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Abstract

Wind data are vital for the research in renewable energy research. Their quality from numerical weather prediction
ignificantly influences the wind energy models. This paper utilizes a comprehensive statistical analysis for analyzing predictive
rrors, named residuals of wind speed and direction modeled by numerical weather prediction models. The analysis, taken an
rctic wind site as an example, effectively integrates statistical inference, probabilistic modeling, and hypothesis tests. It is
roven that the residuals still contain important meteorological information. The introduced statistical analysis may be used
o replenish residuals and explore complex intrinsic properties of numerical weather wind models and contributions to wind
nergy modeling.
2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Wind is both the principal object and an important approach to renewable energy science research [1–3]. As
ne of the most fundamental natural phenomena, wind modeling is the most important driver that approaches the
tmosphere [4], research, and serves as a crucial sustainable energy resource assessment [5,6]. The effective wind
odel for a site should understand the historical wind characteristics and be able to predict the wind temporally

ased on these characteristics. One of the most effective ways to conduct a comprehensive environmental and
nergy assessment of regional wind is to construct a target candidate site wind model based on long-term wind
ata measured by weather towers. However, in practice, it is not always possible to make weather measurements at
andidate sites, and the installations and operations of these towers are quite expensive [7]. Meanwhile, Numerical
eather Prediction (NWP), which can derive wind climatology with different resolutions at regional scales, is

egarded as an important alternative source of wind data [8].
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Most of the research on using statistical methods to evaluate wind data is based on probabilistic function
odeling [9,10]. However, the majority of these studies focused on evaluations for wind speed distribution [11,12]

nd ignored wind directions.
Some studies are concerned with utilizing statistical analysis to investigate the forecast errors (named residuals

n regression analysis). The majority of these studies look at probabilistic modeling for predictive errors but not to
redict the residuals. Some research only looked at the normal distribution, which has proven not as accurate as
ther more appropriate distributions. M. Lange et al. [13] analyzed the uncertainty in wind modeling using statistical
istributions and found that the error is normally distributed. J. Wu et al. [14] used a mixed distribution to model
he error of the persistence model of wind energy. H. Wang et al. [15] investigated the normal distribution and
ernel density estimation to model wind speed error between NWP and measured wind speed data and found that
he mapping relationship is vague. The critical reason is the existing correction algorithms in NWP algorithms.
ome tried to use different distributions to analyze the problem. P. Guo et al. [16] analyzed the fluctuation in
ind direction by using the Weibull distribution to fit the marginal probability density of fluctuation amplitude and
uctuation duration and combined them with the mixed Copula and proved the accuracy by testing the model in
wind farm in China. N. Chen et al. [17] used the Gaussian process to correct wind speed data from NWP and

emonstrated its edge by employing the correct wind data in two wind site models.
This study elaborates on the statistics, time series, and quarterly probability distribution properties of the NWP

ind model residuals. It provides a new perspective for further in-depth investigations and optimizations of the
omplex numerical weather systems for wind power engineering. Besides, the paper conducts several hypothesis
ests applied in statistical modeling and machine learning. These statistical tests are usually missed in common
nergy engineering studies. Moreover, we especially present a detailed literature review of this minority research
eld of wind residual analysis in Section 1, which can help researchers follow the field more conveniently.

The remainder of this paper is organized as follows. Section 2 shows the statistical methods. In Section 3, the
orresponding case study setup is introduced. Section 4 elaborates on the results of the proposed framework. The
ain conclusions are briefly presented in Section 5.

. Methodology

In this section, the theoretical methods involved in statistical analysis are demonstrated.
Residual analysis is a crucial part of statistical regression diagnostics techniques. The residual Ê is defined in

(1):

Ê = Y − Ŷ (1)

where Y is the observation and Ŷ is the regression value from predictive models. There are few assumptions for the
residual, with random and unpredictable characteristics, in linear regression. The first is residuals are independent
of the data sample itself. The second is residuals are independent of each other and have the same probability
distribution. The third is residuals should follow the standard normal distribution [18]. If the residuals do not meet
these three assumptions, the regression model does not correctly exploit the data’s information, and there is still
space for improving the model.

The probability density function (PDF) of a random variable is a mathematical model that describes the
probability of this variable happens at a particular point in each observation interval. The cumulative distribution
function (CDF) indicates the possibility that a variable is less than or equal to a specific value [19]. In this study,
we will use four PDF ideal distributions, namely, normal distribution, skew normal distribution, t distribution, and
stable distribution.

For the normal distribution, its PDF is expressed by (2):

f (x) =
1

σ
√

2π
e−

1
2

(
x−µ
σ

)2

(2)

here µ is the mean and σ is the standard division.
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The skew normal distribution is an extended normal distribution, it adds nonzero skewness into the distribu-
ion [20]. Its PDF is shown in (3):

f (x) =
2

ω
√

2π
e−

(x−ξ )2

2ω2

∫ α
(

x−ξ
ω

)
−∞

1
√

2π
e−

t2
2 dt, σ = ξ + ωδ

√
2
π

, s2
= ω2

(
1 −

2δ2

π

)
, where δ =

α
√

1 + α2

(3)

where ω is a scale parameter, ξ is a location parameter and α is a shape parameter.
The PDF of t distribution is determined via the following function [21]:

f (x) =
Γ

(
ν+1

2

)
Γ

(
ν
2

) 1
√

νπ

1(
1 +

x2

ν

) ν+1
2

(4)

where ν > 0 is the degrees of freedom and Γ (.) is the Gamma function.
Stable distributions are a class of probability distributions suitable for modeling heavy tails and skewness [22].

The function determines the PDF of stable distribution in (5):

f (x) =
1

2π

∫
∞

−∞

ϕ(t)e−i xt dt (5)

where ϕ (t) is expressed by (6):

ϕ (t) =

{
exp

(
−γ α

|t |α
[
1 + iβ sign(t) tan πα

2

(
(γ |t |)1−α

− 1
)]

+ iδ0t
)

f or α ̸= 1

exp
(
−γ |t |

[
1 + iβ sign(t) 2

π
ln(γ |t |)

]
+ iδ0t

)
f or α = 1

(6)

here α is a first shape parameter and 0 < α ≤ 2, β is a second shape parameter and −1 ≤ β ≤ 1, γ is a scale
arameter and 0 < γ < ∞, δ is a location parameter and -∞ < δ < ∞. α describes the tails of the distribution.

represents the skewness of the distribution. Specifically, when α equals 2, the stable distribution is the normal
distribution.

A nonparametric estimated PDF fitting approach based on histograms, called kernel distribution, is introduced
to examine the performance of ideal distributions for formulating. It is a smoothing technique that makes the
discontinuous histograms into a kind of continuous PDF curve. It is defined by a smoothing function K(·) and
a bandwidth d in (7):

f̂d (x) =
1

nd

n∑
i=1

K
(

x − xi

d

)
(7)

To determine the distributions’ parameters for a given dataset, the Maximum Likelihood Estimation (MLE)
ethod is used for the parametric estimations for different PDFs. Under the MLE criterion, a sample is considered

rom an aggregate that maximizes that particular sample’s probability.
Then, we introduce some nonparametric hypothesis testing for checking the statistical significance.
Normality Test: The Anderson–Darling test is a statistical hypothesis test of whether the sample data are from

normal distribution [23]. It is one of the most powerful statistical tools for detecting normality.
H0: The data follow a normal distribution.
Ha : The data do not follow a normal distribution.
The test statistic is given as in (8) [23]:

A2
= −n − S, S =

n∑
i=1

2i − 1
n

[ln (F (X i )) + ln (1 − F (Xn+1−i ))] (8)

here {X1 < · · · < Xn} is in order, F(.) is CDF of the normal distribution. The test statistic can be compared to
ritical values from the theoretical distribution.

Autocorrelation Test: The Ljung–Box test is a statistical test to check for the presence of autocorrelation in a
eries [24]. It is a powerful portmanteau test since it tests overall randomness according to fixed multiple lags rather
han tests randomness based on each lag.

H : The data are distributed independently.
0
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Ha : The data are not distributed independently.
The test statistic is defined as in (9) [24]:

Q = n(n + 2)
h∑

k=1

ρ̂2
k

n − k
(9)

follows χ2
(h) under H0, where ρ̂k is autocorrelation at lag k, h is the testing lags number.

Stationarity Test: The Augmented Dickey–Fuller test (ADF) tests the existence of unit root for checking
tationarity in a series [25]. The unit root that equals one refers to a feature that makes a time series non-stationary.

H0: The unit root equals one; the data are non-stationary.
Ha : The unit root is smaller than one; the data are stationary.
Goodness-of-fit Test: The one-sample Kolmogorov–Smirnov test (K–S test) is a statistical test based on CDF to

est whether a distribution is from a kind of ideal distribution [26]. Moreover, for two datasets, if the ideal distribution
s replaced with the other dataset real distribution, a one-sample K–S test can be extended to a two-sample K–S
est, which tests whether the two datasets come from the same distribution.

H0: The data have a given distribution.
Ha : At least one value does not come from the given distribution.
The test statistic is defined as in (10) [26]:

D = sup
x

|F0(x) − F(x)| (10)

here F0(x) is CDF of the given ideal distribution, and F(x) is CDF of the testing data. The test statistic can be
ompared to critical values from the theoretical distribution.

Rank Test: The Wilcoxon signed-rank test is a paired difference test to assess whether the two populations’
edians differ [27].
H0: The two populations have the same median.
Ha : The two populations have different medians.
There is an implementation of ADF and Wilcoxon signed-rank tests in R language.
The Friedman test, similar to analysis of variance (ANOVA), is used to check for differences in performance

cross multiple trials [27]. Especially, it tests for column effects after adjusting for possible row effects with the F
tatistic.

H0: The column data do not have a significant difference.
Ha : The column data have a significant difference.
Performance Evaluation Metrics for PDF Modeling: Three metrics are used to evaluate the wind velocity

esiduals modeled with ideal PDFs. Namely, Root Mean Square Error (RMSE), coefficient of determination (R2),
nd p-value of one-sample K–S test. We use them to calculate the probability density difference between smoothing
DFs (kernel PDFs) and corresponding ideal parametric distributions. In the one-sample K–S test, the p-value is

the probability that the data fits the given distribution on the extreme conditions.

3. Experimental setup

A Norwegian Arctic wind park gives the measured wind speed and direction data. The wind data was modeled,
2.5 km resolution, by the Scandinavian weather institutions (an NWP model named Meteorological cooperation
on operational Ensemble Prediction System MEPS). The timestamp of the two datasets is from 0:00 1st January
2017 to 23:00 31st December 2017 with a one-hour resolution. The data are divided into 4-quarters datasets with
numbers of 2160, 2184, 2208, and 2208.

A wind speed is a scalar value for the wind velocity vector. East–West wind speed and North–South wind speed
are the East–West and North–South scalar values of the wind velocity vector (including information of vector’s
scale and direction). The East–West wind speed (u), North–South wind speed (v), and wind velocity vector (V) are
xpressed in (11):

u = p × sin θ; v = p × cos θ; V = {p, u, v} (11)

The NWP model residuals are in definition as the difference between measured and NWP predicted wind

elocities. Their abbreviations are P, u, v (measured overall, East-West and North-South wind speed); PN , uN , vN

621
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t

(overall, East-West and North-South wind speed calculated by NWP model); RP, Ru, Rv (residual overall, East-West,
and North-South wind speed calculated by measured data minus correspond NWP data).

The whole experiment can be divided into two sections. First, the descriptive statistics are calculated for the
overall, East-West, and North-South wind speed NWP data along with the corresponding actual measured data.
Performing these homogeneous distribution tests for these two datasets and calculating the residuals of the wind
velocity from the NWP model. The second part is statistical analysis for residuals of wind velocity. We apply
rigorous statistical inference and time series testing techniques to analyze the residual series. The residuals’ historical
distributions are also modeled with PDFs. A comparative assessment is made to identify an ideal distribution model
that is most appropriate for describing the residuals’ probabilistic characteristics. The experimental process is shown
is Fig. 1.

Fig. 1. The experimental procedure for the statistical analysis.

4. Results and discussions

4.1. NWP for wind velocity

The descriptive statistics of the wind velocity from real measurements and the NWP model are shown in Table 1.
It can be seen that the actual measured annual mean wind speed is 7.69 m/s, which is 0.74 m/s larger than the annual
average of predicted wind speed from NWP. The wind velocity from NWP is less volatile and has a smaller value
range than the measured one. The P and PN have positive skewness that indicates their right tails are longer than
he left ones, and the mass of their distributions are concentrated on the left. The skewness of u, u , v, and v
N N
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Table 1. Statistics of wind velocity.

Statistics P PN u uN v vN

Mean (m/s) 7.69 6.95 0.12 0.33 0.00 1.29
Standard Deviation (m/s) 4.53 3.88 6.33 5.25 6.29 5.83
Max (m/s) 33.88 33.69 32.68 25.57 33.11 19.39
Min (m/s) 0.10 0.10 −33.16 −27.89 −31.51 −18.63
Skewness 1.34 1.15 0.05 0.07 −0.02 −0.24
Kurtosis 2.66 2.96 1.07 1.81 0.98 −0.54

approximately equal to zero, indicating that their probability distribution has some symmetry. P and PN’s kurtosis is
significantly greater than zero, suggesting that they are leptokurtic and have steeper or thicker tails than the normal
distribution. Meanwhile, u, uN , v, and vN have slightly different kurtosis from zero, illustrating that the normal
distribution cannot characterize them well.

Table 2. Performance of persistence and NWP model.

Metrics P u v

Persistence RMSE 1.5092 8.72 8.7578
NWP RMSE 2.949 8.2028 8.6885
Persistence 1-R2 0.1079 0.9975 0.9990
NWP 1-R2 0.4053 1 0.9999

The two-sample K–S and Wilcoxon signed-rank tests are conducted between the two wind velocity datasets.
heir p-values are all but entirely zero, which shows that the two datasets are significantly different in probability
istributions. These can also be seen in the differences in their descriptive statistics. The forecasting performance of
WP and persistence model, in which the value of t+1 equals the value of t, for overall, East–West, and North–South
ind speeds is shown in Table 2. It is seen that for the prediction of P, the RMSE and 1-R2 of the NWP model
oth exceed those of the persistence model, explaining a better performance by the persistence model. The reason
s that the NWP is a mesoscale weather model, while the persistence model inputs are real measured wind speeds
t a previous time, but real wind speed data are not widely available in practice. However, by factoring the wind
irection into prediction models, the NWP and persistence models show similar performance, indicating that the
WP model has a reasonable recognition of wind characteristics.

.2. Statistical analysis of wind velocity residuals

The descriptive statistics of residual wind velocity are shown in Table 3. It is observed that the mean values of
hree residuals are close to zero, suggesting that errors from the NWP model are not one-sided, i.e., the predicted
alues oscillate around the actual values. The East–West and North–South wind speed residuals have greater
olatility and range, indicating interactions between wind speed and direction errors. Skewness illustrates that they
ave a certain symmetry. Kurtosis shows they are leptokurtic and lightly steeper or thicker tailed than the normal
istribution.

The time series tests are conducted to statistically check normality, autocorrelation, and stability of residual series
ith Anderson–Darling, Ljung–Box, and ADF tests, respectively. Their p-values are displayed in Table 4. Based
n these p-values, we reject the null hypothesis in all cases with a confidence level of 0.01. This means that the
esidual series do not significantly follow a normal distribution, have some autocorrelation, and are stationary time
eries.

Concerning the residual probabilistic distribution analysis, their histograms are plotted and histograms-based
ernel distribution fittings are applied with a smoothing normal distribution function and a bandwidth of 0.25 m/s.
esides, three different ideal distributions, established by MLE methods, are employed to model the residuals and

heir modeling performance is compared to the corresponding kernel distributions. Moreover, to further detect the
riginal residual data probability distributions, we take one-sample K–S tests based on parametric ideal distributions

nd calculate their p-values. The modeling performance is displayed in Table 5.
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Table 3. Statistics of residual wind velocity.

Statistics Mean (m/s) Standard Deviation (m/s) Max (m/s) Min (m/s) Skewness Kurtosis

RP 0.76 2.87 14.78 −12.09 0.30 1.38
Ru −0.21 8.25 59.05 −45.12 0.31 3.26
Rv −1.29 8.64 36.50 −49.35 −0.43 1.43

Table 4. p-values of time series tests.

Test Anderson–Darling Ljung–Box ADF

RP <0.0001 <0.0001 0.001
Ru <0.0001 <0.0001 0.001
Rv <0.0001 <0.0001 0.001

Table 5. Performance of PDF modeling for residuals.

Metrics RMSE 1-R2 p-value for K–S test

Distribution RP RU RV RP RU RV RP RU RV

Skew normal 0.0081 0.0046 0.0046 0.0237 0.0646 0.068 <0.0001 <0.0001 <0.0001
t 0.0039 0.0015 0.0039 0.0061 0.0075 0.0521 0.2633 0.2645 <0.0001
Stable 0.0042 0.0019 0.0038 0.0069 0.0118 0.0492 0.1398 0.0391 <0.0001

In PDF curves perspective, all the three PDFs can describe the main characteristics of the overall, East–West
nd North–South wind speed residuals historical probability bar charts, which have the shape of center-concentrated
nd symmetrical along the center, and it decays rapidly from the center and has thick tails. Besides, the figure of
orth–South residual is right-skewed. From Table 5, t and stable distributions have the lowest and similar RMSE and

1-R2. Furthermore, both of them are not rejected by the null hypothesis of K–S tests with a confidence level of 0.01.
These show that both distributions can describe the probability distribution of wind velocity prediction residuals with
strict statistical significance. North–South residuals’ right skewness also reduces the accuracy of ideal distributions
in modeling them. Meanwhile, the skew normal distribution can still capture features of smoothing PDFs for original
residual data since there are no remarkable performance differences between it and the other two distributions.

To further understand the temporal characteristics of the NWP wind velocity models and their PDF formulating,
the annual wind velocity residual series is divided into four quarterly series. Namely, Q1, Q2, Q3, and Q4. And
they are marked with 1, 2, 3, and 4 behind the residual abbreviations. Like the annual data modeling process, the
PDF modeling of four quarters of residual data is also made. The quarterly PDF formulation performs similarly
to the annual modeling. In particular, skew normal distribution is better than its counterpart in the annual analysis.
Besides, more cases pass homogeneous distribution tests with a confidence level of 0.01 and some of them have
large p-values.

The Friedman test is employed to carry out a rank test to compare the PDF formulating performance of residual
data from different quarters and types of wind speed more objectively. We are interested in two effects. Is there any
significant difference between the three ideal distributions models for a single type of wind speed over four quarters?
The other is whether there is a significant difference between the different types of wind speed residuals modelings
across quarters for the average performance of three PDFs? The Friedman test results for these two questions are
displayed in Tables 6 and 7. All p-values surpass the confidence level of 0.01, so the Friedman test’s null hypothesis
should not be rejected. It is concluded that these three PDFs show differences in modeling the residuals across the
year. The overall p-values of RP, Ru, and Rv ascent are in order, which indicates three PDFs’ performance also
vary for different wind speed residual formulations.

Similar to the results in Table 6, we reject all the Friedman tests a null hypothesis and confirm the significant
difference in three PDFs’ average performance between RP, Ru, and Rv annually. Notably, the average p-value of
Table 6 is larger than the one of Table 7, which means the difference, in PDF formulating, between residuals of
wind speed types is more significant than the one between different ideal fitting distributions.
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Table 6. p-values of Friedman test for quarter with distributions effect.

Metrics RMSE 1-R2 p-value for K–S test

RP 0.0183 0.0183 0.0183
Ru 0.0381 0.0498 0.0498
Rv 0.3679 0.3679 0.2574

Table 7. p-values of Friedman test for quarter with wind speed effect.

Metrics Q1 Q2 Q3 Q4

RMSE 0.0498 0.097 0.7165 0.7165
1-R2 0.0498 0.0498 0.097 0.2636
K–S test p-value 0.097 0.0498 0.0859 0.5292

5. Conclusion

This paper focuses on a crucial issue in wind power generation prediction, namely the significant discrepancy
etween the numerical weather data, as inputs to the hybrid power forecast model for a wind site, and actual wind
onditions at the site. These inputs error data severely affect the accuracy of the wind energy-related model. We
onstruct a statistical analysis and learning prediction framework based on regression diagnosis for the NWP wind
odel itself. From the results in Section 4, the following conclusions can be drawn.
In general, the Scandinavian mesoscale NWP model achieves fairly accurate wind speed forecasts for the Arctic

ind site. However, its performance degrades when joint forecasts of wind speed and direction are taken into
ccount.

The analysis of the overall, East-West, and North-South NWP wind speed residual series based on statistics,
uarterly probability modeling, and hypothesis test reveals that these series still contain valuable wind information
hat can be extracted by our proposed strict statistical modeling. Besides, these wind residuals are analogous to
ind itself, which exhibits some quarterly volatility.
In further research, we hope to combine the proposed wind residuals analytical framework with the NWP wind

odel with higher resolution to obtain more accurate wind data for inputs of the superior performing wind energy
odels.
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