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Abstract

The analysis of curves can be claimed to be the core of most scientific ventures. In this dissertation, we fo-
cus on the statistical aspect of this type of analysis. Here, the curves originate from health and food-related
areas and include improvements in blood glucose measurements, classification of moles, measurements
of parameters during liver transplants in pigs, and data from the monitoring of the quality of fish. More
specifically, the statistical curve analysis consists of several perspectives were all have some kind of in-
trinsic comparison effort. However, the main approaches in these studies are related to regression and the
problem of finding suitable critical regions. The regression part consists of robust nonlinear regression
and linear mixed models while the critical regions are found through classification and hypothesis testing
in scale-space. By improving the critical decision boundaries through e.g. the Bonferroni correction of
scale-space maps in Paper I, and developing features to improve decisions regarding the classification of
moles in Paper II, we were able to obtain high sensitivity and specificity in the developed systems. Re-
gression was an integral part of the classification effort in Paper 11, the improvement of blood glucose
measurements in Paper III, and the statistical analysis of parameters measured during liver transplantation
in pigs in Paper IV.

Paper I is focused on maximizing sensitivity and specificity when detecting a significant change in the
data. Here as in Paper II hyperspectral images are the source of data. The developed method produces a
scale-space, where significant changes can be detected.

Paper II aims to maximize sensitivity, specificity, and precision in the classification of moles. This
is accomplished through curves from subimages obtained from each channel of the hyperspectral images.
These curves show characteristic features from three important classes of moles. By using these features
through the regression of these curves, we accomplish high sensitivity, specificity, and precision in the
classification pursuit.

In Paper III, we introduce a novel method for improving blood glucose estimation from continuous
glucose measurements by using deconvolution. First, regression is used to estimate the parameters in the
convolution kernel. Thereafter this response function was deconvolved through regression. In this way,
we can estimate blood glucose from subcutaneous measurements. This gives a new method for controlling
blood glucose levels which is of great importance for type 1 diabetes patients during and after exercise to
avoid hypoglycemia.

Testing two different methods in liver transplantation of pigs, where the statistical analysis of curves
was done through the application of linear mixed models, is the focus of Paper IV. An important output
of this work is that the two treatments can be statistically distinguished through the use of linear mixed
models.
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CHAPTER

Background

One of the main incentives for research is health. We have seen astonishing examples of health-
driven research during the Covid 19 pandemic, with the incredibly fast development of vaccines.
One of the main reasons for this development speed was the application of data science, where
statistics play an integral part (Waltz, 2021). In this dissertation, we will also apply statistics in
health-related areas ranging from food quality to liver transplantation.

The dissertation is divided into two main parts. In Chapter 1, necessary background informa-
tion is presented to give an understanding of the context in which the research is placed. It begins
by giving an overview of the health-related subjects this dissertation consists of before moving
on to the more technical subject, hyperspectral imaging, utilized in this dissertation. In Chapter
2 we cover the various methodologies used in the four included papers. Further, in Chapter 3,
summaries and discussion of the four research papers are presented, which includes detailed lists
of the contributions by the author. The second and final part is chapters 4-7, which consists of
the four papers included in the dissertation.

1.1 Health-related background

1.1.1 Food quality

Food quality is of high importance due to the severe consequences of contaminated or degraded
food on human health. We have now developed a considerable amount of technology to prevent
food spoilage. Still, this is an important issue and an active research area, where currently the
research focus is microbiological processes (Bevilacqua et al., 2016). It will, however, always be
interesting to monitor these processes. Due to this, the aim of Paper I is a method for monitoring
and detecting changes through the utilization of hyperspectral images (HSIs). This has been
analyzed through a novel scale-space method (Uteng et al., 2020). The developed methodology
has been applied to frozen fish to potentially detect when it starts to deteriorate.
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1.1.2 Skin cancer

Skin cancer is one of the most common forms of cancer, with more than 1.5 million new cases
worldwide in 2020 according to Sung et al. (2021), where most of the cases occur among the
white population in Australia, New Zealand, and South Africa (Wild et al., 2020). Pigmented
skin lesions (PSLs) consist of a wide variety of types including cancerous and non-cancerous
PSLs (Elder et al., 2018). The diagnosis of PSLs is performed by dermatologists through visual
inspection or dermoscopic cameras to inspect and analyze the lesion according to the ABCDE
(Asymmetry, Border irregularity, Color, Diameter, and Evolving size, shape or color) rule to
establish a preliminary diagnosis (Jensen and Elewski, 2015). Malignant melanoma is by far the
most dangerous type of skin cancer, due to its rather high mortality rate (Sung et al., 2021). For
this cancer type, early detection is crucial in an effective treatment because the cancer can be
eliminated before it becomes metastatic. In fact, non-metastatic melanoma has been reported to
have a 99% 5-year survival rate, but for metastatic melanoma, the 5-year survival rate drops to
25% (American Cancer Society, 2022). The findings of Paper II indicate that the classification
of PSLs can be improved. Hence, it may be a valuable contribution to the important early phase
of the treatment of malignant PSLs (Uteng et al., 2021).

1.1.3 Diabetes

One of the diseases with the highest global incidence is diabetes, counting 537 million adults
(20-79 years) as of 2021, i.e. approximately 10% of the world population according to the Inter-
national Diabetes Federation (2021). About 90% of these are diagnosed with type 2 diabetes. We
will focus on type 1 diabetes mellitus (T1D) which results from failure of the pancreas to produce
enough insulin due to loss of beta cells, caused by an autoimmune response (Norman and Henry,
2015). Due to the lack of insulin production, it has to be injected, and the amount has to be reg-
ulated according to measured glucose levels in the blood. The current direction is to automate
these measurements and equipment to increase the measurement frequency is available today.
This low invasive technology is denoted continuous glucose monitoring (CGM). Utilizing CGM,
glucose concentration in subcutaneous interstitial tissue can therefore be reported e.g every five
minutes (Mian et al., 2019). In physical activity (PA) a drop in blood glucose (BG) can result in
hypoglycemia for T1D-patients and this poses a major fear for these patients. To this end, Paper
IIT describes an improved method for estimating BG so that T1D-patients can perform PA more
safely (Sebastiani et al., 2020).

1.1.4 Liver transplantation

Liver transplantation, also called hepatic transplantation, is the replacement of a non-functioning
liver with a healthy liver from another person. This is a treatment option for end-stage liver
disease and acute liver failure, although the availability of donor organs is a major limitation.
To increase the donor pool, patients with irreversible brain damage in the intensive care unit is
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now becoming a new source of organs. These patients do not fulfill the brain death criteria. With-
drawal of life support will however cause the fulfillment of the death criteria. The condition when
this occurs is called warm ischemia (WT), which means that oxygenated blood is being restricted
to tissues, muscle groups, or organs of the body that is needed for cellular metabolism (i.e. to keep
tissue alive). Machine perfusion techniques are currently being introduced into the clinic, with
the aim of optimizing injured livers before implantation. There are two major schools in machine
perfusion: normothermic machine perfusion (NMP) and hypothermic machine perfusion (HMP)
(Marecki et al., 2017, Schlegel et al., 2019). Neither has yet proven its superiority. Machine per-
fusion may reverse the negative responses caused by the warm ischemia, and in addition, allow
a performance assessment of the liver before transplantation. Two different methods of machine
perfusion are investigated in Paper IV (Uteng et al., 2022).

1.2 Technical background

1.2.1 Hyperspectral images

HSI (Hyperspectral Imaging) is a non-destructive and non-invasive technology that combines
conventional imaging and spectroscopy in one single mode (Li et al., 2013). In recent years,
HSI, which was originally developed for remote sensing applications (Goetz et al., 1985), has
become one of the most felicitous techniques for fast, non-destructive detection of food quality
or PSL characteristics. The human visual system is, on average, considered to only perceive light
with wavelengths in the approximate range from 380 to 750 nanometers, with long wavelengths -
perceived as red, medium wavelengths - perceived as green, and short wavelengths - perceived as
blue (Sliney, 2016). Most digital photography systems capture data across distinct bands of the
electromagnetic (EM) spectrum, where each band corresponds to the primary colours: red, green,
and blue (RGB), which corresponds to the human visual system. Each pixel in an RGB digital
image is assigned the recorded luminance (amount of light) values for the respective spectral
bands of each of the primary colors. The main objective of HSI is to assign each pixel with a
very large amount of wavelength measurements, sampled uniformly across the entire bandwidth
of the sensor, which then increases the opportunity to detect more than by only using information
from an RGB image. HSI allows interactive analysis between spectral and surface properties of
samples based on each pixel point of images acquired with a wide wavelength range of spectral
information such as ultraviolet (UV), visible, near-infrared (NIR), or infrared (IR). The difference
between an RGB image and an HSI can be can observed in Fig. (1.1). Each pixel in the RGB
image seen in Fig. (1.1(a)) will only store three values, but each pixel of an HSI will store the
spectral signature of the material located in the corresponding coordinate, consisting of 125 values
for the chosen camera. This creates a HSI-cube, with the ordinary two spatial image axes and
an additional channel or frequency axis as seen in Fig. (1.1(b)) with its corresponding spectral
signature curve in Fig. (1.1(c)). To get a better view of different signatures, Fig. (1.1(b)) shows
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only 30 of the observed frequencies.
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Figure 1.1: (a): RGB slices of a PSL analyzed in Paper II. (b): Part of the HSI cube of this
PSL. The PSL can be seen as the green area through the cube. Typically, more texture is visible
at the bottom of the cube. (c): The corresponding spectral signature curve of the same PSL at
the coordinate (x,y) = (17, 17). Reflectance is the surface’s effectiveness in reflecting radiant

energy.

In the applications in papers I and II, the channel axis consisted, as mentioned above, of 125
channels. This gives a rather high amount of information of each image coordinate, i.e. pixel,

which is exploited in these papers.



CHAPTER

Methodology

Curves have always been of fundamental importance in all scientific endeavors. In this disser-
tation curves ranging from pixel values of hyperspectral images (HSIs) to measured parameters
from liver transplantation of pigs are analysed. To accomplish this curve analysis, mainly three
fundamental statistical methods have been applied: comparison, classification, and regression.
Comparison and classification have been the backbone of modern statistics since its dawn in the
late nineteenth century. Comparison in its simplest form as statistical inference by the z-test and
later the t-test is a very powerful and versatile method. These two approaches are similar through
the goal of minimization of false positives, i.e. erroneously rejecting the null hypothesis, the type
I error explained by Larsen and Marx (2018), which is the same as minimization of the false pos-
itive rate (FPR) (Stehman, 1997). Thus, both these approaches are connected to the problem of
finding proper decision boundaries, i.e. the critical region, where the proper rejection of the null
hypothesis is undertaken or where the correct classification is done. In this dissertation there are
several axes of comparison; both the z-test and the t-test in the developed scale-space application
and the effect of random effects in linear mixed models (LMMs). Further, comparison of differ-
ent features of HSIs of pigmented skin lesions (PSLs), where these comparisons are related to the
analysis of curves and classification. Regression is one of the oldest and most important statistical
methods. The least-squares method was first published by Legendre, however, contributions by
Gauss were possibly given earlier. A substantial part of statistics can be cast as regression prob-
lems, from analysis of variance (ANOVA) to structural equation modeling (SEM) (Mair, 2018).
Also, there is a strong link between regression and classification as can be seen in the machine
learning field, where almost all methods can be viewed as a regression approach, e.g. support vec-
tor machines (SVMs) and neural networks (NNs). NNs have in fact come on a par with humans
regarding classification ability exemplified by the CIFAR classification problem. This is accom-
plished through the application of deep learning (DL), in particular convolutional NNs (CNNs)
(James et al., 2021). So, regression has been developed in many different directions, whereas in
our applications, we have chosen the rather classical types such as robust regression and LMM:s.
Thus, the focus of this dissertation is statistical curve analysis, where the main approaches are
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1. The problem of finding proper decision boundaries in comparison and classification

2. Regression

All the papers have some intrinsic comparison content. However, in papers, I and II compar-
ison and classification are the main methods. In papers II, III, and IV regression is the main or
an important method. Thus, Paper II has both main approaches.

2.1 Statistical Curve Analysis by Comparison and

Classification

As mentioned above, the two related methods, comparison and classification were employed in
papers I and I, the first in the form of hypothesis tests and the second in the form of classification
of PSLs as melanomas, malignant and benign. Another common feature of these two papers were
the analysis of HSI curves, the first paper by the signature curves of the HSI-cube and the second
by making a coordinate of the curve from a subimage of each channel. These coordinates consist
of means and standard deviations of the subimages.

The predominant aim in these papers is to choose the most suitable decision boundaries. For
Paper I this was done as a countermeasure for the low sensitivity and specificity in the method
devised in Hindberg et al. (2019) when applied to HSIs. The designed method was a scale-space
method for testing whether k£ multivariate data sets of the same dimension originate from the
same distribution. On a more general level scale-space theory is a framework for representing
signals on multiple scales, developed by the computer vision, image processing, and signal pro-
cessing communities (Lindeberg, 1994). A recent comprehensive review of statistical scale-space
methodology is constituted by Holmstrém and Pasanen (2017). There are quite a few directions of
scale-space applications, where the first application in statistics was mode detection for uni- and
bivariate density estimation (Holmstrom and Pasanen, 2017). The purpose of this methodology
is to extract statistically significant features from noisy data at several scales, often correspond-
ing to different levels of resolution in the underlying object of interest. Thus, at larger scales,
small artifacts in images or curves may be seen as noise, but at smaller scales it does not make
sense to consider comparisons with large-scale features. SiZer is one of the most important sta-
tistical applications of this methodology. This was developed by Chaudhuri and Marron (1999)
and based on non-parametric regression with smoothing over different scales. The objective of
the constructed scale-space map is mapping where the derivatives of the smoothed curves are
significant. Hence, over a range of scales, is the underlying curve increasing significantly, is it
significantly decreasing or is it flat? This gives a rather convenient instrument in curve analysis.
In the application of Paper I, the aim was to find significant differences in HSIs by employ-
ing scale-space methodology. However, when testing for differences between spectral signature
curves in different acquisitions it can be difficult to select the critical rejection thresholds due to
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multiple testing. One possibility is to use the Bonferroni correction method designed to reduce
false positives in testing multiple hypotheses, which was proposed by Dunn (1961) for confi-
dence intervals (Hochberg and Tamhane, 1987). The same definition of position d and scale s
as given in Hindberg et al. (2019) is used in Paper I. Thus, the location in the scale-space map is
(d, s). The critical quantile at the (d, s) location, when only using the Bonferroni correction, is
then given by:

c(d,s)p = te -2, (2.1

where o = (.05 is the significance-level and p the number of spectral channels of each spectral
signature curve. As an alternative, we tried the statistical inference method described by Hannig
and Marron (2006) to find suitable critical rejection thresholds for the scale-space map. This
method is designed directly for this task. The global critical rejection threshold from (Hannig
and Marron, 2006) is given by:

c(d,s)g =o! ((1 - %) m) : (2.2)

Here @ is the normal cumulative distribution function and n, denotes the number of rows in the
scale-space map. Moreover, 6y, is given by

0, = 20 (—V?’logp> 1,

25k

where sy, is the scale in row k. For comparison, the critical rejection threshold in (Chaudhuri and
Marron, 1999) was given by:

1

1 l—a)m

C(d, 8)SiZer = <¥> )
where m is the number of data blocks. Although ¢(d, s)¢ and ¢(d, s)g;ze- are somewhat differ-
ent, by using the approximation: (1 — a)% ~ 1 — ¢, we can get a better understanding of their

similarity:

« Q -
c(d, s)sizer = P! (1 — 2_b> ,b=mandc(d,s)g ~ P! <1 — 2_b) , b= p;Qk.

The critical values are further used to test if a new acquisition differs significantly from the ex-
isting acquisitions. Utilization of ¢(d, s) gave a more conservative critical rejection threshold
than ¢(d, s) 5. More details about this are given in Section 3.1.

Paper II is a classification and regression paper, where we maximize sensitivity, specificity
and precision through the, ideally, correct classification of PSLs in three classes as seen in (Uteng
et al., 2021). These classes are melanoma, malignant and benign PSLs. However, correct clas-
sification is often not feasible. To maximize the correctness, we did a fair amount of feature
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engineering. This also involved establishment of correct decision boundaries for these features,
similar to the main aim of Paper I. As mentioned above, also here the curves originates from
HSIs. However, here the curves used in the classification effort are constructed from the mean
and standard deviation of subsets from the image of each channel in the HSIs. These subsets
are coined regions of interest (ROIs). Here, the three phases: training, validation, and testing
were conducted. In the training phase, the features which gave the best classification results
were developed, which then were utilized in the validation and testing phases. Classification
is a supervised learning task with a rather extensive application in ML, ranging from SVMs to
NNs (Murphy, 2012). A useful method linking regression and classification is logistic regression
which maps the data from the interval (—oo, 00) to the interval (0, 1). The logistic function or
similar, e.g. the softmax function, is also the backbone of NNs, which have developed consid-
erably in the last decade becoming the default data analysis method. As mentioned above we
employ both supervised learning methods, regression and classification in Paper II. More details
on this are in Section 3.2.

2.2 Statistical Curve Analysis by Regression

The papers with a regression-centered methodology are papers II, III and IV, where Paper II has
robust regression as an essential method that plays an integral part in the classification scheme.
Through this we established a link between regression and classification, which is often accom-
plished in machine learning. Paper II’s use of robust non-linear regression is justified through
the rather convoluted ROI curves, where the observed features were amplified using this type of
regression. Robust regression is often used when data contains outliers and the regression method
must be less sensitive to these outliers (Andersen, 2008). There are several types of robust re-
gression, where we used the robust non-linear regression adapted from (Holland and Welsch,
1977). This was done through the MATLAB® function nlinfit which is based on the Levenberg-
Marquardt (LM) nonlinear least-squares algorithm, explained in Seber and Wild (2003). This
algorithm finds the minimum of the function:

n

ly —w” f(2,0)|> =Y (4 — wif (x:, b))%, (2.3)

=1

where the chosen weight-function was

1

w(2) = G011 7 0.0112)

(2.4)

(x;,y;) are the measured curve points, b the estimated vector of coefficients, and f(x;, b)
the target function, e.g. a quartic polynomial function. The LM nonlinear least-squares algorithm
is an extension of the Gauss-Newton algorithm, where a regularization term is added, due to often
poorly conditioned Jacobian matrices in non-linear regression problems. However, this algorithm
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is rather slow when large residuals occur, as is the case when outliers are present. This is amended
in the nlinfit function by combining the LM nonlinear least square algorithm with the iteratively
re-weighted least square (IRLS) algorithm. The weights are changed according to Eq. (2.4), with
an argument-value, 2, of adjusted residuals. The adjustment factor is given by

1 o )2
—— i = min (0.9999,; (Qi5) ) ,

where () is one part of the QR-decomposition of the Jacobian matrix (Sauer, 2018). This adjust-
ment factor is multiplied with the residuals from the previous iteration:

1 1
Zk @ |:\/1_h07 T \/1_h'rL]
Ok

Zh+1 = )
at the k’th iteration, where © is elementwise multiplication and 6, = MAD(residualsy)/0.6745
a robust estimate of the standard deviation (Median absolute deviation (MAD) is described in
(Wilcox, 2017)). Thus, the residuals and the Jacobian matrix are controlling the re-weighting
and makes it a robust regression method. This type of re-weighting is used by Dumouchel and
O’brien (1991), however, with different /;’s. The nlinfit-function was also applied in Paper III,
but without the IRLS-option.

In Paper IV we used LMM (Linear Mixed Model) to analyse the data and explore any signif-
icant differences between two groups of treatments. The LMM can be written as

y=XB+Zb+e€ e~ N(0,Ic?), (2.5)

where vy is the response-variable, X is a fixed effect model matrix, 3 the coefficient vector,
Z the random-effects design matrix, b the random effect coefficient-vector and € the Gaussian-
distributed error-vector with covariance-matrix Io>. We include random effects to quantify the
dependency structure between the measurements. The default method in comparing groups is
analysis of variance (ANOVA). However, this model will then not include random effects. One
could use the repeated measurements variant of ANOVA, but it will neither be sufficient in mod-
eling the complex structures in the measurements. Thus, the more comprehensive model is given
by Eq. (2.5), where the needed factors in the problem are accounted for. The omission of random
effects in the model is related to the problem of pseudo-replication, especially pointed out by
Hurlbert (1984). This problem is extensively studied by Pinheiro and Bates (2000), where many
examples of mixed-effects modeling are given. In order to increase flexibility we used the brms-
package (Biirkner, 2018), a Bayesian approach on estimating the parameters in Eq. (2.5) (Robert
and Casella, 2010). This package is heavily dependent on Stan (Stan Development Team, 2016),
an R-package (R Development Core Team, 2017) based among other things on the Hamiltonian
Monte Carlo algorithm (Liu, 2001). However, due to increased computational complexity, the
Imer-function from the Ime4-package was utilized, when a random slope in the LMM-model was

11
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included (Bates et al., 2015). On a more general level can LMM be seen as a kind of regulariza-
tion similar to ridge regression, as shown by Christensen (2019), i.e. forcing both the estimated
coefficients and the error terms to be small. This gives a rather versatile and robust method which
according to Gelman and Hill (2007) should be the default method in multilevel- and repeated
measurements-analysis, which also can be considered as a robust regression method.
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Summary and discussion

3.1 Paper | - Change detection in Hyperspectral Images by
Statistical Curve analysis by Scale-space techniques

In this paper the aim was to detect a significant change in HSI curves, through a scale-space map,
with high sensitivity and specificity (Uteng et al., 2020).

The main method of this paper is to test simultaneously for many different scales and positions
(frequency bands or channels). The scale s equals the number of different frequency bands being
summed across. To be specific, this means that scale s = 1 corresponds to the situation where we
test if the observed values at spectral frequency d are different between acquisitions of spectral
signatures. At scale, s = 3 and position d, a smoothing in terms of a weighted average of the
observed values for spectral frequencies d—1, d and d+ 1 are used to test whether the acquisitions
are different. The weights are calculated from an Epanechnikov kernel function (i.e. a parabolic
function) described in Wand and Jones (1994), the same as in Hindberg et al. (2019) (the kernel
of least bias and variance). The smoothing process can also be seen as a convolution. For other
scales, completely analogous smoothing over the frequency bands is made and used to perform
the tests. Note that by applying this smoothing, we can test for differences in the acquisitions at all
locations for a large number of scales. So, the tests are performed at all p spectral frequencies for
a total number of n, different scales. Instead of looking at a single location or a single scale, the
described scale-space approach can help detect changes that appear at several levels of smoothing,
i.e resolution.

The method in this paper is divided into two procedures: the training procedure and the
testing procedure. The training procedure at a location (d, s) is accomplished by comparing one
acquisition to the others. To simplify the description we illustrate the methodology by testing
for change in the sample mean, X, over the pixels in the image. In order to accomplish high
sensitivity and specificity our method used the ?-test either with a Bonferroni correction or the
inference approach suggested in Hannig and Marron (2006), which is based on a z-test. Further,

13
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we assume that

X1~ N(m,0%) 3.1
for acquisition one and
Kot Zn: X~ N o (3.2)
- n—1 s k W, n—1 ) .

for the remaining n— 1 acquisitions. Here 7 is the total number of acquisitions. Then, we estimate
o2 by the standard estimator for variance using all acquisitions apart from the one left out. In the
case acquisition 1 is left out, this means that o2 is estimated by

1 _ _
52 = n_2Z(XZ» - X))

1=2

As mentioned above, in addition to the Bonferroni-corrected quantile in Eq. (2.1), we also
tried the so-called global quantile given in Eq. (2.2). In the testing procedure, we test

Hy : py = pagainst Hy @ g #

using the test statistic

Xtest - Xtrain
T =t wn

where H is rejected if
|T| > c(d,s)gor |T| > c(d, s)q-

The results of the tests are summarized in a scale-space map, where the horizontal and vertical
axes correspond to spectral frequency bands and scales, respectively. At each location (d, s) we
perform a test, and the outcome is shown as a colored pixel, with red (blue) indicating a significant
(not significant) difference at the position d for scale s. The main case study in this paper is the
examination of the freshness of fish. An example taken from one fish at day 0 is given in Fig.
(3.1(a)) and signatures for two different acquisitions for the same fish at day 4 are given in figures
3.1(b) and 3.1(c), respectively. Comparison of the signatures of Fig. (3.1(a)) with figures (3.1(b))
and (3.1(c)) results in the significance maps in Fig. (3.2). There the four panels show the results
using two different parameters, the mean and the median. Statistically significant changes are
detected with the mean and the median, but not with the standard deviation and the range. Typical
FPR results are reported in Fig. (3.3), where we can see that the Hannig-Marron critical rejection
point, ¢(d, s)¢, gives a slightly better performance.
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Figure 3.1: (a): Plot of HSI-curves from acquisition number one from frozen fish at day 0. (b):
Plot of HSI-curves from acquisition number two from frozen fish at day 4. (c): Plot of HSI-curves
from acquisition number four from frozen fish at day 4. Reflectance is the surface’s effectiveness
in reflecting radiant energy.
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Figure 3.2: (a): Significance map for the comparison of day 0 with day 4 in acquisition number
two using the median and the mean. (b): Significance map for the comparison of day 0 with
day 4 in acquisition number four using the median and the mean.The Hannig-Marron rejection

threshold was used in all maps.
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Figure 3.3: False positive rate (FPR) in the fish freshness example. (a): FPR from a leave-one-out
test using Bonferroni correction to account for multiple testing. (b): FPR from a leave-one-out
test and using the Hannig-Marron global rejection threshold.

Our findings suggest that the proposed scale-space methodology can be successful in de-
tecting small changes in an HSI. To be useful in practice, such a method must have both high
sensitivity and high specificity and our results clearly show promise in this respect.



3.2. Paper II - Classification of Hyperspectral Images by Statistical Curve analysis

3.1.1 Future work

Freshness of food is an important area, where the method developed in this paper have potential
to be integrated in monitoring devices. This method is also promising in the detection of change
in PSLs. There is an ongoing process of accumulating HSIs related to PSLs in collaboration with
several hospitals in the Canary Islands, Spain. We also want to design a successful PSL classifier
for HSIs and this seems currently promising (Fabelo et al., 2019). However, a system capable
of detecting changes in a mole will be even more important since detecting skin cancer early is
a potential lifesaver. Our ultimate goal is to design a decision support tool based on HSIs which
could be implemented on a smartphone and thus increase general availability.

3.1.2 Contributions by the author

* Developed and programmed the analysis method presented in the paper.

* Involved in the conceptualization of the scale-space change detection methodology.

Did all the analysis presented in the paper.
» Was in charge of the review and editing process.

* Wrote the initial draft and was in charge of producing the final manuscript.

3.2 Paper Il - Classification of Hyperspectral Images by

Statistical Curve analysis

This paper Uteng et al. (2021) is mainly a classification paper, where we developed features
through the regression of ROI curves. It also shows similarity to Paper I Uteng et al. (2020) since
we want the classification scheme to have both high specificity and high sensitivity. The first
issue was how to extract the ROIs. We found that the ROIs extracted on the edges or artifacts on
the PSLs, using a subimage of 7x7, gave the best features. This can be interpreted as some kind
of pixel gradient which gives some variation in the sub-image. In Fig. (3.4(a)) a typical ROI from
one channel can be observed. After the ROI extraction, we formed curves with the mean of each
channel’s ROI as x-coordinate and the standard deviation as y coordinate. We then performed the
regression as described in Section 2.2. The function utilized here was

f(l’, b) = b0$4 + b1$3 + ngz + ng + b4,

with coefficients b;, 7 = 0, ..., 4, which were estimated by least squares. We were then able
to classify the PSLs as melanoma, malignant and benign, with quite high sensitivity, specificity,
precision, and accuracy. We used several features to classify the PSLs (i.e. these features were
applied to the fitted curves):
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* For the Melanoma PSLs: first derivative (df), second derivative (ddf), and combination of

these.
* For the Malignant PSLs: Mean and product of max y and max x
* For the Benign PSLs: Mean and absolute value of the first derivative.

In Fig (3.4) we can view the typical regression curves together with the data.
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Figure 3.4: (a): A melanoma HSI with a typical example of a 7x7 ROI embedded (in red). (b):
A typical example of a ROI curve from a melanoma HSI with a seemingly asymptotic y-value
(i.e. it seems that for a mean (x-value) around 0.75 the standard deviation (y-value) of the fitted
quartic polynomial function goes to infinity) originating from the ROI in Fig. (3.4(a)) (c): A
typical example of a ROI curve from a malignant HST with a rather high mean and maximum of
the fitted quartic polynomial function. (d): A typical example of a ROI curve from a benign HSI
with a relatively low mean of the fitted quartic polynomial function.
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3.3. Paper III - Improvement of Blood Glucose Estimation by Statistical Curve analysis

This work shows that it is possible to classify PSLs successfully in melanoma, malignant and
benign classes.

3.2.1 Future work

A possible expansion of this work could be the establishment of statistical tests concerning the
classification decisions based on the curve features.

3.2.2 Contributions by the author

* Developed and programmed the analysis method presented in the paper.

» Did most of the conceptualization of the curve classification methodology.

Did all the analysis presented in the paper.
» Was in charge of the review and editing process.

* Wrote the initial draft and was in charge of producing the final manuscript.

3.3 Paper lll - Improvement of Blood Glucose Estimation by

Statistical Curve analysis

In Paper III Sebastiani et al. (2020) the focus is on a problem with the estimation of blood glucose
(BG) through continuous glucose measurements (CGM). This is related to the fact that we can
only measure glucose concentration in subcutaneous interstitial tissue G4(t) at sampling times
while we are interested more in temporal glucose levels in tissues and blood. Fast and large
changes in glucose concentration in blood Gy (t), can be observed during physical activity (PA).
However, it is well known that related changes in Gx(t) are seen after a time delay (lag time)
(Wei et al., 2010). To describe both G,(t) and G(t) we therefore adopted a model with two sine
functions. The quantity G(t) as a function of Gy(t) is commonly modeled as in Dicker et al.
(2013) by means of asymmetric convolution, due to causality, with exponential kernel (%) given
by:

1 .

h(t) = —e », (3.3)

P
with p dependent on the duration of the time-lag. However, due to the two phases of glucose
decrease and increase with different dynamics, we use two different versions of the convolution
kernel in Eq. (3.3), one before the minimum location of G (t) and the other one after it. The
convolution becomes:

t
Ga(t) = / Gt — T)dr + ¢, €~ N(0,02), (3.4)
0
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which is discretized to:
Gs = HGy +¢, €~ N(0,0°T). (3.5)

Given the functions Gy(t) and G(t) estimated for one or more subjects, the convolution
kernel parameters are estimated by minimizing the squared error, as in Eq. (2.3), between G(t)
and its estimate by numerical convolution of G(t). This minimization was here also, accom-
plished through the MATLAB® nlinfit-function, however, without the IRLS-option. In a new
subject, model parameters of G4(t) are estimated from CGM measurements by minimizing mean
squared error between data and model values at sampling times. Deconvolution of G4(%) is then
performed to estimate model parameters for G, (¢) by minimization of the squared error, also
here similar to Eq. (2.3), between estimated G4(t) and the numerical convolution of Gy (t) by
Simulated Annealing explained in Kirkpatrick et al. (1983), i.e., not by the LM least squares al-
gorithm. There are several alternative approaches to deconvolution, where the Wiener-filter first
given by Wiener (1949) is rather popular. Bayesian deconvolution of time-series is discussed in
some length in Kay (1993), also a popular approach in signal processing.

This gives a novel method for controlling BG levels also during and after exercise, which
is of great importance for T1D-patients to avoid hypoglycemia. Also, the results showed that a
statistical approach can be used to successfully estimate BG concentration along time during PA
from CGM measurements.

3.3.1 Future work

This could be developed as a tool to monitor GB to maximize performance in endurance sports
and also be used to reduce the risk of hypoglycemia in T1D subjects during PA.

3.3.2 Contributions by the author
 Did a substantial part of the analysis presented in the paper.
» Wrote the initial draft.

* Participated in the writing of the manuscript—reviewing and editing

3.4 Paper IV - Quantifying group difference by Statistical Curve
analysis

In Paper IV the effects of liver transplantation in pigs were studied (Uteng et al., 2022). There
are two major schools of in machine perfusion: normothermic machine perfusion (NMP) and
hypothermic machine perfusion (HMP) (Marecki et al., 2017, Schlegel et al., 2019). Neither
has yet proven its superiority. Here, there are two groups consisting of seven pigs each, where
the total treatments for both these groups last in 720 min. In the first group, the livers from the



3.4. Paper IV - Quantifying group difference by Statistical Curve analysis

pigs are in warm ischemia (WI) and static cold storage (SCS) in 240 min before NMP and the
second group WI and NMP in 720 min. Thus, we name the first group SCS and the second group
NMP. Machine perfusion may reverse the negative responses caused by the warm ischemia, and
in addition allowing a performance assessment of the liver before transplantation. Thus, it was
investigated experimentally:

* What are the effects of ischemia/reperfusion injuries beyond the consensus of today (i.e.
WI>30 min) in the liver parenchyma including the bile ducts and their potential reversal?

* Do the ischemic changes reflected in tissue metabolism improve once the organ is con-
nected to the machine perfusion?

* Is controllable hemodynamics a prognostic marker to deem whether the livers can be trans-
planted or not?

The main goal of the statistical analysis of these data is to investigate the degree of difference
between the SCS and NMP groups and how the methods compare as machine perfusion methods.
The default method in comparing the differences of groups is the analysis of variance (ANOVA)
when there are more than two groups and the t-test if there are only two groups. However, due
to the problem of pseudoreplication, i.e. the observations on the response variable are not inde-
pendent, we have to define dependence within and between the groups (Hurlbert, 1984). This
is called a random effect, which is elaborated rather thoroughly in Pinheiro and Bates (2000),
where they develop models and software packages to do inference in the resulting LMM. Further
two of the three assumptions of repeated measurements ANOVA are violated: Normality of the
error term and independence of measurements (sphericity is not relevant with only two groups)
(Field et al., 2012). The current default software package doing this inference is Ime4 presented
in Bates et al. (2015), which is written for R (R Development Core Team, 2017). However, this
package assumes Gaussian distributed error components, which was not fulfilled in our inference.
Thus, we applied the R-package brms, presented in Biirkner (2018), which utilizes a Bayesian
approach. Furthermore, the study presented in this paper has a multilevel two-way nested design
and we wrote the model as:

Yijk = Intercept + a; + b;; + €k, €1 ~ N (O, 052)7 (3.6)
a; ~ N(07 O-gn)v bij ~ N<07 012Dig)7

where €;;;, denotes the residual, and N (0, 0?) a Gaussian distribution with mean zero and
standard deviation o , for the residuals. The parameters a; and b;; are the random effects with
standard deviations o, and o p;4, for Protocol and Pig, respectively, the Intercept is a constant,
1, the groups, j, the individual pig and &, the measurement time points. The brms-package is
a backend to RStan, the R interface to Stan (Stan Development Team, 2016), which applies the
Hamiltonian Monte Carlo algorithm (Liu, 2001). This means that the intercept and the standard

21



3. Summary and discussion

22

deviations were given priors. The prior for the intercept was chosen to be a Gaussian distribution
with mean zero and standard deviation 10. For all the standard deviations a half-Cauchy distri-
bution with location zero and scale one truncated below zero, was chosen. To determine if there
were any random effects we compared the fit of Eq. (3.6) with

Yijk = Intercept + €k, €1 ~ N (0, U?): (3.7)

by Watanabe’s Widely Accepted Information Criterion (WAIC) (Vehtari et al., 2017).
We also observed some slope effects for some of the parameters and this was subsequently
included in another model as T'2me for each Pig given by the model:

yi; = Intercept + Time + a; + by; + €4, €5 ~ N(0,07), (3.8)
a; ~ N(07 Ugn)v bij ~ N(Ov UIQDig)v

Due to computational issues, we could not use the brms-package for the analysis. Thus, we
had to use the Imer function from the Ime4-package for this more complex model. Also, we
compared this with the robust Imer package, developed by Koller (2016), which gave similar
results. The results for all these computations showed clear evidence for random effects given by
WALIC through the difference between the nullmodel in Eq. (3.7) and the random effects model in
Eq. (3.6), the significance of the likelihood ratio test (LRT) and the difference between the null
model (Eq.(3.7)) and the random-effects model (Eq.(3.8)) in the Akaike information criterion
(AIC) (Akaike, 1992).
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Figure 3.5: (a): Boxplots of the hemodynamic data for the NMP and the SCS groups.(b): Plot of
P_art_hep and P_porta vs. Temperature for the NMP and SCS groups. All figures are made from
the hemodynamic data.

Many of the variables in the SCS group were somewhat smaller than in the NMP group as seen
in Fig. (3.5(a)) for the hemodynamic data, which was also the case for the microdialysis (MD)
data. One such variable is systemic vascular resistance (SVR), indicating a lower probability of
injuring the organ during machine perfusion. Also, according to the LMM analysis a significant
difference between the two groups for most of the variables was detected.

Vasoconstriction is another important issue, which in the rewarming phase at the start of
the machine perfusion period (from 4°C to 38°C) is typical. This vasoconstriction and the high
pressures especially in the hepatic artery (P_art_hep) will commonly decline when the organ
becomes normotherm (38°C). Beyond the rewarming phase, the pressures in the hepatic artery
and the portal vein (P_porta) will deem whether an organ is transplantable or not. As seen in Fig.
(3.5(b)), in the SCS group these parameters show a better prospect.
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Figure 3.6: (a): Plot of glucose (Glu_NMP), the lactate (Lac_NMP) and the pyruvate (Pyr_NMP)
lower in the SCS group, but glycerol (Gly_NMP) for the NMP and SCS groups as means for the
pigs measurements at each time-point. (b): Plot of L./P-ratio (Lac_Pyr_NMP) for the NMP and
SCS groups as means for the pigs measurementsat each time-point. (c): Plots of immunological
markers for the NMP and SCS groups as means for the pigs measurements at each time-point.
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3.5. Concluding remarks

For the MD-data, the glucose (Glu_NMP), the lactate (Lac_NMP) and the pyruvate (Pyr_NMP)
were lower in the SCS group, but glycerol (Gly_NMP) was lower in the NMP group, as seen in
Fig. (3.6(a)). However, it can be claimed that they were rather similar in the groups. The L/P-
ratio was also more beneficial for the NMP group as seen in Fig. (3.6(b)). Glucose, lactate,
pyruvate, glycerol and the L/P-ratio are connected to the effects of the ischemia condition and
it is advisable to keep it low (Nowak et al., 2002). We can also observe that the effects of WI
are in general reversed as seen in Figures (3.6(a)) and (3.6(b)). The immunological markers, the
IL’s (interleukins) and TNFa (TNF-alpha) had a smaller mean for the SCS group than the NMP
group. However, as seen in Fig. (3.6(c)) the NMP group had a negative slope at the end in ten
of eleven markers. Thus, the main findings were that the SCS group was better regarding the
hemodynamic variables, but for the MD variables the NMP group was somewhat better.

3.4.1 Future work

To increase the number of viable liver transplants it is important to increase the knowledge of
both the NMP and the SCS methods. We will proceed with more experiments and research in
these areas to try to accumulate more knowledge.

3.4.2 Contributions by the author

Did all the statistical analysis presented in the draft.
* Wrote the statistical methodology and analysis in the draft.
* Wrote the result section in the draft.

» Wrote the discussion in the draft.

3.5 Concluding remarks

In this dissertation we have analyzed curves through the statistical lens of the two main methods,
finding suitable critical decision regions and regression. These methods are very versatile tech-
niques and have given successful solutions to the proposed problems from health-related fields
presented here and will almost certainly be expanded and developed further in the future. In the
field of food quality, we have proposed a novel method to detect change in quality, by the use of
HSIs through scale-space maps. HSIs, also provided the data for the novel method developed to
classify PSLs. This method gave us a rather efficient way to classify PSLs in malignant, benign
and melanoma classes. In the diabetes field, we developed a new and more accurate estimation
method of BG, which can be used by T1D-patients during physical exercise to reduce the risk of
going into a diabetic coma as a result of hypoglycemia. The last application of statistical curve
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analysis was through the analysis of data from two machine perfusion paths used with liver trans-
plantation. We here tried to get a clearer picture of which path of machine perfusion was the most
suitable, which could eventually help to increase the donor pool.

In conclusion, we have addressed the challenges presented in Chapter 1 of this dissertation
through the contributions presented in the four included papers.
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Abstract: Given an object of interest that evolves in time, one often wants to detect possible changes
in its properties. The first changes may be small and occur in different scales and it may be crucial to
detect them as early as possible. Examples include identification of potentially malignant changes in
skin moles or the gradual onset of food quality deterioration. Statistical scale-space methodologies can
be very useful in such situations since exploring the measurements in multiple resolutions can help
identify even subtle changes. We extend a recently proposed scale-space methodology to a technique
that successfully detects such small changes and at the same time keeps false alarms at a very low
level. The potential of the novel methodology is first demonstrated with hyperspectral skin mole data
artificially distorted to include a very small change. Our real data application considers hyperspectral
images used for food quality detection. In these experiments the performance of the proposed method
is either superior or on par with a standard approach such as principal component analysis.

Keywords: change detection; scale-space methodology; hyperspectral imaging

1. Introduction

For a time-varying system, detection of unexpected or unwanted change in its evolution can be of
paramount importance. Examples include environmental monitoring, process control, or, referring to
the examples considered in this article, identification of potentially malignant changes in skin moles
or the onset of food quality deterioration (see, for example, [1-4]). The first changes may be small
and manifest themselves in different scales and it may be crucial to detect them as early as possible.
Statistical scale-space methodologies (see Section 2) can be very useful in such situations since exploring
the measurements in multiple resolutions can help identify subtle changes. Examples of scale-space
methods designed for change detection are the SiNos technique for capturing non-stationarities in a
time series [5] and the iBSiZer method for detecting changes in images [6]. Our goal was to develop a
method that can detect minor change while at the same time keeping the number of false alarms to
a minimum. This is important in practical applications as a successful method must have both high
sensitivity and high specificity.

Recently, Hindberg et al. proposed a scale-space method for testing whether k multivariate data
sets of same dimension originate from the same distribution [7]. Thus, the proposed method solves the
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classical k-sample problem using scale-space analysis and the method has proven successful in many
applications. In the applications considered here the observed data consist of multivariate vectors
obtained from spectral signatures and therefore changes in their characteristics can also be analyzed
with this method. Unfortunately, it turns out that in this context the method suffers from two serious
shortcomings: failing to detect very small changes and producing unacceptably high rates of false
alarms in some situations (see Section 4). Our goal therefore is to design a scale-space method that
would suffer less from these shortcomings.

As an illustration of the difficulty of detecting very small changes, consider the example in Figure 1
which is discussed in more detail in Sections 2 and 4. The original data set consists of a number of
spectral signatures acquired by a push-broom hyperspectral camera, each signature corresponding to
a particular spot in a skin mole. Several acquisitions of the mole are taken at the same time, and an
example of one acquisition is given in Figure 1a where each curve corresponds to a specific spectral
signature. To simulate a situation where the mole might begin to turn malignant, we manually
distorted just one spectral signature (thus corresponding to a very small local change in the mole)
in another acquisition of the same mole at spectral channel 80 on the horizontal axis in Figure 1la.
In case of real moles, the first changes may be extremely hard to detect and a method with high
sensitivity and specificity is therefore crucial. In our test, the distorted set of signatures in Figure 1b
was compared with 14 other acquisitions and the goal was to detect the small change we manually
introduced. It turned out that such a small change is indeed detected by our new methodology but not
by the method suggested in [7] nor by a standard approach such as principal components analysis
(PCA). We will return in more detail to this example in Section 4.

0.9

Reflectance

* 20 0 50 %0 100 120 140
Spectral channel
(a)

0.9
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0.1

0 26 4‘0 6‘0 B‘O 160 12‘0 140
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Figure 1. (a) The original undistorted curve families for the artificial example. (b) An example where a
small artificial change has been introduced to the data set in Figure 1a at spectral channel 80.
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2. Scale-Space Methodology

Scale-space theory is a framework for representing signals on multiple scales, developed by
the computer vision, image processing and signal processing communities [8]. A recent review of
statistical scale-space methodology can be found in [9]. The goal of statistical scale-space methodology
is to extract statistically significant features from noisy data at several scales, often corresponding to
different levels of resolution in the underlying object of interest. The data could be a set of observed
curves where features at different levels of resolution might be of interest. These curves could, for
example, correspond to spectral signatures from fish being frozen for different numbers of days, as is
the case in our real data application. One acquisition of data consists of a number of p-dimensional
vectors with unknown distribution, each vector representing the spectral signature at a particular pixel
in the hyperspectral image. Thus, in our application, p represents the number of frequency bands
(spectral channels) in the spectral signatures. In Section 4.2 we analyze three different acquisitions
from the frozen fish. Under the null hypothesis, the number of days is assumed the same and the
distributions are therefore assumed identical. In our approach, we perform several tests to flag when a
new acquisition differs significantly from several previous acquisitions of day 0. The outcome of the
tests is presented as a scale-space map, described in more detail below.

The core method of this paper is to test simultaneously for many different scales and positions
(frequency bands). The scale s equals the number of different frequency bands being summed across.
To be specific, this means that scale s = 1 corresponds to the situation where we test if the observed
values at spectral frequency d are different between acquisitions of spectral signatures. At scale s = 3
and position d, a smoothing in terms of a weighted average of the observed values for spectral frequencies
d—1,d and d + 1 are used to test whether the acquisitions are different. The weights are calculated
from an Epanechnikov kernel function (i.e., parabolic function) [10], the same as in [7]. For other scales,
completely analogous smoothing over the frequency bands are made and used to perform the tests.
Note that by applying this smoothing, we are able to test for differences in the acquisitions at all locations
for a large number of scales. In fact, the tests are performed at all p spectral frequencies for a total number
of n; different scales. Instead of looking at a single location or a single scale, the described scale-space
approach can help detect changes that appear at several levels of smoothing, i.e., resolution.

However, when testing for differences between spectral signature curves in different acquisitions
it can be difficult to select the critical rejection thresholds due to multiple testing. One possibility is
to use the Bonferroni correction method [11] designed to reduce false positives in testing multiple
hypotheses. As an alternative, we also tried the statistical inference method described in [12] to find
suitable critical rejection thresholds for the scale-space map. The critical values are used to test if a new
acquisition differs from the existing acquisitions.

The training procedure at a location (d, s) is accomplished by comparing one acquisition to the
others. To simplify the description we illustrate the methodology by testing for change in the sample
mean, X, over the pixels in the image. This training-procedure is the core difference between the
method presented here and in [7], where there is a more direct comparison between curve families.
Also, instead of the non-parametric Andersson-Darling test combined with either Bonferroni or False
Discovery Rate correction for multiple hypothesis testing employed in [7], our novel method uses the
t-test either with a Bonferroni correction or the inference approach suggested in [12]. Here, further,
we assume that

Xl ~ N(}ll,Uz) (1)
for acquisition one and
B 1 no o2
X = X ~N(p—— 2
n—lkg:2 g <y'n1>' @)

for the remaining n — 1 of the acquisitions. Here 7 is the total number of acquisitions. The normal
assumption makes sense due to the central limit theorem since all X;’s, k = 1,...,n are averages over a
large number of observations. Note that this means that we perform the training procedure by leaving
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one out cross validation. In the description above, the mean is chosen as parameter, but we have also
implemented and performed our testing procedure for the median, the standard deviation and the range.
We do this since these parameters can better describe certain aspects of a distribution and may therefore
capture different types of changes. In practice, we will therefore typically test all these parameters for
potential changes. For parameters other than the mean, Equation (1) will be an approximation that may
be violated in practice. Equation (2) will, however, still be a reasonable approximation for all parameters
due to the central limit theorem, but will sometimes only hold approximately.

In our description below, we estimate ¢ by the standard estimator for variance using all
acquisitions apart from the one left out. In the case acquisition 1 is left out, this means that ¢? is

estimated by
1 &, S
2 _ %2
S —n_ziZEZ(Xl X)~.

The critical quantile at location (4, s), when only using the Bonferroni correction, is then given by

c(d,s) = ti,n—Z' (3)

2p

where & = 0.05 is the significance-level and p the number of spectral channels of each spectral signature
curve. In addition to the Bonferroni-corrected quantile in Equation (3), we tried here the so-called
global quantile

csgo = ((1-5)75 ), @

proposed in [12]. Here & is the normal cumulative distribution function and n; denotes the number of
rows in the scale-space map. Moreover, 6y is given by

1
0, — 20 <v30gp> 1

ZSk

where s is the scale in row k. In the testing procedure, we test

Hy:p1 = pagainst Hy : ug # p

using the test statistic
_ Xtest - Xtrain

S\1+ 1

|T| > c(d,s) or |T| > c(d,s)g.

T

where H) is rejected if

The algorithm is summarized in Algorithm 1 where Par is used to denote the parameter we are
using in the tests.

The outcomes of the tests are graphically summarized in a scale-space map, where the horizontal
and vertical axes correspond to spectral frequency bands and scales, respectively. Thus, at each location
(d,s) we perform a test and the outcome is shown as a colored pixel, with red (blue) indicating a
significant (not significant) difference at the position 4 for scale s.

To illustrate the method, consider the example introduced in Figure 1. Figure 2 shows the
scale-space map produced by the procedure described above. The parameter used in this analysis was
the range as it best detected the small change manually introduced to the data. Note how the map
indicates a significant feature only for the smallest scales around the spectral channel given at point 80
on the horizontal axis. This is expected since the change is small and only present at one particular
spectral channel for a single signature.



Appl. Sci. 2020, 10, 2298 50f 13

Algorithm 1 The SS_CC algorithm:

1: Initialization: Acquisitions that are correct under null hypothesis and the test-acquisitions are
loaded.

§ procedure SS_CC_TRAIN()

g Input: The loaded acquisitions that are correct under the null hypothesis.
g Initialization: The significance level & is chosen.

1(9); fori=1:ndo

ﬂ procedure LEAVE ONE OUT(k)

13: return index vector v without k

ig Par(Xy) ~ N (Par,0?) from each (d, s) location.

%g for ]/13 vdo ,

20: Par(X) ~ N (Par, ﬁ) from each (d, s) location.

23 —
%2 return mean(Par(X)), S
26; procedure SS_CC_TEST()

%g? Input: The new acquisitions. c(d, s), c(d,s)g, mean(Par(X)), S
395 Initialization: The significance level « is chosen.

32 T ngstfmean(lzur(X))

33: S/ 1t

34: return Significance matrix for scale-space map
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Figure 2. Scale-space significance map for the comparison between the hyperspectral image of a skin
mole and an image obtained by manually distorting it. The original and distorted spectral signatures
are shown in Figure 1. For the tests, the Hannig-Marron global rejection threshold was used both for
the range and the mean.

3. Hyperspectral Acquisition System

In order to capture spectral signature curves from fish, a customized hyperspectral imaging (HSI)
acquisition system was employed. Image acquisition was performed with a push-broom hyperspectral



Appl. Sci. 2020, 10, 2298 60f13

camera with a spectral range of 410-1000 nm (see, for example, [3]) and spatial resolution of 0.3 mm
across-track by 0.6 mm along-track (Norsk Elektro Optikk, model VNIR-1024). The camera was fitted
with a lens focused at 1000 mm, mounted 1020 mm above a conveyor belt. Samples were illuminated
using two custom made fiber optic line lights (Fiberoptics Technology inc., Pomfret, CT, USA), fitted
with custom made collimating lenses yielding light lines approximately 5 mm wide (Optec S.P.A.,
Milano, Italy). Each line light was 400 mm wide, with six bundles of optical fibers. The light from 12
focused 150 W halogen lamps with aluminium reflectors (International Light Technologies, Peabody;,
MA, USA, model L1090) was fed into the fiberoptic bundles. The imaging and illumination setup is seen
in Figure 3a. The optical power actually hitting the sample is approximately 0.16-0.79 Watt/ (nm-sr-m?).

The illumination system is composed of a controller unit which allows controlling the brightness
and the light source. This system permits us to regulate the light intensity according to the sample
characteristics, such as color, size or other parameters dependent on light. The acquisition technique
employed by this camera is the so-called push-broom method, which consists of an optical system capturing
an image from a line in a plane as depicted in Figure 3b. The camera collects images as seen in Figure 3b.

To capture a hyperspectral image, either the camera or the sample must be moved synchronously
with the shoot of the camera. In this case, the sample is moved using a linear actuator by a stepper
motor along a line. The light used has been tested to emit in the whole spectral range. Before starting
the capturing process, the camera must be focused and calibrated with a dark reference and a white
reference. In this process, a tile with 99% of reflectance was chosen for the white reference.

The spectral signatures of the same frozen fish are taken on day 0, day 2, day 4, day 7 and day 10.
On each day, we captured 912,082 signature curves in each of the four acquisitions made. The four
acquisitions from day 0 were then compared to the other acquisitions in order to find significant
differences as described in Section 4.

(a) (b)

Figure 3. (a) The HSI setup with the Hyperspectral camera. (©) NOFIMA, Norway. (b) The HSI linear
push-broom array. © https://commons.wikimedia.org/wiki/User:Arbeck.

After image acquisition, the data from the reference images were used to perform a radiometric
calibration of the raw spectral signature of each pixel of the HSI cube as suggested in [13].

RI—-DI
- WI-DI' ©)

where CI is the calibrated image, RI is the raw image and WI and DI are the white and dark reference
images, respectively.

CI

4. Results

4.1. Artificial Mole Example

Recall from Section 1 that the data in our artificial data example were first obtained by acquiring
a hyperspectral image of a skin mole and then modifying it manually in order to introduce a small
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distortion that could simulate a change in the mole itself. The HSI system used for the mole example
differs from the one described in Section 3 and a detailed description can be found in [14]. In our analysis,
we compared the proposed novel technique to the method of Hindberg et al. described in [7]. When applied
in the present context, this method uses a two-sample test to decide if the test sample distribution differs
from the distribution under the null hypothesis. We also experimented with principal component analysis
(PCA, e.g., [15]). By examining the scatter plots of the most important principal component directions we
concluded that PCA is unable to detect the distortion in the data as seen in Figure 4.

-1.7 T T T
x  Distorted data
s o Undistorted data
-1.8 -
&
,]_g = 6 -
&
& 5
*
S 2l s i
o & &
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5 &
21 & 5 3 & 1
8 6& 5® Y
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g M 5 (¢} & &
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2.2 - -
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23 | | | | g | | | |
55 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5
PC1

Figure 4. Plot of the first two principal components (PC) of the original mole spectral signatures (blue)
and the spectral signatures of the distorted data (red) (see Figure 1b). Note the complete overlap of the
two data sets, save for a small change at around (PC1, PC2) = (5.7, —2.2).

Because of this, we focus on a comparison between the new methodology and the one described
in [7]. In general, the method in [7] performed poorly in this challenging situation. This was also
reflected through the false positive rate (FPR) reported in Figure 5.
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o ||l Range
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Figure 5. (a) The false positive rate (FPR), performing a leave-one-out test and using Bonferroni correction to
account for multiple testing with the method described in [7]. (b) FPR obtained, performing a leave-one-out
test and the Hannig-Marron global rejection threshold with the novel method proposed in this article.
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The FPR results obtained by the scale-space methodology for the range are quite impressive.
However, it should be noted that we were not able to get similar results for the mean, the median or
the standard deviation. This is to be expected because the range is clearly best suited for detecting
the type of distortion we introduced to the mole data reported in Figure 1. Still, while the range is
the natural parameter to use in this situation, it is also clear that range based inference can be very
sensitive to outliers, should the data include them.

4.2. Freshness of Fish

As a real data example, hyperspectral signatures of frozen fish were analyzed. The data acquisitions
took place on several different days after a fish was captured. In our analysis, a subset of 3012 = 90,601
signatures were analyzed in each acquisition. This is a subset of the full HSI cube that consists of 912,082
spectral signature curves, chosen due to the upper limit of 130 GB of RAM available in the computer used
to perform our experiments. An example taken from one fish at day 0 is given in Figure 6a and signatures
for two different acquisitions for the same fish at day 4 are given in Figure 6b,c, respectively. Comparison
of the signatures of Figure 6a with Figure 6b,c results in the significance maps in Figure 7. There the four
panels show the results using two different parameters, the mean and the median. Changes are detected
with the mean and the median, but with the standard deviation and the range, no statistically significant
changes were detected. A careful examination of the curves in Figure 6 reveals that location parameters
are expected to detect changes best in this case and this is indeed what happens. Typical FPR results
are reported in Figure 8. From the results here we see that the Hannig-Marron critical value gives better
performance. The difference is, however, not very clear in this example.

Due to computational challenges, results for the method of Hindberg et al. in [7] and PCA could
not be obtained for the full data sets. In comparisons using only smaller subsets of the data, all three
methods performed similarly in detecting changes while the their FPRs were similar to Figure 8.
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Figure 6. (a) Plot of HSI-curves from acquisition number one from frozen fish at day 0. (b) Plot
of HSI-curves from acquisition number two from frozen fish at day 4. (c) Plot of HSI-curves from
acquisition number four from frozen fish at day 4.
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Figure 7. (a) Significance map for the comparison of the day 0 frozen fish acquisitions with day 4

acquisition number two using the median and the mean. (b) Significance map for the comparison

of the day 0 frozen fish acquisitions with day 4 acquisition number four using the median and the

mean.The Hannig-Marron rejection threshold was used in all maps.
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Figure 8. False positive rate (FPR) in the fish freshness example. (a) FPR from a leave-one-out test

using Bonferroni correction to account for multiple testing. (b) FPR from a leave-one-out test and using

the Hannig-Marron global rejection threshold.
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5. Discussion and Future Research Directions

The experimental results of Section 4.1 suggest that the proposed scale-space methodology can
be successful in detecting small changes in a hyperspectral image. To be useful in practice, such a
method must have both high sensitivity and high specificity and our results for the artificial mole data
clearly show promise in this respect. We are currently in the process of acquiring a large number of
HSI data sets related to skin moles and lesions in collaboration with several hospitals in the Canary
Islands, Spain. Our long term goal is to design a successful classifier for such data and the preliminary
results obtained so far are promising [14]. However, we believe that a system capable of monitoring
dynamical changes in a mole will be even more important as it is likely to be the best way to detect
severe skin cancer at an early stage. In the future, we will therefore work on the development of such a
system and our ultimate goal is to design a decision support tool based on just a few frequency bands
so that an affordable version could be implemented on a smart phone and thereby be available for use
on an individual basis.

One aspect of hyperspectral image data not utilized in the present study is its spatial structure.
Taking spatial information into account is important because it can significantly improve the
interpretation of the data when changes have been detected. Spatial information can be used both in the
development of the change detection algorithm and in the interpretation of the results. Besides mole
monitoring applications, a successful change detection method incorporating spatial information could
perhaps also be used in the analysis of brain fMRI data for the detection of early signs of, for example,
Alzheimer’s disease [16].

Another area where the present methodology can be directly applied is in the design of robust
controllers for Type 1 Diabetes patients. Successful results in this area are currently being obtained
by using reinforcement learning (RL), see, for example, [17]. In the design of such machine learning
algorithms, a good description of the patient’s state space is needed for the algorithm to be able to
learn better strategies. The state space contains information used to describe the patient’s condition at
a given time. Typically, the elements of state space in this context are time series of the most recent
past blood glucose levels of the patient. At the beginning of the learning phase of an RL algorithm, the
state space may be chosen reasonably coarse. During the learning process, the state space then may
need to change because the algorithm encounters new states, that is, new glucose level time series, not
included in the initial state space. The detection of such changes in the state space time series can be
accomplished by the kind of methods discussed in this article. Research in this direction will therefore
be pursued in the near future.

We also plan to further develop our approach to the analysis of fish freshness discussed in
Section 4.2. For the design of a practical system that can be reliably used in fish industry one must first
analyze data sets from several different fish at several time points after capturing. Then it is possible
estimate both the within variance (of a day) and the between variances (between different time points)
exhibited by the hyperspectral signatures. We will acquire such data in the future and the goal will be
to perform an analysis that demonstrates how early changes in fish (or other types of food) quality can
be detected in a reliable way.

Finally, we believe that the proposed methodology can be useful in combating problems in the
so-called “p > n” problems now commonly found in statistical data analyses. Here p and n refer
to the number of model parameters and the number of available observations, respectively, and
such problems are very common in applications that involve high dimensional data, see e.g., [18,19].
The methodology developed in this article was partly motivated by the need to improve the technique
of Hindberg et al. [7] which was originally designed exactly for the p > n situation where common
covariance matrix based multivariate methods such as PCA are useless. Being clearly an improvement
of the technique of Hindberg et al., the method developed in this article is potentially useful in the
analysis of such high dimensional data.
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6. Concluding Remarks

We have developed a scale-space methodology that can successfully detect small changes in
curve data. In addition, the developed methodology has the potential to produce few false alarms,
an important feature for any detection method. We analyzed the performance of the proposed method
on data with artificial and real changes. In addition, we compared the new method to some natural
competitors and demonstrated that it at least in some cases outperforms them. Finally, we outlined
several future research directions for the new methodology that can lead to important new findings.
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Abstract: This paper shows new contributions in the detection of skin cancer, where we present
the use of a customized hyperspectral system that captures images in the spectral range from 450
to 950 nm. By choosing a 7 x 7 sub-image of each channel in the hyperspectral image (HSI) and
then taking the mean and standard deviation of these sub-images, we were able to make fits of the
resulting curves. These fitted curves had certain characteristics, which then served as a basis of
classification. The most distinct fit was for the melanoma pigmented skin lesions (PSLs), which is
also the most aggressive malignant cancer. Furthermore, we were able to classify the other PSLs in
malignant and benign classes. This gives us a rather complete classification method for PSLs with
a novel perspective of the classification procedure by exploiting the variability of each channel in
the HSL

Keywords: hyperspectral; curve fit; statistical discrimination; melanoma; benign; malignant

1. Introduction

Hyperspectral (HS) imaging (HSI) combines conventional imaging and spectroscopy
methods in a single imaging technique providing both spatial and spectral information
of the captured display [1,2]. It is also a fitting method for medical applications due to its
non-invasive, non-ionizing, and label-free nature [3]. Dermatology is one of the medical
fields where HSI have shown its potential as an appropriate imaging technique [4].

Currently, the most common form of cancer, with more than 1.3 million new cases
worldwide in 2018, is skin cancer [5]. There are several types of skin lesions. Pigmented
skin lesions (PSLs) contain a wide variety of types, including cancerous and non-cancerous
PSLs [6]. There are two types of PSLs depending on the type of growth of the tissue: benign
and malignant. Nevus, which is benign, has a slow growth rate and is noncancerous, while
e.g., melanomas, which is malignant, are invasive and potentially metastatic tumors [6].
Other types of skin cancer produced by different types of cells include squamous cell
carcinoma and basal cell carcinoma. However, melanomas are much more dangerous
than other types of skin cancer, and an early detection of this skin lesion can be extremely

Sensors 2021, 21, 680. https:/ /doi.org/10.3390/521030680

https:/ /www.mdpi.com/journal/sensors



Sensors 2021, 21, 680

20f13

important in improving the patient survival [7]. The diagnosis of PSLs is performed by
dermatologists employing their naked eye or dermascopic cameras, which enhance the
morphological visualization of the PSL. After the inspection, an analysis of the lesion
following the ABCDE (Asymmetry, Border irregularity, Color, Diameter and Evolving
size, shape, or color) rule is applied in order to establish a preliminary diagnosis [7]. A
suspicious lesion will accordingly get a histopathological analysis carried out to determine
the definitive diagnosis. These diagnostic tools based on conventional imaging have been
used to help dermatologists in preliminary diagnosis. However, conventional imaging has
limitations that could be surpassed by the enriched spectral information provided by the
HSIs.

HSI technology has already been explored as a target technology to aid in PSLs diagno-
sis. A recent study by Leon et al. showed promising results in discriminating PSLs by ran-
dom forests and artificial neural networks [8]. Another recent study by Hosking et al. used
digital dermascopy HSI with machine learning methods in order to detect melanomas [9].
Kazianka et al. used HSIs to differentiate between normal skin, melanomas, and moles [10].
They used unsupervised approaches to segment the images and moreover evaluated the
performance of several supervised classifiers aimed to retrieve the diagnosis of each pixel.
The results indicated that it was possible to differentiate melanomas from moles with
high specificity and sensitivity. In another study, Nagaoka et al. [11] collected a dataset
for discriminating between melanomas and other PSLs, evaluating the statistical signifi-
cance of an index defined to this end. Tomatis et al. used a classifier based on a neural
network model [12]. There have also been developed some commercial systems as SIAs-
cope/SIAscopy [13] and MelaFind [14-16]. MelaFind is being used in several studies.
In [15], Elbaum et al. conduct a leave-one-out cross-validation procedure using a database
composed of 183 melanocytic nevus and 63 melanomas. Monbheit et al. [16] applied it in a
multicenter study. At last, Song et al. performed a paired comparison between MelaFind
and a reflectance confocal microscopy system to differentiate between melanoma and
non-melanoma PSLs by comparing MelaFind with a confocal microscopy system. In the
study by Stamnes et al., they discriminate between malignant and benign PSLs, i.e., no
specific melanoma detection [17].

The current default method of data analysis (DA) is deep learning (DL). DL emerged
as a competing DA method around 2009 and solves a wide range of problems exemplified
by the versatile TensorFlow-package [18]. DL is also applied in the HSI field. However, DL
often needs a huge amount of data in order to train the parameters enough in the neural
network [19]. Thus, in the proposed method, this presents a difficult problem due to the
lack of data. We are pursuing this problem by an ongoing data collection project, aiming
for future applications of DL systems.

Most of the research in the use of HSI for skin analysis is focused on the automatic
diagnosis of PSLs. Clearly, a successful methodology of this type would be an extremely
useful decision support tool for general practitioners (GPs) and dermatologists. In our
contribution in this direction, we were able to find clear patterns for the melanoma PSLs,
the other malignant PSLs and the benign PSLs. In the novel exploitation of the variability
of each channel in the HSI cubes, we made curves of the mean and standard deviation of
sub-images in these channels. Furthermore, using these curves and their inherent patterns,
we were able to discriminate between malignant and benign PSLs, but also between the
aggressive melanoma PSL and the others.

The outline of the paper is as follows. First, we describe the developed dermatological
HSI acquisition system, and thereafter, we describe the datasets we are using in this curve-
based classification method. Next, we point out how the data are pre-processed and labeled
before they are used as input in our new classification method, which consists of a training,
validation, and testing phase.
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2. Materials and Methods
2.1. Hyperspectral In Vivo Dermatologic Data

The system used to acquire the HS dermatologic images is described in [20], using
the same database as in Leon et al. [8]. The database consists of 76 images of PSLs from
61 patients: 36 cancerous and 40 noncancerous. The dataset is divided into a training set,
a test set, and a validation set. The training set is subsequently divided into melanoma
PSLs, malignant PSLs, and benign PSLs. Each mentioned set is mutually exclusive. The
acquisition system is composed of an HS snapshot camera able to capture HS images in
the very near infrared (VNIR) range, between 450 and 950 nm, with a spatial resolution
of 50 x 50 pixels and 125 spectral bands. This acquisition system employs a customized
dermascopic contact structure and a halogen source light (150 W) coupled to a fiber optic
ring light guide for cold light emission. The effective capturing area of the system is
12 x 12 mm, and the acquisition time is lower than 1 s. The system was applied to create
an HS database composed of 76 images of PSLs from 61 patients. The data acquisition
was done at the Hospital Universitario de Gran Canaria Doctor Negrin and Complejo
Hospitalario Universitario Insular-Materno Infantil (Spain). The research protocol and
consent procedures were approved by the Comité Etico de Investigacion Clinica-Comité
de Etica en la Investigacién (CEIC/CEI) at the University Hospital Doctor Negrin.

2.2. Curve-Based Classification Approach

In the pre-processing step, a calibration is done of the HSI using the white and dark
reference images following Equation (1), where CI is the calibrated image, RI is the raw
image obtained from the HS camera, and DI and WI are the dark and white reference
images, respectively. The white reference image is obtained capturing an image of a white
reference tile that reflects 99% of the incident light. The dark reference image is captured
by keeping the tap in the lens of the camera.

_ RI-DI

CI_WI—DI

¢y
Finally, the data is normalized in the range [0,1] to avoid differences in the spectral
signature intensities caused by possible different illumination conditions.

2.3. Region of Interest Curves

The region of interest (ROI) was obtained through the extraction of 7 x 7 sub-images
for all the channels. Subsequently, the mean (x-coordinate of the curves) and standard
deviation (y-coordinate of the curves) of these ROIs from each HS channel were plotted
against each other, thus creating ROI curves for each HSI cube. These curves were rather
different, some almost linear, other more convoluted. Thus, we applied a morphological
dilation filter to the more complex curves to ease the interpretation and subsequently use
these filtered curves in function fits. Morphological dilation is a common way to enhance or
change digital images in some way. Thus, often used in bridging gaps, our morphological
filter can be seen as an inverse dilation, a pruning.

There were some issues of this method that needed to be addressed. In particular, how
the ROIs are chosen. So, the first issue is where to collect this ROI in the HSI, i.e., which
coordinates to choose? To shed some light on this, we established some criteria for each
of the classes of PSLs and further picked the ROIs best suited for creating the curves with
adequate classification properties. In each channel, we started from (x,y) = (16, 16) and
went to (x,y) = (35, 35). This gave us 20 x 20 = 400 HS ROI curves for each PSL HSI cube
collected from different locations. However, with some overlap and since each ROI area
is 7 x 7 pixels, we cover the HSI from the start at (x,y) = (13, 13) to the end at (x,y) = (38,
38): thus, an area of 26 x 26 = 676 pixels. We tried a wider area, but the results did not
improve, so we kept this size due to computational cost. Thus, we tested how the ROI
extraction affected the mean square error (MSE) of the curves chosen by suitable criteria
for the melanoma as well as the other malignant and benign PSLs.
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Input:

The CPU used to run the code was an Intel Xeon 2.8 GHz running on a 16 GB RAM
computer.

Curve-Fitting

By trying to classify the PSLs through fits of the ROI curves, all the HSI ROI curves
were fitted by a quartic (fourth degree) polynomial function, where the coefficients are
found through the nlinfit function of MATLAB®, which minimizes the weighted least
squares equation,

Yo wilyi — f(xi,b)) @)

where the weights were chosen through a weight function, w(y) = 1/(0.011 + 0.011y)? and
n = 125, the number of data points. Further is f(x, b) = by x* + by x> + by % + by x + by,
the quartic regression function, with parameters b;, j =0, ... ,4. Then, the nlinfit-function
uses the iteratively reweighted least-square algorithm, which is designed to deal with
outliers [21]. Furthermore, the use of a quartic polynomial with a weight function proved
to be the best option with regard to flexibility and robustness to outliers. We also tested
higher degree polynomial functions; however, they were prone to overfitting.

Figure 1 gives an overview of the algorithm. The constants a, b, ¢, d, e, f, and g are
found though the training phase. The features are as follows: df (first-order derivative),
ddf (second-order derivative), totm = a-df + b-ddf, mabdf = mean + abs(df) and mean.

Curve-extraction: Classification:

The HSI-cube is loaded e The coordinate of the 7x7 *  Melanoma PSL

ROl is found by features o Highdf
developed for the PSL o Highddf
classes. o Higha-df+
For each channel the mean bddf>c
(x-coordinate) and e Malignant PSL
Standard deviation (y- o  HighMean>d
coordinate) is calculated, o High product of
which forms a basis for the max x-and max
regression. y-value > e
The quartic function e Benign PSL
formed from the data Low Mean < f
through regression is Low abs(df)
returned. Low mean +
abs(df)<g

Figure 1. Schematic overview of the algorithm.

3. Results

Here, we will represent the obtained experimental results. We start the representation
of the training phase.

3.1. The Training Phase of the Method

As mentioned above, we acquired an ROI from each channel of the HSIs, where the
curves were formed through the calculation of the mean and standard deviation of the
ROIs from each channel. First, we investigated the melanoma PSLs. The features coming
most natural from earlier experiments are a high mean first-order derivative (Max df) and
a high mean curvature given by the mean of the second derivative (Max ddf). However,
during the training phase, we found that a high sum of mean df (multiplied by 1, a in
Figure 1), mean ddf (multiplied by 0.1, b in Figure 1), and the derivative at the maximum
value gave the most successful feature (Max totm > 2.86, c in Figure 1). In Table 1 and
Figure 2a, we can observe that this feature produced rather good fits according to the MSEs:
the MSE ddf following this measure and the MSE df lower for two melanomas. Thus, all
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the plots of the HSI ROI curves from the melanoma PSLs are from the fits of the Max totm
curves. Moreover, the recurring theme in Figure 2c—f is that all the HSI ROIs came from the
interior and/or near the edges of the melanomas. In Table 1, we can also observe the most
distinct outlier, the P82C1000 PSL, which did not have the same characteristics as the other
melanomas, behaving more similar to the malignant PSLs. In Figure 2a, we can observe
that this PSL is the one with an MSE ddf diverging most clearly from the MSE totm.

Melanoma-curves

Melanoma MSE —— peac1003

0181 | pR1C1005

—_— POACINGS

004 :2; :;f 0161 paEC1000
~—— MSE totm

Std. dev.

000
P62C1003 PB1C1005 P82C1000 P94C1005 Fa5C1000

PSL
(@)

P62C1003

10 20 30 40 50
(d)

P95C1000

P94C1005

10 20 30 40 50

() ®

Figure 2. (a) Plot of mean square error (MSE) first-derivative feature (MSE df), second-derivative
feature (MSE ddf) and sum feature (MSE totm) for the hyperspectral image (HSI) ROI curves from
the training melanoma PSLs. (b) Plot of quartic polynomial fits of melanoma HSI ROI curves chosen
according to the low MSE totm. (c) The corresponding ROI in red drawn on the HSI for one of the
channels used in the creation of the HSI ROI curve from the P62C1003 PSL. (d) The corresponding
ROI in red drawn on the HSI for one of the channels used in the creation of the HSI ROI curve from
the P81C1005 PSL. (e) The corresponding ROI in red drawn on the HSI for one of the channels used
in the creation of the HSI ROI curve from the P94C1005 PSL. (f) The corresponding ROI in red drawn
on the HSI for one of the channels used in the creation of the HSI ROI curve from the P95C1000 PSL.
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Table 1. The results for the region of interest (ROI) investigation for the melanoma pigmented skin
lesions (PSLs) with the corresponding curves with maximum mean first derivative, Max df, maximum
curvature, Max ddf, maximum weighted sum of mean df, mean ddf and df at the maximum point,
Max totm and the corresponding MSEs of the chosen curves.

PSL Max df Max ddf Max totm MSE df MSE ddf MSE totm
P62C1003 0.19959 5.2261 1.2716 0.00729 0.022353 0.022353
P81C1005 0.90111 14.465 5.0123 0.044138 0.010691 0.010691
P82C1000 0.17383 -0.1158 —0.3373 0.01381 0.021781 0.0026241
P94C1005 1.1388 45.812 5.0485 0.008742 0.001214 0.0012136
P95C1000 0.60491 19.092 3.3212 0.001983 0.019006 0.015033

Regarding the malignant PSLs, we inferred based on earlier experiments that the HSI
ROI curves with a high mean (Max Mean > 0.05, d in Figure 1) or a high product of max x
and max y (Max Prod > 0.395, e in Figure 1) from the fitted curve are plausibly originating
from this type of PSL. This proved successful for some of the HSI ROI curve fits from the
malignant PSLs. As seen in Table 2 and Figure 3a, this was the most difficult type PSL to fit,
giving rise to rather high MSEs. The Max Mean was the best feature accordingly. Some
of the curves with least MSE Mean are plotted in Figure 3b, where all have means lying
above the standard deviation (y-value) of 0.05 (d in Figure 1). From these HSI ROI mean
standard deviation curves, the most complex data occurred—thus, as mentioned above,
giving rise to rather high MSEs. The corresponding ROIs of the plotted malignant curves
are also here lying on the inside or at the edge of PSLs, as seen in Figure 3c—f.

Table 2. The results for the ROI investigation for the malignant PSLs with the corresponding curves
with maximum product of max x times max y, Max Prod, maximum mean, Max Mean, and the
corresponding MSEs of the chosen curves.

PSL Max Prod Max Mean MSE Prod MSE Mean
P67C1003 0.20058 0.15051 3.4133 2.0846
P32C1000 0.05982 0.054024 0.02244 0.006436
P87C1000 0.33499 0.2143 11.323 0.41494

P106C1000 0.9194 0.35846 15.474 11.997
P21C1000 0.13709 0.11865 0.039819 0.16209
P56C1002 0.73114 0.17111 5.6309 3.7864
P66C1001 0.17669 0.11542 5.3595 0.64848
P75C1000 0.36819 0.18003 4.1902 4.234
P77C1000 0.31525 0.15402 1.3532 0.65383
P80C1003 0.094159 0.13404 0.2015 0.033497
P88C1000 0.16356 0.14231 1.5906 0.038208
P89C1001 0.23628 0.15301 3.1098 3.8229
P90C1002 0.33155 0.19675 3.872 0.087464
P91C1003 0.1763 0.12843 0.039625 0.039625
P101C1000 0.63537 0.24154 25.639 1.0538
P104C1000 0.77046 0.20304 8.3724 8.3684
P110C1000 0.18187 0.097568 0.96777 0.96777
P112C1000 0.34958 0.33396 0.19203 0.045852
P116C1004 0.26348 0.14593 2.9284 2.9284
P92C1004 1.4734 0.28289 19.805 21.99

P109C1000 0.38193 0.23467 0.23374 0.48969
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Figure 3. (a) Plot of MSE product of max x and max y (MSE Prod) and maximum mean (MSE Mean)
for the fitted HSI ROI curves from the malignant PSLs. (b) Plot of quartic polynomial fits of malignant
HSI ROI curves chosen according to low MSE mean. (c) The corresponding ROI in red drawn on the
HSI for one of the channels used in the creation of the HSI ROI curve from the P80C1003 PSL. (d) The
corresponding ROI in red drawn on the HSI for one of the channels used in the creation of the HSI
ROI curve from the P88C1000 PSL. (e) The corresponding ROI in red drawn on the HSI for one of the
channels used in the creation of the HSI ROI curve from the P91C1003 PSL. (f) The corresponding
ROI in red drawn on the HSI for one of the channels used in the creation of the HSI ROI curve from
the P112C1000 PSL.
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The benign PSLs HSI ROI curves proved easier to fit than the malignant ones. From
earlier experiments, two useful features came to be low mean (Min Mean < 0.05, g in
Figure 1), low absolute value first order derivative (Min abs df), and the sum of these (Min
mabdf < 0.109, f in Figure 1). This proved rather successful with a few exceptions, as can
be observed in Table 3 and Figure 4a, with Min abs df and Min mabdf as similar rather
successful features. In Figure 4b, four of the curves with lowest MSE abs df are plotted
with their corresponding placements of the ROIs given in Figure 4c—f. We can here see
that for these PSLs, the ROls are somewhat different placed than for the melanomas and
malignant ones—not all inside the PSLs, but at some sort of feature, nevertheless.

Table 3. The results for the ROI investigation for the benign PSLs with the corresponding curves with
minimum mean, Min Mean, minimum absolute value of the first derivative Min abs df, minimum
sum of mean and absolute value of the first derivative Min mabdyf, and the corresponding MSEs of
the chosen curves.

PSL Min Mean Min absdf Min mabdf MSE Mean MSE absdf = MSE mabdf
P60C3004 0.035875 0.04211 0.078126 0.43249 0.49182 0.49182
P24C1000 0.047758 0.13751 0.20262 5.7292 2.9709 2.9709
P61C1004 0.037392 0.019541 0.070525 0.11543 0.12084 0.049766
P78C3000 0.054088 0.14207 0.22912 2.0738 0.98825 0.98825
P83C1003 0.053259 0.051972 0.15544 2.2384 0.006806 0.20734
P29C1000 0.017986 0.037797 0.067169 0.37593 0.056122 0.056122
P29C2000 0.016499 0.028643 0.050963 0.12963 0.029577 0.029577
P13C2000 0.018738 0.025028 0.068659 0.004459 0.018544 0.073912
P13C3000 0.020795 0.058914 0.086964 0.097557 0.033792 0.020257
P16C1000 0.017759 0.049908 0.073101 0.18981 0.013001 0.013001
P17C1001 0.019861 0.021036 0.055137 0.15354 0.013007 0.028137
P17C2002 0.023828 0.012184 0.047559 0.079709 0.020721 0.018856
P18C1000 0.023887 0.010399 0.054889 0.11762 0.007339 0.0073387
P25C2000 0.053336 0.21251 0.27597 41742 0.91204 0.91204
P25C3000 0.057866 0.13919 0.22013 2.3664 13.174 9.6771
P26C1000 0.050246 0.18733 0.2605 4.5807 1.4319 1.4319
P27C1000 0.023408 0.052952 0.08173 0.12196 0.039168 0.047658
P27C2000 0.020774 0.045139 0.069434 0.24855 0.16042 0.16042
P27C3000 0.02075 0.058085 0.086034 0.029003 0.029591 0.016113
P27C4000 0.019193 0.026195 0.051928 0.070661 0.037739 0.037739
P29C3000 0.017297 0.042738 0.068037 0.14874 0.01073 0.022491

P30C1000 0.02094 0.00574 0.045026 0.09903 0.001885 0.0032779
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Figure 4. (a) Plot of MSE mean feature (MSE Mean), absolute value of the first derivative feature
(MSE abs df), and the sum of these (MSE mabdyf) for the HSI ROI curves from the benign PSLs. (b)
Plot of quartic polynomial fits of benign HSI ROI curves chosen according to low MSE abs df. (c) The
corresponding ROI in red drawn on the HSI for one of the channels used in the creation of the HSI
ROI curve from the P29C2000 PSL. (d) The corresponding ROI in red drawn on the HSI for one of the
channels used in the creation of the HSI ROI curve from the P13C2000 PSL. (e) The corresponding
ROI in red drawn on the HSI for one of the channels used in the creation of the HSI ROI curve from
the P18C1000 PSL. (f) The corresponding ROI in red drawn on the HSI for one of the channels used
in the creation of the HSI ROI curve from the P30C1000 PSL.

Classification

From the training phase, we inferred that the classification procedure can consist of
two consecutive steps.
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First, we identify the curves where the first derivative increases, possibly converging
at maximum value of the HSI ROI curves mean. Additionally, the curves with high mean
positive curvature and less double inflexion points were also identified as melanomas. In
addition, the sum df + 0.1ddf proved successful (totm).

Then, we find the two clusters of the rest of the curves, such that they can be classified
as benign or malignant. This is mainly done by choosing what curves have mean above
y = 0.05 (malignant) and below y = 0.05 (benign). For the benign curves, an additional
useful feature was the sum of the mean of the fitted curve and the mean absolute value of
the first-order derivative in each point (mabdf).

3.2. Validation and Test Experiment

We also performed an experiment in order to validate the training phase with the
same type of ROI curves as in the training part but different PSLs. This resulted in the
usual 125 points mean and standard deviation curve; then, a quartic polynomial function
was fitted, as mentioned earlier. Based on the features developed in the training phase,
then, we were able to first discriminate between melanomas and the rest of the PSLs, where
a typical melanoma fit is given in Figure 5a, and then discriminate between malignant and
benign PSLs. Examples of their respective fits given in Figure 5b,c.

P79C1000
P96C1002 0.18
0.14 * Full Dataset
#  Full Dataset = 4-deg polynomial fit
4-deg polynomial fit 0.16
0.12
0.14
0.1 ) ;,ﬂ*
: g :
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= =
= 0 ﬁ *
5] £ *
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0.06 £ 0{ M
* * *,
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(©

Figure 5. Examples of the fitted curve plots with data points from the validation phase: (a) Plot of
a quartic polynomial fit of a melanoma HSI ROI curve and the data points. (b) Plot of a quartic
polynomial fit of a malignant HSI ROI curve and the data points. (c) Plot of a quartic polynomial fit
of a benign HSI ROI curve and the data points.

When looking at the results, we denote correctly classifying a malignant PSL as a true
positive (tp) and correctly classifying a benign PSL as a true negative (tn). Furthermore,
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falsely classifying a malignant PSL is denoted as a false positive (fp) and at last, falsely
classifying a benign PSL is denoted as a false negative (fn). By using the validated clas-
sification criteria, we were able to test the method with a test set. The results are given
in Table 4, where the P23C1001 gave a false positive due to some regression difficulties
regarding outliers.

Table 4. The PSLs in the test set and their classification correctness.

PSL Correctness
P100C1000 tp
P23C1001 fp
P102C1000 tp
P28C1000 tn
P107C1003 tn
P69C1003 tp
P13C1000 tn
P74C1002 tp
P14C1000 tn
P97C1004 tp

The accuracy of this proposed method is 90%. The sensitivity is 100% and the speci-
ficity is 80%. Considering the melanoma discrimination, both sensitivity and specificity are
100%. In Table 5 results from other researchers are provided.

Table 5. Comparison with results from other studies. (* Sensitivity for melanoma detection. ¥ Only
reported sensitivity for three melanoma lesions. « Only reported sensitivity for four melanoma

lesions).
References Patients Images Bands Range (nm) Sen(s(}/(t);Vlty Spe(r:;:;uty
Tomatis et al. [12] 1278 1391 15 483-950 80.4* 75.6
Kazianka et al. [10] - 310 300 - 95 * -
Moncrieff et al. [13] 311 348 8 400-1000 100 *, ¥ 55
Fink et al. [14] 111 360 10 430-950 100 %, ¥ 5.5
Song et al. [22] 55 36 10 430-950 714%*, & 25
Monheit et al. [16] 1257 1612 10 430-950 98.2 % 9.5
Nagaoka et al. [11] 97 134 124 380-780 96.0 * 87
Stamnes et al. [17] - 157 10 365-1000 97 97
Stamnes et al. [17] - 712 10 365-1000 99 93
Hosking et al. [9] 100 52 21 350-950 36 % 100 *
Leon et al. [8] 61 76 116 450-950 87.5/100 * 100
Proposed 61 76 125 450-950 100 80/100 *

From Table 5, we can discern that most research studies have been discrimination of
the aggressive melanoma PSLs, where Nagaoka et al. [11] and Leon et al. [8] had the highest
sensitivity and specificity. Stamnes et al. [17] also had high such measures; however, these
were only discriminating between benign and malignant PSLs. Thus, the sensitivity and
specificity in the method developed here is comparable to the others.

The works listed in Table 5 mostly use an array of machine learning methods, while
the proposed method only use a regression method, making it a simpler approach than the
others.

The computation time was on average 0.16 s for each PSL. However, including the
best ROI search, this jumps to 70 s. Thus, it is a rather slow algorithm due to rather complex
calculations. Compared to the previous work in [8], in which six of the 10 patients were
correctly identified with an average execution time of 0.5 s, the proposed methodology
identifies nine out of 10 patients with an average of 160 s. However, this is only the core
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References

algorithm; an efficient segmentation algorithm has to be included also, raising the execution
time.

4. Limitations and Future Directions

Further studies must be conducted in order to improve the limitations in this research.
The first limitation is the rather low number of samples in particular for the melanoma
class. In addition, in the benign and malignant class, it would have been desirable of an
increase of samples. However, the number of samples was enough to find and validate
the patterns for each class of PSLs considered here. Another limitation is the computing
time. However, this will be decreased by the automatic choosing of ROIs by segmentation
of the PSLs, which have several known potential solutions. We will also try to improve the
regression of the curves by further experimentation of the weight function or other types
of regression. The developed system in this paper is at an experimental level; however, it
has the potential to assist in the diagnosis of skin cancer and reduce the number of biopsies
relating to this.

5. Conclusions

The work presented here shows that HSIs can be used to discriminate between
melanoma, malignant, and benign PSLs as a potential future diagnostic tool for derma-
tologists or GPs. The proposed curve-based method is able to do this discrimination by
using the inherent patterns of these curves. The presented method was able to correctly
classify nine out of 10 in the test set, identifying all cancerous cases accurately (100% of
sensitivity). Thus, it is a rather good result. In addition, in the test phase, it had a sensitivity
of 80% overall and 100% for the melanomas. Since this method is relatively experimental,
we will improve it further in order to increase its accuracy and lower its computation time.
The limitation of the proposed method is mainly the lack of data, which is remedied in an
ongoing project of data collection. The merits of the proposed method is the utilization of
the richer structure provided by the HSI technology in a novel way.
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Abstract- In this paper, we describe a new statistical
approach to estimate blood glucose concentration along
time during endurance sports based on measurements of
glucose concentration in subcutaneous interstitial tissue.
The final goal is the monitoring of glucose concentration
in blood to maximize performance in endurance sports.
Blood glucose concentration control during and after aer-
obic physical activity could also be useful to reduce the
risk of hypoglycemia in type 1 diabetes mellitus subjects.
By means of a low invasive technology known as ''contin-
uous glucose monitoring'', glucose concentration in sub-
cutaneous interstitial tissue can now be measured every
five minutes. However, it can be expressed as function
of blood glucose concentration along time by means of a
convolution integral equation. In the training phase of
the proposed approach, based on measurements of glu-
cose concentration in both artery and subcutaneous in-
terstitial tissue during physical activity, the parameters of
the convolution kernel are estimated. Then, given a new
subject performing aerobic physical activity, a deconvolu-
tion problem is solved to estimate glucose concentration in
blood from continuous glucose monitoring measurements.

Keywords- Endurance sports, blood glucose concen-
tration, continuous glucose monitoring

L.

PHYSICAL activity (PA) in endurance sports is character-
ized by prolonged muscular work at high intensity (high
heart frequency). The energy needed to maintain muscular
fiber contraction during endurance sports is mainly produced
by means of chemical transformations of fatty acids and glu-
cose. Although energy production obtained from lipids is
necessary in endurance PA, glucose as source of energy plays
a very important role. Glucose is stored in the human body in
muscles and liver in the form of glycogen, and several grams
of glucose are diluted in blood. During PA, glucose is pro-
duced in muscles by glycogenolysis. In addition, it is also
transported there by means of blood circulation: the sources
are liver glycogenolysis, gluconeogenesis in liver and kidneys
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and ingested food [11]. Demand of glucose in high inten-
sity exercise is substantial and could potentially lead to hy-
poglycemia, i.e. drop of blood glucose (BG) concentration
below 3.6 mmol/l (glycemia) [10]. Thus, to keep glycemia
within the normal range (3.6-5.6 mmol/l) (see [10]) the influx
of glucose from blood to the muscles is regulated by several
hormons among which insulin plays the major role. Insulin
production is decreased during exercise to prevent excessive
leak of glucose into the muscles [17]. From the above con-
siderations, it is clear that monitoring glucose concentration
in tissues and blood can be very relevant to maximize perfor-
mance in endurance sports. Moreover, it is absolutely essen-
tial for subjects with type 1 diabetes mellitus (T1D) in which
insuline is not produced and must be injected subcutaneoulsy.
Thus, the risk of hypoglycemia in T1D subjects during PA is
relevant because the physiological system to minimize it is
disrupted. To minimise such a risk it is recommended that
the insulin dose administered before and after an exercise pe-
riod should be decreased, carbohydrates should be ingested
regularly and glycemia should be measured as frequently as
possible (at least every 30 min) [20].

Recently, a new and low invasive technology has been in-
troduced, known as continuous glucose monitoring (CGM),
by which glucose concentration in subcutaneous interstitial
tissue can be measured every five minutes [15]. This tech-
nique is mainly used by T1D subjects, who greatly benefit of
it to monitor the level of glucose in tissues and blood in order
to control it. Studies proved that T1D patients can signif-
icantly benefit of regular aerobic PA, which reduces glucose
concentration in both blood and tissues [4]. Unfortunately, the
fear of the potentially severe effects of getting hypoglycemia
during or after performing PA is a major reason why most
T1D subjects do not perform PA [3].

We point out that by CGM we can only measure glucose
concentration in subcutaneous interstitial tissue G,(t) at sam-
pling times while we are interested more in temporal glucose
level in tissues and blood. Fast and large changes in glu-
cose concentration in blood G,(t), can be observed during
PA. However, it is well known that related changes in G,(t)
are seen after a time delay (lag time) [9], [23]. The quantity
G,(t) can be modeled as a function of Gj(t) by means of a
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convolution integral equation with asymmetric kernel involv-
ing only the past due to causality [6].

Here, we focus on the estimation of glucose concentra-
tion dynamics in blood during aerobic PA from CGM mea-
surements. To this aim, we propose to first perform some PA
experiments on one or more subjects. During training, CGM
measurements are performed together with those of glucose
concentration in both artery and capillaries, that reveal to be
very close to each other. These data are then used to esti-
mate the convolution kernel parameters. Given a new sub-
ject, a deconvolution problem is then solved to estimate G (t)
from CGM measurements during PA. This task could be in-
troduced within a general tool, which also includes glucose
concentration forecasting either by machine learning or by
mathematical models [1], in order to monitor glucose con-
centration in blood aiming to maximize performance in en-
durance sports. In connection to the control of BG concen-
tration during PA and after it could also be useful to reduce
the risk of hypoglycemia in T1D subjects, and recent work,
[2,7,8, 12, 13, 16, 18, 19, 21, 24], indicate the importance
of handling PA for T1D patients. The current paper makes
progress in this direction by obtaining a more precise descrip-
tion of BG levels in artery. Utilizing this new information may
be the key to better BG control during PA.

Here we present initial results that indicate that the well-
known delay in CGM measurements can be significantly re-
duced. This delay may be life threatening for T1D patients,
in particular during PA where the BG level can be lowered
rapidly. Future utilization of these results are therefore ex-
pected to improve the BG behavior in T1D patients in general
and in particular during PA.

II. PA EXPERIMENTS AND MODELS

PA experiments are performed using an electrically
braked ergometer at the target heart rate (THR) according
to an intensity / corresponding to 50% of individual heart
rate reservoir, calculated following the Karvonen equation:
THR = (HRpmax — HRyest) *1/100 + HR,.c5; [14]. Mea-
surements of CGM and glucose concentration in artery and
capillaries are performed every 5 and 10-15 minutes, respec-
tively both during PA and for 60 minutes after its end. The
training begins approximately 120 minutes since breakfast
and after 10 minutes warm up phase. The exercise is inter-
rupted when either symptoms of hypoglycemia occurred or
BG concentration of 3.5 mmol/l is measured. Immediately at
end of training, 20 g of glucose diluted in 150 ml of water is
ingested.

We focus here on experiments with a PA phase followed at
its end by glucose solution ingestion. To describe both G (t)
and G,(t) we therefore adopted a model with two sine func-
tions. The first sine function decreases until its local min-
imum is reached. Then, the second sine function increases
starting from this point which corresponds to its local mini-
mum. This ensures that also right and left derivatives at com-
mon local minimum point are equal. The model used has the
following parameters: minimum location, 3 parameters for
each sine function, but only six of them are free because of
the continuity constraint of the two sine functions at their lo-
cal minimum point.
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The quantity G,(t) as a function of G,(t) is commonly
modeled [6] by means of asymmetric convolution, due to
causality, with exponential kernel h(t):

¢
Gi(t) = / Gy(T)h(t — T)dT + ¢, €~ N(0,0%), (1)
0

which is discretized to:

G, =HG, +¢, e~ N(0,0°T). (2)

However, due to the two phases of glucose decrease and
increase with different dynamics, here we use two different
exponential functions for the convolution kernel, one before
the minimum location of G,(¢) and the other one after it.
Given the functions G (t) and G,(¢) estimated for one sub-
ject or more, the convolution kernel parameters are estimated
by minimizing the mean squared error between G(t) and its
estimate by numerical convolution of G, (). In a new subject,
model parameters of G(t) are estimated from CGM mea-
surements by minimizing mean squared error between data
and model values at sampling times. Deconvolution of G(t)
is then performed to estimate model parameters for G,(t)
by minimization of mean squared errors between estimated
G,(t) and the numerical convolution of Gy(t). Here the con-
volution kernel is assumed to be known since we use the one
already estimated before. This minimization is performed
here by Simulated Annealing, which will be the dominating
algorithm in terms of complexity, O(k:5), as given in [22],
where k is the length of the data vector for each patient. The
complexity of least square estimation is O(k?), due to matrix
inversion and for the convolution (i.e. matrix-vector multipli-
cation), O(k?), both given in [5]. The method is summarized
in Algorithm (1).

Algorithm 1 The CGMPA algorithm
Measurements of CGM and arterial glucose con-

Input:
centration
Training:
Fort:=1:n
Model fitting to CGM data of subject i
Model fitting to arterial data of subject i
End
Estimation: Kernel parameters via convolution
Input: CGM measurements for a new subject
Estimation:
G,(t) parameters via CGM data fitting
Gy (t) parameters via deconvolution of G(t)

I1I.

In Fig. 1 we can observe the data of both CGM and arterial
glucose concentration measured for one subject during the PA
experiment. A double sine model is fitted by minimizing the
mean square error for both the G(t)-data and the G, (t)-data.
As seen, there is a very good agreement between model and
data. In the initial phase, G,(t) decreases due to PA. The
ingestion of a glucose solution at the end of PA, makes G, (t)
to increase again. The changes of G,(t) due first to PA and
then to glucose ingestion appear clearly delayed w.r.t. those

RESULTS



INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

DOI: 10.46300/91011.2020.14.14

mmol/l

I I I
60 80 100

minutes

I
40

I
20

120

Fig. 1: Example of data for CGM (+) and arterial glucose concentration (o)
measured for one subject during PA experiment. Continuous lines show best
data fits by double sine model for G4(t) and Gy (t), respectively.

of G,(t). This can be claimed since it is clear, for e.g. the
upper panel of Fig. 2, that the variation in CGM is delayed
compared to BG in artery during both PA and after intake of
glucose at the end of PA. To see this, draw a horizontal line
for e.g. a value of 8 mmol/l. During PA, G,(t) arrives to
this value after around 35 minutes while G(t) arrives to this
value after around 50 minutes. This means a delay of around
15 minutes, a length that may be life threatening for a T1D
patient. The same behavior for this horizontal line is observed
during the glucose ingestion where G (t) arrives to 8 mmol/l
after around 95 minutes while G,(¢) arrives there after 110
minutes. Note that also here the delay is around 15 minutes.
Given the functions G (t) and G(t) estimated for this sub-
ject, the convolution kernel parameters are estimated by mini-
mizing the mean squared error between G, (t) and its estimate
by numerical convolution of Gj(t). This is done by exhaus-
tive search on a finite 2d-grid of values for the time constants
(in minutes) of the two exponential functions from 1 minute
to the maximum value of sampling times (in minutes) with
steps of 1 minute.

Fig. 2 shows similar data of CGM and arterial glucose
concentration for two other subjects. The best model fit for
Gp(t) is superimposed on the arterial glucose concentration
data. Based on the convolution kernel estimated before, an
estimate for G,(t) is obtained by numerical convolution of
Gp(t). A good agreement is observed between CGM data
and estimated G,(t) computed at sampling times.

In Fig. 3 the same data of CGM and arterial glucose con-
centration as in Fig. 2 appear. The best model fit for G,(t)
is superimposed on the CGM data. Based on the convolution
kernel estimated before, an estimate for G (t) is obtained by
numerical deconvolution of G,(t). A good agreement is ob-
served between arterial glucose concentration data and esti-
mated G (t) computed at sampling times.

The percentage total mean square error for the mean
square error minimization fitting for the convolution and de-
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Fig. 2: Data for CGM (+) and arterial glucose concentration (o) measured for
two additional persons performing a similar PA experiment. The best model
for Gy (t) fitted to arterial glucose concentration data is also superimposed
on them. For each of the two subjects, estimate of G(t), as obtained by
numerical convolution of G, (t), is superimposed on the CGM data.
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Fig. 3: Data for CGM (+) and arterial glucose concentration (o) as in Fig. 2.
Best model for Gy (t) fitted to CGM data is also superimposed on them. For
each of the two subjects, estimate of Gj,(t) obtained by numerical deconvo-
lution of Gy(t) is superimposed on the arterial glucose concentration data.

convolution estimates for the two subjects in Figs. 2 and 3 are
shown in Table 1.

Subject Convolution Deconvolution

1 th7%Gs:5%
2 GbZG%GS:5%

Gs . 2% G(, : 10%
Gs: 0.3% Gy : 11%

Table 1: Percentage total mean square error for the mean square error mini-
mization fitting for the convolution and deconvolution estimates for the two
subjects in Figs. 2 and 3.

IV. CONCLUSION

The present work shows that a statistical approach can be
used to successfully estimate BG concentration along time
during PA from CGM measurements. This task could be in-
troduced within a general tool to monitor glucose concentra-
tion in blood aiming to maximize performance in endurance
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sports. This could also be used to reduce the risk of hypo-
glycemia in T1D subjects performing PA.
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Abstract- Liver transplantation is an important med-
ical procedure. However, to increase the donor pool, a new
source of organs is patients with irreversible brain dam-
age in the intensive care unit. These patients do not fulfill
the brain death criteria. Withdrawal of life support will
however cause the fulfillment of the death criteria. This
type of donation is referred to as donation after circula-
tory death (DCD) liver transplantation as opposed to do-
nation after brain death (DBD). Organs from DCD donors
imply the deleterious effects of warm ischemia (WI) in the
withdrawal phase until the declaration of death. In this
context, the length of the WI time is critical, which oc-
curs from withdrawal of support to the cold flush of or-
gans and subsequent topical cooling. We will in this study
compare two groups with two different treatments of liv-
ers removed from pigs. Further, we conduct a statistical
analysis to find differences between these groups.

Keywords- DCD, normothermic perfusion, static cold
storage, liver, ischemia,

I. INTRODUCTION

To increase the donor pool, a new source of organs is pa-
tients with irreversible brain damage in the intensive care unit.
These patients do not fulfill the brain death criteria. With-
drawal of life support will however cause the fulfillment of
the death criteria. This type of donation is referred to as do-
nation after circulatory death (DCD) as opposed to donation
after brain death (DBD). Organs from DCD donors imply the
deleterious effects of warm ischemia (WI) in the withdrawal
phase until the declaration of death. In this context, the length
of the WI time is critical, which occurs from withdrawal of
support to the cold flush of organs and subsequent topical
cooling. Accordingly, DCD liver grafts are associated with
a high incidence of dysfunction, primary non-function, and
ischemic cholangiopathy [1, 2] . The consensus in the clinic
as of today is a maximum of 30 minutes of WI [2, 3]. Due to
inferior results with DCD liver grafts after conventional static
cold storage (SCS), interest in liver machine preservation is
renewed [4]. Machine perfusion is believed to overcome the
three major shortcomings associated with conventional SCS
by:

* allowing viability assessment,

* reducing the ischemia/reperfusion injury, and
* avoiding cold injury [5].

Although this paper is most relevant to the discipline of
transplantation surgery, its potential findings can have an im-
pact on hepatobiliary surgery [6]. Since the indications for
major hepatectomies have expanded during the last decades,
and also high-risk patients with steatosis (i.e. fatty livers),
fibrosis/cirrhosis, and chemotherapy-induced liver injury are
included for major liver surgery [7].

There is currently an ongoing debate on the perfusion
route and the mode of perfusion. In the clinic and research
today, either dual perfusion (portal vein and hepatic artery)
or single perfusion (portal vein) are utilized. We have cho-
sen dual perfusion with a roller-pump giving pulsatile flow in
the hepatic artery and centrifugal pump giving laminar flow
in the portal vein [8]. This we believe is a more physiological
approach. The bile ducts are mainly supplied by the hepatic
artery. This is an important argument for dual perfusion in
machine preservation since dual perfusion supplies oxygen-
rich blood supply to the peribiliary vascular plexus. Bile duct
strictures can be classified as anastomotic strictures or non-
anastomotic strictures [9]. Non-anastomotic strictures were
first described due to hepatic artery thrombosis after liver
transplantation [10].

There are two major schools of thought in machine perfu-
sion: normothermic machine perfusion (NMP) and hypother-
mic machine perfusion (HMP) [8, 11]. Neither has yet proven
its superiority. Machine perfusion may reverse the negative
responses caused by the warm ischemia, and in addition, al-
low a performance assessment of the liver before transplanta-
tion. Thus, we will investigate experimentally:

* What are the effects of ischemia/reperfusion injuries be-
yond the consensus of today (i.e. WI>30 min) in the liver
parenchyma including the bile ducts and their potential
reversal?

* Do the ischemic changes reflected in tissue metabolism
improve once the organ is connected to the machine per-
fusion?

* Is controllable hemodynamics a prognostic marker to
deem whether the livers can be transplanted or not?
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II. METHODS

A. Materials

The chemicals: Tacrolimus, Lanoxin, mycophenolate
mofetil, midazolam. Prostacycline Cefotaxim, epoprostenol,
and THAM were obtained from Sigma-Aldrich (St. Louis,
MO). Paracetamol was obtained from Norsk Medisinaldepot
(Oslo, Norway).

B. Animal preparation

Anesthesia induction was with IM ketamine (30 mg/kg),
and IM atropine (0.02 mg/kg) injection. Further induction
was done with IV pentobarbital sodium (10 mg/kg) and IV
fentanyl (10 microg/kg) via an ear vein cannula. Thereafter,
maintenance was with IV midazolam 0.15mg/kg/h and IV
morphine (2 mg/kg/h). Heart rate and corneal reflex assess-
ment were used as markers of the depth of sedation. The tem-
perature was kept at 38°C (core temperature for pigs). The
skin was prepared and draped from the upper neck to the
pubic bone and bilaterally to each mid-axillary line. A tra-
cheostomy was then performed with an incision of the skin
over the trachea. A breathing tube was placed into the tra-
chea, secured with ties, and connected to a mechanical venti-
lator. Thereafter, a central venous line was placed in the right
external jugular vein and an artery line in the left common
carotid artery. An incision was made from the sternal notch
to the pubic bone with cautery and extended down to the ster-
num and through the linea alba and peritoneum. A median
sternotomy was performed, and a sternal retractor was in-
serted. The abdominal incisions were held open with towel
clips. An microdialysis (MD) catheter was then placed in the
liver segments 8/4a with a modified Seldinger technique. The
MD catheter was secured with a 5-0 polypropylene suture to
the hepatic connective tissue. IV heparin is thereafter admin-
istered to reach a level of activated clotting time (ACT) of
450-500. The distal aorta was identified and dissected free
from the surrounding tissues just above its bifurcation. The
gastroduodenal artery was identified and dissected superiorly
to expose the common hepatic artery. The hepatic artery was
then dissected proximally to the celiac trunk and aorta. The
distal common bile duct and surrounding tissues were mo-
bilized. The portal vein will be dissected free from the sur-
rounding tissues. The right triangular and coronary ligaments
of the liver were divided and the bare area of the liver was
carefully dissected free from the diaphragm. The posterior
surface of the vena cava was identified and cut free from the
retroperitoneal tissues. The right adrenal vein on the poste-
rior surface of the vena cava was ligated with 2-0 silk suture
and then divided. Thereafter, blood-letting for the priming
of the extracorporeal circuit was started. The blood was let
from the arterial line, while the lost volume will be replaced
with the crystalloid Ringer’s acetate solution. The mean ar-
terial pressure is kept above 50 mmHg to avoid hypotension
during the blood-letting. In a clinical DCD setting, when sup-
port is withdrawn, death is declared after the presence of car-
diac arrest with pulseless electrical activity and loss of blood
pressure. The experimental design was as similar as possible
to the clinical situation. However, to standardize the warm
ischemia time, the supra celiac aorta was cross-clamped. In
addition, the portal vein was cross-clamped to increase the re-

producibility of the animal model. Thereafter, both the total
IV anesthesia and mechanical ventilation were discontinued.
An overdose of IV pentobarbital and IV potassium chloride
was given to induce cardiac arrest and thereby euthanize the
animal. The warm ischemia time is the period from circula-
tory arrest (i.e. cross-clamping) to cannulation and flushing
via the abdominal aorta and the portal vein. Accordingly, a
45 minutes wait period was initiated after the circulatory ar-
rest. After this period has elapsed, the flushing will consist
of in situ gravity-driven flushes through the portal vein and
the celiac trunk (hepatic artery) with cold 2 liters 0.9% saline
(4°C ), followed by 2 liters of cold (4°C ) IGL-1 (Institute
Georges Lopez)-1 preservation solution. Before cannulation,
the tubing was flushed with 0.9% saline solution and all air
was removed. The celiac trunk was cut and cannulated with
an artery cannula and secured with silk ties. Saline ice slush
was applied to the surface of the liver to aid in surface cooling.
A venotomy in the vena cava in the chest was made and this
will function as a vent. After completion of the hepatectomy,
the liver was placed in a basin with cold IGL-1 solution on
the back table. Once the liver was connected to the machine
perfusion, a cannula was placed in the common bile duct, se-
cured with a silk tie, and the cystic duct was ligated.

C. ECMO, Tubing, Oxygenators, Pumps, and Measure-
ments

The extracorporeal membrane oxygenator (ECMO) cir-
cuit consisted of PVC tubing, two pediatric oxygenators (Ma-
quet, Rastatt, Germany), and a centrifugal pump house. The
tubings and centrifugal pumps were obtained from Medtronic
(Minneapolis, MN). Maquet pediatric oxygenators were ob-
tained from Maquet (Rastatt, Germany). The centrifugal
pump (model, manufacturer). Roller pump (model, manufac-
turer). The extracorporeal circuits were primed with Ringer’s
acetate solution 38°C. Blood gases were maintained using a
membrane oxygenator.

D. Biochemical Analyses

All samples were centrifuged at 1.900 g at +4°C immedi-
ately after sampling and frozen at -70°C for later analysis.

E. Oxygen Consumption Measurements

The hepatic arterial partial pressure of oxygen (11-12
kPa), and portal vein arterial pressure, and outflow from the
reservoir. The partial pressures of oxygen in samples were
analyzed with a blood gas analyzer (Rapidlab 865; Chiron
Diagnostics). The sampling was performed with a plastic sy-
ringe and immediately analyzed to avoid equilibration with
atmospheric air. O consumption in BAL (nmol/min) arteri-
ovenous PO, flow = 1.18 - 1073, where arteriovenous PO,
(mmHg) arterial POy venous PO, flow was 5 ml/min, and
1.18 -10~3(mol ml~! mmHg ~! ) was a constant derived from
the Bunsen solubility coefficient for oxygen (0.03 mol O,
ml~'mmHg ~!) and the volume of 1 mole of oxygen (25.4
I) at 37°C (32). O3 consumption in NPCs cultivated alone
(mol/l) POy 1.18 - 10~2 , where PO4 equals venous PO, and
there is no flow through the bioreactor. The values for con-
sumption of oxygen by NPCs were corrected for the fall in
oxygen concentration observed in the cell-free controls.
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F. Approach

We applied flow sensor and pressure sensors in the hepatic
artery, portal vein, and vena cava. The pumps were pressure-
controlled: 75% of the total flow will be perfused via the
portal vein, and 25% will be perfused via the hepatic artery
[12]. The following algorithm of organ perfusion was fol-
lowed (1 mL/min/g liver; 25%/75% in hepatic artery/ portal
vein, respectively) [13]. The hepatic artery was perfused with
a mean arterial pressure of 70 mmHg and the portal vein of
10 mmHg. The partial pressures were measured with a blood
gas analyzer (ABL800, Radiometer). Two separate pediatric
oxygenators (Medtronic) were applied to obtain desired oxy-
gen tensions of 7.0 kPa in the portal vein and 12.0 kPa in the
hepatic artery.

The MD catheters were placed in the liver (in segments
4/8) with the Seldinger technique. MD is a technique that en-
ables the monitoring of the organs and tissues in real-time.
The double-lumen MD catheter is perfused with a fluid con-
taining dextran and electrolytes by microinjection pumps at
a velocity of 1 microL/minute (CMA 107, M Dialysis AB,
Sweden). The fluid (i.e. the microdialysate) was collected
in micro vials. The micro vials were analyzed every 30 min-
utes, with an MD analyzer (Iscus, M Dialysis AB, Sweden).
The analyzer analyzed tissue glucose, lactate, pyruvate, and
glycerol. Ischemia causes increased lactate levels (but not
pyruvate levels), thereby giving an increased lactate/pyruvate
ratio (L/P-ratio). Thus, monitoring changes in the ischemia-
exposed liver in real-time. The micro vials will be stored cold
for later analysis of inflammatory markers. Several inflam-
matory mediators will be analyzed en bloc in a multiplex as-
say (Bio-Rad Laboratories, Inc., Hercules, CA), these include
among others: interleukin-1 receptor antagonist (IL1ra), and
interleukin-6 (IL6). Also, TNF-alpha (TNFa) is an important
marker for systemic inflammation [14].

G. Data Acquisition and Experimental Design

The two groups are called SCS and NMP, where the total
treatments for both these groups last in 720 min, including
Wl in the first 30 min. Both groups consist of seven pigs that
have their livers removed. In the first group, the livers are in
WI and SCS in 240 min before NMP, and in the second group
WI and NMP in 720 min.

During the experiment were several hemodynamic pa-
rameters(variables) were monitored. These include Systemic
Vascular Resistance (SVR), Portal vein pressure (P_porta),
Portal vein Flow (Flow_porta), Arterial pressure (P_art_hep),
Arterial Flow (Flow_art_hep), Total flow (Tot_flow), and
Temperature (Temp). These parameters were sampled each
minute. The monitored MD parameters (variables) include
bile production (bile_prod), several immunological param-
eters as the interleukins (IL1a, IL1beta, IL1ra, IL2, IL4,
IL6, ILS, IL10, IL12, and IL18), and TNF-alpha (TNFa)
(all these were sampled only four times with even fre-
quency for each pig). Further, were these Lactate, Pyru-
vate, Glucose, and Glycerol variables monitored: Glu_NMP,
Lac_NMP, Pyr_ NMP, Gly_NMP, Lac_Pyr_NMP (L/P-ratio),
and Lac_Glu_NMP. These last MD parameters were sampled,
with the same frequency, thirteen times during the experiment
for each pig.

H. Statistics

One of the goals of the statistical analysis is to investigate
the degree of difference between the SCS and NMP groups.
The default method is the analysis of variance (ANOVA)
when there are more than two groups and the t-test if there
are only two groups. However, due to the problem of pseu-
doreplication, i.e. the observations on the response variable
are not independent, we have to define dependence within
and between the groups [15]. This is called a random ef-
fect, which is elaborated rather thoroughly in [16], where
they develop models and software packages to do inference
in the resulting linear mixed model (LMM). The current de-
fault software package doing this inference is Ime4 presented
in [17], which is written for R [18]. However, this pack-
age assumes Gaussian distributed error components, which
was not fulfilled in our inference. Hence, we applied the R-
package brms [19], which utilizes a Bayesian approach. This
also means that two of the three assumptions of repeated mea-
surements ANOVA are violated: Normality of the error term
and independence of measurements (sphericity is not relevant
with only two groups), which means that LMM is a more ap-
propriate option [20]. Further, do the study presented in this
paper has a multilevel two-way nested design and we wrote
the model as:

Yijk = Intercept + a; + b;; + €k, €ijx ~ N(O, af), (1)

a; ~ N(Oa Ul%rotocol)’ bij ~ N(()? (71231'9)7

where €, is the residual, and N() a Gaussian distribu-
tion with mean zero and standard deviation o , for the resid-
uals. a; and b;; are the random effects with standard devia-
tions 0 protocor and o pig, for Protocol and Pig, respectively,
the Intercept is a constant, ¢, the groups, 7, the individual pig
and k, the measurement time points. The brms-package is a
backend to RStan, the R interface to Stan [21], which applies
the Hamiltonian Monte Carlo algorithm [22]. This means that
the intercept and the standard deviations were given priors.
The prior for the intercept was chosen to be a Gaussian dis-
tribution with mean zero and standard deviation ten. For all
the standard deviations a half-Cauchy distribution with loca-
tion zero and scale one truncated below zero, was chosen.
We compared these computations with computations done by
the Imer-function from the lme4-package, presented in [17],
which gave rather similar results as the brms-package. How-
ever, the assumption of Gaussian-distributed residuals was in
general not fulfilled. To determine if there were any random
effects we compared the fit of Eq. (1) with

Yijk = Intercept + €k, €1 ~ N(0, J?), 2)

i.e. only an intercept. The Imer-function gave a significantly
improved model by including the random effects according to
the likelihood ratio test (LRT) for all the parameters. We also
observed some random slope effects for some of the param-
eters and this was subsequently included in another model as
Time for each Pig. Due to computational issues, we could
not use the brms-package for this analysis. Thus, we had to
use the Imer function from the Ime4-package for this more
involved model. Also, we compared this with the robust Imer
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package [23]. The results for these computations also showed
clear evidence for random effects and were rather similar to
the first calculations without the random slope effect.

III. RESULTS

A. Statistical Results

The intraclass correlations (ICC) for Protocol and Pig
show the correlation of the measurements within each group
and within each pig, and can be seen as an effect mea-
sure for this within-effects [24]. The values of the vari-
ables Flow_porta, Flow_art_hep, Tot_flow, Gly_NMP, and
Lac_NMP show a somewhat stronger within-group correla-
tion than for the other variables as seen in Tab. (1). Further,
the model fits are indicated by the widely accepted informa-
tion criterion (WAIC), introduced in [25], which gives a mea-
sure of the predictive error of the random-effects models and
the baseline or nullmodels. This relation between the WAIC
value and predictive errors is discussed in [26], and is cur-
rently the best information criterion. As seen in Tab. (1) there
are random effects for all the hemodynamics variables and
most of the MD variables, with the clearest evidence of this
for SVR, P_porta, Glu_NMP, and bile_prod, which have the
lowest relative difference between the WAIC of the nullmodel
and the random-effects model.

Hemodynamics

Variables WAIComod WAICy) 04 I Proto opig oe ICCproto ICCPig
SVR 25008.6 14832.0 1.38 1.27 0.71 0.47 0.87
P_porta 41407.9 27417.1 1.89 4.77 1.79 0.12 0.89
P_art_hep 62639.2 50864.8 21.10 21.46 9.89 0.44 0.90
Flow_porta 87705.4 75453.8 724.95 142.26 59.42 0.96 0.99
Tot_flow 90912.4 83637.5 1001.89 356.86 108.06 0.88 0.99
Flow_art_hep 84525.5 78219.7 551.17 98.66 72.82 0.95 0.98
Temp 42359.9 414263 2.64 2.09 4.96 0.19 0.32
MD data with measurements from t0 to t12
Glu_NMP 1137.7 1000.8 1.92 9.59 7.13 0.03 0.65
bile_prod 997.6 919.6 115 5.15 542 0.02 0.49
Lac_NMP 677.4 648.8 0.73 1.27 2.16 0.08 0.32
Pyr_NMP 1746.1 1678.7 24.85 83.46 74.16 0.05 0.58
1L2 1118.4 1114.5 1.18 1.25 9.51 0.01 0.03
IL1beta 1717.9 1719.6 11.61 20.69 80.81 0.02 0.08
Gly_NMP 1925.9 1928.5 83.71 345 177.81 0.18 0.18

Table 1: The results of the statistical model fitting of the variables for the
hemodynamic data and microdialysis (MD) data with the model given by
Eq. (1) using the brms-package.

B.  Hemodynamic Changes as Prognostic Markers for
Irreversible Ischemic Injuries

We found a significant difference between the two groups
for the hemodynamic data as can be observed in Fig. (1)
and Tab. (2), which also was established through the LMM
analysis above. The SVR variable is of some importance,
indicating a lower probability of injuring the organ during
machine perfusion in the SCS group compared to the NMP
group. Vasoconstriction in the rewarming phase at the start of
the machine perfusion period (from 4°C to 38°C) is typical.
This vasoconstriction and the high pressures especially in the
hepatic artery (P_art_hep) will commonly decline when the
organ becomes normothermic (38°C). Beyond the rewarming
phase, the pressures in the hepatic artery and the portal vein
(P_porta) will deem whether an organ is transplantable or not.
As seen in Fig. (2), in the SCS group these parameters show
a better prospect.

SVR P_porta P_art_hep
. 20 100
.
5- 15- 75-
10- 50-
0-
! 5- 25
- . 0- 0
SVR P_porta P_art_hep
Flow_porta Tot_flow Flow_art_hep
1000
600-
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[}
400-
2 s00- 800~ =
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s ] 200-
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Fig. 1: Boxplots of the hemodynamic data for the NMP and SCS groups.
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Fig. 2: Plot of P_art_hep and P_porta vs. Temperature for the NMP and SCS
groups .
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Variables Mean NMP ~ Var NMP  Mean SCS Var SCS 20- 5-
Flow_porta 62507 25568.95 701.61  13878.63
P_porta 12.70 13.30 8.66 28.00 1s- ‘
Flow_art_hep 47150 14265.94 49276 1219281 e e
P_art_hep 49.07 275.96 26.02 555.38 2 . z -
Temp 37.78 14.26 37.09 42.31 = §
Tot_flow 1096.57  46481.11 119437  16284.77 2
SVR 2.72 1.48 1.20 1.87 5-
Glu_NMP 1229 1.83e+02 5.42 60.20 -
Lac_NMP 2.63 6.26 2.46 5.77
Pyr_NMP 9375 1.06e+04 4330 4.75¢+03 o 5 i b 5 i
Gly_NMP 92.56  2.76e+04 144.69  8.17e+04 i i
Lac_Pyr_NMP 94.70 1.12e+05 217.09 1.10e+06 150~ 400
Lac_Glu_NMP 0.40 0.58 0.48 0.21
bile_prod 7.96 81.70 4.95 32.40
ILla 421 137e+02 4.34 59.80 1004
IL1beta 4659  2.27e+04 63.06  4.58e+04 2 g "
IL1ra 17101.60  2.46e+08 8367.27  3.07e+08 % %
L2 290 1.00e+02 843 8.74e+02 £ 5
IL4 2.80 21.60 3079 2.72e+04 ’ 20
IL6 202049 6.64e+06 1368.09  7.54e+06
IL8 979297  9.93e+08 72752 1.98e+06
IL10 117.63  1.23e+04 5580  1.16e+04 o 0
IL12 7.18  2.51e+02 11.98  2.23e+03 ’ * 1 ’ * 1
IL18 72034 2.53e+06 47299 1.06e+06
TNFa 153.52 3.30e+04 59.13 1.36e+04 factor(Protocol) NMP — SCS
Pre_Weight 131271 8.41e+03 1233.86  5.53e+03
Post_Weight 139114 5.26e+04 133514 3.87e+03
Weight_change_prct 349 2.25e+02 7.37 5240 Fig. 3: Plot of glucose (Glu_NMP), the lactate (Lac_NMP) and the pyruvate

Table 2: The mean and variance of the hemodynamic, the MD data and
weight data.

C. MD as a Reproducible Marker of Assessment of Re-
suscitated Ischemically Injured Liver Grafts

For the MD-data were the glucose (Glu_NMP), the lactate
(Lac_NMP), and the pyruvate (Pyr_NMP) lower in the SCS
group, but glycerol (Gly_NMP) was lower in the NMP group,
as seen in Tab. (2) and Fig. (3). However, it can be claimed
that they were rather similar in these groups. The L/P-ratio
was also more beneficial for the NMP group as seen in Fig.
(4). Glucose, lactate, pyruvate, glycerol, and the L/P-ratio
are connected to the effects of the ischemia condition and it
is advisable to keep it low [27]. We can also observe that
the effects of WI are in general reversed as seen in figures
(3) and (4). For the interleukins (the IL’s) the means were
lower for the SCS group, as seen in Tab. (2). However, in
Fig. (5) we can observe that the immunological markers in
the SCS group, have seven increasing variables of the total
eleven. This means that in this group there is an increasing
amount of inflammatory states, which is negative for the graft
(liver) condition.

(Pyr_NMP) lower in the SCS group, but glycerol (Gly_NMP) for the NMP
and SCS groups as means for the pigs measurements at each time-point.

1200-

factor(Protocol)
NMP
— scs

Lac_Pyr_NMP
°
8

Tp

Fig. 4: Plot of L/P-ratio (Lac_Pyr_NMP) for the NMP and SCS groups as
means for the pigs measurementsat each time-point.
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Fig. 5: Plots of immunological markers for the NMP and SCS groups as
means for the pigs measurements at each time-point.

IV. DISCUSSION

We have conducted a rather comprehensive experiment
to test the performance of two different machine perfusion
paths, given by the groups NMP and SCS, in connection to
liver transplantation. We did in general find that the SCS
method was somewhat better than the NMP method. This was
the case in particular for the hemodynamic data. For these
variables, it could be observed that the SVR, P_art_hep, and
P_porta variables had lower means for the SCS group than the
NMP group. This signifies less probability for damage during
the machine perfusion phase. For the MD data, and in partic-
ular, for the immunological markers, the NMP group showed
a more promising result, where most of the interleukins and
TNF-alpha were decreasing, showing a lower inflammatory
response. Also, the L/P-ratio was lower and better for the
NMP group. Thus, none of the groups were deemed better
than the other overall.

There is an increase in indications for liver transplan-
tation and accordingly, the need for organs is increasing
(www.scandiatransplant.org) [28]. One emerging indication
is liver transplantation for metastatic nonresectable colorec-
tal cancer. A study from Norway has shown a survival
benefit in patients with metastatic nonresectable colorectal
cancer who undergo liver transplantation compared to stan-
dard chemotherapy [29]. Moreover, the incidence of non-
alcoholic fatty liver disease is increasing worldwide, which
can progress to cirrhosis requiring liver transplantation [30].
This project is a collaboration between the University Hos-
pital of Northern Norway (UNN), and Rikshospitalet Univer-
sity Hospital. Solid-organ transplantation in Norway is per-
formed at Rikshospitalet. The procurement of organs is per-
formed countrywide, where UNN is one of the main suppli-
ers of organs for transplantation. The travel time of the pro-
curement team from UNN to Rikshospitalet is approximately
three hours. Traditionally, organs are procured from donors
fulfilling the brain death criteria, also known as donation af-
ter DBD. There is now however an interest in increasing the

donor pool, therefore organs from donation after DCD are
becoming utilized. Also, in Norway, we started transplanting
livers (and kidneys) from DCD donors in 2015 [31]. This has
proved very useful and will be continued.
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