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Recent work has shown that label-efficient few-shot learning through self-supervision can achieve 

promising medical image segmentation results. However, few-shot segmentation models typically rely on 

prototype representations of the semantic classes, resulting in a loss of local information that can degrade 

performance. This is particularly problematic for the typically large and highly heterogeneous background 

class in medical image segmentation problems. Previous works have attempted to address this issue by 

learning additional prototypes for each class, but since the prototypes are based on a limited number of 

slices, we argue that this ad-hoc solution is insufficient to capture the background properties. Motivated 

by this, and the observation that the foreground class (e.g., one organ) is relatively homogeneous, we 

propose a novel anomaly detection-inspired approach to few-shot medical image segmentation in which 

we refrain from modeling the background explicitly. Instead, we rely solely on a single foreground proto- 

type to compute anomaly scores for all query pixels. The segmentation is then performed by thresholding 

these anomaly scores using a learned threshold. Assisted by a novel self-supervision task that exploits the 

3D structure of medical images through supervoxels, our proposed anomaly detection-inspired few-shot 

medical image segmentation model outperforms previous state-of-the-art approaches on two representa- 

tive MRI datasets for the tasks of abdominal organ segmentation and cardiac segmentation. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many applications in medical image analysis, such as diagno- 

is ( Tsochatzidis et al., 2021 ), treatment planning ( Chen et al., 

021 ), and quantification of tissue volumes ( Abdeltawab et al., 

020 ) rely heavily on semantic segmentation. To lessen the bur- 

en on the medical practitioners performing these manual, slice- 

y-slice segmentations, the use of deep learning for automatic seg- 

entation has a great potential. Unfortunately, existing segmenta- 

ion frameworks ( Ronneberger et al., 2015; Li et al., 2018; Isensee 

t al., 2021 ) depend on supervised training and large amounts of 

ensely labeled data, which are often unavailable in the medical 

omain. Moreover, their generalization properties to previously un- 

een classes are typically poor, necessitating the collection and la- 
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eling of new data to re-train for new tasks. Due to the huge num- 

er of potential segmentation tasks in medical images, this makes 

hese models impractical to use. 

Inspired by how humans learn from only a handful of instances, 

ew-shot learning has emerged as a learning paradigm to foster 

odels that can easily adapt to new concepts when exposed to 

ust a few new, labeled samples. These models typically follow an 

pisodic framework ( Vinyals et al., 2016 ) where, in each episode, 

 labeled samples, called the support set, are used to segment the 

nlabeled query image(s). The models are trained on one set of 

lasses and learn to, with only a few annotated examples, segment 

bjects from new classes. A trained few-shot segmentation (FSS) 

odel is thus able to segment an unseen organ class based on just 

 few labeled instances. However, in order to avoid over-fitting, 

ypical FSS models rely on training data containing a large set of 

abeled training classes, generally not available in the medical do- 

ain. 

In a recent work, Ouyang et al. (2020) proposed a label- 

fficient approach to medical image segmentation, building on 

etric-learning based prototypical FSS ( Liu et al., 2020b; Wang 

t al., 2019 ). They suggest a model that follows the traditional 
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ew-shot episodic framework, where class-wise prototypes are ex- 

racted from the labeled support set and used to reduce the seg- 

entation of the unlabeled query image to a pixel-wise proto- 

ype matching in the embedding space. Whereas traditional few- 

hot learning models require a set of annotated training classes, 

uyang et al. (2020) propose a clever way to bypass this need by 

mploying self-supervised training ( Jing and Tian, 2020 ). Instead 

f sampling labeled support and query images, they construct the 

raining episodes based on one unlabeled image slice and its cor- 

esponding superpixel ( Ren and Malik, 2003 ) segmentation: One 

andomly sampled superpixel serves as foreground mask, and to- 

ether with the original image slice, these form the support image- 

abel pair. The query pair is then constructed by applying ran- 

om transformations to the support pair. In this way, they enable 

raining of the network without using annotations, i.e. the model 

s trained unsupervised. Finally, in the inference phase, they only 

eed a few labeled image slices to perform segmentation on new 

lasses. 

However, a general problem with prototypical FSS is the loss of 

ocal information caused by average pooling of features during pro- 

otype extraction. This is particularly problematic for spatially het- 

rogeneous classes like the background class in medical image seg- 

entation problems, which can contain any semantic class other 

han the foreground class. Previous metric-learning based works 

ave addressed this issue by computing additional prototypes per 

lass to capture more diverse features. Liu et al. (2020b) clustered 

he features within each class to obtain part-aware prototypes and 

n the current state-of-the-art method, Ouyang et al. (2020) com- 

uted additional local prototypes on a regular grid. 

We argue that it is insufficient to model the entire back- 

round volume with prototypes estimated from a few support 

lices and propose a conceptually different approach where we 

o not increase the number of background prototypes but re- 

ove the need for these altogether. Inspired by the anomaly de- 

ection literature ( Chandola et al., 2009; Ruff et al., 2021 ), we 

ropose to only model the relatively homogeneous foreground 

lass with a single prototype and introduce an anomaly score that 

easures the dissimilarity between this foreground prototype and 

ll query pixels. Segmentation is then performed by threshold- 

ng the anomaly scores using a learned threshold that encour- 

ges compact foreground representations. For direct comparison 

f our novel anomaly detection-inspired few-shot medical image 

egmentation method to that of Ouyang et al. (2020) and other 

epresentative works, our baseline setup follows their approach, 

orking with 2D image slices. Within the existing 2D setup, 

e, as an added contribution, propose a new self-supervision 

ask by extending the superpixel-based self-supervision scheme 

y Ouyang et al. (2020) to 3D in order to utilize the volumetric 

ature of the data. As a natural extension, facilitated by the new 

elf-supervision task, we further indicate potential benefits beyond 

his 2D setup by exploring a direct 3D treatment of the problem by 

mploying a 3D convolutional neural network (CNN) as embedding 

etwork. 

By only explicitly modeling the foreground class, we argue 

hat our proposed approach is more robust to background out- 

ide the support slices, compared to current state-of-the-art meth- 

ds ( Ouyang et al., 2020; Roy et al., 2020 ). To further illustrate

his, we introduce a new evaluation protocol where we, based on 

abeled slices from the support image, segment the entire query 

mage, thus being more exposed to background effects. Previous 

orks, on the other hand, limit the evaluation of the query im- 

ge only to the slices containing the class of interest. However, 

his approach requires additional weak labels in the form of in- 

ormation about the location of the class in the query image, 

hich is unrealistic and cumbersome, especially in the medical 

etting. 
2 
In summary, the main contributions of this work are three-fold. 

e propose: 

1) A simple but effective anomaly detection-inspired approach to 

FSS that outperforms prior state-of-the-art methods and re- 

moves the need to learn a large number of prototypes. 

2) A novel self-supervision task that exploits the 3D structural in- 

formation in medical images within the 2D setup and indicate 

the potential of training 3D CNNs for direct volume segmenta- 

tion. 

3) A new evaluation protocol for few-shot medical image segmen- 

tation that does not rely on weak-labels and therefore is more 

applicable in practical scenarios. 

. Related work 

.1. Few-shot meta-learning 

As opposed to classical supervised learning that specializes a 

odel to perform one specific task by optimizing over training 

amples, few-shot meta-learning optimizes over a set of train- 

ng tasks, with the goal of obtaining a model that can quickly 

dapt to new, unseen tasks. There exist various approaches to 

ew-shot learning, including i) learning to fine-tune ( Finn et al., 

017; Ravi and Larochelle, 2017 ), ii) sequence based ( Mishra et al., 

018; Santoro et al., 2016 ), and iii) metric-learning based ap- 

roaches ( Vinyals et al., 2016; Snell et al., 2017; Nguyen et al., 

020 ). Due to its simplicity and efficiency, the latter category has 

ecently received a lot of attention, and the models relevant for 

his paper build on this principle. Vinyals et al. (2016) combined 

eep feature learning with non-parametric methods in the Match- 

ng Network, by performing weighted nearest-neighbor classifica- 

ion in the embedding space. They proposed to train the model 

n episodes where a small labeled support set and an unlabeled 

uery image are mapped to the query label, making the model 

ble to adapt to unseen classes without the need for fine-tuning. 

hereas the Matching Network only performed one-shot image 

lassification, Snell et al. (2017) later proposed the Prototypical 

etwork, which extended the problem to include few-shot classifi- 

ation. Based on the idea that there exists an embedding space, in 

hich samples cluster around their class prototype representation, 

hey proposed a simpler model with a shared encoder between the 

upport and query set, and a nearest-neighbor prototype matching 

n the embedding space. 

.2. Few-shot semantic segmentation 

Few-shot semantic segmentation extends few-shot image clas- 

ification ( Vinyals et al., 2016; Snell et al., 2017; Nguyen et al., 

020 ) to pixel-level classifications ( Shaban et al., 2017; Rakelly 

t al., 2018; Zhang et al., 2020; Wang et al., 2019 ), and the goal

s to, based on a few densely labeled samples from one (or more) 

ew class(es), segment the class(es) in a new image. A recent 

ine of work builds on the ideas from the Prototypical Network 

y Snell et al. (2017) , and can be roughly split into two groups:

odels where predictions are based directly on the cosine sim- 

larity between query features and prototypes in the embedding 

pace ( Wang et al., 2019; Liu et al., 2020b; Ouyang et al., 2020 ),

nd models that find the correlation between query features and 

rototypes by employing decoding networks to get the final pre- 

iction ( Dong and Xing, 2018; Zhang et al., 2019; Liu et al., 2020a; 

i et al., 2021a; Zhang et al., 2021; Tian et al., 2020 ). 

Dong and Xing (2018) first adopted the idea of metric-learning 

ased prototypical networks to perform few-shot semantic seg- 

entation. They proposed a two-branched model: a prototype 

earner, learning class-wise prototypes from the labeled support 



S. Hansen, S. Gautam, R. Jenssen et al. Medical Image Analysis 78 (2022) 102385 

s

t

t

t

N

t

t

r

p

a  

a

p

w

c

a

l

f

t

p

r

s

w

i

t

c

h

R  

a

c

o

m

q

a

s

f

l

i

f

F

u

e

c

t

2

c

i

i

r

e

C

e

l

p

z

d

u

u

L

t  

2  

a

b

t

s

2

i

a

t

v

c

I

p

2

3

{  

a  

w

t

w

s

i

t

p

x

p

o

N

4

w

e

r

p

b

e

a

a

t

t

a

m

a

p

r

4

d

a

a

e

f

c

1 By ”anomaly” we refer to abnormalities compared to our defined normal class 

(foreground), and not necessarily something that occurs infrequently. 
et, and a segmentation network where the prototypes were used 

o guide the segmentation of the query image. Most relevant for 

his work, Wang et al. (2019) argued that parametric segmen- 

ation generalizes poorly, and proposed the Prototype Alignment 

etwork (PANet), a simpler model where the knowledge extrac- 

ion and segmentation process is separated. By exploiting proto- 

ypes extracted from the semantic classes of the support set, they 

educed the segmentation of the query image to a non-parametric 

ixel-wise nearest-neighbor prototype matching, thereby creating 

 new branch of FSS models. Building on PANet, ( Liu et al., 2020b )

ddressed the limitation of reducing semantic classes to a simple 

rototype and proposed the Part-aware Prototype Network (PPNet), 

here each semantic class is represented by multiple prototypes to 

apture more diverse features. Liu et al. (2020b) further adopted 

 semantic branch for parametric segmentation during training to 

earn better representations. Ouyang et al. (2020) adapted ideas 

rom PANet to perform FSS in the medical domain. They addressed 

he major restricting factor preventing medical FSS, e.g the de- 

endency on a large a set of annotated training classes. This bar- 

ier was overcome by the introduction of a superpixel-based self- 

upervised learning scheme, enabling the training of FSS networks 

ithout the need for labeled data. Ouyang et al. (2020) further 

ntroduced the Adaptive Local Prototype pooling enpowered pro- 

otypical Network (ALPNet) where additional local prototypes are 

omputed on a regular grid to preserve local information and en- 

ance segmentation performance. 

A different approach to medical FSS was suggested by 

oy et al. (2020) , and was the first FSS model for medical im-

ge segmentation. Their proposed SE-Net employs squeeze and ex- 

ite blocks ( Hu et al., 2018 ) in a two-armed architecture consisting 

f one conditioner arm, processing the support set, and one seg- 

enter arm, interacting with the conditioner arm to segment the 

uery image. However, this model is trained supervised, requiring 

 set of labeled classes for training. 

Based on our experience, training a decoder in a self-supervised 

etting, where the training task (superpixel segmentation) differs 

rom the inference task (organ segmentation), is challenging and 

eads to performance degradation. In this paper, we thus, partially 

nspired by the state-of-the-art model ( Ouyang et al., 2020 ), build 

urther on the branch initiated by Wang et al. (2019) to perform 

SS in the medical domain. We propose a novel FSS model that, 

nlike previous approaches in this branch ( Wang et al., 2019; Liu 

t al., 2020b; Ouyang et al., 2020 ), does not explicitly model the 

omplex background class, but relies solely on one foreground pro- 

otype. 

.3. Self-supervised learning 

When large labeled datasets are not available, self-supervision 

an be used to learn representations by training the deep learn- 

ng model on an auxiliary task that is defined such that the label 

s implicitly available from the data. A good auxiliary task should 

equire high-level image understanding to be solved, thereby 

ncouraging the network to encode this type of information. 

ommonly used auxiliary tasks include image inpaining ( Larsson 

t al., 2016; Pathak et al., 2016; Zhang et al., 2016 ), contrastive 

earning ( Chen et al., 2020; Misra and Maaten, 2020 ), rotation 

rediction ( Komodakis and Gidaris, 2018 ), solving jigsaw puz- 

les ( Noroozi and Favaro, 2016 ), and relative patch location pre- 

iction ( Doersch et al., 2015 ). 

In the medical domain, self-supervised learning (SSL) has been 

sed to improve performance on other (main) tasks by exploiting 

nlabeled data in a multi-task learning setting ( Chen et al., 2019; 

i et al., 2021b ) and to pre-train models before transferring them 

o new (main) tasks ( Bai et al., 2019; Zhu et al., 2020; Dong et al.,

021; Lu et al., 2021 ). In Ouyang et al. (2020) , SSL was used to train
3 
 FSS model completely unsupervised using a novel superpixel- 

ased auxiliary task, removing the need for labeled data during 

raining. We build on this work by extending the proposed self- 

upervision scheme to 3D supervoxels. 

.4. Supervoxel segmentation 

Supervoxels and superpixels are groupings of local voxels/pixels 

n an image that share similar characteristics. The boundaries of 

 supervoxel/superpixel therefore tend to follow the boundaries of 

he structures in the image, providing natural sub-regions. Super- 

oxel and superpixel segmentation has become a common tool in 

omputer vision, also in the medical domain ( Huang et al., 2020; 

rving et al., 2016 ). For a detailed comparison of available super- 

ixel segmentation algorithms, we refer the reader to ( Stutz et al., 

018 ). 

. Problem definition 

Given a labeled dataset with classes C train (here: C train = 

 superv oxel 1 , superv oxel 2 , . . . } ), FSS models aim to learn a quick

daption to new classes C test (e.g. C test = { li v er, kidney, spleen } )
hen exposed to only a few labeled samples. The training and 

esting are performed in an episodic manner ( Vinyals et al., 2016 ) 

here, in each episode, N classes are sampled from C to create a 

upport set and a query set. The input to an episode is the support 

mage(s) (with annotations) and a query image, and the output is 

he predicted query mask. In an N-way k -shot setting, the sup- 

ort set S = { (x 1 , y 1 ) , . . . , (x N×k , y N×k )) } consists of k image slices 

 ∈ R 

H×W (with annotations y ∈ R 

H×W indicating the class of each 

ixel) from each of the N classes, whereas the query set consists 

f one query image Q = 

{
(x ∗

1 
, y ∗

1 
) 
}

containing one or more of the 

classes. 

. Methods 

In this work, we propose an anomaly detection-inspired net- 

ork (ADNet) for prototypical FSS 1 . We employ a shared feature 

xtractor between the support and query images and perform met- 

ic learning-based segmentation in the embedding space. Unlike 

rior approaches that obtain prototypes for both foreground and 

ackground classes ( Liu et al., 2020b; Ouyang et al., 2020; Wang 

t al., 2019 ), we only consider foreground prototypes to avoid the 

forementioned problems related to explicitly modeling the large 

nd heterogeneous background class. Based on one foreground pro- 

otype, we compute anomaly scores for all query feature vec- 

ors. The segmentation of the query image is then based on these 

nomaly scores and a learned anomaly threshold. To train our 

odel, we take inspiration from Ouyang et al. (2020) and propose 

 new supervoxel-based self-supervision pipeline. Fig. 1 and Fig. 2 

rovide an overview of the model during training and inference, 

espectively. 

.1. Anomaly detection-inspired few-shot segmentation 

We denote the encoding network as f θ and start by embed- 

ing the support and query images into deep features, f θ (x ) = F s 

nd f θ (x ∗) = F q , respectively. As opposed to previous works, we 

re only interested in explicitly modeling the foreground in each 

pisode. We do this by employing the segmentation mask to per- 

orm masked average pooling (MAP), but only for the foreground 

lass c. We resize the support feature map F s to the mask size 
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Fig. 1. Illustration of the model during training. Support and query slices are obtained from the same image volume as two different 2D slices containing a randomly 

sampled supervoxel. A shared feature encoder encodes the query and the support images into deep feature maps. The support features are then resized to the mask size 

and masked average pooling is applied to compute the foreground prototype. For each query feature vector, an anomaly score is computed based on the cosine similarity to 

the prototype. Finally, the segmentation of the query image is performed by thresholding the anomaly scores using a learned anomaly threshold. 

Fig. 2. Illustration of the model during inference. Based on labeled slices from the 

support volume, the query volume is segmented slice by slice, one class at a time. 
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 H, W ) and compute one foreground prototype p ∈ R 

d , where d is

he dimension of the embedding space: 

p = 

∑ 

x,y F 
s (x, y ) � y f g (x, y ) 

∑ 

x,y y 
f g (x, y ) 

, (1) 

here � denotes the Hadamard product and y f g = 1 (y = c) is the

inary foreground mask of class c2 . 

To segment the query image based on this one class-prototype, 

e design a threshold-based metric learning approach to the seg- 

entation. We first obtain an anomaly score S for each query fea- 

ure vector F q (x, y ) by calculating the (negative) cosine similarity 

o the foreground prototype p of the episode: 

(x, y ) = −α
F q (x, y ) · p 

‖ F q (x, y ) ‖‖ p‖ 

, (2) 

here α = 20 is a scaling factor introduced by 

reshkin et al. (2018) . In this way, query feature vectors that 

re identical to the prototype will get an anomaly score of −α
minimum), whereas query feature vectors that are pointing in the 

pposite direction, relative to the prototype, get an anomaly score 

f α (maximum). The predicted foreground mask is then found by 

hresholding these anomaly scores with a learned parameter T . To 

ake the process differentiable, we perform soft thresholding by 
2 1 (·) is the indicator function, returning 1 if the argument is true and 0 other- 

ise. 

l

H

i

s

4 
pplying a shifted Sigmoid: 

ˆ  q 
f g 
(x, y ) = 1 − σ ( S(x, y ) − T ) , (3) 

here σ (·) denotes the Sigmoid function with a steepness param- 

ter κ = 0 . 5 . The impact of the steepness parameter is examined in

ection 5.3.4 . In this way, query feature vectors with an anomaly 

core below T (similar to the prototype) get a foreground proba- 

ility above 0.5, whereas query feature vectors with an anomaly 

core above T (dissimilar to the prototype) get a foreground prob- 

bility below 0.5. The predicted background mask is finally found 

s ˆ y 
q 

bg 
= 1 − ˆ y 

q 

f g 
. 

The predicted foreground and background masks for the query 

mage are then upsampled to the image size ( H, W ) and we com-

ute the binary cross-entropy segmentation loss: 

 S = − 1 

HW 

∑ 

x,y 

y q 
bg 

(x, y ) log ( ̂  y q 
bg 

(x, y )) + y q 
f g 
(x, y ) log ( ̂  y q 

f g 
(x, y )) . 

(4) 

n order to encourage a compact embedding of the foreground 

lasses, we construct an additional loss term L T = T /α that min- 

mizes the learned threshold. The effect of this loss component is 

xamined in Section 5.3.2 . 

Following common practice ( Liu et al., 2020b; Ouyang et al., 

020; Wang et al., 2019 ), we also add a prototype alignment regu- 

arization loss where the roles of support and query are reversed. 

he predicted query mask is used to compute a prototype that seg- 

ents the support image: 

 PAR = − 1 

HW 

∑ 

x,y 

y s bg (x, y ) log ( ̂  y s bg (x, y )) + y s f g (x, y ) log ( ̂  y s f g (x, y )) . 

(5) 

his gives us the overall loss function 

 = L S + L T + L PAR . (6) 

.2. Supervoxel-based self-supervision 

The ADNet is parameterized by P = { θ, T } and trained self- 

upervised (unsupervised) end-to-end in an episodic manner. For 

ase of comparison to previous approaches, our baseline setup fol- 

ows a 2D approach, where volumes are segmented slice-by-slice. 

owever, to better utilize the volumetric nature of the medical 

mages, we propose a new self-supervision task that exploits 3D 

upervoxels during the model’s training phase. As supervoxels are 
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ub-volumes of the image, representing groups of similar voxels 

n local regions of the image volume, this allows us to sample 

D pseudo-segmentation masks for semantically uniform regions 

n the image. 

In the training phase, each episode is constructed based on one 

nlabeled image volume and its supervoxel segmentation: First, 

ne random supervoxel is sampled to represent the foreground 

lass, resulting in a binary 3D segmentation mask. Then, we sam- 

le two 2D slices from the image containing this ”class”/supervoxel 

o serve as support and query images. By exploiting the relations 

cross slices, we are able to increase the amount of information 

hat can be extracted in the self-supervision task compared to 

rior approaches. Following Ouyang et al. (2020) , we additionally 

pply random transformations to one of the images (query or sup- 

ort) to encourage invariance to shape and intensity differences. 

The supervoxels for all image volumes are computed offline us- 

ng a 3D extension of the same unsupervised segmentation algo- 

ithm ( Felzenszwalb and Huttenlocher, 2004 ) as in ( Ouyang et al., 

020 ). This is an efficient graph-based image segmentation algo- 

ithm building on euclidean distances between neighboring pixels. 

n the 3D extension, this corresponds to the distances from each 

oxel to its 26 nearest neighbours. In medical images, the resolu- 

ion in z-direction (slice thickness) is typically different from the 

n-plane ( x, y ) resolution. To account for this anisotropic voxel res- 

lution, we re-weight all distances along the z-direction ( xz−, yz−
nd xyz−direction) according to the spatial ratios. 

The supervoxel generation has one hyper-parameter ρ that con- 

rols the minimum supervoxel size, where a larger ρ corresponds 

o larger and fewer supervoxels. The effect of this parameter on 

he final segmentation result is examined in Section 5.3.3 . 

.3. Implementation details 

The implementation is based on the PyTorch (v1.7.1) implemen- 

ation of SSL-ALPNet ( Ouyang et al., 2020 ). The encoder network 

sed in all the 2D experiments is a ResNet-101 pretrained on MS- 

OCO, where the classifier is replaced by a 1 × 1 convolutional 

ayer to reduce the feature dimension from 2048 to 256. Follow- 

ng ALPNet, we optimize the loss using stochastic gradient descent 

ith momentum 0.9, a learning rate of 1e-3 with a decay rate of 

.98 per 1k epochs, and a weight decay of 5e-4 over 50k itera- 

ions. To address the class imbalance, we follow previous work and 

eigh the foreground and background class in the cross-entropy 

oss (1.0 and 0.1, respectively). To further stabilize training, we set 

 minimum threshold of 200 pixels on the supervoxel size in the 

lices sampled as support/query. Supervoxel generation is done of- 

ine (once per image volume) and is relatively computationally ef- 

cient 3 . Training takes 1 . 8 h on a Nivida RTX 2080Ti GPU. 

. Experiments 

.1. Setup 

.1.1. Data 

We assess the proposed method on representative publicly 

vailable datasets 4 : 

(1) MS-CMRSeg (bSSFP fold), from the MICCAI 2019 Multi- 

sequence Cardiac MRI Segmentation Challenge, containing 

35 3D cardiac MRI scans with on average 13 slices ( Zhuang, 

2018; 2016 ). 
3 The compute time for generating all supervoxels for the MS-CMRSeg dataset is 

ess than 3 minutes using a Quad-Core Intel Core i7 processor. 
4 Links to public datasets: MS-CMRSeg and CHAOS 

t

p

a

5 
(2) CHAOS , from the ISBI 2019 Combined Healthy Abdominal 

Organ Segmentation Challenge (task 5), containing 20 3D 

T2-SPIR MRI scans with on average 36 slices ( Kavur et al., 

2021; 2019; 2020 ). 

To compare our results to Ouyang et al. (2020) , we follow the 

ame pre-processing scheme: 1) Cut the top 0.5% intensities. 2) Re- 

ample image slices (short-axis slices for the cardiac images and 

xial slices for the abdominal images) to the same spatial reso- 

ution. 3) Crop slices to unify size ( 256 × 256 pixels). Further, to 

t into the pretrained network, each slice is repeated three times 

long the channel dimension. 

In all experiments, the models are trained self-supervised (un- 

upervised) and evaluated in a five-fold cross-validation manner, 

here, in each fold, the support images are sampled from one of 

he patients and the remaining patients are treated as query (see 

ig. 3 ). Furthermore, to account for the stochasticity in the model 

nd optimization, we repeat each fold three times. In the cardiac 

RI scans we segment three classes: Left-ventricle blood pool (LV- 

P), left-ventricle myocardium (LV-MYO) and right-ventricle (RV). 

n the abdominal MRI scans, we segment four classes: left kidney 

L. kid.), right kidney (R. kid.), liver, and spleen. Following previous 

ethods ( Ouyang et al., 2020; Roy et al., 2020 ), each class is seg-

ented separately in binary foreground/background segmentation 

roblems 5 . Since the models are trained self-supervised, we do not 

xclude image slices that contain the target classes. 

.1.2. Evaluation metric 

Following common practice ( Ouyang et al., 2020; Roy et al., 

020 ) we employ the mean dice score to compare the model pre- 

ictions to the ground truth segmentations. The dice score, D , be- 

ween two segmentations A and B is given by 

 (A, B ) = 2 

| A ∩ B | 
| A | + | B | · 100% , (7) 

eaning that a dice score of 100% corresponds to a perfect match 

etween the segmentations. 

.1.3. Evaluation protocols 

During inference, the query volumes are segmented episode- 

ise, slice-by-slice, based on labeled support slices. For this reason, 

t is necessary to define an evaluation protocol that describes how 

o construct the episodes during inference, i.e. how to pair support 

nd query images in episodes. In the experiments, we evaluate all 

odels under two different evaluation protocols (EPs), illustrated 

n Fig. 4 . 
5 As the segmentation only relies on the computation of the cosine similarity 

o a class-specific prototype and a threshold which is shared among classes, the 

roposed method may be extended to account for multi-class scenarios. A detailed 

nalysis of this is left for future work. 

https://zmiclab.github.io/projects/mscmrseg19
https://chaos.grand-challenge.org
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Fig. 4. Illustration of EP1 (top) and EP2 (bottom). In EP1, the support and query 

volumes are divided into three succeeding sub-chunks. The middle slice in each 

sub-chunk of the support volume is labeled and used to segment all the slices in 

the corresponding sub-chunk in the query volume. This means that the protocol 

requires weak labels indicating where the class of interest is located in the query 

volume. In EP2, the middle slice of the support volume is labeled and used to seg- 

ment all slices in the query volume, avoiding the need for additional weak labels. 

R

l

i

b

v

c

i

i

i

h

c

b

d

i

k

f

e

u

5

P  

N  

d

o

m  

b

O

i

m

F

d

p

p

i

s

s

a

T

f

s

W

t

a

t

t

l

t

a

w

t

t

e

a  

a

m

m

c

g

l

m

d

f

a

a

m

c

s

t

Q

c

5

5

d

p

t

o

d

t

v

t

t

5

f

T

a

t

H

g

Evaluation protocol 1 (EP1) Previous works ( Ouyang et al., 2020; 

oy et al., 2020 ) follow an evaluation protocol that requires weak 

abels for all query images, i.e. there is a need to indicate (label) 

n which slices the foreground class is located. For a given class to 

e segmented, the chunk of slices in both the support and query 

olumes containing this class is divided into three succeeding sub- 

hunks. The middle slice in each sub-chunk of the support volume 

s used to segment all the slices in the corresponding sub-chunk 

n the query. In practice, this requires manual and time-consuming 

nput from medical experts during the inference phase, where they 

ave to scroll through each query image volume to mark the slices 

ontaining the class(es) of interest. 

Evaluation protocol 2 (EP2) To avoid the need for weak query la- 

els during inference, we introduce a new evaluation protocol that 

oes not depend on the position of the target volume, and thus 

s more applicable in practical situations. Here, we simply sample 

 = 1 slices from the support foreground volume and use this in- 

ormation to segment the entire query volume. To limit boundary 

ffects, we choose the middle slice of the support foreground vol- 

me. 

.2. Comparison to state-of-the-art 

We compare our model to three modern FSS models: 

ANet ( Wang et al., 2019 ), ALPNet Ouyang et al. (2020) , and PP-

et ( Liu et al., 2020b ) with five (default) prototypes per class. Ad-

itionally, to compare our one-prototype anomaly approach to a 

ne-prototype decoder approach, we adopt the dense comparison 

odule proposed in ( Zhang et al., 2019 ) as a decoder on top of the

ackbone network and refer to this network as CANet 6 . 

The current state-of-the-art method for medical FSS, 

uyang et al. (2020) , showed that training PANet and ALPNet 

n a self-supervised manner improved the dice scores of the seg- 

entation results considerably, compared to classical supervised 

SS. Specifically, the dice scores on the MS-CMRSeg and CHAOS 

atasets increased by an average of 17.9 and 26.1 percentage 

oints, respectively. Here, we are thus only focusing on SSL ap- 

roaches. pSSL refers to the superpixel SSL approach presented 
6 Code available: PANet , ALPNet , PPNet , and CANet . 

c

6 
n Ouyang et al. (2020) , whereas vSSL refers to our proposed 

upervoxel-based approach. 

Table 1 and Table 2 present the results under EP1 and EP2, re- 

pectively, as mean and standard deviations over three runs (over 

ll splits). Summarized details about the models can be found in 

able 3 . 

In Table 1 we can see that our proposed model under EP1 per- 

orms similarly to the state-of-the-art on both datasets, while using 

ignificantly fewer prototypes compared to the closest competitors. 

e can also observe that the models that use just a few prototypes 

o model the background (PANet, PPNet) perform poorly and are 

mong the three worst performing models for both datasets. Fur- 

hermore, by only modeling the foreground class and segmenting 

he query image using a decoding network, CANet results in the 

owest (overall) dice score on the cardiac dataset. 

In a more realistic scenario, information about the location of 

he foreground volume in the query images is typically not avail- 

ble. We therefore evaluate the models under EP2 ( Table 2 ) and 

e observe that our proposed approach outperforms the state-of- 

he-art. One-sided Wilcoxon signed rank tests ( Wilcoxon, 1992 ) on 

he mean dice scores across all runs indicate a significant differ- 

nce between the segmentation results obtained from vSSL-ADNet 

nd pSSL-ALPNet for both datasets under EP2 ( p < 0 . 05 ). For the

bdominal data, our model improves the segmentation results by 

ore than 20 percentage points compared to pSSL-ALPNet. The 

ain reason for this large improvement is that we now have to 

onsider all the query slices (not only the slices containing the or- 

an to be segmented), meaning that the background class is much 

arger and much more diverse. This again complicates the task of 

odeling the background with prototypes, whereas our anomaly 

etection-inspired model without background prototypes is less af- 

ected. The somewhat lower performance and high standard devi- 

tion for left-kidney and spleen are related to the weak bound- 

ries between these organs (see discussion in Section 6 ). Further- 

ore, we obtain considerable, but smaller, improvements on the 

ardiac dataset under EP2. This is related to the lower number of 

lices and the less diverse background in these images, making the 

ask of modeling the background with prototypes less complicated. 

ualitative comparisons are provided in Fig. 5 and Fig. 6 , where we 

an see that our approach is less prone to over-segmentation. 

.3. Model analysis 

.3.1. Analysis of learned threshold 

To evaluate the learned threshold’s precision on the unseen test 

ata, we have conducted a line search where we, in the inference 

hase, evaluate the dice score obtained using a range of different 

hresholds between -20 and -15. The experiment was performed 

n three runs for each split and the mean dice score and stan- 

ard deviation (shaded region) are reported in Fig. 7 . The learned 

hreshold is averaged over all runs and and represented by the 

ertical black line 7 . From the plot, we see that the threshold op- 

imized for the training data is close to the ideal threshold for the 

est data, with little to gain in terms of increased dice score. 

.3.2. Ablation study 

To evaluate the effect of the three components of our loss 

unction, we conduct an ablation study on the cardiac dataset. 

able 4 illustrates that L T and L PAR improve the dice score across 

ll classes. Further, Fig. 8 shows qualitatively the effect of L T on 

he segmentation of one image slice from the MS-CMRSeg dataset. 

ere, it can be seen how the encouraging of a more compact fore- 

round embedding via L T reduces the over-segmentation, espe- 

ially for the left-ventricle myocardium. 
7 The small, gray shaded region indicates the range of learned threshold values. 

https://github.com/kaixin96/PANet
https://github.com/cheng-01037/Self-supervised-Fewshot-Medical-Image-Segmentation
https://github.com/Xiangyi1996/PPNet-PyTorch
https://github.com/icoz69/CaNet
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Table 1 

Mean dice score and standard deviation over three runs per split under EP1. 

Table 2 

Mean dice score and standard deviation over three runs per split under EP2. ∗ indicates that the increase in mean dice score for the best performing model is statistically 

significant ( p < 0 . 05 ). 

Fig. 5. Qualitative comparisons for the abdominal MRI dataset. To the left of the solid line, we see (left to right) the support image, the segmentation results of a query 

slice containing the foreground class, and the ground truth segmentation of this query image. To the right, we see segmentation results for query slices not containing the 

foreground class. Top to bottom: liver, right kidney, left kidney, and spleen. The proposed method is more robust to background outside the support slice, resulting in less 

over-segmentation. 

Fig. 6. Qualitative comparisons for two episodes with the same support volume from the cardiac MRI dataset. Left to right: Support image, segmentation results of a query 

slice, and ground truth segmentation of this query image. The segmentation results are quite similar but the proposed method captures the left-ventricle myocardium and 

left ventricle blood pool better, with less over-segmentation. 

7 
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Table 3 

Summarized information about the models. ∗The number of protototypes in ALPNet 

is adaptive and we report the average number over all classes during inference. 

Fig. 7. Analysis of the precision of the learned threshold. The plot shows the mean 

dice score (with standard deviation) obtained for a range of thresholds during in- 

ference on the MS-CMRSeg dataset. The learned threshold is indicated by the black 

vertical line. 

Table 4 

Ablation study showing how the loss function components affect the results under 

EP1. ∗ indicates that the increase in mean dice score for the best performing model 

is statistically significant ( p < 0 . 05 ). 

Fig. 8. Qualitative (zoomed in) segmentation results for one slice in the MS- 

CMRSeg dataset obtained from a model trained with (middle) and without (top) 

L T in the total loss. The lower row shows the ground truth, and it is evident that 

the threshold loss reduces the over-segmentation, especially for the left-ventricle 

myocardium. 

Table 5 

Supervoxel parameter sensitivity. Analysis of the parameter controlling the mini- 

mum supervoxel size (n.o. voxels), on the cardiac MRI dataset under EP1. 

Table 6 

Steepness parameter sensitivity. Analysis of the parameter controlling the sigmoid 

steepness parameter, on the cardiac MRI dataset under EP1. 
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.3.3. Sensitivity of supervoxel size 

A sensitivity analysis of the parameter ρ , controlling the super- 

oxel size, is conducted on the MS-CMRSeg dataset and the results 

re presented in Table 5 . As shown by these results, the final seg- 

entation performance is relatively robust for a range of minimum 

ize values from ρ = 10 0 0 to ρ = 20 0 0 . However, if we allow the

izes to become too small ( ρ = 500 ) or too large ( ρ = 50 0 0 ), we

ee that the performance is negatively affected. Exam ples of 2D 

lices from the 3D supervoxel segmentations for the different val- 

es of ρ are shown in Fig. 9 . 

According to the sensitivity study, a reasonable value is ρ = 

0 0 0 , and all the reported vSSL results are obtained with this value

or the MS-CMRSeg dataset and ρ = 50 0 0 for the CHAOS dataset, 

nless otherwise stated. The difference in value of ρ reflects the 

ifferences in volume size. 

.3.4. Influence of steepness parameter 

The steepness of the sigmoid function controls how soft the 

hreshold operation performed is. If the steepness is high (harder 

hresholding), the class assignments of samples becomes harder, 

lso close to the threshold. To examine the influence of the steep- 

ess parameter, κ , on the final segmentation results, we have con- 

ucted six experiments with different values of κ , from κ = 0 . 1 

o κ = 1 . 0 on the MS-CMRSeg dataset 8 . The results presented in

able 6 indicate the model’s robustness with respect to this pa- 

ameter, and we can observe a gain of more than two percentage 

oints in the dice score by decreasing the steepness from 1.0 to 

.5. 

.3.5. vSSL vs pSSL 

To disentangle and isolate the effect from the proposed exten- 

ion of the self-supervision task, we have conducted additional 

xperiments where we train our proposed model (ADNet), and 

he closest competing model (ALPNet) with the two different self- 

upervision tasks. From the results in Table 7 , we see that the su- 

ervoxels overall yield better or comparable results for both mod- 

ls. For our proposed ADNet, there is a significant improvement 
8 Note that this is equivalent to changing the scaling between α = 0 . 2 and α = 20 

n Eq. (2) . 
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Fig. 9. Examples of supervoxel segmentation results in one slice from the MS-CMRSeg dataset for different values of ρ . The parameter ρ controls the minimum size of a 

supervoxel for it not to be joined with an adjacent supervoxel. A larger ρ corresponds to larger and fewer supervoxels. 

Table 7 

Mean dice score and standard deviation over three runs per split for ADNet and ALPNet with superpixel-based and supervoxel-based self-supevision. ∗ indicates that the 

increase in mean dice score for the best performing model is statistically significant ( p < 0 . 05 ). 
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 p < 0 . 05 ) in dice score from pSSL to vSSL for both datasets. More-

ver, the improvements appear most prominent for the abdominal 

ataset, which is assumed to be related to the nature of the im- 

ge volumes: In the abdominal dataset, the image volumes con- 

ain more slices and more potential information to utilize when 

he self-supervision task is extended to 3D, compared to the car- 

iac dataset. 

A different im plication of the proposed extension to supervoxel- 

ased self-supervision is the enabling of training 3D CNNs for di- 

ect volume segmentation, as discussed in the next section. 

.4. Extension to one-step volume segmentation 

Thus far, we have adopted a hybrid strategy to 3D segmen- 

ation, following Ouyang et al. (2020) , where the 3D image vol- 

mes are segmented slice by slice, independently. However, a nat- 

ral extension that is facilitated by the new self-supervision task 

s to adopt a 3D CNN as backbone to process the volumes in 

ne step, thereby fully exploiting the potentially useful informa- 

ion along the third axis. Unfortunately, the high memory con- 

umption and computational cost of 3D CNNs has limited their use 

o smaller images (in number of voxels), often obtained by down- 

ampling the original images ( Çiçek et al., 2016 ) or by patch-based 

pproaches ( Huo et al., 2019 ). 

To investigate the potential of utilizing 3D convolutions to do 

ne-step 3D segmentations within our proposed framework, we 

mploy a 3D ResNeXt-101 ( Hara et al., 2018 ), which is the 3D ex-

ension of ResNeXt ( Xie et al., 2017 ), pretrained on the Kinetics- 

00 dataset ( Kay et al., 2017 ), as our encoder network. The 3D

esNeXt-101 is a more resource efficient network, compared to the 

D ResNet-101, with approximately half as many trainable param- 

ters in total. The number of parameters is comparable to the 2D 

esNet-101 (see Table 8 ). 

To retain the same spatial resolution in the embedding space as 

or our 2D backbone, we modify the network by i ) removing the 

axpooling in z-direction and ii ) changing the strides in conv 3, 

onv 4, and conv 5 to (1 , 2 , 2) , (1 , 1 , 1) , and (1 , 1 , 1) , respectively

see architecture details in Table 9 ). Similarly to the 2D ResNet-101, 

e replace the classifier with 1 × 1 × 1 convolutions to reduce the 

eature dimension from 2048 to 256. Each voxel is repeated three 
9 
imes along the channel dimension in the input to fit into the pre- 

rained network. The network is trained self-supervised end-to-end 

n 3D patches of size (10 , 215 , 215) , and the loss is optimized ac-

ording to Section 4.3 . During inference, we evaluate the perfor- 

ances under EP2 with two different levels of supervision: i ) Only 

abeling the middle slice of the target class in the support volume 

 k = one ), as is done in the 2D experiments. ii ) Labeling all the

upport slices ( k = al l ) and computing one prototype for the entire

upport volume, which is enabled by the volume-wise embedding. 

Table 8 provides a summary of the performance of vSSL-ADNet 

ith 3D ResNeXt-101 and 2D ResNet-101 backbones. Though it is 

ifficult to directly compare 2D CNNs and 3D CNNs for many dif- 

erent reasons, such as difference in pre-training datasets and the 

umber of weights modelling relations within slices and between 

lices, the results are meant to indicate the potential of using 3D 

onvolutions in our framework to perform one-step 3D segmenta- 

ion. 

From the results on the cardiac dataset, we see that the differ- 

nces between 2D and 3D are relatively small, which agrees with 

bservations in previous work ( Vesal et al., 2019 ). In the abdominal 

ataset, on the other hand, there appears to be a greater poten- 

ial for utilizing the 3D structure via 3D convolutions. This mirrors 

ur results from Section 5.3.5 , where we found that the abdominal 

ataset benefited more from extending the self-supervision task 

rom superpixels to supervoxels. 

The largest performance difference between the backbones can 

e observed for the left kidney and spleen classes. While the 2D 

NN results in a segmentation where these classes are confused, 

he 3D CNN leads to a better separation between the classes, as 

llustrated in Fig. 10 . We further observe a drop in performance on 

he right kidney class for the 3D CNN with k = 1 , which demon-

trates the importance of having good support features to achieve 

obust results with the 3D backbone. 

. Limitations and outlook 

The key observation leading to our anomaly-detection inspired 

ew-shot medical image segmentation is that the foreground class 

ypically is relatively homogeneous. By only modeling the fore- 

round class with a single prototype, we avoid having to model 
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Table 8 

Mean dice score and standard deviation over three runs per split for vSSL-ADNet with 2D ResNet-101 as backbone and 3D ResNeXt-101 as backbone (under EP2). ∗ indicates 

that the increase in mean dice score for the best performing model is statistically significant ( p < 0 . 05 ). 

Table 9 

Modified 3D ResNeXt-101 architecture with cardinality C = 32 used as backbone in 

the 3D experiments. 

Fig. 10. Comparison of the segmentation results for the left kidney (orange, top) 

and spleen (purple, bottom) classes for vSSL-ADNet with 2D ResNet-101 and 3D 

ResNeXt-101 as backbone. The 3D CNN leads to a better separation between the 

classes. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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he large and highly inhomogeneous background, which we be- 

ieve is the main challenge in prototypical few-shot medical im- 

ge segmentation. However, if our assumption of a relatively ho- 

ogeneous foreground class is not met, and the foreground con- 

ists of multiple distinct regions with strong edges, e.g. combin- 

ng left-ventricle blood pool and left-ventricle myocardium into 

ne foreground class (left-ventricle), modeling the foreground with 

ne prototype might not be sufficient. This is related to the na- 

ure of the supervoxels, which tend to follow the boundaries of the 

tructures in the image; Left-ventricle blood pool and left-ventricle 
10 
yocardium will typically belong to different supervoxels during 

raining and the network therefore learns to separate their feature 

epresentations into different clusters. To be able to capture this 

ombined foreground class during inference, one option could be 

o take inspiration from PPNet ( Liu et al., 2020b ) and cluster the 

eatures into multiple foreground prototypes and then merge the 

esults. 

Both the superpixel-based and the supervoxel-based self- 

upervision tasks are inevitably vulnerable to merging different 

lasses during training if the boundaries between them are weak: 

f the boundaries are weak, the classes will end up in the same 

uperpixel/voxel and the network learns to embed the classes into 

he same cluster, which makes them difficult to separate during in- 

erence. Moreover, in the supervoxel case, it is enough for one slice 

o contain a weak boundary between the classes before they leak 

nto the same supervoxel. This is something that happens between 

he left-kidney and the spleen in the abdominal dataset, and leads 

o confusion between these two classes during inference, thereby 

esulting in lower dice scores and high standard deviations. Tak- 

ng into account this weak/noisy nature of the supervoxel pseudo- 

abels is a promising direction for future research. 

. Conclusion 

In this work, we proposed a novel and end-to-end trainable 

nomaly detection-inspired FSS network for medical image seg- 

entation. By approaching the segmentation task as an anomaly 

etection problem, our model eliminates the need to explicitly 

odel the large and heterogeneous background class. Moreover, to 

rain the model in an unsupervised manner, we introduced a new 

elf-supervision task that captures the 3D nature of the data by 

tilizing supervoxels. We assessed our proposed model on repre- 

entative datasets for cardiac segmentation and abdominal organ 

egmentation, and showed that it improves segmentation perfor- 

ance and robustness, especially in the realistic scenario where 

o weak labels for the query images are assumed. Furthermore, 

e demonstrated how the proposed model, together with the new 

elf-supervision task, has the potential to perform one-step 3D seg- 

entation of the entire image volumes. We believe that fully ex- 

loiting the 3D nature of the medical images in this manner for 

ew-shot segmentation represents an interesting line of research 

or future work. 
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