to send the data. So we say this criteria is met as long at the resources
finished spreading within the maximum time frame of 30 days.

• Scenario number 2 is called medium, the resource spreading is to happen
faster but still not use to much amount of extra energy to do so. We set
the max time used for this criteria to two days.

• Scenario number 3 is called eager approach. For the eager approach
the resources must be sent fast, some delays are still accepted. For this
scenario the resources must spread within an hour.

• Scenario number 4 is called panic. Here we want to use the shortest
time possible to spread the data regardless of the energy consumption.
The maximum time here is set to 10 minutes. This scenario represent a
situation where something happens suddenly that the ONs must react to,
or there is a high churn rate.

4.3 Parameters & Factors

In this chapter i will describe the different parameters and factors experimented
with in this paper.

4.3.1 Exchange type

Each exchange type will be described in section 5.5. The ones that will be
explored is Send Local Resource (SLR) described in 5.5.1, Send Local Map
(SLM) described in 5.5.2, and Send Local Map Vector described in 5.5.4.

4.3.2 Time Between Wakeup

Time between wake up is from now on referred to as just wakeup. It is the
duration of time between the start of each wake up period. In each experiment
it will be set to the same value for every ON.

4.3 parameters & factors 11

4.3.3 Uptime duration

Up time duration, from now on just called uptime, is the amount of time each
ON is coherently awake. Meaning the time from the ONs wake up, until they
go to sleep again. This will also be set to the same value for every ON in each
experiment.

4.3.4 Spread

The spread is the amount of deviation in exact wakeup time between ONs,
meaning they wake up equally often but the exact point in time do not need
to be the same. The different types are illustrated in figure 4.1.

1. No spread: every ON wake up at the same time.

2. Random spread: The ON wakeup at a random non structured time.

3. Uniform spread: The nodes wakeup cycles is structured to have mini-
mum overlap, but guarantee enough overlap to be able to transfer the
resource(s).

12 chapter 4 context

Figure 4.1: Illustrate the different spreading types

4.3 parameters & factors 13

4.3.5 Resource Description size

To determine the resource description size a small example resource description
was made, counting five int values. An int is 4 bytes 1.

• Type int

• hostID int

• battery int

• latitude int

• longitude int

The example description totals to: 5 ∗ 41~C4 = 201~C4 = 16018C . There is no
theoretical max value for the resource description, the size of the description
will be based on the number of fields in it. But it is well worth keeping the
description size as small as practically possible, because a higher size will
require more time to send each description.

4.3.6 Throughput and Latency

Bandwidth is often referred to as pipe size. It is the theoretical volume of data
that can be sent over the network [4].

Throughput is the data amount that at any given time leaves the sender [4].
The units we will be using in this paper is bits per second (bit/s), and kilo bits
per second (kbit/s).

Latency is the amount of time the data takes from the sender to the receiver.
The unit is measured in millisecond (ms), and is the round trip delay [4]. Round
trip meaning the time from sender through receiver and back again.

4.3.7 Number of ONs

The number of ONs is the number of individual ONs in a neighborhood. The
realistic maximum goal for ON count when everybody is expected to be able to
communicate with everybody else, and taking the current network technologies

1. Data Type Ranges https://docs.microsoft.com/en-us/cpp/cpp/data-type-
ranges?view=msvc-170 (Accessed: 07.05.2022)

https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-170
https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-170

14 chapter 4 context

in to consideration, is probably around 100 ONs. Any more than a 100 and the
ONs would need to be put to close to each other 2.

4.4 Requirements

In this section the guidelines for the architecture of the system is presented.
They will be based on the constraints and goals outlined chapter 1 and chapter
2.

4.4.1 ON Behavior

The ONs are expected to be mostly sleeping and only wake up in intervals
to do measurements and communicate with other ONs or clients. They will
be following the same sleep-awake cycle (from now referred to as a duty
cycle).

4.4.2 Energy

Energy in this sense is the electric power the ONs use when awake. Ideally
the ONs should not just wake up to create the maps, meaning they need to
mainly use the time the ON is already awake for sensor readings. This may
not always be possible or practical, so then the goal will be to find the most
suitable configuration for the parameters described in section 4.3. While also
keeping in mind the energy consumption and scenarios outlined in section 4.2.
The ONs will all be on a fixed energy budget.

4.4.3 Identification

For the ONs to be able to create, and make use of a resource map each ON
needs to be uniquely identified in each neighborhood.

4.4.4 Neighbor Detection

The ONs need to have a method to detect other reachable ONs. The use of a
non-connectable beacon is an alternative. A beacon is a small device that uses
wireless theology to broadcast small peaces of data. The data can be anything.

2. Discussed in a supervisors meeting

4.4 requirements 15

When using Bluetooth low energy, beacons can stay active just by using a coin
cell battery for years [7].

In this case we specify a non-connectable beacon. This is the best solution for
low energy consumption, because the only job is waking up and transmitting
data then go to sleep again[7]. This means one device cannot connect and
control the beacon on another device. The beacon is just used for advertising
that a ON is awake.

Solutions that use Bluetooth Low Energy for neighbor detection already exist.
Bluetooth Low Energy neighbor detection (BLEnd) is one such alternative[5],
the beacon broadcast a small message/signal that the other ONs can pick
up. The BLEnd protocol determines the structure for broadcasting signal, and
listening for other signals.

4.4.5 Communication

For the ONs to communicate they need to have at least one network technology
present on them. There are many possible solutions for this, but the main goal
is to have a long range and a low packet loss. The technology must be robust
enough to not fail when the weather and environment change.

Network

The network technology characteristics outlined in this thesis is based on LoRa.
LoRa is a long range low power wireless communication solution. These are
requirements we need to meet to have a usefully observation cluster. The LoRa
specification is extensive and since this is only one solution we only base the
communication throughput, latency and packet sizes on it. The sharing of the
spectrum is not taken in to consideration, even though this would need to be
considered and planned for if it was to be deployed in the real world.

LoRa Physical Layer

Maximum transfer unit or Payload for LoRa physical layer is 2-255 octets (bytes)
and theoretical data rate up to 50 Kbps (Kbit/s) [2]. But testing shows much
lower speed in real world environment [1]. Therefore a throughput of 320 bit/s
and 25 kbit/s is chosen for the experiments, and a latency of 0 ms and 500
ms.

16 chapter 4 context

4.4.6 Assumptions

To reduce the scope of this thesis I have made some assumptions:

• Two ONs in range can create a peer to peer connection.

• When an ON wakes up, it has a local network that works.

• Clocks are synchronized.

– Clock drift synchronization are abstracted away.

• An ON can only communicate with one other ON at a time.

• Each ON have a non connectable beacon.

– If an ON can see the beacon of another ON they are in range to
create a peer to peer connection.

• The ONs are able to use the total bandwidth as actual throughput. Which
lead to throughput and bandwidth are used interchangeably in this thesis.

5
Architecture
In this system every ON is equipped with one or more resource(s). All the
ONs have the same role in the neighborhood, meaning they all are equal and
there is no leader, or ONs controlling other ONs. They all are expected to
communicate with each other and build up their neighborhood RM. In figure
5.1 the RM buildup over time is represented for one ON.

17

18 chapter 5 architecture

Connect and
Exchange ... Connect and

Exchange

Map

Time

View of one ON building the RM

Table 5.1: Illustration of one ON building its RM over time

5.1 Neighbor

The definition of a neighbor to an ON is an ON which beacon signal is seen,
and adhere to some defined criteria. In this case the criteria is: "The ability to
create a peer to peer connection", assuming both are active and not occupied
with communication with someone else. In other words connection between
two ONs happen without hops.

5.2 Neighborhood

A neighborhood is a set of ONs which beacon are seen by all in the set, and
that adhere to the criteria of being able to create a peer to peer connection.
Each node has defined three neighborhoods: Past, Present, and Future. Each of
them have their purpose but they define a neighbor in the same way as defined
in 5.1.

5.2 neighborhood 19

5.2.1 Neighbor detection

When ONs wake up they broadcast a small message over long range Bluetooth,
that other ONs then can pick up to know that the ON is on. In the rest of this
paper this will be called a beacon.

Information in this neighborhood can be used to derive when another ON is
likely to be awake and the probability of a successful connection.

Figure 5.1: The different neighborhoods

5.2.2 Past

The past neighborhood is a collection of the previously seen neighbors. This is
built up over time and holds information on other ONs schedule as seen by one
ON. Beacon signals, failed connection attempts and successful connections is
tracked.

5.2.3 Present

On the start of each wakeup period the Present neighborhood is empty. The
ON then immediately starts logging beacon signals observed, and connection
attempts. Both failed and successful connections are logged. Before the ON
goes to sleep the information in the current present neighborhood is inserted
in to the past neighborhood.

5.2.4 Future

Future neighborhoods is prediction made using the information in the Past
neighborhood. The information in the future neighborhood can be used to
estimate the probability of another ON being reachable in the future, and if
alteration in its own wakeup schedule needs to be made to reach that specific
ON.

20 chapter 5 architecture

5.3 Resource map

The resource map consists of information about resources on other ONs. The
information needs to indicate the type of the resource, estimated lifetime of
the resource, and the cost of using the resource. Here costs will be measured in
energy consumption for both the consumer and provider of the resource.

5.4 Map vector

The map vector is an array of numbers. Each index in the vector indicates the
version number of the resource description last seen for the ON correspond-
ing to that index. If the value equals to zero this means that the resource
description has never been seen. A higher value indicates a later update of that
description.

5.5 Resource spreading

When two ONs have created a peer to peer connection, they need a structure
to send data, determining what they send and when they send it. This paper
will test three alternatives:

Method number 1) Only send the local resource(s)

Method number 2) Send the entire map view

Method number 3) First send the version vector of the current map, and then
receive the missing information.

Number one and two is a push system, the information is just pushed to the
connecting ON without further negotiation. The third is a pull system, where
the connecting ON first sends a vector of its map. The vector is then compared
to the connected ONs vector. The connecting ON then gets sent back what
was missing from its own map and present in the connected ONs map. If the
connected ON notices that the connecting ON has updates not seen yet the
process is repeated the other way around. The granularity of each position in
the vector is a single value.

5.5 resource spreading 21

5.5.1 Send local resource(s) with push

In the resource push configuration ONs create peer to peer connections with
other ONs, when the connection is setup the ON being connected to immedi-
ately start sending the information on its own resource to the connecting ON.
When it is finished the ON that initialized the connection sends its resource
information back, and then end the connection.

5.5.2 Send map view with push

The send map with a push configuration is similar to the "send resource with
push" but instead of just sending information about the resource present locally,
it also sends the information it has collected from other ONs. This can make
it possible for ONs that do not have overlapping schedules to be able to get
information about each other.

5.5.3 Send local resource(s) with push pull

If resource information is likely to be updated after deployment a push/pull
system can be more efficient and reduce overhead on the network. Instead of
just pushing the complete resource information it first pushes a version vector
and then the receiving ON can request the updates it is interested in. This may
or may not be more efficient, if the resource information have many fields and
each field consists of a notable size of data this can be more efficient. Most
likely the information does not consist of mb’s or kb’s of data, but more likely
bytes. Therefore the time used sending the vector could rather be used sending
the actual information.

5.5.4 Send map view with push pull

Instead of sending the complete map view an ON has collected every time it
connects to a new ON, it can be beneficial to send a version vector first, and by
doing so requesting the information correlating to the positions missing in the
vector. This approach is similar to what they do in the Eyo paper [16]. This can
get the benefit of not needing to overlap with an ON to receive information
about it like in 5.5.2, but also reduce the network overhead because the entire
map view is not sent every time.

6
Methodology
The methodology used for any research is highly dependent on the nature of
that specific research question. Choosing the right methodology is fundamental
for the methods used to elaborate a scientific paper [12] We often split the
methodology in two main categories, Qualitative and Quantitative, both have
its pros and cons. Choosing the methodology impacts every aspect of the
research, from design to experiment and result analysis.

6.1 Architecture Exploration

Exploration of the different resource spreading mechanisms defined in 5.5, and
the effect of changes in the different parameters described in 4.3 can be done
in different ways.

One solution is to create an artifact and load software in real ONs and connect
multiple measuring sensors and running test on a real system. This would
give pretty accurate results, but have the disadvantage of being costly in labor,
money, and time.

Solution number two is to create an emulation that run on one machine and
try to mimic real ONs. This would be cheaper than an artifact but still would
require a lot of time to create the emulation. And the time to actually run the
emulations would still be considerable.

23

24 chapter 6 methodology

The final solution is to create a simulation of what is happening. This require
a much smaller code base then the emulation and will require much less time
to actually run. The disadvantage is that the result is not as accurate as we
would get with an artifact. Considering that the amount of parameters that
can be tested in a shorter amount of time is higher, the results combined will
still be able to tell something about how the architecture will behave in the
real world.

6.2 Quantitative method

Quantitative research is based on objective data collection where the researcher
is external to the result. The data gathering is often well structured and
systematically executed.

The implementation described in chapter 9 is of a simulation. A simulation is
good for researching complex questions in a compressed time frame, but have
the disadvantage of often requiring deeper knowledge of the specific topic at
hand [12].

By creating a simulation from scratch it will be possible to collect a huge
amount of data points in a relatively short amount of time.

After the data points is collected, they will be analysed and represented us-
ing Python3. The key aspects found in the data will be presented in a well
documented manner.

6.3 Reliability

The reliability of a study is recognized as high if a researcher at a later point
in time can recreate the experiments and achieve the same results. This tells
something about how accurate the results are. The fact that my results are
based on a simulation tells that if the code does what is described in chapter
7, another implementation based on the same design would reach the same
results.

6.4 validity 25

6.4 Validity

Validity tries to say something about how representative the result is. Given
small variation in results based on random factors each test scenario is ran five
times with the same parameters. The average result is then given in addition
to the standard deviation. The variations can be due to witch neighbor an ON
decides to connect to first.

7
Simulator Design
The simulator described in this chapter is custom made. The overall structure
of the simulation is a table, where each row represents an ON. Each column is
given a time representation.

7.1 Overall Structure

The simulation is setup as a table where each row represents an ON and each
column represents a step in time for each ON. The cells can only have one of
two values: active or sleeping. If two ONs have cells in the same column set
to active, means they are overlapping active and is able to start a connection
unless one of them already is connected to another one.

7.2 Running the Simulation

The simulation moves through the table one column at a time. At each step one
active ON is chosen at random. If no ONs are active, the simulation moves to
the next step. If one is active, then another active ON that is not yet connected
to anyone is chosen at random. If there is another ON also active, a connection
is made. This is done until all connections possible are established. Then
continuing to the next step.

27

28 chapter 7 simulator design

7.2.1 Transferring of Resources

When a connection is found, the simulation checks if both the ONs are active
for long enough to send the resource(s) one way. Taking in to consideration
the latency, time to send the resource(s), and depending on the method also
the time to send the vector. If there is not enough time we still assume they
tried to send the resource and mark each node as busy until the first ON goes
to sleep. If there was enough time the resource(s) is marked as sent and each
ON is marked as busy for the time it is estimated to establish connection, send
the resource, and depending on the method the vector as well. Then the same
thing is done the other way around.

7.2.2 End of Simulation

The simulation run until everyone has received the resources from all the other
ONs, checking for it after each step. When the simulation finishes, the number
of steps needed for everyone to receive information about every resource in
the neighborhood is returned. If the simulation uses too many steps a negative
one value is returned.

7.3 Design issues

Knowing when the simulation finishes was something that was not as trivial
as it seams. Testing if everyone has received all resources is easy enough. But
since the simulation marks the resources as sent immediately, we cannot return
until all ONs are out of their busy state. Just continuing the simulation can
mean other ONs get in the busy state again, and then possibly ending in a never
ending loop, or skewing the results. The solution was to return the last step of
the longest busy ON when the simulation notice that all ONs have received all
resources.

8
Limitations
This chapter will look at some of the shortcomings of this paper. This paper
only looks at time each ON is awake, and uses that as a basis for energy
consummation. The findings here do not consider other operations the ONs
want to do. In that regard, here are some other parameters that could be useful
to look at:

8.1 CPU-usage

The ONs do not only need to send their resources, they also simultaneously
need to read sensor data, communicate with other ONs and clients, process
incoming data form the sensors, calculate how to behave in the future, just to
mention a few. Therefore CPU usage could impact the up time or energy usage
of the CPU needed to actually have time to do all of these tasks in addition to
the resource spreading.

8.2 Disk-usage

Disk is another aspect of the total system. While the resource map is being
created some disk usage is to be expected. Not only need the resource infor-
mation to be persistently stored, but also the neighborhoods described in 5.2.

29

30 chapter 8 limitations

We are used to think that in our desktops, laptops and even our phones this is
not a problem since they have write speeds of up to 600 MB/s with ssd or up
to 2000 MB/s with NVMe 1. But depending on what type of ON we may need
to use SD cards and then the read/write speed could be as little as 2 MB/s but
more realistically 6 MB/s or 10 MB/s, witch most modern SD cards support
2.

8.3 RAM-usage

RAM usage could also be a factor. But this is connected to the disk usage, how
often do the ONs write to disk? Is everything stored in RAM until it goes to
sleep, or do they write to persistent storage right away? These two questions
could be another aspect that would be interesting to look at.

8.4 Network bandwidth

Network bandwidth in this paper is only based on LoRa technology. But we
assume a LoRa gateway on each ON, and assume that they do not have to share
the bandwidth. In the real world the LoRa frequency is limited to 125 KHz or
500 KHz for down link and 500 Khz for uplink 3. Specification requires devices
that use the spectrum to be on a duty cycle so that the network bandwidth can
be shared. This will most likely have an impact on the results, but this is just
what is available today, in the future the network speed will probably increase
and the sharing a non issue.

8.5 Collisions

For the experiments conducted here I have not looked at collisions when
establishing connections. In reality it could happen that two ONs try to connect
to the same neighbor. Resulting in that one ON waits on a response it will
never get. This is also something that can affect the result, but to catch this

1. NVMe vs SSD: Speed, Storage Mistakes to Avoid :https://www.promax.com/blog/
nvme-vs-ssd-speed-storage-mistakes-to-avoid (accessed: 27.04.2022)

2. A Guide to SD Card Speed & Other Specs: https://www.focuscamera.com/
wavelength/a-guide-to-sd-card-speed-other-specs (accessed: 27.04.2022)

3. What are LoRa® and LoRaWAN®?: https://lora-developers.semtech.com/
documentation/tech-papers-and-guides/lora-and-lorawan/ (accessed:
27.04.2022)

https://www.promax.com/blog/nvme-vs-ssd-speed-storage-mistakes-to-avoid
https://www.promax.com/blog/nvme-vs-ssd-speed-storage-mistakes-to-avoid
https://www.focuscamera.com/wavelength/a-guide-to-sd-card-speed-other-specs
https://www.focuscamera.com/wavelength/a-guide-to-sd-card-speed-other-specs
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/

8.5 collis ions 31

an emulation or artifact must be made. Or first conduct experiments on how
often this happen and then incorporating it in to a simulation.

9
Simulation Implementation
To evaluate the different approaches outlined in 5.5 simulation was chosen.
The implementation of the simulation is done in the programming language C.
C was chosen for its speed. Due to the relative simplicity of the code, a slower
simpler language was less desirable. The simulation setup and result collection
is done in Python3. Python3 was chosen here for its simplicity of working with
data and json. Each experiment is executed 5 times in separate sub processes
so that the CPU of the machine running the simulation is utilized better.

9.1 Setup

The setup is done i python3. The input for the setup is "spreading-mechanism"
(SLR, SLM or SLMV), step size, latency steps, and directory where the results
should be stored. The values for wakeup, uptime, and spread is placed in lists.
Both wakeup and uptime are in seconds, these values are translated in to
steps based on the step size given before the simulation starts. Each simulation
is to test for a given wakeup, uptime, spread, throughput, and latency. The
experiments to run is then set up to test for every permutation of wakeup,
uptime, and spread.

33

34 chapter 9 simulation implementation

9.2 Python3-code

The python3 code starts by taking the parameter and translating the wakeup,
uptime and max-simulation steps to the desired step size specified by the step
size parameter.

Every permutation of wakeup, uptime, and spread is found and put in a list.
After the values for each simulation that should be done is found and placed in
a list, the simulations can start. The list is iterated through, every permutation
in the list is ran for every ON count. Then every permutation with an ON
count is ran five times in different processes. After each of the five processes
is finished, the result is collected and written to a temporary result file. When
every test for every permutation is done, all the results are written to a final
result file in json format.

9.3 C-code

The C program does the actual allocation and execution for each simulation
scenario. It takes in the values for a specific setup scenario: number of ONs,
max-steps, wakeup, uptime, spread, transfer time, vector transfer time, latency,
and exchange type.

9.3.1 Initialization

The initialization of a simulation scenario starts by allocating the memory
needed, and then fills in the values for the simulation struct. It saves the right
"check and exchange" function to use in a variable based on the simulation type.
The simulation struct holds an array of ON structs that are also allocated.

The initialization process also fills the behavior bitmap of each node. How the
behavior is structured is based on the spread type indicated. With no spread
they all have the same, with random spread they each gets a random starting
position from beginning of wakeup to (wakeup - uptime). For uniform spread
the start step increase for every ON, the increase in start step from the previous
to the next ON is calculated by the equation 9.1.

9.3 c-code 35

(=

{
, −*
#A

, if , −*
#A

< (* −))
(* −)), otherwise

$ =

{
1, if (> 0

#A
(, −*) , otherwise

Figure 9.1: Equation for the separation of start step of each node for uniform spread.
S is the increase in start step for each ON, O is how many ON should have
the same schedule, T = minimum overlap to previous ON, Nr = Number
of ONs, W = wakeup, and U = uptime

9.3.2 ON In the simulation

An ON in the simulation is just a struct. The values it holds are: ID, behavior
bitmap, connections, resources in map, and last-connection. The ID is just a
number and range from zero to the number of ONs in the simulation. The
behavior bitmap holds the simulation row for that specific ON. Connections is
the vector list of ONs that the ON has received information about. Resources
in map is a number indicating the number of resource descriptions in the
connections list. Last-connection is the last step the node is occupied to.

9.3.3 Simulation execution

When the simulation starts the simulation steps through each column in the
table, from zero to max simulation step. At each step the simulation checks
the behavior bitmap of each ON in pseudo random ordering.

When an ON’s bitmap indicates that it is active, and that the last-connection
is lower then the current step, the simulation tries to find another ON that
also is indicated as active at the same step. The other ON also needs to have
a lower value for last-connection than the current step, if not another ON is
chosen.

For SLM and SLMV the simulation first tries to find an ON match out of the
active ONs with last-connection lower then the current step, that it has not yet
had a connection to. If there are no ONs active that it has not yet connected
to, one active ON is just chosen at random. This is done because they might
have received more information since last time.

When a match is found, the ONs are checked if they are awake long enough.
They need to be active long enough for the latency and transfer time of the
resource(s). If the exchange method is SLMV, the time to send the resource
vector is also taken into consideration.

36 chapter 9 simulation implementation

If they are not awake long enough they both will be marked as occupied until
the first of them goes to sleep. This will simulate a shutdown of one ON in the
middle of a transfer. If they both are long enough awake the resource(s) will
be marked as sent. In addition both ONs will be marked as occupied for the
time it would have taken to transfer the resource/s. After a send is completed
one way, the transfer stages is repeated the other way around.

When all the ON have received all the descriptions from all the other ONs, then
the simulation ends, and the step counter is returned. If the simulation did not
finish before the step counter hit the max number of steps, the simulation is
aborted and a minus one value is returned. A minus one value represent a did
not finish (dnf).

9.4 Check and Exchange

One function for each exchange type are created as the check and exchange
function. The exchange type specified decide which of these function to use
for the simulation. All the other aspects of the simulation is the same for all
the exchange types. The exchange method is built up equally for all types, but
have small differences.

First they all find the number of steps needed to send the resources. SLR takes
the transfer time and add the latency, SLM use (transfer time * number of
descriptions in the map of the sender) and add the latency. SLMV find (transfer
time * descriptions in the map of the sender, that is not in the receiver’s map)
then add latency and vector transfer time.

After finding the steps required, then check if each of the ON are active for at
least that many steps. If they are not active that long, we find how many steps
until the ON that goes to sleep first, then set both as occupied for so many steps,
and returning 0. If they are active long enough, the resource description(s)
is marked as reserved in the "Connections" list, and mark each of the ONs as
occupied for the amount of steps, and return a positive value.

9.4.1 Pseudo Random Order

To choose the ordering for iteration through the ONs in the simulation, a
method for generating a pseudo random ordering for the slice of the indexes in
the ON array. The algorithm presented here is inspired by a function in the GO

9.5 optimization 37

1.17.7 standard library 1. My implementation can be seen in listing 9.1.

Listing 9.1: My C implementation for the Perm function found in GO 1.17.7 standard
library.

int *psudo_perm(int n) {
int *arr = (int*)malloc(sizeof(int)*n);
int j;
for (int i = 0; i < n; i++){

j = rand() % (i+1);
arr[i] = arr[j];
arr[j] = i;

}
return arr;

}

9.5 Optimization

The choice of using the C programming language in it of itself is actually an
optimization decision. There would be no problem just using Python3 for the
simulation execution too. But C is a lot faster than Python3. The only downside
is that C is objectively a harder language to write in.

A bitmap was created to hold the table rows, this reduces the size of the table
allot. Now each cell only uses one bit of memory. Instead of four bytes like an
Int array would use. This is perfect use of a bitmap since each cell only can be
set to active or sleeping.

To reduce the memory needed to hold each simulation table, the length is set
to the wakeup. To find the position in the table, the current step the simulation
is on modulo wakeup is done. This can be done because each node has the
same wakeup spacing, and do not change their wakeup schedules for the whole
simulation period.

1. GO standard library Perm function documentation https://pkg.go.dev/math/
rand@go1.17.7#Perm

https://pkg.go.dev/math/rand@go1.17.7#Perm
https://pkg.go.dev/math/rand@go1.17.7#Perm

38 chapter 9 simulation implementation

9.6 Network Characteristics

The step size is used to infer the throughput of the network. Since each resource
is estimated to be 20 bytes or 160 bits, and we set the steps to send a resource
statically to one, when we then change the time value each step represents, we
can simulate different throughputs. For example if we set each step to represent
one second, we have effectively a transfer speed of 160 bit/s. If each step is
half a second we have effectively 320 bit/s, this is done by setting the step size
parameter to two. Set it to 1/156 part of a second, and we get 160 ∗ 156, or
about 25 kbit/s, achieved by setting the step size parameter to 156.

10
Evaluation
This chapter will describe the experiments and evaluation conducted.

10.1 Metric

The metric used in the evaluation is; steps to spread resource description from
all to all ONs. The mean value for all runs that finished are stored combined
with the standard deviation. The steps are then given a time value in seconds,
in the graphs the results are presented in minutes. The values seen in the
graphs are therefore the average total time we can expect the neighborhood
to use before the RM is built at every ON, for that specific configuration of
parameters and ON count.

10.2 Software environment

OS: Ubuntu-server 20.04.1 LTS
Python: 3.9.5
C-compiler: GCC 9.4.0

39

40 chapter 10 evaluation

10.3 Hardware environment

CPU: Intel Core i7-3820 @3.60 GHz
RAM: 2 x 8G DDR3 @1600 MHz

10.4 Experiment Design

All possible permutations of the parameters are conducted. Some of the permu-
tations will result in the same behavior, they are combined and ran one time.
Each permutation is executed five times. This is done because variations in the
random selection of who to connect to first, can lead to variation in the final
result.

After the results are in, they are plotted in graphs to compare different fac-
tors. Some of these graphs will be chosen in chapter 11 to show the key
findings.

10.5 Parameter values

The parameters have been described in section 4.3, here are the values for each
parameter I want to conduct experiments on:

• Wakeup: 10 min, 20 min, 40 min, 1 hour, 3 hour.

• Uptime: infinite, 10 min, 5 min, 2 min, and 1 min.

• Spread: No spread, random, and uniform.

• Latency: 0 and 500ms.

• Throughput: 320 byte/s and 25 kbyte/s (assuming the ability to utilize
the total bandwidth).

• Exchange type: SLR, SLM, and SLMV.

• Number of ONs: 2, 4, 8, 16, 32, 64, 100, 200, and 400.

11
Results
In this chapter the results from the simulation are described. The graphs
presented are bar charts. The height of each bar is the mean value of the
runs that did finish within the max time frame, out of the five times each
configuration was ran. The black line is the standard deviation, if the result
from all the runs that finished are equal, there is no standard deviation. EachON
count is given a color representation, this color is the same for all graphs.

A table is placed under the graphs that display the exact values. Each column
represent the bar directly above. The rows represent a specific ON count,
following the same color code as in the bar graph. The cells is tables is color
coded after the number runs that did not finish (dnf). A dnf of five means
that specific configuration did not finish for any of the five runs. A dnf of zero
means all finished. The colors move from white for dnf zero to red for dnf five.
The darker the color of the cell, the fewer runs managed to finished within the
maximum time frame of the simulation.

11.1 Results Throughput 320 bit/s and Latency 0
ms

First we will look at the result for the experiments with 320 bit/s throughput
and zero ms latency. Some selected graphs have been chosen to highlight the

41

42 chapter 11 results

effect from each parameter: Spread, Uptime and wakeup. At the end the results
will be combined to four tables that can be used to estimate the uptime needed
based on the wakeup and spread, to reach one of the desired max converging
time targets outlined in section 4.2.

11.1.1 SLR vs SLM vs SLMV with different spread

This section will focus at the different exchange methods described in section
5.5. A selection of graphs is chosen, each with a different wakeup. The two first
graphs will just be looked at individually. The next three will also be viewed
individually first, but they will also be compared to each other. This can be
done because the only parameter changed between them is the wakeup.

11.1 results throughput 320 bit/s and latency 0 ms 43

Figure 11.1: Comparing exchange types with Factor spread, Wakeup 10 minutes, Up-
time 1 minute

44 chapter 11 results

Graph 11.1 shows the effect of the spread. With the lowest wakeup at ten
minutes, and the lowest uptime at one minute. If we first focus at the SLR with
no spread in figure 11.1 it is very efficient with a steady growth that show near
doubling in time when the ON count is doubled, up to 32 ONs. We then see
a jump at 64 ONs with a twenty times increase, from 0.57 to 10.13 minutes.
From 64 ONs a steeper increase is shown. This indicates that at 64 the one
uptime period was not enough to spread from all to all. That is why we see it
jumps to just over 10 minutes, which is the wakeup period. For 100 ONs the
second wakeup period was enough, but for 200 ONs four wakeup periods was
necessary, and seven periods for 400 ONs.

For the SLM with no spread in graph 11.1 we can see a similar growth as for
SLR with no spread for the lower ON counts, but the jump happens sooner at
just 16 ONs. The SLM does not even finish with 200, and 400 ONs. The reason
is probably because the amount of time it takes to send information about 200
resources at 320 bit/s is 200 ∗ 0.5B = 100B. This in turn means that they go
to sleep before the transfer has time to finish transferring, because of the 60
minute uptime.

The same can be said about the SLMV method with no spread, as we did for
SLR and SLM in graph 11.1, but we see the first jump is at 64 ONs. We also can
see another jump at 200 ONs, but it only finishes one out of the five times it
was ran. This is probably due to the fact that for the one time it finished, they
was able to spread out the sending enough. Meaning no ON needed to ask for
information about more than 60

0.5 = 120 ONs.

For SLR with random spread in graph 11.1, it fails on almost every ON count.
It only finishes some of the time with 2 ONs. This is expected because the
probability for overlap is low. We see the same failed result for SLM with
random spread, but the reasoning is different. The reason for the lower ON
counts is probably due to not overlapping. While for the higher ON counts
(over 32) it is probably because of not enough time to send before sleep, just
like with no spread.

SLMV with random spread in graph 11.1 is not much better than SLM, resulting
in some failed runs for most of the ON count except with 64, 100, and 200 ONs.
The reason for the failed attempts is probably for the same reason SLM didn’t
do so well with random spread.

The final spread type in graph 11.1 uniform shows that the SLR only finishes
with two ONs, this is because this spread guarantee overlap with the ON with
higher and lower ID. SLM with uniform spread shows more promise, and
succeed for the lower ON counts up to 32. SLMV with uniform spread shows
lower times than SLM, and for a higher ON count. Indicating that the idea of

11.1 results throughput 320 bit/s and latency 0 ms 45

reducing the network overhead has an effect. We still see the 200 and 400 ON
count fail every time, probably because of trying to send too much information
each transfer.

Combining the information in figure 11.1 we can say that this configuration
when wakeup is set to ten minutes and time awake is one minute, the solution
is ether to guarantee that everyone wake up at the same time, and use the SLR
method. If we cannot guarantee that, the only consistent solution is to go with
a uniform spread and use the SLMV approach, at least up to 100 ONs.

46 chapter 11 results

Figure 11.2: Comparing exchange types with Factor spread, Wakeup 20 minutes, Up-
time 5 minutes

11.1 results throughput 320 bit/s and latency 0 ms 47

In figure 11.2 we can see that all the ON counts finish for all three exchange
methods with no spread. SLR is considerably faster with a steady growth up
until 200 ONs. SLR with 400 ONs uses over 6 times the amount of time 200 ONs
did, up to just over 20 minutes. Indicating that the time needed for converging
with 200 ONs, was more than five minutes. SLM seams to have the jump at
16 , then a steady growth up until 200, and then a bigger jump to 400 ONs.
SLMV jumps at 64 ONs, and has faster times than SLM. Again we can see at
with point the different exchange methods needed to use more than just one
uptime period.

With random spread in figure 11.2 SLR does not perform well, as expected. SLM
finishes three out of five runs when the ON count is two, four, eight, and 64,
indicated by the did not finish (dnf) representation in the table. SLMV seams
to finish more constantly for ON count eight and up. SLMV has a big jump at
400 ONs, that also shows a big standard deviation. Here we clearly see the
effect that reducing the network overhead reduce the time each ON needs to
overlap to successfully transfer the descriptions.

Uniform spread seams to have roughly the same result as random spread for
SLM, but more consistently up to 64 ONs. SLMV with uniform spread has some
higher and some lower times than with random spread, but also here we see
that all of the runs converge successfully. The result shows that structuring
the ONs to ensure overlap helps the ONs to be able to spread from all to all
consistently. For SLMV the lower ON counts has the best effect of uniform
spread, while the higher has the best effect for SLM. This indicate that for
SLMV it helped the lower counts to ensure an overlapping trace. For SLM it
helps the higher counts to overlap equally so that there is enough overlap to
send the descriptions.

48 chapter 11 results

Figure 11.3: Comparing exchange types with Factor spread, Wakeup 40 minutes, Up-
time 10 minutes

11.1 results throughput 320 bit/s and latency 0 ms 49

Looking at graph 11.3 shows almost perfect growth for SLR with no spread,
indicating that all finish spreading to all within the first uptime period. SLM
with no spread has a jump at 16 ONs, and seam to grow much faster than the
other methods. The SLMV with no spread grows slowly but have a jump at 64
ONs.

With random spread the time used is higher, and they do not finish for all of
the runs. Uniform for SLM and SLMV seams to have roughly the same results
as for random but more consultant, finishing more often and having a lower
standard deviation.

50 chapter 11 results

Figure 11.4: Comparing exchange types with Factor spread, Wakeup 1 hour, Uptime
10 minutes

11.1 results throughput 320 bit/s and latency 0 ms 51

Moving from wakeup 40 minutes to wakeup 1 hour graph 11.4 has the same
result as 11.3 for SLR with no spread. Again this is because the uptime is high
enough to finish within the first uptime period. We also see same pattern but
a slight increase in time for SLM and SLMV with no spread, we see that they
jump to around 40 minutes when the wakeup is 40 minutes, and to 60 minutes
when the wakeup is 60 minutes.

For random we see that the jump at each increase in node count is higher for
wakeup 60 minutes, than with 40 minutes. The same can be said for uniform
spread. This indicate that increasing the wakeup can increase the number of
uptime cycles each ON need to finish.

Interestingly with uniform there is actually a higher value for eight ONs than 16
in both SLM and SLMV. We also see higher jumps moving up to 8 ONs, than we
see moving from 16 ONs and up. This can indicate that up to 16 ONs they use
more of the time to wait for opportunities to send than actually sending. When
there is more ONs to fill the wakeup period there is also more activity.

52 chapter 11 results

Figure 11.5: Comparing exchange types with Factor spread, Wakeup 3 hours, Uptime
10 minutes

11.1 results throughput 320 bit/s and latency 0 ms 53

Comparing figure 11.5 to figure 11.4 we see no difference for SLR with no
spread, and the same pattern for SLM and SLMV with no spread, just with
higher values. Random and uniform now use significantly more time. We can
note that the y-axis moves in steps of 1000 in graph 11.5 instead of 100 like in
does in 11.4. Interestingly for SLMV with uniform spread there is a decrease
in time used from 23 ONs to 200 ONs. Probably due to the lower amount of
spread. There is more overlap when the ON count is higher, and therefore
using more of the time to send instead of waiting on an opportunity.

To conclude the effect of the spread we can say that it has a huge impact on
the result. No spread shows the lowest time to converge for all methods, and
especially for SLR. No spread is not always an option, and when we do not
have it, the random spread is an alternative. This result shows that structuring
the ONs a bit can help on how fast they can spread, and how many ONs are
needed compared to random spread. This result also highlights that SLR are
the better one with no spread. But the SLM or SLMV can help when the option
of no spread is not present. SLMV are almost always better than SLM. Meaning
that even though we use more time transferring the vector, the better use of
transfer time makes it faster regardless.

11.1.2 SLR vs SLM vs SLMV with different uptime

This section will focus on the difference the uptime makes on the time to create
the RM. We will also highlight some of the differences the wakeup have, and
also noting the differences in exchange method. There will be selected two
wakeup values for each of the spread types.

54 chapter 11 results

Figure 11.6: Comparing exchange types with Factor Uptime, Wakeup 10 minutes, No
spread

11.1 results throughput 320 bit/s and latency 0 ms 55

Looking at graph 11.6 the result for one minute uptime shows that SLR and
SLMV actually is not that different up to 64 ONs. But at 100 ONs SLR outperform
SLMV. It seams like SLMV has the jump earlier than SLR. SLM has it even
earlier at just 16 ONs, and worse result for the lower ON counts as well.

Moving to uptime of two minutes, the SLR and SLMV result is close only up to
32 ONs. The result for SLMV is actually improved for 100, 200 and 400 ONs,
but SLR has also improved.

The same happens when the uptime increases to 5 minutes. All the methods
improve, but the difference also increases. Whenwe look at the uptime resulting
in the ONs being always on, the SLM and SLMV actually fail often for the higher
ON counts. This is actually unexpected, I believe this happens because when
the ONs finish, they continue to connect to previously connected ONs in case
they have an update. This results in a few ONs not being able to receive all the
information, because the ON they want to connect to is always occupied.

56 chapter 11 results

Figure 11.7: Comparing exchange types with Factor Uptime,Wakeup 1 hour, No spread

11.1 results throughput 320 bit/s and latency 0 ms 57

The graph 11.7 shows almost the same story as figure 11.6, in that the timings
improve for SLR, SLM and SLMV when the uptime increases, but the difference
also increases. A longer uptime intuitively means more ONs can transfer
and receive in each uptime period, and therefore when the uptime increases,
the jump happens on an higher ON count. Because the initial jump at one
minute uptime happens much sooner for SLM, the improvements are not as
big compared to SLMV and SLR. Meaning that SLR has the highest gain of
increasing the uptime, followed by SLMV and then SLM.

Comparing graph 11.6 to graph 11.7 highlights that the difference between the
exchange methods will increase as the wakeup increases. If we look at SLMV
with one minute uptime, the one with 10 minute wakeup jumps to just over
10 minutes at 64 ONs, but the one with a wakeup 1 hour jumps to just over
60 minutes at 64 ONs. This shows us the point which the one uptime period
is not enough to spread all the resource information. Also demonstrating that
the difference will increase as the neighborhood becomes larger.

58 chapter 11 results

Figure 11.8: Comparing exchange types with Factor Uptime, Wakeup 10 minutes,
Random spread

11.1 results throughput 320 bit/s and latency 0 ms 59

In graph 11.8 interestingly SLR actually finishes most of the time when the
uptime is five minutes. Meaning the ONs sleep 50% of the time. This shows
that if all the ONs overlap at least one slot, that in this case is the time it
takes to transfer one resource. The only time they will not be able to converge
when sleeping 50% of the time is when one ON wake up at the start of the
wakeup period, and one at the very end of the period. The probability of this
can be calculated with equation 11.9. The result of which is a 0.25% chance
with 16 ONs, 23.7% chance with 200 ONs, and 0.54% chance with 400 ONs.
This explains the result shown for SLR with random spread well.

� = At least one wakeup at beginning.
� = At least one wakeup at end.

% (� and �) = 1 − (* − 2
*
)G

% (�) = % (�) = 1 − (* − 1
*
)G

% (� and �) = 2(1 − (* − 1
*
)G) − (1 − (* − 2

*
)G)

Figure 11.9: Equation for probability that at least one ON starts at beginning of the
wakeup, and at least one starts at (wakup - uptime)1, when they are
asleep 50% of the time. Where U = uptime, and x is number of ONs.

Graph 11.8 shows that SLMV is the only one that finishes for more than just 2
ONs for one minute. Moving to two minutes helps, but we actually must up to
5 minutes to see SLM and SLMV finish consistently.

1. Inspired by comment from Terry Moore on this question: https://www.quora.
com/Suppose-you-roll-five-dice-what-is-the-probability-that-at-
least-one-1-and-at-least-one-6-will-appear (accessed: 02.05.2022)

https://www.quora.com/Suppose-you-roll-five-dice-what-is-the-probability-that-at-least-one-1-and-at-least-one-6-will-appear
https://www.quora.com/Suppose-you-roll-five-dice-what-is-the-probability-that-at-least-one-1-and-at-least-one-6-will-appear
https://www.quora.com/Suppose-you-roll-five-dice-what-is-the-probability-that-at-least-one-1-and-at-least-one-6-will-appear

60 chapter 11 results

Figure 11.10: Comparing exchange types with Factor Uptime, Wakeup 1 hour, Random
spread

11.1 results throughput 320 bit/s and latency 0 ms 61

In figure 11.10 the time between wakeup is increased compared to graph 11.8.
The increased wakeup results in slower time to spread and more failed results.
Even though we see many failed runs, there is a time decrease to spread when
we move from five to ten minutes for the uptime. Increasing the uptime seams
to help. The number of failed runs can be explained by: Even though all the
ONs does not need to overlap with all the other ONs for SLM and SLMV to
work, there still need to be a trace of overlapping ONs.

Increasing the wakeup seams to make the time to spread higher, as we would
expect. Regardless increasing uptime of each ON helps on the time to build the
RM. We also need to note that with a random spread and the uptime is low;
ether the wakeup needs to happen often, or there need to be more ONs in the
neighborhood.

62 chapter 11 results

Figure 11.11: Comparing exchange types with Factor Uptime, Wakeup 10 minutes,
Uniform spread

11.1 results throughput 320 bit/s and latency 0 ms 63

Figure 11.11 shows how the different uptime affects the time to spread from all
to all with wakeup at ten minutes, and spread type uniform.

The SLR method does not finish for this spread type before the wakeup reaches
five minutes. Then the ON is awake half of the time. At five minutes uptime
the SLR actually finishes for all ON counts with a random spread. This is due
to the spreading the uniform spread does. With half of the time awake, the
only time it will fail is when we have a perfect spread. Uniform here just trys
to have a perfect spread, but for most ON counts this does not happen (see
explanation for uniform spread in 5.5).

For SLM uptime one minute only finishes constantly for ON count up to 32,
with times of two hours and 20 minutes for 16 ONs, it uses five hours for 32 .
The times decrease drastically when we increase the uptime to two minutes
with a 55% decrease in time for 16 and a 67% decrease in time for 32 . In
addition there is almost a 50% decrease in ON count 8, 4, and 2. Increasing
uptime to five minutes, all but the two highest ON counts finishes. The run
with 32 have an 70% decrease from uptime 2 minutes. Interestingly increasing
to ten minutes uptime it starts to fail for the higher ON counts.

SLMV starts off well at the uptime at one minute finishing for all the ON counts
except the last two. Increasing the uptime to two minutes does actually not
have much effect on the ON counts two, four and eight. But the graph shows a
drastic decrease for the higher counts, showing a decrease of more than 50%.
Moving to uptime of five minutes decreases the time used by more than 50%
from uptime of two minutes, for all except 200 ONs. The SLMV seams to have
the same problem as SLM when they are always awake.

64 chapter 11 results

Figure 11.12: Comparing exchange types with Factor Uptime, Wakeup 1 hour, Uniform
spread

11.1 results throughput 320 bit/s and latency 0 ms 65

Comparing 11.12 to graph 11.11 shows that they follow the same trends, but the
time to build the RM increases significantly. Again showing that the impact
of wakeup is mostly the amount they sleep. Therefore by increasing the sleep
will have an effect on how long the total amount of time the RM takes to
build.

To conclude from these graphs we can say that when we increase the uptime,
the time to spread from all to all decrease in a similar manner regardless of the
wakeup. The spread also has a huge impact on the result. Showing that with no
spread the effect of the different exchange methods do not make as much effect
for lower ON counts. We see that the jump happens at higher ON counts when
we increase the uptime. For random spread the uptime combined with the
wakeup still needs to be likely to make an overlapping trace. When we force
an overlapping trace with uniform spread more of the tests finishes.

11.1.3 SLR vs SLM vs SLMV with different wakeup

In this section there will be displayed graphs with the factor being different
wakeup values, the graphs will have the uptime set to five minutes and one
graph from each spread.

66 chapter 11 results

Figure 11.13: Comparing exchange types with Factor Wakeup, Uptime 5 minutes, No
spread

11.1 results throughput 320 bit/s and latency 0 ms 67

Looking at graph 11.13 we can see that all uptime values seam to have closely
the same result for ON count up to 8. At 16 ONs we can see that SLM has the
first jump, indicating that at 16 ONs the SLM could not spread all the resource
information within the first period. For SLMV this happens at 64 ONs, and
for SLR not before 400 ONs. When they start to use multiple wakeup periods
we see that the increase in time closely follows the wakeup. We can also see
that because the jump happens sooner for SLM, the increase is steeper as the
wakeup increases.

68 chapter 11 results

Figure 11.14: Comparing exchange types with Factor Wakeup, Uptime 5 minutes, Ran-
dom spread

11.1 results throughput 320 bit/s and latency 0 ms 69

Graph 11.14 shows many failed runs. SLR only finishes when the sleep to
awake ratio is 50% or lower. The SLMV method outperforms SLR in those
situations. SLM and SLMV can work sometimes with increased wakeup periods,
but increase in time to spread is steeper than we saw in figure 11.13. The
minimumON count also increases as the time between wakeup increases.

70 chapter 11 results

Figure 11.15: Comparing exchange types with Factor Wakeup, Uptime 5 minutes, Uni-
form spread

11.1 results throughput 320 bit/s and latency 0 ms 71

When there is a uniform spread as we see in figure 11.15, there are fewer failed
attempts than with random spread. For the 10 minute wakeup period we see
improvements for both SLR and SLM, SLMV is not as affected by the change in
spreading method. SLMV actually seams to be less affected in the results for
ON counts that finished for both spreading types, but what we can see is that
the minimum number of ONs decrease. Meaning that SLMV uniform spread
can expected to work with fewer ONs than with a random spread.

From the results for throughput 320 and latency 0 ms (see appendix for more
graphs), tables for finding the minimum uptime required, and the expected
maximum ON counts for each wakeup value is created. In the tables each row
represents one of the different scenarios from 4.2. The tables can be used to
meet a specific target when it comes to how fast we want to build the RM.
Table 11.1 is for SLM and SLMV with random spread. Table 11.2 is for SLM
and SLMV with uniform spread. SLR is not included because it only works for
setups where they sleep for less than 50% of the time, or have no spread. For
SLR with spread the graphs in the appendix combined with equation 11.9 need
to be used to get an accurate answer.

Tables for no spread is not made, this is because they will not be as interesting
or useful. SLR will finish regardless the uptime, and will be the same result
for every uptime up until 32 . After that the wakeup can just be added to the
total time. For SLM and SLMV with no spread, we see the same result for the
lower ON counts. For the higher ON counts a higher uptime is needed. So it
will not be as useful, or accurate to create a similar table for no spread. When
no spread is to be used we have many more options for uptime, so the original
graphs are better to use.

Smallest Uptime Needed In Minutes Random Spread

(Random) Wakeup
SLM 10 min 20 min 40 min 1 hour 3 hour
Lazy 5 (64) 5 (*64) 5 (*64) 10 (*100) 10 (**64-100)
Medium 5 (64) 5 (*64) 5 (*32) 10 (*100) -
Eager 5 (32) 5 (*8) or 10 (64) 10 (4) - -
Panic 5 (8) 5 (*2) or 10(2) - - -

(Random) Wakeup
SLMV 10 min 20 min 40 min 1 hour 3 hour
Lazy 1 (**200) or 2 (*200) 2 (*200) 2 (**400) or 10 (*400) 5 (64 to 400) 5 (just 400) or 10 (*64-400)
Medium 2 (*200) 2 (*200) 2 (**100) or 10 (*400) 5 (64 to 400) -
Eager 2 (*64) 5 (*8) or 10 (200) 10 (*4) - -
Panic 5 (32) 10 (16) 5 (**2) - -

(x) Maximum node count
* nb. Some node counts dnf
** nb. Most node counts dnf

Lazy Just finishes
Medium Within 2 days
Eager Within 1 hour
Panic Within 10 minutes

Table 11.1: Table of the smallest uptime needed for different wakeup values. With
Spread: Random, Throughput: 320 bit/s and Latency: 0 ms

72 chapter 11 results

Smallest Uptime Needed In Minutes Uniform Spread

(Uniform) Wakeup
SLM 10 min 20 min 40 min 1 hour 3 hour
Lazy 2 (*32) 2 (*32) 2 (*64) 5 (*64) 10 (*200)
Medium 5 (100) 2 (*32) 2 (**16) or 5 (*64) 5 (*64) 10 (*8)
Eager 5 (64) 5 (8) 10 (4) any (2) any (2)
Panic 5 (32) 5 (2) any (2) any (2) any (2)

(Uniform) Wakeup
SLMV 10 min 20 min 40 min 1 hour 3 hour
Lazy 1 (100) or 2 (200) 1 (100) or 2 (200) 1 (100) or 2 (200) 1 (100) or 2 (200) 1 (100) or 2 (200)
Medium 2 (200) 1 (100) or 2 (200) 1 (100) or 2 (200) 1 (100) or 2 (200) 1 (16)
Eager 2 (100) 1 (4) or 5 (32) 1 (4) any (2) any (2)
Panic 5 (32) 1 (4) or 10 (32) any (2) any (2) any (2)

(x) Maximum node count
* nb. Some node counts dnf
** nb. Most node counts dnf

Lazy Just finishes
Medium Within 2 days
Eager Within 1 hour
Panic Within 10 minutes

Table 11.2: Table of the smallest uptime needed for different wakeup values. With
Spread: Uniform, Throughput: 320 bit/s and Latency: 0 ms

11.2 Results Comparing Throughput

Now that we have looked at the the result for 320 bit/s, we have a baseline of
how the different parameters; spread, uptime and wakeup affect the final time
to spread from all to all. This section will focus on the effect of throughput,
by increasing the throughput to 25 kbit/s (25 000 bit/s) the result is expected
to be much faster. The goal here is to see if the pattern still follows the same
trends as with a throughput of 320 bit/s.

11.2.1 SLR 320 bit/s vs 25 kbit/s

For comparison between SLR with throughput 320 bit/s and 25 kbit/s two
graphs have been chosen. One where the factor is wakeup, and one where the
factor is uptime. Only no spread results have been compared. The reason is
that 25 kbit/s with spread has the same limitation that 320 bit/s had. The ONs
need to be awake at least 50% of the time.

11.2 results comparing throughput 73

Figure 11.16: SLR Throughput 320 bit/s vs 25 kbit/s, Factor Wakeup, Uptime 1 minute,
No spread

74 chapter 11 results

Graph 11.16 illustrates the differences the throughput has for the different
uptime values. We can see that throughput 25 kbit/s has the same result
regardless of the wakeup. Throughput 320 bit/s on the other hand needs to use
multiple awake cycles at 64 ONs, because of this the time increases drastically.
We see a bigger difference when the wakeup is high. This probably means
that a 25 kbit/s throughput could handle much lower uptime, or a higher ON
count.

11.2 results comparing throughput 75

Figure 11.17: SLR Throughput 320 bit/s vs 25 kbit/s, FactorUptime,Wakeup 10minutes,
No spread

76 chapter 11 results

Graph 11.17 illustrates the differences the throughput has for the different
wakeup values. Again we see that with throughput 25 kbit/s the uptime dos
not have an effect, because it is so fast that it finishes before even the lowest
uptime ends. 320 bit/s we can see improves the result as the uptime increases,
like we found in section 11.1.2.

With the information in the figures we can say that for SLR the time to build
the RM is reduced a lot, which was not surprising given the 78 times increase
in throughput. The difference reduces when the uptime increases or wakeup
decreases. But even compering the result where both are always on, we can
see that 25 kbit/s can handle a much higher ON count.

11.2.2 SLM 320 bit/s vs 25 kbit/s

To compare the different throughputs for the SLM version, two graphs are
chosen with spread as the varying factor.

11.2 results comparing throughput 77

Figure 11.18: SLM Throughput 320 bit/s vs 25 kbit/s, Factor Spread,Wakeup 20minute,
Uptime 1 minute

78 chapter 11 results

When we look at graph 11.18 that shows the comparison between 320 bit/s and
25 kbit/s for SLM with different spread, and uptime one minute and wakeup
20 minutes. With no spread they jump at the same ON count, but for the 25
kbit/s it is more a step up, while the 320 bit/s continues to grow. With random
spread the 320 bit/s does not finish any of the runs, while the 25 kbit/s actually
finishes for 100, 200, and 400 ONs. For uniform spread the distribution seams
to be the same up to 100 ONs, but the 25 kbit/s also finishes for 200 and 400
unlike the 320 bit/s.

11.2 results comparing throughput 79

Figure 11.19: SLM Throughput 320 bit/s vs 25 kbit/s, Factor Spread,Wakeup 40minute,
Uptime 10 minutes

80 chapter 11 results

Looking at no spread in graph 11.19 shows that 25 kbit/s is faster for most of
the ON counts, but interestingly a worse result with 8 and 16 ONs. The biggest
difference with no spread seams to be at the higher end of the ON counts.
Comparing the result for random spread also shows better results for 25 kbit/s,
but within the margin of error up to 16 ONs. Again showing that the biggest
difference is in the higher ON count. The same story can be told for SLMV. We
can also note in this graph that 25 kbit/s random and uniform spread, is much
closer than it is for random and uniform with 320 bit/s.

11.2 results comparing throughput 81

82 chapter 11 results

11.2.3 SLMV 320 bit/s vs 25 kbit/s

Figure 11.20: SLMV Throughput 320 bit/s vs 25 kbit/s, Factor Spread, Wakeup 20
minute, Uptime 1 minute

11.2 results comparing throughput 83

Graph 11.20 also shows better results for 25 kbit/s. Looking at no spread shows
better results for all ON counts, but most significantly for the higher ON counts.
Random spread 320 bit/s does not finish for any ON count. 25 kbit/s random
spread finishes for the higher ON counts. This difference is probably that with
higher throughput, the system can handle a shorter period of overlap. For SLMV
the results are almost the same for 320 bit/s and 25 kbit/s up to 32 ONs. After
that 25 kbit/s is significantly faster.

84 chapter 11 results

Figure 11.21: SLMV Throughput 320 bit/s vs 25 kbit/s, Factor Spread, Wakeup 40
minute, Uptime 10 minutes

11.2 results comparing throughput 85

The graph 11.21 highlights the difference between 320 bit/s and 25 kbit/s for
the different spread types, with 40 minutes wakeup and 10 minutes uptime.
No spread seams to have small differences, but 25 kbit/s is faster for all but 200
ONs. Random spread seams to follow the same pattern for both throughputs
up to 200 ONs, for 400 ONs the difference is significant. For uniform the same
pattern can also be seen between them, but the higher ON counts have a more
profound difference.

For all exchange methods SLR, SLM, and SLMV the most significant difference
can be seen in the higher ON counts. The SLR exchange method seams to have
the most benefit of higher throughput. The lower effect on SLM and SLMV
for the lower ON counts, can be explained by the more profound effect of the
waiting. Even though the actually sending happens much faster, the most time
is spent on waiting on someone to connect to.

From the result for throughput 25 kbit/s, latency 0 ms. Tables for finding the
minimum uptime needed based on the wakeup, exchange type, and spread
are created. The graphs are created and structured the same way the tables
for 320 bit/s were. Table 11.3 is for SLM and SLMV with random spread. Table
11.4 is for SLM and SLMV with uniform spread. SLR and tables for no spread
are not included, the reason is the same as for 320 bit/s section 11.1.

Smallest Uptime Needed In Minutes Random Spread

(Random) Wakeup
SLM 10 min 20 min 40 min 1 hour 3 hour
Lazy 1 (**400) or 2 (*400) 1 ** or 2 ** or 5 (*400) 5 (**400) or 10 (*400) > 5 (**400) > 5 (100-400)
Medium 1 (**400) or 2 (*400) 1 ** or 2 ** or 5 (*400) 5 (**400) or 10 (*400) > 5 (**400) -
Eager 2 (*400) 5 (*64) 5 (**2) or 10 (**2) any (*2) -
Panic 5 (32) 10 (16) - - -

(Random) Wakeup
SLMV 10 min 20 min 40 min 1 hour 3 hour
Lazy 1 (**400) or 2 (*400) 1 ** or 2 ** or 5 (*400) 5 (**400) or 10 (*400) > 5 (**400) > 5 (100-400)
Medium 1 (**400) or 2 (*400) 1 ** or 2 ** or 5 (*400) 5 (**400) or 10 (*400) > 5 (**400) -
Eager 2 (*400) 5 (*100) 10 (*4) any (*2) -
Panic 5 (200) 10 (32) - - -

(x) Maximum node count
* nb. Some node counts dnf
** nb. Most node counts dnf

Lazy Just finishes
Medium Within 2 days
Eager Within 1 hour
Panic Within 10 minutes

Table 11.3: Table of the smallest uptime needed for different wakeup values. With
Spread: Random, Throughput: 25 kbit/s and Latency: 0 ms

86 chapter 11 results

Smallest Uptime Needed In Minutes Uniform Spread

(Uniform) Wakeup
SLM 10 min 20 min 40 min 1 hour 3 hour
Lazy 1 (400) 1 (400) 1 (400) 1 (400) 1 (200)
Medium 1 (400) 1 (400) 1 (400) 1 (400) any (4)
Eager 1 (4) or 2 (200) any (2) > 2 (2) - -
Panic 5 (32) 10 (2) - - -

(Uniform) Wakeup
SLMV 10 min 20 min 40 min 1 hour 3 hour
Lazy 1 (400) 1 (400) 1 (400) 1 (400) 1 (400)
Medium 1 (400) 1 (400) 1 (400) 1 (400) any (16)
Eager 1 (4) or 2 (200) 10 (400) any (2) any (2) any (2)
Panic 5 (64) 10 (32) any (2) any (2) any (2)

(x) Maximum node count
* nb. Some node counts dnf
** nb. Most node counts dnf

Lazy Just finishes
Medium Within 2 days
Eager Within 1 hour
Panic Within 10 minutes

Table 11.4: Table of the smallest uptime needed for different wakeup values. With
Spread: Uniform, Throughput: 25 kbit/s and Latency: 0 ms

11.3 Results Comparing Latency

In this final section of the result we will compare and see if the latency affects
the result in any meaningful way. Both the throughput of 320 bit/s and 25 kbit/s
will be compared to simulations with an additional 500 ms latency.

11.4 320 bit/s 0 ms vs 500 ms

Until now we have not looked at latency. The expectation was that this will
drastically alter the affect of the changes in behavior compared to no latency.
To illustrate graphs of each spreading type SLR, SLM, and SLMV with both the
0 ms and the 500 ms latency is created. This will be done for both 320 bit/s
and 25 kbit/s.

11.4 320 bit/s 0 ms vs 500 ms 87

Figure 11.22: SLR Latency 0 ms vs 500 ms, Factor Spread, Throughput 320 bit/s

88 chapter 11 results

Graph 11.22 shows the difference the latency has for SLR, with different spread.
Whit 320 bit/s, 20 minutes uptime, and five minutes wakeup. We can see that
with no spread the results are almost identical. With random spread the results
are interestingly lower with 500 ms than with 0 ms. The same interestingly
happens for the uniform spread.

11.4 320 bit/s 0 ms vs 500 ms 89

Figure 11.23: SLM Latency 0 ms vs 500 ms, Factor Spread, Throughput 320 bit/s

90 chapter 11 results

Looking at graph 11.23 that compares the latency for SLM with 320 bis/s and 20
minutes wakeup and five minutes uptime, shows that the effect with no spread
is within margin of error. With random spread the result is similar, but the
amount of failed runs increase with 500 ms compared to 0 ms. With uniform
spread the 500 ms actually has a significantly better result with two ONs, but
the 0 ms has a much higher standard deviation. There are a higher number of
failed results for 500 ms than 0 ms on the higher ON counts.

11.4 320 bit/s 0 ms vs 500 ms 91

Figure 11.24: SLMV Latency 0 ms vs 500 ms, Factor Spread, Throughput 320 bit/s

92 chapter 11 results

The graph 11.24 shows the difference of 0 and 500 ms for SLMV with a through-
put of 320 bit/s, wakeup 20 minutes and uptime 5 minutes. The graph shows
that the effect is within margin of error for all spread types.

The result indicates that the effect of latency with 320 bit/s is marginal for all
spreads with both SLR and SLMV. The SLM approach shows an increase in
failed results, but the reported times are fairly similar.

11.5 25 kbit/s 0 ms vs 500 ms

Now looking at the effect of latency with throughput 25 kbit/s

11.5 25 kbit/s 0 ms vs 500 ms 93

Figure 11.25: SLR Latency 0 ms vs 500 ms, Factor Spread, Throughput 25 kbit/s

94 chapter 11 results

By looking at graph 11.25 comparing the effect of latency for SLR, we see no
effect with no spread. A small decrease in time for random, but higher standard
deviation. For uniform the result also goes down when the latency goes up. It
is worth noting that the result with random spread only finished sometimes for
the two lowest ON counts. For the uniform only for the ON count two.

11.5 25 kbit/s 0 ms vs 500 ms 95

Figure 11.26: SLM Latency 0 ms vs 500 ms, Factor Spread, Throughput 25 kbit/s

96 chapter 11 results

Looking at the result comparing latency for SLM in graph 11.26, the change in
result from 0 ms latency to 500 ms latency, is within margin of error for both
no spread and random spread.

With uniform spread the results are similar for all ON counts except 2, 64, and
100. With 2 ON the result is actually faster with 500 ms, for 64 the result is
slower with 500 ms and has three failed runs. When the ON count is 100 it
only finishes one time with zero ms latency.

11.5 25 kbit/s 0 ms vs 500 ms 97

Figure 11.27: SLMV Latency 0 ms vs 500 ms, Factor Spread, Throughput 25 kbit/s

98 chapter 11 results

Lastly when looking at the effect of latency for SLMV, the result in graph 11.27
shows all results are within margin of error.

When we have compared the results for 25 kbit/s with zero and 500 ms latency,
it is clear that the effect is minimal, only showing small variations.

12
Discussion
12.1 Set Limitations

Because the SLM and SLMV with the lower uptime fail when we send too
much, we could set a limit on the amount of data that they could send each
time. This would help, but we would need to make a decision on how to select
what is sent and not.

12.2 Remember Failed Transactions

Another approach is to remember what is already sent when a transaction
brakes, but this would require more negotiation when the ONs connect again
after a failed exchange. In addition, it could be hard to guarantee that the same
ONs connect again in a reasonable amount of time after a failed exchange.

12.3 Radio Wakeup

Other solutions to the time gap problem exist. Instead of the ONs just randomly
waking up at the same time, or scheduling to wake up at the same time, ONs
could be equipped with some sort of radio wakeup technology. This would
make it possible for one ON to wake another ON up from sleep when it wants

99

100 chapter 12 discussion

to talk to it.

But the radio wakeup have some problems. First we would need to choose who
can wake up who, because if anyone can wakeup anyone we have potentially a
security problem, or at least a problem where the system is prone to sabotage.
Another issue is the energy issue. If ONs cannot plan their own schedule they
cannot preserve the energy left on them in the best way. The designers would
have to map out every possible situation and the importance of the situation,
to justify each wakeup. If every task is deemed important, the result could be
that all ONs are up all the time anyway.

12.4 Use Beacon for Resource Descriptions

We could use the beacon signal to broadcast the resource description itself. But
this comes with the drawback of security and vulnerability for sabotage. The
other problem is to know when to broadcast, and when to stop. Even if we
had the ONs active at the same time and everybody broadcasts and collects
resource description, there could be problems. An ON that for some reason did
not receive information about one or more ONs, would not be able to ask for it
again. An other problem is that ONs would have to overlap and ONs that do
not overlap would not be able to get information from each other.

12.5 Hybrid Solution

Because the time to spread increase the most when the neighborhoods become
larger, maybe some hybrid solution can be effective. We can assign three waves
of action, and split the neighborhoods in to smaller groups. In the first wave
each group of overlapping members with no spread exchange their resource
information with each other, with exchange method SLR. In the second wave
one leader from every group overlaps and shares the group resources with all
the other leaders, again with SLR. In the final wave the leader starts to spread
the resource information gotten from the other leaders with the initial group
again, now using SLM or SLMV.

For smaller neighborhoods this would probably not be efficient, but for bigger
neighborhoods this could actually help. From the result it is clear that ether
higher throughput is needed, or other solutions to spread must be invented to
help with the spread for bigger neighborhoods. This was not the goal for this
research, though.

12.6 strange behavior when always on 101

12.6 Strange Behavior When Always On

The fact that SLM and SLMV seam to fail for the test where the ONs are awake
all the time is a bit strange. I believe it is because of the design choice to make
ONs connect to other ONs they already have been connected to, if no other
ON is available. The effect of this is that the ONs get occupied, meaning that
some ONs is not able to receive the last information when most of the others
are finished.

12.7 Choosing Parameters

If the spread of the ONs is already decided to be ether no spread, random or
uniform, we have already narrowed down the choices for the exchange method.
If there is no spread, the SLR approach is always better. If there is a random
spread, it seams that SLMV comes out better for higher ON counts. But for the
lower ON counts, the SLM can also be a solid choices. SLMV will require some
more complexity at each node.

Latency seam to have a smaller effect then fist thought. The result shows
that with a small latency, we see no changes in the pattern when we make
alterations to the other parameters. This could be that the latency is too low to
see the effect of it, and it may be that a higher latency would create different
patterns for the changes in parameter values.

13
Conclusion
To conclude we can say that most of the parameters have a significant effect
on the total time to spread resource information from all to all. Some of the
parameters have higher effect than others.

When we look at the effect of the wakeup, uptime, and spread, we can say that
spread has the most unpredictable effect. The result for the spread illustrates
that having the ONs always on simultaneously makes the building of the RM
a lot faster than when spread is introduced. When we have a random spread
there need to ether be long enough uptime compared to wakeup, or enough
ONs so that an overlapping trace is likely to happen. When there is either a
low uptime compared to wakeup, or a low ON count, a more structured spread
that can help ensure an overlapping trace can help the RM building.

Wakeup mostly effects the sleep time of the ONs, but also how many ONs are
needed in the neighborhood to achieve overlap. When the ratio of uptime
compared to wakeup decrease, more ONs is needed to be able to create an
overlapping trace with random spreader. The sleep time can effect the total time
to build the RM drastically when ONs start to use several uptime periods.

The uptime effects the number of ONs that are able to connect and share infor-
mation before they go to sleep, and therefore effects the amount of sleep/awake
cycles they need before they finish spreading the information.

Throughput has the most effect when the spread is lower. The most profound

103

104 chapter 13 conclusion

effect of a higher throughput is that the transfer times goes down. Therefore
when we have no spread, the effect is the highest. When spread is introduced,
the effect goes down. This is because most of the time is spent sleeping, or
waiting for an opportunity to connect to someone. The higher throughput have
the effect of also being able to spread to higher ON counts. A small latency has
a low or no impact on the total time to build up the RM.

The results shown in this theses should help designers of observation networks
in remote places, that lack essential infrastructure, like the AT. To be able to
tune the specifications, and parameters of the ONs behaviour, so that they reach
a specific target. This paper and the results can also warn about some pitfalls
that might not be as obvious when setting up an observation network.

14
Future work
For future it would be interesting to see experiments where ONs do not have
the same wakeup and uptime behaviors. It would also be interesting to see
more done with the past and future neighborhoods proposed in chapter 5,
and highlighting the effect of letting ONs change their behavior based on the
information in their maps and future neighborhood. In addition it would also
be interesting to show more static experiments where wakeup and uptime is
different for some, or all the ONs.

In chapter 8 some shortcomings of this project is highlighted. Exploring these
questions further could have significant importance for a more complete under-
standing of ON behaviors. Especially CPU usage could be interesting to know
more about.

For the parameters tests it could be interesting to see more values for network
throughput and latency tested.

105

Bibliography
[1] Valentin Popa Alexandru Lavric. Performance evaluation of lorawan

communication scalability in large-scale wireless sensor networks. In
Wireless Communications and Mobile Computing, volume vol. 2018, page
9 pages, 2018. URL https://doi.org/10.1155/2018/6730719.

[2] Aloÿs Augustin, Jiazi Yi, Thomas Clausen, and William Mark Townsley.
A study of lora: Long range amp; low power networks for the internet
of things. Sensors, 16(9), 2016. ISSN 1424-8220. doi: 10.3390/s16091466.
URL https://www.mdpi.com/1424-8220/16/9/1466.

[3] Red Hat. What is edge architecture?, 2021. URL
https://www.redhat.com/en/topics/edge-computing/what-
is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=
Cj0KCQjwsdiTBhD5ARIsAIpW8CJgKcSLuhy7sgt2d7xmVdAjiBKZD3S9PIW-
r44UfI3lR9xi3qjsUPYaAp9CEALw_wcB&gclsrc=aw.ds.

[4] Alex Hawkes. Understanding network speed and latency, 2021.
URL https://blog.consoleconnect.com/understanding-network-speed-
and-latency.

[5] Christine Julien, Chenguang Liu, Amy L. Murphy, and Gian Pietro Picco.
Blend: Practical continuous neighbor discovery for bluetooth low energy.
In 2017 16th ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN), pages 105–116, 2017.

[6] Eric Brewer David Culler Kamin Whitehouse, Cory Sharp. Hood: a neigh-
borhood abstraction for sensor networks. In MobiSys ’04: Proceedings
of the 2nd international conference on Mobile systems, applications, and
services, page 99–110, 2004. doi: 10.1145/990064.

[7] Joakim Lindh. Bluetooth® low energy beacons. Technical report,
Texas Instruments, 01 2015. URL https://www.ti.com/lit/an/swra475a/
swra475a.pdf?ts=1651953502414.

107

https://doi.org/10.1155/2018/6730719
https://www.mdpi.com/1424-8220/16/9/1466
https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=Cj0KCQjwsdiTBhD5ARIsAIpW8CJgKcSLuhy7sgt2d7xmVdAjiBKZD3S9PIW-r44UfI3lR9xi3qjsUPYaAp9CEALw_wcB&gclsrc=aw.ds
https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=Cj0KCQjwsdiTBhD5ARIsAIpW8CJgKcSLuhy7sgt2d7xmVdAjiBKZD3S9PIW-r44UfI3lR9xi3qjsUPYaAp9CEALw_wcB&gclsrc=aw.ds
https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=Cj0KCQjwsdiTBhD5ARIsAIpW8CJgKcSLuhy7sgt2d7xmVdAjiBKZD3S9PIW-r44UfI3lR9xi3qjsUPYaAp9CEALw_wcB&gclsrc=aw.ds
https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture?sc_cid=7013a000002pu40AAA&gclid=Cj0KCQjwsdiTBhD5ARIsAIpW8CJgKcSLuhy7sgt2d7xmVdAjiBKZD3S9PIW-r44UfI3lR9xi3qjsUPYaAp9CEALw_wcB&gclsrc=aw.ds
https://blog.consoleconnect.com/understanding-network-speed-and-latency
https://blog.consoleconnect.com/understanding-network-speed-and-latency
https://www.ti.com/lit/an/swra475a/swra475a.pdf?ts=1651953502414
https://www.ti.com/lit/an/swra475a/swra475a.pdf?ts=1651953502414

108 bibl iography

[8] Chenguang Liu, Jie Hua, and Christine Julien. Scents: Collaborative
sensing in proximity iot networks. In 2019 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerComWorkshops),
pages 189–195, 2019. doi: 10.1109/PERCOMW.2019.8730863.

[9] Christina Nunez. Tundra threats explained, 2020. URL https://www.
nationalgeographic.org/article/tundra-threats-explained/.

[10] UiT The Arctic University of Norway. Distributed arctic observatory. URL
https://en.uit.no/project/dao.

[11] Norwegian polar institute. Climate change in the arctic. URL https://www.
npolar.no/en/themes/climate-change-in-the-arctic/#toggle-id-3.

[12] André Queirós, Daniel Faria, and Fernando Almeida. Strengths and limita-
tions of qualitative and quantitative research methods. European Journal
of Education Studies, 0(0), 2017. ISSN 25011111. doi: 10.46827/ejes.v0i0.
1017. URL https://oapub.org/edu/index.php/ejes/article/view/1017.

[13] Kate Ramsayer. Warming temperatures are driving arctic greening, 2020.
URL https://climate.nasa.gov/news/3025/warming-temperatures-are-
driving-arctic-greening/.

[14] Csaba Rotter, János Illés, Gábor Nyíri, Lóránt Farkas, Gergely Csatári, and
Gergő Huszty. Telecom strategies for service discovery in microservice
environments. In 2017 20th Conference on Innovations in Clouds, Internet
and Networks (ICIN), pages 214–218, 2017. doi: 10.1109/ICIN.2017.7899414.

[15] Arash Sattari, Rouhollah Ehsani, Teemu Leppänen, Susanna Pirttikangas,
and Jukka Riekki. Edge-supported microservice-based resource discovery
for mist computing. In 2020 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pages 462–
468, 2020. doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.
00087.

[16] Jacob Strauss, Justin Mazzola Paluska, Chris Lesniewski-Laas, Bryan Ford,
Robert Morris, and Frans Kaashoek. Eyo: Device-transparent personal
storage. In 2011 USENIX Annual Technical Conference (USENIX ATC 11), Port-
land, OR, June 2011. USENIX Association. URL https://www.usenix.org/
conference/usenixatc11/eyo-device-transparent-personal-storage.

[17] Roberth Tollefsen, Issam Rais, John Markus Bjørndalen, Phuong Hoai Ha,

https://www.nationalgeographic.org/article/tundra-threats-explained/
https://www.nationalgeographic.org/article/tundra-threats-explained/
https://en.uit.no/project/dao
https://www.npolar.no/en/themes/climate-change-in-the-arctic/#toggle-id-3
https://www.npolar.no/en/themes/climate-change-in-the-arctic/#toggle-id-3
https://oapub.org/edu/index.php/ejes/article/view/1017
https://climate.nasa.gov/news/3025/warming-temperatures-are-driving-arctic-greening/
https://climate.nasa.gov/news/3025/warming-temperatures-are-driving-arctic-greening/
https://www.usenix.org/conference/usenixatc11/eyo-device-transparent-personal-storage
https://www.usenix.org/conference/usenixatc11/eyo-device-transparent-personal-storage

bibl iography 109

and Otto Anshus. Distribution of updates to iot nodes in a resource-
challenged environment. In 2021 IEEE/ACM 21st International Symposium
on Cluster, Cloud and Internet Computing (CCGrid), pages 684–689, 2021.
doi: 10.1109/CCGrid51090.2021.00082.

[18] Qi Xia, Ruijun Yang,Weinong Wang, and De Yang. Fully decentralized dht
based approach to grid service discovery using overlay networks. In The
Fifth International Conference on Computer and Information Technology
(CIT’05), pages 1140–1144, 2005. doi: 10.1109/CIT.2005.122.

A
Appendix
Extra material for this thesis is placed in a compressed file. In extra material the
source code, and the raw results can be found. The source code is placed in a
folder called "src", and the results will be placed in a folder called "results".

The the source code folders are: the simulation written in c, experiment setup
written in Python3, code for plotting the results, and scripts for automate the
process. A README.txt file is created for instructions on how to compile and
use the implementation and scripts.

The raw results from the experiments are placed in the folder named "results",
combined with all the graphs plotted from the results. In the folder four sub
folders can be seen with the naming "throughput-latency" where throughput
is one of 25kbs or 320bs and latency is ether 0ms or 500ms. In each of these
folders is the raw result for that configuration, and also a plot folder with all
permutations for the factors and parameters. The graphs in the plot folder fol-
low the same naming structure; "what is compared_Factor_F_A_B.svg" where
F is the factor used, and is either: Spread, Wakeup, or Uptime. A B is the
parameter names followed by the values.

111

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Definitions
	List of Listings
	1 Introduction
	2 Problem statement
	3 Related Work
	3.1 Telecommunication Strategies
	3.2 Data Storage
	3.3 Sensor networks
	3.4 Collaborative Sensing
	3.5 Edge computing
	3.6 Update Distribution
	3.7 Peer-to-peer

	4 Context
	4.1 Characteristics of the arctic tundra
	4.2 Spreading Mechanism
	4.3 Parameters & Factors
	4.3.1 Exchange type
	4.3.2 Time Between Wakeup
	4.3.3 Uptime duration
	4.3.4 Spread
	4.3.5 Resource Description size
	4.3.6 Throughput and Latency
	4.3.7 Number of ONs

	4.4 Requirements
	4.4.1 ON Behavior
	4.4.2 Energy
	4.4.3 Identification
	4.4.4 Neighbor Detection
	4.4.5 Communication
	4.4.6 Assumptions

	5 Architecture
	5.1 Neighbor
	5.2 Neighborhood
	5.2.1 Neighbor detection
	5.2.2 Past
	5.2.3 Present
	5.2.4 Future

	5.3 Resource map
	5.4 Map vector
	5.5 Resource spreading
	5.5.1 Send local resource(s) with push
	5.5.2 Send map view with push
	5.5.3 Send local resource(s) with push pull
	5.5.4 Send map view with push pull

	6 Methodology
	6.1 Architecture Exploration
	6.2 Quantitative method
	6.3 Reliability
	6.4 Validity

	7 Simulator Design
	7.1 Overall Structure
	7.2 Running the Simulation
	7.2.1 Transferring of Resources
	7.2.2 End of Simulation

	7.3 Design issues

	8 Limitations
	8.1 CPU-usage
	8.2 Disk-usage
	8.3 RAM-usage
	8.4 Network bandwidth
	8.5 Collisions

	9 Simulation Implementation
	9.1 Setup
	9.2 Python3-code
	9.3 C-code
	9.3.1 Initialization
	9.3.2 ON In the simulation
	9.3.3 Simulation execution

	9.4 Check and Exchange
	9.4.1 Pseudo Random Order

	9.5 Optimization
	9.6 Network Characteristics

	10 Evaluation
	10.1 Metric
	10.2 Software environment
	10.3 Hardware environment
	10.4 Experiment Design
	10.5 Parameter values

	11 Results
	11.1 Results Throughput 320 bit/s and Latency 0 ms
	11.1.1 SLR vs SLM vs SLMV with different spread
	11.1.2 SLR vs SLM vs SLMV with different uptime
	11.1.3 SLR vs SLM vs SLMV with different wakeup

	11.2 Results Comparing Throughput
	11.2.1 SLR 320 bit/s vs 25 kbit/s
	11.2.2 SLM 320 bit/s vs 25 kbit/s
	11.2.3 SLMV 320 bit/s vs 25 kbit/s

	11.3 Results Comparing Latency
	11.4 320 bit/s 0 ms vs 500 ms
	11.5 25 kbit/s 0 ms vs 500 ms

	12 Discussion
	12.1 Set Limitations
	12.2 Remember Failed Transactions
	12.3 Radio Wakeup
	12.4 Use Beacon for Resource Descriptions
	12.5 Hybrid Solution
	12.6 Strange Behavior When Always On
	12.7 Choosing Parameters

	13 Conclusion
	14 Future work
	Bibliography
	A Appendix

