

MAT-3900

Master 's Thesis in Mathematics

EXTENSIONS OF GROUPS AND MODULES

CatalinaNicole Vintilescu Nermo

May, 2010

MAT-3900
 Master's Thesis in Mathematics

EXTENSIONS OF GROUPS AND MODULES

Catalina Nicole Vintilescu Nermo

May, 2010

EXTENSIONS OF GROUPS AND MODULES

CATALINA NICOLE VINTILESCU NERMO

Abstract

The main goal of this thesis is to build up detailed constructions and give complete proofs for the extension functors of modules and groups, which we define using cohomology functors. Further, we look at the relations that appear between these and short exact sequences of modules, respectively groups. We calculate also several concrete cohomology groups, and build extensions that are described by those cohomologies.

Contents

0. Introduction 2
1. Preliminaries 3
2. Acknowledgement 11
Part 1. Extensions of modules 13
3. The functors $E x t_{R}^{n}$ 13
4. The functors $\overline{E x t}_{R}^{n}$ 21
5. The group $E_{R}(C, A)$ 29
Part 2. Extensions of groups 41
6. Cohomology of groups 41
7. Extensions with abelian kernel 48
7.1. Description using cocycles 48
7.2. Characteristic class of an extension 61
8. Extensions with non-abelian kernel 65
Part 3. Calculations 73
9. Abelian extensions 73
10. Results connecting abelian extensions to non-abelian extensions 76
10.1. $E_{\mathbb{Z}}(G, A)$ is a subgroup of $E\left(G, A^{\text {trivial }}\right)$ 76
10.2. The case G is finite cyclic 78
10.3. The case G is $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ 80
References 86
[^0]
0. Introduction

Most of the results in this thesis are known. Our goal was to put down on paper some longer technical proofs that are usually just sketched in the existing literature, and to build up a machinery that is easy to follow. There is a thread through the topics, which are revealed to be closely related.

In Part 1 we introduce the functors $E x t_{R}^{n}(-,-), \overline{E x t}_{R}^{n}(-,-)$, defined for any non-negative integer n, using n-th cohomology functors, projective resolutions, and respectively, injective coresolutions, over some fixed ring R. One of their most interesting properties is that they are bifunctors (Theorem 3.4 and Theorem 4.4). Moreover, $E x t_{R}^{n}(-,-)$ and $\overline{E x t}_{R}^{n}(-,-)$ are isomorphic as bifunctors (Theorem 4.10).

We introduce another bifunctor, $E_{R}(C, A)$, the set of equivalence classes of short exact sequences of R-modules

$$
0 \longrightarrow A \longrightarrow E \longrightarrow C \longrightarrow 0
$$

with the Baer sum as an abelian group operation. Finally, we prove in Theorem 5.16 that the abelian groups $E x t_{R}^{1}(C, A)$ and $E_{R}(C, A)$ are naturally (on C and A) isomorphic.

In Part 2, we define the functors $H^{n}(-,-)$, with first argument any group G and second argument any G-module A, again using the n-th cohomology functors but now over the fixed group ring. For any action of G on A, we can establish a set bijection between $H^{n}(G, A)$ and the set $E(G, A)$, consisting of equivalence classes of short exact sequences of groups

$$
0 \longrightarrow A \longrightarrow E \longrightarrow G \longrightarrow 1
$$

where E, G are not necessarily abelian groups. Further, $E(G, A)$ turns out to be a group, and as a bifunctor from the category $P A I R S$ (as in Definition 6.6) to the category of abelian groups, it is isomorphic to $H^{n}(G, A)$ (Theorem 7.11).
What about the case when we do not restrict ourselves to an abelian kernel A ? As described in Section 8, if an extension exists, it induces a triple called an abstract kernel $(A, G, \theta: G \longrightarrow A u t(A) / I n(A))$. The other way, given an abstract kernel, it has an extension if and only if one of its obstructions is equal to 0 (considered as a 3-cochain of $H o m_{\mathbb{Z} G}\left(\mathbb{Z}_{*}^{\text {trivial }}, Z(A)\right)$, where \mathbb{Z} is the trivial G-module, and $Z(A)$ is the center of A). See Theorem 8.6.

In the last part, we specifically describe extensions of primary and the infinite cyclic group \mathbb{Z} by primary and the infinite cyclic group \mathbb{Z}, see Theorem 9.3 and Theorem 9.4. Therefore, we shall have described all extensions of finitely generated abelian groups, as all such are a direct product of primary cyclic groups and of some rank. We have also shown that an abelian extension (an element of $E_{\mathbb{Z}}(G, A)$) may be embedded in $E(G, A)$, proved in Theorem 10.1. Specifically, when $G=\mathbb{Z}_{m}, m \geq$ 2, we have that any extensions of A by \mathbb{Z}_{m} is an abelian extension, as shown in Theorem 10.2. We will also show that there exists extensions of \mathbb{Z}_{p} by $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ that are not abelian, which follows from Theorem 10.14.

1. Preliminaries

We will now give some definitions and results that will be used frequently in the rest of the thesis. For any category C, we write $O b(C)$ for the class of objects in C, and $\operatorname{Hom}_{C}(A, B)$ the set of morphisms between any two objects $A, B \in O b(C)$.
Remark 1.1. A class is something larger than a set. A category C is called small if $\mathrm{Ob}(C)$ is a set, and large otherwise. Almost all categories in this Thesis are large.

Definition 1.2. ([3] Chapter IX.1) A pre-additive category C is a large category such that
(1) For any $A, B \in O b(C), \operatorname{Hom}_{C}(A, B)$ is an abelian group,
(2) Composition of morphisms is distributive.

Lemma 1.3. ([1] Chapter 5 Proposition 5.2) Fix any finite family of objects $\left\{A_{i}\right\}$ of a pre-additive category C. Whenever the coproduct of the $\left\{A_{i}\right\}^{\prime} s$ exists, it is isomorphic to the product of the $\left\{A_{i}\right\}^{\prime} s$, considered as objects of C.
Definition 1.4. ([1] Chapter 5.1) Let C and C^{\prime} be any two additive categories, and $F: C \longrightarrow C^{\prime}$ a functor. F is said to be additive if for any pair of morphisms $u, v \in \operatorname{Hom}_{C}(A, B)$, we have

$$
F(u+v)=F(u)+F(v)
$$

Lemma 1.5. Let C be any pre-additive category. The covariant and respectively contravariant functors $\operatorname{Hom}_{C}(A,-)$, and $\operatorname{Hom}_{C}(-, B)$, are additive functors.
Remark 1.6. Follows easily from Definition 1.2.
Lemma 1.7. Chain homotopies are preserved under covariant additive functors. Under a contravariant additive functor, chain homotopies are transformed to cochain homotopies.

Definition 1.8. An additive category C is a pre-additive category where there exists coproducts of any finite family of objects of C.
Definition 1.9. ([1] Chapter 5.4) An additive category C is said to be pre-abelian if for any morphism $u \in \operatorname{Hom}_{C}(A, B)$, there exists $a \operatorname{ker}(u)$ and coker (u).
Definition 1.10. A pre-abelian category C is called abelian if for any morphism $u \in \operatorname{Hom}_{C}(A, B)$, we have an isomorphism between $\operatorname{Coim}(u)$ and $\operatorname{Im}(u)$, where

$$
\begin{aligned}
\operatorname{Coim}(u) & =\operatorname{Coker}(\operatorname{ker}(u)) \\
\operatorname{Im}(u) & =\operatorname{ker}(\operatorname{coker}(u))
\end{aligned}
$$

For the next three definitions, C, D are two arbitrary categories.
Definition 1.11. A covariant functor T on C to D is a pair of functions: an object function and a mapping function. These assign to each object in A an object $T(A)$ in D, and respectively, to any morphism $\gamma: A \longrightarrow B$ in C a morphism $T(\gamma): T(A) \longrightarrow T(B)$ in D. It preserves identities and composites, i.e.

$$
T\left(1_{A}\right)=1_{T(A)}
$$

for all A in C, and

$$
T(\beta \gamma)=T(\beta) T(\gamma)
$$

whenever $\beta \gamma$ is defined.

Definition 1.12. A contravariant functor T from C to D is a covariant functor from $C^{o p p}$ to D, where $C^{o p p}$ is the category called the dual category to C, consisting of all objects of C, such that for any objects A, B in $C^{\text {opp }}, \operatorname{Hom}_{C^{\text {opp }}}(A, B)=$ $H o m_{C}(B, A)$.
Definition 1.13. $B y[3]$, a functor T, covariant in B and contravariant in A, is a bifunctor if and only if for any $\alpha: A \longrightarrow A^{\prime}, \beta: B \longrightarrow B^{\prime}$, the diagram

$$
\begin{gathered}
T\left(A^{\prime}, B\right) \xrightarrow{T(\alpha, B)} T(A, B) \\
T\left(A^{\prime}, \beta\right) \downarrow \\
T\left(A^{\prime}, B^{\prime}\right) \xrightarrow{T\left(\alpha, B^{\prime}\right)} T\left(A, B^{\prime}\right)
\end{gathered}
$$

is commutative.
Let us denote by R-mod, $A B, G R$, Sets, $S e t s_{*}$, the frequently used categories of (left) R-modules, abelian groups, groups, sets, and pointed sets, respectively. We assume that all rings are associative and have multiplicative unity element. Given a chain complex of abelian groups $\left(X_{*}, d_{*}\right)$, let $Z_{n}=\operatorname{ker} d_{n-1}, B_{n}=d_{n}\left(X_{n+1}\right)$. Elements of Z_{n} are called n-cycles and elements of B_{n} are called n-boundaries. As $X_{n} \xrightarrow{d_{n-1}} d_{n-1} X_{n}$ is an epimorphism, and ker $d_{n-1}=Z_{n}$, it follows that $X_{n} / Z_{n} \simeq$ B_{n-1}. Given a cochain complex $\left(X^{*}, d^{*}\right)$, let $Z^{n}=\operatorname{ker} d_{n}, B^{n}=d^{n+1}\left(X^{n+1}\right)$. Elements of Z^{n} are called n-cocycles, and elements of B^{n} are called n-coboundaries.

Definition 1.14. The n-th cohomology group of a cochain complex $\left(X^{*}, d^{*}\right)$ of abelian groups is the factor group $H^{n}(X)=Z^{n} / B^{n}$.

Definition 1.15. Let $\left(X^{*}, d^{*}\right)$ and $\left(Y^{*}, \delta^{*}\right)$ be cochain complexes. A cochain transformation $f: X \longrightarrow Y$ is a family of module homomorphisms $f^{n}: X^{n} \longrightarrow Y^{n}$, such that for any n,

$$
f^{n+1} d^{n}=\delta^{n} f^{n}
$$

A cochain homotopy s between two cochain transformations $f, g: X \longrightarrow Y$ is a family of module homomorphisms $s^{n}: X^{n} \longrightarrow Y^{n-1}$ such that for any n,

$$
f^{n}-g^{n}=s^{n+1} d^{n}+\delta^{n-1} s^{n}
$$

We write $s: f \simeq g$. We say that f is a homotopic equivalence if there exists a cochain transformation $g: Y \longrightarrow X$ and module homomorphisms $s: Y \longrightarrow Y, t:$ $X \longrightarrow X$, such that

$$
s: f g \simeq 1_{Y}, \text { and } t: g f \simeq 1_{X}
$$

We also have the notion of homology, chain transformation, chain homotopy, but we will, in this thesis, mostly be using the concept of cochain complex, cohomology, cochain transformation, cochain homotopy. We will simply write complex, transformation, homotopy, whenever their interpretation is clear from the context. A complex $\left(X^{*}, d^{*}\right)$ is said to be positive when $X^{n}=0$ for $n<0$.
Proposition 1.16. H^{n} becomes a covariant functor from the category of complexes of abelian groups (respectively R-modules) and transformations between them, to AB (respectively R-mod).

Proposition 1.17. ([3] Theorem II.2.1) If $s: f \simeq g$

$$
H^{n}(f)=H^{n}(g): H^{n}(X) \longrightarrow H^{n}(Y)
$$

Theorem 1.18. (Exact cohomology sequence, [3] Theorem II.4.1) For each short exact sequence of cochain complexes

$$
0 \longrightarrow K \longrightarrow L \longrightarrow M \longrightarrow 0
$$

we have a natural long exact sequence of cohomology:

$$
\ldots \longrightarrow H^{n}(K) \longrightarrow H^{n}(L) \longrightarrow H^{n}(M) \longrightarrow H^{n+1}(K) \longrightarrow H^{n+1}(L) \longrightarrow . .
$$

Definition 1.19. A free R-module generated by a set X consists of formal finite sums,

$$
\sum_{x \in X} n(x)\langle x\rangle, n(x) \in R
$$

and is denoted by $F(X)$.
Clearly, $F(X) \simeq \oplus_{x \in X} F(\langle x\rangle) \simeq \oplus_{x \in X} R$.
Definition 1.20. ([3] I.5) An R-module P is projective if for any epimorphism $\sigma: A \longrightarrow B$, and any homomorphism $\gamma: P \longrightarrow B$, there exists a $\beta: P \longrightarrow A$ such that $\gamma=\sigma \beta$. An R-module I is injective if for any monomorphism $\varkappa: A \longrightarrow B$, and any homomorphism $\mu: A \longrightarrow I$, there exists a $\rho: B \longrightarrow I$ such that $\rho \varkappa=\mu$. An R - module M is divisible if for any $m \in M$, and every $r \in R$, there exists $m^{\prime} \in M$ such that $m=r m^{\prime}$.

Definition 1.21. Let C be an R-module. A complex over C is a positive complex $\left(X_{*}, d_{*}\right)$ and a transformation ε, to the trivial complex (i.e. concentrated in dimension zero) C. Write $\left(X_{*}, d_{*}\right) \xrightarrow{\varepsilon} C$. If all X_{n}^{\prime} s are projective we say that $\left(X_{*}, d_{*}\right) \xrightarrow{\varepsilon} C$ is a projective complex over C. If $\left(X_{*}, d_{*}\right)$ has trivial homology in positive dimensions, while the induced mapping $\varepsilon: H_{0}(X) \longrightarrow C$ is an epimorphism, we say that $\left(X_{*}, d_{*}\right) \xrightarrow{\varepsilon} C$ is a resolution of C. A complex under C is a transformation ϵ from the trivial complex C to the positive complex $\left(Y^{*}, \delta^{*}\right)$. Write $C \xrightarrow{\epsilon}\left(Y^{*}, \delta^{*}\right)$. If all Y_{n}^{\prime} s are injective, we say that $C \xrightarrow{\epsilon}\left(Y^{*}, \delta^{*}\right)$ is an injective complex under C. If $\left(Y^{*}, \delta^{*}\right)$ has trivial cohomology in positive dimensions, while $\epsilon: C \longrightarrow H^{0}(Y)$ is an isomorphism, we say that $C \xrightarrow{\epsilon}\left(Y^{*}, \delta^{*}\right)$ is a coresolution of C.
Lemma 1.22. (Comparison Lemma for projective resolutions, [3] Theorem III.6.1) Let $\gamma \in \operatorname{Hom}_{R-M o d}\left(C, C^{\prime}\right)$. If $\left(X_{*}, d_{*}\right) \xrightarrow{\varepsilon} C$ is a projective complex over C, and $\left(X_{*}^{\prime}, d_{*}^{\prime}\right) \xrightarrow{\varepsilon^{\prime}} C^{\prime}$ is a resolution of C^{\prime}, there is a transformation $f: X \longrightarrow X^{\prime}$ with $\varepsilon^{\prime} f=\gamma \varepsilon$, and any two such transformations are homotopic. We say that f is a lifting of γ.
Lemma 1.23. (Comparison Lemma for injective coresolutions, [3] Theorem III.8.1)
Let $\alpha \in \operatorname{Hom}_{R-\bmod }\left(A, A^{\prime}\right)$. If $A \xrightarrow{\varepsilon}\left(X^{*}, \delta^{*}\right)$ is a coresolution of A, and $A^{\prime} \xrightarrow{\varepsilon^{\prime}}$ $\left(Y^{*}, \delta^{*}\right)$ is an injective complex under A^{\prime}, then there is a transformation $f: X \longrightarrow$ Y with $\varepsilon^{\prime} \alpha=f \varepsilon$, and any two such transformations are homotopic. We say that f is a lifting of α.

Definition 1.24. Let G be a group and R a ring. Define the group ring $R G$ as the free R-module generated by the symbols $\langle g\rangle, g \in G$, where multiplication is defined on the generators as $\langle g\rangle\langle h\rangle:=\langle g h\rangle$, for any $g, h \in G$. So elements of $R G$ are formal (finite) sums $\sum_{g \in G} n(g)\langle g\rangle, n(g) \in R$.

Definition 1.25. A G-R-module is an R-module A together with a group homomorphism $G \longrightarrow A u t_{R}(A)$. If $R=\mathbb{Z}$, we simply say that A is a G-module.
Proposition 1.26. A is a G-R-module if and only if A is an $R G$-module.
Proof. Take a $\varphi \in \operatorname{Hom}_{G R}\left(G, A u t_{R}(A)\right)$. Then A becomes a $R G$-module through a function $\psi: R G \times A \longrightarrow A$ defined as

$$
\psi\left(\sum n(g)\langle g\rangle a\right)=\sum_{g \in G} n(g) \varphi(g)(a), n(g) \in R
$$

Suppose we have a function ψ that makes A a $R G$-module. Define the function

$$
\varphi(g)(a)=\psi(\langle g\rangle, a)
$$

It can be shown that $\varphi \in \operatorname{Hom}_{G R}\left(G, A u t_{R}(A)\right)$.
Definition 1.27. ([1] Chapter 2.1) Let A be an object of the category C and I an arbitrary set of indices. We shall say that A together with the family of morphisms $u_{i}: A \longrightarrow A_{i}$ is the direct product of $\left\{A_{i}\right\}_{i \in I}$ if for any object B in C and any family of morphisms $v_{i}: B \longrightarrow A_{i}$, there exists a unique morphism $v: B \longrightarrow A$ such that the diagrams

are commutative.
Definition 1.28. ([1] Chapter II.6) A kernel of a morphism $\sigma: K \longrightarrow L$ in an abelian category is a $\mu: J \longrightarrow K$ such that $\sigma \mu=0$ and for any other τ such that $\sigma \tau=0$, there exists a unique τ_{0} such that the diagram is commutative:

Definition 1.29. ([2] II.(6.2))A pullback of two morphisms $\varphi: A \longrightarrow X$ and $\psi: B \longrightarrow X$ is a pair of morphisms $\alpha: Y \longrightarrow A$ and $\beta: Y \longrightarrow B$ such that $\varphi \alpha=\psi \beta$

and for any other pair $\gamma: Z \longrightarrow A$ and $\delta: Z \longrightarrow B$ such that $\varphi \gamma=\psi \delta$ there exists a unique $\xi: Z \longrightarrow Y$ such that $\alpha \xi=\gamma$ and $\beta \xi=\delta$.
Definition 1.30. ([1] Chapter 3.1) Let C be any category and D be a small category, and let F be a covariant functor $F: D \longrightarrow C$. An inverse limit of F is an object A in C together with morphisms $u_{X}: A \longrightarrow F(X)$, one for each $X \in O b(C)$, such that
(1) For all $\alpha: X \longrightarrow Y$ in $D, F(\alpha) u_{X}=u_{Y}$;
(2) For any other family $v_{X}: Z \longrightarrow F(X)$ such that $F(\alpha) v_{X}=v_{Y}$, there exists a unique $v: Z \longrightarrow A$ such that $u_{X} v=v_{X}$, for all $X \in O b(D)$.

Proposition 1.31. Whenever they exist, kernels ([1] Chapter 3.1 Example 1), direct products ([1] Chapter 3.1 Example 2), and pullbacks ([2] II. Prop.6.1) are inverse limits.

Corollary 1.32. Inverse limits in general, as well as direct products, kernels and pullbacks in particular, are unique (up to an isomorphism).

Proposition 1.33. ([1] Prop. 3.6) Let C be any category and A an object of C. The covariant functor $\operatorname{Hom}_{C}(A,-)$ preserves inverse limits of functors from any small category.

Corollary 1.34. In an abelian category C, for any short exact sequence

$$
0 \longrightarrow B^{\prime} \longrightarrow B \longrightarrow B^{\prime \prime} \longrightarrow 0
$$

and any $A \in \operatorname{Ob}(C)$, we get the exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{C}\left(A, B^{\prime}\right) \longrightarrow \operatorname{Hom}_{C}(A, B) \longrightarrow \operatorname{Hom}_{C}\left(A, B^{\prime \prime}\right)
$$

Remark 1.35. It follows from the Corollary above that the functor $\operatorname{Hom}_{C}(A,-)$ is left exact.
Proposition 1.36. In $G R$ and R-mod, the pullback is $Y=\{(a, b) \in A \times B \mid \varphi(a)=$ $\psi(b), a \in A, b \in B\}$, with the natural projections $\alpha=\pi_{A}, \beta=\pi_{B}$.
Definition 1.37. ([1] Chapter 2.1) Let A be an object of the category C and I an arbitrary set of indices. We shall say that A together with the family of morphisms $u_{i}: A_{i} \longrightarrow A$ is the direct sum of $\left\{A_{i}\right\}_{i \in I}$ (also called coproduct), if for any object B in C and any family of morphisms $v_{i}: A_{i} \longrightarrow B$, there exists a unique morphism $v: A \longrightarrow B$ such that the diagram

commutes.
Definition 1.38. ([2] Chapter I.2) The cokernel of a morphism $\sigma: K \longrightarrow L$ in an abelian category is a $\mu: L \longrightarrow M$ such that $\mu \sigma=0$ and for any other $\tau: L \longrightarrow M^{\prime}$ such that $\tau \sigma=0$, there exists a unique τ_{0} such that the diagram is commutative:

Definition 1.39. A pushout of two morphisms $\alpha: X \longrightarrow A, \beta: X \longrightarrow B$, is a pair of morphisms $f: A \longrightarrow Y, g: B \longrightarrow Y$ with $f \alpha=g \beta$,

satisfying the universal property: for any $u: A \longrightarrow Z, v: B \longrightarrow Z$ such that $u \alpha=v \beta$, there exists a unique $\xi: Y \longrightarrow Z$ such that $u=\xi f$ and $v=\xi g$.

Proposition 1.40. In R-mod, the pushout of (X, α, β) is $Y=A \oplus B /\langle(\alpha(x),-\beta(x)): x \in X\rangle$, where $f=i_{A}$ and $g=i_{B}$ are the canonical injections.

Definition 1.41. Let C be any category and D be a small category, and let F : $D \longrightarrow C$ be a covariant functor. A direct limit of F is defined dually to the inverse limit of F (as in Definition 1.30).

Proposition 1.42. Whenever they exist, direct sums, cokernels and pushouts are direct limits.

Proposition 1.43. Direct limits in general, as well as direct sums, cokernels and pushouts in particular, are unique (up to an isomorphism).

Proposition 1.44. Let C be any category, and B an object in C. The contravariant functor $\mathrm{Hom}_{C}(-, B)$ carries direct limits of functors from any category into inverse limits.

Corollary 1.45. In an abelian category C, for any short exact sequence

$$
0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0
$$

and any $B \in O b(C)$, we get the exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{C}\left(A^{\prime \prime}, B\right) \longrightarrow \operatorname{Hom}_{C}(A, B) \longrightarrow \operatorname{Hom}_{C}\left(A^{\prime}, B\right)
$$

Remark 1.46. It follows from the Corollary above that the functor $\operatorname{Hom}_{C}(-, B)$ is left exact.

Lemma 1.47. (Short Five Lemma, [3] Lemma I.3.1) Given any commutative diagram in $G R$

where the rows are short exact sequences. If α, β are pairwise injective, surjective or isomorphisms, so is γ.

Lemma 1.48. (The 3×3 Lemma, [3] Lemma II.5.1) Suppose that in the following commutative diagram

all three columns and the first (or last) two rows are exact. Then the third row is exact.

Lemma 1.49. (Ker-Coker sequence, [3] Lemma II.5.2) Given two short exact sequences in a commutative diagram

the sequence is exact

$$
0 \longrightarrow \operatorname{ker} \alpha \longrightarrow \operatorname{ker} \beta \longrightarrow \operatorname{ker} \gamma \longrightarrow \operatorname{coker}(\alpha) \longrightarrow \operatorname{coker}(\beta) \longrightarrow \operatorname{coker}(\gamma) \longrightarrow 0
$$

Proposition 1.50. Let $A, B, C \in O b(R-m o d)$. For any short exact sequence

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

the sequences

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}(P, A) \longrightarrow \operatorname{Hom}_{R}(P, B) \longrightarrow \operatorname{Hom}_{R}(P, C) \longrightarrow 0 \\
& 0 \longrightarrow \operatorname{Hom}_{R}(C, I) \longrightarrow \operatorname{Hom}_{R}(B, I) \longrightarrow \text { om }_{R}(A, I) \longrightarrow 0
\end{aligned}
$$

are exact, for any projective module P and injective module I.
Let R be any ring. Consider R as the right R-module. $\operatorname{Hom}_{\mathbb{Z}}(R, A)$ becomes a left R-module through

$$
(r f)(s)=f(s r), s \in R, r \in R, f \in \operatorname{Hom}_{\mathbb{Z}}(R, A)
$$

Definition 1.51. An R-module C is called cofree if $C \simeq \prod_{j \in J} H o m_{\mathbb{Z}}(R, \mathbb{Q} / \mathbb{Z})$, for some indexed set J.

The R-module structure is given by
$\left[r \pi_{j}\left(\prod_{j \in J} \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q} / \mathbb{Z})\right)\right](s)=(r g)(s), r \in R, j \in J, g \in \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q} / \mathbb{Z}), s \in R$
Lemma 1.52. For any ring R, and any injective (divisible) abelian group $I, \operatorname{Hom}_{\mathbb{Z}}(R, I)$ is an injective R-module.
Proof. Let $\alpha \in \operatorname{Hom}_{R}(A, B)$, be a monomorphism. For any $\gamma \in \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{\mathbb{Z}}(R, I)\right)$, we must show that

$$
\operatorname{Hom}_{R}\left(B, \operatorname{Hom}_{\mathbb{Z}}(R, I)\right) \xrightarrow{\alpha^{*}} \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{\mathbb{Z}}(R, I)\right), \alpha^{*}(g)=g \alpha
$$

is an epimorphism. By ([2] Theorem III.7.2) we have the natural group homomorphism

$$
\operatorname{Hom}_{R}\left(N, \operatorname{Hom}_{\mathbb{Z}}(M, I)\right) \simeq \operatorname{Hom}_{\mathbb{Z}}\left(M \otimes_{R} N, I\right)
$$

When we take $M=R$, we get the isomorphism

$$
\operatorname{Hom}_{R}\left(N, \operatorname{Hom}_{\mathbb{Z}}(R, I)\right) \simeq \operatorname{Hom}_{\mathbb{Z}}(N, I)
$$

After letting $N=A$ and $N=B$, the problem translates into proving that

$$
\operatorname{Hom}_{\mathbb{Z}}(B, I) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(A, I)
$$

is an epimorphism, which is true, by the definition of the injective group I.
Corollary 1.53. For any ring $R, \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q} / \mathbb{Z})$ is an injective R-module.
Lemma 1.54. Any product of injective R-modules in an injective R-module, where R is an arbitrary ring.

Proof. For any short exact sequence in R-mod

$$
0 \longrightarrow N^{\prime} \longrightarrow N \longrightarrow N^{\prime \prime} \longrightarrow 0
$$

Apply $\operatorname{Hom}_{R}\left(-, \Pi I_{k}\right), k$ in some indexed set (finite or infinite), where each I_{k} is an injective R-module, and get the left exact sequence:

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}\left(N^{\prime \prime}, \prod I_{k}\right) \longrightarrow \operatorname{Hom}_{R}\left(N, \prod I_{k}\right) \longrightarrow \operatorname{Hom}_{R}\left(N^{\prime}, \prod I_{k}\right) \\
& 0 \longrightarrow \prod \operatorname{Hom}_{R}\left(N^{\prime \prime}, I_{k}\right) \longrightarrow \prod \operatorname{Hom}_{R}\left(N, I_{k}\right) \longrightarrow \prod H o m_{R}\left(N^{\prime}, I_{k}\right)
\end{aligned}
$$

Now, for each k, for any element of $\prod \operatorname{Hom}_{R}\left(N^{\prime}, I_{k}\right)$, by the Axiom of Choice, it is possible to pick in $\prod \operatorname{Hom}_{R}\left(N, I_{k}\right)$ exactly that g_{k} such that $g_{k} \in \pi_{k}\left(\prod \operatorname{Hom}_{R}\left(N, I_{k}\right)\right)$ and

commutes. The sequence becomes exact, or equivalently, ΠI_{k} is an injective R module.

Corollary 1.55. Any cofree module over any ring is injective.
Proposition 1.56. ([2] I.(7.1)) Let R be a PID. An R-module is injective if and only if it is divisible.

Proposition 1.57. ([2] I.(7.2)) Let R be a PID. A factor module of a divisible module is divisible.
Corollary 1.58. ([2] I.(7.4)) Any abelian group may be embedded in a divisible abelian group.

2. Acknowledgement

I could not have written this thesis without the help and guidance of my supervisor, Professor Andrei Prasolov. I would therefore like to thank him for his undivided attention.

I have to thank my husband and son, Thomas and Steffen Nermo, for the support and understanding in the past two years of my Master's Degree. Last but not least, I want to thank my mom for always being there for me.

This page is intentionally left blank.

Part 1. Extensions of modules

3. The functors $E x t_{R}^{n}$

Proposition 3.1. For any R-module C, there exists a projective resolution of C.
Proof. Any R-module C is a quotient of a free, hence projective module. Build the free R-module F_{0} on the generators of C and take the canonical epimorphism $\pi_{0}: F_{0} \longrightarrow C$. Build the free R-module F_{1} on the generators of ker π, and we get the canonical projection $\pi_{1}: F_{1} \longrightarrow \operatorname{ker} \pi_{0}$, and continue in this manner. Then we get a long exact sequence

$$
\ldots \xrightarrow{\pi_{3}} F_{2} \xrightarrow{\pi_{2}} F_{1} \xrightarrow{\pi_{1}} F_{0} \xrightarrow{\pi_{0}} C \longrightarrow 0
$$

Definition 3.2. $\operatorname{Ext}_{R}^{n}(C, A):=H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)$, where $\left(P_{*}, d_{*}\right) \longrightarrow C$ is any projective resolution of C.

The definition of $E x t_{R}^{n}$ is correct (it is independent of the choice of projective resolution):
Lemma 3.3. Given any two projective resolutions of $C,\left(P_{*}, d_{*}\right) \xrightarrow{\varepsilon} C,\left(Q_{*}, \delta_{*}\right) \xrightarrow{\epsilon}$ C, and an R-module A, the following cohomology groups are naturally isomorphic: $H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right) \simeq H^{n}\left(\operatorname{Hom}_{R}\left(Q_{*}, A\right)\right)$.

Proof. Since $\left(P_{*}, d_{*}\right) \xrightarrow{\varepsilon} C$ is also a projective complex over C and $\left(Q_{*}, \delta_{*}\right) \xrightarrow{\epsilon} C$ is a resolution of C, Lemma 1.22 gives that there exists a lifting $f: P \longrightarrow Q$ of 1_{C}. Since $\left(Q_{*}, \delta_{*}\right) \xrightarrow{\epsilon} C$ is also a projective complex over C, and $\left(P_{*}, d_{*}\right) \xrightarrow{\varepsilon} C$ a resolution of C, so the same lemma gives that there exists a lifting $g: Q \longrightarrow P$ of 1_{C}. Since the composition of two chain transformations is a chain transformation, we obtain two chain transformations $(g f): P_{*} \longrightarrow P_{*}$ and $(f g): Q_{*} \longrightarrow Q_{*}$ that satisfy

$$
\begin{aligned}
& \varepsilon(g f)=\epsilon f=\varepsilon \\
& \epsilon(f g)=\varepsilon g=\epsilon
\end{aligned}
$$

so they are homotopic to $1_{P_{*}}$ and $1_{Q_{*}}$, respectively. For any R-module A, applying the functor $\operatorname{Hom}_{R}(-, A)$ gives the commutative diagram of cochain complexes

where

$$
\begin{aligned}
f^{*}(u) & =u f, u \in \operatorname{Hom}_{R}\left(P_{*}, A\right) \\
g^{*} v & =v g, v \in \operatorname{Hom}_{R}\left(Q_{*}, A\right) \\
\left(f^{*} g^{*}\right)(v) & =f^{*}(v g)=v(g f)=(g f)^{*}(v) \\
\left(g^{*} f^{*}\right)(u) & =\left(g^{*}(u f)=u f g=(f g)^{*}(u)\right. \\
d^{*} f^{*}(u) & =d^{*}(u f)=u(f d)=(u \delta) f=f^{*}(\delta u)=f^{*} \delta^{*} u \\
f_{0}^{*} \epsilon^{*} & =\left(\epsilon f_{0}\right)^{*}=\varepsilon^{*}
\end{aligned}
$$

By Lemma 1.7, $\operatorname{Hom}_{R}(-, A)$ preserves homotopies, so

$$
\begin{aligned}
& (g f) \simeq 1_{P_{*}} \Longrightarrow f^{*} g^{*}=(g f)^{*}=\operatorname{Hom}_{R}(g f, A) \simeq \operatorname{Hom}_{R}\left(1_{P_{*}}, A\right)=1_{\operatorname{Hom}_{R}\left(P_{*}, A\right)} \\
& (f g) \simeq 1_{Q_{*}} \Longrightarrow g^{*} f^{*}=(f g)^{*}=\operatorname{Hom}_{R}(f g, A) \simeq \operatorname{Hom}_{R}\left(1_{Q_{*}}, A\right)=1_{H o m_{R}\left(Q_{*}, A\right)}
\end{aligned}
$$

Taking the covariant functor $H^{n}(-)$ we get

$$
H^{n}\left(g^{*} f^{*}\right)=H^{n}\left(1_{\operatorname{Hom}_{R}\left(Q_{*}, A\right)}\right)=1_{H^{n}\left(\operatorname{Hom}_{R}\left(Q_{*}, A\right)\right)}=H^{n}\left(g^{*}\right) H^{n}\left(f^{*}\right)
$$

So $H^{n}\left(f^{*}\right): H^{n}\left(\operatorname{Hom}_{R}\left(Q_{*}, A\right)\right) \longrightarrow H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)$ is an isomorphism, with inverse $H^{n}\left(g^{*}\right)$.

Proposition 3.4. $E x t_{R}^{n}(-,-)$ is a bifunctor from $R-\bmod \times R$ - \bmod to $A B$, for any $n \in \mathbb{Z}_{\geq 0}$.
Proof. Step 1. We will show that $\operatorname{Ext}_{R}^{n}(C,-)$ is a covariant functor. $E x t_{R}^{n}(C, A):=$ $H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)$, where $\left(P_{*}, \delta_{*}\right) \xrightarrow{\varepsilon} C$ is a projective resolution of C. Let $\alpha \in$ $\operatorname{Hom}_{R-\bmod }(A, B)$. It induces

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}(C, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, A\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, A\right) \xrightarrow{\delta_{1}^{*}} \ldots \\
& 0 \longrightarrow \alpha_{*} \downarrow \\
& \operatorname{Hom}_{R}(C, B) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, B\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, B\right) \xrightarrow{\delta_{1}^{*}} \ldots
\end{aligned}
$$

where

$$
\begin{aligned}
\varepsilon^{*} l & =l \varepsilon, l \in \operatorname{Hom}_{R}(C, A) \\
\delta^{*} h & =h \delta, h \in \operatorname{Hom}_{R}\left(P_{*}, A\right) \\
\alpha_{*} l & =\alpha l
\end{aligned}
$$

The diagram is commutative:

$$
\begin{aligned}
\alpha_{*} \varepsilon^{*}(l) & =\alpha_{*}(l \varepsilon)=\alpha l \varepsilon=\varepsilon^{*}(\alpha l)=\varepsilon^{*} \alpha_{*}(l) \\
\alpha_{*} \delta_{n}^{*}(s) & =\alpha_{*}\left(s \delta_{n}\right)=\alpha s \delta_{n}=\delta_{n}^{*}(\alpha s)=\delta_{n}^{*} \alpha_{*}(s)
\end{aligned}
$$

So α_{*} becomes a transformation between the two complexes. Since H^{n} is a covariant functor, we have

$$
\begin{aligned}
H^{n}\left(\alpha_{*}\right) & : \quad H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right) \longrightarrow H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, B\right)\right) \\
H^{n}\left(\alpha_{*}\right) & : \quad \operatorname{Ext}_{R}^{n}(C, A) \longrightarrow \operatorname{Ext}_{R}^{n}(C, B)
\end{aligned}
$$

If $\alpha=1_{A}$, we simply get identity transformation on $\operatorname{Hom}_{R}\left(P_{*}, A\right)$, and by functoriality of H^{n}, we get

$$
H^{n}\left(1_{H o m_{R}\left(P_{*}, A\right)}\right)=1_{H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)}
$$

A composition of morphisms $A \xrightarrow{\alpha} B \xrightarrow{\beta} D$ gives three complexes and two intertwining transformations (since composition of two transformations is a transformation:

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}(C, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, A\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, A\right) \xrightarrow{\delta_{1}^{*}} \ldots \\
& 0 \longrightarrow \alpha_{*} \downarrow \\
& \operatorname{Hom}_{R}(C, B) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, B\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, B\right) \xrightarrow{\delta_{1}^{*}} \ldots \\
& \beta_{*} \downarrow \\
& 0 \longrightarrow \operatorname{Hom}_{R}(C, D) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, D\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, D\right) \xrightarrow{\delta_{1}^{*}} \ldots
\end{aligned}
$$

As

$$
\begin{aligned}
\beta_{*} \alpha_{*}(s) & =\beta_{*}(\alpha s)=(\beta \alpha) s=(\beta \alpha)_{*}(s) \\
H^{n}\left(\beta_{*} \alpha_{*}\right) & =H^{n}\left((\beta \alpha)_{*}\right)=H^{n}\left(\beta_{*}\right) H^{n}\left(\alpha_{*}\right): \operatorname{Ext}_{R}^{n}(C, A) \longrightarrow E x t_{R}^{n}(C, D),
\end{aligned}
$$

so $\beta \alpha$ gives composition $H^{n}\left(\beta_{*}\right) H^{n}\left(\alpha_{*}\right)$.
Step 2. We will show that $E x t_{R}^{n}(-, A)$ is a contravariant functor. Given a $f \in \operatorname{Hom}_{R-\text { mod }}(K, C)$, fix a projective resolution of $K,\left(K_{*}, \zeta_{*}\right) \xrightarrow{\epsilon} K$. By Lemma 1.22 , there exists a lifting $t: K_{*} \longrightarrow P_{*}$. Applying $\operatorname{Hom}_{R}(-, A)$ for any R-module A, we get the commutative diagram of cochains and cochain transformations t_{*}

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}(C, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, A\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, A\right) \xrightarrow{\delta_{1}^{*}} \ldots \\
& f^{*} \\
& 0 \longrightarrow t^{*} \\
& \operatorname{Hom}_{R}(K, A) \xrightarrow{\epsilon^{*}} \operatorname{Hom}_{R}\left(K_{0}, A\right) \xrightarrow{\zeta_{0}^{*}} \operatorname{Hom}_{R}\left(K_{1}, A\right) \xrightarrow{\zeta_{1}^{*}} \ldots \\
& t^{*} \varepsilon^{*}(s)=t^{*}(s \varepsilon)=s(\varepsilon t)=s(f \epsilon)=\epsilon^{*}(s f)=\epsilon^{*} f^{*}(s) \\
& t_{n+1}^{*} \delta_{n}^{*}(l)=t^{*}\left(l \delta_{0}\right)=l\left(\delta_{n} t_{n+1}\right)=\left(l t_{n}\right) \zeta_{n}=\zeta_{n}^{*}\left(l t_{n}\right)=\zeta_{n}^{*} t_{n}^{*}(l), n \in \mathbb{Z}_{\geq 0}
\end{aligned}
$$

Applying H^{n} gives

$$
\begin{aligned}
H^{n}\left(t_{*}\right) & : H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right) \longrightarrow H^{n}\left(\operatorname{Hom}_{R}\left(K_{*}, A\right)\right) \\
H^{n}\left(t_{*}\right) & : \operatorname{Ext}_{R}^{n}(C, A) \longrightarrow \operatorname{Ext}_{R}^{n}(K, A)
\end{aligned}
$$

If $f=1_{C}, t_{*}=1_{H o m_{R}\left(P_{*}, A\right)}$, and taking H^{n} gives

$$
1_{H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)}=1_{E x t_{R}^{n}(C, A)}
$$

Look at the composition of any two morphisms $L \xrightarrow{g} K \xrightarrow{f} C$. Fix a projective resolution of L.

$$
\begin{aligned}
& \ldots \xrightarrow{\gamma_{2}} L_{2} \xrightarrow{\gamma_{1}} L_{1} \xrightarrow{\gamma_{0}} L_{0} \xrightarrow{\rho} L \longrightarrow 0 \\
& \ldots \xrightarrow{\zeta_{2}} K_{2} \xrightarrow{\zeta_{1}} K_{1} \xrightarrow{\zeta_{0}} K_{0} \xrightarrow{\epsilon} K \longrightarrow 0 \\
& \ldots \xrightarrow{\delta_{2}} P_{2} \xrightarrow{\delta_{1}} P_{1} \xrightarrow{\delta_{0}} P_{0} \xrightarrow{\varepsilon} C \xrightarrow{f} C
\end{aligned}
$$

By Lemma 1.22, there exists a lifting $s: L_{*} \longrightarrow K_{*}$. Then we get the lifting $t s: L_{*} \longrightarrow C_{*}$. Apply the functor $\operatorname{Hom}_{R}(-, A)$ (for any fixed R-module A). We get the commutative diagram of cochain complexes and cochain transformations

Apply H^{n} and get

$$
\begin{aligned}
H^{n}\left(s^{*} t^{*}\right) & =H^{n}\left((t s)^{*}\right)=H^{n}\left(s^{*}\right) H^{n}\left(t^{*}\right): H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right) \longrightarrow H^{n}\left(\operatorname{Hom}_{R}\left(L_{*}, A\right)\right) \\
H^{n}\left((t s)^{*}\right) & =H^{n}\left(s^{*}\right) H^{n}\left(t^{*}\right): \operatorname{Ext}_{R}^{n}(C, A) \longrightarrow \operatorname{Ext}_{R}^{n}(L, A)
\end{aligned}
$$

Step 3. We will establish that $E x t_{R}^{n}(-,-)$ is a bifunctor. Since the composition $E x t_{R}^{n}(C, A) \xrightarrow{t^{*}} \operatorname{Ext}_{R}^{n}(K, A) \xrightarrow{\alpha_{*}} \operatorname{Ext}_{R}^{n}(K, B)$ is equal to $E x t_{R}^{n}(C, A) \xrightarrow{\alpha_{*}}$ $E x t_{R}^{n}(C, B) \xrightarrow{t^{*}} E x t_{R}^{n}(K, B)$

$$
\alpha_{*} t^{*}(s)=\alpha_{*}(s t)=(\alpha s) t=t^{*}(\alpha s)=t^{*} \alpha_{*}(s)
$$

$E x t_{R}^{n}(-,-)$ is a bifunctor.
Proposition 3.5. $\operatorname{Ext}_{R}^{0}(C, A) \simeq \operatorname{Hom}_{R}(C, A)$.
Proof. Let $\left(P_{*}, d_{*}\right) \xrightarrow{\varepsilon} C$ be a projective resolution of C. Apply $\operatorname{Hom}_{R}(-, A)$ and get the complex

$$
0 \longrightarrow \operatorname{Hom}_{R}(C, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, A\right) \xrightarrow{d_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, A\right) \xrightarrow{d_{1}^{*}} \ldots
$$

which by Corollary 1.45 is exact at $\operatorname{Hom}_{R}(C, A)$ and $\operatorname{Hom}_{R}\left(P_{0}, A\right)$. Since $d_{-1}=$ $0, d_{-1}^{*}=0$,

$$
\operatorname{Hom}_{R}(C, A) \simeq \operatorname{ker} d_{0}^{*}=\frac{\operatorname{ker} d_{0}^{*}}{\operatorname{Im} d_{-1}^{*}}=H^{0}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)=\operatorname{Ext}_{R}^{0}(C, A)
$$

Proposition 3.6. Given a short exact sequence of R-modules

$$
0 \longrightarrow K \xrightarrow{\varkappa} L \xrightarrow{\sigma} M \longrightarrow 0
$$

For any R-module C, we get a long exact sequence of $E x t_{R}^{n}$:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{R}(C, K) \longrightarrow \operatorname{Hom}_{R}(C, L) \longrightarrow \operatorname{Hom}_{R}(C, M) \longrightarrow \operatorname{Ext}_{R}^{1}(C, K) \longrightarrow E x t_{R}^{1}(C, L) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{R}^{1}(C, M) \longrightarrow \operatorname{Ext}_{R}^{2}(C, K) \longrightarrow \operatorname{Ext}_{R}^{2}(C, L) \longrightarrow \operatorname{Ext}_{R}^{2}(C, M) \longrightarrow \\
& \cdots \longrightarrow \operatorname{Ext}_{R}^{n}(C, M) \longrightarrow \operatorname{Ext}_{R}^{n+1}(C, K) \longrightarrow \operatorname{Ext}_{R}^{n+1}(C, L) \longrightarrow \ldots
\end{aligned}
$$

Proof. Fix a projective resolution of C :

$$
\ldots \xrightarrow{\delta_{2}} P_{2} \xrightarrow{\delta_{1}} P_{1} \xrightarrow{\delta_{0}} P_{0} \xrightarrow{\varepsilon} C \longrightarrow
$$

We get a commutative diagram of three complexes and transformations \varkappa_{*} and σ_{*} :

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}(C, K) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, K\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, K\right) \xrightarrow{\delta_{1}^{*}} \ldots \\
& 0 \longrightarrow \varkappa_{*} \downarrow \\
& \operatorname{Hom}_{R}(C, L) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, L\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, L\right) \xrightarrow{\delta_{1}^{*}} \ldots \\
& 0 \longrightarrow \sigma_{*} \downarrow \\
& 0 \longrightarrow \operatorname{Hom}_{R}(C, M) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{R}\left(P_{0}, M\right) \xrightarrow{\delta_{0}^{*}} \operatorname{Hom}_{R}\left(P_{1}, M\right) \xrightarrow{\delta_{1}^{*}} \ldots
\end{aligned}
$$

We get a short exact sequence of complexes

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(P_{*}, K\right) \xrightarrow{\varkappa_{*}} \operatorname{Hom}_{R}\left(P_{*}, L\right) \xrightarrow{\sigma_{*}} \operatorname{Hom}_{R}\left(P_{*}, M\right) \longrightarrow 0
$$

since $\operatorname{Hom}_{R}\left(P_{*},-\right)$ converts kernels to kernels, and at each dimension, since P_{*} is projective, $\operatorname{Hom}_{R}\left(P_{*}, L\right) \xrightarrow{\sigma_{*}} \operatorname{Hom}_{R}\left(P_{*}, M\right)$ is surjective. By Theorem 1.18, we get the long exact sequence

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(P_{*}, K\right)\right) \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(P_{*}, L\right)\right) \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(P_{*}, M\right)\right) \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(P_{*}, K\right)\right) \\
& \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(P_{*}, L\right)\right) \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(P_{*}, M\right)\right) \longrightarrow H^{2}\left(\operatorname{Hom}_{R}\left(P_{*}, K\right)\right) \longrightarrow H^{2}\left(\operatorname{Hom}_{R}\left(P_{*}, L\right)\right) \longrightarrow \ldots
\end{aligned}
$$

which is isomorphic to

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{R}(C, K) \longrightarrow \operatorname{Hom}_{R}(C, L) \longrightarrow \operatorname{Hom}_{R}(C, M) \longrightarrow \operatorname{Ext}_{R}^{1}(C, K) \longrightarrow \operatorname{Ext}_{R}^{1}(C, L) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{R}^{1}(C, M) \longrightarrow \operatorname{Ext}_{R}^{2}(C, K) \longrightarrow \operatorname{Ext}_{R}^{2}(C, L) \longrightarrow \ldots
\end{aligned}
$$

Proposition 3.7. Given a short exact sequence of R-modules

$$
0 \longrightarrow K \xrightarrow{\varkappa} L \xrightarrow{\sigma} M \longrightarrow 0
$$

For any R-module A, we get a long exact sequence of $E x t_{R}^{n}$:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{R}(M, A) \longrightarrow \operatorname{Hom}_{R}(L, A) \longrightarrow \operatorname{Hom}_{R}(K, A) \longrightarrow \operatorname{Ext}_{R}^{1}(M, A) \longrightarrow \operatorname{Ext}_{R}^{1}(L, A) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{R}^{1}(K, A) \longrightarrow \operatorname{Ext}_{R}^{2}(M, A) \longrightarrow \operatorname{Ext}_{R}^{2}(L, A) \longrightarrow \operatorname{Ext}_{R}^{2}(K, A) \longrightarrow \ldots \longrightarrow \operatorname{Ext}_{R}^{n}(K, A) \\
& \longrightarrow \operatorname{Ext}_{R}^{n+1}(M, A) \longrightarrow \operatorname{Ext}_{R}^{n+1}(L, A) \longrightarrow \ldots
\end{aligned}
$$

Proof. Fix projective resolutions of K, and M.

Start building a projective resolution of L, that makes the diagram commutative.
Since

$$
\operatorname{Hom}_{R}\left(P_{0} \oplus Q_{0}, L\right) \simeq \operatorname{Hom}_{R}\left(P_{0}, L\right) \times \operatorname{Hom}_{R}\left(Q_{0}, L\right)
$$

any $h: P_{0} \oplus Q_{0} \longrightarrow L$ can be written as

$$
h(p, q)=f(p)+g(q), \text { where } f: P_{0} \longrightarrow L, g: Q_{0} \longrightarrow L
$$

Such a g exists since Q_{0} is projective. We need that

$$
\begin{aligned}
h i & =\mu \delta_{-1} \wedge \sigma h=d_{-1} \pi \\
h i(p) & =h(p, 0)=f(p)+g(0)=f(p)
\end{aligned}
$$

Define $f(p)=\mu \delta_{-1}$.

$$
\sigma h(p, q)=\sigma(f(p)+g(q))=\sigma f(p)+\sigma g(q)=\sigma\left(\mu \delta_{-1}(p)\right)+\sigma g(q)=\sigma g(q)
$$

Define $g(q)$ as $\sigma g(q)=d_{-1} \pi(p, q)=d_{-1}(q)$. Let $\left(K_{1}, e_{K}\right),\left(L_{1}, e_{L}\right),\left(M_{1}, e_{M}\right)$ be the kernels of ε, h, and ϵ, respectively. By Lemma 1.49, since $\operatorname{coker}(\varepsilon)$ is 0 , we have a short exact sequence

$$
0 \longrightarrow K_{1} \longrightarrow L_{1} \longrightarrow M_{1} \longrightarrow 0
$$

We have new maps α, β, which are the (unique) maps satisfying

$$
e_{L} \alpha=i_{0} e_{K}, e_{M} \beta=\pi_{0} e_{L}
$$

(follows from the definition of the kernel, Definition 1.28). We have built the commutative diagram of short exact sequences

Since

$$
\varepsilon \delta_{0}=0, \epsilon d_{0}=0
$$

there exists unique homomorphisms $u: P_{1} \longrightarrow K_{1}$ and $v: Q_{1} \longrightarrow M_{1}$, such that

$$
e_{K} u=\delta_{0}, e_{M} v=d_{0}
$$

Since we have built $\alpha u: P_{1} \longrightarrow L_{1}$, there exists a homomorphism $k: P_{1} \oplus Q_{1} \longrightarrow$ L_{1}. Any such k can be described as

$$
k(p, q)=s(p)+t(q)
$$

We now require that

$$
k i_{1}=\alpha u, v \pi_{1}=\beta k
$$

Since

$$
k i_{1}(p, q)=k(p, 0)=s(p) \Longrightarrow \text { define } s(p)=\alpha u
$$

Now,

$$
\begin{aligned}
\beta k(p, q) & =\beta(s(p)+t(q))=\beta s(p)+\beta t(q)=\beta \alpha u(p)+\beta t(q)=\beta t(q) \\
& \Longrightarrow \operatorname{define} t(q) \text { as } \beta t(q)=v \pi_{1}(p, q)=v(q)
\end{aligned}
$$

The only thing remaining is to check exactness

$$
\begin{aligned}
& P_{1} \oplus Q_{1} \xrightarrow{e_{L} k} P_{0} \oplus Q_{0} \xrightarrow{h} L \\
h e_{L} k= & 0, \operatorname{so} \operatorname{Im}\left(e_{L} k\right) \subseteq \operatorname{ker}(h)
\end{aligned}
$$

To prove the other way, it is enough to show that k is surjective on L_{1}. Using Lemma 1.47, it is enough to show that u and v are surjective. But this follows, since

$$
\begin{aligned}
& \operatorname{Im} \delta_{0}=\operatorname{Im} e_{K} u=\operatorname{ker} \varepsilon \Longrightarrow u \text { is surjective } \\
& \operatorname{Im} d_{0}=\operatorname{Im} e_{M} v=\operatorname{ker} \varepsilon \Longrightarrow v \text { is surjective }
\end{aligned}
$$

So we have developed the commutative diagram

Continue this procedure, i.e. take $\left(K_{2}, e_{K_{2}}\right),\left(L_{2}, e_{L_{2}}\right),\left(M_{2}, e_{M_{2}}\right)$ kernels of $\delta_{0}, e_{L} k$, and d_{0}. We will get a new short exact sequence

$$
0 \longrightarrow P_{2} \longrightarrow P_{2} \oplus Q_{2} \longrightarrow Q_{2} \longrightarrow 0
$$

which together with a homomorphisms $\left(\delta_{1}, l, d_{1}\right)$, make a larger commutative diagram. We then get a projective resolution $P_{*} \oplus Q_{*}$ of L, and we get a short exact sequence of complexes

$$
0 \longrightarrow P_{*} \xrightarrow{i_{*}} P_{*} \oplus Q_{*} \xrightarrow{\pi_{*}} Q_{*} \longrightarrow 0
$$

where, for each $n \geq 0$, we have a split exact sequence

$$
0 \longrightarrow P_{n} \xrightarrow{i_{n}} P_{n} \oplus Q_{n} \xrightarrow{\pi_{n}} Q_{n} \longrightarrow 0
$$

where i_{n} is the natural inclusion and π_{n} is the natural projection. For any R module A, apply $\operatorname{Hom}_{R}(-, A)$ to the short exact sequence of complexes. We get a short exact sequence of cochain complexes

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(P_{*}, A\right) \longrightarrow \operatorname{Hom}_{R}\left(P_{*} \oplus Q_{*}, A\right) \longrightarrow \operatorname{Hom}_{R}\left(Q_{*}, A\right) \longrightarrow 0
$$

For each $n \geq 0$, it is split exact, since $\operatorname{Hom}_{R}\left(P_{n} \oplus Q_{n}, A\right) \simeq \operatorname{Hom}_{R}\left(P_{n}, A\right) \times$ $H o m_{R}\left(Q_{n}, A\right)$. Apply H^{n} to get the long exact sequence of cohomology

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right) \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(P_{*} \oplus Q_{*}, A\right)\right) \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(Q_{*}, A\right)\right) \longrightarrow \\
& \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right) \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(P_{*} \oplus Q_{*}, A\right)\right) \longrightarrow \ldots
\end{aligned}
$$

which is isomorphic to
$0 \longrightarrow \operatorname{Hom}_{R}(K, A) \longrightarrow \operatorname{Hom}_{R}(L, A) \longrightarrow \operatorname{Hom}_{R}(M, A) \longrightarrow E x t_{R}^{1}(K, A) \longrightarrow E x t_{R}^{1}(L, A) \longrightarrow \ldots$

Proposition 3.8. $\operatorname{Ext}_{R}^{n}(P, A)=0, P$ projective module, $n \geq 1$.
Proof.

$$
\ldots \longrightarrow 0 \longrightarrow 0 \longrightarrow P \xrightarrow{1_{P}} P \longrightarrow 0
$$

is a projective resolution of our projective module P, where 1_{P} is as isomorphism of P. By Corollary 1.45, taking $\operatorname{Hom}_{R}(-, A)$ converts cokernels to kernels, and we obtain the complex

$$
0 \longrightarrow \operatorname{Hom}_{R}(P, A) \xrightarrow{\left(1_{P}\right)_{*}} \operatorname{Hom}_{R}(P, A) \xrightarrow{0_{*}} 0 \xrightarrow{0_{*}} 0 \xrightarrow{0_{*}} \ldots
$$

So $\operatorname{Im}\left(\left(1_{P}\right)_{*}\right)=\operatorname{ker} 0_{*}=\operatorname{Hom}_{R}(P, A)$, so $\left(1_{P}\right)_{*}$ is an isomorphism, and we have
$H^{1}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)=\frac{\{0\}}{\{0\}} \simeq 0=H^{2}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)=. .=H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, A\right)\right)=.$.
for any $n \geq 1$, which gives

$$
\operatorname{Ext}_{R}^{n}(P, A)=0, n \geq 1
$$

Proposition 3.9. Given the short exact sequence of R-modules

$$
E: 0 \longrightarrow S \longrightarrow P \longrightarrow C \longrightarrow 0
$$

where P is projective (also called a projective presentation of C),

$$
\operatorname{Ext}_{R}^{1}(C, A) \simeq \operatorname{coker}\left(\operatorname{Hom}_{R}(P, A) \longrightarrow \operatorname{Hom}_{R}(S, A)\right)
$$

Also,

$$
E x t_{R}^{i}(S, A) \simeq E x t_{R}^{i+1}(C, A), i \geq 1
$$

Proof. Using Proposition 3.7, we get the long exact sequence where $E x t_{R}^{n}(P, A)=0$, for $n \geq 1$

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{R}(C, A) \longrightarrow \operatorname{Hom}_{R}(P, A) \longrightarrow \operatorname{Hom}_{R}(S, A) \longrightarrow \operatorname{Ext}_{R}^{1}(C, A) \longrightarrow 0 \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{R}^{1}(S, A) \longrightarrow \operatorname{Ext}_{R}^{2}(C, A) \longrightarrow 0 \longrightarrow \operatorname{Ext}_{R}^{2}(S, A) \longrightarrow \operatorname{Ext}_{R}^{3}(C, A) \longrightarrow 0 \longrightarrow .
\end{aligned}
$$

Exactness gives surjectivity on $\operatorname{Ext}^{1}(C, A)$, so by the description of cokernel in R-mod, $\operatorname{Ext} t^{1}(C, A) \simeq \operatorname{coker}\left(\operatorname{Hom}_{R}(P, A) \longrightarrow \operatorname{Hom}_{R}(R, A)\right)$. Also, $E x t_{R}^{i}(S, A) \simeq$ $\operatorname{Ext}_{R}^{i+1}(C, A), i \geq 1$.

Proposition 3.10. $H^{n}\left(\operatorname{Hom}_{R}(X, I)\right) \simeq \operatorname{Hom}_{R}\left(H_{n}(X), I\right)$, where X is a complex, I an injective module.

Proof. Fix the complex

$$
\ldots \xrightarrow{d_{n+1}} X_{n+1} \xrightarrow{d_{n}} X_{n} \xrightarrow{d_{n-1}} X_{n-1} \xrightarrow{d_{n-2}} \ldots
$$

Apply $\operatorname{Hom}_{R}(-, I)$ and get the cochain complex

$$
\begin{aligned}
\ldots & \longrightarrow \operatorname{Hom}_{R}\left(X_{n-1}, I\right) \xrightarrow{d_{n-1}^{*}} \operatorname{Hom}_{R}\left(X_{n}, I\right) \xrightarrow{d_{n}^{*}} \operatorname{Hom}_{R}\left(X_{n+1}, I\right) \longrightarrow . . \\
d_{n}^{*}(f) & =f d_{n}, \text { for any } n \in \mathbb{Z} .
\end{aligned}
$$

For any $f \in Z^{n}$, we can find a morphism to $\operatorname{Hom}_{R}\left(H_{n}(X), I\right)$

$$
f \in Z^{n} \in \operatorname{Hom}_{R}(X n, I) \xrightarrow{\text { restriction }} \operatorname{Hom}_{R}(H n(X), I)
$$

Define this homomorphism $\zeta: Z^{n} \longrightarrow \operatorname{Hom}_{R}\left(H_{n}(X), I\right)$. Will show that ζ is an epimorphism with kernel B_{n}. Given an $g: H_{n}(X) \longrightarrow I$, i.e.

$$
\begin{array}{rll}
g & : & Z_{n} \longrightarrow I \\
\operatorname{ker}(g) & = & d_{n} X_{n+1} \\
g(x) & \mid & d_{n-1} x=0
\end{array}
$$

Let $i: Z_{n} \longrightarrow X_{n}$ be the canonical injection homomorphism.

Since I is an injective module, there exists an

$$
h: X_{n} \longrightarrow I \mid h i=g
$$

h is a n-cocycle since

$$
d_{n}^{*} h(x)=h\left(d_{n}(x)\right)=g\left(d_{n}(x)\right)=0 .
$$

Take $h \in B^{n}$, i.e. $h=s d_{n-1}$. Take any $x \in H_{n}(X)$.

$$
h(x)=s d_{n-1}(x)=s(0)=0 \Longrightarrow B^{n} \in \operatorname{ker} \zeta .
$$

Take any $f \in \operatorname{ker} \zeta$, so

$$
\begin{aligned}
f(x) & =0, \forall x \in H_{n}(x) \Longrightarrow f(x)=0, \forall x \in Z_{n} \Longrightarrow \exists \tilde{f}: X_{n} / Z_{n} \simeq B_{n-1} \longrightarrow I \\
\widetilde{f} & =g d_{n-1} \in B_{n}, g: X_{n} \longrightarrow I . \\
\widetilde{f} & \in \operatorname{ker} \zeta: \widetilde{f}(x)=g d_{n-1}(x)=g(0)=0, \forall x \in H_{n}(x) . \text { So } B^{n} \in \operatorname{ker} \zeta .
\end{aligned}
$$

Proposition 3.11. $\operatorname{Ext}_{R}^{n}(C, I)=0, I$ injective module, $n \geq 1$.
Proof. For any resolution of $C, . . \longrightarrow P_{1} \xrightarrow{\delta^{1}} P_{0} \xrightarrow{\varepsilon} C \longrightarrow 0$ we get using Lemma 3.10 that

$$
H^{n}\left(\operatorname{Hom}_{R}\left(P_{*}, I\right)\right) \simeq \operatorname{Hom}_{R}\left(H_{n}\left(P_{*}\right), I\right)=\operatorname{Hom}_{R}(0, I)=0
$$

for $n \geq 1$.
Proposition 3.12. $\operatorname{Ext}_{\mathbb{Z}}^{n}(C, A)=0, C$ and A abelian groups, $n \geq 2$.
Proof. Since any abelian group is isomorphic to a quotient of a free abelian group, we get the short exact sequence

$$
0 \longrightarrow K \longrightarrow F \longrightarrow C \longrightarrow 0
$$

which is a resolution of C (since any subgroup of a free abelian group is itself a free abelian group). For any R-module A, by Propositions $3.5,3.9$ and 3.8 , we have:

$$
\begin{aligned}
\operatorname{Ext}_{\mathbb{Z}}^{0}(C, A) & \simeq \operatorname{Hom}_{\mathbb{Z}}(C, A) \\
\operatorname{Ext}_{\mathbb{Z}}^{1}(C, A) & \simeq \operatorname{coker}\left(\operatorname{Hom}_{\mathbb{Z}}(F, A) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(K, A)\right) \\
\operatorname{Ext}_{\mathbb{Z}}^{i+1}(C, A) & \simeq \operatorname{Ext}_{\mathbb{Z}}^{i}(K, A)=0, i \geq 2
\end{aligned}
$$

4. The functors $\overline{E x t}_{R}^{n}$

Proposition 4.1. For any R-module A, there exists an injective coresolution of A.
Proof. Will show that any module can be embedded in an injective module. We have the R-module monomorphism $\gamma: A \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, A)$ as

$$
\begin{aligned}
(\gamma(a))(r) & =f(r)=r a \\
r a & =0, \forall r \in R \Longrightarrow a=0
\end{aligned}
$$

By Corollary 1.58, there exists an injective group homomorphism $j: A \longrightarrow I$, where I is an injective \mathbb{Z}-module. We have the short exact sequence

$$
0 \longrightarrow A \longrightarrow I \longrightarrow K_{A I} \longrightarrow 0
$$

Apply $\operatorname{Hom}_{\mathbb{Z}}(R,-)$ which by Corollary 1.45 preserves kernels, so we get the left exact sequence of R-modules

$$
0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, A) \xrightarrow{j_{*}} \operatorname{Hom}_{\mathbb{Z}}(R, I) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(R, K_{A I}\right), j_{*} f=j f
$$

and the composition of R-module monomorphisms $j_{*} \gamma: A \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, I)$. Since $\operatorname{Hom}_{\mathbb{Z}}(R, I)$ is an injective R-module, we have found the first step of a coresolution of A. Let $C=\operatorname{coker}\left(j^{*} \gamma\right) \simeq \operatorname{Hom}_{\mathbb{Z}}(R, I) / \operatorname{Im}\left(j_{*} \gamma\right)$. We have the R-module
monomorphism $\alpha: C \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, C)$. There exists an injective group homomorphism $\beta: C \longrightarrow J$, for some divisible abelian group J. Apply $H o m_{\mathbb{Z}}(R,-)$ on the short exact sequence

$$
0 \longrightarrow C \longrightarrow J \longrightarrow K_{C J} \longrightarrow 0
$$

and get the left exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, C) \xrightarrow{\beta_{*}} \operatorname{Hom}_{\mathbb{Z}}(R, J) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(R, K_{C J}\right), \beta_{*} f=\beta f
$$

and the composition of the two R-module monomorphisms $\beta_{*} \alpha: C \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, J)$, which gives an R-module homomorphism from $\operatorname{Hom}_{\mathbb{Z}}(R, I) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, J)$ with kernel the image of $j_{*} \gamma$, so we have build the left exact sequence

$$
0 \longrightarrow A \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, I) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, J)
$$

Repeat this step, and we will get a injective coresolution of A.
Definition 4.2. $\overline{\operatorname{Ext}}_{R}^{n}(C, A):=H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right)$, where $A \xrightarrow{\varepsilon}\left(I^{*}, d^{*}\right)$ is an injective coresolution of A.

The definition of $\overline{E x t}_{R}^{n}$ is correct (it is independent of the choice of injective coresolution):

Lemma 4.3. Given any two injective coresolutions of A,

$$
0 \longrightarrow A \xrightarrow{\varepsilon}\left(I^{*}, d^{*}\right), 0 \longrightarrow A \xrightarrow{\varepsilon^{\prime}}\left(J^{*}, \delta^{*}\right)
$$

and an R-module C, the following cohomology groups are naturally isomorphic: $H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right) \simeq H^{n}\left(\operatorname{Hom}_{R}\left(C, J^{*}\right)\right)$.

Proof. Use Lemma 1.23, with $\alpha=1_{A}$. We get two liftings $f: I^{*} \longrightarrow J^{*}$ and $g: J^{*} \longrightarrow I^{*}$. Since the composition of two liftings is a lifting, $(f g): J^{*} \longrightarrow J^{*}$ and $(g f): I^{*} \longrightarrow I^{*}$ are liftings. Since any two such liftings are homotopic, we get $(f g) \simeq 1_{J^{*}}$ and $(g f) \simeq 1_{I^{*}}$. By Lemma 1.7, the additive covariant functor $H o m_{R}(C,-)$ preserves homotopies. We get

$$
\begin{aligned}
f g & \simeq 1_{J_{*}} \Longrightarrow f_{*} g_{*}=(f g)_{*}=\operatorname{Hom}_{R}(C, f g) \simeq \operatorname{Hom}_{R}\left(C, 1_{J_{*}}\right)=1_{H o m_{R}\left(C, J_{*}\right)} \\
g f & \simeq 1_{I_{*}} \Longrightarrow g_{*} f_{*}=(g f)_{*} \operatorname{Hom}_{R}(C, g f) \simeq \operatorname{Hom}_{R}\left(C, 1_{I_{*}}\right)=1_{H o m_{R}\left(C, I_{*}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
f_{*}(v) & =f v, f_{*}: \operatorname{Hom}_{R}\left(C, I_{*}\right) \longrightarrow \operatorname{Hom}_{R}\left(C, J_{*}\right), v \in \operatorname{Hom}_{R}\left(C, I^{*}\right), \\
g_{*}(u) & =g u, g_{*}: \operatorname{Hom}_{R}\left(C, J_{*}\right) \longrightarrow \operatorname{Hom}_{R}\left(C, I_{*}\right), u \in \operatorname{Hom}_{R}\left(C, J^{*}\right) \\
\left(f_{*} g_{*}\right)(u) & =f_{*}(g u)=(f g) u=(f g)_{*}(u) \\
\left(g_{*} f_{*}\right)(v) & =g_{*}(f v)=(g f) v=(g f)_{*}(v)
\end{aligned}
$$

Using Proposition 1.17,

$$
\begin{aligned}
H^{n}\left((f g)_{*}\right) & =H^{n}\left(f_{*}\right) H^{n}\left(g_{*}\right)=H^{n}\left(1_{H o m_{R}\left(C, J^{*}\right)}\right)=1_{H^{n}\left(\operatorname{Hom}_{R}\left(C, J^{*}\right)\right)} \\
H\left({ }^{n}(g f)_{*}\right) & \left.=H^{n}\left(g_{*}\right) H^{n}\left(f_{*}\right)=H^{n}\left(1_{\operatorname{Hom}_{R}\left(C, I^{*}\right)}\right)=1_{H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right.}\right)
\end{aligned}
$$

so $H^{n}\left(f_{*}\right): H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right) \longrightarrow H^{n}\left(\operatorname{Hom}_{R}\left(C, J^{*}\right)\right)$ is an isomorphism (with inverse $\left.H^{n}\left(g_{*}\right)\right)$.

Proposition 4.4. $\overline{E x t}_{R}^{n}$ is a bifunctor from $R-\bmod \times R-\bmod$ to $A B$, for any $n \in$ $\mathbb{Z}_{\geq 0}$.

Proof. Step 1. We will establish that $\overline{E x t}_{R}^{n}(-, A)$ is a contravariant functor from R-mod to $A B$. Given a morphism $g: D \longrightarrow C$. Fix A, and an injective coresolution of A.

We then have commutativity at each level of the two induced left exact complexes:

where

$$
\begin{aligned}
\varepsilon_{*}(s) & \left.=\varepsilon s, s \in \operatorname{Hom}_{R} C, A\right) \\
g^{*}(u) & =u g, u \in \operatorname{Hom}_{R}(C, A) \\
\delta_{*}(v) & =\delta v, v \in \operatorname{Hom}_{R}\left(C, I^{*}\right) \\
g^{*} \varepsilon_{*}(s) & =g^{*}(\varepsilon s)=\varepsilon(s g)=\varepsilon_{*}(s g)=\varepsilon_{*} g^{*}(s) \\
g^{*} \delta_{*}(v) & =g^{*}(\delta v)=\delta(v g)=\delta_{*}(v g)=\delta_{*} g^{*}(v)
\end{aligned}
$$

Hence g^{*} is a cochain transformation and applying H^{n} gives:

$$
\begin{aligned}
H^{n}\left(g^{*}\right) & : H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right) \longrightarrow H^{n}\left(\operatorname{Hom}_{R}\left(D, I^{*}\right)\right) \\
H^{n}\left(g^{*}\right) & : \overline{E x t}_{R}^{n}(C, A) \longrightarrow \overline{E x t}_{R}^{n}(D, A)
\end{aligned}
$$

If $g=1_{C}$, then we get the identity $1_{H_{o m_{R}}\left(C, I^{*}\right)}$, which gives

$$
H^{n}\left(1_{H o m_{R}\left(C, I^{*}\right)}\right)=1_{H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right)}=1{\overline{E x t_{R}}}_{n}^{n}(C, A)
$$

Now, let's look at the composition $E \xrightarrow{h} D \xrightarrow{g} C$. We get three complexes and two intertwining transformations g^{*} and h^{*} :

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}(C, A) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{R}\left(C, I^{0}\right) \xrightarrow{\delta_{*}^{0}} \operatorname{Hom}_{R}\left(C, I^{1}\right) \xrightarrow{\delta_{*}^{1}} \operatorname{Hom}_{R}\left(C, I^{2}\right) \ldots \\
& 0 \longrightarrow \begin{array}{c}
g^{*} \downarrow \\
\operatorname{Hom}_{R}(D, A) \xrightarrow{g_{*}^{*}} \downarrow \\
\operatorname{Hom}_{R}\left(D, I^{0}\right) \xrightarrow{\delta_{*}^{0}} \operatorname{Hom}_{R}\left(D, I^{1}\right) \xrightarrow{\delta_{*}^{1}} \operatorname{Hom}_{R}\left(D, I^{2}\right) \ldots
\end{array} \\
& h^{*} \downarrow \varepsilon^{*} \downarrow h^{*} \delta^{0} \quad h^{*} \downarrow \quad \delta^{1} \quad h^{*} \downarrow \\
& 0 \longrightarrow \operatorname{Hom}_{R}(E, A) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{R}\left(E, I^{0}\right) \xrightarrow{\delta_{*}^{0}} \operatorname{Hom}_{R}\left(E, I^{1}\right) \xrightarrow{\delta_{*}^{1}} \operatorname{Hom}_{R}\left(E, I^{2}\right) \ldots \\
& h^{*} g^{*}(u)=h^{*}(u g)=u(g h)=(g h)^{*}(u) \\
& H^{n}\left(h^{*} g^{*}\right)=H^{n}\left((g h)^{*}\right)=H^{n}\left(h^{*}\right) H^{n}\left(g^{*}\right): H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right) \longrightarrow H^{n}\left(\operatorname{Hom}_{R}\left(E, I^{*}\right)\right) \\
& H^{n}\left(h^{*} g^{*}\right) \quad: \quad \overline{E x t}_{R}^{n}(C, A) \longrightarrow \overline{E x t}_{R}^{n}(E, A)
\end{aligned}
$$

Step 2. We will show that $\overline{E x t}_{R}^{n}(C,-)$ is a covariant functor from R-mod to $A B$. Fix C. Suppose $\alpha \in \operatorname{Hom}_{R-\bmod }(A, B)$. Fix an injective coresolution of A and B, $\left(I^{*}, \delta^{*}\right) \xrightarrow{\epsilon} A$ and $\left(J^{*}, \zeta^{*}\right) \xrightarrow{\varepsilon} B$, respectively. By Lemma 1.23 , there exists a
lifting $f: I^{*} \longrightarrow J^{*}$. Take $\operatorname{Hom}_{R}(C,-)$ and get following diagram

$$
\begin{gathered}
0 \longrightarrow \operatorname{Hom}_{R}(C, A) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{R}\left(C, I^{0}\right) \xrightarrow{\delta_{*}^{0}} \operatorname{Hom}_{R}\left(C, I^{1}\right) \xrightarrow{\delta_{*}^{1}} \ldots \\
\alpha_{*} \downarrow \\
0 \longrightarrow \operatorname{fom}_{R}(C, B) \xrightarrow{\epsilon_{*}} \operatorname{Hom}_{R}\left(C, J^{0}\right) \xrightarrow{\boldsymbol{\zeta}_{*}^{*}} \operatorname{Hom}_{R}\left(C, J^{1}\right) \xrightarrow{\zeta_{*}^{+}} \ldots
\end{gathered}
$$

where

$$
\begin{aligned}
\alpha_{*}(u) & =\alpha u, u \in \operatorname{Hom}_{R}(C, A) \\
f_{*}(v) & =f v, v \in \operatorname{Hom}_{R}\left(C, I^{*}\right) \\
\delta^{*}(v) & =v \delta \\
\zeta^{*}(s) & =s \zeta, s \in \operatorname{Hom}_{R}\left(C, J^{*}\right) \\
\epsilon_{*}(u) & =\varepsilon u \\
\varepsilon_{*}(t) & =\varepsilon t, t \in \operatorname{Hom}_{R}(C, B)
\end{aligned}
$$

The diagram is commutative (which gives that $f_{*}: \operatorname{Hom}_{R}\left(C, I^{*}\right) \longrightarrow \operatorname{Hom}_{R}\left(C, J^{*}\right)$ is a transformation):

$$
\begin{aligned}
f_{*} \epsilon_{*}(u) & =f_{*}(\varepsilon u)=(f \varepsilon) u=\varepsilon(\alpha u)=\varepsilon_{*}(\alpha u)=\varepsilon_{*} \alpha_{*}(u) \\
f_{*}^{n+1} \delta_{*}^{n}(v) & =f_{*}^{n+1}\left(\delta^{n} v\right)=\left(f^{n+1} \delta^{n}\right) v=\zeta^{n}\left(f^{n} v\right)=\zeta_{*}^{n}\left(f^{n} v\right)=\zeta_{n}^{n} f_{*}^{n}(v), n \in \mathbb{Z}_{\geq 0}
\end{aligned}
$$

Apply H^{n} :

$$
\begin{aligned}
H^{n}\left(f_{*}\right) & : H^{n}\left(H o m_{R}\left(C, I^{*}\right) \longrightarrow H^{n}\left(H o m_{R}\left(C, J^{*}\right)\right)\right. \\
H^{n}\left(f_{*}\right) & : \overline{E x t}_{R}^{n}(C, A) \longrightarrow \overline{E x t}_{R}^{n}(C, B)
\end{aligned}
$$

If $\alpha=1_{A}$, then we would get the identity transformation on the complex $\operatorname{Hom}_{R}\left(C, I^{*}\right)$, and applying H^{n} gives

$$
\left.H^{n}\left(1_{H o m_{R}\left(C, I^{*}\right.}\right)\right)=1_{H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right)}=1_{\overline{\operatorname{Ext}}}^{R}(C, A)
$$

Let's look at the composition $A \xrightarrow{\alpha} B \xrightarrow{\beta} D$. Let $\left(K^{*}, \rho^{*}\right) \xrightarrow{\xi} D$ be a coresolution of D. Lemma 1.23 gives the existence of a lifting $g: J^{*} \longrightarrow K^{*}$. Then the composition $g f: I^{*} \longrightarrow K^{*}$ is a lifting too. Apply $\operatorname{Hom}_{R}(C,-)$ and get the commutativity conditions:

$$
\begin{aligned}
\left(g_{0} f_{0}\right)_{*} \epsilon_{*}(u) & =\left(g_{0} f_{0}\right)_{*}(\epsilon u)=g_{0} f_{0} \epsilon u=\xi(\beta \alpha) u=\zeta_{*}(\beta \alpha u)=\zeta_{*}(\beta \alpha)_{*}(u) \\
(g f)_{*} \delta_{*}(v) & =(g f)_{*}(\delta v)=(g f \delta) v=\rho(g f) v=\rho_{*}(g f v)=\rho_{*}(g f)_{*}(v)
\end{aligned}
$$

So $(g f)_{*}: \operatorname{Hom}_{R}\left(C, I^{*}\right) \longrightarrow \operatorname{Hom}_{R}\left(C, K^{*}\right)$ becomes a transformation. Also,

$$
(g f)_{*}(v)=g(f v)=g_{*}\left(f_{*}(v)=g_{*} f_{*}(v)\right.
$$

As g_{*} and f_{*} are transformations, applying H^{n} gives:

$$
\begin{aligned}
H^{n}\left((g f)_{*}\right) & =H^{n}\left(g_{*} f_{*}\right)=H^{n}\left(g^{*}\right) H^{n}\left(f^{*}\right): H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right) \longrightarrow H^{n}\left(\operatorname{Hom}_{R}\left(C, K^{*}\right)\right) \\
H^{n}\left((g f)_{*}\right) & =H^{n}\left(g^{*}\right) H^{n}\left(f^{*}\right): \overline{\operatorname{Ext}}_{R}^{n}(C, A) \longrightarrow \overline{\operatorname{Ext}}_{R}^{n}(C, D)
\end{aligned}
$$

Step 3. We must check whether the compositions $\overline{E x t}_{R}^{n}(C, A) \longrightarrow \overline{E x t}_{R}^{n}(C, B) \longrightarrow$ $\overline{E x t}_{R}^{n}(D, B)$ and $\overline{E x t}_{R}^{n}(C, A) \longrightarrow \overline{E x t}_{R}^{n}(D, A) \longrightarrow \overline{E x t}_{R}^{n}(D, B)$, are equal, for any $n \in \mathbb{Z}_{\geq 0}$. Take a $k \in \overline{E x t}_{R}^{n}(C, A)$. Using the notation of this proof, the first gives

$$
g^{*}\left(f_{*}^{n} k\right)=g^{*}\left(f^{n} k\right)=f^{n} k g
$$

and the second gives

$$
f_{*}^{n}\left(g^{*} k\right)=f_{*}^{n}(k g)=f^{n} k g
$$

so $\overline{\operatorname{Ext}}_{R}^{n}(-,-)$ is a bifunctor.
Proposition 4.5. $\overline{\operatorname{Ext}}_{R}^{0}(C, A) \simeq \operatorname{Hom}_{R}(C, A)$.
Proof. $\overline{\operatorname{Ext}}_{R}^{0}(C, A):=H^{0}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right)$, where $A \xrightarrow{\varepsilon}\left(I^{*}, \delta^{*}\right)$, is any injective coresolution of A. Applying $\operatorname{Hom}_{R}(C,-)$ gives the complex
$0 \longrightarrow \operatorname{Hom}_{R}(C, A) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{R}\left(C, I^{0}\right) \xrightarrow{\delta_{*}^{0}} \operatorname{Hom}_{R}\left(C, I^{1}\right) \xrightarrow{\delta_{*}^{1}} \operatorname{Hom}_{R}\left(C, I^{2}\right) \xrightarrow{\delta_{*}^{2}} \ldots$
which is exact at $\operatorname{Hom}_{R}(C, A)$ and $\operatorname{Hom}_{R}\left(C, I^{0}\right)$, since $\operatorname{Hom}_{R}(C,-)$ preserves kernels. $\overline{\operatorname{Ext}}_{R}^{0}(C, A)=\frac{\operatorname{ker} \delta_{*}^{0}}{\{0\}} \simeq \operatorname{Im} \varepsilon_{*} \simeq \operatorname{Hom}_{R}(C, A)$.
Proposition 4.6. Given short exact sequence of R-modules

$$
0 \longrightarrow K \xrightarrow{\varkappa} L \xrightarrow{\sigma} M \longrightarrow 0
$$

For any R-module A, we get a long exact sequence of $\overline{E x t}_{R}^{n}$:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{R}(M, A) \longrightarrow \operatorname{Hom}_{R}(L, A) \longrightarrow \operatorname{Hom}_{R}(K, A) \longrightarrow \overline{\operatorname{Ext}}_{R}^{1}(M, A) \longrightarrow \overline{\operatorname{Ext}}_{R}^{1}(L, A) \longrightarrow \\
\overline{E x t}_{R}^{1}(K, A) & \longrightarrow \overline{\operatorname{Ext}}_{R}^{2}(M, A) \longrightarrow \overline{\operatorname{Ext}}_{R}^{2}(L, A) \longrightarrow \ldots \longrightarrow \overline{\operatorname{Ext}}_{R}^{n}(K, A) \longrightarrow \overline{\operatorname{Ext}}_{R}^{n+1}(M, A) \longrightarrow \ldots
\end{aligned}
$$

Proof. Pick an injective coresolution of $A, A \xrightarrow{\varepsilon}\left(I^{*}, d^{*}\right)$. It induces the commutative diagram:

since σ^{*} and \varkappa^{*} are transformations such that

$$
\sigma^{*} \varepsilon_{*}=\varepsilon_{*} \sigma^{*}, \varkappa^{*} \varepsilon_{*}=\varepsilon_{*} \varkappa^{*}
$$

Then, $\varkappa^{*} \sigma^{*}=(\sigma \varkappa)^{*}=0^{*}: \operatorname{Hom}_{R}\left(M, I^{*}\right) \longrightarrow \operatorname{Hom}_{R}\left(K, I^{*}\right)$, so,

$$
\operatorname{Im} \sigma^{*} \subseteq \operatorname{ker} \varkappa^{*} ; f \in \operatorname{ker} \varkappa^{*} \Longleftrightarrow \varkappa^{*} f=f \varkappa=0
$$

By the universal property of the cokernel

$$
\left(\exists!s: M \longrightarrow I^{*} \mid f=s \sigma\right) \Longrightarrow f=\sigma^{*} s \Longleftrightarrow f \in \operatorname{Im} \sigma^{*} .
$$

So the sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(M, I^{*}\right) \xrightarrow{\sigma^{*}} \operatorname{Hom}_{R}\left(L, I^{*}\right) \xrightarrow{\varkappa^{*}} \operatorname{Hom}_{R}\left(K, I^{*}\right) \longrightarrow 0
$$

is a short exact sequence of cochain complexes. By Theorem 1.18, we get the induced long exact sequence of cohomology:

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(M, I^{*}\right)\right) \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(L, I^{*}\right)\right) \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(K, I^{*}\right)\right) \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(M, I^{*}\right)\right) \longrightarrow \\
& \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(L, I^{*}\right) \longrightarrow \ldots\right.
\end{aligned}
$$

which is isomorphic to:
$0 \longrightarrow \operatorname{Hom}_{R}(M, A) \longrightarrow \operatorname{Hom}_{R}(L, A) \longrightarrow \operatorname{Hom}_{R}(K, A) \longrightarrow \overline{E x t}_{R}^{1}(M, A) \longrightarrow \overline{E x t}_{R}^{1}(L, A) \longrightarrow \ldots$

Proposition 4.7. Given a short exact sequence of R-modules

$$
0 \longrightarrow A^{\prime} \xrightarrow{\varkappa} A \xrightarrow{\sigma} A^{\prime \prime} \longrightarrow 0
$$

For any R-module C, we get a long exact sequence of $\overline{E x t}_{R}^{n}$:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{R}\left(C, A^{\prime}\right) \longrightarrow \operatorname{Hom}_{R}(C, A), \longrightarrow \operatorname{Hom}_{R}\left(C, A^{\prime \prime}\right) \longrightarrow \overline{\operatorname{Ext}}_{R}^{1}\left(C, A^{\prime}\right) \longrightarrow \overline{E x t}_{R}^{1}(C, A) \longrightarrow \\
& \longrightarrow \overline{\operatorname{Ext}}_{R}^{1}\left(C, A^{\prime \prime}\right) \longrightarrow \overline{\operatorname{Ext}}_{R}^{2}\left(C, A^{\prime}\right) \longrightarrow \ldots \longrightarrow \overline{\operatorname{Ext}}_{R}^{n}\left(C, A^{\prime \prime}\right) \longrightarrow \overline{E x t}_{R}^{n}\left(C, A^{\prime}\right) \longrightarrow \ldots
\end{aligned}
$$

Proof. Fix injective coresolution of A^{\prime} and $A^{\prime \prime}$,

$$
\begin{aligned}
& A^{\prime} \xrightarrow{\varepsilon}\left(I^{*}, d^{*}\right) \\
& A^{\prime \prime} \xrightarrow{\epsilon}\left(J^{*}, \delta^{*}\right)
\end{aligned}
$$

We start building a particular injective coresolution of A,

$$
A \longrightarrow\left(I^{*} \oplus J^{*}, \text { some homomorphisms }\right)
$$

As

$$
\operatorname{Hom}\left(A, I^{n} \oplus J^{n}\right) \simeq \operatorname{Hom}\left(A, I^{n}\right) \times \operatorname{Hom}\left(A, J^{n}\right), \forall n \in \mathbb{Z}_{n \geq 0}
$$

Since I_{0} is an injective module and \varkappa is monomorphism, we have a

$$
k: A \longrightarrow I^{0} \mid k \varkappa=\varepsilon
$$

so we automatically get an

$$
h: A \longrightarrow I^{0} \oplus J^{0} \mid h(a)=k(a)+\epsilon \sigma(a)
$$

h makes the first step of the diagram commutative:

$$
\begin{aligned}
& h \varkappa\left(a^{\prime}\right)=k\left(\varkappa\left(a^{\prime}\right)\right)+\epsilon \sigma\left(\varkappa\left(a^{\prime}\right)\right)=\varepsilon\left(a^{\prime}\right)=\left(\varepsilon\left(a^{\prime}\right), 0\right)=i_{0}\left(\varepsilon\left(a^{\prime}\right)\right) \\
& \pi_{0} h(a)=\pi_{0}(k(a)+\epsilon \sigma(a))=\epsilon \sigma(a)
\end{aligned}
$$

Let $\left(C^{\prime}, \pi_{A^{\prime}}\right),\left(C, \pi_{A}\right),\left(C^{\prime \prime}, \pi_{A^{\prime \prime}}\right)$ be the cokernels of ε, h and ϵ, respectively. Since

$$
\left(\pi_{A} i_{0}\right) \varepsilon=\pi_{A}(h \varkappa)=0
$$

by the Definition 1.38 of the cokernel,

$$
\exists!u: C^{\prime} \longrightarrow C \mid \pi_{A} i_{0}=u \pi_{A^{\prime}}
$$

Also, since

$$
\left(\pi_{A^{\prime \prime}} \pi_{0}\right) h=\pi_{A^{\prime \prime}}(\epsilon \sigma)=0 \Longrightarrow \exists!v: C \longrightarrow C^{\prime \prime} \mid \pi_{A^{\prime \prime}} \pi_{0}=v \pi_{A}
$$

Lemma 1.48 gives that the coker row sequence is exact. Since

$$
d^{0} \varepsilon=0 \Longrightarrow \exists!e_{C^{\prime}}: C^{\prime} \longrightarrow I^{1} \mid e_{C^{\prime}} \pi_{A^{\prime}}=d^{0}
$$

Also, since

$$
\delta^{0} \epsilon=0 \Longrightarrow \exists!e_{C^{\prime \prime}}: C \longrightarrow J^{1} \mid e_{C^{\prime \prime}}: C \longrightarrow J^{1}
$$

Since I^{1} is injective, there exists

$$
\exists s: I^{0} \oplus J^{0} \mid s i_{0}=d^{0}
$$

Trivially, we have

$$
\delta^{0} \pi_{0}: I^{0} \oplus J^{0} \longrightarrow J^{1}
$$

Define

$$
\begin{aligned}
k & : \quad I^{0} \oplus J^{0} \longrightarrow I^{1} \oplus J^{1} \\
k(i, j) & =s(i, j)+\delta^{0} \pi_{0}(i, j)=s(i, j)+\delta^{0}(j)
\end{aligned}
$$

This homomorphism makes the whole diagram commutative:

$$
\begin{aligned}
k i_{0}(i) & =k(i, 0)=s(i, 0)=s i_{0}(i)=d^{0}(i)=\left(d^{0}(i), 0\right)=i_{1}\left(d^{0}(i)\right) \\
\pi_{1} k(i, j) & =\delta^{0}(j)=\delta^{0}\left(\pi_{1}(i, j)\right)
\end{aligned}
$$

Continue in this manner: take $\left(C_{1}^{\prime}, \pi_{A_{1}^{\prime}}\right),\left(C, \pi_{A_{1}}\right),\left(C^{\prime \prime}, \pi_{A_{1}^{\prime \prime}}\right)$ as the cokernels of d^{0}, k, and δ^{0}, respectively. In this manner we get the specific desired injective coresolution of A. Then we get a short exact sequence of complexes

$$
0 \longrightarrow I^{*} \xrightarrow{i_{*}} I^{*} \oplus J^{*} \xrightarrow{\pi_{*}} J^{*} \longrightarrow 0
$$

where i_{*} is the natural injection and π_{*} is the natural projection. It is not split exact (since the middle map is not $d^{0} \oplus \delta^{0}$, but some twisted homomorphism k_{*}). But the sequence is split exact for each $n \geq 0$. For any R-module C, take $\operatorname{Hom}_{R}(C,-)$ and get a short exact sequence of complexes (since any $f: C \longrightarrow J^{*}$ induces $\left.i_{J^{*}} f: C \longrightarrow I^{*} \oplus J^{*}\right):$

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(C, I^{*}\right) \longrightarrow \operatorname{Hom}_{R}\left(C, I^{*} \oplus J^{*}\right) \longrightarrow \operatorname{Hom}_{R}\left(C, J^{*}\right) \longrightarrow 0
$$

By Theorem 1.18, we get a long exact sequence of cohomology:

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right) \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(C, I^{*} \oplus J^{*}\right)\right) \longrightarrow H^{0}\left(\operatorname{Hom}_{R}\left(C, J^{*}\right)\right) \longrightarrow \\
& \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right) \longrightarrow H^{1}\left(\operatorname{Hom}_{R}\left(C, I^{*} \oplus J^{*}\right)\right) \longrightarrow \ldots
\end{aligned}
$$

which is isomorphic to

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{R}\left(C, A^{\prime}\right) \longrightarrow \operatorname{Hom}_{R}(C, A) \longrightarrow \operatorname{Hom}_{R}\left(C, A^{\prime \prime}\right) \longrightarrow \overline{\operatorname{Ext}}_{R}^{1}\left(C, A^{\prime}\right) \longrightarrow \\
& \longrightarrow \overline{\operatorname{Ext}}_{R}^{1}(C, A) \longrightarrow \ldots
\end{aligned}
$$

Proposition 4.8. $\overline{\operatorname{Ext}}_{R}^{n}(C, I)=0, n \geq 1$, when I is an injective R-module.
Proof. $\ldots \longrightarrow 0 \longrightarrow 0 \longrightarrow I \xrightarrow{1_{I}} I \longrightarrow 0$, is an injective coresolution of I, which is equivalent to the isomorphism $1: I \longrightarrow I$. Since $\operatorname{Hom}_{R}(C,-)$ is a functor, we get $1_{H_{o m_{R}(C, I)}}$, an isomorphism, which gives the long left exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}(C, I) \longrightarrow \operatorname{Hom}_{R}(C, I) \longrightarrow 0 \longrightarrow 0 \longrightarrow \ldots
$$

Since all $\operatorname{Hom}_{R}\left(C, I^{n}\right)=0, n \geq 1$, we see that we have

$$
\overline{\operatorname{Ext}}_{R}^{n}(C, I)=H^{n}\left(\operatorname{Hom}_{R}\left(C, I^{*}\right)\right)=0, n \geq 1
$$

Proposition 4.9. Let

$$
0 \longrightarrow A \longrightarrow I \longrightarrow K \longrightarrow 0
$$

be short exact sequence of abelian groups, where the middle module I is injective. Then,

$$
\begin{aligned}
\overline{E x t}_{R}^{1}(C, A) & \simeq \operatorname{coker}\left(\operatorname{Hom}_{R}(C, I) \longrightarrow \operatorname{Hom}_{R}(C, K)\right) \\
\overline{E x t}_{R}^{i}(C, K) & \simeq \overline{\operatorname{Ext}}_{R}^{i+1}(C, A), i \geq 1
\end{aligned}
$$

Proof. Using Proposition 4.7, the short exact sequence induces a long exact sequence of $\overline{E x t}_{R}^{n}$:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{R}(C, A) \longrightarrow \operatorname{Hom}_{R}(C, I) \longrightarrow \operatorname{Hom}_{R}(C, K) \longrightarrow \overline{E x t}_{R}^{1}(C, A) \longrightarrow \overline{E x t}_{R}^{1}(C, I) \longrightarrow \\
& \longrightarrow \overline{E x t}_{R}^{1}(C, K) \longrightarrow \overline{\operatorname{Ext}}_{R}^{2}(C, A) \longrightarrow \ldots \longrightarrow \overline{E x t}_{R}^{n}(C, I) \longrightarrow \overline{E x t}_{R}^{n}(C, K) \longrightarrow \overline{E x t}_{R}^{n+1}(C, A) \\
& \longrightarrow \overline{E x t}_{R}^{n+1}(C, I) \longrightarrow \ldots
\end{aligned}
$$

By Proposition 4.8, we get

$$
\overline{\operatorname{Ext}}_{R}^{1}(C, A) \simeq \operatorname{coker}\left(\operatorname{Hom}_{R}(C, I) \longrightarrow \operatorname{Hom}_{R}(C, K)\right)
$$

Also,

$$
\overline{E x t}_{R}^{i}(C, K) \simeq \overline{E x t}_{R}^{i+1}(C, A), i \geq 1
$$

Theorem 4.10. $E x t_{R}^{n} \simeq \overline{E x t}_{R}^{n}$ as bifunctors $R-\bmod \times R$ - \bmod to $A B$, for each positive integer n.
Proof. For any R-module C, we have

$$
E x t_{R}^{0}(C, A) \simeq \operatorname{Hom}_{R}(C, A) \simeq \overline{\operatorname{Ext}}_{R}^{0}(C, A)
$$

Define a projective presentation of C

$$
0 \longrightarrow S \longrightarrow P \longrightarrow C \longrightarrow 0
$$

We will prove the claim by induction. Suppose

$$
\overline{\operatorname{Ext}}_{R}^{i}(S, A) \simeq E x t^{i}(S, A), \text { for some } i \geq 1
$$

By Proposition 4.9, we get

$$
\overline{E x t}_{R}^{i}(S, A) \simeq \overline{E x t}_{R}^{i+1}(C, A),
$$

Then we also have

$$
E x t_{R}^{n}(S, A) \simeq E x t_{R}^{n+1}(C, A)
$$

and so we get $\overline{E x t}_{R}^{n+1}(C, A) \simeq E x t_{R}^{n+1}(C, A)$.

$$
\text { 5. The group } E_{R}(C, A)
$$

Definition 5.1. Let C and A be R-modules. Denote by $E_{R}(C, A)$ the set of equivalence classes of extensions (short exact sequences) of the form

$$
0 \longrightarrow A \xrightarrow{\varkappa} B \xrightarrow{\sigma} C \longrightarrow 0
$$

where two such extensions are called equivalent if there exists a homomorphism (hence an isomorphism) $\beta: B \longrightarrow B^{\prime}$ making the diagram

commutative.
We see that the direct sum extension

$$
0 \longrightarrow A \xrightarrow{a \rightarrow(a, 0)} A \oplus C \xrightarrow{(a, c) \rightarrow c} C \longrightarrow 0
$$

is an element of the set. Fix a ring R. Given an element in $E_{R}(C, A)$ and a homomorphism $\alpha: C^{\prime} \longrightarrow C$, define the derived extension we get by taking the pullback $P B$ of (C, α, σ) using Lemma 5.2, namely

Lemma 5.2. If σ is surjective, so is $\pi_{C^{\prime}}$. Also, $\operatorname{ker} \pi_{C^{\prime}} \simeq \operatorname{ker} \sigma$.
Proof. Take any $c^{\prime} \in C^{\prime}$. Take $\alpha\left(c^{\prime}\right)=c$, for some $c \in C$. Since σ is surjective,

$$
\begin{gathered}
\exists b \quad \in \quad B \mid \sigma(b)=c=\alpha\left(c^{\prime}\right) \Longrightarrow\left(c^{\prime}, b\right) \in P B \\
\Longrightarrow \exists\left(c^{\prime}, b\right) \in P B \mid \pi_{C^{\prime}}\left(c^{\prime}, b\right)=c^{\prime}, \forall c^{\prime} \in C^{\prime} \\
\left(b, c^{\prime}\right) \quad \in \quad \operatorname{ker} \pi_{C^{\prime}} \Longleftrightarrow \pi_{C^{\prime}}\left(b, c^{\prime}\right)=0 \Longleftrightarrow c^{\prime}=0 \Longrightarrow((b, 0) \in P B) \in \operatorname{ker} \pi_{C^{\prime}} \\
\Longleftrightarrow \sigma(b)=\alpha(0)=0 \Longrightarrow b \in \operatorname{ker} \sigma=\operatorname{Im} \varkappa \\
\Longrightarrow \operatorname{ker} \pi_{C^{\prime}}=((\varkappa(a), 0), a \in A)=i(\varkappa(a)), \text { where } i \text { is the canonical injection. }
\end{gathered}
$$

Define this element in $E_{R}\left(C^{\prime}, A\right)$ as the image of the map

$$
\alpha^{*}: E_{R}(C, A) \longrightarrow E_{R}\left(C^{\prime}, A\right)
$$

In detail,

$$
\begin{aligned}
\alpha^{*}(0 & \longrightarrow A \xrightarrow{\varkappa} B \xrightarrow{\sigma} C \longrightarrow 0)=0 \longrightarrow A \xrightarrow{i} P B \xrightarrow{p} C^{\prime} \longrightarrow 0 \\
P B & =\left\{\left(b, c^{\prime}\right) \mid \sigma(b)=\alpha\left(c^{\prime}\right), b \in B, c^{\prime} \in C^{\prime}\right\} \\
i(a) & =(\varkappa(a), 0), p\left(b, c^{\prime}\right)=c^{\prime} .
\end{aligned}
$$

α^{*} is well-defined. Suppose

$$
\begin{aligned}
0 & \longrightarrow A \xrightarrow{\varkappa^{\prime}} B^{\prime} \xrightarrow{\sigma^{\prime}} C \longrightarrow 0 \in[0 \longrightarrow A \xrightarrow{\varkappa} B \xrightarrow{\sigma} C \longrightarrow 0] \\
& \Longleftrightarrow \exists \zeta: B^{\prime} \longrightarrow B \mid \sigma \zeta=\sigma^{\prime} \wedge \zeta \varkappa^{\prime}=\varkappa
\end{aligned}
$$

Will show that $\alpha^{*}\left(0 \longrightarrow A \xrightarrow{\varkappa^{\prime}} B^{\prime} \xrightarrow{\sigma^{\prime}} C \longrightarrow 0\right) \in\left[0 \longrightarrow A \xrightarrow{i} P B \xrightarrow{p} C^{\prime} \longrightarrow 0\right]$. Define

$$
\begin{aligned}
\beta & : P B^{\prime} \longrightarrow P B \text { as } \beta\left(b, c^{\prime}\right)=\left(\zeta(b), c^{\prime}\right) \\
\text { since } \sigma(\zeta(b)) & =\sigma^{\prime}(b)=\alpha\left(c^{\prime}\right)
\end{aligned}
$$

β makes the diagram

commutative:

$$
\begin{aligned}
\beta i^{\prime}(a) & =\beta\left(\varkappa^{\prime}(a), 0\right)=\left(\zeta \varkappa^{\prime}(a), 0\right)=(\varkappa(a), 0)=i(a) \\
p \beta\left(b, c^{\prime}\right) & =p\left(\zeta(b), c^{\prime}\right)=c^{\prime}=p^{\prime}\left(b, c^{\prime}\right)
\end{aligned}
$$

Proposition 5.3. α^{*} makes $E_{R}(-, A)$ into a contravariant functor from R-mod to Sets.

Proof. Take $\alpha=1_{C}: C \longrightarrow C$. It induces in $E_{R}(C, A)$

$$
\begin{aligned}
0 & \longrightarrow A \xrightarrow{i} P B \xrightarrow{p} C \longrightarrow 0 \\
i(a) & =(\varkappa(a), 0), p(b, \sigma(b))=\sigma(b)
\end{aligned}
$$

which is equivalent to our original extension through a homomorphism

$$
\begin{array}{rll}
\beta & : & P B \longrightarrow B, \beta(b, \sigma(b))=b \\
& \Longrightarrow & \beta i(a)=\beta(\varkappa(a), 0)=\varkappa(a) \\
\sigma \beta(b, \sigma(b) & = & \sigma(b)=p(b)
\end{array}
$$

So we get

$$
\alpha^{*}\left(1_{C}\right)=1_{E_{R}(C, A)}
$$

Now, given two homomorphisms

$$
\alpha^{\prime}: C^{\prime \prime} \longrightarrow C^{\prime}, \alpha: C^{\prime} \longrightarrow C
$$

The pullback of (σ, α) gives an element in $E\left(C^{\prime}, A\right)$, where the middle module

$$
\begin{aligned}
B^{\prime} & =\left\{\left(b, c^{\prime}\right) \mid \sigma(b)=\alpha\left(c^{\prime}\right)\right\} \\
\pi_{C^{\prime}} & : B^{\prime} \longrightarrow C^{\prime} \text { as } \pi_{C^{\prime}}\left(b, c^{\prime}\right)=c^{\prime}
\end{aligned}
$$

Taking the pullback of this $\left(\pi_{C^{\prime}}, \alpha^{\prime}\right)$ gives an extension in $E\left(C^{\prime \prime}, A\right)$, where the middle module

$$
\begin{aligned}
B^{\prime \prime} & =\left\{\left(b^{\prime}, c^{\prime \prime}\right) \mid \pi_{C^{\prime}}\left(b, c^{\prime}\right)=\alpha^{\prime}\left(c^{\prime \prime}\right)\right\} \\
\pi_{C^{\prime \prime}} & : B^{\prime \prime} \longrightarrow C^{\prime \prime} \text { as } \pi_{C^{\prime \prime}}\left(b^{\prime}, c^{\prime \prime}\right)=c^{\prime \prime}
\end{aligned}
$$

We have the commutative diagram:

Since

$$
\left(\alpha \alpha^{\prime}\right) \pi_{C^{\prime \prime}}=\alpha\left(\alpha^{\prime} \pi_{C^{\prime \prime}}\right)=\alpha\left(\pi_{C^{\prime}} \pi_{B^{\prime}}\right)=\left(\alpha \pi_{C^{\prime}}\right) \pi_{B^{\prime}}=\left(\sigma \pi_{B}\right) \pi_{B^{\prime}}=\sigma\left(\pi_{B} \pi_{B^{\prime}}\right)
$$

$\left(B^{\prime \prime}, \pi_{B} \pi_{B^{\prime}}, \pi_{C^{\prime \prime}}\right)$ may be the pullback of $\left(\sigma, \alpha \alpha^{\prime}\right)$. For any module R-module Z, take any $f: Z \longrightarrow B, g: Z \longrightarrow C^{\prime \prime}$, such that

$$
\sigma f=\alpha \alpha^{\prime} g \Longleftrightarrow \sigma f=\alpha\left(\alpha^{\prime} g\right), \alpha^{\prime} g: Z \longrightarrow C^{\prime}
$$

Since B^{\prime} is the pullback of (σ, α), there exists

$$
!\gamma: Z \longrightarrow B^{\prime} \mid \pi_{C^{\prime}} \gamma=\alpha^{\prime} g \text { and } \pi_{B} \gamma=f
$$

Since $B^{\prime \prime}$ is the pullback of $\left(\pi_{C^{\prime}}, \alpha^{\prime}\right)$, there exists

$$
!u: Z \longrightarrow B^{\prime \prime} \mid \pi_{B^{\prime}} u=\gamma \text { and } \pi_{C^{\prime \prime}} u=g
$$

Then we have that there exists

$$
!u: Z \longrightarrow B^{\prime \prime} \mid \pi_{B}\left(\pi_{B^{\prime}} u\right)=\pi_{B} \gamma=f \text { and } \pi_{C^{\prime \prime}} u=g
$$

which is exactly the universal property of the pullback of ($\sigma, \alpha \alpha^{\prime}$). This gives, using our notation, that we may write

$$
\left(\alpha \alpha^{\prime}\right)^{*}: E(C, A) \longrightarrow E\left(C^{\prime \prime}, A\right),\left(\alpha \alpha^{\prime}\right)^{*}=\left(\alpha^{\prime}\right)^{*} \alpha^{*}
$$

which makes $E_{R}(-, A)$ into a contravariant functor.
Given an element in $E_{R}(C, A)$ and a homomorphism $\beta: A \longrightarrow A^{\prime}$, define the derived extension we get by taking the pushout of (A, β, \varkappa) using Lemma 5.4, namely:

Lemma 5.4. If \varkappa is injective, so is \varkappa^{\prime}. Also, $\operatorname{coker}\left(\varkappa^{\prime}\right) \simeq \operatorname{coker}(\varkappa)$.
Proof.

$$
\begin{aligned}
a^{\prime} & \in \operatorname{ker} \varkappa^{\prime} \Longleftrightarrow\left(a^{\prime}, 0\right)=(\beta(a),-\varkappa(a)), a \in A . \\
& \Longrightarrow a=0 \Longrightarrow \beta(0)=0=a^{\prime} .
\end{aligned}
$$

Define the map $\sigma^{\prime}: P O \longrightarrow C$ as $\sigma^{\prime}\left(\left(a^{\prime}, b\right)+L\right)=\sigma(b)$. It is correct:

$$
\begin{aligned}
\left(a^{\prime}, b\right) & \sim\left(c^{\prime}, d\right) \Longleftrightarrow \exists a \in A \mid\left(c^{\prime}, d\right)=\left(a^{\prime}, b\right)+(\beta(a),-\varkappa(a))=\left(a^{\prime}+\beta(a), b-\varkappa(a)\right) \\
\sigma^{\prime}\left(\left(c^{\prime}, d\right)+L\right) & =\sigma(d)=\sigma(b-\varkappa(a))=\sigma(b)-\sigma \varkappa(a)=\sigma(b)
\end{aligned}
$$

It is an homomorphism with kernel \varkappa^{\prime} :

$$
\begin{aligned}
\sigma^{\prime}\left(\left(a^{\prime}, b\right)+\left(c^{\prime}, d\right)+L\right) & =\sigma^{\prime}\left(\left(a^{\prime}+c^{\prime}, b+d\right)+L\right)=\sigma(b+d)=\sigma(b)+\sigma(d) \\
\left(a^{\prime}, b\right)+L & \in \operatorname{ker} \sigma^{\prime} \Longleftrightarrow \sigma(b)=0 \Longleftrightarrow b=\varkappa(a) \Longrightarrow\left(a^{\prime}, \varkappa(a)\right)+L \in \operatorname{ker} \sigma^{\prime} \\
& \Longleftrightarrow\left(\left(a^{\prime}+\beta(a), 0\right)+L\right)=i\left(a^{\prime}+\beta(a) \in \operatorname{ker} \sigma^{\prime}\right.
\end{aligned}
$$

Define this element in $E_{R}\left(C, A^{\prime}\right)$ as the image of the map $\beta_{*}: E_{R}(C, A) \longrightarrow$ $E_{R}\left(C, A^{\prime}\right)$. In detail, we have:

$$
\begin{aligned}
\beta_{*}(0 & \longrightarrow \\
& A \xrightarrow{\varkappa} B \stackrel{\sigma}{\longrightarrow} C \longrightarrow 0)=0 \longrightarrow A^{\prime} \xrightarrow{i} P O \xrightarrow{p} C \longrightarrow 0 \\
P O & =A^{\prime} \oplus B /\langle(\beta(a),-\varkappa(a)): a \in A\rangle=A^{\prime} \times B / L \\
i\left(a^{\prime}\right) & =\left(a^{\prime}, 0\right)+L, p\left(\left(a^{\prime}, b\right)+L\right)=\sigma(b)
\end{aligned}
$$

β_{*} is well-defined.
Proposition 5.5. The map β_{*} makes $E_{R}(C,-)$ into a covariant functor from R-mod to Sets.

Proof. Take $\beta=1_{A}: A \longrightarrow A$. Then

$$
\begin{aligned}
& \beta_{*}(0 \longrightarrow \\
& P O=A \xrightarrow{\varkappa} B \xrightarrow{\sigma} C)=(0 \longrightarrow A \xrightarrow{i} P O \xrightarrow{p} C \longrightarrow 0) \\
& P O /\langle(a,-\varkappa(a)): a \in A\rangle
\end{aligned}
$$

Define the homomorphism $\gamma: P O \longrightarrow B$ as

$$
\begin{aligned}
\gamma(a, b) & =\varkappa(a)+b \\
\gamma(a,-\varkappa(a)) & =\varkappa(a)-\varkappa(a)=0, \forall a \in A
\end{aligned}
$$

It makes the diagram

commutative:

$$
\begin{aligned}
\gamma(i(a)) & =\gamma(a, 0)=\varkappa(a)+0=\varkappa(a) \\
\sigma(\gamma((a, b)+L)) & =\sigma(\varkappa(a)+b)=\sigma(b)
\end{aligned}
$$

So $\left(1_{A}\right)_{*}=1_{E_{R}(C, A)}$. Given any two homomorphisms $\beta: A \longrightarrow A^{\prime}, \beta^{\prime}: A^{\prime} \longrightarrow A^{\prime \prime}$. Taking pushout $\left(B^{\prime}, i_{A^{\prime}}, i_{B}\right)$ of (A, \varkappa, β), gives an element in $E_{R}\left(C, A^{\prime}\right)$ where the middle module is

$$
\begin{aligned}
B^{\prime} & =A^{\prime} \oplus B /\langle(\beta(a),-\varkappa(a)): a \in A\rangle=A^{\prime} \oplus B / L \\
i_{A^{\prime}}\left(a^{\prime}\right) & =\left(a^{\prime}, 0\right)+L \\
i_{B}(b) & =(0, b)+L
\end{aligned}
$$

Taking the pushout $\left(B^{\prime \prime}, i_{A^{\prime \prime}}, i_{Y}\right)$ of $\left(A^{\prime}, \beta^{\prime}, i_{A^{\prime}}\right)$ gives an element in $E_{R}\left(C, A^{\prime \prime}\right)$, where the middle module is

$$
\begin{aligned}
B^{\prime \prime} & =A^{\prime \prime} \oplus B^{\prime} /\left\langle\left(\beta^{\prime}\left(a^{\prime}\right),-i_{A}^{\prime}\left(a^{\prime}\right)\right): a^{\prime} \in A^{\prime}\right\rangle=A^{\prime \prime} \oplus B^{\prime} / L^{\prime} \\
i_{A^{\prime \prime}}\left(a^{\prime \prime}\right) & =\left(a^{\prime \prime}, 0,0\right)+L \\
i_{B^{\prime}}((0, b)+L) & =(0,0, b)+L^{\prime}
\end{aligned}
$$

and we get the commutative diagram

So ($\left.B^{\prime \prime}, i_{B^{\prime}} i_{B}, i_{A^{\prime \prime}}\right)$ is a candidate for the pushout of $\left(\varkappa, \beta^{\prime} \beta\right)$. We only have to show the universal property, i.e. that for any R-module Z, any $f: B \longrightarrow Z, g: A^{\prime \prime} \longrightarrow Z$ such that

$$
f \varkappa=g\left(\beta^{\prime} \beta\right) \Longrightarrow \exists!u: B^{\prime \prime} \longrightarrow Z \mid u i_{B^{\prime}} i_{B}=f \text { and } u i_{A^{\prime \prime}}=g
$$

Since B^{\prime} is the pushout of (\varkappa, β), and

$$
f \varkappa=\left(g \beta^{\prime}\right) \beta \Longrightarrow \exists!\gamma: B^{\prime} \longrightarrow Z \mid f=\gamma i_{B} \text { and } g \beta^{\prime}=\gamma i_{A^{\prime}}
$$

For this γ, and g, since $B^{\prime \prime}$ is the pushout of $\left(i_{A^{\prime}}, \beta^{\prime}\right)$

$$
\exists!u: B^{\prime \prime} \longrightarrow Z \mid u i_{A^{\prime \prime}}=g \text { and } \gamma=u i_{B^{\prime}}
$$

Then,

$$
\gamma i_{B}=f=\left(u i_{B^{\prime}}\right) i_{B}=u\left(i_{B^{\prime}} i_{B}\right) \text { and } u i_{A^{\prime \prime}}=g
$$

as desired. We get

$$
\left(\beta^{\prime}\right)_{*} \beta_{*}=\left(\beta^{\prime} \beta\right)_{*}: E_{R}(C, A) \longrightarrow E_{R}\left(C, A^{\prime \prime}\right)
$$

So $E_{R}(C,-)$ is a covariant functor.

Proposition 5.6. $E_{R}(C, A)$ is a bifunctor from R - $\bmod \times R$-mod to Sets.
Proof. We must show that this diagram is commutative:

Pick any element in $E_{R}(C, A)$. Compute first $E\left(\alpha, A^{\prime}\right) \circ E(C, \beta)$. We get

where $i_{A^{\prime}}$ and π are the canonical injections and projections. Now,

$$
\begin{aligned}
& P O=A^{\prime} \oplus B /\langle((\alpha(a),-\varkappa(a)): a \in A\rangle \\
& P B=\left\{\left(\left(a^{\prime}, b\right), c^{\prime}\right) \in P O \oplus C^{\prime} \mid \beta\left(c^{\prime}\right)=\sigma(b), \forall b \in B, c^{\prime} \in C^{\prime}\right\}
\end{aligned}
$$

The other way, compute $E\left(C^{\prime}, \beta\right) \circ E(\alpha, A)$. We get

where i and π represent the canonical injections and projections. Now

$$
\begin{aligned}
P b & =\left\{(b, c) \in B \oplus C \mid \sigma(b)=\beta\left(c^{\prime}\right)\right\} \\
P o & =A^{\prime} \oplus P b /\langle(\alpha(a), \varkappa(a), 0): a \in A\rangle
\end{aligned}
$$

So $P o=P B$, they both contain the same elements. Choose the isomorphism $1_{P B}$: $P o \longrightarrow P B$ in

Since the diagram is commutative, we have that the extensions are equivalent, and $E_{R}(-,-)$ is a bifunctor from $R-\bmod \times R-\bmod$ to S ets.

Definition 5.7. The diagonal homomorphism for a module C is $\triangle=\triangle_{C}: C \longrightarrow$ $C \oplus C, \triangle(c)=(c, c)$.

Definition 5.8. The codiagonal homomorphism for a module A is $\nabla=\nabla_{A}: A \oplus$ $A \longrightarrow A, \nabla\left(a_{1}, a_{2}\right)=a_{1}+a_{2}$.

Then, for any two $f, g: C \longrightarrow A$, we may write $f+g=\nabla_{A}(f \oplus g) \triangle_{C}$, where $\alpha \oplus \beta(a, b)=(\alpha(a), \beta(b))$ (when $\alpha(a)$ and $\beta(b)$ are defined)

Definition 5.9. Given two extensions $\left\{E_{i}: A_{i} \xrightarrow{\varkappa_{i}} B_{i} \xrightarrow{\sigma_{i}} C_{i}\right\}_{i=1,2}$ we define their direct sum to be the extension

$$
E_{1} \oplus E_{2}: 0 \longrightarrow A_{1} \oplus A_{2} \xrightarrow{\varkappa_{1} \oplus \varkappa_{2}} B_{1} \oplus B_{2} \xrightarrow{\sigma_{1} \oplus \sigma_{2}} C_{1} \oplus C_{2} \longrightarrow 0
$$

This is indeed a short exact sequence.

$$
\begin{aligned}
\sigma_{1} \oplus \sigma_{2}\left(\varkappa_{1} \oplus \varkappa_{2}\left(a_{1}, a_{2}\right)\right. & =\sigma_{1} \oplus \sigma_{2}\left(\varkappa_{1}\left(a_{1}\right), \varkappa_{2}\left(a_{2}\right)\right)=\left(\sigma_{1}\left(\varkappa_{1}\left(a_{1}\right)\right), \sigma_{2}\left(\varkappa_{2}\left(a_{2}\right)\right)=(0,0)\right. \\
& \Longrightarrow \operatorname{Im} \varkappa_{1} \oplus \varkappa_{2} \subseteq \operatorname{ker} \sigma_{1} \oplus \sigma_{2}
\end{aligned}
$$

The other way, take

$$
\begin{array}{rll}
\left(b_{1}, b_{2}\right) & \mid & \left(\sigma_{1} \oplus \sigma_{2}\right)\left(b_{1}, b_{2}\right)=(0,0) \Longrightarrow \sigma_{1}\left(b_{1}\right)=0 \wedge \sigma_{2}\left(b_{2}\right)=0 \\
\Longleftrightarrow & b_{1} \in \operatorname{Im}\left(\varkappa_{1}\right) \wedge b_{2} \in \operatorname{Im}\left(\varkappa_{2}\right) \Longrightarrow\left(b_{1}, b_{2}\right) \in \operatorname{Im}\left(\varkappa_{1} \oplus \varkappa_{2}\right) .
\end{array}
$$

Definition 5.10. Define a binary operation on $E_{R}(C, A)$, called the Baer sum of two extensions E_{1} and E_{2} as $E_{1}+E_{2}=\nabla_{A}\left(E_{1} \oplus E_{2}\right) \triangle_{C}=\nabla_{*}\left(\triangle^{*}\left(E_{1} \oplus E_{2}\right)\right)$.

Lemma 5.11. There exists a well-defined mapping $\varphi_{C, A}: E_{R}(C, A) \longrightarrow E x t^{1}(C, A)$.
Proof. Let $[\epsilon]:=$ class of equivalent extensions of $(0 \longrightarrow A \xrightarrow{i} B \xrightarrow{p} C \longrightarrow 0)$. Choose a projective resolution of C :

$$
\ldots \xrightarrow{d_{2}} P_{2} \xrightarrow{d_{1}} P_{1} \xrightarrow{d_{0}} P_{0} \longrightarrow C \longrightarrow 0 .
$$

Lemma 1.22 gives the existence of a lifting $f_{0}: P_{0} \longrightarrow B$ and $f_{1}: P_{1} \longrightarrow A$ that satisfies

$$
p f_{0}=\alpha, f_{0} d_{0}=i f_{1}, f_{1} d_{1}=0 \Longrightarrow f_{1} \in \operatorname{Ext}^{1}(C, A)
$$

Define

$$
\begin{aligned}
\varphi_{C, A} & : E_{R}(C, A) \longrightarrow \operatorname{Ext}^{1}(C, A) \\
\varphi_{C, A}([\epsilon]) & =f_{1}
\end{aligned}
$$

Since any two lifting homomorphisms are chain homologous, they induce equal cohomology homomorphisms, so $\varphi_{C, A}$ does not depend on the choice of lifting f_{*}. φ is a well-defined map. Let two elements $\left\{E_{i}: A \xrightarrow{\varkappa_{i}} B_{i} \xrightarrow{\sigma_{i}} C\right\}_{i=1,2}$ of $E_{R}(C, A)$ be equivalent by a homomorphism $\beta: B_{1} \longrightarrow B_{2}$. Let E_{1} induce $f_{1} \in E x t_{R}^{1}(C, A)$.

The same f_{1} is also induced by E_{2}, since we have $\beta f_{0}: P_{0} \longrightarrow B_{2}$, and all squares are commutative. By Lemma 3.3, $\varphi_{C, A}$ does not depend on the choice of projective resolution of C.

Lemma 5.12. There exists a well-defined mapping $\psi_{C, A}: E x t_{R}^{1}(C, A) \longrightarrow E_{R}(C, A)$.
Proof. Fix a projective resolution of C :

$$
\ldots \xrightarrow{d_{2}} P_{2} \xrightarrow{d_{1}} P_{1} \xrightarrow{d_{0}} P_{0} \longrightarrow C \longrightarrow 0 .
$$

Define $\psi(f)=\left[0 \longrightarrow A \longrightarrow \operatorname{pushout}\left(f, d_{0}\right) \longrightarrow C\right]$. We must first show that this is indeed a short exact sequence, i.e. that C is the cokernel follows from the
isomorphism with coker $\left(d_{0}\right)$ (by Lemma 5.4). $\psi_{C, A}$ is well-defined. Let f, f^{\prime} be two cohomologous cochains, so there exists a $g: P_{0} \longrightarrow A$ such that

$$
f^{\prime}-f=g d_{0}
$$

In the diagram

we may define map $\gamma: \operatorname{pushout}\left(f, d_{0}\right) \longrightarrow \operatorname{pushout}\left(f^{\prime}, d_{0}\right)$ as

$$
\begin{aligned}
\gamma\left(a, p_{0}\right) & =\left(a-g p_{0}, p_{0}\right), p_{0} \in P_{0} \\
\gamma\left(f\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right) & =\left(f\left(p_{1}\right)-g\left(-d_{0}\left(p_{1}\right)\right),-d_{0}\left(p_{1}\right)\right)=\left(f\left(p_{1}\right)+g d_{0}\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right) \\
& =\left(f^{\prime}\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right), p_{1} \in P_{1}
\end{aligned}
$$

It is a homomorphism $A \times P_{0} \longrightarrow A \times P_{0}$:

$$
\begin{aligned}
\gamma\left(\left(a, p_{0}\right)+(b, p)\right) & =\gamma\left(a+b, p_{0}+p\right)=\left((a+b)-g\left(p_{0}+p\right), p_{0}+p\right) \\
& =\left(a-g\left(p_{0}\right), p_{0}\right)+(b-g(p), p)=\gamma\left(a, p_{0}\right)+\gamma(b, p)
\end{aligned}
$$

γ gives that the two extensions are equivalent, as $\left(p_{1} \in P_{1}\right)$:

$$
\begin{aligned}
\gamma(i(a)) & =\gamma\left((a, 0)+\left\langle f\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right\rangle\right)=(a-g(0), 0)+\left\langle\left(f^{\prime}\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right)\right. \\
& =(a, 0)+\left\langle\left(f^{\prime}\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right): p_{1} \in P_{1}\right\rangle=i^{\prime}(a) \\
p^{\prime} \gamma\left(\left(a, p_{0}\right)+\left\langle\left(f\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right): p_{1} \in P_{1}\right\rangle\right) & \left.=p^{\prime}\left(\left(a-g\left(p_{0}\right), p_{0}\right)\right)+\left\langle\left(f\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right): p_{1} \in P_{1}\right\rangle\right) \\
& =p_{0}=p\left(\left(a, p_{0}\right)+\left\langle\left(f\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right): p_{1} \in P_{1}\right\rangle\right.
\end{aligned}
$$

Corollary 5.13. $\varphi_{C, A}$ and $\psi_{C, A}$ as defined in Lemmas 5.11 and 5.12, respectively, are inverse mappings.

Proof. Choose a lifting f_{*} and get the class $\left[0 \longrightarrow A \longrightarrow \operatorname{pushout}\left(f_{1}, d_{0}\right) \longrightarrow C\right]$. Then the result follows easily, since we can choose any projective resolution of C, and we can take f_{1} (as we can freely chose any lifting). And we get $\varphi_{C, A} \circ \psi_{C, A}\left(f_{1}\right)=f_{1}$, i.e. $\varphi_{C, A} \circ \psi_{C, A}=1_{E x t^{1}(C, A)}$. Now we will show that $\psi_{C, A} \circ \varphi_{C, A}=1_{E_{R}(C, A)}$. Start with $E: 0 \longrightarrow A \xrightarrow{\varkappa} B \xrightarrow{\sigma} C \longrightarrow 0$. Fix a lifting f_{*}. Take pushout of $\left(f_{1}, d_{0}\right)$. Will show that the extension we get is equivalent to E, i.e. there exists an isomorphism $h: P O \longrightarrow B$ that makes the diagram commutative:

Define

$$
h\left(a, p_{0}\right)=\varkappa(a)+f_{0}\left(p_{0}\right) \in B
$$

It is well-defined homomorphism. When $\left(a, p_{0}\right) \sim\left(b, q_{0}\right)$, there exists $p_{1} \in P_{1}$ such that

$$
a-b=f_{1}\left(p_{1}\right) \text { and } p_{0}-q_{0}=-d_{0}\left(p_{1}\right)
$$

So

$$
\begin{aligned}
h\left(\left(a, p_{0}\right)-\left(b, q_{0}\right)\right) & =h\left(a-b, p_{0}-q_{0}\right)=\varkappa(a-b)+f_{0}\left(p_{0}-q_{0}\right) \\
& =\varkappa f_{1}\left(p_{1}\right)+f_{0}\left(-d_{0}\left(p_{1}\right)\right)=\varkappa f_{1}\left(p_{1}\right)-f_{0} d_{0}\left(p_{1}\right)=0 \\
& \Longrightarrow h\left(a, p_{0}\right)=h\left(b, q_{0}\right)
\end{aligned}
$$

So there exists a homomorphism $h: P O \longrightarrow B$. Need only to check commutativity:

$$
\begin{aligned}
h i_{A}(a) & =h(a, 0)=\varkappa(a)+f_{0}(0)=\varkappa(a) \\
\sigma h\left(a, p_{0}\right) & =\sigma\left(\varkappa(a)+f_{0}\left(p_{0}\right)\right)=\sigma f_{0}\left(p_{0}\right)=\varepsilon\left(p_{0}\right)
\end{aligned}
$$

so the pushout extension is equivalent the original one. This gives

$$
\psi_{C, A} \circ \varphi_{C, A}=1_{E_{R}(C, A)}
$$

Corollary 5.14. $\varphi_{C, A}\left(\right.$ and $\left.\psi_{C, A}\right)$ is a natural transformation of bifunctors.
Proof. We must show that for any $\gamma: K \longrightarrow C, \alpha: A \longrightarrow B$, the following diagram is commutative

$$
\begin{gathered}
\operatorname{Ext}^{1}(C, A) \xrightarrow{\varphi_{(C, A)}} E_{R}(C, A) \\
\operatorname{Ext}^{1}(\gamma, \alpha) \downarrow \\
\operatorname{Ext}^{1}(K, B) \xrightarrow{\varphi_{(K, B)}} E_{R}(K, B)
\end{gathered}
$$

Fix a projective resolution of $C,\left(P_{*}, d_{*}\right) \xrightarrow{\varepsilon} C$. Start with a 1-cocycle f_{1} of $E x t^{1}(C, A)$, so $f_{1} d_{1}=0$. Take pushout $P O_{C}$ of $\left(f_{1}, d_{0}\right)$. Then you get the commutative diagram

$$
P O_{C}=\left\{\left(a, p_{0}\right), a \in A, p_{0} \in P_{0} \mid\left(f_{1}\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right)=(0,0)\right\}
$$

Take pullback $P B_{K}$ of $\left(\varepsilon \pi_{P_{0}}, \gamma\right)$:

$$
P B_{K}=\left\{\left(k, a, p_{0}\right) \mid \gamma(k)=\varepsilon \pi_{P_{0}}\left(a, p_{0}\right)=\varepsilon\left(p_{0}\right),\left(a, p_{0}\right) \in P O_{C}\right\}
$$

Now take pushout $P O_{B}$ of $\left(\alpha, i_{A}\right)$:

$$
P O_{B}=\left\{\left(b, k, a, p_{0}\right) \mid\left(k, a, p_{0}\right) \in P B_{K},(\alpha(a), 0,0,0)=(0,0, a, 0), \forall a \in A\right\}
$$

Then you get the commutative diagram

We have found an element of $E_{R}(K, B)$, and stop here. Now take $f_{1} \in E x t^{1}(C, A)$, and follow the diagram the other way. Fix the projective resolution of $\left(Q_{*}, \delta_{*}\right) \xrightarrow{\epsilon}$ K. By Lemma 1.22 , there exists a lifting $t_{*}: Q_{*} \longrightarrow P_{*}$, such that

$$
\gamma \epsilon=\varepsilon t_{0}, t \delta=d t, \alpha f_{1} t \in \operatorname{Ext}^{1}(K, B)
$$

since

$$
\delta_{1}\left(\alpha f_{1} t\left(p_{1}\right)\right)=\alpha f_{1} t\left(p_{1}\right)=\alpha(0)=0
$$

Take now pushout $P O$ of $\left(\alpha f_{1} t_{1}, \delta_{0}\right)$,

$$
\begin{aligned}
& \ldots \xrightarrow{\delta_{1}} Q_{1} \xrightarrow{\delta_{0}} Q_{0} \xrightarrow{\epsilon} K \\
& P O=\left\{\left(b, q_{0}\right), \forall b \in B, q_{0} \in Q_{0} \mid\left(\alpha f_{1} t\left(q_{1}\right), 0\right)=\left(0, \delta_{0}\left(q_{1}\right)\right), \forall q_{1} \in Q_{1}\right\}
\end{aligned}
$$

Define $h: P O \longrightarrow P O_{B}$ by

$$
h\left(b, q_{0}\right)=b+\epsilon\left(q_{0}\right)+t_{0}\left(q_{0}\right)=\left(b, \epsilon\left(q_{0}\right), 0, t_{0}\left(q_{0}\right)\right)
$$

It is a well-defined homomorphism. Suppose two elements $\left(b, q_{0}\right) \sim\left(b^{\prime}, q_{0}^{\prime}\right)$ of $P O$ are equivalent, i.e. their difference is equal to $\left(\alpha f_{1} t\left(q_{1}\right),-\delta_{0}\left(q_{1}\right)\right)$, for some $q_{1} \in Q_{1}$. Then

$$
\begin{aligned}
h\left(\alpha f_{1} t\left(q_{1}\right),-\delta_{0}\left(q_{1}\right)\right) & =\alpha f_{1} t\left(q_{1}\right)+\epsilon\left(-\delta_{0}\left(q_{1}\right)\right)+t_{0}\left(-\delta_{0}\left(q_{1}\right)\right)= \\
& =\alpha f_{1} t\left(q_{1}\right)-t_{0}\left(\delta_{0}\left(q_{1}\right)\right)=\alpha f_{1} t\left(q_{1}\right)-d_{0} t_{1}\left(q_{1}\right)=\alpha f_{1}\left(p_{1}\right)-d_{0}\left(p_{1}\right)= \\
& =\left(\alpha f_{1}\left(p_{1}\right), 0,0,-d_{0}\left(p_{1}\right)\right)=\left(0,0, f_{1}\left(p_{1}\right),-d_{0}\left(p_{1}\right)\right)=(0,0,0,0), \\
h\left(\left(b, q_{0}\right)-\left(b^{\prime}, q_{0}^{\prime}\right)\right) & =0 \Longrightarrow h\left(\left(b, q_{0}\right)\right)=h\left(\left(b^{\prime}, q_{0}^{\prime}\right)\right) .
\end{aligned}
$$

This is a homomorphism that makes the diagram commutative:

$$
\begin{aligned}
h i_{B_{P_{0}}}(b) & =h(b, 0)=b=i_{B}(b) \\
\pi_{K} h\left(b, q_{0}\right) & =\pi_{K}\left(b+\epsilon\left(q_{0}\right)+t_{0}\left(q_{0}\right)\right)=\pi_{K}\left(\epsilon\left(q_{0}\right), 0, t_{0}\left(q_{0}\right)\right)=\epsilon\left(q_{0}\right)=\epsilon\left(\pi_{Q}\left(b, q_{0}\right)\right)
\end{aligned}
$$

So the two extensions in out previous diagram are equivalent, hence φ is a functorial isomorphism of bifunctors $E x t_{R}^{1}(C, A)$ and $E_{R}(C, A)$, from R - $\bmod \times R$-mod to Sets $_{*}$.

Lemma 5.15. $\varphi_{C, A}: E_{R}(C, A) \longrightarrow E x t_{R}^{1}(C, A)$ is group homomorphism.

Proof. Take any two elements of $E_{R}(C, A):\left\{E_{i}: A_{i} \xrightarrow{\varkappa_{i}} B_{i} \xrightarrow{\sigma_{i}} C_{i}\right\}_{i=1,2}$. Let f_{*} be a lifting for E_{1}, and g_{*} a lifting for E_{2}. Take it step by step.

By Proposition 1.36,
$P B=\left\{\left(b_{1}, b_{2}, c\right) \mid(c, c)=\left(\sigma\left(b_{1}\right), \sigma\left(b_{2}\right), b_{1} \in B_{1}, b_{2} \in B_{2}\right\}=\left\{\left(b_{1}, b_{2}, \sigma\left(b_{1}\right)\right) \mid \sigma\left(b_{1}\right)=\sigma\left(b_{2}\right)\right\}\right.$
By Proposition 1.40,
$P O=\left\{\left(a, b_{1}, b_{2}, \sigma\left(b_{1}\right)\right), \forall a \in A, \forall p_{0} \in P_{0},\left(b_{1}, b_{2}, \sigma\left(b_{1}\right)\right) \in P B \mid\right.$
$\left.\left(a_{1}+a_{2},-\varkappa_{1}\left(a_{1}\right),-\varkappa_{2}\left(a_{2}\right), 0\right)=0, \forall a_{1}, a_{2} \in A\right\}$
First,

$$
\operatorname{Im} f_{0} \oplus g_{0} \subseteq P B \text { since } \sigma\left(f_{0}\left(p_{0}\right)\right)=\sigma\left(g_{0}\left(p_{0}\right)\right)=\varepsilon
$$

Further,

$$
\begin{aligned}
\pi_{C}\left(f_{0} \oplus g_{0}\left(p_{0}\right)\right) & =\pi_{C}\left(f_{0}\left(p_{0}\right), g_{0}\left(p_{0}\right), \varepsilon\left(p_{0}\right)\right)=\varepsilon\left(p_{0}\right) \\
\varkappa_{1} \oplus \varkappa_{2}\left(f_{1} \oplus g_{1}\left(p_{1}\right)\right) & =\left(\varkappa_{1}\left(f_{1}\left(p_{1}\right)\right), \varkappa_{2}\left(g_{1}\left(p_{1}\right)\right)\right)=\left(f_{0} d_{0}\left(p_{1}\right), g_{0} d_{0}\left(p_{1}\right)\right)=f_{0} \oplus g_{0}\left(d_{0}\left(p_{1}\right)\right) \\
\left(f_{1} \oplus g_{1}\right) d_{1}\left(p_{2}\right) & =\left(f_{1} d_{1}\left(p_{2}\right), g_{1} d_{1}\left(p_{2}\right)\right)=(0,0)
\end{aligned}
$$

So $f_{*} \oplus g_{*}$ is a lifting. Claim that

$$
\left(i_{P B}\left(f_{0} \oplus g_{0}\right), \nabla_{A}\left(f_{1} \oplus g_{1}\right)\right)
$$

is a lifting for $E_{1}+E_{2}$:

$$
\begin{aligned}
\pi_{C}\left(i_{P B}\left(f_{0} \oplus g_{0}\left(p_{0}\right)\right)\right) & =\pi_{C}\left(0, f_{0}\left(p_{0}\right), g_{0}\left(p_{0}\right), \varepsilon\left(p_{0}\right)\right)=\varepsilon\left(p_{0}\right) \\
\nabla_{A}\left(f_{1} \oplus g_{1}\right)\left(p_{1}\right) & =\nabla_{A}\left(f_{1}\left(p_{1}\right), g_{1}\left(p_{1}\right)\right)=f_{1}\left(p_{1}\right)+g_{1}\left(p_{1}\right)=\left(f_{1}+g_{1}\right)\left(p_{1}\right) \\
& =f_{1}\left(p_{1}\right)+g_{1}\left(p_{1}\right) \\
& \Longrightarrow \varphi\left(E_{1}+E_{2}\right)=\varphi\left(E_{1}\right)+\varphi\left(E_{2}\right)
\end{aligned}
$$

Theorem 5.16. $E_{R}(C, A)$ is an abelian group with operation given by the Baer sum. Also, $E_{R}(C, A) \simeq E x t_{R}^{1}(C, A)$ as bifunctors

$$
R-\bmod \times R-\bmod \longrightarrow A B
$$

Look at the class of the split exact sequence. Since we are free to choose lifting homomorphisms, we choose

where $f_{0}\left(p_{0}\right)=\left(0, \varepsilon\left(p_{0}\right)\right)$ and $f_{1}=0$. We may choose these since $\pi f_{0}\left(p_{0}\right)=\varepsilon\left(p_{0}\right)$ and $f_{0}\left(d_{0}\left(p_{1}\right)\right)=0=i(0)$. So $\varphi([0 \longrightarrow A \longrightarrow A \oplus C \longrightarrow C \longrightarrow 0])=0$, thus the zero element in $E_{R}(C, A)$ is the class of the split exact sequence.

Part 2. Extensions of groups

6. Cohomology of groups

Definition 6.1. Given a left G-module A, define for $n \geq 0$, the n-th cohomology group

$$
H^{n}(G, A):=E x t_{\mathbb{Z} G}^{n}\left(\mathbb{Z}^{\text {triv }}, A\right)
$$

where \mathbb{Z} is the trivial left $\mathbb{Z} G$-module.

We need a projective resolution of \mathbb{Z} over $\mathbb{Z} G$. Take F_{0} to be the free $\mathbb{Z} G$ module on one generator, the symbol []. Define $\varepsilon: F_{0} \longrightarrow \mathbb{Z}$ as $\varepsilon([])=1$, so $\varepsilon\left(\sum n(g)\langle g\rangle[]\right)=\sum n(g)\langle g\rangle \varepsilon([])=\sum n(g)\langle g\rangle \cdot 1=\sum n(g)$. Define F_{1} to be the free $\mathbb{Z} G$-module on $\left[g_{1}\right]$, for all $g_{1} \in G$. Define $d_{1}\left(\left[g_{1}\right]\right)=\left\langle g_{1}\right\rangle[]-[]$. Build F_{2} to be the free $\mathbb{Z} G$-module on all $\left[g_{1} \mid g_{2}\right]$, for all $g_{1}, g_{2} \in G$. Define $d_{2}\left(\left[g_{1} \mid g_{2}\right]\right)=$ $\left\langle g_{1}\right\rangle\left[g_{2}\right]-\left[g_{1} g_{2}\right]+\left[g_{1}\right]$.

Build F_{3} to be the free $\mathbb{Z} G$-module on $\left[g_{1}\left|g_{2}\right| g_{3}\right]$, for all $g_{1}, g_{2}, g_{3} \in G$. Define $d_{3}\left(\left[g_{1}\left|g_{2}\right| g_{3}\right]\right)=\left\langle g_{1}\right\rangle\left[g_{2} \mid g_{3}\right]-\left[g_{1} g_{2} \mid g_{3}\right]+\left[g_{1} \mid g_{2} g_{3}\right]-\left[g_{1} \mid g_{2}\right]$.

Continue in this manner. For any $n>0, F_{n}$ is the free $\mathbb{Z} G$-module on $\left[g_{1}\left|g_{2}\right|\right.$ $\left.\ldots \mid g_{n}\right]$, for all $g_{1}, g_{2}, \ldots, g_{n} \in G$. The differential $d_{n}: F_{n} \longrightarrow F_{n-1}$ is defined as
$d_{n}\left(\left[g_{1}\left|g_{2}\right| \ldots \mid g_{n}\right]\right)=\left\langle g_{1}\right\rangle\left[g_{2}|..| g_{n}\right]+\sum_{i=1}^{n-1}(-1)^{i}\left[g_{1}\left|. .\left|g_{i} g_{i+1}\right| ..\right| g_{n}\right]+(-1)^{n}\left[g_{1}|..| g_{n-1}\right]$

Define also the $\mathbb{Z} G$-module homomorphisms $s_{n}: F_{n} \longrightarrow F_{n+1} s_{n}\left(\langle g\rangle\left[g_{1}\left|g_{2}\right|\right.\right.$.. $\left.\left.\mid g_{n}\right]\right)=\left[g\left|g_{1}\right| . . \mid g_{n}\right]$, whenever $n \geq 0$. Define $s_{-1}(1)=[]$. Define this long sequence of free $\mathbb{Z} G$-modules as $B_{G}(\mathbb{Z})$, the bar resolution of the trivial $\mathbb{Z} \dot{G}$-module \mathbb{Z}.

Proposition 6.2. Fix the ring $\mathbb{Z} G . B_{G}(\mathbb{Z})$ is a projective resolution over \mathbb{Z}.

Proof. We have

$$
\ldots \underset{s_{2}}{\stackrel{d_{3}}{\rightleftarrows}} F_{2} \underset{s_{1}}{\stackrel{d_{2}}{\rightleftarrows}} F_{1} \underset{s_{0}}{\stackrel{d_{1}}{\rightleftarrows}} F_{0} \underset{s_{-1}}{\stackrel{\varepsilon}{\rightleftarrows}} Z^{\text {triv }} \longrightarrow 0
$$

It follows:

$$
\begin{aligned}
\varepsilon s_{-1}(1) & =\varepsilon([])=1 \\
\left(s_{-1} \varepsilon+d_{1} s_{0}\right)(\langle g\rangle[]) & =s_{-1} \varepsilon(\langle g\rangle[])+d_{1} s_{0}(g[])=s_{-1}(g \cdot 1)+d_{1}([g]) \\
& =s_{-1}(1)+\langle g\rangle[]-[]=[]+\langle g\rangle[]-[]=\langle g\rangle[]
\end{aligned}
$$

$$
\begin{aligned}
& s_{n-1} d_{n}\left(\langle g \rangle \left[g_{1}\right.\right. \mid \\
&\left.\quad g_{2}|. .| g_{n}\right] \\
&=s_{n-1}\left(\langle g \rangle \left(\left\langle g_{1}\right\rangle\left[g_{2}|. .| g_{n}\right]+\sum_{i=1}^{n-1}(-1)^{i}\left[g_{1}\left|. .\left|g_{i} g_{i+1}\right| . .\right| g_{n}\right]+\right.\right. \\
&+(-1)^{n}\left[g_{1}\right. \mid \\
&\left.\left.\quad . . \mid g_{n-1}\right]\right) \\
&=\left[g g_{1}\left|g_{2}\right| . . \mid g_{n}\right]+\sum_{i=1}^{n-1}\left[g\left|g_{1}\right| . .\left|g_{i} g_{i+1}\right| . . \mid g_{n}\right]+ \\
&+(-1)^{n}[g \mid \\
&\left.g_{1}|. .| g_{n-1}\right] \\
& d_{n+1} s_{n}\left(g \left[g_{1}\right.\right. \mid \\
&\left.\left.g_{2}|. .| g_{n}\right]\right)=d_{n}\left[g\left|g_{1}\right| . . \mid g_{n}\right] \\
&=\langle g\rangle\left[g_{1}|. .| g_{n}\right]+\sum_{i=1}^{n}(-1)^{i}\left[h_{1}\left|h_{2} . .\left|h_{i} h_{i+1}\right| . .\right| h_{n}\right]+(-1)^{n+1}\left[g\left|g_{1}\right| . . \mid g_{n-1}\right] \\
& \\
& s_{n-1} d_{n-1}+d_{n} s_{n}=2\langle g\rangle\left[g_{1}|. .| g_{n}\right]-\left[g g_{1}\left|g_{2}\right| \ldots \mid g_{n}\right]+(-1)^{n}\left[g\left|g_{1}\right| . . \mid g_{n-1}\right]+ \\
&(-1)^{n+1}[g\left.\left|\quad g_{1}\right| . . \mid g_{n-1}\right] \\
&=\left[g g_{1}\left|g_{2}\right| . . \mid g_{n}\right]+\langle g\rangle\left[g_{1}|. .| g_{n}\right]-\left[g g_{1}\left|g_{2}\right| \ldots \mid g_{n}\right]=\langle g\rangle\left[g_{1}|. .| g_{n}\right]
\end{aligned}
$$

So we have

$$
\begin{aligned}
\varepsilon s_{-1} & =1_{\mathbb{Z}} \\
s_{-1} \varepsilon+d_{1} s_{0} & =1_{F_{0}} \\
s_{n-1} d_{n}+d_{n+1} s_{n} & =1_{F_{n}}, \forall n \geq 1
\end{aligned}
$$

So if such a sequence exists, it splits as a sequence of abelian groups, hence is is exact as a sequence of $\mathbb{Z} G$-modules. Now we show that we can build such a sequence. Given the homomorphisms $s_{n}, n \geq-1$ as $s_{-1}(1)=[]$ and $s_{n}\left(\langle g\rangle\left[g_{1} \mid\right.\right.$.. $\left.\left.\mid g_{n}\right]\right)=\left[g\left|g_{1}\right| . . \mid g_{n}\right]$. Let F_{0} be the free $\mathbb{Z} G$-module on []. We can recursively construct ε and $d_{n}, n \geq 1$, and the free modules $F_{n}, n \geq 0$, from the three equations above. F_{n+1}, as a $\mathbb{Z} G$-module, is equal to the submodule $s_{n} F_{n}$, for $n \geq 0$.

Need $\varepsilon s_{-1}(1)=1 \Longrightarrow \varepsilon s_{-1}(1)=\varepsilon([])=1 \Longrightarrow$ define $\varepsilon([])=1$
Need $d_{1} s_{0}(\langle g\rangle[])=\langle g\rangle[]-s_{-1} \varepsilon(\langle g\rangle[])=\langle g\rangle[]-s_{-1}(1)=\langle g\rangle[]-[] \Longrightarrow d_{1}([g])=\langle g\rangle[]-[]$
Build F_{1}, the free $\mathbb{Z} G$-module on $[g], g \in G$.

$$
d_{n+1} s_{n}\left(\langle g\rangle\left[g_{1}|. .| g_{n}\right]\right)=\langle g\rangle\left[g_{1}|. .| g_{n}\right]-s_{n-1} d_{n}\left(\langle g\rangle\left[g_{1}|. .| g_{n}\right], n \geq 1\right.
$$

From this equation we can recursively build F_{n} and $d_{n}, n \in \mathbb{Z}_{>1}$, and so far we have some long sequence of free modules over \mathbb{Z}. It turns out to be a complex. We have:

$$
\varepsilon d_{1}([g])=\varepsilon(\langle g\rangle[]-[])=g \varepsilon([])-\varepsilon([])=\varepsilon[]-\varepsilon[]=0
$$

Use now induction on the claim $P_{n}: d_{n} d_{n+1}=0$.

$$
\begin{gathered}
d_{1} d_{2}\left(\left[g_{1} \quad \mid \quad g_{2}\right]\right)=d_{1}\left(\left\langle g_{1}\right\rangle\left[g_{2}\right]-\left[g_{1} g_{2}\right]+\left[g_{1}\right]\right)=\left\langle g_{1}\right\rangle d_{1}\left(\left[g_{2}\right]\right)-d_{1}\left(\left[g_{1} g_{2}\right]\right)+d_{1}\left[g_{1}\right]= \\
\quad=\left\langle g_{1}\right\rangle\left(\left\langle g_{2}\right\rangle[]-[]\right)-\left(\left\langle g_{1} g\right\rangle_{2}[]-[]\right)+\left\langle g_{1}\right\rangle[]-[]=0
\end{gathered}
$$

So P_{1} is correct. Suppose that for $n>3, P_{n}$ is correct.

$$
\begin{aligned}
d_{n}\left(d_{n+1} s_{n}\right) & =d_{n}\left(1_{F_{n}}-s_{n-1} d_{n}\right)=d_{n}-\left(d_{n} s_{n-1}\right) d_{n}=d_{n}-\left(1_{F_{n}}-s_{n-2} d_{n-1}\right) d_{n} \\
& =d_{n}-d_{n}+s_{n-2}\left(d_{n-1} d_{n}\right)=0
\end{aligned}
$$

When we build F_{n+1} as the free $\mathbb{Z} G$-module on $\operatorname{Im} s_{n}$, we get that we build a chain complex of free $\mathbb{Z} G$-modules, i.e. a free chain complex of abelian groups with a
contractive homotopy $s: 1_{F_{*}} \sim 0_{F_{*}}$. Since $H_{n}\left(1_{F_{*}}\right)=H_{n}\left(0_{F_{*}}\right)=0$, we get a free resolution of the trivial $\mathbb{Z} G$-module \mathbb{Z}.

Take $\operatorname{Hom}_{\mathbb{Z} G}(-, A)$, for any $\mathbb{Z} G$-module A.
$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z}, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{\mathbb{Z} G}\left(F_{0}, A\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{\mathbb{Z} G}\left(F_{1}, A\right) \xrightarrow{d_{2}^{*}} . . \longrightarrow \operatorname{Hom}_{\mathbb{Z} G}\left(F_{n}, A\right) \xrightarrow{d_{n}^{*}} \ldots$
So we have the codifferential $\delta^{n-1}=d_{n}^{*}, n \geq 1$. As a set, $\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n}, A\right)$ is equal to the set of functions $f: \underbrace{G \times G \times \ldots \times G}_{n} \longrightarrow A$, and adding the $\mathbb{Z} G$-module homomorphism structure gives

$$
\begin{aligned}
\delta^{n} f\left(g_{1}, g_{2}, . ., g_{n}, g_{n+1}\right) & =d_{n+1}^{*} f=f d_{n+1}\left(\left[g_{1}\left|g_{2}\right| . .\left|g_{n}\right| g_{n+1}\right]\right) \\
& =g_{1} f\left(g_{2}, g_{3}, . ., g_{n+1}\right)+\sum_{i=1}^{n}(-1)^{i} f\left(g_{1}, . ., g_{i} g_{i+1}, . ., g_{n+1}\right)+ \\
(-1)^{n+1} f\left(g_{1}, g_{2}, . . g_{n}\right) & =h\left(g_{1}, g_{2}, . ., g_{n+1}\right)
\end{aligned}
$$

Let's take a closer look at the lowest cohomology groups. We know $H^{0}(G, A) \simeq$ $\operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z}, A)$, so it is given by $\mathbb{Z} G$-module homomorphisms $f(1)=a$ for those $a \in A$ such that $f(1)=f(g \cdot 1)=g f(1)=g a=a$, that G acts trivially on. Denote this group as A^{G}. 1-cocycles are given by those functions $f: G \times G \longrightarrow A$ such that

$$
\begin{aligned}
\delta^{1} f\left(g_{1}, g_{2}\right) & =0=f\left(d_{2}\left[g_{1}, g_{2}\right]\right)=f\left(\left\langle g_{1}\right\rangle\left[g_{2}\right]-\left[g_{1}, g_{2}\right]+\left[g_{1}\right]\right) \\
& =g_{1} f\left(g_{2}\right)-f\left(g_{1} g_{2}\right)+f\left(g_{1}\right) \Longrightarrow f\left(g_{1} g_{2}\right)=g_{1} f\left(g_{2}\right)+f\left(g_{1}\right)
\end{aligned}
$$

We call these homomorphisms for crossed homomorphisms. They would necessarily satisfy $f(1)=0$. 1 -coboundaries are given by

$$
\delta^{0} f(g)=f d_{1}([g])=f(\langle g\rangle[]-[])=g f([])-f[]=g a-a=h_{a}(g), \text { for any } a \in A
$$

We call these homomorphisms for principal homomorphisms. They would necessarily satisfy $h(1)=0$. So we have that $H^{1}(G, A)$ is the factor group of the group of crossed homomorphisms modulo the subgroup of principal homomorphisms. 2cocycles are given by those $f: G \times G \longrightarrow A$ such that

$$
\begin{aligned}
\delta^{2} f\left(g_{1}, g_{2}, g_{3}\right) & =0=f\left(d_{3}\left[g_{1}\left|g_{2}\right| g_{3}\right]\right) \\
& =f\left(\left\langle g_{1}\right\rangle\left[g_{2} \mid g_{3}\right]-\left[g_{1} g_{2} \mid g_{3}\right]+\left[g_{1} \mid g_{2} g_{3}\right]-\left[g_{1} \mid g_{2}\right]\right) \\
& =g_{1} f\left(g_{2}, g_{3}\right)-f\left(g_{1} g_{2}, g_{3}\right)+f\left(g_{1}, g_{2} g_{3}\right)-f\left(g_{1}, g_{2}\right)=h\left(g_{1}, g_{2}, g_{3}\right) \\
& \Longrightarrow f\left(g_{1}, g_{2}\right)=g_{1} f\left(g_{2}, g_{3}\right)-f\left(g_{1} g_{2}, g_{3}\right)+f\left(g_{1}, g_{2} g_{3}\right)
\end{aligned}
$$

2-coboundaries lie in the image of δ^{1}

$$
\delta^{1} f\left(g_{1}, g_{2}\right)=g_{1} f\left(g_{2}\right)-f\left(g_{1} g_{2}\right)+f\left(g_{1}\right)=h\left(g_{1}, g_{2}\right)
$$

Remark 6.3. Since $E x t_{\mathbb{Z} G}^{n}$ is independent of the choice of projective resolution, we may also work with the normalized bar resolution. Denote $\overline{F_{n}}$ the factor module of the free module on $\left[g_{1}\left|g_{2}\right| . . \mid g_{n}\right]$, modulo the submodule generated by $\left[g_{1} \mid\right.$ $\left.g_{2}|..| g_{n}\right]$, if any of the $\left\{g_{i}\right\}_{i=1}^{n}=1$. The homomorphisms ε, d, s_{-1} still hold, need only to check that $d_{n}\left[g_{1}\left|g_{2}\right| . . \mid g_{n}\right]=0$ if any one of the $g_{i}, i=1, . ., n$, are equal to 1. This is easily seen from the formula of $d_{n}: F_{n} \longrightarrow F_{n-1}$. The normalized bar resolution $\overline{B_{G}(\mathbb{Z})}$ obtained in the same manner as for $B_{G}(\mathbb{Z})$, with the extra condition, is a free resolution of \mathbb{Z} over $\mathbb{Z} G$. Then any of the n-cochains will satisfy
the normalisation condition, $f\left(g_{1}, g_{2}, . ., g_{n}\right)=0$ if any one of the $g_{i}, i=1, . ., n$, are equal to 1 .

Proposition 6.4. For any $n \in \mathbb{N}, H^{n}(G,-)$ is a covariant functor from G-mod to $A B$.

Proof. By Proposition 3.4, Ext $t_{\mathbb{Z} G}^{n}\left(\mathbb{Z}^{\text {trivial }},-\right)$ is a covariant functor. Since $H^{n}(G, A)=$ $E x t_{\mathbb{Z} G}^{n}\left(\mathbb{Z}^{\text {trivial }}, A\right)$, we have proved the claim.

Proposition 6.5. For any $n \in \mathbb{N}, H^{n}(-, A)$ is a contravariant functor from $G R$ to $A B$.

Proof. Suppose $\gamma \in \operatorname{Hom}_{G R}(K, G)$. Let A be any $\mathbb{Z} G$-module. A becomes a K module through its G-module structure: $k a=\gamma(k) a$. Define a projective resolution of K as in the bar resolution for K, and denote its free modules by $\left\{K_{i}\right\}_{i=0}^{N}$. By the universal property of free modules, there exists the family of $\mathbb{Z} K$-module homomorphisms $f_{*}: B_{K}(\mathbb{Z}) \longrightarrow B_{G}(\mathbb{Z})$ defined as

$$
\begin{aligned}
& f_{0}([])=[], f_{1}([k])=[\gamma(k)] \\
& f_{n}\left(\left[k_{1}\right.\right. \mid \\
&\left.\left.k_{2}|. .| k_{n}\right]\right)=\left[\gamma\left(k_{1}\right)\left|\gamma\left(k_{2}\right)\right| \ldots \mid \gamma\left(k_{n}\right)\right], n \in \mathbb{Z}_{\geq 1}
\end{aligned}
$$

They make each square of

$$
\begin{aligned}
& \ldots \xrightarrow{d_{3}} K_{2} \xrightarrow{d_{2}} K_{1} \xrightarrow{d_{1}} K_{0} \xrightarrow{\varepsilon} Z \\
& f_{2} \downarrow \\
& \ldots \xrightarrow{d_{3}} F_{2} \xrightarrow{d_{2}} f_{1} \downarrow \xrightarrow{d_{1}} F_{0} \xrightarrow{f_{0} \downarrow} F_{0} \downarrow
\end{aligned}
$$

commutative:

$$
\begin{aligned}
& f_{0}(\varepsilon([]))=f_{0}([])=[]=\varepsilon([]) \\
& f_{n-1} d_{n}\left(\left[k_{1} \quad\left|\quad k_{2}\right| . . \mid k_{n}\right]\right)=f_{n-1}\left(\left\langle k_{1}\right\rangle\left[k_{2}|\ldots| k_{n}\right]+\sum_{i=1}^{n-1}(-1)^{i}\left[k_{1}\left|. .\left|k_{i} k_{i+1}\right| . .\right| k_{n}\right]\right. \\
& \left.+(-1)^{n}\left[k_{1} \quad|\quad . .| k_{n-1}\right]\right) \\
& =\left\langle k_{1}\right\rangle f_{n-1}\left(\left[k_{2}|\ldots| k_{n}\right]\right)+\sum_{i=1}^{n-1}(-1)^{i} f_{n-1}\left(\left[k_{1}\left|. .\left|k_{i} k_{i+1}\right| . .\right| k_{n}\right]\right) \\
& +(-1)^{n} f_{n-1}\left(\left[\begin{array}{lll}
k_{1} & |\quad . .| k_{n-1}
\end{array}\right]\right) \\
& =\left\langle\gamma\left(k_{1}\right)\right\rangle\left[\gamma\left(k_{2}\right)|\ldots| \gamma\left(k_{n}\right)\right]+\sum_{i=1}^{n-1}(-1)^{i}\left[\gamma\left(k_{1}\right)\left|. .\left|\gamma\left(k_{i} k_{i+1}\right)\right| . .\right| \gamma\left(k_{n}\right)\right] \\
& \left.+(-1)^{n}\left[\gamma\left(k_{1}\right) \quad|\quad . .| \gamma\left(k_{n-1}\right)\right]\right) \\
& d_{n} f_{n}\left(\left[\begin{array}{lll}
k_{1} & |\ldots| k_{n}
\end{array}\right]\right) \\
& =d_{n}\left(\left[\gamma\left(k_{1}\right)|\ldots| \gamma\left(k_{n}\right)\right]=\left\langle\gamma\left(k_{1}\right)\right\rangle\left[\gamma\left(k_{2}\right)|\ldots| \gamma\left(k_{n}\right)\right]\right. \\
& \left.+\sum_{i=1}^{n-1}(-1)^{i}\left[\gamma\left(k_{1}\right) \quad\left|\quad . .\left|\gamma\left(k_{i} k_{i+1}\right)\right| . .\right| \gamma\left(k_{n}\right)\right]+(-1)^{n}\left[\gamma\left(k_{1}\right)|. .| \gamma\left(k_{n-1}\right)\right]\right) \\
& =f_{n-1} d_{n}\left(\left[k_{1}\left|k_{2}\right| . . \mid k_{n}\right]\right), n \in \mathbb{Z}_{\geq 1} .
\end{aligned}
$$

Hence the family $\left\{f_{n}\right\}_{n=0}$ is a lifting. Take $\operatorname{Hom}_{\mathbb{Z} G}(-, A)$, and get the commutative diagram of complexes of abelian groups

$$
\begin{gathered}
0 \longrightarrow \operatorname{Hom}_{Z G}(Z, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z G}\left(F_{0}, A\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{Z G}\left(F_{1}, A\right) \xrightarrow{d_{2}{ }^{*}} \ldots \\
1_{H o m_{Z G}(Z, A)} \downarrow \\
0 \longrightarrow \operatorname{Hom}_{Z K}(Z, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z K}\left(K_{0}, A\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{Z K}\left(K_{1}, A\right) \xrightarrow{d_{2}{ }^{*}} \ldots \\
\begin{array}{c}
\left(f_{0}^{*} \varepsilon^{*}(s)\right)([])=f_{0}^{*}(s \varepsilon)([])=\left(s \varepsilon f_{0}\right)([])=s(\varepsilon([]))=s([]) \\
\left(\varepsilon^{*} s\right)([])=(s \varepsilon)([])=s(\varepsilon[])=s([]) \\
f_{n}^{*} d_{n-1}^{*}(t)=f_{n}^{*}\left(t d_{n-1}\right)=\left(t d_{n-1}\right) f_{n}=t\left(d_{n-1} f_{n}\right)=t\left(f_{n-1} d_{n-1}\right)=\left(t f_{n-1}\right) d_{n-.1} \\
=d_{n-1}^{*}\left(f_{n-1}^{*}(t)\right)=d_{n-1}^{*} f_{n-1}^{*}(t), \forall t \in \operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right), n \in \mathbb{Z} \geq 1 .
\end{array}
\end{gathered}
$$

Hence $f^{*}: \operatorname{Hom}_{\mathbb{Z} G}\left(F_{*}, A\right) \longrightarrow \operatorname{Hom}_{\mathbb{Z} K}\left(K_{*}, A\right)$ is a cochain transformation. Applying H^{n} on f^{*} gives:

$$
\begin{aligned}
H^{n}\left(f^{*}\right) & =f_{*}: H^{n}(G, A) \longrightarrow H^{n}(K, A) \\
f_{*}\left(l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right. & =f_{n}^{*}(l)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} K}\left(K_{n-1}, A\right)\right)
\end{aligned}
$$

When $\gamma=1_{G}$ we get $f_{n}\left(\left[g_{1}\left|g_{2}\right| . . \mid g_{n}\right]\right)=\left(\left[g_{1}\left|g_{2}\right| . . \mid g_{n}\right]\right)$ and:

$$
\begin{aligned}
f_{*} & \left(l+d_{n}^{*}\left(\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\left(g_{1}, g_{2}, . ., g_{n}\right)=f_{n}^{*}(l)\left(\left[g_{1}\left|g_{2}\right| . . \mid g_{n}\right]\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right.\right. \\
& =l\left(f_{n}\left(\left[g_{1}\left|g_{2}\right| . . \mid g_{n}\right]\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)=l\left(\left[g_{1}\left|g_{2}\right| . . \mid g_{n}\right]\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right. \\
& =1_{H^{n}(G, A)}
\end{aligned}
$$

Look at the pair of morphisms $\beta: S \longrightarrow K, \gamma: K \longrightarrow G$. A becomes an S-module through its K-module structure: $s a=\beta(s) a$. Define a projective resolution of S as in the bar resolution for S, and denote its free modules by $\left\{S_{i}\right\}_{i=0}^{N}$. By the universal property of free modules, there exists the family of $\mathbb{Z} S$-module homomorphisms $g_{*}: B_{S}(\mathbb{Z}) \longrightarrow B_{K}(\mathbb{Z})$ defined as

$$
\begin{aligned}
& g_{0}([])=[], g_{1}([s])=[\beta(s)] \\
& g_{n}\left(\left[s_{1}\right.\right. \mid \\
&\left.\left.s_{2}|. .| s_{n}\right]\right)=\left[\beta\left(s_{1}\right)\left|\beta\left(s_{2}\right)\right| \ldots \mid \beta\left(s_{n}\right)\right], n \in \mathbb{Z}_{\geq 1}
\end{aligned}
$$

They make each square of

commutative. Take $\operatorname{Hom}_{\mathbb{Z} K}(-, A)$, and get the commutative diagram of complexes of abelian groups

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{Z K}(Z, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z K}\left(K_{0}, A\right) \xrightarrow{d_{1}{ }^{*}} \operatorname{Hom}_{Z K}\left(K_{1}, A\right) \xrightarrow{d_{2}^{*}} \ldots \\
& 1_{\operatorname{Hom}_{Z G}(Z, A)} \downarrow \\
& 0 \longrightarrow \operatorname{Hom}_{Z S}(Z, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z S}\left(S_{0}, A\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{Z S}^{*} \downarrow \\
& \left.\operatorname{Hom}_{1}, A\right) \xrightarrow{d_{2}^{*}} \ldots
\end{aligned}
$$

Take the covariant functor H^{n}, and get the group homomorphism

$$
\begin{aligned}
H^{n}\left(g^{*}\right) & =g_{*}: H^{n}(K, A) \longrightarrow H^{n}(S, A) \\
g_{*}\left(u+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} K}\left(K_{n-1}, A\right)\right)\right. & =g_{n}^{*}(u)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} S}\left(S_{n-1}, A\right)\right)
\end{aligned}
$$

Then we have the composition homomorphism

$$
\begin{gathered}
g_{*} f_{*} \quad: \quad H^{n}(G, A) \longrightarrow H^{n}(S, A) \\
\left(g_{*} f_{*}\right)\left(l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\left[g_{1}, g_{2}, . ., g_{n}\right]=g_{*}\left(l \left(f_{n}\left(\left[g_{1}\left|g_{2}\right| . . \mid g_{n}\right]\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} K}\left(K_{n-1}, A\right)\right)\right.\right.\right. \\
\begin{array}{c}
g_{*}\left(l\left(\left[\gamma\left(g_{1}\right) \quad|\quad . .| \gamma\left(g_{n}\right)\right]\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} K}\left(K_{n-1}, A\right)\right)=l\left(g_{n}\left(\left[\gamma\left(g_{1}\right)|. .| \gamma\left(g_{n}\right)\right]\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} S}\left(S_{n-1}, A\right)\right)\right.\right. \\
=l\left(\left[\beta\left(\gamma\left(g_{1}\right)\right)|. .| \beta\left(\gamma\left(g_{n}\right)\right)\right]\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} S}\left(S_{n-1}, A\right)\right) \\
=l\left(\left[(\beta \gamma)\left(g_{1}\right)|. .|(\beta \gamma)\left(g_{n}\right)\right]\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} S}\left(S_{n-1}, A\right)\right)
\end{array}
\end{gathered}
$$

We also have the $\mathbb{Z} G$-module homomorphisms $g_{n} f_{n}=k_{n}$ defined as

$$
\begin{aligned}
k_{0}([]) & =[] \\
k_{n}\left(\left[s_{1}\right.\right. & \left.\left.\left|\quad s_{2}\right| . . \mid s_{n}\right]\right)=\left[(\beta \gamma)\left(s_{1}\right)\left|(\beta \gamma)\left(s_{2}\right)\right| . . \mid(\beta \gamma)\left(s_{n}\right)\right], n \in \mathbb{Z}_{\geq 1}
\end{aligned}
$$

we get the commutative diagram

Applying $\operatorname{Hom}_{\mathbb{Z} G}(-, A)$, we get the commutative diagram of cochain complexes

$$
\begin{gathered}
0 \longrightarrow \operatorname{Hom}_{Z G}(Z, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z G}\left(F_{0}, A\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{Z G}\left(F_{1}, A\right) \xrightarrow{d_{2}^{*}} \ldots \\
1_{\operatorname{Hom}_{Z G}(Z, A)} \downarrow \\
0 \longrightarrow \operatorname{Hom}_{Z S}(Z, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z S}\left(S_{0}, A\right) \xrightarrow{\text { d }_{1}^{*}} \operatorname{kom}_{Z S}^{*}\left(S_{1}, A\right) \xrightarrow{d_{2}^{*}} \ldots
\end{gathered}
$$

Applying H^{n} on the cochain transformation k^{*}, we get

$$
\begin{aligned}
& H^{n}\left(k^{*}\right)=k_{*}: H^{n}(G, A) \longrightarrow H^{n}(S, A) \\
& k_{*}\left(l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right.=k_{n}^{*}(l)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} S}\left(S_{n-1}, A\right)\right) \\
&=l\left(k_{n}\left(\left[g_{1}|\cdot| g_{n}\right]\right)\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} S}\left(S_{n-1}, A\right)\right) \\
&=l\left(\left[(\beta \gamma)\left(s_{1}\right)\left|(\beta \gamma)\left(s_{2}\right)\right| . . \mid(\beta \gamma)\left(s_{n}\right)\right]+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} S}\left(S_{n-1}, A\right)\right)\right. \\
&=l\left(g_{*} f_{*}\right)\left(l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\left(\left[g_{1}, g_{2}, . ., g_{n}\right]\right)\right.
\end{aligned}
$$

So $H^{n}(-, A)$ is a contravariant functor.
Definition 6.6. Define the pairs (G, A) where G is any group and A is any G module. For any $\varphi \in \operatorname{Hom}_{G R}(K, G), \psi \in \operatorname{Hom}_{A B}(A, B)$, define a morphism $(\varphi, \psi):(G, A) \longrightarrow(K, B)$ as $\psi(\varphi(k) a)=k \psi(a)$. We have described a category which we will denote PAIRS.

Proposition 6.7. $H^{n}(-,-)$ is a bifunctor from PAIRS to $A B$.
Remark 6.8. Actually, H^{n} is not a bifunctor in a proper sense, since the variables G and A are not independent.
Proof. For any G-module homomorphism $\alpha: A \longrightarrow A^{\prime}$, and group homomorphism $\gamma: G^{\prime} \longrightarrow G$, the diagram

$$
\begin{gathered}
H^{n}(G, A) \xrightarrow{\alpha^{*}} H^{n}\left(G, A^{\prime}\right) \\
\gamma^{*} \left\lvert\, \begin{array}{ll}
\\
& \\
H^{n}\left(G^{\prime}, A\right) \xrightarrow{\alpha^{*}} & { }^{n}\left(\gamma^{*}\right. \\
& \left.G^{\prime}, A^{\prime}\right)
\end{array}\right.
\end{gathered}
$$

is commutative. Start with the bar resolution for G. We may take $H o m_{\mathbb{Z} G}\left(B_{G}(\mathbb{Z}), A\right)$. α induces the commutative diagram

$$
\begin{aligned}
0 & \operatorname{Hom}_{Z G}(Z, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z G}\left(F_{0}, A\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{Z G}\left(F_{1}, A\right) \xrightarrow{d_{2}^{*}} \ldots \\
& \alpha_{*} \downarrow \\
0 & \operatorname{Hom}_{Z G}\left(Z, A^{\prime}\right) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z G}\left(F_{0}, A^{\prime}\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{Z G}\left(F_{1}, A^{\prime}\right) \xrightarrow{d_{2}^{*}} \ldots \\
& \alpha_{*} \varepsilon^{*}(s)=\alpha_{*}(s \varepsilon)=\alpha(s \varepsilon) \\
& \varepsilon^{*} \alpha_{*}(s)=\varepsilon^{*}(\alpha s)=(\alpha s) \varepsilon \\
& \alpha_{*} d_{n}^{*}(t)=\alpha_{*}\left(t d_{n}\right)=\alpha\left(t d_{n}\right)=d_{n}^{*}(\alpha t)=d_{n}^{*}\left(\alpha_{*} t\right), n \in \mathbb{Z}_{\geq 1} .
\end{aligned}
$$

So α_{*} is a cochain transformation between our two cochain complexes $\operatorname{Hom}_{\mathbb{Z} G}\left(B_{G}(\mathbb{Z}), A\right)$ and $H o m_{\mathbb{Z} G}\left(B_{G}(\mathbb{Z}), A^{\prime}\right)$. Apply $H^{n}\left(\alpha_{*}\right)=\alpha_{*}$ and get the group homomorphism

$$
\begin{aligned}
& \alpha_{*}: \\
& \alpha^{n}(G, A) \longrightarrow H^{n}\left(G, A^{\prime}\right) \\
& \alpha_{*}\left(l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right)= \\
& \alpha_{*} l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A^{\prime}\right)\right)
\end{aligned}
$$

Define a projective resolution of G^{\prime} as in the bar resolution for G^{\prime}, and denote its free modules by $\left\{G_{i}^{\prime}\right\}_{i=0}^{N}$. By the universal property of free modules, there exists the family of $\mathbb{Z} G^{\prime}$-module homomorphisms $f_{*}: B_{G^{\prime}}(\mathbb{Z}) \longrightarrow B_{G}(\mathbb{Z})$ defined as

$$
\begin{aligned}
& f_{0}([])=[], f_{1}\left(\left[g^{\prime}\right]\right)=\left[\gamma\left(g^{\prime}\right)\right] \\
& f_{n}\left(\left[g_{1}^{\prime}\left|g_{2}^{\prime}\right| . . \mid g_{n}^{\prime}\right]\right)=\left[\gamma\left(g_{1}^{\prime}\right)\left|\gamma\left(g_{2}^{\prime}\right)\right| \ldots \mid \gamma\left(g_{n}^{\prime}\right)\right], n \in \mathbb{Z}_{\geq 1}
\end{aligned}
$$

They make each square of

$$
\begin{array}{r}
\ldots \xrightarrow{d_{3}} G_{2}^{\prime} \xrightarrow{d_{2}} G_{1}^{\prime}{ }_{1}^{d_{1}} G_{0}^{\prime}{ }_{0}^{\varepsilon} Z \\
f_{2} \downarrow \\
\ldots \xrightarrow{d_{3}} F_{2} \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} f_{0} \downarrow{ }_{0} \xrightarrow{\varepsilon} \downarrow
\end{array}
$$

commutative. Applying $\operatorname{Hom}_{\mathbb{Z} G}\left(B_{G}(\mathbb{Z}), A\right)$ induces the commutative diagram

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{Z G}\left(Z, A^{\prime}\right) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z G}\left(F_{0}, A^{\prime}\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{Z G}\left(F_{1}, A^{\prime}\right) \xrightarrow{d_{2}^{*}} \ldots \\
& 1_{\operatorname{Hom}_{Z G}\left(Z, A^{\prime}\right)} \downarrow \\
& 0 \longrightarrow \operatorname{Hom}_{Z G^{\prime}}\left(Z, A^{\prime}\right) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{Z G^{\prime}}{ }^{*}\left(G_{0}^{\prime}, A^{\prime}\right) \xrightarrow{\text { da1 }^{*}} \operatorname{Hom}_{Z G^{\prime}}\left(G^{\prime}{ }_{1}, A^{\prime}\right) \xrightarrow{d_{2}^{*}} \ldots
\end{aligned}
$$

and the cochain transformations $\left\{f_{n}^{*}\right\}_{n=0}$. Take $H^{n}\left(f^{*}\right)=f_{*}$ as

$$
\begin{aligned}
f_{*} & : H^{n}\left(G, A^{\prime}\right) \longrightarrow H^{n}\left(G^{\prime}, A^{\prime}\right) \\
f_{*}\left(s+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A^{\prime}\right)\right)\right. & =f_{n}^{*}(s)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G^{\prime}}\left(G_{n-1}^{\prime}, A^{\prime}\right)\right)
\end{aligned}
$$

The composition yields

$$
\begin{aligned}
& f_{*} \alpha_{*}: H^{n}(G, A) \longrightarrow H^{n}\left(G^{\prime}, A^{\prime}\right) \\
& f_{*} \alpha_{*}\left(l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right)=f_{*}\left(\alpha_{*} l+d_{n}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A^{\prime}\right)\right)\right) \\
&=f_{*}\left(\alpha l+d_{n}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A^{\prime}\right)\right)\right)=(\alpha l) f_{n}+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G^{\prime}}\left(G_{n-1}^{\prime}, A^{\prime}\right)\right)
\end{aligned}
$$

Following the anti- clockwise direction in our diagram, we get

$$
\begin{aligned}
& f_{*}: H^{n}(G, A) \longrightarrow H^{n}\left(G^{\prime}, A\right) \\
& f_{*}\left(l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right.=f_{n}^{*}(l)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G^{\prime}}\left(G_{n-1}^{\prime}, A\right)\right) \\
& \alpha_{*}: H^{n}\left(G, A^{\prime}\right) \longrightarrow H^{n}\left(G^{\prime}, A^{\prime}\right) \\
& \alpha_{*}\left(s+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right)= \\
& \alpha_{*} s+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(G_{n-1}^{\prime}, A^{\prime}\right)\right)
\end{aligned}
$$

Their composition gives

$$
\begin{aligned}
\alpha_{*} f_{*}\left(l+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(F_{n-1}, A\right)\right)\right. & =\alpha_{*}\left(f_{n}^{*}(l)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G^{\prime}}\left(G_{n-1}^{\prime}, A\right)\right)\right) \\
& \left.=\alpha_{*}\left(f_{n}^{*}(l)\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G^{\prime}}\left(G_{n-1}^{\prime}, A^{\prime}\right)\right)\right) \\
& \left.=\alpha_{*}\left(l f_{n}\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G^{\prime}}\left(G_{n-1}^{\prime}, A^{\prime}\right)\right)\right) \\
& \left.=\alpha\left(l f_{n}\right)+d_{n}^{*}\left(\operatorname{Hom}_{\mathbb{Z} G^{\prime}}\left(G_{n-1}^{\prime}, A^{\prime}\right)\right)\right)
\end{aligned}
$$

Hence $H^{n}(G, A)$ is a bifunctor: $\alpha_{*} f_{*}=f_{*} \alpha_{*}: H^{n}(G, A) \longrightarrow H^{n}\left(G^{\prime}, A^{\prime}\right)$

7. Extensions with abelian kernel

7.1. Description using cocycles. Look at a short exact sequence

$$
\varepsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 0
$$

where A is abelian. We will write + for the binary operation on A and $E(E$ is not necessarily abelian), and multiplicatively for a group G. E acts on itself by conjugation. Since $A \simeq \varkappa A$, and $E / \varkappa A \simeq G$, where $\varkappa A=\operatorname{ker} \sigma, \varkappa A$ is a normal subgroup of E, and A is isomorphic to a normal subgroup of E (we will write a for $\varkappa a$ when it is clear from the context what we mean). Therefore, E acts on A by conjugation: there exists a group homomorphism $\varphi^{\prime}: E \longrightarrow A u t(A)$ given by $\varphi^{\prime}(e)(a)=e+\varkappa a-e$. Since $\varkappa(A) \subseteq \operatorname{ker} \varphi^{\prime}$, there exists $\varphi: E / \varkappa A \simeq G \longrightarrow A u t(A)$. So A is a G-module. . The action defined on a set of representatives $\langle g\rangle$ of $\{g\}_{g \in G}$ in E, such that $\sigma(\langle g\rangle)=g$, is

$$
\varphi(g)(a)=\langle g\rangle+a-\langle g\rangle \Longleftrightarrow \varphi(g)(a)+\langle g\rangle=\langle g\rangle+a
$$

Definition 7.1. Let G be a group and A be a G-module, with the fixed action φ of G on A. Denote by $E\left(G, A^{\varphi}\right)$ the set of equivalence classes of short exact sequences of groups (extensions)

$$
0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1
$$

such that

$$
\varphi(g)(a)=e+a-e \mid e \in \sigma^{-1}(g), g \in G, a \in A
$$

where two extensions are called equivalent if there exists a group homomorphism $h: E_{1} \longrightarrow E_{2}$ (hence isomorphism), such that the diagram

commutes.

Let $\rangle: G \longrightarrow E$ be a function (not a homomorphism) such that $\sigma(\langle g\rangle)=g$. We choose $\langle 1\rangle=0$. Any $e \in E$ belongs to the right A-coset $A+\langle\sigma(e)\rangle$, and can therefore be written as $e=a+\langle g\rangle, a \in A, g=\sigma(e) \in G$. Let's look at the operation on E :

$$
(a+\langle g\rangle)+(b+\langle h\rangle=a+(\langle g\rangle+b)+\langle h\rangle=a+g b+\langle g\rangle+\langle h\rangle
$$

Now,

$$
\begin{aligned}
& \sigma(\langle g\rangle+\langle h\rangle-\langle g h\rangle)=\sigma(\langle g\rangle) \sigma(\langle h\rangle) \sigma(\langle g h\rangle)^{-1}=g h(g h)^{-1}=g h h^{-1} g=1 \\
&\langle g\rangle+\langle h\rangle-\langle g h\rangle \in \operatorname{ker} \sigma=\operatorname{Im} \varkappa \\
& f(g, h)=\langle g\rangle+\langle h\rangle-\langle g h\rangle \in \operatorname{Im} \varkappa \\
&\langle g\rangle+\langle h\rangle=f(g, h)+\langle g h\rangle
\end{aligned}
$$

for some function $f: G \times G \longrightarrow A$. It follows

$$
\begin{aligned}
& f(1, g)+\langle g\rangle=\langle 1\rangle+\langle g\rangle \Longrightarrow f(1, g)=0 \\
& f(g, 1)+\langle g\rangle=\langle g\rangle+\langle 1\rangle \Longrightarrow f(g, 1)=0
\end{aligned}
$$

So:

$$
(a+\langle g\rangle)+(b+\langle h\rangle)=a+g b+f(g, h)+\langle g h\rangle
$$

For simplicity, define $(a, g):=a+\langle g\rangle$. Then

$$
(a, g)+(b, h)=(a+g b+f(g, h), g h)
$$

We see that the right hand side gives that E is some 'twisted' semi- direct product of A and G. If $f(g, h)=0, \forall g, h \in G$, then $E=A \rtimes_{\varphi} G$. We should have a group structure in E :

- There exists a unique zero element $(0,1)$

$$
\begin{aligned}
(b, h)+(a, g) & =(a, g) \\
& =(b+h a+f(h, g), h g) \\
h g & =g \Longrightarrow h=1 \\
b+h a+f(h, g) & =a \Longrightarrow b+1 \cdot a+f(1, g)=a \\
& \Longrightarrow b+a+0=a \Longrightarrow b+a=a \Longleftrightarrow b=0
\end{aligned}
$$

- The right inverse element:

$$
\begin{aligned}
(a, g)+(b, h) & =(0,1) \\
& =(a+g b+f(g, h), g h) \\
g h & =1 \Longrightarrow h=g^{-1} \\
a+g b+f\left(g, g^{-1}\right) & =0 \Longrightarrow g b=-f\left(g, g^{-1}\right)-a \Longrightarrow b=-g^{-1} f\left(g, g^{-1}\right)-g^{-1} a
\end{aligned}
$$

The left inverse element:

$$
\begin{aligned}
(b, h)+(a, g) & =(-f(1, g), 1) \\
& =(b+h a+f(h, g), h g) \\
h g & =1 \Longrightarrow h=g^{-1} \\
b+g^{-1} a+f\left(g^{-1}, g\right) & =0 \Longrightarrow b=-g^{-1} a-f\left(g^{-1}, g\right)
\end{aligned}
$$

The inverse must be unique so this condition must yield

$$
-f\left(g^{-1}, g\right)=-g^{-1} f\left(g, g^{-1}\right) \Longleftrightarrow f\left(g^{-1}, g\right)=g^{-1} f\left(g, g^{-1}\right)
$$

So $(a, g)^{-1}=\left(-g^{-1} a-f\left(g^{-1}, g\right), g^{-1}\right)$.

- E must be associative

$$
\begin{aligned}
&\{(a, g)+(b, h)\}+(c, k)=(a+g b+f(g, h), g h)+(c, k) \\
&=(a+g b+f(g, h)+g h c+f(g h, k), g h k) \\
&(a, g)+\{(b, h)+(c, k)\}=(a, g)+(b+h c+f(h, k), h k) \\
&=\quad(a+g(b+h c+f(h, k))+f(g, h k), g h k)=(a+g b+g h c+g f(h, k)+f(g, h k), g h k) \\
& \Longrightarrow f(g, h)+f(g h, k)=g f(h, k)+f(g, h k) \\
& \Longleftrightarrow g f(h, k)+f(g, h k)-f(g h, k)-f(g, h)=0 \Longleftrightarrow \delta^{2} f(g, h, k)=0
\end{aligned}
$$

So f is a 2-cocycle.
Claim that the set $H=\{(a, 1): a \in A\} \simeq\{(\varkappa(a), 1): a \in A\}$ is a normal subgroup of E :
(1) $(0,1) \in H$
(2) $(a, 1)^{-1}=(a, 1) \in A$
(3) it is closed under addition: $(a, 1)+\left(a^{\prime}, 1\right)=\left(a+1 \cdot a^{\prime}+f(1,1), 1\right)=$ $\left(a+a^{\prime}, 1\right) \in A$
(4)

$$
\begin{gathered}
(b, h)+(a, 1)-(b, h)=(b+h a+f(h, 1), h)-(b, h) \\
=(a+h a, h)+\left(-h b-f(1, h), h^{-1}\right)=(a+h a, h)+\left(-h b, h^{-1}\right) \\
=\left(a+h a-h h b+f\left(h, h^{-1}\right), h h^{-1}\right)=\left(a+h a-h^{2} b+f\left(h, h^{-1}\right), 1\right) \in H
\end{gathered}
$$

Define the function $i: A \longrightarrow E$ as $i(a)=(a, 1)$. It is a group isomorphism $A \simeq i(A) \triangleleft E:$

$$
\begin{aligned}
i(a+b) & =(a+b, 1)=(a, 1)+(b, 1) \\
a & \in \operatorname{ker} i \Longleftrightarrow i(a)=(a, 1)=(0,1) \Longrightarrow a=0
\end{aligned}
$$

Define the function $p: E \longrightarrow G$ as $p(a, g)=g$. It is a group epimorphism:

$$
\begin{aligned}
p((a, g)+(b, h)) & =p(a+g b+f(g, h), g h)=g h=p(a, g) p(b, h) \\
\forall g & \in G, \exists(0, g) \in E \mid p(0, g)=g
\end{aligned}
$$

Its kernel is

$$
\operatorname{ker} p=\{(a, g) \mid p(a, g)=1\}=\{(a, 1), a \in A\}=i(A)
$$

In the beginning, we chose a set of representatives for the elements of G, and especially $\langle 1\rangle=0$. Let $\{g\}_{g \in G}$ be another set of representatives. Then the two extensions $\left(0 \longrightarrow A \xrightarrow{i} E_{\langle g\rangle} \xrightarrow{p} G \longrightarrow 1\right)$ and $\left(0 \longrightarrow A \xrightarrow{i^{\prime}} E_{\{g\}} \xrightarrow{p^{\prime}} G \longrightarrow 1\right)$ are equivalent by a homomorphism $\zeta: E_{\langle g\rangle} \longrightarrow E_{\{g\}}$ defined as $\zeta(a+\langle g\rangle)=a+\{g\}$:

$$
\begin{aligned}
\zeta((a+\langle g\rangle)+(b+\langle h\rangle) & =\zeta(a+g b+f(g, h)+\langle g h\rangle)=a+g b+f(g, h)+\{g h\} \\
\zeta i(a) & =\zeta(a+\langle 1\rangle)=a+\{1\}=i^{\prime}(a) \\
p^{\prime} \zeta(a+\langle g\rangle) & =p^{\prime}(a+\{g\})=g=p(a+\langle g\rangle)
\end{aligned}
$$

Independently of which representative of elements of G we choose, we get an extension in the same equivalence class. Claim that ε is equivalent to this extension

$$
0 \longrightarrow A \xrightarrow{i} E \xrightarrow{p} G \longrightarrow 1
$$

Choose $\langle 1\rangle=0$. Take $\zeta: E \longrightarrow E$ as $\zeta(a+\langle g\rangle)=a+\langle g\rangle$. Use that $(a+\langle g\rangle)=$ $(a+\langle 1\rangle)+(0+\langle g\rangle)$.

$$
\begin{aligned}
\zeta((a+\langle g\rangle)+(b+\langle h\rangle)) & =\zeta(a+g b+f(g, h)+\langle g h\rangle)=a+g b+f(g, h)+\langle g h\rangle \\
\zeta(a+\langle g\rangle)+\zeta(b+\langle h\rangle) & =(a+\langle g\rangle)+(b+\langle h\rangle)=a+g b+f(g, h)+\langle g h\rangle \\
\zeta(i(a)) & =\zeta(\varkappa(a)+\langle 1\rangle)=\varkappa(a)+\langle 1\rangle=\varkappa(a) \\
\sigma \zeta(a+\langle g\rangle) & =\sigma(a+\langle g\rangle)=\sigma(\varkappa(a)) \sigma(\langle g\rangle)=g=p(a+\langle g\rangle)
\end{aligned}
$$

What can we say about two equivalent extensions? Suppose $\zeta: E \longrightarrow E^{\prime}$ in

is a homomorphism that makes the diagram commutative. Then,

$$
\begin{aligned}
\zeta(a, g) & =\zeta((a, 1)+(0, g))=\zeta(a, 1)+\zeta(0, g) \\
p^{\prime} \zeta(0, g) & =p(0, g)=g \Longrightarrow \zeta(0, g)=(\alpha(g), g) \Longrightarrow \zeta(a, g)=(a, 1)+(\alpha(g), g)=(a+\alpha(g), g)
\end{aligned}
$$

for some function $\alpha: G \longrightarrow A$. As

$$
\begin{aligned}
\zeta(0,1) & =(\alpha(1), 1) \Longrightarrow \alpha(1)=0 \\
\zeta((a, g)+(b, h)) & =\zeta(a+g b+f(g, h), g h)=(a+g b+f(g, h)+\alpha(g h), g h) \\
& \equiv \zeta(a, g)+\zeta(b, h)=(a+\alpha(g), g)+(b+\alpha(h), h) \\
& =\left(a+\alpha(g)+g(b+\alpha(h))+f^{\prime}(g, h), g h\right)=\left(a+g b+\alpha(g)+g \alpha(h)+f^{\prime}(g, h), g h\right) \\
& \Longrightarrow f^{\prime}(g, h)-f(g, h)=\alpha(g)+g \alpha(h)-\alpha(g h)=\delta^{1} \alpha(g, h)
\end{aligned}
$$

So the factor sets of equivalent extensions are equal modulo 2-coboundaries. Given these factor sets modulo coboundaries, and a fixed action $\varphi: G \longrightarrow A u t(A)$, we can recover all elements of $E\left(G, A^{\varphi}\right)$. Also, given an extension in $E\left(G, A^{\varphi}\right)$, will give that its factor sets are 2-cocycles, which are equal for all the elements in the equivalence class. So, we have proved the following Proposition:
Proposition 7.2. For any G, and any G-module A, there exists a bijection of pointed sets $E(G, A) \longrightarrow H^{2}(G, A)$.

The semi-direct extension has 0 as its factor set, and 0 as a factor set gives the semi-direct extension.
Lemma 7.3. Let $\alpha: A \longrightarrow A^{\prime}$ be a morphism of G-modules. There exists a well-defined mapping of pointed sets:

$$
\alpha_{*}: E(G, A) \longrightarrow E\left(G, A^{\prime}\right)
$$

Proof. Start with an element $(\varepsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1) \in E(G, A)$. Let $\langle 1\rangle=0$. When G acts on A^{\prime}, E acts on A^{\prime} as $e a^{\prime}=\sigma(e) a^{\prime}$.

$$
\begin{aligned}
1 a^{\prime} & =\sigma(1) a^{\prime}=a^{\prime} \\
g\left(h a^{\prime}\right) & =g\left(\sigma(h) a^{\prime}\right)=\sigma(g)\left(\sigma(h) a^{\prime}\right) \stackrel{G \text {-module }}{=}(\sigma(g) \sigma(h)) a^{\prime}=\sigma(g h) a^{\prime}=(g h) a^{\prime}
\end{aligned}
$$

The set $S=\{(\alpha(a),-\varkappa(a)): a \in A\}$ is a normal subgroup of $A^{\prime} \rtimes E$:

$$
\begin{aligned}
& a=0 \Longrightarrow(0,0) \in S \\
&(\alpha(a),-\varkappa(a))+(\alpha(b),-\varkappa(b))=(\alpha(a)+\sigma(\varkappa(-a)) \alpha(b),-\varkappa(a)-\varkappa(b))=(\alpha(a)+\alpha(b),-\varkappa(a+b)) \\
&=(\alpha(a+b),-\varkappa(a+b)) \in S \\
&-(\alpha(a),-\varkappa(a))=\left(-\sigma(-\varkappa(a))^{-1} \alpha(a), \varkappa(a)\right)=\left(-\sigma(\varkappa(-a))^{-1} \alpha(a), \varkappa(a)\right) \\
&=(-\alpha(a), \varkappa(a))=(\alpha(-a),-\varkappa(-a)) \in S \\
&\left(a^{\prime}, e\right)+(\alpha(a),-\varkappa(a))-\left(a^{\prime}, e\right)=\left(a^{\prime}+e a(a), e-\varkappa(a)\right)+\left(-(-e) a^{\prime},-e\right) \\
&=\left(a^{\prime}+e a(a)+(e-\varkappa(a))\left(-(-e)\left(a^{\prime}\right)\right), e-\varkappa(a)-e\right)=\left(a^{\prime}+\alpha(e a)-(e-\varkappa(a)-e) a^{\prime}, e(-\varkappa(a))\right) \\
&=\left(a^{\prime}+\alpha(e a)-a^{\prime},-e \varkappa(a)\right)=(\alpha(e a),-\varkappa(e a)) \in S
\end{aligned}
$$

Take the factor group $E^{\prime}=A^{\prime} \times E /\langle(\alpha(a),-\varkappa(a)): a \in A\rangle . A^{\prime}$ is isomorphic to a normal subgroup of E^{\prime} by the map $a^{\prime} \stackrel{\varkappa^{\prime}}{\longleftrightarrow} \overline{\left(a^{\prime}, 0\right)}$:

$$
\begin{aligned}
\varkappa^{\prime}(0) & =(0,0) \in S \\
\varkappa^{\prime}\left(a^{\prime}+b^{\prime}\right) & =\left(a^{\prime}+b^{\prime}, 0\right)=\left(a^{\prime}, 0\right)+\left(b^{\prime}, 0\right)=\varkappa\left(a^{\prime}\right)+\varkappa\left(b^{\prime}\right) \\
a^{\prime} & \in \operatorname{ker} \varkappa^{\prime} \Longrightarrow\left(a^{\prime}, 0\right) \in S \Longleftrightarrow \exists a \in A \mid-\varkappa(a)=0 \Longrightarrow a=0 \wedge \alpha(a)=a^{\prime} \\
& \Longrightarrow a^{\prime}=0 \Longrightarrow \varkappa^{\prime} \text { is a monomorphism. } \\
\left(b^{\prime}, e\right)+\left(a^{\prime}, 0\right)-\left(b^{\prime}, e\right) & =\left(b^{\prime}+e a^{\prime}, e\right)+\left(-\left(e^{-1} a\right),-e\right)=\left(b^{\prime}+e a^{\prime}-a, 0\right)=\varkappa\left(b^{\prime}+e a^{\prime}-a\right)
\end{aligned}
$$

Define a map $\sigma^{\prime}: E^{\prime} \longrightarrow G$ as $\sigma^{\prime}\left(a^{\prime}, e\right)=\sigma(e)$.

$$
\begin{aligned}
& \begin{aligned}
& \sigma^{\prime}(\alpha(a),-\varkappa(a))=\sigma(-\varkappa(a))=\sigma(\varkappa(-a))=(\sigma \varkappa)(-a)=1, \forall a \in A . \\
& \sigma\left(\left(a^{\prime}, e\right)+\left(b^{\prime}, f\right)\right)=\sigma\left(a^{\prime}+e b^{\prime}, e+f\right)=\sigma(e+f)=\sigma(e) \sigma(f)=\sigma^{\prime}\left(a^{\prime}, e\right) \sigma^{\prime}\left(b^{\prime}, f\right) \\
& \sigma^{\prime} \text { is an epimorphism: } \\
& \forall g \in G, \exists e \in E \mid \sigma(e)=g . \\
& \text { Suppose }(0, e) \in S \Longleftrightarrow \exists a \in A \mid \alpha(a)=0 \wedge-\varkappa(a)=e \Longrightarrow e=(-\varkappa(a), 1), \sigma(e)=1 . \\
& \quad \Longrightarrow \forall g \in G, \exists(0, e) \in A^{\prime} \rtimes E \mid \sigma^{\prime}(0, e)=\sigma(e)=g .
\end{aligned}
\end{aligned}
$$

The kernel of σ^{\prime} is $\varkappa^{\prime}\left(A^{\prime}\right)$:

$$
\left(a^{\prime}, e\right) \in \operatorname{ker} \sigma^{\prime} \Longleftrightarrow \sigma(e)=1 \Longrightarrow e \in \operatorname{Im} \varkappa, e=\varkappa(a) \Longrightarrow\left\{\left(a^{\prime}, \varkappa(a)\right): a^{\prime} \in A^{\prime}, a \in A\right\} \in \operatorname{ker} \sigma^{\prime}
$$

$$
\left(a^{\prime}, \varkappa(a)\right)=\left(a^{\prime}, 0\right)+(0, \varkappa(a))=\left(a^{\prime}, 0\right)+(\alpha(a), 0)=\left(a^{\prime}+\alpha(a), 0\right)=\varkappa^{\prime}\left(a^{\prime}+\alpha(a)\right)
$$

Together with the canonical injections $i_{A^{\prime}}: A^{\prime} \longrightarrow E^{\prime}, i_{E}: E \longrightarrow E^{\prime}$, we have built the commutative diagram:

Define this element in $E\left(G, A^{\prime}\right)$ as $\alpha_{*}(\varepsilon)$. It is well-defined since if

$$
\varepsilon^{\prime}: 0 \longrightarrow A \longrightarrow E^{\prime \prime} \longrightarrow G \longrightarrow 1
$$

is an equivalent extension to ε by the homomorphism $\psi: E^{\prime \prime} \longrightarrow E$, we have that there exists the homomorphism $i_{E} \psi: E^{\prime \prime} \longrightarrow E^{\prime}$ that $\alpha_{*}\left(\varepsilon^{\prime}\right)=\alpha_{*}(\varepsilon)$. Suppose the sequence ε we started with, splits by a homomorphism $s: G \longrightarrow E$. Then
the homomorphism $v=i_{E^{\prime}} s: G \longrightarrow E^{\prime}$, satisfies $\sigma^{\prime} v=1_{G}$ by the commutativity condition. Therefore, the induced sequence in $E\left(G, A^{\prime}\right)$ splits. Since $\alpha_{*}(\varepsilon)$ is an exact sequence, E^{\prime} acts on A^{\prime} by conjugation, hence G acts on A^{\prime} by conjugation

$$
g a^{\prime}=e^{\prime}+a^{\prime}-e^{\prime} \mid \sigma^{\prime}\left(e^{\prime}\right)=\sigma^{\prime}(a, e)=\sigma(e)=g
$$

Lemma 7.4. $E(G,-)$ is a covariant functor from G-mod to Sets $_{\star}$.
Proof. Start with $(\varepsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1) \in E(G, A)$. Let $\alpha=1_{A}$. We get

$$
\begin{aligned}
\alpha_{*}(\varepsilon) & : 0 \longrightarrow A \xrightarrow{i} E^{\prime} \xrightarrow{p} G \longrightarrow 1 \\
E^{\prime} & =A \rtimes E /\langle(a,-\varkappa(a)): a \in A\rangle \\
i(a) & =(a, 0), p(a, e)=\sigma(e) .
\end{aligned}
$$

Define the mapping $\zeta: A \rtimes E /\langle(a,-\varkappa(a)): a \in A\rangle \longrightarrow E$ as $\zeta(a, e)=\varkappa(a)+e$. It is a homomorphism:

$$
\begin{aligned}
\zeta(a,-\varkappa(a)) & =\varkappa(a)-\varkappa(a)=0,(\forall a \in A) \\
\zeta((a, e)+(b, f)) & =\zeta(a+e b, e+f)=\varkappa(a+e b)+e+f=\varkappa(a+\sigma(e) b)+e+f \\
\zeta(a, e)+\zeta(b, f) & =\varkappa(a)+e+\varkappa(b)+f=\varkappa(a)+\sigma(e) b+e+f=\varkappa(a+\sigma(e) b)+e+f
\end{aligned}
$$

The diagram

is commutative:

$$
\begin{aligned}
\zeta(i(a)) & =\zeta(a, 0)=\varkappa(a) \\
\sigma \zeta(a, e) & =\sigma(\varkappa a+e)=(\sigma \varkappa(a)) \sigma(e)=p(a, e)
\end{aligned}
$$

Hence the two extensions are equivalent, $\left(1_{A}\right)_{*}=1_{E(G, A)}$. Given a pair of morphisms, $\alpha: A \longrightarrow A^{\prime}, \alpha^{\prime}: A^{\prime} \longrightarrow A^{\prime \prime}$, will show that $\left(\alpha^{\prime} \alpha\right)_{*}=\alpha_{*}^{\prime} \alpha_{*}$ (they give equivalent extensions in $\left.E\left(G, A^{\prime \prime}\right)\right)$.

$$
\begin{aligned}
\alpha_{*}(\varepsilon) & =0 \longrightarrow A^{\prime} \stackrel{i}{\longrightarrow} E^{\prime} \xrightarrow{p} G \longrightarrow 1 \\
E^{\prime} & =A^{\prime} \rtimes E /\langle(\alpha(a),-\varkappa(a)): a \in A\rangle \\
i\left(a^{\prime}\right) & =\left(a^{\prime}, 0\right)+\langle(\alpha(a),-\varkappa(a)\rangle), p\left(\left(a^{\prime}, e\right)+\langle(\alpha a,-\varkappa(a)\rangle)=\sigma(e)\right. \\
\alpha_{*}^{\prime}\left(\alpha_{*}(\varepsilon)\right) & =0 \longrightarrow A^{\prime \prime} \xrightarrow{i^{\prime}} E^{\prime \prime} \xrightarrow{p^{\prime}} G \longrightarrow 1 \\
E^{\prime \prime} & =A^{\prime \prime} \rtimes E^{\prime} /\left\langle\left(\alpha^{\prime}\left(a^{\prime}\right),-i\left(a^{\prime}\right)\right): a^{\prime} \in A^{\prime}\right\rangle \\
i^{\prime}\left(a^{\prime \prime}\right) & =\left(a^{\prime \prime}, 0\right)+\left\langle\left(\alpha^{\prime}\left(a^{\prime}\right),-i\left(a^{\prime}\right)\right)\right\rangle, p^{\prime}\left(\left(a^{\prime \prime}, e^{\prime}\right)+\left\langle\left(\alpha^{\prime}\left(a^{\prime}\right),-i\left(a^{\prime}\right)\right)\right\rangle\right)=p\left(e^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(\alpha^{\prime} \alpha\right)_{*}(\varepsilon) & =0 \longrightarrow A^{\prime \prime} \xrightarrow{i^{\prime \prime}} F \xrightarrow{p^{\prime \prime}} G \longrightarrow 1 \\
F & =A^{\prime \prime} \rtimes E /\left\langle\left(\left(\alpha^{\prime} \alpha\right)(a),-\varkappa(a)\right): a \in A\right\rangle \\
i^{\prime \prime}\left(a^{\prime \prime}\right) & =\left(a^{\prime \prime}, 0\right)+\left\langle\left(\left(\alpha^{\prime} \alpha\right)(a),-\varkappa(a)\right)\right\rangle, p^{\prime \prime}\left(\left(a^{\prime \prime}, e\right)+\left\langle\left(\left(\alpha^{\prime} \alpha\right)(a),-\varkappa(a)\right)\right\rangle\right)=\sigma(e)
\end{aligned}
$$

In

let $\zeta: E^{\prime \prime} \longrightarrow F$ be the mapping defined as $\zeta\left(a^{\prime \prime},\left(a^{\prime}, e\right)\right)=\left(a^{\prime \prime}+\alpha^{\prime}\left(a^{\prime}\right), e\right)$. It is a map of pointed sets:

$$
\begin{aligned}
\zeta(0, \alpha(a),-\varkappa(a)) & =\left(\alpha^{\prime}(\alpha(a)),-\varkappa(a)\right) \in\left\langle\left(\left(\alpha^{\prime} \alpha\right)(a),-\varkappa(a)\right)\right\rangle \\
\zeta\left(\alpha^{\prime}\left(a^{\prime}\right),-a^{\prime}, 0\right) & =\alpha^{\prime}\left(a^{\prime}\right)+\alpha^{\prime}\left(-a^{\prime}\right)=0
\end{aligned}
$$

It is a group homomorphism:

$$
\begin{aligned}
\zeta\left(\left(a^{\prime \prime}, a^{\prime}, e\right)+\left(b^{\prime \prime}, b^{\prime}, f\right)\right) & =\zeta\left(a^{\prime \prime}+\left(a^{\prime}, e\right) b^{\prime \prime},\left(a^{\prime}, e\right)+\left(b^{\prime}, f\right)=\zeta\left(a^{\prime \prime}+e b^{\prime \prime}, a^{\prime}+e b^{\prime}, e+f\right)\right. \\
\text { as }\left(a^{\prime}, e\right) & \in E^{\prime} \text { acts on } A^{\prime \prime} \text { as } p^{\prime}\left(a^{\prime}, e\right)=e \Longleftrightarrow E \text { acts on } A^{\prime \prime} \\
& =\left(a^{\prime \prime}+e b^{\prime \prime}+\alpha^{\prime}\left(a^{\prime}+e b^{\prime}\right), e+f\right) \\
\zeta\left(\left(a^{\prime \prime}, a^{\prime}, e\right)+\zeta\left(b^{\prime \prime}, b^{\prime}, f\right)\right) & =\left(a^{\prime \prime}+\alpha^{\prime}\left(a^{\prime}\right), e\right)+\left(b^{\prime \prime}+\alpha^{\prime}\left(b^{\prime}\right), f\right)=\left(a^{\prime \prime}+\alpha^{\prime}\left(a^{\prime}\right)+e\left(b^{\prime \prime}+\alpha^{\prime}\left(b^{\prime}\right), e+f\right)\right. \\
& =\left(a^{\prime \prime}+\alpha^{\prime}\left(a^{\prime}\right)+e b^{\prime \prime}+e \alpha^{\prime}\left(b^{\prime}\right), e+f\right) \\
\text { Since } e \alpha^{\prime}\left(b^{\prime}\right) & =\sigma(e) \alpha^{\prime}\left(b^{\prime}\right)=\alpha^{\prime}\left(\sigma(e) b^{\prime}\right)=\alpha^{\prime}\left(e b^{\prime}\right) \\
& =\left(a^{\prime \prime}+\alpha^{\prime}\left(a^{\prime}\right)+e b^{\prime \prime}+\alpha^{\prime}\left(e b^{\prime}\right), e+f\right)=\left(a^{\prime \prime}+e b^{\prime \prime}+\alpha^{\prime}\left(a^{\prime}+e b^{\prime}\right), e+f\right)
\end{aligned}
$$

Theorem 7.5. The functors $E(G,-)$ and $H^{2}(G,-)$ are naturally isomorphic as functors from G-mod to Sets ${ }_{*}$.

Proof. We will show that the diagram

is commutative for all $G, \alpha: A \longrightarrow A^{\prime}$. Take any element ε of $E(G, A)$,

$$
\varepsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1
$$

Given the factor set for an extension $f(x, y)$, it corresponds to a normalized cocycle modulo normalized coboundaries in $H^{2}(G, A)$. It induces a function $\alpha f: G \times G \longrightarrow$
A^{\prime}, which is also a 2-cocycle:

$$
\begin{aligned}
(\alpha f)(x, y) & =\alpha(f(x, y))=\alpha(x f(y, z)-f(x y, z)+f(x, y z)) \\
& =\alpha(x f(y, z))-\alpha(f(x y, z)+\alpha(f(x, y z)) \\
& =x(\alpha f)(y, z)-(\alpha f)(x y, z)+(\alpha f)(x, y z)
\end{aligned}
$$

since α is a homomorphism of G-modules, $\alpha(g a)=g \alpha(a)$. So αf is an element in $H^{2}\left(G, A^{\prime}\right)$. Now, the other way. By α_{*} we obtain an element of $E\left(G, A^{\prime}\right)$. Choose representatives for $g \in G$ in $E,[g]$. Choose representatives for $g \in G$ in E^{\prime} as $i_{E}([g])=(0, g)$.

$$
\begin{aligned}
i_{E}([g])+i_{E}([h])-i_{E}([g h]) & =i_{E}([g]+[h]-[g h])=i_{E}(f(g, h)) \\
& =i_{E}\left(\varkappa(f(g, h))=\left(\varkappa^{\prime} \alpha\right) f(g, h)=\varkappa^{\prime}(\alpha f(g, h))\right. \\
& \equiv \alpha f(g, h)
\end{aligned}
$$

and we get the same element in $H^{2}(G, A)$.
Lemma 7.6. Let $\gamma: G^{\prime} \longrightarrow G$ be a group homomorphism. There exists a welldefined mapping of pointed sets

$$
\gamma^{*}: E(G, A) \longrightarrow E\left(G^{\prime}, A\right)
$$

Proof. Given A is a G-module, it induces that A is a G^{\prime}-module with the action given by $g^{\prime} a=\gamma\left(g^{\prime}\right) a$. Fix $\varepsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1$, and a $\gamma: G^{\prime} \longrightarrow G$. Take pullback $P B$ of σ and γ,

$$
P B=\left\{\left(e, g^{\prime}\right) \mid \sigma(e)=\gamma\left(g^{\prime}\right), e \in E, g^{\prime} \in G^{\prime}\right\}
$$

A is isomorphic normal subgroup of $P B$ by the injection map $i(a)=(\varkappa(a), 1)$:

$$
\begin{aligned}
i(a) & \in P B(\sigma(\varkappa(a))=1=\gamma(1)) \\
(0,1) & \in i(a) \operatorname{by} a=0 \\
i(a+b) & =(\varkappa(a+b), 1)=(\varkappa(a)+\varkappa(b), 1)=(\varkappa(a), 1)+(\varkappa(b), 1)=i(a)+i(b) \\
a & \in \operatorname{ker} \varkappa \Leftrightarrow i(a)=(\varkappa(a), 1)=(0,1) \Longrightarrow \varkappa(a)=0 \Longrightarrow a=0 \\
\left(e, g^{\prime}\right)+(\varkappa(a), 1)-\left(e, g^{\prime}\right) & =\left(e+\varkappa(a), g^{\prime}\right)+\left(-e,\left(g^{\prime}\right)^{-1}\right)=\left(e+\varkappa(a)-e, g^{\prime}\left(g^{\prime}\right)^{-1}\right) \\
& =(g(\varkappa(a)), 1)=(\varkappa(g a), 1) \in P B(\sigma(\varkappa(g a))=1=\gamma(1))
\end{aligned}
$$

This normal subgroup is the kernel of the projection homomorphism $\pi_{G^{\prime}}: P B \longrightarrow$ G^{\prime} :
$\left(e, g^{\prime}\right) \quad \in \quad \operatorname{ker} \pi_{G^{\prime}} \Longleftrightarrow \pi_{G^{\prime}}\left(e, g^{\prime}\right)=g^{\prime}=1 \Longrightarrow\{(e, 1) \mid \sigma(e)=1, e \in E\} \in \operatorname{ker} \pi_{G^{\prime}}$ $\Longrightarrow \quad e \in \varkappa(a) \Longrightarrow \operatorname{ker} \pi_{G^{\prime}}=\operatorname{Im} i$.
Together with the canonical projections $\pi_{E}: P B \longrightarrow E, \pi_{G^{\prime}}: P B \longrightarrow G^{\prime}$, we have built the commutative diagram of short exact sequences:

$$
\begin{aligned}
\sigma \pi_{E}\left(e, g^{\prime}\right) & =\sigma(e)=\gamma\left(g^{\prime}\right)=\gamma\left(\pi_{G}\left(e, g^{\prime}\right)\right) \\
\pi_{E}(i(a)) & =\pi_{E}(\varkappa(a), 1)=\varkappa(a)
\end{aligned}
$$

Define $\gamma^{*}(\varepsilon)$ to be the top sequence. It is well-defined since if

$$
\epsilon: 0 \longrightarrow A \xrightarrow{\varkappa^{\prime}} E^{\prime} \xrightarrow{\sigma^{\prime}} G \longrightarrow 1
$$

lies in the same equivalence class as ε, then there exists a homomorphism $\psi: E \longrightarrow$ E^{\prime} such that $\psi \varkappa=\varkappa^{\prime}, \sigma^{\prime} \psi=\sigma$. The pullback $P B^{\prime}$ of p and γ would contain

$$
P B^{\prime}=\left\{\left(e^{\prime}, g^{\prime}\right) \mid \sigma^{\prime}\left(e^{\prime}\right)=\gamma\left(g^{\prime}\right), e^{\prime} \in E^{\prime}, g^{\prime} \in G^{\prime}\right\}
$$

We then get the sequence

$$
\gamma^{*}(\epsilon): 0 \longrightarrow A \xrightarrow{i^{\prime}} P B^{\prime} \xrightarrow{\pi_{G^{\prime}}} G^{\prime} \longrightarrow 1
$$

Define a $\operatorname{map} \beta: P B \longrightarrow P B^{\prime}$ as

$$
\beta\left(e, g^{\prime}\right)=\left(\psi(e), g^{\prime}\right)\left(\operatorname{since}\left(\psi(e), g^{\prime}\right) \in P B^{\prime}: \sigma^{\prime}(\psi(e))=\left(\sigma^{\prime} \psi\right)(e)=\sigma(e)=\gamma\left(g^{\prime}\right)\right)
$$

It is a homomorphism:

$$
\begin{aligned}
\beta\left(\left(e, g^{\prime}\right)+(u, g)\right) & =\beta\left(e+u, g^{\prime} g\right)=\left(\psi(e+u), g^{\prime} g\right)=\left(\psi(e)+\psi(u), g^{\prime} g\right) \\
& =\left(\psi(e), g^{\prime}\right)+(\psi(u), g)=\beta\left(e, g^{\prime}\right)+\beta(u, g) \\
\beta(0,1) & =(\psi(0), 1)=(0,1)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\beta i(a) & =\beta(\varkappa(a), 1)=(\psi \varkappa(a), 1)=\left(\varkappa^{\prime}(a), 1\right)=i^{\prime}(a) \\
\pi_{G^{\prime}} \beta\left(e, g^{\prime}\right) & =\pi_{G^{\prime}}\left(\psi(e), g^{\prime}\right)=g^{\prime}=\pi_{G}^{\prime}\left(e, g^{\prime}\right)
\end{aligned}
$$

So the diagram

is commutative, and $\gamma^{*}(\varepsilon) \sim \gamma^{*}(\epsilon)$. The map is well-defined. Suppose ε splits. Then there exists a homomorphism $v: G \longrightarrow E$ such that $\sigma v=1_{G} \cdot \gamma^{*}(\varepsilon)$ splits iff

$$
\begin{array}{rll}
\exists s & : & G^{\prime} \longrightarrow P B \mid\left\{\pi_{G^{\prime}} s=1_{G^{\prime}}\right\} \\
& \Uparrow \\
& \mathbb{} & \\
\exists t & : & G^{\prime} \longrightarrow E, u: G^{\prime} \longrightarrow G^{\prime} \mid\left\{s=(t, u) \wedge \pi_{G^{\prime}}\left(t\left(g^{\prime}\right), u\left(g^{\prime}\right)\right)=u\left(g^{\prime}\right)=g^{\prime} \wedge \sigma t\left(g^{\prime}\right)=\gamma\left(u\left(g^{\prime}\right)\right)\right\} .
\end{array}
$$

If we let

$$
\begin{aligned}
u & =1_{G^{\prime}}, t=v \gamma \\
& \Longrightarrow \sigma t=(\sigma v) \gamma=\gamma \wedge \gamma u=\gamma \\
& \Longrightarrow(t(g), u(g)) \in P B . \\
\pi_{G^{\prime}}(t(g), u(g)) & =u(g)=1_{G^{\prime}}
\end{aligned}
$$

So $\gamma^{*}(\varepsilon)$ splits too.
Proposition 7.7. $E(-, A)$ is a contravariant functor in the first variable, from GR to Sets $_{*}$.

Proof. Start with an $\varepsilon \in E(G, A)$,

$$
\varepsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1
$$

Take $\gamma=1_{G}$.

$$
\begin{aligned}
\left(1_{G}\right)^{*} & =0 \longrightarrow A \xrightarrow{i} P B \xrightarrow{\pi_{G}} G \longrightarrow 1 \\
P B & =\{(e, g), e \in E, g \in G \mid \sigma(e)=g\} \\
i(a) & =(\varkappa(a), 1), \pi_{G}(e, \sigma(e))=\sigma(e)
\end{aligned}
$$

The canonical projection $\pi_{E}: P B \longrightarrow E$ is an isomorphism (need only to show injectivity):
$\pi_{E}(e, \sigma(e))=e \Longrightarrow(e, \sigma(e)) \in \operatorname{ker} \pi_{E} \Longleftrightarrow e=0 \Longrightarrow \sigma(e)=1 \Longrightarrow \operatorname{ker} \pi_{E}=(0,1)$ which gives that $\left(1_{G}\right)^{*}=1_{E(G, A)}$. Now take any pair of morphisms $\beta: G^{\prime \prime} \longrightarrow$ $G^{\prime}, \gamma: G^{\prime} \longrightarrow G$. We will show that $(\gamma \beta)^{*}=\beta^{*}\left(\gamma^{*}\right) . \beta^{*}\left(\gamma^{*}\right)$ is the top extension in the diagram

where

$$
\begin{aligned}
i(a)= & (\varkappa(a), 1), i^{\prime}(a)=(\varkappa(a), 1,1) \\
P B= & \left\{\left(e, g^{\prime}\right), e \in E, g \in G \mid \sigma(e)=\gamma\left(g^{\prime}\right)\right\} \\
P B^{\prime}= & \left\{\left(e, g^{\prime}, g^{\prime \prime}\right),\left(e, g^{\prime}\right) \in P B, g^{\prime \prime} \in G^{\prime \prime} \mid \pi_{G^{\prime}}\left(e, g^{\prime}, g^{\prime \prime}\right)=g^{\prime}=\beta\left(g^{\prime \prime}\right)\right\} \\
& (\gamma \beta)^{*}=0 \longrightarrow A \xrightarrow{i^{\prime \prime}} P B^{\prime \prime} \xrightarrow[G_{G^{\prime \prime}}]{ } G^{\prime \prime} \longrightarrow 1 \\
& i^{\prime \prime}(a)=(\varkappa(a), 1), \pi_{G^{\prime \prime}}\left(e, g^{\prime \prime}\right)=g^{\prime \prime} \\
& P B^{\prime \prime}= \\
& \left\{\left(e, g^{\prime \prime}\right), e \in E, g^{\prime \prime} \in G^{\prime \prime} \mid \sigma(e)=(\gamma \beta)\left(g^{\prime \prime}\right)\right\}
\end{aligned}
$$

We define the mapping $\zeta: P B^{\prime} \longrightarrow P B^{\prime \prime}$ as

$$
\zeta\left(e, g^{\prime}, g^{\prime \prime}\right)=\left(e, g^{\prime \prime}\right)\left(\text { since }\left(e, g^{\prime \prime}\right) \in P B^{\prime \prime}: \sigma(e)=\gamma\left(g^{\prime}\right)=\gamma\left(\beta\left(g^{\prime \prime}\right)\right)=(\gamma \beta)\left(g^{\prime \prime}\right)\right)
$$

It is the canonical projection on $P B^{\prime \prime}$. Its kernel is
$\left(e, g^{\prime}, g^{\prime \prime}\right) \in \operatorname{ker} \zeta \Longleftrightarrow e=0 \wedge g^{\prime \prime}=1 \Longrightarrow \beta\left(g^{\prime \prime}\right)=\beta(1)=1=g^{\prime} \Longrightarrow \operatorname{ker} \zeta=\{0,1,1\}$
Since ζ makes the diagram

commutative:
$\pi_{G^{\prime \prime}} \zeta\left(e, g^{\prime}, g^{\prime \prime}\right)=\pi_{G^{\prime \prime}}\left(e, g^{\prime \prime}\right)=g^{\prime \prime} \Longrightarrow \zeta \varkappa^{\prime}(a)=\zeta(\varkappa(a), 1,1)=(\varkappa(a), 1)=\varkappa^{\prime \prime}(a)$
the extensions are equivalent, which concludes our proof.

Theorem 7.8. $E(-, A)$ and $H^{2}(-, A)$ are naturally isomorphic as functors from $G R$ to Sets ${ }_{\star}$.

Proof. We will show that

is commutative for any $\gamma: G^{\prime} \longrightarrow G$ and A. Pick an element of $E(G, A)$:

$$
\varepsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1
$$

It has the factor set $\zeta(\varepsilon)=f(x, y)$ which is a 2-cocycle in $H^{2}(G, A)$. Look at the normalized bar resolution for G^{\prime} and G respectively:

We have the morphisms between that $\mathbb{Z} G^{\prime}$ and $\mathbb{Z} G$ modules:

$$
\begin{gathered}
\gamma: \quad F_{1}^{\prime} \longrightarrow F_{1} \mid \gamma\left[g^{\prime}\right]=\left[\gamma\left(g^{\prime}\right)\right] \\
\gamma_{\bullet}: F_{2}^{\prime} \longrightarrow F_{2} \mid \gamma \bullet\left(\left[g^{\prime}, h^{\prime}\right]\right)=\left[\gamma\left(g^{\prime}\right), \gamma\left(h^{\prime}\right)\right] \\
\gamma_{\bullet}^{*}: H^{2}(G, A) \longrightarrow H^{2}\left(G^{\prime}, A\right) \text { is induced, and hence the 2-cocycle }
\end{gathered}
$$

$$
\gamma_{\bullet}^{*} f\left(g^{\prime}, h^{\prime}\right)=f \gamma_{\bullet}\left(g^{\prime}, h^{\prime}\right)=f\left(\gamma\left(g^{\prime}\right), \gamma\left(h^{\prime}\right)\right): G^{\prime} \times G^{\prime} \longrightarrow A
$$

The other way: $\gamma^{*}(\varepsilon)=\left(0 \longrightarrow A \xrightarrow{i} P B \xrightarrow{p} G^{\prime} \longrightarrow 1\right)$. Choose representatives $\left(\left[\gamma\left(g^{\prime}\right)\right], g^{\prime}\right)$ for g^{\prime}.

$$
\left(\left[\gamma\left(g^{\prime}\right)\right], g^{\prime}\right)+\left(\left[\gamma\left(h^{\prime}\right)\right], h^{\prime}\right)-\left(\left[\gamma\left(g^{\prime} h^{\prime}\right)\right], g^{\prime} h^{\prime}\right)=\left(\left[\gamma\left(g^{\prime}\right)\right]+\left[\gamma\left(h^{\prime}\right)\right]-\left[\gamma\left(g^{\prime} h^{\prime}\right)\right], g^{\prime} h^{\prime}\left(g^{\prime} h^{\prime}\right)^{-1}\right)
$$

$$
=\left(\left[\gamma\left(g^{\prime}\right)\right]+\left[\gamma\left(h^{\prime}\right)\right]-\left[\gamma\left(g^{\prime}\right) \gamma\left(h^{\prime}\right)\right], 1\right)=\left(f\left(\gamma\left(g^{\prime}\right), \gamma\left(h^{\prime}\right)\right), 1\right)=i\left(f\left(\gamma\left(g^{\prime}\right), \gamma\left(h^{\prime}\right)\right)\right) \equiv f\left(\gamma\left(g^{\prime}\right), \gamma\left(h^{\prime}\right)\right)
$$

Proposition 7.9. $E(G, A)$ is a bifunctor from $\operatorname{PAIRS}(G, A)$ to Sets $_{\star}$.
Proof. Since we have the commutativity of the whole diagram, and the peripheral

squares, the middle square is commutative, which is equivalent to that $E(-,-)$ is a bifunctor.

$$
\begin{aligned}
& \mathbb{Z} \underset{\epsilon^{\prime}}{\leftarrow} F_{0}^{\prime} \longleftarrow F_{1}^{\prime} \longleftarrow F_{2}^{\prime} \longleftarrow F_{3}^{\prime} \longleftarrow \ldots \\
& \mathbb{Z} \stackrel{\epsilon}{\leftarrow} F_{0} \longleftarrow F_{1} \longleftarrow F_{2} \longleftarrow F_{3} \longleftarrow \ldots
\end{aligned}
$$

Suppose we have two elements

$$
\begin{aligned}
& E_{1}: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1 \\
& E_{2}: 0 \longrightarrow A \xrightarrow{\varkappa^{\prime}} E^{\prime} \xrightarrow{\sigma^{\prime}} G \longrightarrow 1
\end{aligned}
$$

of $E(G, A)$. Look at the set $\left\{\left(\triangle_{A}\left(a_{1}, a_{2}\right),-\varkappa \otimes \varkappa^{\prime}\left(a_{1}, a_{2}\right)\right): a_{1}, a_{2} \in A\right\}$. It is a normal subgroup of $A \rtimes P B$, where $P B$ is the pullback of $\left(\sigma \times \sigma^{\prime}\right)$ and ∇_{G} :

$$
\begin{aligned}
& a_{1}=a_{2}=0 \Longrightarrow 0 \equiv(0,0,1) \in P B \in P O \\
&-\left(a+a^{\prime},-\varkappa(a),-\varkappa^{\prime}\left(a^{\prime}\right), 1\right)=\left(-a-a^{\prime}, \varkappa(a), \varkappa^{\prime}\left(a^{\prime}\right), 1\right) \in P O \Longleftrightarrow a_{1}=-a, a_{2}=-a^{\prime} \\
&\left(a, e, e^{\prime}, g\right)+\left(a_{1}+a_{2},-\varkappa\left(a_{1}\right),-\varkappa^{\prime}\left(a_{2}\right), 1\right)-\left(a, e, e^{\prime}, g\right) \\
&=\left(a+g\left(a_{1}+a_{2}\right), e-\varkappa\left(a_{1}\right), e^{\prime}-\varkappa^{\prime}\left(a_{2}\right), g\right)+\left(-g^{-1} a,-e,-e^{\prime}, g^{-1}\right) \\
&=\left(a+g a_{1}+g a_{2}+g\left(-g^{-1} a\right), e-\varkappa\left(a_{1}\right)-e, e^{\prime}-\varkappa^{\prime}\left(a_{2}\right)-e^{\prime}, g g^{-1}\right) \\
&=\left(a+g a_{1}+g a_{2}-a, g\left(-a_{1}\right), g\left(-a_{2}\right), 1\right)=\left(g a_{1}+g a_{2},-g a_{1},-g a_{2}, 1\right) \\
& \equiv\left(\left(g a_{1}+g a_{2},-g\left(\varkappa a_{1}\right),-g\left(\varkappa^{\prime} a_{2}\right), 1\right)=\left(\left(g a_{1}+g a_{2},-\varkappa\left(g a_{1}\right),-\varkappa^{\prime}\left(g a_{2}\right), 1\right) \in\left\langle\left(\triangle_{A},-\varkappa \otimes \varkappa^{\prime}\right)\right\rangle\right.\right.
\end{aligned}
$$

since $\varkappa, \varkappa^{\prime}$ are homomorphisms of G-modules. Define the Baer product of E_{1} and E_{2} to be as in the Baer sum for R-modules, only that $P O$ here is not the pushout of \triangle_{A} and $\varkappa \otimes \varkappa^{\prime}$ in the category $G R$, just the factor group as described above. The morphisms are unchanged.

Proposition 7.10. $E(G, A)$ is an abelian group with operation given by the Baer product.
Proof. For any $E \in E(G, A)$, we have the one-to-one correspondence with $H^{2}(G, A)$ given by $\zeta(E)=f$, where f is the factor system for the extension E. Suppose $[g] \in E$ and $\langle g\rangle \in E^{\prime}$ are representatives for $g \in G$. Suppose f is a factor set for E, and f^{\prime} is a factor set for E^{\prime}, i.e.

$$
\begin{aligned}
f(g, h) & =[g]+[h]-[g h] \\
f^{\prime}(g, h) & =\langle g\rangle+\langle h\rangle-\langle g h\rangle
\end{aligned}
$$

Look at the direct product extension:

$$
0 \longrightarrow A \times A \xrightarrow{\varkappa \otimes \varkappa^{\prime}} E \times E^{\prime} \xrightarrow{\sigma \otimes \sigma^{\prime}} G \times G \longrightarrow 1
$$

Choose $([g],\langle h\rangle)$ as representatives for $(g, h) \in G \times G$ in $E \times E^{\prime}$.

$$
\begin{aligned}
\left(\left[g_{1}\right],\left\langle h_{1}\right\rangle\right)+\left(\left[g_{2}\right],\left\langle h_{2}\right\rangle\right)-\left(\left[g_{1} g_{2}\right],\left\langle h_{1} h_{2}\right\rangle\right) & =\left(\left[g_{1}\right]+\left[g_{2}\right]-\left[g_{1} g_{2}\right],\left\langle h_{1}\right\rangle+\left\langle h_{2}\right\rangle-\left\langle h_{1} h_{2}\right\rangle\right) \\
& =\left(f\left(g_{1}, g_{2}\right), f^{\prime}\left(h_{1}, h_{2}\right)\right)
\end{aligned}
$$

So we get that the factor set of the direct product extension is $f \times f^{\prime}\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$: $G \times G \times G \times G \longrightarrow A \times A$. Further, take the pullback of $\sigma \otimes \sigma^{\prime}$ and \triangle_{G} and get the element

$$
0 \longrightarrow A \times A \xrightarrow{\varkappa \otimes \varkappa^{\prime}} P B \xrightarrow{\pi_{G}} G \longrightarrow 1
$$

of $E(G, A \times A)$ where

$$
P B=\left\{\left(e, e^{\prime}, g\right) \mid \sigma(e)=\sigma^{\prime}\left(e^{\prime}\right)=g, e \in E, e^{\prime} \in E^{\prime}\right\}
$$

Choose representatives for g in $P B:([g],\langle g\rangle, g)$.

$$
\begin{aligned}
([g],\langle g\rangle, g)+([h],\langle h\rangle, h)-([g h],\langle g h\rangle, g h) & =\left([g]+[h]-[g h],\langle g\rangle+\langle h\rangle-\langle g h\rangle, g h(g h)^{-1}\right) \\
& =\left(f(g, h), f^{\prime}(g, h), 1\right)
\end{aligned}
$$

So $\left(f \oplus f^{\prime}\right) \nabla_{G \times G}$ is a function from $G \times G \longrightarrow A \times A$ such that

$$
\|g\|+\|h\|-\|g h\|=\left(f \oplus f^{\prime}\right) \nabla_{G \times G}(g, h)
$$

where $\|g\|=([g],\langle g\rangle, g)$ is a representative of g. Further, take $P O=A \times P B /\left\langle\left(\nabla_{A},-\varkappa \otimes \varkappa\right)\right\rangle$ and get the commutative diagram

Choose representatives for g in $P O:(0,[g],\langle g\rangle, g)$. Then:

$$
\begin{aligned}
& (0,[g],\langle g\rangle, g)+(0,[h],\langle h\rangle, h)-(0,[g h],\langle g h\rangle, g h) \\
= & (0+g \cdot 0,([g],\langle g\rangle, g)+([h],\langle h\rangle, h))+(-g h \cdot 0,-[g h],-\langle g h\rangle, g h) \\
= & (0,[g]+[h],\langle g\rangle+\langle h\rangle, g h)+\left(0,-[g h],-\langle g h\rangle,(g h)^{-1}\right) \\
= & \left(0,[g]+[h]-[g h],\langle g\rangle+\langle h\rangle-\langle g h\rangle, g h(g h)^{-1}\right)=(0,[g]+[h]-[g h],\langle g\rangle+\langle h\rangle-\langle g h\rangle, 1) \\
= & \left(0, f(g, h), f^{\prime}(g, h), 1\right)=\left(f(g, h)+f^{\prime}(g, h), 0,0,1\right)
\end{aligned}
$$

So $f+f^{\prime}=\nabla_{A}\left(f \oplus f^{\prime}\right) \triangle_{G \times G}$ is a function from $G \times G \longrightarrow A$ such that

$$
\{g\}+\{h\}-\{g h\}=\left(f+f^{\prime}\right)(g, h)
$$

where $\{g\}=(0,[g],\langle g\rangle, g)$ is a representative for g. So we get that $\zeta\left(E_{1}+E_{2}\right)=$ $\zeta\left(E_{1}\right)+\zeta\left(E_{2}\right) . \zeta$ becomes a group homomorphism from $E(G, A)$ to $H^{2}(G, A)$, which is an abelian group Therefore, $E(G, A)$ is an abelian group with operation given by the Baer product. Since we have that $\zeta(A \longrightarrow A \rtimes G \longrightarrow G)=0$, we have found that the class of the split exact extension is the zero element in $E(G, A)$. The factor set of the inverse element of $\varepsilon \in E(G, A)$ is just $-\zeta(\varepsilon)$ (since ζ is a group homomorphism), which then gives a complete description of $-\varepsilon \in E(G, A)$.

Theorem 7.11. $E(G, A)$ and $H^{2}(G, A)$ are isomorphic as functors from PAIRS (G, A) to $A B$.

Proof. ζ is actually an isomorphism. For any cocycle in $H^{2}(G, A)$, we can obtain an extension in $E(G, A)$ by taking that cocycle to be its factor system. Let $E \in \operatorname{ker} \zeta$. That means that the factor system of E is a coboundary in $C^{2}(G, A)$.

$$
\zeta(E)=\delta^{1} f(g, h)=g f(h)-f(g h)+f(g)
$$

Now, the extension with the factor system $s(g, h)=\delta^{1} f(g, h)$ is equivalent to the semi- direct extension by a β in

defined as $\beta(a, g)=(a-f(g), g) . \beta$ is a homomorphism:

$$
\begin{aligned}
\beta((a, g)+(b, h)) & =\beta(a+g b, g h)=(a+g b-f(g h), g h) \\
\beta(a, g)+\beta(b, h) & =(a-f(g), g)+(b-f(h), h) \\
& =(a-f(g)+g(b-f(h))+s(g, h), g h) \\
& =(a-f(g)+g b-g f(h)+g f(h)-f(g h)+f(g), g h)=(a+g b-f(g h), g h)
\end{aligned}
$$

And

$$
\begin{aligned}
\beta i(a) & =\beta(a, 1)=(a-f(1), 1)=(a, 1)=j(a) \\
\pi \beta(a, g) & =\pi(a-f(g), g)=G=p(a, g)
\end{aligned}
$$

7.2. Characteristic class of an extension. Look at the short exact sequence of free abelian groups:

$$
0 \longrightarrow I(G) \xrightarrow{i} \mathbb{Z} G \stackrel{\varepsilon}{\longrightarrow} \mathbb{Z} \longrightarrow 0
$$

where $I(G)$ is the kernel of the augmentation map $\varepsilon: \mathbb{Z} G \longrightarrow \mathbb{Z}$.
Proposition 7.12. $I(G)$ is a free abelian group on $\{\langle g\rangle-\langle 1\rangle\}, \forall g \in G \backslash\{1\}$.
Proof. Since i is a $\mathbb{Z} G$ module homomorphism, it is a group homomorphism. So $I(G)$ is isomorphic to a normal subgroup of $\mathbb{Z} G$, which is free abelian. As numbers of generators, it has $|G|-1$ many. First, $\{\langle g\rangle-\langle 1\rangle, g \in G\} \in I(G)$ since $\varepsilon(\langle g\rangle-\langle 1\rangle)=$ 0 . The set $\{\langle g\rangle-\langle 1\rangle, g \in G\}$ is linearly independent (by induction on n):
$a(\langle g\rangle-\langle 1\rangle)=a\langle g\rangle-a\langle 1\rangle=0 \Longrightarrow a\langle g\rangle=a\langle 1\rangle \Longrightarrow(g \neq 1) a=0$ ($\mathbb{Z} G$ free abelian $)$

$$
\text { (1) } 0=a_{1}\left(\left\langle g_{1}\right\rangle-\langle 1\rangle\right)+a_{2}\left(\left\langle g_{2}\right\rangle-\langle 1\rangle\right)+\ldots+a_{n}\left(\left\langle g_{n}\right\rangle-\langle 1\rangle\right) \Longrightarrow\left\{a_{i}\right\}_{i=1}^{n}=0
$$

$$
\text { (2) } 0=a_{1}\left(\left\langle g_{1}\right\rangle-\langle 1\rangle\right)+a_{2}\left(\left\langle g_{2}\right\rangle-\langle 1\rangle\right)+\ldots+a_{n}(\langle g\rangle-\langle 1\rangle)+a_{n+1}\left(\left\langle g_{n+1}\right\rangle-\langle 1\rangle\right)
$$

Take (2) - (1), and since elements in $\mathbb{Z} G$ commute, we are left with

$$
a_{n+1}\left(\left(\left\langle g_{n+1}\right\rangle-\langle 1\rangle\right)=0 \Longrightarrow a_{n+1}=0 .\right.
$$

Now we only need to show that any element of $I(G)$ can be written as a linear combination of $\{\langle g\rangle-\langle 1\rangle, g \in G\}$.

$$
\sum_{g \in G} a(g)\langle g\rangle \in I(G) \Longleftrightarrow \sum_{g \in G} a(g)=0
$$

By writing out the expression and using the above, we conclude the proof:

$$
\sum_{g \in G} a(g)(\langle g\rangle-\langle 1\rangle)=\sum_{g \in G} a(g)\langle g\rangle-\left(\sum_{g \in G} a(g)\right)\langle 1\rangle=\sum_{g \in G} a(g)\langle g\rangle
$$

For any $\mathbb{Z} G$-module A, it induces a long exact sequence of $E x t_{\mathbb{Z} G}^{n}$:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z}, A) \longrightarrow \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z} G, A) \longrightarrow \operatorname{Hom}_{\mathbb{Z} G}(I(G), A) \longrightarrow \operatorname{Ext}_{\mathbb{Z} G}^{1}(\mathbb{Z}, A) \longrightarrow \\
E x t_{\mathbb{Z} G}^{1}(\mathbb{Z} G, A) & \longrightarrow \operatorname{Ext}_{\mathbb{Z} G}^{1}(I(G), A) \longrightarrow \operatorname{Ext}_{\mathbb{Z} G}^{2}(\mathbb{Z}, A) \longrightarrow \operatorname{Ext}_{\mathbb{Z} G}^{2}(\mathbb{Z} G, A) \longrightarrow \ldots
\end{aligned}
$$

Since $\mathbb{Z} G$ is a free (hence projective) $\mathbb{Z} G$-module, we get an isomorphism between

$$
E x t_{\mathbb{Z} G}^{1}(I(G), A) \simeq E x t_{\mathbb{Z} G}^{2}(\mathbb{Z}, A)=H^{2}(G, A)
$$

and since

$$
\operatorname{Ext}_{\mathbb{Z} G}^{1}(I(G), A) \simeq E_{\mathbb{Z} G}(I(G), A)
$$

we get that $H^{2}(G, A)$ is isomorphic to the group of extensions of A by $I(G)$.

$$
0 \longrightarrow A \longrightarrow H \longrightarrow I(G) \longrightarrow 1
$$

Now, to find $E x t_{\mathbb{Z} G}^{1}(I(G), A)$ we must choose a projective resolution of $I(G)$. Take

$$
. . \xrightarrow{\mathfrak{o}_{2}} Q_{2} \xrightarrow{\mathfrak{d}_{1}} Q_{1} \xrightarrow{\mathfrak{o}_{0}} Q_{0} \xrightarrow{\varepsilon} I(G) \longrightarrow 0
$$

where $Q_{i}=F_{i+1}$, and $\mathfrak{d}_{i}=d_{i+2}$, for $i=0,1, .$. , for the free $\mathbb{Z} G$-modules F_{i} and the module homomorphisms d_{i} from the normalized bar resolution. We get

$$
0 \longrightarrow \operatorname{Hom}(I(G), A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}\left(Q_{0}, A\right) \xrightarrow{\mathfrak{o}_{0}^{*}} \operatorname{Hom}\left(Q_{1}, A\right) \xrightarrow{\mathfrak{o}_{1}^{*}} \operatorname{Hom}\left(Q_{2}, A\right) \longrightarrow . .
$$

So $E x t_{\mathbb{Z} G}^{1}(I(G), A)=\operatorname{ker} \mathfrak{d}_{1}^{*} / \operatorname{Im} \mathfrak{d}_{0}^{*}=\operatorname{ker} \delta^{2} / \operatorname{Im} \delta^{1}=H^{2}(G, A)$, so it contains factor sets, as many factor sets as elements of $E_{\varphi}(G, A)$. By Lemma 5.12, we find the correspondent element of $E_{\varphi}(I(G), A)$ by taking the middle module as $P O=$ $A \times F_{1} /\left\langle\left(f-\mathfrak{d}_{1}\right)\right\rangle$ and get the short exact sequence

$$
\begin{aligned}
0 & \longrightarrow A \xrightarrow{i} P O \xrightarrow{p} I(G) \longrightarrow 0 \\
i(a) & =(a, 1) \\
p(a, g) & =\mathfrak{d}_{0}(g)=\langle g\rangle-\langle 1\rangle
\end{aligned}
$$

Proposition 7.13. Fix an element of $E(G, A)$

$$
\epsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1
$$

Let $M L$ be the factor module of the free $\mathbb{Z} G$-module on $[e], e \in E,[0]=0$ modulo the submodule generated by

$$
\langle 1\rangle\left[e_{1}+e_{2}\right]-\left\langle\sigma\left(e_{1}\right)\right\rangle\left[e_{2}\right]-\langle 1\rangle\left[e_{1}\right]: e, e_{1}, e_{2} \in E,[0]=0
$$

The morphisms $\alpha: A \longrightarrow M L$ and $\beta: M L \longrightarrow I(G)$ are $\mathbb{Z} G$-module homomorphisms

$$
\begin{aligned}
\alpha(a) & =\overline{[\varkappa(a)]} \\
\beta(\overline{[b]}) & =\langle\sigma(b)\rangle-\langle 1\rangle
\end{aligned}
$$

which give that the sequence splits as a sequence of abelian groups:

$$
0 \longrightarrow A \xrightarrow{\alpha} M L \xrightarrow{\beta} I(G) \longrightarrow 0
$$

Proof.

$$
\begin{aligned}
\alpha(a+b) & =[\varkappa(a+b)]+L=[\varkappa(a)+\varkappa(b)]+L=[\varkappa(a)]+\langle\sigma(\varkappa(a))\rangle[\varkappa(b)]+L \\
& =[\varkappa(a)]+[\varkappa(b)]+L=([\varkappa(a)]+L)+([\varkappa(b)]+L)=\alpha(a)+\alpha(b) \\
\alpha\left(\sum_{g \in G} n(g)\langle g\rangle \cdot a\right) & =\alpha\left(\sum_{g \in G} n(g)(g a)\right)=\left[\varkappa\left(\sum_{g \in G} n(g)(g a)\right)\right]+L=\left[\sum_{g \in G} n(g) \varkappa(g a)\right]+L \\
& =\left[n\left(g_{1}\right) \varkappa\left(g_{1} a\right)+n\left(g_{2}\right) \varkappa\left(g_{2} a\right)+. .+n\left(g_{k}\right) \varkappa\left(g_{k} a\right)\right]+L \\
& =\left[n\left(g_{1}\right) \varkappa\left(g_{1} a\right)+n\left(g_{2}\right) \varkappa\left(g_{2} a\right)+. . n\left(g_{k-1}\right) \varkappa\left(g_{k-1} a\right)\right]+\left[n\left(g_{k}\right) \varkappa\left(g_{k} a\right)\right]+L
\end{aligned}
$$

By the definition of L, each term in both brackets can be decomposed to $n\left(g_{s}\right)$ terms of form $\left[\varkappa\left(g_{s} a\right)\right], s=1,2, . ., k$, obtaining:

$$
\begin{aligned}
\alpha\left(\sum_{g \in G} n(g)\langle g\rangle \cdot a\right) & =\sum_{g \in G} n(g)[\varkappa(g a)]+L=\sum_{g \in G} n(g)[g(\varkappa a)]+L \\
& =\sum_{g \in G} n(g)\langle g\rangle[\varkappa(a)]+L=\left(\sum_{g \in G} n(g)\langle g\rangle\right) \alpha(a)
\end{aligned}
$$

since (as L is a submodule). We defined M as the free $\mathbb{Z} G$-module on $[e], e \in L$. Then, using the universal property of free modules with the functions $i:[e] \longrightarrow$ $[e], f([e])=\langle\sigma(e)\rangle-\langle 1\rangle$, we get that there exists a $\mathbb{Z} G$-module homomorphism $\beta([e])=\langle\sigma(e)\rangle-\langle 1\rangle$.

$$
\begin{aligned}
\beta(L)= & \beta\left(\left[e_{1}+e_{2}\right]-\left\langle\sigma\left(e_{1}\right)\right\rangle\left[e_{2}\right]-\langle 1\rangle\left[e_{1}\right]\right)=\beta\left(\left[e_{1}+e_{2}\right]\right)-\left\langle\sigma\left(e_{1}\right)\right\rangle \beta\left(\left[e_{2}\right]\right)-\langle 1\rangle \beta\left(\left[e_{1}\right]\right) \\
= & \left\langle\sigma\left(e_{1}+e_{2}\right)\right\rangle-\langle 1\rangle-\left\langle\sigma\left(e_{1}\right)\right\rangle\left\{\left\langle\sigma\left(e_{2}\right)\right\rangle-\langle 1\rangle\right\}-\langle 1\rangle\left\{\left\langle\sigma\left(e_{1}\right)\right\rangle-\langle 1\rangle\right\} \\
= & \left\langle\sigma\left(e_{1}+e_{2}\right)\right\rangle-\langle 1\rangle-\left\langle\sigma\left(e_{1}\right)\right\rangle\left\langle\sigma\left(e_{2}\right)\right\rangle+\left(-\left\langle\sigma\left(e_{1}\right)\right\rangle\right)(-\langle 1\rangle)-\langle 1\rangle\left\langle\sigma\left(e_{1}\right)\right\rangle+(-\langle 1\rangle)(-\langle 1\rangle) \\
= & \left\langle\sigma\left(e_{1}+e_{2}\right)\right\rangle-\langle 1\rangle-\left\langle\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)\right\rangle+\left\langle\sigma\left(e_{1}\right)\right\rangle-\left\langle\sigma\left(e_{1}\right)\right\rangle+\langle 1\rangle=0 \\
& \quad \beta \alpha(a)=\beta(\overline{[\varkappa(a)]})=\langle\sigma(\varkappa(a))\rangle-\langle 1\rangle=0
\end{aligned}
$$

So the sequence is a complex of abelian groups. Define $s: I(G) \longrightarrow M L$ as

$$
s(\langle g\rangle-\langle 1\rangle)=[\{g\}]+L
$$

(where $\sigma(\{g\})=g,\{g\}$ is a chosen representative for g in E where $\{1\}=0$). By the universal property of free abelian groups (which are free \mathbb{Z}-modules), in defining the functions

$$
i(\langle g\rangle-\langle 1\rangle)=\langle g\rangle-\langle 1\rangle, f(\langle g\rangle-\langle 1\rangle)=[\{g\}]+L
$$

we get $s i=f$ and s is a group homomorphism. By the universal property of the free $\mathbb{Z} G$-module F, we have a $\mathbb{Z} G$-module homomorphism $v: M \longrightarrow A$ as $v(\langle g\rangle[e])=h(g, e)$ when taking the functions

$$
i([e])=g[e], f(\langle g\rangle[e])=\{g\}+e-\{g \sigma(e)\}=h(g, e)
$$

When we look at v as a group homomorphism, we get $v(L)=0$:

$$
\begin{align*}
& v\left(\left[e_{1}+e_{2}\right]-\left\langle\sigma\left(e_{1}\right)\right\rangle\left[e_{2}\right]-\left[e_{1}\right]\right)=v\left(\left[e_{1}+e_{2}\right]\right)-v\left(\left\langle\sigma\left(e_{1}\right)\right\rangle\left[e_{2}\right]\right)-v\left(\left[e_{1}\right]\right) \\
& h\left(1, e_{1}+e_{2}\right)=\{1\}+\left(e_{1}+e_{2}\right)-\left\{\sigma\left(e_{1}+e_{2}\right)\right\} \\
& h\left(\sigma\left(e_{1}\right), e_{2}\right)=\left\{\sigma\left(e_{1}\right)\right\}+e_{2}-\left\{\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)\right\} \tag{2}\\
& h\left(1, e_{1}\right)=\{1\}+e_{1}-\left\{\sigma\left(e_{1}\right)\right\} \tag{3}\\
&(1)-(2)-(3) \quad: \quad\left[\left(e_{1}+e_{2}\right)-\left\{\sigma\left(e_{1}+e_{2}\right)\right\}\right]+\left[\left\{\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)\right\}-e_{2}-\left\{\sigma\left(e_{1}\right)\right\}\right]+\left[\left\{\sigma\left(e_{1}\right)\right\}-e_{1}\right] \\
&=\quad\left(e_{1}+e_{2}\right)-e_{2}-e_{1}=0
\end{align*}
$$

As a chain complex of abelian groups,

$$
0 \longrightarrow A \xrightarrow{\alpha} M L \xrightarrow{\beta} I(G) \longrightarrow 0
$$

has a contracting homotopy (s, v) :

$$
\begin{aligned}
&(v \alpha)(a)=v([\varkappa(a)]+L)=h(1, \varkappa(a))=\{1\}+\varkappa(a)-[\sigma(\varkappa(a))]=\varkappa(a) \simeq a \\
& \beta v(\langle g\rangle-\langle 1\rangle)=\beta([\{g\}]+L)=\langle\sigma(\{g\})\rangle-\langle 1\rangle=\langle g\rangle-\langle 1\rangle \\
&(\alpha v+s \beta)([e]+L)=\alpha(v([e]+L))+s \beta([e]+L)=\alpha(h(1, e))+s(\langle\sigma(e)\rangle-\langle 1\rangle) \\
&=[h(1, e)]+L+[\{\sigma(e)\}]+L=[e-\{\sigma(e)\}]+L+[\{\sigma(e)\}]+L \\
&=[e]+\langle\sigma(e)\rangle[-\{\sigma(e)\}]+L+[\{\sigma(e)\}]+L=[e]+(\langle\sigma(e)\rangle[-\{\sigma(e)\}]+[\{\sigma(e)\}])+L \\
&=[e]+[-\{\sigma(e)\}+\{\sigma(e)\}]+L=[e]+L
\end{aligned}
$$

So the complex is split exact as a complex as abelian groups, hence it is exact as a complex of groups.

Call this element in $H^{2}(G, A)$, the characteristic class of the original extension ϵ.

Proposition 7.14.

$$
0 \longrightarrow A \xrightarrow{i} P O \xrightarrow{p} I(G) \longrightarrow 0
$$

and

$$
0 \longrightarrow A \xrightarrow{\alpha} M L \xrightarrow{\beta} I(G) \longrightarrow 0
$$

are equivalent extensions of A by $I(G)$.
Proof. In defining a group homomorphism $\gamma: P O \longrightarrow M L$, we must define group homomorphisms

$$
\gamma_{A}: A \longrightarrow M L, \gamma_{F_{1}}: F_{1} \longrightarrow M L
$$

such that

$$
\gamma_{A}\left(f(g, h)+\gamma_{F_{1}}\left(-\delta_{2}[g \mid h]\right) \in L \Longleftrightarrow \beta\left(\gamma _ { A } \left(f(g, h)+\gamma_{F_{1}}\left(\delta_{2}[g \mid h]\right)=0\right.\right.\right.
$$

Define

$$
\gamma_{A}(a)=\alpha(a)=[\varkappa(a)]+L, \gamma_{F_{1}}([g])=[\{g\}]
$$

where we choose a set of representatives $\{g\}$ in E, for each $g \in G$, and $\{1\}=0$. So

$$
\gamma(a, g)=[\varkappa(a)]+[\{g\}]+L
$$

is a $\mathbb{Z} G$-homomorphism (hence also a group homomorphism).

$$
\begin{array}{cl}
\gamma\left(f(g, h),-d_{2}[g\right. & \mid \\
\beta])=[\varkappa f(g, h)]-\langle g\rangle[\{h\}]+[\{g h\}]-[\{g\}]+L \\
\beta\left(\gamma \left(f(g, h),-d_{2}[g\right.\right. & \mid \\
& h]))=\beta([\varkappa f(g, h)]+L)-\langle g\rangle \beta[\{h\}]+L)+\beta([\{g h\}]+L)-\beta([\{g\}]+L) \\
& 0-\langle g\rangle(\langle h\rangle-\langle 1\rangle)+\langle g h\rangle-\langle 1\rangle-(\langle g\rangle-\langle 1\rangle)=0
\end{array}
$$

So $\gamma \in \operatorname{Hom}_{G R}(P O, M L)$. It commutes with both squares:

$$
\begin{aligned}
\gamma\left(i_{A}(a)\right) & =\gamma(a, 1)=[\varkappa(a)]+[\{1\}]+L=[\varkappa(a)]+L \\
\beta(\gamma(a, g)) & =\beta([\varkappa(a)]+[\{g\}]+L)=\beta([\varkappa(a)]+L)+\beta([\{g\}]+L) \\
& =\langle 1\rangle-\langle 1\rangle+\langle\sigma(\{g\})\rangle-\langle 1\rangle=\langle g\rangle-\langle 1\rangle=p(a, g)
\end{aligned}
$$

8. Extensions with non-abelian kernel

Look at the exact sequence of groups,

$$
\varepsilon: 0 \longrightarrow A \xrightarrow{\varkappa} E \xrightarrow{\sigma} G \longrightarrow 1
$$

where A is not necessarily abelian. It induces a group homomorphism $\theta^{\prime}: E \longrightarrow$ $\operatorname{Aut}(A), \theta^{\prime}(e)(a)=e a=e+\varkappa a-e$. We also have a group homomorphism $\psi: A \longrightarrow$ $\operatorname{In}(A)$, where $\operatorname{In}(A) \subseteq \operatorname{Aut}(A)$ is the subgroup of inner automorphisms, $\psi(a)(b)=$ $a+b-a$. So we have a group homomorphism $\theta: E / \varkappa(A) \simeq G \longrightarrow \operatorname{Aut}(A) / \operatorname{In}(A)$ given by $\varphi(g)(a)=\langle g\rangle+a-\langle g\rangle$, where $\sigma(\langle g\rangle)=g$ and $\varphi(g)$ is a representative in the factor group $\operatorname{Aut}(A) / \operatorname{In}(A)$. So for each $e \in E$, the automorphism $\theta^{\prime}(e)$ is in the automorphism class of $\theta(\sigma(e))$. We say that ε has conjugation class θ. Conversely, we say that the triple $(G, A, \theta: G \longrightarrow A u t(A) / \operatorname{In}(A))$ is an abstract kernel.

Lemma 8.1. Equivalent extensions have the same conjugation class.
Proof. Given two equivalent extensions

Let the top extension induce a $\theta: G \longrightarrow A u t(A) / \operatorname{In}(A)$, and the bottom one a $\zeta: G \longrightarrow A u t(A) / \operatorname{In}(A) \cdot \overline{\theta(g)} \in \operatorname{Aut}(A) / \operatorname{In}(A)$ is given by

$$
\theta(g)(a)=\left(\varkappa^{\prime}\right)^{-1}\left(e^{\prime}+\varkappa^{\prime}(a)-e^{\prime}\right)
$$

where $e^{\prime} \in \sigma^{\prime-1}(g)$. To define $\overline{\zeta(g)} \in \operatorname{Aut}(A) / \operatorname{In}(A)$, we need a representative $e \in \sigma^{-1}(g)$. Since $\sigma \rho=\sigma^{\prime}$, we can choose $e=\rho\left(e^{\prime}\right)$. Finally, using $\rho \varkappa^{\prime}=\varkappa$,

$$
\begin{aligned}
\zeta(g)(a) & =\varkappa^{-1}(e+\varkappa(a)-e)= \\
& =\varkappa^{-1}\left(\rho(e)+\rho \varkappa^{\prime}(a)-\rho(e)\right)= \\
& =\varkappa^{-1}\left(\rho\left(e+\varkappa^{\prime}(a)-e\right)\right)= \\
& =\left(\varkappa^{\prime}\right)^{-1}\left(e^{\prime}+\varkappa^{\prime}(a)-e^{\prime}\right)=\theta(g)(a) .
\end{aligned}
$$

Pick a representative $[g] \in E, \sigma([g])=g$, for each $g \in G-\{1\}$, and define $[1]:=0$. Then

$$
[g]+a-[g]=\varphi(g)(a) \Longleftrightarrow[g]+a=\varphi(g)(a)+[g]
$$

for some element $\varphi(g)$ of the automorphism class of $\theta(g)$. Since

$$
\sigma([g]+[h]-[g h])=1
$$

So we have factor set $f(g, h) \in A$ such that

$$
f(g, h)+[g h]=[g]+[h]
$$

In order that the representatives should make a group, associativity must hold:

$$
\begin{aligned}
([g]+[h])+[k] & =(f(g, h)+[g h])+[k]=f(g, h)+([g h]+[k]) \\
& =f(g, h)+f(g h, k)+[g h k] \\
{[g]+([h]+[k]) } & =([g]+f(h, k))+[h k]=\varphi(g)(f(h, k))+([g]+[h k]) \\
& =\varphi(g)(f(h, k))+f(g, h k)+[g h k] \\
& \Longrightarrow f(g, h)+f(g h, k)+[g h k]=\varphi(g)(f(h, k))+f(g, h k)+[g h k] \\
f(g, h)+f(g h, k) & =\varphi(g)(f(h, k))+f(g, h k) \\
0 & =\varphi(g)(f(h, k))+f(g, h k)-f(g h, k)-f(g, h)
\end{aligned}
$$

We see that if A were abelian, we would get the 2-cocycle condition on f.
Remark 8.2. Let

$$
Z(A)=\{a \in A \mid \forall b \in A(a b=b a)\}
$$

be the center of A. It is well-known that the center is a characteristic subgroup, i.e. it is invariant under any automorphism. Therefore, if $\overline{\theta(g)} \in A u t(A) / \operatorname{In}(A)$, then

$$
\theta(g)(Z(A))=Z(A)
$$

Moreover, if $a \in Z(A)$, and if $\xi \in \operatorname{In}(A)$, i.e. $\xi(x)=b x b^{-1}$, for some $b \in A$, then

$$
b a b^{-1}=b b^{-1} a=a
$$

It follows that In (A) acts trivially on $Z(A)$. Therefore, the action of G on $Z(A)$ given by

$$
g a:=\theta(g)(a)
$$

is well-defined.
Now, conjugation by $[g]+[h]$ and by $f(g, h)+[g h]$ should be the same:

$$
\begin{aligned}
&([g]+[h])+a-([g]+[h])=[g]+\varphi(h)(a)+[h]-([g]+[h]) \\
&= {[g]+\varphi(h)(a)+[h]-(f(g, h)+[g h])=[g]+\varphi(h)(a)+\varphi(h)(-f(g, h))+[h]-[g h] } \\
&=([g]+\varphi(h)(a))-\varphi(h)(f(g, h))+[h]-[g h] \\
&= \varphi(g)(\varphi(h)(a))+[g]-\varphi(h)(f(g, h))+[h]-[g h] \\
&= \varphi(g)(\varphi(h)(a))+\varphi(g)(-\varphi(h)(f(g, h)))+[g]+[h]-[g h] \\
&= \varphi(g)(\varphi(h)(a))-\varphi(g)(\varphi(h)(f(g, h)))+f(g, h) \\
&= \varphi(g) \varphi(h)(a-f(g, h))+f(g, h)=\varphi(g) \varphi(h)(a-f(g, h))+f(g, h) \\
&(f(g, h)+[g h])+a-(f(g, h)+[g h])=f(g, h)+([g h]+(a-f(g, h))-[g h] \\
& f(g, h)+\varphi(g h)(a-f(g, h))+[g h]-[g h]=f(g, h)+\varphi(g h)(a-f(g, h)) \\
& \Longrightarrow \varphi(g) \varphi(h)(a-f(g, h))+f(g, h)=f(g, h)+\varphi(g h)(a-f(g, h)) \\
& \varphi(g) \varphi(h)(a-f(g, h))=f(g, h)+\varphi(g h)(a-f(g, h))-f(g, h) \\
& \quad \varphi(g) \varphi(h)=i \psi(f(g, h)) \varphi(g h)
\end{aligned}
$$

So $i \psi$ measures the extend that φ fails to be a homomorphism from G to $A u t_{G R}(A)$.
Proposition 8.3. Given A, G, functions $\varphi: G \longrightarrow A u t_{G R}(A), f: G \times G \longrightarrow A$, with the properties
(1) $f(g, 1)=f(1, h)=0$
(2) $0=\varphi(g)(f(h, k))+f(g, h k)-f(g h, k)-f(g, h)$
(3) $\varphi(g) \varphi(h)=i \psi(f(g, h)) \varphi(g h)$
we can construct an extension of groups

$$
0 \longrightarrow A \xrightarrow{i} E^{\prime} \xrightarrow{p} G \longrightarrow 1
$$

where E^{\prime} is the set of all pairs $(a, g), a \in A, g \in G$, with

$$
\begin{aligned}
(a, g)+(b, h) & =(a+\varphi(h) b+f(g, h), g h) \\
i(a) & =(a, 1), p(a, g)=g
\end{aligned}
$$

Call E^{\prime} for the crossed product group, and this extension for the crossed product extension.

Proof. i is a homomorphism:

$$
\begin{aligned}
i(a+b) & =(a+b, 1) \\
i(a)+i(b) & =(a, 1)+(b, 1)=(a+\varphi(1) b+f(1,1), 1)=(a+b, 1)
\end{aligned}
$$

p is a homomorphism:

$$
\begin{aligned}
p(a, g) p(b, h) & =g h \\
p((a, g)+(b, h)) & =p(a+\varphi(g) b+f(g, h), g h)=g h
\end{aligned}
$$

The zero element is $(0,1)$:

$$
\begin{aligned}
(a, g)+(b, h) & =(a+\varphi(g)(b)+f(g, h), g h)=(a, g) \\
& \Longrightarrow h=1, \varphi(g)(b)+f(g, h)=0 \Longrightarrow \varphi(g)(b)=0, \forall g \\
(b, h)+(a, g) & =(b+\varphi(h)(a)+f(h, g), h g)=(a, g) \\
& \Longrightarrow h=1, b+\varphi(h)(a)+f(h, g)=a \\
b+\varphi(1) a & =a \Longrightarrow b=0
\end{aligned}
$$

The inverse element $-(a, g)$ is $\left(-f\left(g^{-1}, g\right)-\varphi(g)^{-1}(a), g^{-1}\right)$:

$$
\begin{aligned}
(a, g)+(b, h) & =(a+\varphi(g)(b)+f(g, h), g h)=(0,1) \\
& \Longrightarrow h=g^{-1}, a+\varphi(g)(b)+f(g, h)=0 \Longrightarrow a+\varphi(g)(b)+f\left(g, g^{-1}\right)=0 \\
& \Longrightarrow \varphi(g)(b)=-a-f\left(g, g^{-1}\right) \\
(b, h)+(a, g) & =(b+\varphi(h)(a)+f(h, g), h g)=(0,1) \\
& \Longrightarrow h=g^{-1}, b+\varphi\left(g^{-1}\right)(a)+f\left(g^{-1}, g\right)=0 \Longrightarrow b=-f\left(g^{-1}, g\right)-\varphi\left(g^{-1}\right)(a) \\
& \Longrightarrow \varphi(g)(b)=-\varphi(g)\left(f\left(g^{-1}, g\right)\right)-\varphi(g) \varphi\left(g^{-1}\right)(a) \\
\varphi(g)(b) & =-\varphi(g)\left(f\left(g^{-1}, g\right)\right)-\varphi(1)(a)=-\varphi(g)\left(f\left(g^{-1}, g\right)\right)-a \\
& \Longrightarrow b=\varphi(g)^{-1}\left(-\varphi(g)\left(f\left(g^{-1}, g\right)\right)\right)-\varphi(g)^{-1}(a) \Longrightarrow b=-f\left(g^{-1}, g\right)-\varphi(g)^{-1}(a)
\end{aligned}
$$

The set E is associative:

$$
\begin{aligned}
&\{(a, g)+(b, h)\}+(c, k)=(a+\varphi(g)(b)+f(g, h), g h)+(c, k) \\
&=(a+\varphi(g)(b)+f(g, h)+\varphi(g h)(c)+f(g h, k), g h k) \\
&(a, g)+\{(b, h)+(c, k)\}=(a, g)+(b+\varphi(h)(c)+f(h, k), h k) \\
&=(a+\varphi(g)(b+\varphi(h)(c)+f(h, k))+f(g, h k), g h k) \\
&=(a+\varphi(g)(b)+\varphi(g) \varphi(h)(c)+\varphi(g)(f(h, k))+f(g, h k), g h k) \\
&=(a+\varphi(g)(b)+f(g, h)+\varphi(g h)(c)-f(g, h)+\varphi(g)(f(h, k))+f(g, h k), g h k) \\
&=(a+\varphi(g)(b)+f(g, h)+\varphi(g h)(c)+f(g h, k), g h k)=\{(a, g)+(b, h)\}+(c, k)
\end{aligned}
$$

The sequence is exact:

$$
\begin{aligned}
a & \in \operatorname{ker} i \Longleftrightarrow i(a)=(a, 1)=(0,1) \Longrightarrow a=0 \\
(a, g) & \in \operatorname{ker} p \Longleftrightarrow p(a, g)=g=1 \Longrightarrow(a, 1) \in \operatorname{ker} p, \forall a \in A \Longrightarrow \operatorname{ker} p=\operatorname{Im} i
\end{aligned}
$$

Corollary 8.4. If any automorphism $\varphi(g) \in \zeta(g)$ satisfies $\varphi(1)=1_{A}$, then any extension of the abstract kernel (A, G, ζ) is congruent to a crossed product extension (A, G, φ, f) with the given function φ.

Proof. Suppose there exists an extension $\varepsilon: 0 \longrightarrow A \longrightarrow E \longrightarrow G \longrightarrow 1$, with all $\varphi(g) \in \zeta(g), \varphi(1)=1_{A}$. All elements of E are of form $a+[g], a \in A, g \in G$. We have:

$$
[g]+[h]=f(g, h)+[g h], \text { for some } f(g, h) \in A
$$

E must be a group, closed under addition:

$$
(a+[g])+(b+[h])=a+\varphi(g)(b)+f(g, h)+[g h]
$$

Simplify $a+[g] \longrightarrow(a, g)$.

$$
\begin{aligned}
\sigma(a+[g]) & =\sigma(\varkappa(a)) \sigma([g])=g \\
b+[h] & \in \operatorname{ker} \sigma \Longleftrightarrow \sigma([h])=1 \Longleftrightarrow[h]=[1]
\end{aligned}
$$

If we choose [1] $=0$, we get an equivalent extensions

$$
\Longrightarrow \quad \operatorname{ker} \sigma=\{b+[1], b \in A\} \Longrightarrow \varkappa(a)=a+[1]=(a, 1) \text { is defined. }
$$

Suppose we are given an abstract kernel (G, A, ζ). In each automorphism class $\zeta(g)$, pick an automorphism $\varphi(g)$ such that $\varphi(1)=1$.

$$
\begin{aligned}
& \begin{aligned}
\varphi^{-1} \varphi(k)(a) & =\varphi^{-1}([k]+a-[k])=a \Longrightarrow \varphi^{-1}(k)(a)=-[k]+a+[k] \\
{\left[\varphi(g) \varphi(h) \varphi^{-1}(g h)\right](a) } & =\varphi(g) \varphi(h)(-[g h]+a+[g h])
\end{aligned} \\
& =\quad \varphi(g)([h]-[g h]+a+[g h]-[h])=([g]+[h]-[g h])+a+([g h]-[h]-[g]) \\
& =\quad([g]+[h]-[g h])+a-([g]+[h]-[g h])=\varkappa(e)+a-\varkappa(e) . \\
& \Longrightarrow \quad \varphi(g) \varphi(h) \varphi^{-1}(g h)(a)=f(g, h)+a-f(g, h) \in \operatorname{In}(A) \\
& \Longleftrightarrow \quad \varphi(g) \varphi(h)=i \psi f(g, h) \varphi(g h)
\end{aligned}
$$

for some function $f: G \times G \longrightarrow A$ satisfying

$$
\begin{aligned}
\varphi(1) \varphi(h) \varphi^{-1}(h)(a) & =f(1, h)+a-f(1, h) \\
a & =f(1, h)+a-f(1, h)
\end{aligned}
$$

We may pick $f(1, h)=f(g, 1)=1$. Now, $\varphi(g) \varphi(h) \varphi(z)$ should be associative:

$$
\varphi(g)[\varphi(h) \varphi(k)(a)]:
$$

$$
\begin{aligned}
& =\varphi(g)[f(h, k)+\varphi(h k)(a)-f(h, k)]=\varphi(g)(f(h, k))+\varphi(g) \varphi(h k)(a)-\varphi(g)(f(h, k)) \\
& =\varphi(g)(f(h, k))+f(g, h k)+\varphi(g h k)(a)-f(g, h k)-\varphi(g)(f(h, k)) \\
& =(\varphi(g)(f(h, k))+f(g, h k))+\varphi(g h k)(a)-(\varphi(g)(f(h, k))+f(g, h k)) \\
& =i \psi(\varphi(g)(f(h, k))+f(g, h k)) \varphi(g h k)(a)
\end{aligned}
$$

```
\([\varphi(g) \varphi(h)](\varphi(k)(a)):\)
    \(=f(g, h)+\varphi(g h) \varphi(k)(a)-f(g, h)=f(g, h)+f(g h, k)+\varphi(g h k)(a)-f(g h, k)-f(g, h)\)
    \(=(f(g, h)+f(g h, k))+\varphi(g h k)(a)-(f(g, h)+f(g h, k))=i \psi(f(g, h)+f(g h, k))(\varphi(g h k)(a))\)
```

Gives:

$$
\begin{aligned}
i \psi(\varphi(g)(f(h, k))+f(g, h k)) & =i \psi(f(g, h)+f(g h, k)) \\
\varphi(g)(f(h, k))+f(g, h k)-(f(g, h)+f(g h, k)) & \in \operatorname{ker} i \psi \\
\varphi(g)(f(h, k))+f(g, h k)-(f(g, h)+f(g h, k)) & =\mathcal{O}(g, h, k) \in Z(A) \\
\varphi(g)(f(h, k))+f(g, h k) & =\mathcal{O}(g, h, k)+f(g, h)+f(g h, k)
\end{aligned}
$$

where $\mathcal{O}: G \times G \times G \longrightarrow Z(A)$ is a (normalized) function:

$$
\mathcal{O}(1, h, k)=\mathcal{O}(g, 1, k)=\mathcal{O}(g, h, 1)=0
$$

So we can regard \mathcal{O} as a 3 -cochain of the normalized bar resolution of G with coefficients in $Z(A)$.

Proposition 8.5. Any obstruction of an abstract kernel (A, G, ζ) is a 3-cocycle of $\overline{B_{G}(\mathbb{Z})}$.

Proof. We will show that $\delta^{3} \mathcal{O}(g, h, k, l)=0$.

$$
\begin{align*}
g \mathcal{O}(h, k, l)-\mathcal{O}(g h, k, l)+\mathcal{O}(g, h k, l)-\mathcal{O}(g, h, k l)+\mathcal{O}(g, h, k) & =\delta^{3} \mathcal{O}(g, h, k, l) \\
\varphi(h) f(k, l)+f(h, k l)-f(h k, l)-f(h, k) & =\mathcal{O}(h, k, l) \\
\varphi(g)[\varphi(h) f(k, l)+f(h, k l)-f(h k, l)-f(h, k)] & =g \mathcal{O}(h, k, l) \\
f(g, h)+\varphi(g h)(f(k, l))-f(g, h)+\varphi(g)(f(h, k l))-\varphi(g)(f(h k, l))-\varphi(g)(f(h, k)) & =g \mathcal{O}(h, k, l) \tag{1}\\
\varphi(g h)(f(k, l))+f(g h, k l)-f(g h k, l)-f(g h, k) & =\mathcal{O}(g h, k, l) \\
f(g h, k)+f(g h k, l)-f(g h, k l)-\varphi(g h)((f(k, l)) & =-\mathcal{O}(g h, k, l) \tag{2}\\
\varphi(g) f(h k, l)+f(g, h k l)-f(g h k, l)-f(g, h k) & =\mathcal{O}(g, h k, l) \tag{3}\\
\varphi(g)(f(h, k l))+f(g, h k l)-f(g h, k l)-f(g, h) & =\mathcal{O}(g, h, k l) \\
f(g, h)+f(g h, k l)-f(g, h k l)-\varphi(g)(f(h, k l)) & =-\mathcal{O}(g, h, k l) \tag{4}\\
\varphi(g) f(h, k)+f(g, h k)-f(g h, k)-f(g, h) & =\mathcal{O}(g, h, k) \tag{5}
\end{align*}
$$

Take $[(1)+(5)]+(4)+(3)+(2):$

$$
\begin{aligned}
& \{f(g, h)+\varphi(g h)(f(k, l))-f(g, h)+\varphi(g)(f(h, k l))-\varphi(g)(f(h k, l))-\varphi(g)(f(h, k))\} \\
+ & \{\varphi(g) f(h, k)+f(g, h k)-f(g h, k)-f(g, h)\}+\{f(g, h)+f(g h, k l)-f(g, h k l)-\varphi(g)(f(h, k l))\} \\
+ & \{\varphi(g) f(h k, l)+f(g, h k l)-f(g h k, l))-f(g, h k)\}+\{f(g h, k)+f(g h k, l)-f(g h, k l)-\varphi(g h)((f(k, l))\} \\
= & f(g, h)+\varphi(g h)(f(k, l))-f(g, h)+\varphi(g)(f(h, k l))-\varphi(g)(f(h k, l))+f(g, h k) \\
& -f(g h, k)+f(g h, k l)-f(g, h k l)-\varphi(g)(f(h, k l))+[\varphi(g) f(h k, l)+f(g, h k l)-f(g h k, l))-f(g, h k)] \\
& +[f(g h, k)+f(g h k, l)-f(g h, k l)-\varphi(g h)((f(k, l))]
\end{aligned}
$$

The elements in brackets are $\mathcal{O} \in Z(A)$, so they commute with any of the single elements of A in the expression, so we get:

$$
\begin{aligned}
& f(g, h)+\varphi(g h)(f(k, l))-f(g, h)+\varphi(g)(f(h, k l))-\varphi(g)(f(h k, l))+ \\
& {[\varphi(g) f(h k, l)+f(g, h k l)-f(g h k, l))-f(g, h k)]+f(g, h k) } \\
& -f(g h, k)+[f(g h, k)+f(g h k, l)-f(g h, k l)-\varphi(g h)((f(k, l))]+f(g h, k l)-f(g, h k l)-\varphi(g)(f(h, k l)) \\
= & f(g, h)+\varphi(g h)(f(k, l))-f(g, h)+\varphi(g)(f(h, k l))+f(g, h k l)-f(g h k, l)-f(g, h k) \\
& +f(g, h k)+f(g h k, l)-f(g h, k l)-\varphi(g h)((f(k, l))+f(g h, k l)-f(g, h k l)-\varphi(g)(f(h, k l)) \\
= & f(g, h)+\varphi(g h)(f(k, l))-f(g, h)+\{\varphi(g)(f(h, k l))+f(g, h k l)-f(g h, k l)\}-\varphi(g h)((f(k, l)) \\
& +\{f(g h, k l)-f(g, h k l)-\varphi(g)(f(h, k l))\} \\
= & f(g, h)+\varphi(g h)(f(k, l))-f(g, h)+\mathcal{O}(g, h, k l)+f(g, h)-\varphi(g h)((f(k, l))-f(g, h)-\mathcal{O}(g, h, k l) \\
= & f(g, h)+\varphi(g h)(f(k, l))-f(g, h)+f(g, h)-\varphi(g h)((f(k, l))-f(g, h)-\mathcal{O}(g, h, k l)+\mathcal{O}(g, h, k l)=0
\end{aligned}
$$

Theorem 8.6. An abstract kernel (A, G, ζ) has an extension if and only if one of its obstructions is equal to 0 .

Proof. \Longleftarrow If $\mathcal{O}=0$, then we get the associativity condition

$$
\varphi(g) f(h, k)+f(g, h k)=f(g, h)+f(g h, k)
$$

and we build the crossed product extension as in (8.3).
\Longrightarrow By choosing $[1]=0$, we get $\varphi(1)=1$, and using Proposition 8.3, we get

$$
\varphi(g)(f(h, k))+f(g, h k)-f(g h, k)-f(g, h)=0 \Longrightarrow \mathcal{O}=0 .
$$

Lemma 8.7. Given (A, G, ζ). Fix $\varphi(g) \in \zeta(g)$. If we change f to another function f^{\prime} that satisfies

$$
\begin{aligned}
0 & =\varphi(g)(f(h, k))+f(g, h k)-f(g h, k)-f(g, h) \\
\varphi(g) \varphi(h) & =i \psi(f(g, h)) \varphi(g h)
\end{aligned}
$$

then we are replacing \mathcal{O} by a cohomologous cocycle. By suitably changing f, \mathcal{O} may be replaced by any cohomologous cocycle.

Proof. We choose another element $f^{\prime}(g, h) \in A$ such that

$$
\begin{aligned}
\varphi(g) \varphi(h) \varphi^{-1}(g h) & =i \psi(f(g, h))=i \psi\left(f^{\prime}(g, h)\right) \Longrightarrow f^{\prime}(g, h)-f(g, h) \in \operatorname{ker} i \psi=Z(A) \\
f^{\prime}(g, h)-f(g, h) & =s(g, h) \Longleftrightarrow f^{\prime}(g, h)=s(g, h)+f(g, h)
\end{aligned}
$$

for some normalized function $s: G \times G \longrightarrow Z(A)$ (since we chose f, f^{\prime} to be normalized). So we may look at s as a 2 -cochain of the bar resolution of G with coefficients in $Z(A)$. Actually, it is a 2 -cocycle:

$$
\delta^{2} s(g, h, k)=g s(h, k)-s(g h, k)+s(g, h k)-s(g, h)=0
$$

$g s(h, k)$:

$$
\begin{aligned}
& =\varphi(g)\left(f^{\prime}(h, k)-f(h, k)\right)=\mathcal{O}+f^{\prime}(g, h)+f^{\prime}(g h, k)-f^{\prime}(g, h k)+f(g, h k)-f(g h, k)-f(g, h)-\mathcal{O} \\
& =f^{\prime}(g, h)+f^{\prime}(g h, k)-f^{\prime}(g, h k)+f(g, h k)-f(g h, k)-f(g, h)
\end{aligned}
$$

$$
\begin{aligned}
& -s(g h, k)+s(g, h k)-s(g, h): \\
& \quad=\left[f(g h, k)-f^{\prime}(g h, k)\right]+\left[f^{\prime}(g, h k)-f(g, h k)\right]+\left[f(g, h)-f^{\prime}(g, h)\right]
\end{aligned}
$$

Use that the elements in the brackets commute with all f, f^{\prime} and get:

$$
\begin{aligned}
& {\left[f(g, h)-f^{\prime}(g, h)\right]+f^{\prime}(g, h)+f^{\prime}(g h, k)-f^{\prime}(g, h k)+\left[f^{\prime}(g, h k)-f(g, h k)\right]+f(g, h k) } \\
& -f(g h, k)+\left[f(g h, k)-f^{\prime}(g h, k)\right]-f(g, h) \\
= & f(g, h)+f^{\prime}(g h, k)-f(g, h k)+f(g, h k)-f^{\prime}(g h, k)-f(g, h)=0
\end{aligned}
$$

Further,

$$
\begin{aligned}
\varphi(g) f^{\prime}(h, k)+f^{\prime}(g, h k) & =\mathcal{O}^{\prime}(g, h, k)+f^{\prime}(g, h)+f^{\prime}(g h, k) \\
\varphi(g)[s(h, k)+f(g, h)]+s(g, h k)+f(g, h k) & =\mathcal{O}^{\prime}(g, h, k)+s(g, h)+f(g, h)+s(g, h k)+f(g, h k) \\
\varphi(g)[f(g, h)+s(g, h)]+f(g, h k)+s(g, h k) & =\mathcal{O}^{\prime}(g, h, k)+s(g, h)+s(g, h k)+f(g, h)+f(g, h k) \\
\varphi(g) f(g, h)+f(g, h k)+\varphi(g) s(g, h)+s(g, h k) & =\mathcal{O}^{\prime}(g, h, k)+s(g, h)+s(g, h k)+f(g, h)+f(g, h k)
\end{aligned}
$$

So

$$
\begin{aligned}
& \varphi(g) f(g, h)+f(g, h k)=\left(\mathcal{O}^{\prime}(g, h, k)-g s(g, h)+s(g h, k)-s(g, h k)+s(g, h)\right)+f(g, h)+f(g, h k) \\
& \mathcal{O}^{\prime}(g, h, k)-g s(g, h)+s(g h, k)-s(g, h k)+s(g, h)=\mathcal{O}(g, h, k) \\
& \mathcal{O}^{\prime}(g, h, k)=\mathcal{O}(g, h, k)+\delta^{3} s(g, h, k)
\end{aligned}
$$

Thus we have replaced \mathcal{O} by \mathcal{O}^{\prime}, a cohomologous cocycle. As we may choose any normalized 2 -cochain s, we reach any cohomologous cocycle by definition of cohomologous cocycles.

Lemma 8.8. A change in the choice of the automorphisms $\varphi(g)$ may be followed by a the choice of such an f such that the obstruction remains unchanged.
Proof. Change $\varphi(g)$ to $\varphi^{\prime}(g)$ such that $\varphi^{\prime}(1)=1$ in $\zeta(g)$. Then their difference is an inner automorphism of A

$$
\varphi^{\prime}(g)(a)=\gamma(g)+\varphi(g)(a)-\gamma(g)
$$

where $\gamma: G \longrightarrow A$ is a function. Calculate $\varphi^{\prime}(g)\left(\varphi^{\prime}(h)(a)\right)$:

$$
\begin{aligned}
& =\varphi^{\prime}(g)[\gamma(h)+\varphi(h)(a)-\gamma(h)] \\
& =\gamma(g)+\varphi(g)[\gamma(h)+\varphi(h)(a)-\gamma(h)]-\gamma(g) \\
& =\gamma(g)+\varphi(g)(\gamma(h))+\varphi(g) \varphi(h)(a)-\varphi(g)(\gamma(h))-\gamma(g) \\
& =\gamma(g)+\varphi(g)(\gamma(h))+f(g, h)+\varphi(g h)(a)-f(g, h)-\varphi(g)(\gamma(h))-\gamma(g) \\
& =\gamma(g)+\varphi(g)(\gamma(h))+f(g, h)-\gamma(g h)+\varphi^{\prime}(g h)(a)+\gamma(g h)-f(g, h)-\varphi(g)(\gamma(h))-\gamma(g) \\
& =[\gamma(g)+\varphi(g)(\gamma(h))+f(g, h)-\gamma(g h)]+\varphi^{\prime}(g h)(a)-[\gamma(g)+\varphi(g)(\gamma(h))+f(g, h)-\gamma(g h)]
\end{aligned}
$$

Denote the element of A in the brackets as

$$
f^{\prime}(g, h)=\gamma(g)+\varphi(g)(\gamma(h))+f(g, h)-\gamma(g h) \Longrightarrow \varphi^{\prime}(g) \varphi^{\prime}(h)=i \psi\left(f^{\prime}(g, h)\right) \varphi^{\prime}(g h)
$$

This gives

$$
\varphi^{\prime}(g) f^{\prime}(h, k)+f^{\prime}(g, h k)=\mathcal{O}^{\prime}(g, h, k)+f^{\prime}(g, h)+f^{\prime}(g h, k)
$$

Left side gives:

$$
\begin{aligned}
= & \gamma(g)+\varphi(g)(\gamma(h))+f(g, h)+\varphi(g h)(\gamma(k))-f(g, h)+\varphi(g)(f(h, k))-\varphi(g)(\gamma(h k))-\gamma(g) \\
& +\gamma(g)+\varphi(g)(\gamma(h k))+f(g, h k)-\gamma(g h k) \\
= & \gamma(g)+\varphi(g)(\gamma(h))+f(g, h)+\varphi(g h)(\gamma(k))-f(g, h)+\varphi(g)(f(h, k))+f(g, h k)-\gamma(g h k) \\
= & \mathcal{O}-\mathcal{O}+\gamma(g)+\varphi(g)(\gamma(h))+f(g, h)+\varphi(g h)(\gamma(k))-f(g, h)+\varphi(g)(f(h, k))+f(g, h k) \\
& -\gamma(g h k) \\
= & \mathcal{O}+(\gamma(g)+\varphi(g)(\gamma(h))+f(g, h))-o b+\varphi(g h)(\gamma(k))-f(g, h)+\varphi(g)(f(h, k))+f(g, h k) \\
& -\gamma(g h k) \\
= & \mathcal{O}+f^{\prime}(g, h)+\gamma(g h)-o b+\varphi(g h)(\gamma(k))-f(g, h)+\varphi(g)(f(h, k))+f(g, h k)-\gamma(g h k) \\
= & \mathcal{O}+f^{\prime}(g, h)+\gamma(g h)+\varphi(g h)(\gamma(k))-\mathcal{O}-f(g, h)+\varphi(g)(f(h, k))+f(g, h k)-\gamma(g h k) \\
= & \mathcal{O}+f^{\prime}(g, h)+\gamma(g h)+\varphi(g h)(\gamma(k))-f(g, h)+\varphi(g)(f(h, k))+f(g, h k)-(f(g, h)+f(g h, k)) \\
& +(f(g, h)+f(g h, k))-\mathcal{O}-\gamma(g h k) \\
= & \mathcal{O}+f^{\prime}(g, h)+\gamma(g h)+\varphi(g h)(\gamma(k))-f(g, h) \\
& +\mathcal{O}-\mathcal{O}+(f(g, h)+f(g h, k))-\gamma(g h k) \\
= & \mathcal{O}+f^{\prime}(g, h)+\gamma(g h)+\varphi(g h)(\gamma(h))+f(g h, k)-\gamma(g h k)=\mathcal{O}(g, h, k)+f^{\prime}(g, h)+f^{\prime}(g h, k)
\end{aligned}
$$

so the new obstruction is identical to the old one.
Theorem 8.9. Fix an abstract kernel (A, G, ζ). The map

$$
\begin{aligned}
o b s & :(A, G, \zeta) \longrightarrow \mathcal{H}^{3}(G, Z(A)) \\
o b s(\mathcal{O}) & =\overline{\mathcal{O}}
\end{aligned}
$$

where \mathcal{O} is any one of its obstructions, is well-defined. (A, G, ζ) has an extension if and only if $\overline{\mathcal{O}}=0$.
Proof. By Lemma 8.7, all obstructions are (cohomologous, i.e.) equal modulo 3coboundaries, so the map gives an unique element in $H^{3}(G, Z(A))$.

If $\overline{\mathcal{O}}=0$, then there exists a 3 -cochain l such that $\mathcal{O}=\delta^{3} l$. Using the same lemma, there exists such a shift in f, f^{\prime}, such that \mathcal{O} is replaced by a cohomologous cocycle, 0 . Then, by Theorem 8.6, there exists an extension corresponding to that kernel.

The other way, the kernel has an extension if and only if one of its obstructions is cochain identical to 0 , and since the map is well-defined, we get $\overline{\mathcal{O}}=0$.

Part 3. Calculations

9. Abelian extensions

Lemma 9.1. $E_{\mathbb{Z}}\left(\mathbb{Z}_{m}, A\right) \simeq A / m A, m$ is a positive integer.
Proof. Since $E_{\mathbb{Z}}\left(\mathbb{Z}_{m}, A\right) \simeq E x t_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{m}, A\right)$, we pick the projective resolution of \mathbb{Z}_{n} :

$$
\begin{aligned}
0 & \longrightarrow \mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_{m} \longrightarrow 0 \\
i(1) & =1, \pi(1)=1 \bmod m
\end{aligned}
$$

Any 1-cocycle $f: \mathbb{Z} \longrightarrow A$ is a group homomorphism, thus it is totally described by $f(1)=a, a \in A$. Through the group homomorphism $\phi: Z^{1} \longrightarrow A$ defined as $\phi(f)=f(1)$, we get that $Z^{1} \simeq A$. The 1-coboundaries $g: \mathbb{Z} \longrightarrow A$ are defines by $g i(1)=g(m)=m g(1)=m a, a \in A$. Through that group homomorphism $\Phi: B^{1} \longrightarrow A$ defines as $\Phi(g)=m g(1)$, we get that $B^{1} \simeq m A$. Hence $E_{\mathbb{Z}}\left(\mathbb{Z}_{m}, A\right) \simeq$ $Z^{1} / B^{1} \simeq A / m A$.

Proposition 9.2. Fix the ring \mathbb{Z}. Let p, q be distinct primes, i, j positive integers.

$$
E_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z})=E_{\mathbb{Z}}\left(\mathbb{Z}, \mathbb{Z}_{p^{i}}\right)=E_{\mathbb{Z}}\left(\mathbb{Z}_{p^{i}}, \mathbb{Z}_{q^{j}}\right)=0
$$

Proof. Since \mathbb{Z} is a free \mathbb{Z}-module, hence projective, $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z}, \mathbb{Z})=0 \simeq E_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z})$. So all extensions of \mathbb{Z} by \mathbb{Z} are equivalent to the direct sum extension. Also, all extensions of $\mathbb{Z}_{p^{i}}$ by \mathbb{Z} are equivalent to the direct sum extension. $E_{\mathbb{Z}}\left(\mathbb{Z}_{p^{i}}, \mathbb{Z}_{q^{j}}\right)=$ $\mathbb{Z}_{q^{j}} / p^{i} \mathbb{Z}_{q^{j}} \simeq \mathbb{Z}_{q^{j}} / \mathbb{Z}_{q^{j}}=0$ since $\operatorname{gcd}\left(p^{i}, q^{j}\right)=\operatorname{gcd}(p, q)=1$.
Theorem 9.3. a) $E_{\mathbb{Z}}\left(\mathbb{Z}_{p^{i}}, \mathbb{Z}\right) \simeq \mathbb{Z}_{p^{i}}$;
b) Given $a \in \mathbb{Z}_{p^{i}}$, the corresponding extension has the form

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}_{p^{i}} \longrightarrow \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

if $a=0$, the form

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

if $\operatorname{gcd}(a, p)=1$, and the form

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}_{p^{k}} \longrightarrow \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

if $a=b p^{k}, \operatorname{gcd}(b, p)=1$.
Proof. a) By Lemma 9.1, $E_{\mathbb{Z}}\left(\mathbb{Z}_{p^{i}}, \mathbb{Z}\right) \simeq \mathbb{Z} / p^{i} \mathbb{Z} \approx \mathbb{Z}_{p^{i}}$.
b) From Lemma 5.12, we obtain the short exact sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z} /\left\langle\left(a,-p^{i}\right)\right\rangle \longrightarrow \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

In the middle module we get the relations matrix $\left[\begin{array}{c}a \\ -p^{i}\end{array}\right]$. Suppose

$$
\operatorname{gcd}\left(a,-p^{i}\right)=p^{k} \Longleftrightarrow a=b p^{k}, p \nmid b
$$

for some $k \in\{0,1, \ldots, i\}$, so our middle module is isomorphic to \mathbb{Z} or $\mathbb{Z} \times \mathbb{Z}_{p^{k}}$. In the first case, we have the extensions

$$
0 \longrightarrow \mathbb{Z}^{1 \longrightarrow p^{i}} \mathbb{Z}^{1 \longrightarrow g} \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

where g is any generator of $\mathbb{Z}_{p^{i}}$. There are $p^{i-1}(p-1)=p^{i}-p^{i-1}$ such distinct $g^{\prime} s$. For the second case, we must define the homomorphisms in

$$
0 \longrightarrow \mathbb{Z}^{1 \longrightarrow(c, d)} \mathbb{Z} \times \mathbb{Z}_{p^{k}}{ }^{(x, y) \longrightarrow u x+v y} \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

Look at the relations matrix $\left[\begin{array}{cc}0 & c \\ p^{k} & d\end{array}\right]$. We require that by a number of elementary row/ column operations, we can transform the proceeding matrix to $\left[\begin{array}{cc}1 & 0 \\ 0 & p^{i}\end{array}\right]$, which can be done according to ([4] Ex.9.15). This is equivalent to requiring

$$
\operatorname{gcd}\left(c, d, p^{k}\right)=1, c p^{k}=p^{i} \Longrightarrow c=p^{i-k}, p \bigvee d
$$

i.e. d is a generator g of $\mathbb{Z}_{p^{k}}$ so we have $p^{k-1}(p-1)$ choices for d. We want that $u p^{i-k}+v g \equiv 0 \bmod p^{i}$. Pick $u=g, v=-p^{i-k}$. Since $\operatorname{gcd}(u, v)=1$, it is an epimorphism. The kernel of this epimorphism consists of those (x, y) such that

$$
g x-p^{i-k} y \equiv 0 \bmod p^{i} \Longrightarrow p^{i-k} \mid x, x=l p^{i-k} \Longrightarrow y \equiv g l \bmod p^{k}
$$

i.e. $\left(p^{i-k} l, g l\right)=l\left(p^{i-k}, g\right)$. If we sum the number of extensions $\sum_{k=1}^{i} p^{k-1}(p-1)=$ $\sum_{m=0}^{i-2}(p-1) p^{m}=\frac{(p-1)\left(1-p^{i-1}\right)}{(1-p)}=p^{i-1}-1$. Together with the direct sum extension

$$
0 \longrightarrow \mathbb{Z}^{1 \longrightarrow(1,0)} \mathbb{Z} \oplus \mathbb{Z}_{p^{i}} \stackrel{(a, b) \longrightarrow}{\longrightarrow} \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

so we have described all equivalence classes in $E_{\mathbb{Z}}\left(\mathbb{Z}_{p^{i}}, \mathbb{Z}\right)$.
Theorem 9.4. a) $E_{\mathbb{Z}}\left(\mathbb{Z}_{p^{i}}, \mathbb{Z}_{p^{j}}\right) \simeq \mathbb{Z}_{\operatorname{gcd}\left(p^{i}, p^{j}\right)}=\mathbb{Z}_{p^{\min (i, j)}}$;
b) Given $a \in \mathbb{Z}_{p^{i}}$, the corresponding extension has the form

$$
0 \longrightarrow \mathbb{Z}_{p^{j}} \longrightarrow \mathbb{Z}_{p^{j}} \times \mathbb{Z}_{p^{i}} \longrightarrow \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

if $a=0$, the form

$$
0 \longrightarrow \mathbb{Z}_{p^{j}} \longrightarrow \mathbb{Z}_{p^{i+j}} \longrightarrow \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

if $\operatorname{gcd}(a, p)=1$, and the form

$$
0 \longrightarrow \mathbb{Z}_{p^{j}} \longrightarrow \mathbb{Z}_{p^{i+j-k}} \times \mathbb{Z}_{p^{k}} \longrightarrow \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

if $a=b p^{k}, g c d(b, p)=1$.
Proof. a) Using Lemma 9.1 we get

$$
E_{\mathbb{Z}}\left(\mathbb{Z}_{p^{i}}, \mathbb{Z}_{p^{j}}\right) \simeq\left\{\begin{array}{cl}
\mathbb{Z}_{p^{j}} / p^{i} \mathbb{Z}_{p^{j}} \simeq \mathbb{Z}_{p^{j}} / \mathbb{Z}_{p^{j-i}} \simeq \mathbb{Z}_{p^{i}} & i<j \\
\mathbb{Z}_{p^{j}} / p^{i} \mathbb{Z}_{p^{j}} \simeq \mathbb{Z}_{p^{j}} & i \geq j
\end{array} \simeq \mathbb{Z}_{\operatorname{gcd}\left(p^{i}, p^{j}\right)}\right.
$$

b) As in Lemma 5.12, we obtain

$$
0 \longrightarrow \mathbb{Z}_{p^{j}} \longrightarrow \mathbb{Z}_{p^{j}} \times \mathbb{Z} /\left\langle\left(a,-p^{i}\right)\right\rangle \longrightarrow \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

We can represent the \mathbb{Z}-module $\mathbb{Z}_{p^{j}} \times \mathbb{Z} /\left\langle\left(a,-p^{i}\right)\right\rangle$ as a matrix of relations $M=$ $\left[\begin{array}{cc}p^{j} & a \\ 0 & -p^{i}\end{array}\right]$. By ([4] Ex.9.15), we can, by a series of row and column transformations, transform the matrix to

$$
M^{\prime}=\left\{\left[\begin{array}{cc}
u_{1} & 0 \\
0 & u_{2}
\end{array}\right], u_{1}=d_{1}, u_{2}=\frac{d_{2}}{d_{1}}\right.
$$

where d_{i} is the gcd of the minors of size i in M, i.e.,

$$
\begin{aligned}
& d_{1}=\operatorname{gcd}\left(p^{j}, a,-p^{i}\right)=p^{k}, a=b p^{k}, p \ngtr b, k \in\{0,1, \ldots, \min (i, j)\} \\
& d_{2}=\frac{\operatorname{gcd}\left(-p^{i} p^{j}\right)}{p^{k}}=-p^{i+j-k}
\end{aligned}
$$

We get the relations matrix $M^{\prime}=\left\{\left[\begin{array}{cc}p^{k} & 0 \\ 0 & -p^{i+j-k}\end{array}\right]\right.$ which gives the $[\min (i, j)+1]$ non- isomorphic middle modules $\mathbb{Z}_{p^{k}} \oplus \mathbb{Z}_{p^{i+j-k}}, k \in\{0,1, . ., \min (i, j)\}$. Let's explicitly define the maps in the short exact sequence:

$$
0 \longrightarrow \mathbb{Z}_{p^{j}} \xrightarrow{1 \longrightarrow(c, d)} \mathbb{Z}_{p^{k}} \oplus \mathbb{Z}_{p^{i+j-k}}(x, y) \longrightarrow(u x+v y) \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

We have the relations matrix $\left[\begin{array}{ccc}p^{k} & 0 & c \\ 0 & p^{i+j-k} & d\end{array}\right]$ which we need to be transformed to $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & p^{i} & 0\end{array}\right]$ by elementary row/ column operations. This means that $\operatorname{gcd}\left(c, p^{k}\right)=$ $1, \operatorname{gcd}\left(d, p^{i+j-k}\right)=p^{i}$, i.e. $p+c$ and $d \mid p^{i+j-k}$. Since any element of $\mathbb{Z}_{p^{k}}$ has order a divisor of p^{j}, we can take $c=g$, where g is any generator of $\mathbb{Z}_{p^{k}}$. We have $p^{k-1}(p-1)$ many distinct choices for c. Since $p^{j} d=s p^{i+j-k}$, for some integer s, we pick $d=p^{i-k}$. In defining the epimorphism, we wish that $u g+p^{i-k}=w p^{i}$, for some integer w. Choose $u=p^{i-k}, v=-g$. Since $\operatorname{gcd}(u, v)=1$, we have defined an epimorphism $(x, y) \longrightarrow\left(p^{i-k} x-g y\right) \bmod p^{i}$. Look at

$$
\begin{aligned}
\left(p^{i-k} x-g y\right) & \equiv 0 \bmod p^{i} \Longleftrightarrow p^{i-k}\left|g y \Longleftrightarrow p^{i-k}\right| y, y=l p^{i-k} \Longrightarrow p^{i-k} x-g l p^{i-k} \equiv 0 \bmod p^{i} \\
& \Longrightarrow x \equiv g l \bmod p^{k} \Longrightarrow(x, y)=\left(g l, l p^{i-k}\right)=l\left(g, p^{i-k}\right)
\end{aligned}
$$

So the sequence is exact. We have found, in total

$$
\sum_{k=1}^{\min (i, j)} p^{k-1}(p-1)=\sum_{m=0}^{\min (i, j)-1} p^{m}(p-1)=(p-1) \frac{\left(1-p^{\min (i, j)-1}\right)}{(1-p)}=p^{\min (i, j)-1}-1
$$

extensions. When $k=0$ we have the short exact sequence

$$
0 \longrightarrow \mathbb{Z}_{p^{j}} \xrightarrow{1 \longrightarrow c} \mathbb{Z}_{p^{i+j}} \xrightarrow{x \longrightarrow u x} \mathbb{Z}_{p^{i}} \longrightarrow 0
$$

c should be an element of order p^{j}, so we pick $c=p^{i}$. Let's find the epimorphism. We want that $u p^{i} \equiv 0 \bmod p^{i}$. Pick $u=g$, where g is any generator of $\mathbb{Z}_{p^{\min (i, j)}}$, so we have $p^{\min (i, j)}-p^{\min (i, j)-1}$ choices for g. Altogether we have $p^{\min (i, j)}-1$ extensions, and together with the direct sum extensions, we have found all.

Lemma 9.5. Let G be the finite cyclic group of order m, with generator x. Fix the ring $\mathbb{Z} G$.

$$
\ldots \xrightarrow{N_{*}} \mathbb{Z} G \xrightarrow{D_{*}} \mathbb{Z} G \xrightarrow{N_{*}} \mathbb{Z} G \xrightarrow{D_{*}} \mathbb{Z} G \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

is a free resolution of $\mathbb{Z}^{\text {triv }}$, with the homomorphisms given by
$\varepsilon\left(\sum_{i=0}^{m-1} a_{i} x^{i}\right)=\sum_{i=0}^{m-1} a_{i}, D_{*} u=D u, D=x-1, N_{*} u=N u, N=1+x+\ldots+x^{m-1}$
Proof. Look at Example 10.5 in the next subsection.
Apply $\operatorname{Hom}_{\mathbb{Z} G}(-, A)$, for an arbitrary $\mathbb{Z} G$-module A, :and get the left complex
$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z}, A) \xrightarrow{\varepsilon^{*}} \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z} G, A) \xrightarrow{D^{*}} \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z} G, A) \xrightarrow{N^{*}} \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z} G, A) \xrightarrow{D^{*}} .$.
which is exact at the first two non-zero terms. Since ker $D^{*}=\{a \mid g a=a\}=A^{G}$, and $\operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z} G, A) \simeq A$ as abelian groups, we get

$$
0 \longrightarrow A^{G} \xrightarrow{i} A \xrightarrow{D^{*}} A \xrightarrow{N^{*}} A \xrightarrow{D^{*}} \ldots, i(a)=a
$$

$$
\begin{aligned}
& D^{*} a=D^{*} f(1)=f\left(D_{*}(1)\right)=f(D \cdot 1)=f(t-1)=t f(1)-f(1)=t a-a \\
& N^{*} a=N^{*}(f(1))=f\left(N_{*}(1)\right)=f\left(1+t+. . t^{m-1}\right)=f(1)+t f(1)+. .+t^{m-1} f(1)=\sum_{i=0}^{m-1} t^{i} a
\end{aligned}
$$

This gives:
Theorem 9.6. Let $G=\langle x\rangle$ be a finite cyclic group of order m, with generator xt. For any G-module A, we have the following cohomology groups:

$$
\begin{aligned}
H^{0}(G, A) & =\{a \in A \mid t a=a\} \\
H^{2 n+1}(G, A) & =\left\{a \in A \mid N^{*} a=0\right\} / D^{*} A, n \in \mathbb{Z}_{\geq 0} \\
H^{2 n}(G, A) & =A^{G} / N^{*} A, n \in \mathbb{Z}_{>0}
\end{aligned}
$$

Corollary 9.7. Let $G=\langle x\rangle$ be a finite cyclic group of order m, with generator x. For any trivial G-module A we have the following cohomology groups:

$$
\begin{aligned}
H^{0}(G, A) & =A \\
H^{2 n+1}(G, A) & =\{a \in A \mid m a=0\}, n \in \mathbb{Z}_{\geq 0} \\
H^{2 n}(G, A) & =A / m A, n \in \mathbb{Z}_{>0}
\end{aligned}
$$

10. Results connecting abelian extensions to non-abelian extensions

10.1. $E_{\mathbb{Z}}(G, A)$ is a subgroup of $E\left(G, A^{\text {trivial }}\right)$.

Theorem 10.1. There exists an injective group homomorphism from $E_{\mathbb{Z}}(G, A)$ to $E\left(G, A^{\text {trivial }}\right)$.

Proof. Remember that $E_{\mathbb{Z}}(G, A) \simeq E x t_{\mathbb{Z}}^{1}(G, A)$. Let $\mathbb{Z}[G]$ denote the factor group of the free abelian group on $[g], g \in G$, on the subgroup generated by [1], and $\mathbb{Z}[G \times G]$ the factor group of the free abelian group on $[g, h], g, h \in G$, modulo the subgroup generated by $[1, h], h \in G$ and $[g, 1], g \in G$, and so on. We can construct the projective resolution

$$
\begin{aligned}
\ldots & \longrightarrow \mathbb{Z}[G \times G \times G] \oplus \mathbb{Z}[G \times G] \oplus F \xrightarrow{\mathfrak{o}_{1}} \mathbb{Z}[G \times G] \xrightarrow{\mathfrak{d}_{0}} \mathbb{Z}[G] \stackrel{\varepsilon}{\longrightarrow} G \longrightarrow 1 \\
\varepsilon([g]) & =g \\
\mathfrak{d}_{0}([g, h]) & =[g]+[h]-[g h] \\
\mathfrak{d}_{1}([g, h, k]) & =[h, k]-[g h, k]+[g, h k]-[g, h] \\
\mathfrak{d}_{1}([g, h]) & =[g, h]-[h, g]
\end{aligned}
$$

By the universal property of free modules, $\varepsilon, \mathfrak{d}_{0}, \mathfrak{d}_{1}$ are \mathbb{Z}-module homomorphisms. F is a free abelian group that is attached to make the sequence exact.

$$
\begin{aligned}
\varepsilon \mathfrak{d}_{0}([g, h]) & =\varepsilon([g]+[h]-[g h])=g h(g h)^{-1}=1 \\
\mathfrak{d}_{0}\left(\mathfrak{d}_{1}([g, h, k])\right) & =\mathfrak{d}_{0}([h, k]-[g h, k]+[g, h k]-[g, h]) \\
& =[h]+[k]-[h k]-[g h]-[k]+[g h k]+[g]+[h k]-[g h k]-[g]-[h]+[g h]=0 \\
\mathfrak{d}_{0}\left(d_{1}([g, h])\right) & =\mathfrak{d}_{0}([g, h]-[h, g])=[g]+[h]-[g h]-[h]-[g]+[h g] \\
& =-[g h]+[h g]=-[g h]+[g h]=0
\end{aligned}
$$

We have exactness at $\mathbb{Z}[G]$. Any $a \in \operatorname{ker} \varepsilon$ has the form

$$
a=a_{1}\left[g_{1}\right]+a_{2}\left[g_{2}\right]+. .+a_{r}\left[g_{r}\right], g_{1}^{a_{1}} g_{2}^{a_{2}} . . g_{r}^{a_{r}}=1
$$

Claim that the kernel is generated by

$$
\begin{aligned}
\langle s, g\rangle & =s[g]-\left[g^{s}\right] \\
\langle g, h\rangle & =[g]+[h]-[g h], s=\{0,1, . ., \operatorname{ord}(g)\}, g, h \in \mathbb{Z}
\end{aligned}
$$

which are both elements of $\mathbb{Z}[G]$. Now

$$
\begin{aligned}
a^{\prime} & =a-\left\langle a_{1}, g\right\rangle-\left\langle a_{2}, g\right\rangle-\ldots-\left\langle a_{r}, g\right\rangle=\left[g_{1}^{a_{1}}\right]+\left[g_{2}^{a_{2}}\right]+\ldots+\left[g_{r}^{a_{r}}\right] \\
a^{\prime \prime} & =a^{\prime}-\left\langle g_{1}^{a_{1}}, g_{2}^{a_{2}}\right\rangle=\left[g_{1}^{a_{1}} g_{2}^{a_{2}}\right]+\left[g_{3}^{a_{3}}\right]+\ldots+\left[g_{r}^{a_{r}}\right] \\
a^{\prime \prime \prime} & =a^{\prime \prime}-\left\langle g_{1}^{a_{1}} g_{2}^{a_{2}}, g_{3}^{a_{3}}\right\rangle=\left[g_{1}^{a_{1}} g_{2}^{a_{2}} g_{3}^{a_{3}}\right]+\ldots+\left[g_{r}^{a_{r}}\right]
\end{aligned}
$$

Continue in this manner and get that a minus a linear combination of $\langle s, g\rangle$ and $\langle g, h\rangle$ is equal to

$$
\left[g_{1}^{a_{1}} g_{2}^{a_{2}} \ldots g_{r}^{a_{r}}\right]=[1]=0
$$

Hence the sequence is exact at $\mathbb{Z}[G]$. We do not need to continue the projective resolution to the left, we just know it can be done. We obtain an element of $E_{\mathbb{Z}}(G, A)$ by picking an element $f \in E x t_{\mathbb{Z}}^{1}(G, A)$ and taking pushout of $\left(\mathfrak{d}_{0}, f\right)$, as in Lemma 5.12. We have found a factor system for the extension: $\varphi(g, h)=$ $f([g, h]) \in A$. Then

$$
\begin{aligned}
& \varphi(g, h)-\varphi(h, g)=f([g, h])-f([h, g])=f([g, h]-[h, g])=f \mathfrak{d}_{1}([g, h])=0 \Longrightarrow \varphi(g, h)=\varphi(h, g) \\
& f \mathfrak{d}_{1}([g, h, k])=f([h, k])-f([g h, k])+f([g, h k])-f([g, h])=0 \\
& \Longrightarrow f([g, h])=f([h, k])-f([g h, k])+f([g, h k]) \Longleftrightarrow \varphi(g, h)=\varphi(h, k)-\varphi(g h, k)+\varphi(g, h k)
\end{aligned}
$$

So $\varphi \in Z^{2}(G, A), . \varphi$ is a 2-cocycle. Define the map $\lambda: \operatorname{Ext}_{\mathbb{Z}}^{1}(G, A) \longrightarrow H^{2}(G, A)$ as $\lambda(f)=\varphi$. It is well-defined. Fix the above resolution over \mathbb{Z}. Given two cochain homologous elements $f, l \in \operatorname{Hom}_{\mathbb{Z}}\left(P_{1}, A\right)$, their difference is a 0 -cochain,

$$
f([g, h])-l([g, h])=s([g])+s([h])-s([g h]), s \in \operatorname{Hom}_{\mathbb{Z}}\left(P_{0}, A\right)
$$

Let $\psi(g, h)=l([g, h]) \in A$ be the factor system in the extension given by pushout of $\left(l, \mathfrak{d}_{0}\right)$. By the universal property of free modules, there exists a $\zeta \in \operatorname{Hom}_{\mathbb{Z} G}\left(F_{1}, A\right)$, where F_{1} is the projective module in the normalized bar resolution such that

$$
\zeta(g)=s([g])
$$

Then we have

$$
\varphi(g, h)-\psi(g, h)=\zeta(g)+\zeta(h)-\zeta(g h)=\zeta \mathfrak{d}_{1}([g, h])=\mathfrak{d}_{1}^{*} \zeta([g, h])
$$

So λ maps the cohomologous chains to the same element in $H^{2}(G, A)$. Suppose $\lambda(f)=0$:

$$
\varphi(g, h)=\mathfrak{d}_{1}^{*} \zeta([g, h])=\zeta \mathfrak{d}_{1}([g, h])=\zeta(g)+\zeta(h)-\zeta(g h)
$$

By the universal property of free modules, there exists an $s \in \operatorname{Hom}_{\mathbb{Z}}\left(P_{0}, A\right)$ defined as

$$
s([g])=\zeta(g)
$$

This gives

$$
\begin{aligned}
\varphi(g, h) & =f([g, h])=s([g])+s([h])-s([g h])=s([g]+[h]-[g h]) \\
& =s\left(\mathfrak{d}_{1}([g, h])\right)=\mathfrak{d}_{1}^{*} s([g, h])
\end{aligned}
$$

So λ is a monomorphism. λ is not (in general) an epimorphism since in $H^{2}(G, A)$, there is no condition that the cocycles should be symmetric:

$$
\begin{aligned}
\varphi(g, h) & =\varphi(h, k)-\varphi(g h, k)+\varphi(g, h k) \\
& \text { ॥ } \\
\varphi(h, g) & =\varphi(g, l)-\varphi(h g, l)+\varphi(h, g l)
\end{aligned}
$$

We have the isomorphism $\beta: H^{2}(G, A) \longrightarrow E(G, A)$ given by cocycles in $H^{2}(G, A)$ give extension with that cocycle as factor set. Hence we have a monomorphism $E_{\mathbb{Z}}(G, A) \longrightarrow E(G, A)$.

10.2. The case G is finite cyclic.

Theorem 10.2. $E_{\mathbb{Z}}\left(\mathbb{Z}_{m}, A\right) \simeq E\left(\mathbb{Z}_{m}, A\right)$ as abelian groups.
Proof. We must show that the composition $A / m A \simeq E x t_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{m}, A\right) \hookrightarrow E x t_{\mathbb{Z}\left[\mathbb{Z}_{m}\right]}^{2}\left(\mathbb{Z}^{\text {trivial }}, A\right) \simeq$ $A / m A$ gives identity. Start with $E x t_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{m}, A\right)$. Fix the projective resolution of \mathbb{Z}_{m}

$$
\begin{aligned}
0 & \longrightarrow \mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_{m} \longrightarrow 0 \\
i(1) & =m, \pi(1)=1
\end{aligned}
$$

By the comparison lemma we have

Set $[i]=[j] \Longleftrightarrow i \equiv j \bmod m$.

$$
\begin{aligned}
\pi f_{0}([j]) & =\epsilon([j])=j \\
f_{0} d_{0}([j, k]) & =f_{0}([j]+[k]-[j+k])=i f_{1}([j, k])=m f_{1}([j, k]) \\
f_{1}\left(d_{1}([j, k, l])\right) & =f_{1}([k, l]-[j+k, l]+[j, k+l]-[j, k])=0
\end{aligned}
$$

So let's define such a family $\left\{f_{i}\right\}_{i=0,1}$:
$f_{0}[j]=j \Longrightarrow j+k-(j+k) \bmod m=\left\{\begin{array}{cc}0 & j+k<m \\ m & j+k \geq m\end{array} \Longrightarrow f_{1}([j, k])= \begin{cases}0 & j+k<m \\ 1 & j+k \geq m\end{cases}\right.$
Let a represent $\bar{a} \in A / m A$.

$$
\varphi(j, k):=f_{1}([j, k]) a= \begin{cases}0 & j+k<m \\ a & j+k \geq m\end{cases}
$$

is a 1 -cocycle:

$$
\begin{aligned}
\varphi d_{1}([j, k, l]) & =\varphi([k, l]-[j+k, l]+[j, k+l]-[j, k]) \\
& =f_{1}([k, l]) a-f_{1}([j+k, l]) a+f_{1}([j, k+l]) a-f_{1}([j, k]) a \\
& =f_{1}([k, l]-[j+k, l]+[j, k+l]-[j, k]) a=f_{1} d_{1}([j, k, l]) a=0 a=0
\end{aligned}
$$

and a 2-cocycle in $H^{2}\left(\mathbb{Z}_{m}, A\right)$. For the $E\left(\mathbb{Z}_{m}, A\right)$, we have the specific resolution of the finite cyclic group \mathbb{Z}_{m} and the bar resolution, so there exists a lifting g such
that the diagram

commutes. Set $\langle j\rangle=\langle k\rangle \Longleftrightarrow j \equiv k \bmod m$.

$$
\begin{aligned}
N_{*}(\langle j\rangle) & =(\langle 0\rangle+\langle 1\rangle+\ldots+\langle m-1\rangle)\langle j\rangle=\langle j\rangle+\langle j+1\rangle+\ldots+\langle j+m-1\rangle \\
& =\langle 0\rangle+\langle 1\rangle+\ldots+\langle m-1\rangle, \text { independent of } j \in \mathbb{Z}_{m} . \\
D_{*}(\langle j\rangle) & =(\langle 1\rangle-\langle 0\rangle)\langle j\rangle=\langle j+1\rangle-\langle j\rangle
\end{aligned}
$$

Let's define the g_{0}, g_{1}, g_{2} from the commutativity conditions:

$$
\begin{align*}
& \varepsilon\left(g_{0}[]\right)=\epsilon([])=[] \Longrightarrow g_{0}([])=[] \\
& g_{0}\left(\delta_{0}[j]\right)=g_{0}(\langle j\rangle[]-[])=\langle j\rangle g_{0}([])-g_{0}([0])=\langle j\rangle[]-[]=\langle j\rangle-\langle 0\rangle \\
& D_{*}\left(g_{1}([j])=D_{*}\left(\sum_{j \in \mathbb{Z}_{m}} c(j)\langle j\rangle\right)=\sum_{j \in \mathbb{Z}_{m}} c(j) D_{*}(\langle j\rangle)=\sum_{j \in \mathbb{Z}_{m}} c(j)(\langle j+1\rangle-\langle j\rangle) \equiv\langle j\rangle-\langle 0\rangle, c(j) \in \mathbb{Z}\right. \\
& \Longrightarrow \quad g_{1}([j])=\langle 0\rangle+\langle 1\rangle+\ldots+\langle j-1\rangle \text { may be chosen } \\
& g_{1}\left(\delta_{1}([j, k])\right)=g_{1}(\langle j\rangle[k]-[j+k]+[j]) \\
& \langle j\rangle g_{1}([k])=\langle j\rangle(\langle 0\rangle+\langle 1\rangle+\ldots+\langle k-1\rangle) \\
& =\langle j\rangle+\langle j+1\rangle+\ldots+\langle j+k-1\rangle \tag{1}\\
& -g_{1}([j+k])=-(\langle 0\rangle+\langle 1\rangle+\ldots+\langle j+k-1\rangle) \\
& =-\langle 0\rangle-\langle 1\rangle-\ldots-\langle j+k-1\rangle \tag{2}\\
& g_{1}([j])=\langle 0\rangle+\langle 1\rangle+\ldots+\langle j-1\rangle \tag{3}
\end{align*}
$$

If $j+k<m$, we get from $[(3)+(1)]+(2)$ that
$g_{1} \delta_{1}([j, k])=\langle 0\rangle+\langle 1\rangle+\ldots+\langle j-1\rangle+\langle j\rangle+\langle j+1\rangle+\ldots+\langle j+k-1\rangle-\langle 0\rangle-\langle 1\rangle-\ldots-\langle j+k-1\rangle=0$
Suppose $j+k \geq m$. Let $j+k=m+s, s \in \mathbb{Z}_{m}$.

$$
\text { (1) }\langle j\rangle+\langle j+1\rangle+\ldots+\langle j+k-1\rangle
$$

$=\langle j\rangle+\langle j+1\rangle+. .+\langle m-1\rangle+\langle 0\rangle+\langle 1\rangle+. .+\langle s-1\rangle$
(2) $\quad-\langle 0\rangle-\langle 1\rangle-\ldots-\langle s-1\rangle$
(3) $\langle 0\rangle+\langle 1\rangle+\ldots+\langle j-1\rangle$

Take $[(3)+(1)]+(2):$

$$
\begin{aligned}
& \langle 0\rangle+\langle 1\rangle+\ldots+\langle j-1\rangle+\langle j\rangle+\langle j+1\rangle+\ldots+\langle m-1\rangle+\langle 0\rangle+\langle 1\rangle+\ldots+\langle s-1\rangle \\
& -\langle 0\rangle-\langle 1\rangle-\ldots-\langle s-1\rangle \\
= & \langle 0\rangle+\langle 1\rangle+\ldots+\langle j-1\rangle+\langle j\rangle+\langle j+1\rangle+\ldots+\langle m-1\rangle=\langle 0\rangle+\langle 1\rangle+\ldots+\langle m-1\rangle \equiv N_{*}(\langle 0\rangle) \\
\Longrightarrow & g_{2}([j, k])=\left\{\begin{array}{cc}
0 & j+k<m \\
\langle 0\rangle & j+k \geq m
\end{array}\right.
\end{aligned}
$$

Since

$$
\begin{aligned}
N_{*} g_{2} \delta_{2} & =\left(N_{*} D_{*}\right) g_{3}=0 \Longrightarrow g_{2} \delta_{2} \in \operatorname{ker} N_{*}=\operatorname{Im} D_{*} \\
g_{2} \delta_{2}([j, k, l]) & =D_{*}(b), b=\sum_{i \in \mathbb{Z}_{m}} a(i)\langle i\rangle \in \mathbb{Z}\left[\mathbb{Z}_{m}\right] \\
& =\sum_{i \in \mathbb{Z}_{m}} a(i)(\langle i+1\rangle-\langle i\rangle)=\sum_{i \in \mathbb{Z}_{m}} a(i)\langle i+1\rangle-\sum_{i \in \mathbb{Z}_{m}} a(i)\langle i\rangle
\end{aligned}
$$

Then for any $\mathbb{Z}\left[\mathbb{Z}_{m}\right]$-module homomorphism $h(\langle j\rangle)=a, \forall i \in \mathbb{Z}_{m}$, define:

$$
\psi(j, k)=h\left(g_{2}([j, k])\right)=\left\{\begin{array}{cc}
h(0) & j+k<m \\
h(\langle 0\rangle) & j+k \geq m
\end{array}=\left\{\begin{array}{cc}
0 & j+k<m \\
a & j+k \geq m
\end{array}\right.\right.
$$

ψ is a 2 -cocycle:

$$
\begin{aligned}
\psi \delta_{2}([j, k, l]) & =h g_{2} \delta_{2}([j, k, l])=h\left(D_{*}(b)\right)=h\left(\sum_{i \in \mathbb{Z}_{m}} a(i)\langle i+1\rangle-\sum_{i \in \mathbb{Z}_{m}} a(i)\langle i\rangle\right) \\
& =\sum_{i \in \mathbb{Z}_{m}} a(i) h(\langle i+1\rangle)-\sum_{i \in \mathbb{Z}_{m}} a(i) h(\langle i\rangle)=0 \\
(\varphi-\psi)([i, j]) & = \begin{cases}0-0=0 & j+k<m \\
a-a=0 & j+k \geq m\end{cases}
\end{aligned}
$$

so φ and ψ are cochain cohomologous, and give the equivalent extensions in $E(G, A)$. So $E_{\mathbb{Z}}\left(\mathbb{Z}_{m}, A\right) \simeq E\left(\mathbb{Z}_{m}, A\right)$.
10.3. The case G is $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Lemma 10.3. Let R be a ring, and let $\mathbf{P}=\left(P_{*} \xrightarrow{r} C\right)$ be a complex over a (left or right) R-module C. We consider C as a trivial complex concentrated in dimension 0. All the homomorphisms below are R-module homomorphisms.
a) For \mathbf{P} being a resolution, it is sufficient that there exist a homomorphism

$$
q: C \longrightarrow P_{0}
$$

and a homotopy

$$
S_{n}: P_{n} \longrightarrow P_{n+1}, n \geq 0
$$

such that

$$
\begin{aligned}
r q & =\mathbf{1}_{C} \\
S & : \mathbf{1}_{P_{*}} \approx q r .
\end{aligned}
$$

b) If both $P_{n}, n \geq 0$, and C, are projective then the existence of such a q and an S is a necessary condition.
Remark 10.4. In other words, the lemma above means: a) if $P_{*} \longrightarrow C$ is a chain homotopy equivalence, then $P_{*} \longrightarrow C$ is a resolution; b) If $P_{*} \longrightarrow C$ is a projective resolution, and C is projective, then $P_{*} \longrightarrow C$ is a chain homotopy equivalence.
Proof. a) $r q=\mathbf{1}_{C}$ implies that r is an epimorphism. Let now $x \in \operatorname{ker} r \subseteq P_{0}$. It follows that

$$
x=x-q r(x)=(\mathbf{1}-q r)(x)=d S(x),
$$

i.e. x is a boundary. Let $x \in \operatorname{ker} d \subseteq P_{n}, n>0$. It follows that

$$
x=(\mathbf{1})(x)=(d S+S d)(x)=d S(x)
$$

i.e. x is a boundary.
b) Since C is projective, and r is an epimorphism, there exists a $q: P_{0} \longrightarrow C$ with $r q=\mathbf{1}_{C}$. Consider now two chain transformations:

$$
\mathbf{1}, q r: P_{*} \longrightarrow P_{*} .
$$

Since $r(q r)=r$, both are liftings of the identity homomorphism $C \longrightarrow C$. It follows immediately from Lemma 1.22 that $\mathbf{1}$ and $q r$ are chain homotopic, via some homotopy S.

Example 10.5. Let G be a cyclic group with m elements. The group ring $R=\mathbb{Z} G$ is isomorphic to $\mathbb{Z}[x] /\left\langle x^{m}-1\right\rangle$. The following is a projective resolution of $\mathbb{Z}^{\text {triv }}$ (see [3], Theorem IV.7.1):

$$
\ldots \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow R \xrightarrow{r} \mathbb{Z}^{\text {triv }} \longrightarrow 0
$$

where $r(x)=1$, and where $d_{s}: P_{s+1} \longrightarrow P_{s}$ is the multiplication by $x-1$ when s is even, and the multiplication by

$$
N_{x}=\frac{x^{m}-1}{x-1}=1+x+x^{2}+\ldots+x^{m-1}
$$

when s is odd. Consider the resolution above as a \mathbb{Z}-module resolution. All abelian groups involved are free, $\mathbb{Z}^{\text {triv }}$ with one generator 1 , and R with m generators $1, x, x^{2}, \ldots, x^{m-1}$. Lemma 10.3b) implies that there exist a group homomorphism $q: \mathbb{Z}^{\text {triv }} \longrightarrow R$, and a homotopy (over \mathbb{Z})

$$
S_{n}: R \longrightarrow R, n \geq 0
$$

such that

$$
\begin{aligned}
r q & =\mathbf{1}_{\mathbb{Z}^{\text {triv }}} \\
\mathbf{1}_{P_{0}}-q r & =d S \\
\mathbf{1}_{P_{n}} & =d S+S d, n>0
\end{aligned}
$$

However, we can construct q and S independently of [3]. It will follow from Lemma $10.3 \boldsymbol{a})$, applied to \mathbb{Z}-modules, that the sequence above is indeed a resolution of $\mathbb{Z}^{\text {triv }}$.

Let $q(1)=1$ and let

$$
\begin{aligned}
S_{2 k}\left(x^{i}\right) & =\frac{x^{i}-1}{x-1}=\left\{\begin{array}{cc}
1+x+x^{2}+\ldots+x^{i-1} & \text { if } i>0 \\
0 & \text { if } i=0
\end{array}, k \geq 0,\right. \\
S_{2 k+1}\left(x^{i}\right) & =\left\{\begin{array}{ll}
1 & \text { if } i=m-1 \\
0 & \text { if } i \neq m-1
\end{array}, k \geq 0 .\right.
\end{aligned}
$$

Then:

$$
\begin{aligned}
r q(1) & =r(1)=1 \Longrightarrow r q=\mathbf{1}_{\mathbb{Z}^{\text {triv }}}, \\
(\mathbf{1}-q r)\left(x^{i}\right) & =x^{i}-1=(x-1) \frac{x^{i-1}}{x-1}=d S\left(x^{i}\right), x^{i} \in R=P_{0}, \\
d S\left(x^{i}\right)+S d\left(x^{i}\right) & =\left\{\begin{array}{cl}
\frac{x^{m}-1}{x-1}-\frac{x^{m-1}-1}{x-1}=\frac{x^{m}-x^{m-1}}{x-1}=x^{m-1} & \text { if } i=m-1 \\
\frac{x^{i+1}}{x-1}-\frac{x^{i}}{x-1}=\frac{x^{i+1}-x^{i}}{x-1}=x^{i} & \text { if } i \neq m-1
\end{array}=\right. \\
& =x^{i}=\mathbf{1}\left(x^{i}\right), x^{i} \in R=P_{2 k+1}, \\
d S\left(x^{i}\right)+S d\left(x^{i}\right) & =(x-1) \frac{x^{i}-1}{x-1}+1=x^{i}=\mathbf{1}\left(x^{i}\right), x^{i} \in R=P_{2 k}, k>0 .
\end{aligned}
$$

Definition 10.6. Consider two positive complexes $\left(P_{*}, d_{*}\right)$ of right R-modules and $\left(Q_{*}, \delta_{*}\right)$ of left R-modules. Let $V_{s t}=P_{s} \otimes_{R} Q_{t}$. We hope that no confusion arises if we denote by the same letters

$$
\begin{aligned}
d_{s t} & :=d_{s} \otimes \mathbf{1}_{Q_{t}}: V_{s t} \longrightarrow V_{s-1, t} \\
\delta_{s t} & :=(-1)^{s} \mathbf{1}_{P_{s}} \otimes \delta_{t}: V_{s t} \longrightarrow V_{s, t-1}
\end{aligned}
$$

Clearly $d d=0, \delta \delta=0, d \delta+\delta d=0$, even for $s=0$ or $t=0$, since we have assumed that $d_{-1}=0$ and $\delta_{-1}=0$.

Let

$$
W_{m}=\bigoplus_{s=0}^{m} V_{s, m-s}
$$

and let

$$
D_{m}: W_{m+1} \longrightarrow W_{m}, m \geq 0,
$$

be given by

$$
\begin{aligned}
D(w) & =d w+\delta w, \\
w & \in V_{s, m-s} \subseteq W_{m}, \\
d w & \in V_{s-1, m-s} \subseteq W_{m-1}, \\
\delta w & \in V_{s, m-1-s} \subseteq W_{m-1} .
\end{aligned}
$$

It follows that

$$
D D=d d+d \delta+\delta d+\delta \delta=0+0+0=0
$$

and $\left(W_{*}, D_{*}\right)$ is a complex. That complex is called the tensor product of complexes P_{*} and Q_{*} :

$$
W_{*}:=P_{*} \otimes_{R} Q_{*} .
$$

Remark 10.7. If R is commutative, then $P_{s} \otimes_{R} Q_{t}$ become R-modules (projective if P_{s} and Q_{t} were projective). If R is arbitrary, then we can only claim that $P_{s} \otimes_{R} Q_{t}$ are \mathbb{Z}-modules.

Remark 10.8. We will write \otimes instead of \otimes_{R} when no confusion arises.
Proposition 10.9. Let P_{*} and U_{*} be positive complexes of right R-modules, and let Q_{*} and V_{*} be positive complexes of left R-modules. Let further

$$
\begin{array}{rll}
f, f^{\prime} & : & P_{*} \longrightarrow U_{*}, \\
g, g^{\prime} & : & Q_{*} \longrightarrow V_{*},
\end{array}
$$

be pairwise homotopic chain transformations:

$$
S: f \simeq f^{\prime}, T: g \simeq g^{\prime}
$$

Then the transformations $f \otimes g$ and $f^{\prime} \otimes g^{\prime}$ are homotopic.
Proof. Roughly speaking, $S \otimes g$ gives a homotopy between $f \otimes g$ and $f^{\prime} \otimes g$, while $f^{\prime} \otimes T$ gives a homotopy between $f^{\prime} \otimes g$ and $f^{\prime} \otimes g^{\prime}$. The desired homotopy between $f \otimes g$ and $f^{\prime} \otimes g^{\prime}$ is given by $S \otimes g+f^{\prime} \otimes T$. The only problem is to choose the correct signs.

Consider first $f \otimes g$ and $f^{\prime} \otimes g$. For $x \otimes y \in P_{s} \otimes Q_{t}$, let

$$
A(x \otimes y)=S(x) \otimes g(y)
$$

Then

$$
\begin{aligned}
& \left(f \otimes g-f^{\prime} \otimes g\right)(x \otimes y) \\
= & \left(f(x)-f^{\prime}(x)\right) \otimes g(y)=((d S+S d)(x)) \otimes g(y),
\end{aligned}
$$

while

$$
\begin{aligned}
& (D A+A D)(x \otimes y) \\
= & D(S(x) \otimes g(y))+A\left(d x \otimes y+(-1)^{s} x \otimes \delta y\right)= \\
= & d S(x) \otimes g(y)+S(x) \otimes(-1)^{s+1} \delta g(y)+S d(x) \otimes g(y)+(-1)^{s} S(x) \otimes g \delta(y)= \\
= & ((d S+S d)(x)) \otimes g(y),
\end{aligned}
$$

since $\delta g=g \delta$. Therefore, A gives a homotopy between $f \otimes g$ and $f^{\prime} \otimes g$.
Analogously, let

$$
B(x \otimes y)=(-1)^{s} f^{\prime}(x) \otimes T(y)
$$

Then

$$
\begin{aligned}
& \left(f^{\prime} \otimes g-f^{\prime} \otimes g^{\prime}\right)(x \otimes y) \\
= & f^{\prime}(x) \otimes\left(g(y)-g^{\prime}(y)\right)=f^{\prime}(x) \otimes((d T+T d) y),
\end{aligned}
$$

while

$$
\begin{aligned}
& (D B+B D)(x \otimes y) \\
= & (-1)^{s} D\left(f^{\prime}(x) \otimes T(y)\right)+B\left(d x \otimes y+(-1)^{s} x \otimes \delta y\right)= \\
= & (-1)^{s} d f^{\prime}(x) \otimes T(y)+f^{\prime}(x) \otimes \delta T(y)+(-1)^{s-1} f^{\prime} d(x) \otimes T(y)+f^{\prime}(x) \otimes T \delta(y)= \\
= & f^{\prime}(x) \otimes((d T+T d) y)
\end{aligned}
$$

since $d f^{\prime}=f^{\prime} d$. Therefore, B gives a homotopy between $f^{\prime} \otimes g$ and $f^{\prime} \otimes g^{\prime}$.
Finally, $A+B$ gives a homotopy between $f \otimes g$ and $f^{\prime} \otimes g^{\prime}$.
Corollary 10.10. If, in the conditions of the above Proposition, f and g are homotopy equivalences, then

$$
f \otimes_{R} g: P_{*} \otimes_{R} Q_{*} \longrightarrow U_{*} \otimes_{R} V_{*}
$$

is a homotopy equivalence.
Proof. It follows from the Proposition, that

$$
\begin{aligned}
& \left(f^{-1} \otimes g^{-1}\right)(f \otimes g)=f^{-1} f \otimes g^{-1} g \simeq 1_{P_{*} \otimes Q_{*}} \\
& (f \otimes g)\left(f^{-1} \otimes g^{-1}\right)=f f^{-1} \otimes g g^{-1} \simeq 1_{U_{*} \otimes V_{*}}
\end{aligned}
$$

Theorem 10.11. (simplified Künneth formula) Let C be a projective right R module, D be a projective left R-module, and let $e:\left(P_{*}, d_{*}\right) \longrightarrow C$ and $\varepsilon:$ $\left(Q_{*}, \delta_{*}\right) \longrightarrow D$ be projective resolutions. Then

$$
e \otimes_{R} \varepsilon:\left(P_{*}, d_{*}\right) \otimes_{R}\left(Q_{*}, \delta_{*}\right) \longrightarrow C \otimes_{R} D
$$

is a resolution.
Proof. Due to Lemma 10.3b), $e: P_{*} \longrightarrow C$ and $\varepsilon: Q_{*} \longrightarrow D$ are homotopy equivalences. Corollary 10.10 guarantees that $e \otimes_{R} \varepsilon$ is a homotopy equivalence as well. Due to Lemma $10.3 \mathbf{a}$), $e \otimes \varepsilon$ is a resolution.

Lemma 10.12. Let G be a cyclic group with m elements, and H be cyclic with n elements. Then

$$
R=\mathbb{Z}[G \times H] \approx \mathbb{Z}[x, y] /\left\langle x^{m}-1, y^{n}-1\right\rangle
$$

Consider the following complex $\left(U_{*}, d_{*}\right)$ of free R-modules ($[i, m-i]$ are symbolic generators for free modules):

$$
\begin{aligned}
U_{m} & =\bigoplus_{i=0}^{m} R[i, m-i], \\
d([s, m-s]) & =\left\{\begin{array}{cll}
{\left[\begin{array}{cl}
(x-1)[s-1, m-s]-(y-1)[s, m-s-1] & \text { if } s \text { and } m-s \text { odd } \\
N_{x}[s-1, m-s]+(y-1)[s, m-s-1] \\
(x-1)[s-1, m-s]-N_{y}[s, m-s-1] & \text { if } s \text { even and } m-s \text { odd } \\
N_{x}[s-1, m-s]+N_{y}[s, m-s-1] & \text { if odd and } m-s \text { even } \\
& \text { if and } m-s \text { even }
\end{array}\right]}
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& N_{x}=\frac{x^{m}-1}{x-1}=1+x+x^{2}+\ldots+x^{m-1} \\
& N_{y}=\frac{y^{n}-1}{y-1}=1+y+y^{2}+\ldots+y^{n-1}
\end{aligned}
$$

Let further $\pi: U_{0} \longrightarrow \mathbb{Z}^{\text {triv }}$ be given by $\pi([0,0])=1$. Then

$$
\pi: U_{*} \longrightarrow \mathbb{Z}^{\text {triv }}
$$

is a projective resolution over R.
Proof. Let

$$
e: P_{*} \longrightarrow \mathbb{Z}^{\text {triv }}
$$

be a projective resolution from Example 10.5. Here

$$
P_{s}=R_{1}=\mathbb{Z}[G] \approx \mathbb{Z}[x] /\left\langle x^{m}-1\right\rangle .
$$

Analogously, apply Example 10.5 to the cyclic group H, and obtain a projective resolution

$$
\varepsilon: Q_{*} \longrightarrow \mathbb{Z}^{\text {triv }}
$$

where

$$
Q_{t}=R_{2}=\mathbb{Z}[H] \approx \mathbb{Z}[y] /\left\langle y^{n}-1\right\rangle
$$

Forget temporarily about G - and H-module structures, and consider the two resolutions as free \mathbb{Z}-module resolutions of a free \mathbb{Z}-module $\mathbb{Z}^{\text {triv }}$. Using Theorem 10.11, construct a free \mathbb{Z}-module resolution

$$
U_{*}=P_{*} \otimes_{\mathbb{Z}} Q_{*} \longrightarrow \mathbb{Z}^{\text {triv }}
$$

It is easy to check that this resolution is actually a free resolution over the ring $\mathbb{Z}[G \times H]$, because

$$
R_{1} \otimes_{\mathbb{Z}} R_{2} \approx \mathbb{Z}[G \times H]
$$

as abelian groups, while all differentials D_{*} in the complex, as well as the projection $\pi: U_{0} \longrightarrow \mathbb{Z}^{\text {triv }}$, are in fact $G \times H$-module homomorphisms.

Lemma 10.13. $E\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Proof. By taking $\operatorname{Hom}_{\mathbb{Z}[G \times H]}(-, A)$ on the projective resolution in Lemma 10.12, we get
$0 \longrightarrow H o m_{\mathbb{Z}[G \times H]}\left(\mathbb{Z}^{\text {trivial }}, A\right) \longrightarrow A \longrightarrow A \times A \longrightarrow A \times A \times A \longrightarrow A \times A \times A \times A \longrightarrow .$. where the differentials are some maps consisting of $D_{*}\langle g\rangle$ and $N_{*}\langle g\rangle$. When A is the trivial $G \times H$-module, $D_{*}\langle g\rangle(a)=0, N_{*}\langle g\rangle(a)=\operatorname{ord}(g) a$. When $G=H=A=\mathbb{Z}_{p}$, we get that $N_{*}\langle g\rangle(a)=\overline{0} \in \mathbb{Z}_{p}$, so all differentials in between the $A^{\prime} s$ are the zero map. Hence, $H^{2}(G, A) \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
Theorem 10.14. The natural homomorphism

$$
E_{\mathbb{Z}}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \longrightarrow E\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

is a monomorphism, but not an isomorphism.
Proof. $E_{\mathbb{Z}}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \approx \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, while $E\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
Remark 10.15. It is well-known that there are two non-isomorphic non-abelian groups of order p^{3}. Let us denote them $G\left(p^{3}\right)$ and $H\left(p^{3}\right)$. The center of both is a cyclic subgroup with p elements. The group $E\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ consists of p^{3} elements, and describes central extensions

$$
0 \longrightarrow \mathbb{Z}_{p} \longrightarrow E \longrightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{p} \longrightarrow 1
$$

The zero element of $E\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ corresponds to the case $E \approx \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Some $p^{2}-1$ elements of $E\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ correspond to the case $E \approx \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$. The remaining $p^{3}-p^{2}$ elements are subdivided into two classes, corresponding to the two cases $E \approx G\left(p^{3}\right)$ and $E \approx H\left(p^{3}\right)$.

References

[1] I. Bucur and A. Deleanu. Introduction to the theory of categories and functors. With the collaboration of Peter J. Hilton and Nicolae Popescu. Pure and Applied Mathematics, Vol. XIX. Interscience Publication John Wiley \& Sons, Ltd., London-New York-Sydney, 1968.
[2] P. J. Hilton and U. Stammbach. A course in homological algebra, volume 4 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.
[3] S. Mac Lane. Homology. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition.
[4] E. B. Vinberg. A course in algebra, volume 56 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. Translated from the 2001 Russian original by Alexander Retakh.
E-mail address: catalina.nicole@gmail.com

[^0]: 2000 Mathematics Subject Classification. Primary: 18Gxx, 18G15; Secondary: 18Exx, 18E25.
 Key words and phrases. Group extensions, module extensions, group cohomology, projective resolutions, injective coresolutions, pullback, pushout, short exact sequences, Baer sum, group ring.

