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EXTENSIONS OF GROUPS AND MODULES

CATALINA NICOLE VINTILESCU NERMO

Abstract. The main goal of this thesis is to build up detailed constructions
and give complete proofs for the extension functors of modules and groups,
which we de�ne using cohomology functors. Further, we look at the relations
that appear between these and short exact sequences of modules, respectively
groups. We calculate also several concrete cohomology groups, and build ex-
tensions that are described by those cohomologies.
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0. Introduction

Most of the results in this thesis are known. Our goal was to put down on paper
some longer technical proofs that are usually just sketched in the existing literature,
and to build up a machinery that is easy to follow. There is a thread through the
topics, which are revealed to be closely related.
In Part 1 we introduce the functors ExtnR(�;�); Ext

n

R(�;�); de�ned for any
non-negative integer n; using n-th cohomology functors, projective resolutions, and
respectively, injective coresolutions, over some �xed ring R: One of their most inter-
esting properties is that they are bifunctors (Theorem 3.4 and Theorem 4.4). More-
over, ExtnR(�;�) and Ext

n

R(�;�) are isomorphic as bifunctors (Theorem 4.10).
We introduce another bifunctor, ER (C;A), the set of equivalence classes of short

exact sequences of R-modules

0 �! A �! E �! C �! 0

with the Baer sum as an abelian group operation. Finally, we prove in Theorem
5.16 that the abelian groups Ext1R(C;A) and ER(C;A) are naturally (on C and A)
isomorphic.
In Part 2, we de�ne the functors Hn(�;�); with �rst argument any group G

and second argument any G-module A; again using the n-th cohomology functors
but now over the �xed group ring. For any action of G on A; we can establish a set
bijection between Hn(G;A) and the set E(G;A); consisting of equivalence classes
of short exact sequences of groups

0 �! A �! E �! G �! 1

where E;G are not necessarily abelian groups. Further, E(G;A) turns out to be a
group, and as a bifunctor from the category PAIRS (as in De�nition 6.6) to the
category of abelian groups, it is isomorphic to Hn(G;A) (Theorem 7.11).
What about the case when we do not restrict ourselves to an abelian kernel A? As
described in Section 8, if an extension exists, it induces a triple called an abstract
kernel (A;G; � : G �! Aut(A)=In(A)). The other way, given an abstract kernel, it
has an extension if and only if one of its obstructions is equal to 0 (considered as a
3-cochain of HomZG(Ztrivial� ; Z(A)); where Z is the trivial G-module, and Z(A) is
the center of A). See Theorem 8.6:
In the last part, we speci�cally describe extensions of primary and the in�nite

cyclic group Z by primary and the in�nite cyclic group Z, see Theorem 9.3 and
Theorem 9.4. Therefore, we shall have described all extensions of �nitely generated
abelian groups, as all such are a direct product of primary cyclic groups and of some
rank. We have also shown that an abelian extension (an element of EZ(G;A)) may
be embedded in E(G;A), proved in Theorem 10.1. Speci�cally, when G = Zm; m �
2; we have that any extensions of A by Zm is an abelian extension, as shown in
Theorem 10.2. We will also show that there exists extensions of Zp by Zp�Zp that
are not abelian, which follows from Theorem 10.14.
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1. Preliminaries

We will now give some de�nitions and results that will be used frequently in the
rest of the thesis. For any category C; we write Ob(C) for the class of objects in C;
and HomC(A;B) the set of morphisms between any two objects A;B 2 Ob(C):
Remark 1.1. A class is something larger than a set. A category C is called
small if Ob (C) is a set, and large otherwise. Almost all categories in this Thesis
are large.

De�nition 1.2. ([3] Chapter IX.1) A pre-additive category C is a large category
such that

(1) For any A;B 2 Ob(C), HomC(A;B) is an abelian group,
(2) Composition of morphisms is distributive.

Lemma 1.3. ([1] Chapter 5 Proposition 5.2) Fix any �nite family of objects fAig
of a pre-additive category C. Whenever the coproduct of the fAig

0
s exists, it is

isomorphic to the product of the fAig
0
s; considered as objects of C.

De�nition 1.4. ([1] Chapter 5.1) Let C and C
0
be any two additive categories,

and F : C �! C
0
a functor. F is said to be additive if for any pair of morphisms

u; v 2 HomC(A;B); we have

F (u+ v) = F (u) + F (v)

Lemma 1.5. Let C be any pre-additive category. The covariant and respectively
contravariant functors HomC(A;�); and HomC(�; B); are additive functors.
Remark 1.6. Follows easily from De�nition 1.2.

Lemma 1.7. Chain homotopies are preserved under covariant additive functors.
Under a contravariant additive functor, chain homotopies are transformed to cochain
homotopies.

De�nition 1.8. An additive category C is a pre-additive category where there exists
coproducts of any �nite family of objects of C:

De�nition 1.9. ([1] Chapter 5.4) An additive category C is said to be pre-abelian
if for any morphism u 2 HomC(A;B), there exists a ker(u) and coker(u):

De�nition 1.10. A pre-abelian category C is called abelian if for any morphism
u 2 HomC(A;B); we have an isomorphism between Coim(u) and Im(u); where

Coim(u) = Coker(ker(u))

Im(u) = ker(coker(u))

For the next three de�nitions, C;D are two arbitrary categories.

De�nition 1.11. A covariant functor T on C to D is a pair of functions: an
object function and a mapping function. These assign to each object in A an object
T (A) in D; and respectively, to any morphism  : A �! B in C a morphism
T () : T (A) �! T (B) in D. It preserves identities and composites, i.e.

T (1A) = 1T (A)

for all A in C, and
T (�) = T (�)T ()

whenever � is de�ned.



4 CATALINA NICOLE VINTILESCU NERMO

De�nition 1.12. A contravariant functor T from C to D is a covariant functor
from Copp to D, where Copp is the category called the dual category to C, consist-
ing of all objects of C, such that for any objects A;B in Copp;HomCopp(A;B) =
HomC(B;A):

De�nition 1.13. By [3], a functor T , covariant in B and contravariant in A; is a
bifunctor if and only if for any � : A �! A

0
; � : B �! B

0
; the diagram

T (A0; B)
T (�;B)- T (A;B)

T (A0; B0)

T (A0; �)
? T (�;B0)- T (A;B0)

T (A; �)
?

is commutative.

Let us denote by R-mod, AB; GR; Sets; Sets�, the frequently used categories
of (left) R-modules, abelian groups, groups, sets, and pointed sets, respectively. We
assume that all rings are associative and have multiplicative unity element. Given
a chain complex of abelian groups (X�; d�); let Zn = ker dn�1; Bn = dn(Xn+1).
Elements of Zn are called n-cycles and elements of Bn are called n-boundaries. As

Xn
dn�1�! dn�1Xn is an epimorphism, and ker dn�1 = Zn; it follows that Xn=Zn '

Bn�1. Given a cochain complex (X�; d�); let Zn = ker dn; B
n = dn+1(Xn+1):

Elements of Zn are called n-cocycles, and elements of Bn are called n-coboundaries.

De�nition 1.14. The n-th cohomology group of a cochain complex (X�; d�) of
abelian groups is the factor group Hn(X) = Zn=Bn:

De�nition 1.15. Let (X�; d�) and (Y �; ��) be cochain complexes. A cochain trans-
formation f : X �! Y is a family of module homomorphisms fn : Xn �! Y n,
such that for any n,

fn+1dn = �nfn

A cochain homotopy s between two cochain transformations f; g : X �! Y is a
family of module homomorphisms sn : Xn �! Y n�1 such that for any n;

fn � gn = sn+1dn + �n�1sn

We write s : f ' g: We say that f is a homotopic equivalence if there exists a
cochain transformation g : Y �! X and module homomorphisms s : Y �! Y; t :
X �! X; such that

s : fg ' 1Y ; and t : gf ' 1X :

We also have the notion of homology, chain transformation, chain homotopy, but
we will, in this thesis, mostly be using the concept of cochain complex, cohomology,
cochain transformation, cochain homotopy. We will simply write complex, trans-
formation, homotopy, whenever their interpretation is clear from the context. A
complex (X�; d�) is said to be positive when Xn = 0 for n < 0:

Proposition 1.16. Hn becomes a covariant functor from the category of complexes
of abelian groups (respectively R-modules) and transformations between them, to
AB (respectively R-mod).

Proposition 1.17. ([3] Theorem II.2.1) If s : f ' g
Hn(f) = Hn(g) : Hn(X) �! Hn(Y )
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Theorem 1.18. (Exact cohomology sequence, [3] Theorem II.4.1) For each short
exact sequence of cochain complexes

0 �! K �! L �!M �! 0

we have a natural long exact sequence of cohomology:

::: �! Hn(K) �! Hn(L) �! Hn(M) �! Hn+1(K) �! Hn+1(L) �! ::

De�nition 1.19. A free R-module generated by a set X consists of formal �nite
sums, X

x2X
n(x) hxi ; n(x) 2 R

and is denoted by F (X):

Clearly, F (X) ' �x2XF (hxi) ' �x2XR:

De�nition 1.20. ([3] I.5) An R-module P is projective if for any epimorphism
� : A �! B; and any homomorphism  : P �! B; there exists a � : P �! A such
that  = ��: An R-module I is injective if for any monomorphism { : A �! B,
and any homomorphism � : A �! I; there exists a � : B �! I such that �{ = �:
An R- module M is divisible if for any m 2 M; and every r 2 R; there exists
m

0 2M such that m = rm
0
:

De�nition 1.21. Let C be an R-module. A complex over C is a positive com-
plex (X�; d�) and a transformation ", to the trivial complex (i.e. concentrated in
dimension zero) C: Write (X�; d�)

"�! C: If all X
0

ns are projective we say that
(X�; d�)

"�! C is a projective complex over C: If (X�; d�) has trivial homology in
positive dimensions, while the induced mapping " : H0(X) �! C is an epimor-
phism, we say that (X�; d�)

"�! C is a resolution of C: A complex under C is a
transformation � from the trivial complex C to the positive complex (Y �; ��): Write
C

��! (Y �; ��): If all Y
0

ns are injective, we say that C
��! (Y �; ��) is an injective

complex under C: If (Y �; ��) has trivial cohomology in positive dimensions, while
� : C �! H0(Y ) is an isomorphism, we say that C ��! (Y �; ��) is a coresolution
of C:

Lemma 1.22. (Comparison Lemma for projective resolutions, [3] Theorem III.6.1)
Let  2 HomR-Mod(C;C

0
): If (X�; d�)

"�! C is a projective complex over C; and

(X
0

�; d
0

�)
"
0

�! C
0
is a resolution of C

0
; there is a transformation f : X �! X

0
with

"
0
f = "; and any two such transformations are homotopic. We say that f is a

lifting of :

Lemma 1.23. (Comparison Lemma for injective coresolutions, [3] Theorem III.8.1)

Let � 2 HomR-mod(A;A
0
). If A "�! (X�; ��) is a coresolution of A, and A

0 "
0

�!
(Y �; ��) is an injective complex under A

0
; then there is a transformation f : X �!

Y with "
0
� = f", and any two such transformations are homotopic. We say that f

is a lifting of �.

De�nition 1.24. Let G be a group and R a ring. De�ne the group ring RG as the
free R-module generated by the symbols hgi ; g 2 G; where multiplication is de�ned
on the generators as hgi hhi := hghi ; for any g; h 2 G: So elements of RG are
formal (�nite) sums

P
g2G n(g) hgi ; n(g) 2 R:
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De�nition 1.25. A G-R-module is an R-module A together with a group homo-
morphism G �! AutR (A). If R = Z; we simply say that A is a G-module.

Proposition 1.26. A is a G-R-module if and only if A is an RG-module.

Proof. Take a ' 2 HomGR(G;AutR(A)). Then A becomes a RG-module through
a function  : RG�A �! A de�ned as

 (
X

n(g) hgi a) =
X
g2G

n(g)'(g)(a); n(g) 2 R:

Suppose we have a function  that makes A a RG-module. De�ne the function

'(g)(a) =  (hgi ; a)
It can be shown that ' 2 HomGR(G;AutR(A)): �
De�nition 1.27. ([1] Chapter 2:1 ) Let A be an object of the category C and I an
arbitrary set of indices. We shall say that A together with the family of morphisms
ui : A �! Ai is the direct product of fAigi2I if for any object B in C and any
family of morphisms vi : B �! Ai; there exists a unique morphism v : B �! A
such that the diagrams

B
v- A

Ai

ui
?

v
i
-

are commutative.

De�nition 1.28. ([1] Chapter II.6) A kernel of a morphism � : K �! L in an
abelian category is a � : J �! K such that �� = 0 and for any other � such that
�� = 0; there exists a unique �0 such that the diagram is commutative:

J
�- K

�- L

M

�0
6

�

-

De�nition 1.29. ([2] II.(6:2))A pullback of two morphisms ' : A �! X and
 : B �! X is a pair of morphisms � : Y �! A and � : Y �! B such that
'� =  �

Y
�- A

B

�
?  - X

'
?

and for any other pair  : Z �! A and � : Z �! B such that ' =  � there exists
a unique � : Z �! Y such that �� =  and �� = �.

De�nition 1.30. ([1] Chapter 3:1) Let C be any category and D be a small cat-
egory, and let F be a covariant functor F : D �! C: An inverse limit of F is an
object A in C together with morphisms uX : A �! F (X); one for each X 2 Ob(C);
such that

(1) For all � : X �! Y in D; F (�)uX = uY ;
(2) For any other family vX : Z �! F (X) such that F (�)vX = vY ; there exists

a unique v : Z �! A such that uXv = vX ; for all X 2 Ob(D):
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Proposition 1.31. Whenever they exist, kernels ([1] Chapter 3:1 Example 1),
direct products ([1] Chapter 3:1 Example 2), and pullbacks ([2] II. Prop.6:1) are
inverse limits.

Corollary 1.32. Inverse limits in general, as well as direct products, kernels and
pullbacks in particular, are unique (up to an isomorphism).

Proposition 1.33. ([1] Prop. 3:6) Let C be any category and A an object of C:
The covariant functor HomC(A;�) preserves inverse limits of functors from any
small category.

Corollary 1.34. In an abelian category C, for any short exact sequence

0 �! B
0
�! B �! B

00
�! 0

and any A 2 Ob(C); we get the exact sequence
0 �! HomC(A;B

0
) �! HomC(A;B) �! HomC(A;B

00
):

Remark 1.35. It follows from the Corollary above that the functor HomC(A;�)
is left exact.

Proposition 1.36. In GR and R-mod, the pullback is Y = f(a; b) 2 A�B j '(a) =
 (b); a 2 A; b 2 Bg; with the natural projections � = �A; � = �B :

De�nition 1.37. ([1] Chapter 2:1) Let A be an object of the category C and I an
arbitrary set of indices. We shall say that A together with the family of morphisms
ui : Ai �! A is the direct sum of fAigi2I (also called coproduct), if for any object
B in C and any family of morphisms vi : Ai �! B; there exists a unique morphism
v : A �! B such that the diagram

Ai
ui- A

B

v
?

v
i
-

commutes.

De�nition 1.38. ([2] Chapter I:2) The cokernel of a morphism � : K �! L
in an abelian category is a � : L �! M such that �� = 0 and for any other
� : L �! M

0
such that �� = 0; there exists a unique �0 such that the diagram is

commutative:

K
�- L

�- M

M 0

�0?� -

De�nition 1.39. A pushout of two morphisms � : X �! A; � : X �! B; is a
pair of morphisms f : A �! Y; g : B �! Y with f� = g�;

X
�- A

B

�
? g- Y

f
?

satisfying the universal property: for any u : A �! Z; v : B �! Z such that
u� = v�; there exists a unique � : Y �! Z such that u = �f and v = �g.
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Proposition 1.40. In R-mod, the pushout of (X;�; �) is Y = A�B= h(�(x);��(x)) : x 2 Xi,
where f = iA and g = iB are the canonical injections.

De�nition 1.41. Let C be any category and D be a small category, and let F :
D �! C be a covariant functor. A direct limit of F is de�ned dually to the inverse
limit of F (as in De�nition 1.30).

Proposition 1.42. Whenever they exist, direct sums, cokernels and pushouts are
direct limits.

Proposition 1.43. Direct limits in general, as well as direct sums, cokernels and
pushouts in particular, are unique (up to an isomorphism).

Proposition 1.44. Let C be any category, and B an object in C: The contravariant
functor HomC(�; B) carries direct limits of functors from any category into inverse
limits.

Corollary 1.45. In an abelian category C; for any short exact sequence

0 �! A
0
�! A �! A

00
�! 0

and any B 2 Ob(C); we get the exact sequence

0 �! HomC(A
00
; B) �! HomC(A;B) �! HomC(A

0
; B)

Remark 1.46. It follows from the Corollary above that the functor HomC(�; B)
is left exact.

Lemma 1.47. (Short Five Lemma, [3] Lemma I.3.1) Given any commutative di-
agram in GR

1 - A - B - C - 1

1 - A0

�
?

- B0


?

- C 0

�
?

- 1
where the rows are short exact sequences. If �; � are pairwise injective, surjective
or isomorphisms, so is :

Lemma 1.48. (The 3�3 Lemma, [3] Lemma II.5.1) Suppose that in the following
commutative diagram

0 0 0

0 - A3
?
- A2

?
- A1

?
- 0

0 - B3
?
- B2

?
- B1

?
- 0

0 - C3
?
- C2

?
- C1

?
- 0

0
?

0
?

0
?

all three columns and the �rst (or last) two rows are exact. Then the third row is
exact.
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Lemma 1.49. (Ker-Coker sequence, [3] Lemma II.5.2) Given two short exact se-
quences in a commutative diagram

0 - A
{- B

�- C - 0

0 - A0

�
? {0- B0

�
? �0- C 0


?

- 0
the sequence is exact

0 �! ker� �! ker� �! ker  �! coker(�) �! coker(�) �! coker() �! 0

Proposition 1.50. Let A;B;C 2 Ob(R-mod). For any short exact sequence
0 �! A �! B �! C �! 0

the sequences

0 �! HomR(P;A) �! HomR(P;B) �! HomR(P;C) �! 0

0 �! HomR(C; I) �! HomR(B; I) �! HomR(A; I) �! 0

are exact, for any projective module P and injective module I:

Let R be any ring. Consider R as the right R-module. HomZ(R;A) becomes a
left R-module through

(rf) (s) = f(sr); s 2 R; r 2 R; f 2 HomZ(R;A)

De�nition 1.51. An R-module C is called cofree if C '
Q
j2J HomZ(R;Q=Z); for

some indexed set J .

The R-module structure is given by"
r�j

 Q
j2J

HomZ(R;Q=Z)

!#
(s) = (rg) (s); r 2 R; j 2 J; g 2 HomZ(R;Q=Z); s 2 R

Lemma 1.52. For any ring R; and any injective (divisible) abelian group I; HomZ(R; I)
is an injective R-module.

Proof. Let � 2 HomR(A;B); be a monomorphism. For any  2 HomR(A;HomZ(R; I));
we must show that

HomR(B;HomZ(R; I))
���! HomR(A;HomZ(R; I)); �

�(g) = g�

is an epimorphism. By ([2] Theorem III.7:2) we have the natural group homomor-
phism

HomR(N;HomZ(M; I)) ' HomZ(M 
R N; I)
When we take M = R; we get the isomorphism

HomR(N;HomZ(R; I)) ' HomZ(N; I)

After letting N = A and N = B; the problem translates into proving that

HomZ(B; I) �! HomZ(A; I)

is an epimorphism, which is true, by the de�nition of the injective group I: �
Corollary 1.53. For any ring R; HomZ(R;Q=Z) is an injective R-module.

Lemma 1.54. Any product of injective R-modules in an injective R-module, where
R is an arbitrary ring.
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Proof. For any short exact sequence in R-mod

0 �! N
0
�! N �! N

00
�! 0

Apply HomR(�;
Q
Ik); k in some indexed set (�nite or in�nite), where each Ik is

an injective R-module, and get the left exact sequence:

0 �! HomR(N
00
;
Y

Ik) �! HomR(N;
Y

Ik) �! HomR(N
0
;
Y

Ik)

0 �!
Y

HomR(N
00
; Ik) �!

Y
HomR(N; Ik) �!

Y
HomR(N

0
; Ik)

Now, for each k; for any element of
Q
HomR(N

0
; Ik); by the Axiom of Choice, it is

possible to pick in
Q
HomR(N; Ik) exactly that gk such that gk 2 �k (

Q
HomR(N; Ik))

and

0 - N 0 {- N

Ik

fk ?� g k

commutes. The sequence becomes exact, or equivalently,
Q
Ik is an injective R-

module. �
Corollary 1.55. Any cofree module over any ring is injective.

Proposition 1.56. ([2] I.(7:1)) Let R be a PID: An R-module is injective if and
only if it is divisible.

Proposition 1.57. ([2] I.(7:2)) Let R be a PID: A factor module of a divisible
module is divisible.

Corollary 1.58. ([2] I.(7:4)) Any abelian group may be embedded in a divisible
abelian group.
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Part 1. Extensions of modules

3. The functors ExtnR

Proposition 3.1. For any R-module C; there exists a projective resolution of C:

Proof. Any R-module C is a quotient of a free, hence projective module. Build
the free R-module F0 on the generators of C and take the canonical epimorphism
�0 : F0 �! C: Build the free R-module F1 on the generators of ker�; and we get
the canonical projection �1 : F1 �! ker�0; and continue in this manner. Then we
get a long exact sequence

:::
�3�! F2

�2�! F1
�1�! F0

�0�! C �! 0

�
De�nition 3.2. ExtnR(C;A) := Hn(HomR(P�; A)); where (P�; d�) �! C is any
projective resolution of C:

The de�nition of ExtnR is correct (it is independent of the choice of projective
resolution):

Lemma 3.3. Given any two projective resolutions of C; (P�; d�)
"�! C; (Q�; ��)

��!
C; and an R-module A; the following cohomology groups are naturally isomorphic:
Hn(HomR(P�; A)) ' Hn(HomR(Q�; A)):

Proof. Since (P�; d�)
"�! C is also a projective complex over C and (Q�; ��)

��! C
is a resolution of C, Lemma 1.22 gives that there exists a lifting f : P �! Q of
1C : Since (Q�; ��)

��! C is also a projective complex over C, and (P�; d�)
"�! C a

resolution of C; so the same lemma gives that there exists a lifting g : Q �! P of
1C : Since the composition of two chain transformations is a chain transformation,
we obtain two chain transformations (gf) : P� �! P� and (fg) : Q� �! Q� that
satisfy

"(gf) = �f = "

�(fg) = "g = �

so they are homotopic to 1P� and 1Q� , respectively. For any R-module A; applying
the functor HomR(�; A) gives the commutative diagram of cochain complexes

0 - HomR(C;A)
��- HomR(Q0; A)

�0
�
- HomR(Q1; A)

�1
�
- :::

0 - HomR(C;A)

1HomR(C;A)

? "�- HomR(P0; A)

f0
�

?

g0
�

6

d0
�
- HomR(P1; A)

f1
�

?

g1
�

6

d1
�
- :::

where

f�(u) = uf; u 2 HomR(P�; A)

g�v = vg; v 2 HomR(Q�; A)

(f�g�)(v) = f�(vg) = v (gf) = (gf)�(v)

(g�f�)(u) = (g�(uf) = ufg = (fg)�(u)

d�f�(u) = d�(uf) = u (fd) = (u�) f = f�(�u) = f���u

f�0 �
� = (�f0)

� = "�
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By Lemma 1.7, HomR(�; A) preserves homotopies, so
(gf) ' 1P� =) f�g� = (gf)� = HomR(gf;A) ' HomR(1P� ; A) = 1HomR(P�;A)

(fg) ' 1Q� =) g�f� = (fg)� = HomR(fg;A) ' HomR(1Q� ; A) = 1HomR(Q�;A)

Taking the covariant functor Hn(�) we get
Hn(g�f�) = Hn(1HomR(Q�;A)) = 1Hn(HomR(Q�;A)) = Hn(g�)Hn(f�)

So Hn(f�) : Hn(HomR(Q�; A)) �! Hn(HomR(P�; A)) is an isomorphism, with
inverse Hn(g�): �

Proposition 3.4. ExtnR(�;�) is a bifunctor from R-mod�R-mod to AB; for any
n 2 Z�0:

Proof. Step 1. We will show thatExtnR(C;�) is a covariant functor. ExtnR(C;A) :=
Hn(HomR(P�; A)); where (P�; ��)

"�! C is a projective resolution of C: Let � 2
HomR-mod(A;B): It induces

0 - HomR(C;A)
"�- HomR(P0; A)

��0- HomR(P1; A)
��1- :::

0 - HomR(C;B)

�� ? "�- HomR(P0; B)

�� ? ��0- HomR(P1; B)

�� ? ��1- :::

where

"�l = l"; l 2 HomR(C;A)

��h = h�; h 2 HomR(P�; A)

��l = �l

The diagram is commutative:

��"
�(l) = ��(l") = �l" = "�(�l) = "���(l)

���
�
n(s) = ��(s�n) = �s�n = ��n(�s) = ��n��(s)

So �� becomes a transformation between the two complexes. SinceHn is a covariant
functor, we have

Hn(��) : Hn(HomR(P�; A)) �! Hn(HomR(P�; B))

Hn(��) : ExtnR(C;A) �! ExtnR(C;B)

If � = 1A; we simply get identity transformation on HomR(P�; A); and by functo-
riality of Hn; we get

Hn(1HomR(P�;A)) = 1Hn(HomR(P�;A))

A composition of morphisms A ��! B
��! D gives three complexes and two inter-

twining transformations (since composition of two transformations is a transforma-
tion:

0 - HomR(C;A)
"�- HomR(P0; A)

��0- HomR(P1; A)
��1- :::

0 - HomR(C;B)

�� ? "�- HomR(P0; B)

�� ? ��0- HomR(P1; B)

�� ? ��1- :::

0 - HomR(C;D)

�� ? "�- HomR(P0; D)

�� ? ��0- HomR(P1; D)

�� ? ��1- :::
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As

����(s) = ��(�s) = (��) s = (��)�(s)

Hn(����) = Hn((��)�) = Hn(��)H
n(��) : Ext

n
R(C;A) �! ExtnR(C;D);

so �� gives composition Hn(��)H
n(��).

Step 2. We will show that ExtnR(�; A) is a contravariant functor. Given a
f 2 HomR-mod(K;C); �x a projective resolution of K; (K�; ��)

��! K: By Lemma
1.22, there exists a lifting t : K� �! P�. Applying HomR(�; A) for any R-module
A; we get the commutative diagram of cochains and cochain transformations t�

0 - HomR(C;A)
"�- HomR(P0; A)

��0- HomR(P1; A)
��1- :::

0 - HomR(K;A)

f�
? ��- HomR(K0; A)

t�0 ? ��0- HomR(K1; A)

t�1 ? ��1- :::

t�"�(s) = t�(s") = s ("t) = s(f�) = ��(sf) = ��f�(s)

t�n+1�
�
n(l) = t�(l�0) = l (�ntn+1) = (ltn) �n = ��n(ltn) = ��nt

�
n(l); n 2 Z�0

Applying Hn gives

Hn(t�) : Hn(HomR(P�; A)) �! Hn(HomR(K�; A))

Hn(t�) : ExtnR(C;A) �! ExtnR(K;A)

If f = 1C ; t� = 1HomR(P�;A); and taking H
n gives

1Hn(HomR(P�;A)) = 1ExtnR(C;A)

Look at the composition of any two morphisms L
g�! K

f�! C: Fix a projective
resolution of L:

:::
2- L2

1- L1
0- L0

�- L - 0

:::
�2- K2

�1- K1
�0- K0

�- K

g ?
- 0

:::
�2- P2

�1- P1
�0- P0

"- C

f ?
- 0

By Lemma 1.22, there exists a lifting s : L� �! K�. Then we get the lifting
ts : L� �! C�: Apply the functor HomR(�; A) (for any �xed R-module A): We
get the commutative diagram of cochain complexes and cochain transformations

0 - HomR(C;A)
"�- HomR(P0; A)

��0- HomR(P1; A)
��1- :::

0 - HomR(K;A)

f�
? ��- HomR(K0; A)

t�
? ��0- HomR(K1; A)

t�
? ��1- :::

0 - HomR(L;A)

g�
? ��- HomR(L0; A)

s�
? �0- HomR(L1; A)

s�
? �1- :::

Apply Hn and get

Hn(s�t�) = Hn((ts)�) = Hn(s�)Hn(t�) : Hn(HomR(P�; A)) �! Hn(HomR(L�; A))

Hn((ts)�) = Hn(s�)Hn(t�) : ExtnR(C;A) �! ExtnR(L;A)
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Step 3. We will establish that ExtnR(�;�) is a bifunctor. Since the composi-
tion ExtnR(C;A)

t��! ExtnR(K;A)
���! ExtnR(K;B) is equal to Ext

n
R(C;A)

���!
ExtnR(C;B)

t��! ExtnR(K;B)

��t
�(s) = ��(st) = (�s) t = t�(�s) = t���(s)

ExtnR(�;�) is a bifunctor. �

Proposition 3.5. Ext0R(C;A) ' HomR(C;A):

Proof. Let (P�; d�)
"�! C be a projective resolution of C: Apply HomR(�; A) and

get the complex

0 �! HomR(C;A)
"��! HomR(P0; A)

d�0�! HomR(P1; A)
d�1�! :::

which by Corollary 1.45 is exact at HomR(C;A) and HomR(P0; A). Since d�1 =
0; d��1 = 0;

HomR(C;A) ' ker d�0 =
ker d�0
Im d��1

= H0(HomR(P�; A)) = Ext0R(C;A)

�

Proposition 3.6. Given a short exact sequence of R-modules

0 �! K
{�! L

��!M �! 0

For any R-module C; we get a long exact sequence of ExtnR :

0 �! HomR(C;K) �! HomR(C;L) �! HomR(C;M) �! Ext1R(C;K) �! Ext1R(C;L) �!
�! Ext1R(C;M) �! Ext2R(C;K) �! Ext2R(C;L) �! Ext2R(C;M) �!
�! ::: �! ExtnR(C;M) �! Extn+1R (C;K) �! Extn+1R (C;L) �! :::

Proof. Fix a projective resolution of C :

:::
�2 - P2

�1 - P1
�0 - P0

" - C - 0

We get a commutative diagram of three complexes and transformations {� and �� :

0 - HomR(C;K)
"�- HomR(P0;K)

��0- HomR(P1;K)
��1- :::

0 - HomR(C;L)

{� ? "�- HomR(P0; L)

{� ? ��0- HomR(P1; L)

{� ? ��1- :::

0 - HomR(C;M)

�� ? "�- HomR(P0;M)

�� ? ��0- HomR(P1;M)

�� ? ��1- :::

We get a short exact sequence of complexes

0 �! HomR(P�;K)
{��! HomR(P�; L)

���! HomR(P�;M) �! 0

since HomR(P�;�) converts kernels to kernels, and at each dimension, since P� is
projective, HomR(P�; L)

���! HomR(P�;M) is surjective. By Theorem 1.18, we
get the long exact sequence

0 �! H0(HomR(P�;K)) �! H0(HomR(P�; L)) �! H0(HomR(P�;M)) �! H1(HomR(P�;K))

�! H1(HomR(P�; L)) �! H1(HomR(P�;M)) �! H2(HomR(P�;K)) �! H2(HomR(P�; L)) �! :::
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which is isomorphic to

0 �! HomR(C;K) �! HomR(C;L) �! HomR(C;M) �! Ext1R(C;K) �! Ext1R(C;L) �!
�! Ext1R(C;M) �! Ext2R(C;K) �! Ext2R(C;L) �! :::

�

Proposition 3.7. Given a short exact sequence of R-modules

0 �! K
{�! L

��!M �! 0

For any R-module A; we get a long exact sequence of ExtnR :

0 �! HomR(M;A) �! HomR(L;A) �! HomR(K;A) �! Ext1R(M;A) �! Ext1R(L;A) �!
�! Ext1R(K;A) �! Ext2R(M;A) �! Ext2R(L;A) �! Ext2R(K;A) �! ::: �! ExtnR(K;A)

�! Extn+1R (M;A) �! Extn+1R (L;A) �! :::

Proof. Fix projective resolutions of K; and M:
: :

P1

�1 ?
- P1�Q1 - Q1

d1?

P0

�0 ?
- P0�Q0 - Q0

d0?

K

"
? � - L

�- M

�
?

Start building a projective resolution of L, that makes the diagram commutative.
Since

HomR(P0 �Q0; L) ' HomR(P0; L)�HomR(Q0; L)

any h : P0 �Q0 �! L can be written as

h(p; q) = f(p) + g(q); where f : P0 �! L; g : Q0 �! L

Such a g exists since Q0 is projective. We need that

hi = ���1 ^ �h = d�1�:

hi(p) = h(p; 0) = f(p) + g(0) = f(p):

De�ne f(p) = ���1:

�h(p; q) = �(f(p) + g(q)) = �f(p) + �g(q) = �(���1(p)) + �g(q) = �g(q)

De�ne g(q) as �g(q) = d�1�(p; q) = d�1(q): Let (K1; eK); (L1; eL); (M1; eM ) be
the kernels of "; h; and �; respectively. By Lemma 1.49, since coker(") is 0; we have
a short exact sequence

0 �! K1 �! L1 �!M1 �! 0

We have new maps �; �; which are the (unique) maps satisfying

eL� = i0eK ; eM� = �0eL
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(follows from the de�nition of the kernel, De�nition 1.28). We have built the
commutative diagram of short exact sequences

K1
� - L1

�- M1

P0

eK ? i0- P0�Q0

eL ? �0- Q0

eM?

K

"
? � - L

h
? �- M

�
?

0
?

0
?

0
?

Since
"�0 = 0; �d0 = 0

there exists unique homomorphisms u : P1 �! K1 and v : Q1 �!M1; such that

eKu = �0; eMv = d0

Since we have built �u : P1 �! L1, there exists a homomorphism k : P1 �Q1 �!
L1: Any such k can be described as

k(p; q) = s(p) + t(q)

We now require that
ki1 = �u; v�1 = �k

Since
ki1(p; q) = k(p; 0) = s(p) =) de�ne s(p) = �u

Now,

�k(p; q) = �(s(p) + t(q)) = �s(p) + �t(q) = ��u(p) + �t(q) = �t(q)

=) de�ne t(q) as �t(q) = v�1(p; q) = v(q)

The only thing remaining is to check exactness

P1 �Q1
eLk�! P0 �Q0

h�! L

heLk = 0; so Im(eLk) � ker(h)
To prove the other way, it is enough to show that k is surjective on L1: Using
Lemma 1.47, it is enough to show that u and v are surjective. But this follows,
since

Im �0 = Im eKu = ker " =) u is surjective

Im d0 = Im eMv = ker " =) v is surjective

So we have developed the commutative diagram

P1
i1- P1�Q1

�1- Q1

P0

�0 ? i0- P0�Q0

eLk ? �0- Q0

d0?

K

"
? � - L

h
? �- M

�
?
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Continue this procedure, i.e. take (K2; eK2
); (L2; eL2); (M2; eM2

) kernels of �0; eLk;
and d0: We will get a new short exact sequence

0 �! P2 �! P2 �Q2 �! Q2 �! 0

which together with a homomorphisms (�1; l; d1); make a larger commutative dia-
gram. We then get a projective resolution P� �Q� of L; and we get a short exact
sequence of complexes

0 �! P�
i��! P� �Q�

���! Q� �! 0

where, for each n � 0; we have a split exact sequence

0 �! Pn
in�! Pn �Qn

�n�! Qn �! 0

where in is the natural inclusion and �n is the natural projection. For any R-
module A; apply HomR(�; A) to the short exact sequence of complexes. We get a
short exact sequence of cochain complexes

0 �! HomR(P�; A) �! HomR(P� �Q�; A) �! HomR(Q�; A) �! 0

For each n � 0; it is split exact, since HomR(Pn � Qn; A) ' HomR(Pn; A) �
HomR(Qn; A): Apply Hn to get the long exact sequence of cohomology

0 �! H0(HomR(P�; A)) �! H0(HomR(P� �Q�; A)) �! H0(HomR(Q�; A)) �!
�! H1(HomR(P�; A)) �! H1(HomR(P� �Q�; A)) �! :::

which is isomorphic to

0 �! HomR(K;A) �! HomR(L;A) �! HomR(M;A) �! Ext1R(K;A) �! Ext1R(L;A) �! :::

�

Proposition 3.8. ExtnR(P;A) = 0; P projective module, n � 1:

Proof.

::: �! 0 �! 0 �! P
1P�! P �! 0

is a projective resolution of our projective module P; where 1P is as isomorphism
of P: By Corollary 1.45, taking HomR(�; A) converts cokernels to kernels, and we
obtain the complex

0 �! HomR(P;A)
(1P )�� HomR(P;A)

0��! 0
0��! 0

0��! :::

So Im((1P )�) = ker 0� = HomR(P;A); so (1P )� is an isomorphism, and we have

H1(HomR(P�; A)) =
f0g
f0g ' 0 = H2(HomR(P�; A)) = :: = Hn(HomR(P�; A)) = ::

for any n � 1; which gives
ExtnR(P;A) = 0; n � 1:

�

Proposition 3.9. Given the short exact sequence of R-modules

E : 0 �! S �! P �! C �! 0

where P is projective (also called a projective presentation of C),

Ext1R(C;A) ' coker(HomR(P;A) �! HomR(S;A))
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Also,

ExtiR(S;A) ' Exti+1R (C;A); i � 1:

Proof. Using Proposition 3.7, we get the long exact sequence where ExtnR(P;A) = 0;
for n � 1

0 �! HomR(C;A) �! HomR(P;A) �! HomR(S;A) �! Ext1R(C;A) �! 0 �!
�! Ext1R(S;A) �! Ext2R(C;A) �! 0 �! Ext2R(S;A) �! Ext3R(C;A) �! 0 �! ::

Exactness gives surjectivity on Ext1(C;A); so by the description of cokernel in
R-mod, Ext1(C;A) ' coker(HomR(P;A) �! HomR(R;A)): Also, ExtiR(S;A) '
Exti+1R (C;A); i � 1: �

Proposition 3.10. Hn(HomR(X; I)) ' HomR(Hn(X); I); where X is a complex,
I an injective module.

Proof. Fix the complex

:::
dn+1�! Xn+1

dn�! Xn
dn�1�! Xn�1

dn�2�! :::

Apply HomR(�; I) and get the cochain complex

::: �! HomR(Xn�1; I)
d�n�1�! HomR(Xn; I)

d�n�! HomR(Xn+1; I) �! ::

d�n(f) = fdn; for any n 2 Z:

For any f 2 Zn; we can �nd a morphism to HomR(Hn(X); I)

f2Zn2HomR(Xn; I)
restriction- HomR(Hn(X); I)

De�ne this homomorphism � : Zn �! HomR(Hn(X); I): Will show that � is an
epimorphism with kernel Bn: Given an g : Hn(X) �! I; i.e.

g : Zn �! I

ker(g) = dnXn+1

g(x) j dn�1x = 0

Let i : Zn �! Xn be the canonical injection homomorphism.

Zn
i- Xn

I

g
?

Since I is an injective module, there exists an

h : Xn �! I j hi = g

h is a n-cocycle since

d�nh(x) = h(dn(x)) = g(dn(x)) = 0:

Take h 2 Bn; i.e. h = sdn�1: Take any x 2 Hn(X):

h(x) = sdn�1(x) = s(0) = 0 =) Bn 2 ker �:
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Take any f 2 ker �, so

f(x) = 0;8x 2 Hn(x) =) f(x) = 0;8x 2 Zn =) 9 ef : Xn=Zn ' Bn�1 �! Ief = gdn�1 2 Bn; g : Xn �! I:ef 2 ker � : ef(x) = gdn�1(x) = g(0) = 0;8x 2 Hn(x): So Bn 2 ker �:

�

Proposition 3.11. ExtnR(C; I) = 0; I injective module, n � 1:

Proof. For any resolution of C; :: �! P1
�1�! P0

"� C �! 0 we get using Lemma
3.10 that

Hn(HomR(P�; I)) ' HomR(Hn(P�); I) = HomR(0; I) = 0

for n � 1: �

Proposition 3.12. ExtnZ(C;A) = 0; C and A abelian groups, n � 2:

Proof. Since any abelian group is isomorphic to a quotient of a free abelian group,
we get the short exact sequence

0 �! K �! F �! C �! 0

which is a resolution of C (since any subgroup of a free abelian group is itself a free
abelian group). For any R-module A; by Propositions 3.5, 3.9 and 3.8, we have:

Ext0Z(C;A) ' HomZ(C;A)

Ext1Z(C;A) ' coker(HomZ(F;A) �! HomZ(K;A))

Exti+1Z (C;A) ' ExtiZ(K;A) = 0; i � 2

�

4. The functors Ext
n

R

Proposition 4.1. For any R-module A; there exists an injective coresolution of A:

Proof. Will show that any module can be embedded in an injective module. We
have the R-module monomorphism  : A �! HomZ(R;A) as

((a)) (r) = f(r) = ra

ra = 0; 8r 2 R =) a = 0

By Corollary 1.58, there exists an injective group homomorphism j : A �! I;
where I is an injective Z-module. We have the short exact sequence

0 �! A �! I �! KAI �! 0

Apply HomZ(R;�) which by Corollary 1.45 preserves kernels, so we get the left
exact sequence of R-modules

0 �! HomZ(R;A)
j��! HomZ(R; I) �! HomZ(R;KAI); j�f = jf

and the composition of R-module monomorphisms j� : A �! HomZ(R; I). Since
HomZ(R; I) is an injective R-module,we have found the �rst step of a coresolu-
tion of A: Let C = coker(j�) ' HomZ(R; I)= Im(j�): We have the R-module
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monomorphism � : C �! HomZ(R;C): There exists an injective group homomor-
phism � : C �! J; for some divisible abelian group J: Apply HomZ(R;�) on the
short exact sequence

0 �! C �! J �! KCJ �! 0

and get the left exact sequence

0 �! HomZ(R;C)
���! HomZ(R; J) �! HomZ(R;KCJ); ��f = �f

and the composition of the twoR-module monomorphisms ��� : C �! HomZ(R; J),
which gives an R-module homomorphism from HomZ(R; I) �! HomZ(R; J) with
kernel the image of j�; so we have build the left exact sequence

0 �! A �! HomZ(R; I) �! HomZ(R; J)

Repeat this step, and we will get a injective coresolution of A: �

De�nition 4.2. Ext
n

R(C;A) := Hn(HomR(C; I
�)); where A "�! (I�; d�) is an

injective coresolution of A:

The de�nition of Ext
n

R is correct (it is independent of the choice of injective
coresolution):

Lemma 4.3. Given any two injective coresolutions of A;

0 �! A
"�! (I�; d�); 0 �! A

"
0

�! (J�; ��)

and an R-module C; the following cohomology groups are naturally isomorphic:
Hn(HomR(C; I

�)) ' Hn(HomR(C; J
�)):

Proof. Use Lemma 1.23, with � = 1A: We get two liftings f : I� �! J� and
g : J� �! I�: Since the composition of two liftings is a lifting, (fg) : J� �! J�

and (gf) : I� �! I� are liftings. Since any two such liftings are homotopic, we
get (fg) ' 1J� and (gf) ' 1I� : By Lemma 1.7, the additive covariant functor
HomR(C;�) preserves homotopies. We get
fg ' 1J� =) f�g� = (fg)� = HomR(C; fg) ' HomR(C; 1J�) = 1HomR(C;J�)

gf ' 1I� =) g�f� = (gf)�HomR(C; gf) ' HomR(C; 1I�) = 1HomR(C;I�)

where

f�(v) = fv; f� : HomR(C; I�) �! HomR(C; J�); v 2 HomR(C; I
�);

g�(u) = gu; g� : HomR(C; J�) �! HomR(C; I�); u 2 HomR(C; J
�)

(f�g�)(u) = f�(gu) = (fg)u = (fg)�(u)

(g�f�)(v) = g�(fv) = (gf) v = (gf)�(v)

Using Proposition 1.17,

Hn ((fg)�) = Hn(f�)H
n(g�) = Hn(1

HomR(C;J�)) = 1Hn(HomR(C;J�))

H (n(gf)�) = Hn(g�)H
n(f�) = Hn(1HomR(C;I�)) = 1Hn(HomR(C;I�))

so Hn(f�) : H
n(HomR(C; I

�)) �! Hn(HomR(C; J
�)) is an isomorphism (with

inverse Hn(g�)). �

Proposition 4.4. Ext
n

R is a bifunctor from R-mod�R-mod to AB; for any n 2
Z�0:
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Proof. Step 1. We will establish that Ext
n

R(�; A) is a contravariant functor from
R-mod to AB. Given a morphism g : D �! C: Fix A; and an injective coresolution
of A:

D - C

0 - A

f
? "- I0

�0- I1
�1- I2

�2- :::

We then have commutativity at each level of the two induced left exact complexes:

0 - HomR(C;A)
"�- HomR(C; I

0)
�0�- HomR(C; I

1)
�1�- HomR(C; I

2) :::

0 - HomR(D;A)

g�
? "�- HomR(D; I

0)

g� ?
�0�- HomR(D; I

1)

g� ?
�1�- HomR(D; I

2)

g� ?
:::

where

"�(s) = "s; s 2 HomRC;A)

g�(u) = ug; u 2 HomR(C;A)

��(v) = �v; v 2 HomR(C; I
�)

g�"�(s) = g�("s) = " (sg) = "�(sg) = "�g
�(s)

g���(v) = g�(�v) = � (vg) = ��(vg) = ��g
�(v)

Hence g� is a cochain transformation and applying Hn gives:

Hn(g�) : Hn(HomR(C; I
�)) �! Hn(HomR(D; I

�))

Hn(g�) : Ext
n

R(C;A) �! Ext
n

R(D;A)

If g = 1C ; then we get the identity 1HomR(C;I�); which gives

Hn(1HomR(C;I�)) = 1Hn(HomR(C;I�)) = 1ExtnR(C;A)

Now, let�s look at the composition E h�! D
g�! C. We get three complexes and

two intertwining transformations g� and h� :

0 - HomR(C;A)
"�- HomR(C; I

0)
�0�- HomR(C; I

1)
�1�- HomR(C; I

2):::

0 - HomR(D;A)

g�
? "�- HomR(D; I

0)

g� ?
�0�- HomR(D; I

1)

g� ?
�1�- HomR(D; I

2)

g� ?
:::

0 - HomR(E;A)

h�
? "�- HomR(E; I

0)

h� ?
�0�- HomR(E; I

1)

h� ?
�1�- HomR(E; I

2)

h� ?
:::

h�g�(u) = h�(ug) = u (gh) = (gh)�(u)

Hn(h�g�) = Hn((gh)�) = Hn(h�)Hn(g�) : Hn(HomR(C; I
�)) �! Hn(HomR(E; I

�))

Hn(h�g�) : Ext
n

R(C;A) �! Ext
n

R(E;A)

Step 2. We will show that Ext
n

R(C;�) is a covariant functor from R-mod to AB:
Fix C. Suppose � 2 HomR-mod(A;B): Fix an injective coresolution of A and B;
(I�; ��)

��! A and (J�; ��) "�! B; respectively. By Lemma 1.23, there exists a
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lifting f : I� �! J�: Take HomR(C;�) and get following diagram

0 - HomR(C;A)
"�- HomR(C; I

0)
�0�- HomR(C; I

1)
�1�- :::

0 - HomR(C;B)

�� ? ��- HomR(C; J
0)

f0� ?
�0�- HomR(C; J

1)

f1� ?
�1�- :::

where

��(u) = �u; u 2 HomR(C;A)

f�(v) = fv; v 2 HomR(C; I
�)

��(v) = v�

��(s) = s�; s 2 HomR(C; J
�)

��(u) = "u

"�(t) = "t; t 2 HomR(C;B)

The diagram is commutative (which gives that f� : HomR(C; I
�) �! HomR(C; J

�)
is a transformation):

f���(u) = f�("u) = (f")u = " (�u) = "�(�u) = "���(u)

fn+1� �n� (v) = fn+1� (�nv) =
�
fn+1�n

�
v = �n (fnv) = �n� (f

nv) = �nnf
n
� (v); n 2 Z�0:

Apply Hn :

Hn(f�) : Hn(HomR(C; I
�) �! Hn(HomR(C; J

�))

Hn(f�) : Ext
n

R(C;A) �! Ext
n

R(C;B)

If � = 1A; then we would get the identity transformation on the complexHomR(C; I
�);

and applying Hn gives

Hn(1HomR(C;I�)) = 1Hn(HomR(C;I�)) = 1ExtnR(C;A)

Let�s look at the composition A ��! B
��! D: Let (K�; ��)

��! D be a coresolution
of D: Lemma 1.23 gives the existence of a lifting g : J� �! K�: Then the composi-
tion gf : I� �! K� is a lifting too. Apply HomR(C;�) and get the commutativity
conditions:

(g0f0)���(u) = (g0f0)�(�u) = g0f0�u = �(��)u = ��(��u) = ��(��)�(u)

(gf)���(v) = (gf)�(�v) = (gf�) v = �(gf)v = ��(gfv) = ��(gf)�(v)

So (gf)� : HomR(C; I
�) �! HomR(C;K

�) becomes a transformation. Also,

(gf)�(v) = g (fv) = g�(f�(v) = g�f�(v)

As g� and f� are transformations, applying Hn gives:

Hn((gf)�) = Hn(g�f�) = Hn(g�)Hn(f�) : Hn(HomR(C; I
�)) �! Hn(HomR(C;K

�))

Hn((gf)�) = Hn(g�)Hn(f�) : Ext
n

R(C;A) �! Ext
n

R(C;D)

Step 3. We must check whether the compositions Ext
n

R(C;A) �! Ext
n

R(C;B) �!
Ext

n

R(D;B) and Ext
n

R(C;A) �! Ext
n

R(D;A) �! Ext
n

R(D;B); are equal, for any
n 2 Z�0: Take a k 2 Ext

n

R(C;A): Using the notation of this proof, the �rst gives

g�(fn� k) = g�(fnk) = fnkg
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and the second gives
fn� (g

�k) = fn� (kg) = fnkg

so Ext
n

R(�;�) is a bifunctor. �

Proposition 4.5. Ext
0

R(C;A) ' HomR(C;A):

Proof. Ext
0

R(C;A) := H0(HomR(C; I
�)); where A "�! (I�; ��); is any injective

coresolution of A: Applying HomR(C;�) gives the complex

0 �! HomR(C;A)
"��! HomR(C; I

0)
�0��! HomR(C; I

1)
�1��! HomR(C; I

2)
�2��! :::

which is exact at HomR(C;A) and HomR(C; I
0), since HomR(C;�) preserves

kernels. Ext
0

R(C;A) =
ker �0�
f0g ' Im "� ' HomR(C;A): �

Proposition 4.6. Given short exact sequence of R-modules

0 �! K
{�! L

��!M �! 0

For any R-module A; we get a long exact sequence of Ext
n

R :

0 �! HomR(M;A) �! HomR(L;A) �! HomR(K;A) �! Ext
1

R(M;A) �! Ext
1

R(L;A) �!
Ext

1

R(K;A) �! Ext
2

R(M;A) �! Ext
2

R(L;A) �! ::: �! Ext
n

R(K;A) �! Ext
n+1

R (M;A) �! :::

Proof. Pick an injective coresolution of A; A "�! (I�; d�): It induces the commuta-
tive diagram:

0 - HomR(M;A)
"�- HomR(M; I0)

d0�- HomR(M; I1)
d1�- :::

0 - HomR(L;A)

��
? "�- HomR(L; I

0)

�� ?
d0�- HomR(L; I

1)

�� ?
d1�- :::

0 - HomR(K;A)

{�
? "�- HomR(K; I

0)

{� ?
d0�- HomR(K; I

1)

{� ?
d1�- :::

since �� and {� are transformations such that
��"� = "��

�; {�"� = "�{�

Then, {��� = (�{)� = 0� : HomR(M; I�) �! HomR(K; I
�); so,

Im�� � ker{�; f 2 ker{� () {�f = f{ = 0
By the universal property of the cokernel

(9!s :M �! I� j f = s�) =) f = ��s () f 2 Im��:
So the sequence

0 �! HomR(M; I�)
���! HomR(L; I

�)
{��! HomR(K; I

�) �! 0

is a short exact sequence of cochain complexes. By Theorem 1.18, we get the
induced long exact sequence of cohomology:

0 �! H0(HomR(M; I�)) �! H0(HomR(L; I
�)) �! H0(HomR(K; I

�)) �! H1(HomR(M; I�)) �!
�! H1(HomR(L; I

�) �! :::

which is isomorphic to:

0 �! HomR(M;A) �! HomR(L;A) �! HomR(K;A) �! Ext
1

R(M;A) �! Ext
1

R(L;A) �! :::
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�

Proposition 4.7. Given a short exact sequence of R-modules

0 �! A
0 {�! A

��! A
00
�! 0

For any R-module C; we get a long exact sequence of Ext
n

R :

0 �! HomR(C;A
0
) �! HomR(C;A);�! HomR(C;A

00
) �! Ext

1

R(C;A
0
) �! Ext

1

R(C;A) �!
�! Ext

1

R(C;A
00
) �! Ext

2

R(C;A
0
) �! ::: �! Ext

n

R(C;A
00
) �! Ext

n

R(C;A
0
) �! :::

Proof. Fix injective coresolution of A
0
and A

00
;

A
0 "�! (I�; d�)

A
00 ��! (J�; ��)

We start building a particular injective coresolution of A;

A �! (I� � J�; some homomorphisms)

As

Hom(A; In � Jn) ' Hom(A; In)�Hom(A; Jn);8n 2 Zn�0
Since I0 is an injective module and { is monomorphism, we have a

k : A �! I0 j k{ = "

so we automatically get an

h : A �! I0 � J0 j h(a) = k(a) + ��(a)

h makes the �rst step of the diagram commutative:

h{(a
0
) = k({(a

0
)) + ��({(a

0
)) = "(a

0
) = ("(a

0
); 0) = i0("(a

0
))

�0h(a) = �0(k(a) + ��(a)) = ��(a)

Let (C
0
; �A0 ); (C; �A); (C

00
; �A00 ) be the cokernels of "; h and �; respectively. Since

(�Ai0) " = �A(h{) = 0

by the De�nition 1.38 of the cokernel,

9!u : C
0
�! C j �Ai0 = u�A0

Also, since

(�A00�0)h = �A00 (��) = 0 =) 9!v : C �! C
00
j �A00�0 = v�A

Lemma 1.48 gives that the coker row sequence is exact. Since

d0" = 0 =) 9!eC0 : C
0
�! I1 j eC0�A0 = d0

Also, since

�0� = 0 =) 9!eC00 : C �! J1 j eC00 : C �! J1
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A0
{ - A

�- A00

I0

d�1 ?
i0- I0�J0

h ?
�0- J0

��1?

C 0

�A0
? u - C

�A ? v- C 00

�A00
?

I1

eC0
?

i1- I1�J1
�1- J1

eC00
?

:

d1

?
:

�1

?

: :
Since I1 is injective, there exists

9s : I0 � J0 j si0 = d0

Trivially, we have
�0�0 : I

0 � J0 �! J1

De�ne

k : I0 � J0 �! I1 � J1

k(i; j) = s(i; j) + �0�0(i; j) = s(i; j) + �0(j)

This homomorphism makes the whole diagram commutative:

ki0(i) = k(i; 0) = s(i; 0) = si0(i) = d0(i) = (d0(i); 0) = i1(d
0(i))

�1k(i; j) = �0(j) = �0(�1(i; j))

Continue in this manner: take (C
0

1; �A0
1
); (C; �A1

); (C
00
; �A00

1
) as the cokernels of

d0; k; and �0; respectively. In this manner we get the speci�c desired injective
coresolution of A: Then we get a short exact sequence of complexes

0 �! I�
i��! I� � J� ���! J� �! 0

where i� is the natural injection and �� is the natural projection. It is not split exact
(since the middle map is not d0 � �0; but some twisted homomorphism k�). But
the sequence is split exact for each n � 0: For any R-module C; take HomR(C;�)
and get a short exact sequence of complexes (since any f : C �! J� induces
iJ�f : C �! I� � J�):

0 �! HomR(C; I
�) �! HomR(C; I

� � J�) �! HomR(C; J
�) �! 0

By Theorem 1.18, we get a long exact sequence of cohomology:

0 �! H0(HomR(C; I
�)) �! H0(HomR(C; I

� � J�)) �! H0(HomR(C; J
�)) �!

�! H1(HomR(C; I
�)) �! H1(HomR(C; I

� � J�)) �! :::

which is isomorphic to

0 �! HomR(C;A
0
) �! HomR(C;A) �! HomR(C;A

00
) �! Ext

1

R(C;A
0
) �!

�! Ext
1

R(C;A) �! :::
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�

Proposition 4.8. Ext
n

R(C; I) = 0; n � 1; when I is an injective R-module.

Proof. ::: �! 0 �! 0 �! I
1I�! I �! 0; is an injective coresolution of I; which is

equivalent to the isomorphism 1 : I �! I. Since HomR(C;�) is a functor, we get
1HomR(C;I); an isomorphism, which gives the long left exact sequence

0 �! HomR(C; I) �! HomR(C; I) �! 0 �! 0 �! :::

Since all HomR(C; I
n) = 0; n � 1; we see that we have

Ext
n

R(C; I) = Hn(HomR(C; I
�)) = 0; n � 1:

�

Proposition 4.9. Let
0 �! A �! I �! K �! 0

be short exact sequence of abelian groups, where the middle module I is injective.
Then,

Ext
1

R(C;A) ' coker(HomR(C; I) �! HomR(C;K))

Ext
i

R(C;K) ' Ext
i+1

R (C;A); i � 1

Proof. Using Proposition 4.7, the short exact sequence induces a long exact se-
quence of Ext

n

R :

0 �! HomR(C;A) �! HomR(C; I) �! HomR(C;K) �! Ext
1

R(C;A) �! Ext
1

R(C; I) �!
�! Ext

1

R(C;K) �! Ext
2

R(C;A) �! :: �! Ext
n

R(C; I) �! Ext
n

R(C;K) �! Ext
n+1

R (C;A)

�! Ext
n+1

R (C; I) �! :::

By Proposition 4.8, we get

Ext
1

R(C;A) ' coker(HomR(C; I) �! HomR(C;K))

Also,

Ext
i

R(C;K) ' Ext
i+1

R (C;A); i � 1:
�

Theorem 4.10. ExtnR ' Ext
n

R as bifunctors R-mod�R-mod to AB; for each pos-
itive integer n:

Proof. For any R-module C; we have

Ext0R(C;A) ' HomR(C;A) ' Ext
0

R(C;A)

De�ne a projective presentation of C

0 �! S �! P �! C �! 0

We will prove the claim by induction. Suppose

Ext
i

R(S;A) ' Exti(S;A); for some i � 1
By Proposition 4.9, we get

Ext
i

R(S;A) ' Ext
i+1

R (C;A);
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Then we also have
ExtnR(S;A) ' Extn+1R (C;A)

and so we get Ext
n+1

R (C;A) ' Extn+1R (C;A): �

5. The group ER(C;A)

De�nition 5.1. Let C and A be R-modules. Denote by ER(C;A) the set of equiv-
alence classes of extensions (short exact sequences) of the form

0 �! A
{�! B

��! C �! 0

where two such extensions are called equivalent if there exists a homomorphism
(hence an isomorphism) � : B �! B

0
making the diagram

0 - A - B - C - 0

0 - A0

1A ?
- B0


?

- C 0

1C?
- 0

commutative.

We see that the direct sum extension

0 �! A
a!(a;0)�! A� C (a;c)!c�! C �! 0

is an element of the set. Fix a ring R: Given an element in ER(C;A) and a homo-
morphism � : C

0 �! C; de�ne the derived extension we get by taking the pullback
PB of (C;�; �) using Lemma 5.2, namely

A
{0- PB

�C0- C 0

A

1A ? {- B

�B ? �- C

�
?

Lemma 5.2. If � is surjective, so is �C0 : Also, ker�C0 ' ker�:

Proof. Take any c
0 2 C 0

: Take �(c
0
) = c; for some c 2 C: Since � is surjective,

9b 2 B j �(b) = c = �(c
0
) =) (c

0
; b) 2 PB

=) 9(c
0
; b) 2 PB j �C0 (c

0
; b) = c

0
;8c

0
2 C

0

(b; c
0
) 2 ker�C0 () �C0 (b; c

0
) = 0 () c

0
= 0 =) ((b; 0) 2 PB) 2 ker�C0

() �(b) = �(0) = 0 =) b 2 ker� = Im{
=) ker�C0 = (({(a); 0); a 2 A) = i({(a)); where i is the canonical injection.

�

De�ne this element in ER(C
0
; A) as the image of the map

�� : ER(C;A) �! ER(C
0
; A)

In detail,

��(0 �! A
{�! B

��! C �! 0) = 0 �! A
i�! PB

p�! C
0
�! 0

PB = f(b; c
0
) j �(b) = �(c

0
); b 2 B; c

0
2 C

0
g

i(a) = ({(a); 0); p(b; c
0
) = c

0
:
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�� is well-de�ned. Suppose

0 �! A
{
0

�! B
0 �

0

�! C �! 0 2
h
0 �! A

{�! B
��! C �! 0

i
() 9� : B

0
�! B j �� = �

0
^ �{

0
= {

Will show that ��(0 �! A
{
0

�! B
0 �

0

�! C �! 0) 2
h
0 �! A

i�! PB
p�! C

0 �! 0
i
:

De�ne

� : PB
0
�! PB as �(b; c

0
) = (�(b); c

0
)

since �(�(b)) = �
0
(b) = �(c

0
)

� makes the diagram

A
i0- PB0

p0- C 0

A

1A ? i- PB

�
? p- C 0

1C?

commutative:

�i
0
(a) = �({

0
(a); 0) = (�{

0
(a); 0) = ({(a); 0) = i(a)

p�(b; c
0
) = p(�(b); c

0
) = c

0
= p

0
(b; c

0
)

Proposition 5.3. �� makes ER(�; A) into a contravariant functor from R-mod
to Sets:

Proof. Take � = 1C : C �! C. It induces in ER(C;A)

0 �! A
i�! PB

p�! C �! 0

i(a) = ({(a); 0); p(b; �(b)) = �(b)

which is equivalent to our original extension through a homomorphism

� : PB �! B; �(b; �(b)) = b

=) �i(a) = �({(a); 0) = {(a)
��(b; �(b) = �(b) = p(b)

So we get
��(1C) = 1ER(C;A)

Now, given two homomorphisms

�
0
: C

00
�! C

0
; � : C

0
�! C

The pullback of (�; �) gives an element in E(C
0
; A); where the middle module

B
0
= f(b; c

0
) j �(b) = �(c

0
)g

�C0 : B
0
�! C

0
as �C0 (b; c

0
) = c

0

Taking the pullback of this (�C0 ; �
0
) gives an extension in E(C

00
; A); where the

middle module

B
00

= f(b
0
; c

00
) j �C0 (b; c

0
) = �

0
(c

00
)g

�C00 : B
00
�! C

00
as �C00 (b

0
; c

00
) = c

00
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We have the commutative diagram:

B00
�C00- C 00

B0

�B0
? �C0- C 0

�0
?

B

�B ? �- C

�
?

Since

(��
0
)�C00 = �(�

0
�C00 ) = �(�C0�B0 ) = (��C0 )�B0 = (��B)�B0 = �(�B�B0 )

(B
00
; �B�B0 ; �C00 ) may be the pullback of (�; ��

0
): For any module R-module Z;

take any f : Z �! B; g : Z �! C
00
; such that

�f = ��
0
g () �f = �(�

0
g); �

0
g : Z �! C

0

Since B
0
is the pullback of (�; �); there exists

! : Z �! B
0
j �C0 = �

0
g and �B = f:

Since B
00
is the pullback of (�C0 ; �

0
); there exists

!u : Z �! B
00
j �B0u =  and �C00u = g

Then we have that there exists

!u : Z �! B
00
j �B(�B0u) = �B = f and �C00u = g;

which is exactly the universal property of the pullback of (�; ��
0
): This gives, using

our notation, that we may write

(��
0
)� : E(C;A) �! E(C

00
; A); (��

0
)� = (�

0
)���

which makes ER(�; A) into a contravariant functor. �

Given an element in ER(C;A) and a homomorphism � : A �! A
0
; de�ne the

derived extension we get by taking the pushout of (A; �;{) using Lemma 5.4,
namely:

A
{- B

�- C

A0

�
? {0- PO

h
? �0- C

1C?

Lemma 5.4. If { is injective, so is {0
: Also, coker({0

) ' coker({):

Proof.

a
0

2 ker{
0
() (a

0
; 0) = (�(a);�{(a)); a 2 A:

=) a = 0 =) �(0) = 0 = a
0
:

De�ne the map �
0
: PO �! C as �

0
((a

0
; b) + L) = �(b): It is correct:

(a
0
; b) � (c

0
; d) () 9a 2 A j (c

0
; d) = (a

0
; b) + (�(a);�{(a)) = (a

0
+ �(a); b� {(a))

�
0
((c

0
; d) + L) = �(d) = �(b� {(a)) = �(b)� �{(a) = �(b)
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It is an homomorphism with kernel {0
:

�
0
((a

0
; b) + (c

0
; d) + L) = �

0
((a

0
+ c

0
; b+ d) + L) = �(b+ d) = �(b) + �(d)

(a
0
; b) + L 2 ker�

0
() �(b) = 0 () b = {(a) =) (a

0
;{(a)) + L 2 ker�

0

()
�
(a

0
+ �(a); 0) + L

�
= i(a

0
+ �(a) 2 ker�

0

�

De�ne this element in ER(C;A
0
) as the image of the map �� : ER(C;A) �!

ER(C;A
0
): In detail, we have:

��(0 �! A
{�! B

��! C �! 0) = 0 �! A
0 i�! PO

p�! C �! 0

PO = A
0
�B= h(�(a);�{(a)) : a 2 Ai = A

0
�B=L

i(a
0
) = (a

0
; 0) + L; p((a

0
; b) + L) = �(b)

�� is well-de�ned.

Proposition 5.5. The map �� makes ER(C;�) into a covariant functor from
R-mod to Sets:

Proof. Take � = 1A : A �! A. Then

��(0 �! A
{�! B

��! C �! 0) = (0 �! A
i�! PO

p�! C �! 0)

PO = A�B= h(a;�{(a)) : a 2 Ai

De�ne the homomorphism  : PO �! B as

(a; b) = {(a) + b
(a;�{(a)) = {(a)� {(a) = 0;8a 2 A

It makes the diagram

A
i- PO

p- C

A

1A ? {- B


? �- C

1C?

commutative:

(i(a)) = (a; 0) = {(a) + 0 = {(a)
�(((a; b) + L)) = �({(a) + b) = �(b)

So (1A)� = 1ER(C;A). Given any two homomorphisms � : A �! A
0
; �

0
: A

0 �! A
00
:

Taking pushout (B
0
; iA0 ; iB) of (A;{; �), gives an element in ER(C;A

0
) where the

middle module is

B
0
= A

0
�B= h(�(a);�{(a)) : a 2 Ai = A

0
�B=L

iA0 (a
0
) = (a

0
; 0) + L

iB(b) = (0; b) + L
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Taking the pushout (B
00
; iA00 ; iY ) of (A

0
; �

0
; iA0 ) gives an element in ER(C;A

00
);

where the middle module is

B
00

= A
00
�B

0
=
D�
�
0
(a

0
);�i

0

A(a
0
)
�
: a

0
2 A

0
E
= A

00
�B

0
=L

0

iA00 (a
00
) = (a

00
; 0; 0) + L

iB0 ((0; b) + L) = (0; 0; b) + L
0

and we get the commutative diagram

A
{- B

�- C

A0

�
? i0A- B0

iB?

A00

�0
? i00A- B00

i0Y?

So (B
00
; iB0 iB ; iA00 ) is a candidate for the pushout of ({; �

0
�):We only have to show

the universal property, i.e. that for any R-module Z; any f : B �! Z; g : A
00 �! Z

such that

f{ = g(�
0
�) =) 9!u : B

00
�! Z j uiB0 iB = f and uiA00 = g

Since B
0
is the pushout of({; �);and

f{ = (g�
0
)� =) 9! : B

0
�! Z j f = iB and g�

0
= iA0

For this ; and g; since B
00
is the pushout of (iA0 ; �

0
)

9!u : B
00
�! Z j uiA00 = g and  = uiB0

Then,

iB = f = (uiB0 )iB = u(iB0 iB) and uiA00 = g;

as desired. We get

(�
0
)��� = (�

0
�)� : ER(C;A) �! ER(C;A

00
)

So ER(C;�) is a covariant functor. �

Proposition 5.6. ER(C;A) is a bifunctor from R-mod�R-mod to Sets:

Proof. We must show that this diagram is commutative:

E(C;A)
E(C; �)- E(C;A0)

E(C 0; A)

E(�;A)

? E(C 0; �)- E(C 0; A0)

E(�;A0)

?
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Pick any element in ER(C;A): Compute �rst E(�;A
0
) � E(C; �): We get

A
{- B

�- C

A0

�
? iA0- PO

iB ? ��B- C 0

1C?

A0

1A0
6

iA0- PB

�PO
6

�C0- C 0

�
6

where iA0 and � are the canonical injections and projections. Now,

PO = A
0
�B= h((�(a);�{(a)) : a 2 Ai

PB =
n�
(a

0
; b); c

0
�
2 PO � C

0
j �(c

0
) = �(b);8b 2 B; c

0
2 C

0
o

The other way, compute E(C
0
; �) � E(�;A): We get

A
{- B

�- C

A

1A
6

i{- Pb

�B
6

�C0- C 0

�
6

A0

�
? iA0- Po

iPB ? �C0- C 0

1C0
?

where i and � represent the canonical injections and projections. Now

Pb = f(b; c) 2 B � C j �(b) = �(c
0
)g

Po = A
0
� Pb= h(�(a);{(a); 0) : a 2 Ai

So Po = PB; they both contain the same elements. Choose the isomorphism 1PB :
Po �! PB in

A0
iA0- Po

�C0- C 0

A0

1A0
? iA0- PB

�
? �C0- C 0

1C0
?

Since the diagram is commutative, we have that the extensions are equivalent, and
ER(�;�) is a bifunctor from R-mod�R-mod to Sets: �

De�nition 5.7. The diagonal homomorphism for a module C is 4 = 4C : C �!
C � C; 4(c) = (c; c):

De�nition 5.8. The codiagonal homomorphism for a module A is O = OA : A �
A �! A; O(a1; a2) = a1 + a2:

Then, for any two f; g : C �! A, we may write f + g = OA(f � g)4C ; where
�� �(a; b) = (�(a); �(b)) (when �(a) and �(b) are de�ned)

De�nition 5.9. Given two extensions
n
Ei : Ai

{i�! Bi
�i�! Ci

o
i=1;2

we de�ne their

direct sum to be the extension

E1 � E2 : 0 �! A1 �A2
{1�{2�! B1 �B2

�1��2�! C1 � C2 �! 0
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This is indeed a short exact sequence.

�1 � �2({1 � {2(a1; a2) = �1 � �2({1(a1);{2(a2)) = (�1({1(a1)); �2({2(a2)) = (0; 0)
=) Im{1 � {2 � ker�1 � �2

The other way, take

(b1; b2) j (�1 � �2)(b1; b2) = (0; 0) =) �1(b1) = 0 ^ �2(b2) = 0
() b1 2 Im({1) ^ b2 2 Im({2) =) (b1; b2) 2 Im({1 � {2):

De�nition 5.10. De�ne a binary operation on ER(C;A); called the Baer sum of
two extensions E1 and E2 as E1 + E2 = OA(E1 � E2)4C = O�(4�(E1 � E2)):

Lemma 5.11. There exists a well-de�ned mapping 'C;A : ER(C;A) �! Ext1(C;A):

Proof. Let [�] := class of equivalent extensions of (0 �! A
i�! B

p�! C �! 0):
Choose a projective resolution of C :

:::
d2�! P2

d1�! P1
d0�! P0 �! C �! 0:

Lemma 1.22 gives the existence of a lifting f0 : P0 �! B and f1 : P1 �! A that
satis�es

pf0 = �; f0d0 = if1; f1d1 = 0 =) f1 2 Ext1(C;A)
De�ne

'C;A : ER(C;A) �! Ext1(C;A)

'C;A([�]) = f1

Since any two lifting homomorphisms are chain homologous, they induce equal
cohomology homomorphisms, so 'C;A does not depend on the choice of lifting f�.

' is a well-de�ned map. Let two elements
n
Ei : A

{i�! Bi
�i�! C

o
i=1;2

of ER(C;A)

be equivalent by a homomorphism � : B1 �! B2: Let E1 induce f1 2 Ext1R(C;A):

A
{2- B2

�2- C

A

1A
6

{1- B1

� 6

�1- C

1C
6

:::
d2- P2

d1- P1

f1
6

d0- P0

f0
6

"- C

1C
6

The same f1 is also induced by E2; since we have �f0 : P0 �! B2; and all squares
are commutative. By Lemma 3.3, 'C;A does not depend on the choice of projective
resolution of C. �

Lemma 5.12. There exists a well-de�ned mapping  C;A : Ext
1
R(C;A) �! ER(C;A).

Proof. Fix a projective resolution of C :

:::
d2�! P2

d1�! P1
d0�! P0 �! C �! 0:

De�ne  (f) = [0 �! A �! pushout(f; d0) �! C] : We must �rst show that this
is indeed a short exact sequence, i.e. that C is the cokernel follows from the
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isomorphism with coker(d0) (by Lemma 5.4).  C;A is well-de�ned. Let f; f
0
be

two cohomologous cochains, so there exists a g : P0 �! A such that

f
0
� f = gd0

In the diagram

A
i- pushout(f; d0)

p- C

A

1A ? i0- pushout(f 0; d0)
p0- C

1C?

we may de�ne map  : pushout(f; d0) �! pushout(f
0
; d0) as

(a; p0) = (a� gp0; p0); p0 2 P0
(f(p1);�d0(p1)) = (f(p1)� g(�d0(p1));�d0(p1)) = (f(p1) + gd0(p1);�d0(p1))

= (f
0
(p1);�d0(p1)); p1 2 P1

It is a homomorphism A� P0 �! A� P0 :
((a; p0) + (b; p)) = (a+ b; p0 + p) = ((a+ b)� g(p0 + p); p0 + p)

= (a� g(p0); p0) + (b� g(p); p) = (a; p0) + (b; p)

 gives that the two extensions are equivalent, as (p1 2 P1):

(i(a)) = ((a; 0) + hf(p1);�d0(p1)i) = (a� g(0); 0) +
D�
f
0
(p1);�d0(p1)

�
: p1 2 P1

E
= (a; 0) +

D�
f
0
(p1);�d0(p1)

�
: p1 2 P1

E
= i

0
(a)

p
0
((a; p0) + h(f(p1);�d0(p1)) : p1 2 P1i) = p

0
((a� g(p0); p0)) + h(f(p1);�d0(p1)) : p1 2 P1i)

= p0 = p((a; p0) + h(f(p1);�d0(p1)) : p1 2 P1i
�

Corollary 5.13. 'C;A and  C;A as de�ned in Lemmas 5.11 and 5.12, respectively,
are inverse mappings.

Proof. Choose a lifting f� and get the class [0 �! A �! pushout(f1; d0) �! C] :
Then the result follows easily, since we can choose any projective resolution of C; and
we can take f1 (as we can freely chose any lifting). And we get 'C;A� C;A(f1) = f1;
i.e. 'C;A � C;A = 1Ext1(C;A): Now we will show that  C;A �'C;A = 1ER(C;A): Start
with E : 0 �! A

{�! B
��! C �! 0: Fix a lifting f�: Take pushout of (f1; d0):Will

show that the extension we get is equivalent to E, i.e. there exists an isomorphism
h : PO �! B that makes the diagram commutative:

:::
d2- P2

d1- P1
"- P0

A

f1 ? {- B

f0 ? �- C

d�
1-

A

1A ? iA- PO
"- C

1C ?

De�ne
h(a; p0) = {(a) + f0(p0) 2 B
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It is well-de�ned homomorphism. When (a; p0) � (b; q0); there exists p1 2 P1 such
that

a� b = f1(p1) and p0 � q0 = �d0(p1)
So

h((a; p0)� (b; q0)) = h(a� b; p0 � q0) = {(a� b) + f0(p0 � q0)
= {f1(p1) + f0(�d0(p1)) = {f1(p1)� f0d0(p1) = 0
=) h(a; p0) = h(b; q0)

So there exists a homomorphism h : PO �! B. Need only to check commutativity:

hiA(a) = h(a; 0) = {(a) + f0(0) = {(a)
�h(a; p0) = �({(a) + f0(p0)) = �f0(p0) = "(p0)

so the pushout extension is equivalent the original one. This gives

 C;A � 'C;A = 1ER(C;A)
�

Corollary 5.14. 'C;A (and  C;A) is a natural transformation of bifunctors.

Proof. We must show that for any  : K �! C; � : A �! B; the following diagram
is commutative

Ext1(C;A)
'(C;A)- ER(C;A)

Ext1(K;B)

Ext1(; �) ? '(K;B)- ER(K;B)

ER(; �)?

Fix a projective resolution of C; (P�; d�)
"�! C: Start with a 1-cocycle f1 of

Ext1(C;A); so f1d1 = 0: Take pushout POC of (f1; d0): Then you get the commu-
tative diagram

:::
d1- P1

d0- P0
"- C

A

f1 ? iA- POC

iP0 ? "�P0- C

1C?

POC = f(a; p0); a 2 A; p0 2 P0 j (f1(p1);�d0(p1)) = (0; 0)g
Take pullback PBK of ("�P0 ; ) :

A
iA- PBK

�K- K

A

1A ? iA- POC

�POC ? "�P0- C


?

PBK = f(k; a; p0) j (k) = "�P0(a; p0) = "(p0); (a; p0) 2 POCg
Now take pushout POB of (�; iA):

POB = f(b; k; a; p0) j (k; a; p0) 2 PBK ; (�(a); 0; 0; 0) = (0; 0; a; 0);8a 2 Ag
Then you get the commutative diagram

A
iA- PBK

�K- K

B

�
? iB- POB

iPBK ? �K- K

1K?



38 CATALINA NICOLE VINTILESCU NERMO

We have found an element of ER(K;B); and stop here. Now take f1 2 Ext1(C;A);
and follow the diagram the other way. Fix the projective resolution of (Q�; ��)

��!
K: By Lemma 1.22, there exists a lifting t� : Q� �! P�; such that

� = "t0; t� = dt; �f1t 2 Ext1(K;B)

since

�1(�f1t(p1)) = �f1t(p1) = �(0) = 0

Take now pushout PO of (�f1t1; �0);

:::
�1- Q1

�0- Q0
�- K

B

�f1t ? iB- PO

iQ0 ? "�Q- K

1K?

PO = f(b; q0);8b 2 B; q0 2 Q0 j (�f1t(q1); 0) = (0; �0(q1));8q1 2 Q1g

De�ne h : PO �! POB by

h(b; q0) = b+ �(q0) + t0(q0) = (b; �(q0); 0; t0(q0))

It is a well-de�ned homomorphism. Suppose two elements (b; q0) � (b
0
; q

0

0) of PO
are equivalent, i.e. their di¤erence is equal to (�f1t(q1);��0(q1)); for some q1 2 Q1:
Then

h(�f1t(q1);��0(q1)) = �f1t(q1) + �(��0(q1)) + t0(��0(q1)) =
= �f1t(q1)� t0(�0(q1)) = �f1t(q1)� d0t1(q1) = �f1(p1)� d0(p1) =
= (�f1(p1); 0; 0;�d0(p1)) = (0; 0; f1(p1);�d0(p1)) = (0; 0; 0; 0);

h((b; q0)� (b
0
; q

0

0)) = 0 =) h((b; q0)) = h((b
0
; q

0

0)):

This is a homomorphism that makes the diagram commutative:

B
iBPO- PO

��Q- K

B

1B ? iB- POB

h
? �K- K

1K?

hiBP0
(b) = h(b; 0) = b = iB(b)

�Kh(b; q0) = �K(b+ �(q0) + t0(q0)) = �K(�(q0); 0; t0(q0)) = �(q0) = �(�Q(b; q0))

So the two extensions in out previous diagram are equivalent, hence ' is a functo-
rial isomorphism of bifunctors Ext1R(C;A) and ER(C;A); from R-mod�R-mod to
Sets�: �

Lemma 5.15. 'C;A : ER(C;A) �! Ext1R(C;A) is group homomorphism.
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Proof. Take any two elements of ER(C;A) :
n
Ei : Ai

{i�! Bi
�i�! Ci

o
i=1;2

. Let f�

be a lifting for E1; and g� a lifting for E2. Take it step by step.

:::
d2 - P2

d1 - P1

P1
�

1P1

P0

d0
?

A�A
{1�{2-�
f1�

g1

PB
�C -

�
f0�

g0

C

�
?

A�A

1A
? {1�{2- B1�B2

�B1B2

? �1��2- C�C

4C
?

A

OA
? iA - PO

�C - C

By Proposition 1.36,

PB = f(b1; b2; c) j (c; c) = (�(b1); �(b2); b1 2 B1; b2 2 B2g = f(b1; b2; �(b1)) j �(b1) = �(b2)g

By Proposition 1.40,

PO = f(a; b1; b2; �(b1));8a 2 A;8p0 2 P0; (b1; b2; �(b1)) 2 PB j
(a1 + a2;�{1(a1);�{2(a2); 0) = 0;8a1; a2 2 Ag

First,
Im f0 � g0 � PB since �(f0(p0)) = �(g0(p0)) = "

Further,

�C(f0 � g0(p0)) = �C(f0(p0); g0(p0); "(p0)) = "(p0):

{1 � {2(f1 � g1(p1)) = ({1(f1(p1));{2(g1(p1))) = (f0d0(p1); g0d0(p1)) = f0 � g0(d0(p1))
(f1 � g1)d1(p2) = (f1d1(p2); g1d1(p2)) = (0; 0)

So f� � g� is a lifting. Claim that

(iPB(f0 � g0);OA(f1 � g1))

is a lifting for E1 + E2 :

�C(iPB(f0 � g0(p0))) = �C(0; f0(p0); g0(p0); "(p0)) = "(p0)

OA(f1 � g1)(p1) = OA(f1(p1); g1(p1)) = f1(p1) + g1(p1) = (f1 + g1)(p1)

= f1(p1) + g1(p1)

=) '(E1 + E2) = '(E1) + '(E2):

�

Theorem 5.16. ER(C;A) is an abelian group with operation given by the Baer
sum. Also, ER(C;A) ' Ext1R(C;A) as bifunctors

R-mod�R-mod �! AB
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Look at the class of the split exact sequence. Since we are free to choose lifting
homomorphisms, we choose

:::
d1- P1

d0- P0
"- C - 0

0 - A

f1 ? i- A�C

f0 ? �- C

1C ?
- 0

where f0(p0) = (0; "(p0)) and f1 = 0: We may choose these since �f0(p0) = "(p0)
and f0(d0(p1)) = 0 = i(0): So '([0 �! A �! A � C �! C �! 0]) = 0; thus the
zero element in ER(C;A) is the class of the split exact sequence.
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Part 2. Extensions of groups

6. Cohomology of groups

De�nition 6.1. Given a left G-module A; de�ne for n � 0; the n-th cohomology
group

Hn(G;A) := ExtnZG(Ztriv; A)

where Z is the trivial left ZG-module.

We need a projective resolution of Z over ZG: Take F0 to be the free ZG-
module on one generator, the symbol []: De�ne " : F0 �! Z as "([]) = 1, so
"(
P
n(g) hgi []) =

P
n(g) hgi "([]) =

P
n(g) hgi � 1 =

P
n(g). De�ne F1 to be the

free ZG-module on [g1]; for all g1 2 G: De�ne d1([g1]) = hg1i [] � []: Build F2 to
be the free ZG-module on all [g1 j g2], for all g1; g2 2 G: De�ne d2([g1 j g2]) =
hg1i [g2]� [g1g2] + [g1]:
Build F3 to be the free ZG-module on [g1 j g2 j g3]; for all g1; g2; g3 2 G: De�ne

d3([g1 j g2 j g3]) = hg1i [g2 j g3]� [g1g2 j g3] + [g1 j g2g3]� [g1 j g2]:
Continue in this manner. For any n > 0; Fn is the free ZG-module on [g1 j g2 j

::: j gn]; for all g1; g2; :::; gn 2 G: The di¤erential dn : Fn �! Fn�1 is de�ned as

dn([g1 j g2 j ::: j gn]) = hg1i [g2 j :: j gn]+
n�1X
i=1

(�1)i[g1 j :: j gigi+1 j :: j gn]+(�1)n[g1 j :: j gn�1]

De�ne also the ZG-module homomorphisms sn : Fn �! Fn+1 sn(hgi [g1 j g2 j
:: j gn]) = [g j g1 j :: j gn]; whenever n � 0: De�ne s�1(1) = []: De�ne this long
sequence of free ZG-modules as BG(Z); the bar resolution of the trivial Z _G-module
Z:

Proposition 6.2. Fix the ring ZG: BG(Z) is a projective resolution over Z.

Proof. We have

:::
d3-�
s2

F2
d2-�
s1

F1
d1-�
s0

F0
"-�
s�1

Ztriv - 0

It follows:

"s�1(1) = "([]) = 1

(s�1"+ d1s0)(hgi []) = s�1"(hgi []) + d1s0(g[]) = s�1(g � 1) + d1([g])
= s�1(1) + hgi []� [] = [] + hgi []� [] = hgi []
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sn�1dn(hgi [g1 j g2 j :: j gn]

= sn�1(hgi (hg1i [g2 j :: j gn] +
n�1X
i=1

(�1)i[g1 j :: j gigi+1 j :: j gn] +

+(�1)n[g1 j :: j gn�1])

= [gg1 j g2 j :: j gn] +
n�1X
i=1

[g j g1 j :: j gigi+1 j :: j gn] +

+(�1)n[g j g1 j :: j gn�1]
dn+1sn(g[g1 j g2 j :: j gn]) = dn[g j g1 j :: j gn]

= hgi [g1 j :: j gn] +
nX
i=1

(�1)i[h1 j h2:: j hihi+1 j :: j hn] + (�1)n+1[g j g1 j :: j gn�1]

sn�1dn�1 + dnsn = 2 hgi [g1 j :: j gn]� [gg1 j g2 j ::: j gn] + (�1)n[g j g1 j :: j gn�1] +
(�1)n+1[g j g1 j :: j gn�1]

= [gg1 j g2 j :: j gn] + hgi [g1 j :: j gn]� [gg1 j g2 j ::: j gn] = hgi [g1 j :: j gn]
So we have

"s�1 = 1Z

s�1"+ d1s0 = 1F0
sn�1dn + dn+1sn = 1Fn ;8n � 1:

So if such a sequence exists, it splits as a sequence of abelian groups, hence is
is exact as a sequence of ZG-modules. Now we show that we can build such a
sequence. Given the homomorphisms sn; n � �1 as s�1(1) = [] and sn(hgi [g1 j
:: j gn]) = [g j g1 j :: j gn]: Let F0 be the free ZG-module on []: We can recursively
construct " and dn; n � 1; and the free modules Fn; n � 0; from the three equations
above. Fn+1, as a ZG-module, is equal to the submodule snFn; for n � 0:
Need "s�1(1) = 1 =) "s�1(1) = "([]) = 1 =) de�ne " ([]) = 1

Need d1s0(hgi []) = hgi []� s�1"(hgi []) = hgi []� s�1(1) = hgi []� [] =) d1([g]) = hgi []� []
Build F1; the free ZG-module on [g]; g 2 G:

dn+1sn(hgi [g1 j :: j gn]) = hgi [g1 j :: j gn]� sn�1dn(hgi [g1 j :: j gn]; n � 1
From this equation we can recursively build Fn and dn; n 2 Z>1; and so far we have
some long sequence of free modules over Z: It turns out to be a complex. We have:

"d1([g]) = "(hgi []� []) = g"([])� "([]) = "[]� "[] = 0
Use now induction on the claim Pn : dndn+1 = 0:

d1d2([g1 j g2]) = d1(hg1i [g2]� [g1g2] + [g1]) = hg1i d1([g2])� d1([g1g2]) + d1[g1] =
= hg1i (hg2i []� [])� (hg1gi2 []� []) + hg1i []� [] = 0

So P1 is correct. Suppose that for n > 3; Pn is correct.

dn(dn+1sn) = dn(1Fn � sn�1dn) = dn � (dnsn�1)dn = dn � (1Fn � sn�2dn�1)dn
= dn � dn + sn�2(dn�1dn) = 0

When we build Fn+1 as the free ZG-module on Im sn; we get that we build a chain
complex of free ZG-modules, i.e. a free chain complex of abelian groups with a
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contractive homotopy s : 1F� � 0F� : Since Hn(1F�) = Hn(0F�) = 0, we get a free
resolution of the trivial ZG-module Z: �

Take HomZG(�; A); for any ZG-module A:

0 �! HomZG(Z; A)
"��! HomZG(F0; A)

d�1�! HomZG(F1; A)
d�2�! :: �! HomZG(Fn; A)

d�n�! :::

So we have the codi¤erential �n�1 = d�n; n � 1: As a set, HomZG(Fn; A) is equal
to the set of functions f : G�G� :::�G| {z }

n

�! A, and adding the ZG-module

homomorphism structure gives

�nf(g1; g2; ::; gn; gn+1) = d�n+1f = fdn+1([g1 j g2 j :: j gn j gn+1])

= g1f(g2; g3; ::; gn+1) +
nX
i=1

(�1)if(g1; ::; gigi+1; ::; gn+1) +

(�1)n+1f(g1; g2; ::gn) = h(g1; g2; ::; gn+1)

Let�s take a closer look at the lowest cohomology groups. We know H0(G;A) '
HomZG(Z; A); so it is given by ZG-module homomorphisms f(1) = a for those
a 2 A such that f(1) = f(g � 1) = gf(1) = ga = a; that G acts trivially on. Denote
this group as AG: 1-cocycles are given by those functions f : G � G �! A such
that

�1f(g1; g2) = 0 = f(d2[g1; g2]) = f(hg1i [g2]� [g1; g2] + [g1])
= g1f(g2)� f(g1g2) + f(g1) =) f(g1g2) = g1f(g2) + f(g1)

We call these homomorphisms for crossed homomorphisms. They would necessarily
satisfy f(1) = 0: 1-coboundaries are given by

�0f(g) = fd1([g]) = f(hgi []� []) = gf([])� f [] = ga� a = ha(g); for any a 2 A:
We call these homomorphisms for principal homomorphisms. They would neces-
sarily satisfy h(1) = 0: So we have that H1(G;A) is the factor group of the group
of crossed homomorphisms modulo the subgroup of principal homomorphisms: 2-
cocycles are given by those f : G�G �! A such that

�2f(g1; g2; g3) = 0 = f(d3[g1 j g2 j g3])
= f(hg1i [g2 j g3]� [g1g2 j g3] + [g1 j g2g3]� [g1 j g2])
= g1f(g2; g3)� f(g1g2; g3) + f(g1; g2g3)� f(g1; g2) = h(g1; g2; g3)

=) f(g1; g2) = g1f(g2; g3)� f(g1g2; g3) + f(g1; g2g3)

2-coboundaries lie in the image of �1

�1f(g1; g2) = g1f(g2)� f(g1g2) + f(g1) = h(g1; g2)

Remark 6.3. Since ExtnZG is independent of the choice of projective resolution,
we may also work with the normalized bar resolution. Denote Fn the factor module
of the free module on [g1 j g2 j :: j gn], modulo the submodule generated by [g1 j
g2 j :: j gn]; if any of the fgigni=1 = 1: The homomorphisms "; d; s�1 still hold, need
only to check that dn[g1 j g2 j :: j gn] = 0 if any one of the gi; i = 1; ::; n; are equal
to 1: This is easily seen from the formula of dn : Fn �! Fn�1: The normalized
bar resolution BG(Z) obtained in the same manner as for BG(Z); with the extra
condition, is a free resolution of Z over ZG: Then any of the n-cochains will satisfy
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the normalisation condition, f(g1; g2; ::; gn) = 0 if any one of the gi; i = 1; ::; n; are
equal to 1:

Proposition 6.4. For any n 2 N; Hn(G;�) is a covariant functor from G-mod to
AB:

Proof. By Proposition 3.4, ExtnZG(Ztrivial;�) is a covariant functor. SinceHn(G;A) =
ExtnZG(Ztrivial; A), we have proved the claim. �

Proposition 6.5. For any n 2 N; Hn(�; A) is a contravariant functor from GR
to AB:

Proof. Suppose  2 HomGR(K;G): Let A be any ZG-module. A becomes a K-
module through its G-module structure: ka = (k)a. De�ne a projective resolution
of K as in the bar resolution for K; and denote its free modules by fKigNi=0:
By the universal property of free modules, there exists the family of ZK-module
homomorphisms f� : BK(Z) �! BG(Z) de�ned as

f0([]) = []; f1([k]) = [(k)]

fn([k1 j k2 j :: j kn]) = [(k1) j (k2) j ::: j (kn)]; n 2 Z�1:

They make each square of

:::
d3- K2

d2- K1
d1- K0

"- Z

:::
d3- F2

f2 ? d2- F1

f1 ? d1- F0

f0 ? "- Z

1Z ?

commutative:

f0("([])) = f0([]) = [] = "([])

fn�1dn([k1 j k2 j :: j kn]) = fn�1(hk1i [k2 j ::: j kn] +
n�1X
i=1

(�1)i[k1 j :: j kiki+1 j :: j kn]

+(�1)n[k1 j :: j kn�1])

= hk1i fn�1([k2 j ::: j kn]) +
n�1X
i=1

(�1)ifn�1([k1 j :: j kiki+1 j :: j kn])

+(�1)nfn�1([k1 j :: j kn�1])

= h(k1)i [(k2) j ::: j (kn)] +
n�1X
i=1

(�1)i[(k1) j :: j (kiki+1) j :: j (kn)]

+(�1)n[(k1) j :: j (kn�1)])
dnfn([k1 j ::: j kn])

= dn([(k1) j ::: j (kn)] = h(k1)i [(k2) j ::: j (kn)]

+
n�1X
i=1

(�1)i[(k1) j :: j (kiki+1) j :: j (kn)] + (�1)n[(k1) j :: j (kn�1)])

= fn�1dn([k1 j k2 j :: j kn]); n 2 Z�1:
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Hence the family ffngn=0 is a lifting: Take HomZG(�; A); and get the commutative
diagram of complexes of abelian groups

0 - HomZG(Z;A)
"�- HomZG(F0; A)

d1
�
- HomZG(F1; A)

d2
�
- :::

0 - HomZK(Z;A)

1HomZG(Z;A) ? "�- HomZK(K0; A)

f0
�
? d1

�
- HomZK(K1; A)

f1
�
? d2

�
- :::

(f�0 "
�(s)) ([]) = f�0 (s")([]) = (s"f0)([]) = s("([])) = s([])

("�s)([]) = (s")([]) = s("[]) = s([])

f�nd
�
n�1(t) = f�n(tdn�1) = (tdn�1)fn = t(dn�1fn) = t(fn�1dn�1) = (tfn�1)dn�:1

= d�n�1(f
�
n�1(t)) = d�n�1f

�
n�1(t);8t 2 HomZG(Fn�1; A); n 2 Z�1:

Hence f� : HomZG(F�; A) �! HomZK(K�; A) is a cochain transformation. Ap-
plying Hn on f� gives:

Hn(f�) = f� : H
n(G;A) �! Hn(K;A)

f�(l + d
�
n (HomZG(Fn�1; A)) = f�n(l) + d

�
n (HomZK(Kn�1; A))

When  = 1G we get fn([g1 j g2 j :: j gn]) = ([g1 j g2 j :: j gn]) and:
f�(l+d

�
n((HomZG(Fn�1; A)) (g1; g2; ::; gn) = f�n(l)([g1 j g2 j :: j gn])+d�n (HomZG(Fn�1; A))

= l(fn([g1 j g2 j :: j gn]) + d�n (HomZG(Fn�1; A)) = l([g1 j g2 j :: j gn]) + d�n (HomZG(Fn�1; A))

= 1Hn(G;A)

Look at the pair of morphisms � : S �! K;  : K �! G: A becomes an S-module
through its K-module structure: sa = �(s)a. De�ne a projective resolution of S as
in the bar resolution for S; and denote its free modules by fSigNi=0: By the universal
property of free modules, there exists the family of ZS-module homomorphisms
g� : BS(Z) �! BK(Z) de�ned as

g0([]) = []; g1([s]) = [�(s)]

gn([s1 j s2 j :: j sn]) = [�(s1) j �(s2) j ::: j �(sn)]; n 2 Z�1:
They make each square of

:::
d3- S2

d2- S1
d1- S0

"- Z

:::
d3- K2

g2 ? d2- K1

g1 ? d1- K0

g0 ? "- Z

1Z ?

commutative. Take HomZK(�; A); and get the commutative diagram of complexes
of abelian groups

0 - HomZK(Z;A)
"�- HomZK(K0; A)

d1
�
- HomZK(K1; A)

d2
�
- :::

0 - HomZS(Z;A)

1HomZG(Z;A) ? "�- HomZS(S0; A)

g0
�
? d1

�
- HomZS(S1; A)

g1
�
? d2

�
- :::

Take the covariant functor Hn; and get the group homomorphism

Hn(g�) = g� : H
n(K;A) �! Hn(S;A)

g�(u+ d
�
n (HomZK(Kn�1; A)) = g�n(u) + d

�
n (HomZS(Sn�1; A))
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Then we have the composition homomorphism

g�f� : Hn(G;A) �! Hn(S;A)

(g�f�)(l + d
�
n (HomZG(Fn�1; A)) [g1; g2; ::; gn] = g�(l(fn([g1 j g2 j :: j gn]) + d�n (HomZK(Kn�1; A))

g�(l([(g1) j :: j (gn)]) + d�n (HomZK(Kn�1; A)) = l(gn([(g1) j :: j (gn)]) + d�n (HomZS(Sn�1; A))

= l([�((g1)) j :: j �((gn))]) + d�n (HomZS(Sn�1; A))

= l([(�)(g1) j :: j (�)(gn)]) + d�n (HomZS(Sn�1; A))

We also have the ZG-module homomorphisms gnfn = kn de�ned as

k0([]) = []

kn([s1 j s2 j :: j sn]) = [(�)(s1) j (�)(s2) j :: j (�)(sn)]; n 2 Z�1:
we get the commutative diagram

:::
d3- S2

d2- S1
d1- S0

"- Z

:::
d3- F2

k2 ? d2- F1

k1 ? d1- F0

k0 ? "- Z

1Z ?

Applying HomZG(�; A); we get the commutative diagram of cochain complexes

0 - HomZG(Z;A)
"�- HomZG(F0; A)

d1
�
- HomZG(F1; A)

d2
�
- :::

0 - HomZS(Z;A)

1HomZG(Z;A) ? "�- HomZS(S0; A)

k0
�
? d1

�
- HomZS(S1; A)

k1
�
? d2

�
- :::

Applying Hn on the cochain transformation k�, we get

Hn(k�) = k� : H
n(G;A) �! Hn(S;A)

k�(l + d
�
n(HomZG(Fn�1; A)) = k�n(l) + d

�
n(HomZS(Sn�1; A))

= l(kn([g1 j : j gn])) + d�n(HomZS(Sn�1; A))

= l([(�)(s1) j (�)(s2) j :: j (�)(sn)] + d�n(HomZS(Sn�1; A))

= (g�f�)(l + d
�
n (HomZG(Fn�1; A)) ([g1; g2; ::; gn])

So Hn(�; A) is a contravariant functor. �
De�nition 6.6. De�ne the pairs (G;A) where G is any group and A is any G-
module. For any ' 2 HomGR(K;G);  2 HomAB(A;B), de�ne a morphism
('; ) : (G;A) �! (K;B) as  ('(k)a) = k (a): We have described a category
which we will denote PAIRS:

Proposition 6.7. Hn(�;�) is a bifunctor from PAIRS to AB:

Remark 6.8. Actually, Hn is not a bifunctor in a proper sense, since the variables
G and A are not independent.

Proof. For any G-module homomorphism � : A �! A
0
, and group homomorphism

 : G
0 �! G; the diagram

Hn(G;A)
��- Hn(G;A0)

Hn(G0; A)

�
? ��- Hn(G0; A0)

�
?
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is commutative. Start with the bar resolution forG:Wemay takeHomZG(BG(Z); A):
� induces the commutative diagram

0 - HomZG(Z;A)
"�- HomZG(F0; A)

d�1- HomZG(F1; A)
d�2- :::

0 - HomZG(Z;A
0)

�� ? "�- HomZG(F0; A
0)

�� ? d�1- HomZG(F1; A
0)

�� ? d�2- :::

��"
�(s) = ��(s") = �(s")

"���(s) = "�(�s) = (�s)"

��d
�
n(t) = ��(tdn) = �(tdn) = d�n(�t) = d�n(��t); n 2 Z�1:

So �� is a cochain transformation between our two cochain complexesHomZG(BG(Z); A)
and HomZG(BG(Z); A

0
): Apply Hn(��) = �� and get the group homomorphism

�� : Hn(G;A) �! Hn(G;A
0
)

��(l + d
�
n(HomZG(Fn�1; A))) = ��l + d

�
n(HomZG(Fn�1; A

0
))

De�ne a projective resolution of G
0
as in the bar resolution for G

0
; and denote its

free modules by fG0

igNi=0: By the universal property of free modules, there exists
the family of ZG0

-module homomorphisms f� : BG0 (Z) �! BG(Z) de�ned as

f0([]) = []; f1([g
0
]) = [(g

0
)]

fn([g
0

1 j g
0

2 j :: j g
0

n]) = [(g
0

1) j (g
0

2) j ::: j (g
0

n)]; n 2 Z�1:

They make each square of

:::
d3- G02

d2- G01
d1- G00

"- Z

:::
d3- F2

f2 ? d2- F1

f1 ? d1- F0

f0 ? "- Z

1Z ?

commutative. Applying HomZG(BG(Z); A) induces the commutative diagram

0 - HomZG(Z;A
0)

"�- HomZG(F0; A
0)

d1
�
- HomZG(F1; A

0)
d2
�
- :::

0 - HomZG0(Z;A0)

1HomZG(Z;A0) ? "�- HomZG0(G00; A
0)

f0
�
? d1

�
- HomZG0(G01; A

0)

f1
�
? d2

�
- :::

and the cochain transformations ff�ngn=0: Take Hn(f�) = f� as

f� : Hn(G;A
0
) �! Hn(G

0
; A

0
)

f�(s+ d
�
n(HomZG(Fn�1; A

0
)) = f�n(s) + d

�
n(HomZG0 (G

0

n�1; A
0
))

The composition yields

f��� : Hn(G;A) �! Hn(G
0
; A

0
)

f���(l + d
�
n(HomZG(Fn�1; A))) = f�(��l + dn(HomZG(Fn�1; A

0
)))

= f�(�l + dn(HomZG(Fn�1; A
0
))) = (�l)fn + d

�
n(HomZG0 (G

0

n�1; A
0
))
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Following the anti- clockwise direction in our diagram, we get

f� : Hn(G;A) �! Hn(G
0
; A)

f�(l + d
�
n(HomZG(Fn�1; A)) = f�n(l) + d

�
n(HomZG0 (G

0

n�1; A))

�� : Hn(G;A
0
) �! Hn(G

0
; A

0
)

��(s+ d
�
n(HomZG(Fn�1; A))) = ��s+ d

�
n(HomZG(G

0

n�1; A
0
))

Their composition gives

��f�(l + d
�
n(HomZG(Fn�1; A)) = ��(f

�
n(l) + d

�
n(HomZG0 (G

0

n�1; A)))

= ��(f
�
n(l)) + d

�
n(HomZG0 (G

0

n�1; A
0
)))

= ��(lfn) + d
�
n(HomZG0 (G

0

n�1; A
0
)))

= �(lfn) + d
�
n(HomZG0 (G

0

n�1; A
0
)))

Hence Hn(G;A) is a bifunctor: ��f� = f��� : H
n(G;A) �! Hn(G

0
; A

0
) �

7. Extensions with abelian kernel

7.1. Description using cocycles. Look at a short exact sequence

" : 0 �! A
{�! E

��! G �! 0

where A is abelian. We will write + for the binary operation on A and E (E
is not necessarily abelian), and multiplicatively for a group G: E acts on itself by
conjugation. Since A ' {A; and E={A ' G; where {A = ker�; {A is a normal
subgroup of E; and A is isomorphic to a normal subgroup of E (we will write a
for {a when it is clear from the context what we mean). Therefore, E acts on A
by conjugation: there exists a group homomorphism '

0
: E �! Aut(A) given by

'
0
(e)(a) = e+{a�e: Since {(A) � ker'0

; there exists ' : E={A ' G �! Aut(A):
So A is a G-module. . The action de�ned on a set of representatives hgi of fggg2G
in E; such that �(hgi) = g; is

'(g)(a) = hgi+ a� hgi () '(g)(a) + hgi = hgi+ a

De�nition 7.1. Let G be a group and A be a G-module, with the �xed action ' of
G on A. Denote by E(G;A') the set of equivalence classes of short exact sequences
of groups (extensions)

0 �! A
{�! E

��! G �! 1;

such that

' (g) (a) = e+ a� e j e 2 ��1 (g) ; g 2 G; a 2 A;
where two extensions are called equivalent if there exists a group homomorphism
h : E1 �! E2 (hence isomorphism), such that the diagram

A - E1 - G

A

1A
?

- E2

h
?

- G

1G
?

commutes.
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Let h i : G �! E be a function (not a homomorphism) such that � (hgi) = g:
We choose h1i = 0: Any e 2 E belongs to the right A-coset A + h�(e)i, and can
therefore be written as e = a+hgi ; a 2 A; g = �(e) 2 G: Let�s look at the operation
on E :

(a+ hgi) + (b+ hhi = a+ (hgi+ b) + hhi = a+ gb+ hgi+ hhi
Now,

�(hgi+ hhi � hghi) = �(hgi)�(hhi)�(hghi)�1 = gh(gh)�1 = ghh�1g = 1

hgi+ hhi � hghi 2 ker� = Im{
f(g; h) = hgi+ hhi � hghi 2 Im{
hgi+ hhi = f(g; h) + hghi

for some function f : G�G �! A: It follows

f(1; g) + hgi = h1i+ hgi =) f(1; g) = 0

f(g; 1) + hgi = hgi+ h1i =) f(g; 1) = 0

So:
(a+ hgi) + (b+ hhi) = a+ gb+ f(g; h) + hghi

For simplicity, de�ne (a; g) := a+ hgi : Then
(a; g) + (b; h) = (a+ gb+ f(g; h); gh)

We see that the right hand side gives that E is some �twisted�semi- direct product
of A and G: If f(g; h) = 0;8g; h 2 G; then E = Ao' G: We should have a group
structure in E :

� There exists a unique zero element (0; 1)
(b; h) + (a; g) = (a; g)

= (b+ ha+ f(h; g); hg)

hg = g =) h = 1

b+ ha+ f(h; g) = a =) b+ 1 � a+ f(1; g) = a

=) b+ a+ 0 = a =) b+ a = a () b = 0

� The right inverse element:
(a; g) + (b; h) = (0; 1)

= (a+ gb+ f(g; h); gh)

gh = 1 =) h = g�1

a+ gb+ f(g; g�1) = 0 =) gb = �f(g; g�1)� a =) b = �g�1f(g; g�1)� g�1a
The left inverse element:

(b; h) + (a; g) = (�f(1; g); 1)
= (b+ ha+ f(h; g); hg)

hg = 1 =) h = g�1

b+ g�1a+ f(g�1; g) = 0 =) b = �g�1a� f(g�1; g)
The inverse must be unique so this condition must yield

�f(g�1; g) = �g�1f(g; g�1) () f(g�1; g) = g�1f(g; g�1)
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So (a; g)�1 = (�g�1a� f(g�1; g); g�1):
� E must be associative

f(a; g) + (b; h)g+ (c; k) = (a+ gb+ f(g; h); gh) + (c; k)

= (a+ gb+ f(g; h) + ghc+ f(gh; k); ghk)

(a; g) + f(b; h) + (c; k)g = (a; g) + (b+ hc+ f(h; k); hk)

= (a+ g(b+ hc+ f(h; k)) + f(g; hk); ghk) = (a+ gb+ ghc+ gf(h; k) + f(g; hk); ghk)

=) f(g; h) + f(gh; k) = gf(h; k) + f(g; hk)

() gf(h; k) + f(g; hk)� f(gh; k)� f(g; h) = 0() �2f(g; h; k) = 0

So f is a 2-cocycle.

Claim that the set H = f(a; 1) : a 2 Ag ' f({(a); 1) : a 2 Ag is a normal
subgroup of E :

(1) (0; 1) 2 H
(2) (a; 1)�1 = (a; 1) 2 A
(3) it is closed under addition: (a; 1) + (a

0
; 1) = (a + 1 � a0 + f(1; 1); 1) =

(a+ a
0
; 1) 2 A

(4)

(b; h) + (a; 1)� (b; h) = (b+ ha+ f(h; 1); h)� (b; h)

= (a+ ha; h) + (�hb� f(1; h); h
�1

) = (a+ ha; h) + (�hb; h
�1

)

= (a+ ha� hhb+ f(h; h
�1
); hh

�1

) = (a+ ha� h2b+ f(h; h
�1
); 1) 2 H

De�ne the function i : A �! E as i(a) = (a; 1): It is a group isomorphism
A ' i(A) C E :

i(a+ b) = (a+ b; 1) = (a; 1) + (b; 1)

a 2 ker i () i(a) = (a; 1) = (0; 1) =) a = 0

De�ne the function p : E �! G as p(a; g) = g: It is a group epimorphism:

p((a; g) + (b; h)) = p(a+ gb+ f(g; h); gh) = gh = p(a; g)p(b; h)

8g 2 G;9(0; g) 2 E j p(0; g) = g

Its kernel is

ker p = f(a; g) j p(a; g) = 1g = f(a; 1); a 2 Ag = i(A)

In the beginning, we chose a set of representatives for the elements of G; and
especially h1i = 0: Let fggg2G be another set of representatives: Then the two

extensions
�
0 �! A

i�! Ehgi
p�! G �! 1

�
and

�
0 �! A

i
0

�! Efgg
p
0

�! G �! 1

�
are equivalent by a homomorphism � : Ehgi �! Efgg de�ned as �(a+hgi) = a+fgg :

�((a+ hgi) + (b+ hhi) = �(a+ gb+ f(g; h) + hghi) = a+ gb+ f(g; h) + fghg
�i(a) = �(a+ h1i) = a+ f1g = i

0
(a)

p
0
�(a+ hgi) = p

0
(a+ fgg) = g = p(a+ hgi)
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Independently of which representative of elements of G we choose, we get an ex-
tension in the same equivalence class. Claim that " is equivalent to this extension

0 �! A
i�! E

p�! G �! 1

Choose h1i = 0: Take � : E �! E as � (a+ hgi) = a + hgi : Use that (a + hgi) =
(a+ h1i) + (0 + hgi):
�((a+ hgi) + (b+ hhi)) = �(a+ gb+ f(g; h) + hghi) = a+ gb+ f(g; h) + hghi
�(a+ hgi) + �(b+ hhi) = (a+ hgi) + (b+ hhi) = a+ gb+ f(g; h) + hghi

�(i(a)) = �({(a) + h1i) = {(a) + h1i = {(a)
��(a+ hgi) = �(a+ hgi) = �({(a))�(hgi) = g = p(a+ hgi)

What can we say about two equivalent extensions? Suppose � : E �! E
0
in

0 - A
i- E

p- G - 1

E0

�
? p

0
-

i 0 -

is a homomorphism that makes the diagram commutative. Then,

�(a; g) = � ((a; 1) + (0; g)) = �(a; 1) + �(0; g)

p
0
�(0; g) = p(0; g) = g =) �(0; g) = (�(g); g) =) �(a; g) = (a; 1) + (�(g); g) = (a+ �(g); g)

for some function � : G �! A: As

�(0; 1) = (�(1); 1) =) �(1) = 0

�((a; g) + (b; h)) = �(a+ gb+ f(g; h); gh) = (a+ gb+ f(g; h) + �(gh); gh)

� �(a; g) + �(b; h) = (a+ �(g); g) + (b+ �(h); h)

= (a+ �(g) + g(b+ �(h)) + f
0
(g; h); gh) = (a+ gb+ �(g) + g�(h) + f

0
(g; h); gh)

=) f
0
(g; h)� f(g; h) = �(g) + g�(h)� �(gh) = �1�(g; h)

So the factor sets of equivalent extensions are equal modulo 2-coboundaries. Given
these factor sets modulo coboundaries, and a �xed action ' : G �! Aut(A); we
can recover all elements of E(G;A'). Also, given an extension in E(G;A'); will
give that its factor sets are 2-cocycles, which are equal for all the elements in the
equivalence class. So, we have proved the following Proposition:

Proposition 7.2. For any G, and any G-module A, there exists a bijection of
pointed sets E(G;A) �! H2(G;A).

The semi-direct extension has 0 as its factor set, and 0 as a factor set gives the
semi-direct extension.

Lemma 7.3. Let � : A �! A
0
be a morphism of G-modules. There exists a

well-de�ned mapping of pointed sets:

�� : E(G;A) �! E(G;A
0
)

Proof. Start with an element
�
" : 0 �! A

{�! E
��! G �! 1

�
2 E(G;A): Let

h1i = 0: When G acts on A
0
; E acts on A

0
as ea

0
= �(e)a

0
:

1a
0
= �(1)a

0
= a

0

g(ha
0
) = g(�(h)a

0
) = �(g)(�(h)a

0
)
G-module
= (�(g)�(h))a

0
= �(gh)a

0
= (gh)a

0
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The set S = f(�(a);�{(a)) : a 2 Ag is a normal subgroup of A0 o E :
a = 0 =) (0; 0) 2 S

(�(a);�{(a)) + (�(b);�{(b)) = (�(a) + �({(�a))�(b);�{(a)� {(b)) = (�(a) + �(b);�{(a+ b))
= (�(a+ b);�{(a+ b)) 2 S

�(�(a);�{(a)) = (��(�{(a))�1�(a);{(a)) = (��({(�a))�1�(a);{(a))
= (��(a);{(a)) = (�(�a);�{(�a)) 2 S

(a
0
; e) + (�(a);�{(a))� (a

0
; e) = (a

0
+ ea(a); e� {(a)) + (�(�e)a

0
;�e)

= (a
0
+ ea(a) + (e� {(a))(�(�e)(a

0
)); e� {(a)� e) = (a

0
+ �(ea)� (e� {(a)� e)a

0
; e(�{(a)))

= (a
0
+ �(ea)� a

0
;�e{(a)) = (�(ea);�{(ea)) 2 S

Take the factor group E
0
= A

0 �E= h(�(a);�{(a)) : a 2 Ai : A0
is isomorphic to a

normal subgroup of E
0
by the map a

0 {
0

,! (a0 ; 0):

{
0
(0) = (0; 0) 2 S

{
0
(a

0
+ b

0
) = (a

0
+ b

0
; 0) = (a

0
; 0) + (b

0
; 0) = {(a

0
) + {(b

0
)

a
0

2 ker{
0
=) (a

0
; 0) 2 S () 9a 2 A j �{(a) = 0 =) a = 0 ^ �(a) = a

0

=) a
0
= 0 =) {

0
is a monomorphism.

(b
0
; e) + (a

0
; 0)� (b

0
; e) = (b

0
+ ea

0
; e) + (�(e�1a);�e) = (b

0
+ ea

0
� a; 0) = {(b

0
+ ea

0
� a)

De�ne a map �
0
: E

0 �! G as �
0
(a

0
; e) = �(e):

�
0
(�(a);�{(a)) = �(�{(a)) = �({(�a)) = (�{)(�a) = 1;8a 2 A:

�((a
0
; e) + (b

0
; f)) = �(a

0
+ eb

0
; e+ f) = �(e+ f) = �(e)�(f) = �

0
(a

0
; e)�

0
(b

0
; f)

�
0
is an epimorphism:

8g 2 G;9e 2 E j �(e) = g:

Suppose (0; e) 2 S () 9a 2 A j �(a) = 0 ^ �{(a) = e =) e = (�{(a); 1); �(e) = 1:
=) 8g 2 G;9(0; e) 2 A

0
o E j �

0
(0; e) = �(e) = g:

The kernel of �
0
is {0

(A
0
) :

(a
0
; e) 2 ker�

0
() �(e) = 1 =) e 2 Im{; e = {(a) =) f(a

0
;{(a)) : a

0
2 A

0
; a 2 Ag 2 ker�

0

(a
0
;{(a)) = (a

0
; 0) + (0;{(a)) = (a

0
; 0) + (�(a); 0) = (a

0
+ �(a); 0) = {

0
(a

0
+ �(a))

Together with the canonical injections iA0 : A
0 �! E

0
; iE : E �! E

0
; we have built

the commutative diagram:

A
{- E

�- G

A0

�
? iA0- E0

iE ? �G- G

1G ?

De�ne this element in E(G;A
0
) as ��("): It is well-de�ned since if

"
0
: 0 �! A �! E

00
�! G �! 1

is an equivalent extension to " by the homomorphism  : E
00 �! E; we have that

there exists the homomorphism iE : E
00 �! E

0
that ��("

0
) = ��("): Suppose

the sequence " we started with, splits by a homomorphism s : G �! E: Then
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the homomorphism v = iE0 s : G �! E
0
; satis�es �

0
v = 1G by the commutativity

condition. Therefore, the induced sequence in E(G;A
0
) splits. Since ��(") is an

exact sequence, E
0
acts on A

0
by conjugation, hence G acts on A

0
by conjugation

ga
0
= e

0
+ a

0
� e

0
j �

0
(e

0
) = �

0
(a; e) = �(e) = g:

�

Lemma 7.4. E(G;�) is a covariant functor from G-mod to Sets?.

Proof. Start with
�
" : 0 �! A

{�! E
��! G �! 1

�
2 E(G;A): Let � = 1A: We

get

��(") : 0 �! A
i�! E

0 p�! G �! 1

E
0
= Ao E= h(a;�{(a)) : a 2 Ai

i(a) = (a; 0); p(a; e) = �(e):

De�ne the mapping � : AoE= h(a;�{(a)) : a 2 Ai �! E as �(a; e) = {(a) + e: It
is a homomorphism:

�(a;�{(a)) = {(a)� {(a) = 0; (8a 2 A)
�((a; e) + (b; f)) = �(a+ eb; e+ f) = {(a+ eb) + e+ f = {(a+ �(e)b) + e+ f
�(a; e) + �(b; f) = {(a) + e+ {(b) + f = {(a) + �(e)b+ e+ f = {(a+ �(e)b) + e+ f

The diagram

A
i- E0

p- G

A

1A ? {- E

�
? �- G

1G ?

is commutative:

�(i(a)) = �(a; 0) = {(a)
��(a; e) = �({a+ e) = (�{(a))�(e) = p(a; e)

Hence the two extensions are equivalent, (1A)� = 1E(G;A): Given a pair of mor-
phisms, � : A �! A

0
; �

0
: A

0 �! A
00
; will show that (�

0
�)� = �

0

��� (they give
equivalent extensions in E(G;A

00
)).

��(") = 0 �! A
0 i�! E

0 p�! G �! 1

E
0
= A

0
o E= h(�(a);�{(a)) : a 2 Ai

i(a
0
) = (a

0
; 0) + h(�(a);�{(a)i); p((a

0
; e) + h(�a;�{(a)i) = �(e)

�
0

�(��(")) = 0 �! A
00 i

0

�! E
00 p

0

�! G �! 1

E
00

= A
00
o E

0
=
D
(�

0
(a

0
);�i(a

0
)) : a

0
2 A

0
E

i
0
(a

00
) = (a

00
; 0) +

D
(�

0
(a

0
);�i(a

0
))
E
; p

0
�
(a

00
; e

0
) +

D
(�

0
(a

0
);�i(a

0
))
E�
= p(e

0
)
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(�
0
�)�(") = 0 �! A

00 i
00

�! F
p
00

�! G �! 1

F = A
00
o E=

D
((�

0
�)(a);�{(a)) : a 2 A

E
i
00
(a

00
) = (a

00
; 0) +

D
((�

0
�)(a);�{(a))

E
; p

00
�
(a

00
; e) +

D
((�

0
�)(a);�{(a))

E�
= �(e)

In

A
i0- E00

p0- G

A

1A ? i00- F

�
? p00- G

1G ?

let � : E
00 �! F be the mapping de�ned as �(a

00
; (a

0
; e)) = (a

00
+ �

0
(a

0
); e): It is a

map of pointed sets:

�(0; �(a);�{(a)) = (�
0
(�(a));�{(a)) 2

D
((�

0
�)(a);�{(a))

E
�(�

0
(a

0
);�a

0
; 0) = �

0
(a

0
) + �

0
(�a

0
) = 0

It is a group homomorphism:

�((a
00
; a

0
; e) + (b

00
; b

0
; f)) = �(a

00
+ (a

0
; e)b

00
; (a

0
; e) + (b

0
; f) = �(a

00
+ eb

00
; a

0
+ eb

0
; e+ f)

as (a
0
; e) 2 E

0
acts on A

00
as p

0
(a

0
; e) = e () E acts on A

00

= (a
00
+ eb

00
+ �

0
(a

0
+ eb

0
); e+ f)

�((a
00
; a

0
; e) + �(b

00
; b

0
; f)) = (a

00
+ �

0
(a

0
); e) + (b

00
+ �

0
(b

0
); f) = (a

00
+ �

0
(a

0
) + e(b

00
+ �

0
(b

0
); e+ f)

= (a
00
+ �

0
(a

0
) + eb

00
+ e�

0
(b

0
); e+ f)

Since e�
0
(b

0
) = �(e)�

0
(b

0
) = �

0
(�(e)b

0
) = �

0
(eb

0
)

= (a
00
+ �

0
(a

0
) + eb

00
+ �

0
(eb

0
); e+ f) = (a

00
+ eb

00
+ �

0
(a

0
+ eb

0
); e+ f)

�

Theorem 7.5. The functors E(G;�) and H2(G;�) are naturally isomorphic as
functors from G-mod to Sets�:

Proof. We will show that the diagram

E(G;A)
�- H2(G;A)

E(G;A0)

��

? �- H2(G;A0)

?

is commutative for all G;� : A �! A
0
: Take any element " of E(G;A);

" : 0 �! A
{�! E

��! G �! 1

Given the factor set for an extension f(x; y); it corresponds to a normalized cocycle
modulo normalized coboundaries in H2(G;A): It induces a function �f : G�G �!
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A
0
; which is also a 2-cocycle:

(�f)(x; y) = �(f(x; y)) = �(xf(y; z)� f(xy; z) + f(x; yz))
= �(xf(y; z))� �(f(xy; z) + �(f(x; yz))
= x(�f)(y; z)� (�f)(xy; z) + (�f)(x; yz)

since � is a homomorphism of G-modules, �(ga) = g�(a): So �f is an element in
H2(G;A

0
): Now, the other way. By �� we obtain an element of E(G;A

0
). Choose

representatives for g 2 G in E; [g]: Choose representatives for g 2 G in E
0
as

iE([g]) = (0; g):

iE([g]) + iE([h])� iE([gh]) = iE([g] + [h]� [gh]) = iE(f(g; h))

= iE({(f(g; h)) = ({
0
�)f(g; h) = {

0
(�f(g; h))

� �f(g; h)

and we get the same element in H2(G;A): �

Lemma 7.6. Let  : G
0 �! G be a group homomorphism. There exists a well-

de�ned mapping of pointed sets

� : E(G;A) �! E(G
0
; A)

Proof. Given A is a G-module, it induces that A is a G
0
-module with the action

given by g
0
a = (g

0
)a: Fix " : 0 �! A

{�! E
��! G �! 1; and a  : G

0 �! G:
Take pullback PB of � and ;

PB =
n
(e; g

0
) j �(e) = (g

0
); e 2 E; g

0
2 G

0
o

A is isomorphic normal subgroup of PB by the injection map i(a) = ({(a); 1) :
i(a) 2 PB (�({(a)) = 1 = (1))

(0; 1) 2 i(a) by a = 0

i(a+ b) = ({(a+ b); 1) = ({(a) + {(b); 1) = ({(a); 1) + ({(b); 1) = i(a) + i(b)

a 2 ker{ , i(a) = ({(a); 1) = (0; 1) =) {(a) = 0 =) a = 0

(e; g
0
) + ({(a); 1)� (e; g

0
) = (e+ {(a); g

0
) + (�e; (g

0
)�1) = (e+ {(a)� e; g

0
(g

0
)�1)

= (g({(a)); 1) = ({(ga); 1) 2 PB (�({(ga)) = 1 = (1))

This normal subgroup is the kernel of the projection homomorphism �G0 : PB �!
G

0
:

(e; g
0
) 2 ker�G0 () �G0 (e; g

0
) = g

0
= 1 =) f(e; 1) j �(e) = 1; e 2 Eg 2 ker�G0

=) e 2 {(a) =) ker�G0 = Im i:

Together with the canonical projections �E : PB �! E; �G0 : PB �! G
0
; we have

built the commutative diagram of short exact sequences:

A
{0- PB

�G0- G0

A

1A ? {- E

�E ? �- G

�
?

��E(e; g
0
) = �(e) = (g

0
) = (�G(e; g

0
))

�E(i(a)) = �E({(a); 1) = {(a)
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De�ne �(") to be the top sequence. It is well-de�ned since if

� : 0 �! A
{
0

�! E
0 �

0

�! G �! 1

lies in the same equivalence class as "; then there exists a homomorphism  : E �!
E

0
such that  { = {0

; �
0
 = �: The pullback PB

0
of p and  would contain

PB
0
=
n
(e

0
; g

0
) j �

0
(e

0
) = (g

0
); e

0
2 E

0
; g

0
2 G

0
o

We then get the sequence

�(�) : 0 �! A
i
0

�! PB
0 �G0�! G

0
�! 1

De�ne a map � : PB �! PB
0
as

�(e; g
0
) = ( (e); g

0
) (since ( (e); g

0
) 2 PB

0
: �

0
( (e)) = (�

0
 )(e) = �(e) = (g

0
))

It is a homomorphism:

�((e; g
0
) + (u; g)) = �(e+ u; g

0
g) = ( (e+ u); g

0
g) = ( (e) +  (u); g

0
g)

= ( (e); g
0
) + ( (u); g) = �(e; g

0
) + �(u; g)

�(0; 1) = ( (0); 1) = (0; 1)

Also,

�i(a) = �({(a); 1) = ( {(a); 1) = ({
0
(a); 1) = i

0
(a)

�G0�(e; g
0
) = �G0 ( (e); g

0
) = g

0
= �

0

G(e; g
0
)

So the diagram

A
i- PB

�G0- G0

A

1A ? i0- PB0

�
? �G0- G0

1G0
?

is commutative, and �(") � �(�): The map is well-de�ned. Suppose " splits.
Then there exists a homomorphism v : G �! E such that �v = 1G: �(") splits i¤

9s : G
0
�! PB j f�G0 s = 1G0g

m

9t : G
0
�! E; u : G

0
�! G

0
j
n
s = (t; u) ^ �G0 (t(g

0
); u(g

0
)) = u(g

0
) = g

0
^ �t(g

0
) = (u(g

0
))
o
:

If we let

u = 1G0 ; t = v

=) �t = (�v)  =  ^ u = 

=) (t(g); u(g)) 2 PB:
�G0 (t(g); u(g)) = u(g) = 1G0

So �(") splits too. �

Proposition 7.7. E(�; A) is a contravariant functor in the �rst variable, from
GR to Sets�:
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Proof. Start with an " 2 E(G;A),

" : 0 �! A
{�! E

��! G �! 1

Take  = 1G:

(1G)
� = 0 �! A

i�! PB
�G�! G �! 1

PB = f(e; g); e 2 E; g 2 G j �(e) = gg
i(a) = ({(a); 1); �G(e; �(e)) = �(e)

The canonical projection �E : PB �! E is an isomorphism (need only to show
injectivity):

�E(e; �(e)) = e =) (e; �(e)) 2 ker�E () e = 0 =) �(e) = 1 =) ker�E = (0; 1)

which gives that (1G)� = 1E(G;A): Now take any pair of morphisms � : G
00 �!

G
0
;  : G

0 �! G: We will show that (�)� = ��(�): ��(�) is the top extension in
the diagram

A
i0- PB0

�G00- G00

A

1A ? i- PB

�PB ? �G0- G0

�
?

A

1A ? {- E

�E ? �- G


?

where

i(a) = ({(a); 1); i
0
(a) = ({(a); 1; 1)

PB = f(e; g
0
); e 2 E; g 2 G j �(e) = (g

0
)g

PB
0
= f(e; g

0
; g

00
); (e; g

0
) 2 PB; g

00
2 G

00
j �G0 (e; g

0
; g

00
) = g

0
= �(g

00
)g

(�)� = 0 �! A
i00�! PB

00 �G00�! G
00
�! 1

i
00
(a) = ({(a); 1); �G00(e; g

00
) = g

00

PB
00

= f(e; g
00
); e 2 E; g

00
2 G

00
j �(e) = (�)(g

00
)g

We de�ne the mapping � : PB
0 �! PB

00
as

�(e; g
0
; g

00
) = (e; g

00
) (since (e; g

00
) 2 PB

00
: �(e) = (g

0
) = (�(g

00
)) = (�)(g

00
))

It is the canonical projection on PB
00
: Its kernel is

(e; g
0
; g

00
) 2 ker � () e = 0^g

00
= 1 =) �(g

00
) = �(1) = 1 = g

0
=) ker � = f0; 1; 1g

Since � makes the diagram

A
i0- PB0

�G00- G00

A

1A ? i00- PB00

�
? �G00- G00

1G00
?

commutative:

�G00 �(e; g
0
; g

00
) = �G00 (e; g

00
) = g

00
=) �{

0
(a) = �({(a); 1; 1) = ({(a); 1) = {

00
(a)

the extensions are equivalent, which concludes our proof. �
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Theorem 7.8. E(�; A) and H2(�; A) are naturally isomorphic as functors from
GR to Sets?:

Proof. We will show that

E(G;A)
�- H2(G;A)

E(G0; A)

�
? �- H2(G0; A)

?

is commutative for any  : G
0 �! G and A: Pick an element of E(G;A) :

" : 0 �! A
{�! E

��! G �! 1

It has the factor set �(") = f(x; y) which is a 2-cocycle in H2(G;A): Look at the
normalized bar resolution for G

0
and G respectively:

Z
�
0

� F
0

0  F
0

1  � F
0

2  � F
0

3  � :::

Z
�� F0  F1  � F2  � F3  � :::

We have the morphisms between that ZG0
and ZG modules:

 : F
0

1 �! F1 j [g
0
] = [(g

0
)]

� : F
0

2 �! F2 j �([g
0
; h

0
]) = [(g

0
); (h

0
)]

�� : H
2(G;A) �! H2(G

0
; A) is induced, and hence the 2-cocycle

��f(g
0
; h

0
) = f�(g

0
; h

0
) = f((g

0
); (h

0
)) : G

0
�G

0
�! A:

The other way:�(") = (0 �! A
i�! PB

p�! G
0 �! 1): Choose representatives�

[(g
0
)]; g

0
�
for g

0
:�

[(g
0
)]; g

0
�
+
�
[(h

0
)]; h

0
�
�
�
[(g

0
h
0
)]; g

0
h
0
�
=
�
[(g

0
)] + [(h

0
)]� [(g

0
h
0
)]; g

0
h
0
(g

0
h
0
)�1
�

=
�
[(g

0
)] + [(h

0
)]� [(g

0
)(h

0
)]; 1

�
=
�
f((g

0
); (h

0
)); 1

�
= i(f((g

0
); (h

0
))) � f((g

0
); (h

0
))

�

Proposition 7.9. E(G;A) is a bifunctor from PAIRS (G;A) to Sets?:

Proof. Since we have the commutativity of the whole diagram, and the peripheral

H2(G;A) - H2(G0; A)

E(G;A) -

�

E(G0; A)

-

E(G;A0)
?

- E(G0; A0)
?

H2(G;A0)

?
-

�
H2(G0; A0)

?-

squares, the middle square is commutative, which is equivalent to that E(�;�) is
a bifunctor. �
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Suppose we have two elements

E1 : 0 �! A
{�! E

��! G �! 1

E2 : 0 �! A
{
0

�! E
0 �

0

�! G �! 1

of E(G;A): Look at the set
n
(4A(a1; a2);�{ 
 {

0
(a1; a2)) : a1; a2 2 A

o
: It is a

normal subgroup of Ao PB; where PB is the pullback of (� � �0) and 5G :

a1 = a2 = 0 =) 0 � (0; 0; 1) 2 PB 2 PO
�(a+ a

0
;�{(a);�{

0
(a

0
); 1) = (�a� a

0
;{(a);{

0
(a

0
); 1) 2 PO () a1 = �a; a2 = �a

0

(a; e; e
0
; g) + (a1 + a2;�{(a1);�{

0
(a2); 1)� (a; e; e

0
; g)

= (a+ g(a1 + a2); e� {(a1); e
0
� {

0
(a2); g) + (�g�1a;�e;�e

0
; g�1)

= (a+ ga1 + ga2 + g(�g�1a); e� {(a1)� e; e
0
� {

0
(a2)� e

0
; gg�1)

= (a+ ga1 + ga2 � a; g(�a1); g(�a2); 1) = (ga1 + ga2;�ga1;�ga2; 1)

� ((ga1 + ga2;�g({a1);�g({
0
a2); 1) = ((ga1 + ga2;�{(ga1);�{

0
(ga2); 1) 2

D
(4A;�{ 
 {

0
)
E

since {;{0
are homomorphisms of G-modules. De�ne the Baer product of E1 and

E2 to be as in the Baer sum for R-modules, only that PO here is not the pushout
of 4A and { 
 {

0
in the category GR, just the factor group as described above.

The morphisms are unchanged.

Proposition 7.10. E(G;A) is an abelian group with operation given by the Baer
product.

Proof. For any E 2 E(G;A), we have the one-to-one correspondence withH2(G;A)
given by �(E) = f; where f is the factor system for the extension E: Suppose [g] 2 E
and hgi 2 E0

are representatives for g 2 G: Suppose f is a factor set for E, and f 0

is a factor set for E
0
, i.e.

f(g; h) = [g] + [h]� [gh]
f
0
(g; h) = hgi+ hhi � hghi

Look at the direct product extension:

0 �! A�A {
{
0

�! E � E
0 �
�

0

�! G�G �! 1

Choose ([g]; hhi) as representatives for (g; h) 2 G�G in E � E0
.

([g1]; hh1i) + ([g2]; hh2i)� ([g1g2]; hh1h2i) = ([g1] + [g2]� [g1g2]; hh1i+ hh2i � hh1h2i)
= (f(g1; g2); f

0
(h1; h2))

So we get that the factor set of the direct product extension is f�f 0(g1; g2; h1; h2) :
G�G�G�G �! A�A: Further, take the pullback of �
�0 and 4Gand get the
element

0 - A�A
{ 
 {0- PB

�G - G - 1

of E(G;A�A) where

PB = f(e; e
0
; g) j �(e) = �

0
(e

0
) = g; e 2 E; e

0
2 E

0
g
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Choose representatives for g in PB : ([g]; hgi ; g):

([g]; hgi ; g) + ([h]; hhi ; h)� ([gh]; hghi ; gh) = ([g] + [h]� [gh]; hgi+ hhi � hghi ; gh(gh)�1)
= (f(g; h); f

0
(g; h); 1)

So (f � f 0)5G�G is a function from G�G �! A�A such that

kgk+ khk � kghk = (f � f
0
)5G�G (g; h)

where kgk = ([g]; hgi ; g) is a representative of g: Further, take PO = A�PB= h(5A;�{ 
 {)i
and get the commutative diagram

A
A - PB - G

A

5A ?
- PO

?
- G

?

Choose representatives for g in PO : (0; [g]; hgi ; g): Then:

(0; [g]; hgi ; g) + (0; [h]; hhi ; h)� (0; [gh]; hghi ; gh)
= (0 + g � 0; ([g]; hgi ; g) + ([h]; hhi ; h)) + (�gh � 0;�[gh];�hghi ; gh)
= (0; [g] + [h]; hgi+ hhi ; gh) + (0;�[gh];�hghi ; (gh)�1)
= (0; [g] + [h]� [gh]; hgi+ hhi � hghi ; gh(gh)�1) = (0; [g] + [h]� [gh]; hgi+ hhi � hghi ; 1)
= (0; f(g; h); f

0
(g; h); 1) = (f(g; h) + f

0
(g; h); 0; 0; 1)

So f + f
0
= 5A(f � f

0
)4G�G is a function from G�G �! A such that

fgg+ fhg � fghg = (f + f
0
)(g; h)

where fgg = (0; [g]; hgi ; g) is a representative for g: So we get that �(E1 + E2) =
�(E1)+�(E2): � becomes a group homomorphism from E(G;A) to H2(G;A); which
is an abelian group Therefore, E(G;A) is an abelian group with operation given
by the Baer product. Since we have that �(A �! A o G �! G) = 0; we have
found that the class of the split exact extension is the zero element in E(G;A).
The factor set of the inverse element of " 2 E(G;A) is just ��(") (since �is a group
homomorphism), which then gives a complete description of �" 2 E(G;A): �

Theorem 7.11. E(G;A) and H2(G;A) are isomorphic as functors from PAIRS (G;A)
to AB.

Proof. � is actually an isomorphism. For any cocycle in H2(G;A); we can obtain an
extension in E(G;A) by taking that cocycle to be its factor system. Let E 2 ker �:
That means that the factor system of E is a coboundary in C2(G;A):

�(E) = �1f(g; h) = gf(h)� f(gh) + f(g)

Now, the extension with the factor system s(g; h) = �1f(g; h) is equivalent to the
semi- direct extension by a � in

A
i- Ao'G

p- G

Es

�
? �

-
j -
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de�ned as �(a; g) = (a� f(g); g): � is a homomorphism:
�((a; g) + (b; h)) = �(a+ gb; gh) = (a+ gb� f(gh); gh)
�(a; g) + �(b; h) = (a� f(g); g) + (b� f(h); h)

= (a� f(g) + g(b� f(h)) + s(g; h); gh)
= (a� f(g) + gb� gf(h) + gf(h)� f(gh) + f(g); gh) = (a+ gb� f(gh); gh)

And

�i(a) = �(a; 1) = (a� f(1); 1) = (a; 1) = j(a)

��(a; g) = �(a� f(g); g) = G = p(a; g)

�
7.2. Characteristic class of an extension. Look at the short exact sequence of
free abelian groups:

0 �! I(G)
i�! ZG "�! Z �! 0

where I(G) is the kernel of the augmentation map " : ZG �! Z:

Proposition 7.12. I(G) is a free abelian group on fhgi � h1ig;8g 2 Gnf1g:

Proof. Since i is a ZG module homomorphism, it is a group homomorphism. So
I(G) is isomorphic to a normal subgroup of ZG; which is free abelian. As numbers of
generators, it has jGj�1 many. First, fhgi � h1i ; g 2 Gg 2 I(G) since "(hgi�h1i) =
0: The set fhgi � h1i ; g 2 Gg is linearly independent (by induction on n):
a(hgi � h1i) = a hgi � a h1i = 0 =) a hgi = a h1i =) (g 6= 1)a = 0 (ZG free abelian)

(1) 0 = a1(hg1i � h1i) + a2(hg2i � h1i) + :::+ an(hgni � h1i) =) faigni=1 = 0
(2) 0 = a1(hg1i � h1i) + a2(hg2i � h1i) + :::+ an(hgi � h1i) + an+1(hgn+1i � h1i)

Take (2)� (1); and since elements in ZG commute, we are left with

an+1((hgn+1i � h1i) = 0 =) an+1 = 0:

Now we only need to show that any element of I(G) can be written as a linear
combination of fhgi � h1i ; g 2 Gg.X

g2G
a(g) hgi 2 I(G) ()

X
g2G

a(g) = 0

By writing out the expression and using the above, we conclude the proof:X
g2G

a(g) (hgi � h1i) =
X
g2G

a(g) hgi �

0@X
g2G

a(g)

1A h1i =X
g2G

a(g) hgi

�
For any ZG-module A, it induces a long exact sequence of ExtnZG :

0 �! HomZG(Z; A) �! HomZG(ZG;A) �! HomZG(I(G); A) �! Ext1ZG(Z; A) �!
Ext1ZG(ZG;A) �! Ext1ZG(I(G); A) �! Ext2ZG(Z; A) �! Ext2ZG(ZG;A) �! :::

Since ZG is a free (hence projective) ZG-module, we get an isomorphism between

Ext1ZG(I(G); A) ' Ext2ZG(Z; A) = H2(G;A)

and since
Ext1ZG(I(G); A) ' EZG(I(G); A)
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we get that H2(G;A) is isomorphic to the group of extensions of A by I(G):

0 �! A �! H �! I(G) �! 1

Now, to �nd Ext1ZG(I(G); A) we must choose a projective resolution of I(G): Take

::
d2�! Q2

d1�! Q1
d0�! Q0

"� I(G) �! 0

where Qi = Fi+1;and di = di+2; for i = 0; 1; ::; for the free ZG-modules Fi and the
module homomorphisms di from the normalized bar resolution. We get

0 �! Hom(I(G); A)
"��! Hom(Q0; A)

d�0�! Hom(Q1; A)
d�1�! Hom(Q2; A) �! ::

So Ext1ZG(I(G); A) = ker d�1= Im d
�
0 = ker �2= Im �1 = H2(G;A); so it contains

factor sets, as many factor sets as elements of E'(G;A): By Lemma 5.12, we �nd
the correspondent element of E'(I(G); A) by taking the middle module as PO =
A� F1= h(f � d1)i and get the short exact sequence

0 �! A
i�! PO

p�! I(G) �! 0

i(a) = (a; 1)

p(a; g) = d0(g) = hgi � h1i

Proposition 7.13. Fix an element of E(G;A)

� : 0 �! A
{�! E

��! G �! 1

Let ML be the factor module of the free ZG-module on [e]; e 2 E; [0] = 0 modulo
the submodule generated by

h1i [e1 + e2]� h�(e1)i [e2]� h1i [e1] : e; e1; e2 2 E; [0] = 0

The morphisms � : A �! ML and � : ML �! I(G) are ZG-module homomor-
phisms

�(a) = [{(a)]
�([b]) = h�(b)i � h1i

which give that the sequence splits as a sequence of abelian groups:

0 �! A
��!ML

��! I(G) �! 0

Proof.

�(a+ b) = [{(a+ b)] + L = [{(a) + {(b)] + L = [{(a)] + h�({(a))i [{(b)] + L
= [{(a)] + [{(b)] + L = ([{(a)] + L) + ([{(b)] + L) = �(a) + �(b)

�

0@X
g2G

n(g) hgi � a

1A = �

0@X
g2G

n(g)(ga)

1A =

24{
0@X
g2G

n(g)(ga)

1A35+ L =
24X
g2G

n(g){(ga)

35+ L
= [n(g1){(g1a) + n(g2){(g2a) + ::+ n(gk){(gka)] + L
= [n(g1){(g1a) + n(g2){(g2a) + ::n(gk�1){(gk�1a)] + [n(gk){(gka)] + L
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By the de�nition of L; each term in both brackets can be decomposed to n(gs)
terms of form [{(gsa)]; s = 1; 2; ::; k; obtaining:

�

0@X
g2G

n(g) hgi � a

1A =
X
g2G

n(g)[{(ga)] + L =
X
g2G

n(g)[g({a)] + L

=
X
g2G

n(g) hgi [{(a)] + L =

0@X
g2G

n(g) hgi

1A�(a)

since (as L is a submodule). We de�ned M as the free ZG-module on [e]; e 2 L:
Then, using the universal property of free modules with the functions i : [e] �!
[e]; f([e]) = h�(e)i � h1i ; we get that there exists a ZG-module homomorphism
�([e]) = h�(e)i � h1i :

�(L) = �([e1 + e2]� h�(e1)i [e2]� h1i [e1]) = �([e1 + e2])� h�(e1)i�([e2])� h1i�([e1])
= h�(e1 + e2)i � h1i � h�(e1)i fh�(e2)i � h1ig � h1i fh�(e1)i � h1ig
= h�(e1 + e2)i � h1i � h�(e1)i h�(e2)i+ (�h�(e1)i) (�h1i)� h1i h�(e1)i+ (�h1i)(�h1i)
= h�(e1 + e2)i � h1i � h�(e1)�(e2)i+ h�(e1)i � h�(e1)i+ h1i = 0

��(a) = �([{(a)]) = h�({(a))i � h1i = 0
So the sequence is a complex of abelian groups. De�ne s : I(G) �!ML as

s(hgi � h1i) = [fgg] + L

(where �(fgg) = g; fgg is a chosen representative for g in E where f1g = 0). By
the universal property of free abelian groups (which are free Z-modules), in de�ning
the functions

i(hgi � h1i) = hgi � h1i ; f(hgi � h1i) = [fgg] + L

we get si = f and s is a group homomorphism. By the universal property of
the free ZG-module F; we have a ZG-module homomorphism v : M �! A as
v(hgi [e]) = h(g; e) when taking the functions

i([e]) = g[e]; f(hgi [e]) = fgg+ e� fg�(e)g = h(g; e)

When we look at v as a group homomorphism, we get v(L) = 0 :

v([e1 + e2]� h�(e1)i [e2]� [e1]) = v([e1 + e2])� v(h�(e1)i [e2])� v([e1])
h(1; e1 + e2) = f1g+ (e1 + e2)� f�(e1 + e2)g (1)
h(�(e1); e2) = f�(e1)g+ e2 � f�(e1)�(e2)g (2)

h(1; e1) = f1g+ e1 � f�(e1)g (3)

(1)� (2)� (3) : [(e1 + e2)� f�(e1 + e2)g] + [f�(e1)�(e2)g � e2 � f�(e1)g] + [f�(e1)g � e1]
= (e1 + e2)� e2 � e1 = 0

As a chain complex of abelian groups,

0 �! A
��!ML

��! I(G) �! 0
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has a contracting homotopy (s; v) :

(v�)(a) = v([{(a)] + L) = h(1;{(a)) = f1g+ {(a)� [�({(a))] = {(a) ' a
�v(hgi � h1i) = �([fgg] + L) = h�(fgg)i � h1i = hgi � h1i

(�v + s�)([e] + L) = �(v([e] + L)) + s�([e] + L) = �(h(1; e)) + s(h�(e)i � h1i)

= [h(1; e)] + L+ [f�(e)g] + L = [e� f�(e)g] + L+ [f�(e)g] + L
= [e] + h�(e)i [�f�(e)g] + L+ [f�(e)g] + L = [e] + (h�(e)i [�f�(e)g] + [f�(e)g]) + L
= [e] + [�f�(e)g+ f�(e)g] + L = [e] + L

So the complex is split exact as a complex as abelian groups, hence it is exact as a
complex of groups. �

Call this element in H2(G;A); the characteristic class of the original extension
�:

Proposition 7.14.

0 �! A
i�! PO

p�! I(G) �! 0

and

0 �! A
��!ML

��! I(G) �! 0

are equivalent extensions of A by I(G):

Proof. In de�ning a group homomorphism  : PO �! ML; we must de�ne group
homomorphisms

A : A �!ML; F1 : F1 �!ML

such that

A(f(g; h) + F1(��2[g j h]) 2 L () �(A(f(g; h) + F1(�2[g j h]) = 0

De�ne

A(a) = �(a) = [{(a)] + L; F1([g]) = [fgg]
where we choose a set of representatives fgg in E; for each g 2 G; and f1g = 0. So

(a; g) = [{(a)] + [fgg] + L

is a ZG-homomorphism (hence also a group homomorphism).

(f(g; h);�d2[g j h]) = [{f(g; h)]� hgi [fhg] + [fghg]� [fgg] + L
�((f(g; h);�d2[g j h])) = �([{f(g; h)] + L)� hgi�[fhg] + L) + �([fghg] + L)� �([fgg] + L)

= 0� hgi (hhi � h1i) + hghi � h1i � (hgi � h1i) = 0

So  2 HomGR(PO;ML): It commutes with both squares:

(iA(a)) = (a; 1) = [{(a)] + [f1g] + L = [{(a)] + L
�((a; g)) = �([{(a)] + [fgg] + L) = �([{(a)] + L) + �([fgg] + L)

= h1i � h1i+ h�(fgg)i � h1i = hgi � h1i = p(a; g)

�
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8. Extensions with non-abelian kernel

Look at the exact sequence of groups,

" : 0 �! A
{�! E

��! G �! 1

where A is not necessarily abelian. It induces a group homomorphism �
0
: E �!

Aut(A); �
0
(e)(a) = ea = e+{a�e:We also have a group homomorphism  : A �!

In(A); where In(A) � Aut(A) is the subgroup of inner automorphisms,  (a)(b) =
a+ b� a: So we have a group homomorphism � : E={(A) ' G �! Aut(A)=In(A)
given by '(g)(a) = hgi + a � hgi ;where �(hgi) = g and '(g) is a representative
in the factor group Aut(A)=In(A). So for each e 2 E; the automorphism �

0
(e)

is in the automorphism class of �(�(e)): We say that " has conjugation class �:
Conversely, we say that the triple (G;A; � : G �! Aut(A)=In(A)) is an abstract
kernel.

Lemma 8.1. Equivalent extensions have the same conjugation class.

Proof. Given two equivalent extensions

A
{0- E0

�0- G

E

�
? �

-
{ -

Let the top extension induce a � : G �! Aut(A)=In(A); and the bottom one a
� : G �! Aut(A)=In(A): � (g) 2 Aut(A)=In(A) is given by

� (g) (a) = ({0)�1 (e0 + {0 (a)� e0)

where e0 2 �0�1 (g). To de�ne � (g) 2 Aut(A)=In(A), we need a representative
e 2 ��1 (g). Since �� = �0, we can choose e = � (e0). Finally, using �{0 = {,

� (g) (a) = {�1 (e+ { (a)� e) =
= {�1 (� (e) + �{0 (a)� � (e)) =
= {�1 (� (e+ {0 (a)� e)) =
= ({0)�1 (e0 + {0 (a)� e0) = � (g) (a) :

�

Pick a representative [g] 2 E, � ([g]) = g, for each g 2 G � f1g, and de�ne
[1] := 0: Then

[g] + a� [g] = '(g)(a) () [g] + a = '(g)(a) + [g]

for some element '(g) of the automorphism class of �(g): Since

�([g] + [h]� [gh]) = 1

So we have factor set f(g; h) 2 A such that

f(g; h) + [gh] = [g] + [h]
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In order that the representatives should make a group, associativity must hold:

([g] + [h]) + [k] = (f(g; h) + [gh]) + [k] = f(g; h) + ([gh] + [k])

= f(g; h) + f(gh; k) + [ghk]

[g] + ([h] + [k]) = ([g] + f(h; k)) + [hk] = '(g)(f(h; k)) + ([g] + [hk])

= '(g)(f(h; k)) + f(g; hk) + [ghk]

=) f(g; h) + f(gh; k) + [ghk] = '(g)(f(h; k)) + f(g; hk) + [ghk]

f(g; h) + f(gh; k) = '(g)(f(h; k)) + f(g; hk)

0 = '(g)(f(h; k)) + f(g; hk)� f(gh; k)� f(g; h)
We see that if A were abelian, we would get the 2-cocycle condition on f .

Remark 8.2. Let
Z (A) = fa 2 A j 8b 2 A (ab = ba)g

be the center of A. It is well-known that the center is a characteristic subgroup,
i.e. it is invariant under any automorphism. Therefore, if � (g) 2 Aut (A) =In (A),
then

� (g) (Z (A)) = Z (A) :

Moreover, if a 2 Z (A), and if � 2 In (A), i.e. � (x) = bxb�1, for some b 2 A, then
bab�1 = bb�1a = a:

It follows that In (A) acts trivially on Z (A). Therefore, the action of G on Z (A)
given by

ga := � (g) (a)

is well-de�ned.

Now, conjugation by [g] + [h] and by f(g; h) + [gh] should be the same:

([g] + [h]) + a� ([g] + [h]) = [g] + '(h)(a) + [h]� ([g] + [h])

= [g] + '(h)(a) + [h]� (f(g; h) + [gh]) = [g] + '(h)(a) + '(h)(�f(g; h)) + [h]� [gh]
= ([g] + '(h)(a))� '(h)(f(g; h)) + [h]� [gh]
= '(g)('(h)(a)) + [g]� '(h)(f(g; h)) + [h]� [gh]
= '(g)('(h)(a)) + '(g)(�'(h)(f(g; h))) + [g] + [h]� [gh]
= '(g)('(h)(a))� '(g)('(h)(f(g; h))) + f(g; h)
= '(g)'(h)(a� f(g; h)) + f(g; h) = '(g)'(h)(a� f(g; h)) + f(g; h)
(f(g; h) + [gh]) + a� (f(g; h) + [gh]) = f(g; h) + ([gh] + (a� f(g; h))� [gh]
f(g; h) + '(gh)(a� f(g; h)) + [gh]� [gh] = f(g; h) + '(gh)(a� f(g; h))
=) '(g)'(h)(a� f(g; h)) + f(g; h) = f(g; h) + '(gh)(a� f(g; h))

'(g)'(h)(a� f(g; h)) = f(g; h) + '(gh)(a� f(g; h))� f(g; h)
'(g)'(h) = i (f(g; h))'(gh)

So i measures the extend that ' fails to be a homomorphism from G to AutGR(A):

Proposition 8.3. Given A;G; functions ' : G �! AutGR(A); f : G � G �! A,
with the properties

(1) f(g; 1) = f(1; h) = 0
(2) 0 = '(g)(f(h; k)) + f(g; hk)� f(gh; k)� f(g; h)
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(3) '(g)'(h) = i (f(g; h))'(gh)

we can construct an extension of groups

0 �! A
i�! E

0 p�! G �! 1

where E
0
is the set of all pairs (a; g); a 2 A; g 2 G; with

(a; g) + (b; h) = (a+ '(h)b+ f(g; h); gh)

i(a) = (a; 1); p(a; g) = g

Call E
0
for the crossed product group, and this extension for the crossed product

extension.

Proof. i is a homomorphism:

i(a+ b) = (a+ b; 1)

i(a) + i(b) = (a; 1) + (b; 1) = (a+ '(1)b+ f(1; 1); 1) = (a+ b; 1)

p is a homomorphism:

p(a; g)p(b; h) = gh

p((a; g) + (b; h)) = p(a+ '(g)b+ f(g; h); gh) = gh

The zero element is (0; 1) :

(a; g) + (b; h) = (a+ '(g)(b) + f(g; h); gh) = (a; g)

=) h = 1; '(g)(b) + f(g; h) = 0 =) '(g)(b) = 0;8g
(b; h) + (a; g) = (b+ '(h)(a) + f(h; g); hg) = (a; g)

=) h = 1; b+ '(h)(a) + f(h; g) = a

b+ '(1)a = a =) b = 0

The inverse element �(a; g) is (�f(g�1; g)� '(g)�1(a); g�1) :
(a; g) + (b; h) = (a+ '(g)(b) + f(g; h); gh) = (0; 1)

=) h = g�1; a+ '(g)(b) + f(g; h) = 0 =) a+ '(g)(b) + f(g; g�1) = 0

=) '(g)(b) = �a� f(g; g�1)
(b; h) + (a; g) = (b+ '(h)(a) + f(h; g); hg) = (0; 1)

=) h = g�1; b+ '(g�1)(a) + f(g�1; g) = 0 =) b = �f(g�1; g)� '(g�1)(a)
=) '(g)(b) = �'(g)(f(g�1; g))� '(g)'(g�1)(a)

'(g)(b) = �'(g)(f(g�1; g))� '(1)(a) = �'(g)(f(g�1; g))� a
=) b = '(g)�1(�'(g)(f(g�1; g)))� '(g)�1(a) =) b = �f(g�1; g)� '(g)�1(a)

The set E is associative:

f(a; g) + (b; h)g+ (c; k) = (a+ '(g)(b) + f(g; h); gh) + (c; k)

= (a+ '(g)(b) + f(g; h) + '(gh)(c) + f(gh; k); ghk)

(a; g) + f(b; h) + (c; k)g = (a; g) + (b+ '(h)(c) + f(h; k); hk)

= (a+ '(g)(b+ '(h)(c) + f(h; k)) + f(g; hk); ghk)

= (a+ '(g)(b) + '(g)'(h)(c) + '(g)(f(h; k)) + f(g; hk); ghk)

= (a+ '(g)(b) + f(g; h) + '(gh)(c)� f(g; h) + '(g)(f(h; k)) + f(g; hk); ghk)
= (a+ '(g)(b) + f(g; h) + '(gh)(c) + f(gh; k); ghk) = f(a; g) + (b; h)g+ (c; k)
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The sequence is exact:

a 2 ker i () i(a) = (a; 1) = (0; 1) =) a = 0:

(a; g) 2 ker p () p(a; g) = g = 1 =) (a; 1) 2 ker p;8a 2 A =) ker p = Im i

�

Corollary 8.4. If any automorphism '(g) 2 �(g) satis�es '(1) = 1A; then any
extension of the abstract kernel (A;G; �) is congruent to a crossed product extension
(A;G;'; f) with the given function ':

Proof. Suppose there exists an extension " : 0 �! A �! E �! G �! 1; with all
'(g) 2 �(g); '(1) = 1A: All elements of E are of form a + [g]; a 2 A; g 2 G: We
have:

[g] + [h] = f(g; h) + [gh]; for some f(g; h) 2 A:
E must be a group, closed under addition:

(a+ [g]) + (b+ [h]) = a+ '(g)(b) + f(g; h) + [gh]

Simplify a+ [g] �! (a; g):

�(a+ [g]) = �({(a))�([g]) = g

b+ [h] 2 ker� () � ([h]) = 1 () [h] = [1]

If we choose [1] = 0; we get an equivalent extensions

=) ker� = fb+ [1]; b 2 Ag =) {(a) = a+ [1] = (a; 1) is de�ned.

�

Suppose we are given an abstract kernel (G;A; �): In each automorphism class
�(g); pick an automorphism '(g) such that '(1) = 1:

'�1'(k)(a) = '�1([k] + a� [k]) = a =) '�1(k)(a) = �[k] + a+ [k]�
'(g)'(h)'�1(gh)

�
(a) = '(g)'(h)(�[gh] + a+ [gh])

= '(g)([h]� [gh] + a+ [gh]� [h]) = ([g] + [h]� [gh]) + a+ ([gh]� [h]� [g])
= ([g] + [h]� [gh]) + a� ([g] + [h]� [gh]) = {(e) + a� {(e):
=) '(g)'(h)'�1(gh)(a) = f(g; h) + a� f(g; h) 2 In(A)
() '(g)'(h) = i f(g; h)'(gh)

for some function f : G�G �! A satisfying

'(1)'(h)'�1(h)(a) = f(1; h) + a� f(1; h)
a = f(1; h) + a� f(1; h)

We may pick f(1; h) = f(g; 1) = 1: Now, '(g)'(h)'(z) should be associative:
'(g) ['(h)'(k)(a)] :

= '(g) [f(h; k) + '(hk)(a)� f(h; k)] = '(g)(f(h; k)) + '(g)'(hk)(a)� '(g)(f(h; k))
= '(g)(f(h; k)) + f(g; hk) + '(ghk)(a)� f(g; hk)� '(g)(f(h; k))
= ('(g)(f(h; k)) + f(g; hk)) + '(ghk)(a)� ('(g)(f(h; k)) + f(g; hk))
= i ('(g)(f(h; k)) + f(g; hk))'(ghk)(a)
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['(g)'(h)] ('(k)(a)) :

= f(g; h) + '(gh)'(k)(a)� f(g; h) = f(g; h) + f(gh; k) + '(ghk)(a)� f(gh; k)� f(g; h)
= (f(g; h) + f(gh; k)) + '(ghk)(a)� (f(g; h) + f(gh; k)) = i (f(g; h) + f(gh; k)) ('(ghk)(a))

Gives:

i ('(g)(f(h; k)) + f(g; hk)) = i (f(g; h) + f(gh; k))

'(g)(f(h; k)) + f(g; hk)� (f(g; h) + f(gh; k)) 2 ker i 

'(g)(f(h; k)) + f(g; hk)� (f(g; h) + f(gh; k)) = O(g; h; k) 2 Z(A)
'(g)(f(h; k)) + f(g; hk) = O(g; h; k) + f(g; h) + f(gh; k)

where O : G�G�G �! Z(A) is a (normalized) function:

O(1; h; k) = O(g; 1; k) = O(g; h; 1) = 0

So we can regard O as a 3-cochain of the normalized bar resolution of G with
coe¢ cients in Z(A):

Proposition 8.5. Any obstruction of an abstract kernel (A;G; �) is a 3-cocycle of
BG(Z):

Proof. We will show that �3O(g; h; k; l) = 0:

gO(h; k; l)�O(gh; k; l) +O(g; hk; l)�O(g; h; kl) +O(g; h; k) = �3O(g; h; k; l)
'(h)f(k; l) + f(h; kl)� f(hk; l)� f(h; k) = O(h; k; l)

'(g)['(h)f(k; l) + f(h; kl)� f(hk; l)� f(h; k)] = gO(h; k; l)
f(g; h) + '(gh)(f(k; l))� f(g; h) + '(g)(f(h; kl))� '(g)(f(hk; l))� '(g)(f(h; k)) = gO(h; k; l) (1)

'(gh)(f(k; l)) + f(gh; kl)� f(ghk; l)� f(gh; k) = O(gh; k; l)
f(gh; k) + f(ghk; l)� f(gh; kl)� '(gh)((f(k; l)) = �O(gh; k; l) (2)
'(g)f(hk; l) + f(g; hkl)� f(ghk; l))� f(g; hk) = O(g; hk; l) (3)

'(g)(f(h; kl)) + f(g; hkl)� f(gh; kl)� f(g; h) = O(g; h; kl)
f(g; h) + f(gh; kl)� f(g; hkl)� '(g)(f(h; kl)) = �O(g; h; kl) (4)

'(g)f(h; k) + f(g; hk)� f(gh; k)� f(g; h) = O(g; h; k) (5)

Take [(1) + (5)] + (4) + (3) + (2) :

ff(g; h) + '(gh)(f(k; l))� f(g; h) + '(g)(f(h; kl))� '(g)(f(hk; l))� '(g)(f(h; k))g
+ f'(g)f(h; k) + f(g; hk)� f(gh; k)� f(g; h)g+ ff(g; h) + f(gh; kl)� f(g; hkl)� '(g)(f(h; kl))g
+ f'(g)f(hk; l) + f(g; hkl)� f(ghk; l))� f(g; hk)g+ ff(gh; k) + f(ghk; l)� f(gh; kl)� '(gh)((f(k; l))g

= f(g; h) + '(gh)(f(k; l))� f(g; h) + '(g)(f(h; kl))� '(g)(f(hk; l)) + f(g; hk)
�f(gh; k) + f(gh; kl)� f(g; hkl)� '(g)(f(h; kl)) + ['(g)f(hk; l) + f(g; hkl)� f(ghk; l))� f(g; hk)]
+ [f(gh; k) + f(ghk; l)� f(gh; kl)� '(gh)((f(k; l))]
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The elements in brackets are O 2 Z(A); so they commute with any of the single
elements of A in the expression, so we get:

f(g; h) + '(gh)(f(k; l))� f(g; h) + '(g)(f(h; kl))� '(g)(f(hk; l)) +
['(g)f(hk; l) + f(g; hkl)� f(ghk; l))� f(g; hk)] + f(g; hk)
�f(gh; k) + [f(gh; k) + f(ghk; l)� f(gh; kl)� '(gh)((f(k; l))] + f(gh; kl)� f(g; hkl)� '(g)(f(h; kl))

= f(g; h) + '(gh)(f(k; l))� f(g; h) + '(g)(f(h; kl)) + f(g; hkl)� f(ghk; l)� f(g; hk)
+f(g; hk) + f(ghk; l)� f(gh; kl)� '(gh)((f(k; l)) + f(gh; kl)� f(g; hkl)� '(g)(f(h; kl))

= f(g; h) + '(gh)(f(k; l))� f(g; h) + f'(g)(f(h; kl)) + f(g; hkl)� f(gh; kl)g � '(gh)((f(k; l))
+ ff(gh; kl)� f(g; hkl)� '(g)(f(h; kl))g

= f(g; h) + '(gh)(f(k; l))� f(g; h) +O(g; h; kl) + f(g; h)� '(gh)((f(k; l))� f(g; h)�O(g; h; kl)
= f(g; h) + '(gh)(f(k; l))� f(g; h) + f(g; h)� '(gh)((f(k; l))� f(g; h)�O(g; h; kl) +O(g; h; kl) = 0

�

Theorem 8.6. An abstract kernel (A;G; �) has an extension if and only if one of
its obstructions is equal to 0:

Proof. (=If O = 0; then we get the associativity condition

'(g)f(h; k) + f(g; hk) = f(g; h) + f(gh; k)

and we build the crossed product extension as in (8.3).
=) By choosing [1] = 0; we get '(1) = 1; and using Proposition 8.3, we get

'(g)(f(h; k)) + f(g; hk)� f(gh; k)� f(g; h) = 0 =) O =0:

�

Lemma 8.7. Given (A;G; �): Fix '(g) 2 �(g): If we change f to another function
f
0
that satis�es

0 = '(g)(f(h; k)) + f(g; hk)� f(gh; k)� f(g; h)
'(g)'(h) = i (f(g; h))'(gh)

then we are replacing O by a cohomologous cocycle. By suitably changing f; O may
be replaced by any cohomologous cocycle.

Proof. We choose another element f
0
(g; h) 2 A such that

'(g)'(h)'�1(gh) = i (f(g; h)) = i (f
0
(g; h)) =) f

0
(g; h)� f(g; h) 2 ker i = Z(A)

f
0
(g; h)� f(g; h) = s(g; h) () f

0
(g; h) = s(g; h) + f(g; h)

for some normalized function s : G � G �! Z(A) (since we chose f; f
0
to be

normalized): So we may look at s as a 2-cochain of the bar resolution of G with
coe¢ cients in Z(A): Actually, it is a 2-cocycle:

�2s(g; h; k) = gs(h; k)� s(gh; k) + s(g; hk)� s(g; h) = 0

gs(h; k) :

= '(g)(f
0
(h; k)� f(h; k)) = O+f

0
(g; h) + f

0
(gh; k)� f

0
(g; hk) + f(g; hk)� f(gh; k)� f(g; h)�O

= f
0
(g; h) + f

0
(gh; k)� f

0
(g; hk) + f(g; hk)� f(gh; k)� f(g; h)
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�s(gh; k) + s(g; hk)� s(g; h) :

=
h
f(gh; k)� f

0
(gh; k)

i
+
h
f
0
(g; hk)� f(g; hk)

i
+
h
f(g; h)� f

0
(g; h)

i
Use that the elements in the brackets commute with all f; f

0
and get:h

f(g; h)� f
0
(g; h)

i
+ f

0
(g; h) + f

0
(gh; k)� f

0
(g; hk) +

h
f
0
(g; hk)� f(g; hk)

i
+ f(g; hk)

�f(gh; k) +
h
f(gh; k)� f

0
(gh; k)

i
� f(g; h)

= f(g; h) + f
0
(gh; k)� f(g; hk) + f(g; hk)� f

0
(gh; k)� f(g; h) = 0

Further,

'(g)f
0
(h; k) + f

0
(g; hk) = O

0
(g; h; k) + f

0
(g; h) + f

0
(gh; k)

'(g) [s(h; k) + f(g; h)] + s(g; hk) + f(g; hk) = O
0
(g; h; k) + s(g; h) + f(g; h) + s(g; hk) + f(g; hk)

'(g) [f(g; h) + s(g; h)] + f(g; hk) + s(g; hk) = O
0
(g; h; k) + s(g; h) + s(g; hk) + f(g; h) + f(g; hk)

'(g)f(g; h) + f(g; hk) + '(g)s(g; h) + s(g; hk) = O
0
(g; h; k) + s(g; h) + s(g; hk) + f(g; h) + f(g; hk)

So

'(g)f(g; h)+f(g; hk) = (O
0
(g; h; k)�gs(g; h)+s(gh; k)�s(g; hk)+s(g; h))+f(g; h)+f(g; hk)

O
0
(g; h; k)� gs(g; h) + s(gh; k)� s(g; hk) + s(g; h) = O(g; h; k)

O
0
(g; h; k) = O(g; h; k) + �3s(g; h; k)

Thus we have replaced O by O0
; a cohomologous cocycle. As we may choose

any normalized 2-cochain s; we reach any cohomologous cocycle by de�nition of
cohomologous cocycles. �

Lemma 8.8. A change in the choice of the automorphisms '(g) may be followed
by a the choice of such an f such that the obstruction remains unchanged.

Proof. Change '(g) to '
0
(g) such that '

0
(1) = 1 in �(g). Then their di¤erence is

an inner automorphism of A

'
0
(g)(a) = (g) + '(g)(a)� (g)

where  : G �! A is a function. Calculate '
0
(g)('

0
(h)(a)) :

= '
0
(g) [(h) + '(h)(a)� (h)]

= (g) + '(g) [(h) + '(h)(a)� (h)]� (g)
= (g) + '(g)((h)) + '(g)'(h)(a)� '(g)((h))� (g)
= (g) + '(g)((h)) + f(g; h) + '(gh)(a)� f(g; h)� '(g)((h))� (g)
= (g) + '(g)((h)) + f(g; h)� (gh) + '

0
(gh)(a) + (gh)� f(g; h)� '(g)((h))� (g)

= [(g) + '(g)((h)) + f(g; h)� (gh)] + '
0
(gh)(a)� [(g) + '(g)((h)) + f(g; h)� (gh)]

Denote the element of A in the brackets as

f
0
(g; h) = (g)+'(g)((h))+f(g; h)�(gh) =) '

0
(g)'

0
(h) = i (f

0
(g; h))'

0
(gh)

This gives

'
0
(g)f

0
(h; k) + f

0
(g; hk) = O

0
(g; h; k) + f

0
(g; h) + f

0
(gh; k)
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Left side gives:

= (g) + '(g)((h)) + f(g; h) + '(gh)((k))� f(g; h) + '(g)(f(h; k))� '(g)((hk))� (g)
+(g) + '(g)((hk)) + f(g; hk)� (ghk)

= (g) + '(g)((h)) + f(g; h) + '(gh)((k))� f(g; h) + '(g)(f(h; k)) + f(g; hk)� (ghk)
= O �O + (g) + '(g)((h)) + f(g; h) + '(gh)((k))� f(g; h) + '(g)(f(h; k)) + f(g; hk)
�(ghk)

= O + ((g) + '(g)((h)) + f(g; h))� ob+ '(gh)((k))� f(g; h) + '(g)(f(h; k)) + f(g; hk)
�(ghk)

= O + f
0
(g; h) + (gh)� ob+ '(gh)((k))� f(g; h) + '(g)(f(h; k)) + f(g; hk)� (ghk)

= O + f
0
(g; h) + (gh) + '(gh)((k))�O � f(g; h) + '(g)(f(h; k)) + f(g; hk)� (ghk)

= O + f
0
(g; h) + (gh) + '(gh)((k))� f(g; h) + '(g)(f(h; k)) + f(g; hk)� (f(g; h) + f(gh; k))

+(f(g; h) + f(gh; k))�O � (ghk)
= O + f

0
(g; h) + (gh) + '(gh)((k))� f(g; h)

+O �O + (f(g; h) + f(gh; k))� (ghk)
= O + f

0
(g; h) + (gh) + '(gh)((h)) + f(gh; k)� (ghk) = O(g; h; k) + f

0
(g; h) + f

0
(gh; k)

so the new obstruction is identical to the old one. �
Theorem 8.9. Fix an abstract kernel (A;G; �): The map

obs : (A;G; �) �! H3(G;Z(A))
obs(O) = O

where O is any one of its obstructions, is well-de�ned. (A;G; �) has an extension
if and only if O = 0:

Proof. By Lemma 8.7, all obstructions are (cohomologous, i.e.) equal modulo 3-
coboundaries, so the map gives an unique element in H3(G;Z(A)):
If O = 0, then there exists a 3-cochain l such that O = �3l: Using the same

lemma, there exists such a shift in f , f
0
; such that O is replaced by a cohomologous

cocycle, 0: Then, by Theorem 8.6, there exists an extension corresponding to that
kernel.
The other way, the kernel has an extension if and only if one of its obstructions

is cochain identical to 0; and since the map is well-de�ned, we get O = 0: �
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Part 3. Calculations

9. Abelian extensions

Lemma 9.1. EZ(Zm; A) ' A=mA; m is a positive integer.

Proof. Since EZ(Zm; A) ' Ext1Z(Zm; A); we pick the projective resolution of Zn :

0 �! Z i�! Z ��! Zm �! 0

i(1) = 1; �(1) = 1modm

Any 1-cocycle f : Z �! A is a group homomorphism, thus it is totally described
by f(1) = a; a 2 A: Through the group homomorphism � : Z1 �! A de�ned as
�(f) = f(1); we get that Z1 ' A: The 1-coboundaries g : Z �! A are de�nes
by gi(1) = g(m) = mg(1) = ma; a 2 A: Through that group homomorphism
� : B1 �! A de�nes as �(g) = mg(1); we get that B1 ' mA: Hence EZ(Zm; A) '
Z1=B1 ' A=mA: �

Proposition 9.2. Fix the ring Z: Let p; q be distinct primes, i; j positive integers.
EZ(Z;Z) = EZ(Z;Zpi) = EZ(Zpi ;Zqj ) = 0

Proof. Since Z is a free Z-module, hence projective, Ext1Z(Z;Z) = 0 ' EZ(Z;Z):
So all extensions of Z by Z are equivalent to the direct sum extension. Also, all
extensions of Zpi by Z are equivalent to the direct sum extension. EZ(Zpi ;Zqj ) =
Zqj=piZqj ' Zqj=Zqj = 0 since gcd(pi; qj) = gcd(p; q) = 1: �

Theorem 9.3. a) EZ(Zpi ;Z) ' Zpi ;
b) Given a 2 Zpi , the corresponding extension has the form

0 �! Z �! Z� Zpi �! Zpi �! 0

if a = 0, the form
0 �! Z �! Z �! Zpi �! 0

if gcd (a; p) = 1, and the form

0 �! Z �! Z� Zpk �! Zpi �! 0

if a = bpk, gcd(b; p) = 1.

Proof. a) By Lemma 9.1, EZ(Zpi ;Z) ' Z=piZ � Zpi:
b) From Lemma 5.12, we obtain the short exact sequence

0 �! Z �! Z� Z=


(a;�pi)

�
�! Zpi �! 0

In the middle module we get the relations matrix
�

a
�pi

�
: Suppose

gcd(a;�pi) = pk () a = bpk; p - b
for some k 2 f0; 1; :::; ig; so our middle module is isomorphic to Z or Z � Zpk : In
the �rst case, we have the extensions

0 �! Z 1�!pi�! Z 1�!g�! Zpi �! 0

where g is any generator of Zpi: There are pi�1(p� 1) = pi� pi�1 such distinct g0s:
For the second case,we must de�ne the homomorphisms in

0 �! Z 1�!(c;d)�! Z� Zpk
(x;y)�!ux+vy�! Zpi �! 0
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Look at the relations matrix
�
0 c
pk d

�
:We require that by a number of elementary

row/ column operations, we can transform the proceeding matrix to
�
1 0
0 pi

�
;

which can be done according to ([4] Ex.9:15). This is equivalent to requiring

gcd(c; d; pk) = 1; cpk = pi =) c = pi�k; p 6j d

i.e. d is a generator g of Zpk so we have pk�1(p � 1) choices for d: We want
that upi�k + vg � 0mod pi: Pick u = g; v = �pi�k: Since gcd(u; v) = 1; it is an
epimorphism. The kernel of this epimorphism consists of those (x; y) such that

gx� pi�ky � 0mod pi =) pi�k j x; x = lpi�k =) y � glmod pk

i.e. (pi�kl; gl) = l(pi�k; g): If we sum the number of extensions
Pi

k=1 p
k�1(p�1) =Pi�2

m=0(p�1)pm =
(p�1)(1�pi�1)

(1�p) = pi�1�1: Together with the direct sum extension

0 �! Z 1�!(1;0)�! Z� Zpi
(a;b)�!b�! Zpi �! 0

so we have described all equivalence classes in EZ(Zpi ;Z): �

Theorem 9.4. a) EZ(Zpi ;Zpj ) ' Zgcd(pi;pj) = Zpmin(i;j) ;
b) Given a 2 Zpi , the corresponding extension has the form

0 �! Zpj �! Zpj � Zpi �! Zpi �! 0

if a = 0, the form
0 �! Zpj �! Zpi+j �! Zpi �! 0

if gcd (a; p) = 1, and the form

0 �! Zpj �! Zpi+j�k � Zpk �! Zpi �! 0

if a = bpk, gcd(b; p) = 1.

Proof. a) Using Lemma 9.1 we get

EZ(Zpi ;Zpj ) '
�
Zpj=piZpj ' Zpj=Zpj�i ' Zpi i < j

Zpj=piZpj ' Zpj i � j ' Zgcd(pi;pj)

b) As in Lemma 5.12, we obtain

0 �! Zpj �! Zpj � Z=

�
a;�pi

��
�! Zpi �! 0

We can represent the Z-module Zpj � Z=


(a;�pi)

�
as a matrix of relations M =�

pj a
0 �pi

�
: By ([4] Ex.9:15), we can, by a series of row and column transforma-

tions, transform the matrix to

M
0
=

��
u1 0
0 u2

�
; u1 = d1; u2 =

d2
d1

where di is the gcd of the minors of size i in M; i.e.,

d1 = gcd(pj ; a;�pi) = pk; a = bpk; p . b; k 2 f0; 1; ::;min(i; j)g

d2 =
gcd(�pipj)

pk
= �pi+j�k
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We get the relations matrixM
0
=

��
pk 0
0 �pi+j�k

�
which gives the [min(i; j) + 1]

non- isomorphic middle modules Zpk � Zpi+j�k ; k 2 f0; 1; ::;min(i; j)g: Let�s ex-
plicitly de�ne the maps in the short exact sequence:

0 �! Zpj
1�!(c;d)�! Zpk � Zpi+j�k

(x;y)�!(ux+vy)�! Zpi �! 0

We have the relations matrix
�
pk 0 c
0 pi+j�k d

�
which we need to be transformed

to
�
1 0 0
0 pi 0

�
by elementary row/ column operations. This means that gcd(c; pk) =

1; gcd(d; pi+j�k) = pi; i.e. p . c and d j pi+j�k: Since any element of Zpk has or-
der a divisor of pj ; we can take c = g; where g is any generator of Zpk : We have
pk�1(p � 1) many distinct choices for c: Since pjd = spi+j�k; for some integer s;
we pick d = pi�k: In de�ning the epimorphism, we wish that ug + pi�k = wpi; for
some integer w: Choose u = pi�k; v = �g: Since gcd(u; v) = 1; we have de�ned an
epimorphism (x; y) �!

�
pi�kx� gy

�
mod pi: Look at�

pi�kx� gy
�

� 0mod pi () pi�k j gy () pi�k j y; y = lpi�k =) pi�kx� glpi�k � 0mod pi

=) x � glmod pk =) (x; y) = (gl; lpi�k) = l(g; pi�k)

So the sequence is exact. We have found, in total

min(i;j)X
k=1

pk�1(p�1) =
min(i;j)�1X

m=0

pm(p�1) = (p�1)(1� p
min(i;j)�1)

(1� p) = pmin(i;j)�1�1

extensions. When k = 0 we have the short exact sequence

0 �! Zpj
1�!c�! Zpi+j

x�!ux�! Zpi �! 0

c should be an element of order pj ; so we pick c = pi: Let�s �nd the epimorphism.
We want that upi � 0mod pi: Pick u = g; where g is any generator of Zpmin(i;j) ;
so we have pmin(i;j) � pmin(i;j)�1 choices for g: Altogether we have pmin(i;j) � 1
extensions, and together with the direct sum extensions, we have found all. �

Lemma 9.5. Let G be the �nite cyclic group of order m; with generator x. Fix the
ring ZG:

:::
N��! ZG D��! ZG N��! ZG D��! ZG "�! Z �! 0

is a free resolution of Ztriv; with the homomorphisms given by

"(
m�1P
i=0

aix
i) =

m�1X
i=0

ai; D�u = Du; D = x� 1; N�u = Nu; N = 1+ x+ :::+ xm�1

Proof. Look at Example 10.5 in the next subsection. �

Apply HomZG(�; A); for an arbitrary ZG-module A; :and get the left complex

0 �! HomZG(Z; A)
"��! HomZG(ZG;A)

D�
�! HomZG(ZG;A)

N�
�! HomZG(ZG;A)

D�
�! ::

which is exact at the �rst two non-zero terms. Since kerD� = fa j ga = ag = AG;
and HomZG(ZG;A) ' A as abelian groups, we get

0 �! AG
i�! A

D�
�! A

N�
�! A

D�
�! :::; i(a) = a
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D�a = D�f(1) = f(D�(1)) = f(D � 1) = f(t� 1) = tf(1)� f(1) = ta� a

N�a = N�(f(1)) = f(N�(1)) = f(1 + t+ ::tm�1) = f(1) + tf(1) + :::+ tm�1f(1) =
m�1X
i=0

tia

This gives:

Theorem 9.6. Let G = hxi be a �nite cyclic group of order m; with generator xt:
For any G-module A; we have the following cohomology groups:

H0(G;A) = fa 2 A j ta = ag
H2n+1(G;A) = fa 2 A j N�a = 0g=D�A;n 2 Z�0
H2n(G;A) = AG=N�A;n 2 Z>0:

Corollary 9.7. Let G = hxi be a �nite cyclic group of order m; with generator x:
For any trivial G-module A we have the following cohomology groups:

H0(G;A) = A

H2n+1(G;A) = fa 2 A j ma = 0g; n 2 Z�0
H2n(G;A) = A=mA;n 2 Z>0:

10. Results connecting abelian extensions to non-abelian extensions

10.1. EZ(G;A) is a subgroup of E(G;Atrivial).

Theorem 10.1. There exists an injective group homomorphism from EZ(G;A) to
E(G;Atrivial):

Proof. Remember that EZ(G;A) ' Ext1Z(G;A): Let Z[G] denote the factor group
of the free abelian group on [g]; g 2 G; on the subgroup generated by [1]; and
Z[G�G] the factor group of the free abelian group on [g; h]; g; h 2 G; modulo the
subgroup generated by [1; h]; h 2 G and [g; 1]; g 2 G; and so on. We can construct
the projective resolution

::: �! Z[G�G�G]� Z[G�G]� F d1�! Z[G�G] d0�! Z[G] "�! G �! 1

"([g]) = g

d0([g; h]) = [g] + [h]� [gh]
d1([g; h; k]) = [h; k]� [gh; k] + [g; hk]� [g; h]
d1([g; h]) = [g; h]� [h; g]

By the universal property of free modules, "; d0; d1 are Z-module homomorphisms.
F is a free abelian group that is attached to make the sequence exact.

"d0([g; h]) = "([g] + [h]� [gh]) = gh(gh)�1 = 1

d0(d1([g; h; k])) = d0([h; k]� [gh; k] + [g; hk]� [g; h])
= [h] + [k]� [hk]� [gh]� [k] + [ghk] + [g] + [hk]� [ghk]� [g]� [h] + [gh] = 0

d0(d1([g; h])) = d0([g; h]� [h; g]) = [g] + [h]� [gh]� [h]� [g] + [hg]
= �[gh] + [hg] = �[gh] + [gh] = 0

We have exactness at Z[G]. Any a 2 ker " has the form

a = a1[g1] + a2[g2] + ::+ ar[gr]; g
a1
1 g

a2
2 ::g

ar
r = 1
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Claim that the kernel is generated by

hs; gi = s[g]� [gs]
hg; hi = [g] + [h]� [gh]; s = f0; 1; ::; ord(g)g; g; h 2 Z

which are both elements of Z [G] :Now

a
0
= a� ha1; gi � ha2; gi � :::� har; gi = [ga11 ] + [g

a2
2 ] + :::+ [g

ar
r ]

a
00

= a
0
� hga11 ; g

a2
2 i = [g

a1
1 g

a2
2 ] + [g

a3
3 ] + :::+ [g

ar
r ]

a
000

= a
00
� hga11 g

a2
2 ; g

a3
3 i = [g

a1
1 g

a2
2 g

a3
3 ] + :::+ [g

ar
r ]

Continue in this manner and get that a minus a linear combination of hs; gi and
hg; hi is equal to

[ga11 g
a2
2 :::g

ar
r ] = [1] = 0

Hence the sequence is exact at Z[G]: We do not need to continue the projective
resolution to the left, we just know it can be done. We obtain an element of
EZ(G;A) by picking an element f 2 Ext1Z(G;A) and taking pushout of (d0; f);
as in Lemma 5.12. We have found a factor system for the extension: '(g; h) =
f([g; h]) 2 A: Then

'(g; h)� '(h; g) = f([g; h])� f([h; g]) = f([g; h]� [h; g]) = fd1([g; h]) = 0 =) '(g; h) = '(h; g)

fd1([g; h; k]) = f([h; k])� f([gh; k]) + f([g; hk])� f([g; h]) = 0

=) f([g; h]) = f([h; k])�f([gh; k])+f([g; hk]) () '(g; h) = '(h; k)�'(gh; k)+'(g; hk)
So ' 2 Z2(G;A); :' is a 2-cocycle. De�ne the map � : Ext1Z(G;A) �! H2(G;A)
as �(f) = ': It is well-de�ned. Fix the above resolution over Z: Given two cochain
homologous elements f; l 2 HomZ(P1; A); their di¤erence is a 0-cochain,

f([g; h])� l([g; h]) = s([g]) + s([h])� s([gh]); s 2 HomZ(P0; A)

Let  (g; h) = l([g; h]) 2 A be the factor system in the extension given by pushout of
(l; d0): By the universal property of free modules, there exists a � 2 HomZG(F1; A);
where F1 is the projective module in the normalized bar resolution such that

�(g) = s([g])

Then we have

'(g; h)�  (g; h) = �(g) + �(h)� �(gh) = �d1([g; h]) = d
�
1�([g; h])

So � maps the cohomologous chains to the same element in H2(G;A): Suppose
�(f) = 0 :

'(g; h) = d�1�([g; h]) = �d1([g; h]) = �(g) + �(h)� �(gh)

By the universal property of free modules, there exists an s 2 HomZ(P0; A) de�ned
as

s([g]) = �(g)

This gives

'(g; h) = f([g; h]) = s([g]) + s([h])� s([gh]) = s([g] + [h]� [gh])
= s(d1([g; h])) = d

�
1s([g; h])
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So � is a monomorphism. � is not (in general) an epimorphism since in H2(G;A);
there is no condition that the cocycles should be symmetric:

'(g; h) = '(h; k)� '(gh; k) + '(g; hk)
q

'(h; g) = '(g; l)� '(hg; l) + '(h; gl)

We have the isomorphism � : H2(G;A) �! E(G;A) given by cocycles in H2(G;A)
give extension with that cocycle as factor set. Hence we have a monomorphism
EZ(G;A) �! E(G;A): �

10.2. The case G is �nite cyclic.

Theorem 10.2. EZ(Zm; A) ' E(Zm; A) as abelian groups.

Proof. Wemust show that the compositionA=mA ' Ext1Z(Zm; A) ,! Ext2Z[Zm](Z
trivial; A) '

A=mA gives identity. Start with Ext1Z(Zm; A): Fix the projective resolution of Zm

0 �! Z i�! Z ��! Zm �! 0

i(1) = m; �(1) = 1

By the comparison lemma we have

Z
i - Z

�- Zm

:::Z[Zm�Zm�Zm]�F
d1- Z[Zm�Zm]

f1
6

d0- Z[Zm]

f0
6

�- Zm

1Zm
6

Set [i] = [j] () i � jmodm:

�f0([j]) = �([j]) = j

f0d0([j; k]) = f0([j] + [k]� [j + k]) = if1([j; k]) = mf1([j; k])

f1(d1([j; k; l])) = f1([k; l]� [j + k; l] + [j; k + l]� [j; k]) = 0

So let�s de�ne such a family ffigi=0;1 :

f0[j] = j =) j+k�(j+k)modm =

�
0 j + k < m
m j + k � m =) f1([j; k]) =

�
0 j + k < m
1 j + k � m

Let a represent a 2 A=mA:

'(j; k) := f1([j; k])a =

�
0 j + k < m
a j + k � m

is a 1-cocycle:

'd1([j; k; l]) = '([k; l]� [j + k; l] + [j; k + l]� [j; k])
= f1([k; l])a� f1([j + k; l])a+ f1([j; k + l])a� f1([j; k])a
= f1([k; l]� [j + k; l] + [j; k + l]� [j; k])a = f1d1([j; k; l])a = 0a = 0

and a 2-cocycle in H2(Zm; A): For the E(Zm; A); we have the speci�c resolution of
the �nite cyclic group Zm and the bar resolution, so there exists a lifting g such
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that the diagram

:::Z[Zm]
D�- Z[Zm]

N�- Z[Zm]
D�- Z[Zm]

"- Z

::: F3

g3 6
�2- F2

g2 6
�1- F1

g1 6
�0- F0

g0 6
�- Z

1Zm
6

commutes. Set hji = hki () j � kmodm:

N�(hji) = (h0i+ h1i+ :::+ hm� 1i) hji = hji+ hj + 1i+ :::+ hj +m� 1i
= h0i+ h1i+ :::+ hm� 1i ; independent of j 2 Zm:

D�(hji) = (h1i � h0i) hji = hj + 1i � hji

Let�s de�ne the g0; g1; g2 from the commutativity conditions:

"(g0[]) = �([]) = [] =) g0([]) = []

g0(�0[j]) = g0(hji []� []) = hji g0([])� g0([0]) = hji []� [] = hji � h0i

D�(g1([j]) = D�

0@X
j2Zm

c(j) hji

1A =
X
j2Zm

c(j)D�(hji) =
X
j2Zm

c(j) (hj + 1i � hji) � hji � h0i ; c(j) 2 Z

=) g1([j]) = h0i+ h1i+ :::+ hj � 1i may be chosen

g1(�1([j; k])) = g1(hji [k]� [j + k] + [j])
hji g1([k]) = hji (h0i+ h1i+ :::+ hk � 1i)

(1) = hji+ hj + 1i+ :::+ hj + k � 1i
�g1([j + k]) = �(h0i+ h1i+ :::+ hj + k � 1i)

(2) = �h0i � h1i � :::� hj + k � 1i
(3) g1([j]) = h0i+ h1i+ :::+ hj � 1i

If j + k < m; we get from [(3) + (1)] + (2) that

g1�1([j; k]) = h0i+h1i+:::+hj � 1i+hji+hj + 1i+:::+hj + k � 1i�h0i�h1i�:::�hj + k � 1i = 0

Suppose j + k � m: Let j + k = m+ s; s 2 Zm:

(1) hji+ hj + 1i+ :::+ hj + k � 1i
= hji+ hj + 1i+ ::+ hm� 1i+ h0i+ h1i+ ::+ hs� 1i

(2) � h0i � h1i � :::� hs� 1i
(3) h0i+ h1i+ :::+ hj � 1i

Take [(3) + (1)] + (2) :

h0i+ h1i+ :::+ hj � 1i+ hji+ hj + 1i+ :::+ hm� 1i+ h0i+ h1i+ ::+ hs� 1i
� h0i � h1i � :::� hs� 1i

= h0i+ h1i+ :::+ hj � 1i+ hji+ hj + 1i+ :::+ hm� 1i = h0i+ h1i+ :::+ hm� 1i � N�(h0i)

=) g2([j; k]) =

�
0 j + k < m
h0i j + k � m
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Since

N�g2�2 = (N�D�) g3 = 0 =) g2�2 2 kerN� = ImD�

g2�2([j; k; l]) = D�(b); b =
X
i2Zm

a(i) hii 2 Z[Zm]

=
X
i2Zm

a(i) (hi+ 1i � hii) =
X
i2Zm

a(i) hi+ 1i �
X
i2Zm

a(i) hii

Then for any Z[Zm]-module homomorphism h(hji) = a;8i 2 Zm;de�ne:

 (j; k) = h(g2([j; k])) =

�
h(0) j + k < m
h(h0i) j + k � m =

�
0 j + k < m
a j + k � m

 is a 2-cocycle:

 �2([j; k; l]) = hg2�2([j; k; l]) = h(D�(b)) = h

 X
i2Zm

a(i) hi+ 1i �
X
i2Zm

a(i) hii
!

=
X
i2Zm

a(i)h (hi+ 1i)�
X
i2Zm

a(i)h(hii) = 0

('�  )([i; j]) =

�
0� 0 = 0 j + k < m
a� a = 0 j + k � m

so ' and  are cochain cohomologous, and give the equivalent extensions in E(G;A):
So EZ(Zm; A) ' E(Zm; A): �

10.3. The case G is Zp � Zp.

Lemma 10.3. Let R be a ring, and let P =
�
P�

r�! C
�
be a complex over a

(left or right) R-module C. We consider C as a trivial complex concentrated in
dimension 0. All the homomorphisms below are R-module homomorphisms.
a) For P being a resolution, it is su¢ cient that there exist a homomorphism

q : C �! P0

and a homotopy
Sn : Pn �! Pn+1; n � 0;

such that

rq = 1C ;

S : 1P� w qr:

b) If both Pn, n � 0, and C, are projective then the existence of such a q and
an S is a necessary condition.

Remark 10.4. In other words, the lemma above means: a) if P� �! C is a chain
homotopy equivalence, then P� �! C is a resolution; b) If P� �! C is a projective
resolution, and C is projective, then P� �! C is a chain homotopy equivalence.

Proof. a) rq = 1C implies that r is an epimorphism. Let now x 2 ker r � P0. It
follows that

x = x� qr (x) = (1� qr) (x) = dS (x) ;

i.e. x is a boundary. Let x 2 ker d � Pn, n > 0. It follows that
x = (1) (x) = (dS + Sd) (x) = dS (x) ;
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i.e. x is a boundary.
b) Since C is projective, and r is an epimorphism, there exists a q : P0 �! C

with rq = 1C . Consider now two chain transformations:

1; qr : P� �! P�:

Since r (qr) = r, both are liftings of the identity homomorphism C �! C. It
follows immediately from Lemma 1.22 that 1 and qr are chain homotopic, via some
homotopy S. �

Example 10.5. Let G be a cyclic group with m elements. The group ring R = ZG
is isomorphic to Z[x]= hxm � 1i. The following is a projective resolution of Ztriv
(see [3], Theorem IV.7.1):

::: �! R �! R �! R �! R
r�! Ztriv �! 0

where r (x) = 1, and where ds : Ps+1 �! Ps is the multiplication by x � 1 when s
is even, and the multiplication by

Nx =
xm � 1
x� 1 = 1 + x+ x2 + :::+ xm�1

when s is odd. Consider the resolution above as a Z-module resolution. All abelian
groups involved are free, Ztriv with one generator 1, and R with m generators
1; x; x2; :::; xm�1. Lemma 10.3b) implies that there exist a group homomorphism
q : Ztriv �! R, and a homotopy (over Z)

Sn : R �! R;n � 0;
such that

rq = 1Ztriv ;

1P0 � qr = dS;

1Pn = dS + Sd; n > 0:

However, we can construct q and S independently of [3]. It will follow from Lemma
10.3a), applied to Z-modules, that the sequence above is indeed a resolution of Ztriv.
Let q (1) = 1 and let

S2k
�
xi
�
=

xi � 1
x� 1 =

�
1 + x+ x2 + :::+ xi�1 if i > 0

0 if i = 0
; k � 0;

S2k+1
�
xi
�
=

�
1 if i = m� 1
0 if i 6= m� 1 ; k � 0:

Then:

rq (1) = r (1) = 1 =) rq = 1Ztriv ;

(1� qr)
�
xi
�
= xi � 1 = (x� 1) x

i�1

x� 1 = dS
�
xi
�
; xi 2 R = P0;

dS
�
xi
�
+ Sd

�
xi
�
=

(
xm�1
x�1 �

xm�1�1
x�1 = xm�xm�1

x�1 = xm�1 if i = m� 1
xi+1

x�1 �
xi

x�1 =
xi+1�xi
x�1 = xi if i 6= m� 1

=

= xi = 1
�
xi
�
; xi 2 R = P2k+1;

dS
�
xi
�
+ Sd

�
xi
�
= (x� 1) x

i � 1
x� 1 + 1 = xi = 1

�
xi
�
; xi 2 R = P2k; k > 0:
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De�nition 10.6. Consider two positive complexes (P�; d�) of right R-modules and
(Q�; ��) of left R-modules. Let Vst = Ps 
R Qt. We hope that no confusion arises
if we denote by the same letters

dst : = ds 
 1Qt
: Vst �! Vs�1;t;

�st : = (�1)s 1Ps 
 �t : Vst �! Vs;t�1:

Clearly dd = 0, �� = 0, d�+�d = 0, even for s = 0 or t = 0, since we have assumed
that d�1 = 0 and ��1 = 0.
Let

Wm =
mM
s=0

Vs;m�s;

and let
Dm :Wm+1 �!Wm;m � 0;

be given by

D (w) = dw + �w;

w 2 Vs;m�s �Wm;

dw 2 Vs�1;m�s �Wm�1;

�w 2 Vs;m�1�s �Wm�1:

It follows that
DD = dd+ d� + �d+ �� = 0 + 0 + 0 = 0;

and (W�; D�) is a complex. That complex is called the tensor product of complexes
P� and Q�:

W� := P� 
R Q�:

Remark 10.7. If R is commutative, then Ps
RQt become R-modules (projective if
Ps and Qt were projective). If R is arbitrary, then we can only claim that Ps
RQt
are Z-modules.

Remark 10.8. We will write 
 instead of 
R when no confusion arises.

Proposition 10.9. Let P� and U� be positive complexes of right R-modules, and
let Q� and V� be positive complexes of left R-modules. Let further

f; f 0 : P� �! U�;

g; g0 : Q� �! V�;

be pairwise homotopic chain transformations:

S : f w f 0; T : g w g0:

Then the transformations f 
 g and f 0 
 g0 are homotopic.

Proof. Roughly speaking, S 
 g gives a homotopy between f 
 g and f 0 
 g, while
f 0
T gives a homotopy between f 0
g and f 0
g0. The desired homotopy between
f 
 g and f 0 
 g0 is given by S 
 g + f 0 
 T . The only problem is to choose the
correct signs.
Consider �rst f 
 g and f 0 
 g. For x
 y 2 Ps 
Qt, let

A (x
 y) = S (x)
 g (y) :



EXTENSIONS OF GROUPS AND MODULES 83

Then

(f 
 g � f 0 
 g) (x
 y)
= (f (x)� f 0 (x))
 g (y) = ((dS + Sd) (x))
 g (y) ;

while

(DA+AD) (x
 y)
= D (S (x)
 g (y)) +A (dx
 y + (�1)s x
 �y) =
= dS (x)
 g (y) + S (x)
 (�1)s+1 �g (y) + Sd (x)
 g (y) + (�1)s S (x)
 g� (y) =
= ((dS + Sd) (x))
 g (y) ;

since �g = g�. Therefore, A gives a homotopy between f 
 g and f 0 
 g.
Analogously, let

B (x
 y) = (�1)s f 0 (x)
 T (y) :
Then

(f 0 
 g � f 0 
 g0) (x
 y)
= f 0 (x)
 (g (y)� g0 (y)) = f 0 (x)
 ((dT + Td) y) ;

while

(DB +BD) (x
 y)
= (�1)sD (f 0 (x)
 T (y)) +B (dx
 y + (�1)s x
 �y) =
= (�1)s df 0 (x)
 T (y) + f 0 (x)
 �T (y) + (�1)s�1 f 0d (x)
 T (y) + f 0 (x)
 T� (y) =
= f 0 (x)
 ((dT + Td) y) ;

since df 0 = f�0d. Therefore, B gives a homotopy between f 0 
 g and f 0 
 g0.
Finally, A+B gives a homotopy between f 
 g and f 0 
 g0. �

Corollary 10.10. If, in the conditions of the above Proposition, f and g are ho-
motopy equivalences, then

f 
R g : P� 
R Q� �! U� 
R V�
is a homotopy equivalence.

Proof. It follows from the Proposition, that�
f�1 
 g�1

�
(f 
 g) = f�1f 
 g�1g w 1P�
Q� ;

(f 
 g)
�
f�1 
 g�1

�
= ff�1 
 gg�1 w 1U�
V� ;

�

Theorem 10.11. (simpli�ed Künneth formula) Let C be a projective right R-
module, D be a projective left R-module, and let e : (P�; d�) �! C and " :
(Q�; ��) �! D be projective resolutions. Then

e
R " : (P�; d�)
R (Q�; ��) �! C 
R D
is a resolution.

Proof. Due to Lemma 10.3b), e : P� �! C and " : Q� �! D are homotopy
equivalences. Corollary 10.10 guarantees that e
R " is a homotopy equivalence as
well. Due to Lemma 10.3a), e
 " is a resolution. �
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Lemma 10.12. Let G be a cyclic group with m elements, and H be cyclic with n
elements. Then

R = Z [G�H] � Z[x; y]= hxm � 1; yn � 1i :

Consider the following complex (U�; d�) of free R-modules ([i;m� i] are symbolic
generators for free modules):

Um =
mM
i=0

R [i;m� i] ;

d ([s;m� s]) =

8>><>>:
2664
(x� 1) [s� 1;m� s]� (y � 1) [s;m� s� 1] if s and m� s odd
Nx [s� 1;m� s] + (y � 1) [s;m� s� 1] if s even and m� s odd
(x� 1) [s� 1;m� s]�Ny [s;m� s� 1] if s odd and m� s even
Nx [s� 1;m� s] +Ny [s;m� s� 1] if s and m� s even

3775
where

Nx =
xm � 1
x� 1 = 1 + x+ x2 + :::+ xm�1;

Ny =
yn � 1
y � 1 = 1 + y + y2 + :::+ yn�1:

Let further � : U0 �! Ztriv be given by � ([0; 0]) = 1. Then

� : U� �! Ztriv

is a projective resolution over R.

Proof. Let
e : P� �! Ztriv

be a projective resolution from Example 10.5. Here

Ps = R1 = Z [G]� Z[x]= hxm � 1i :

Analogously, apply Example 10.5 to the cyclic group H, and obtain a projective
resolution

" : Q� �! Ztriv

where
Qt = R2 = Z [H]� Z[y]= hyn � 1i :

Forget temporarily about G- and H-module structures, and consider the two reso-
lutions as free Z-module resolutions of a free Z-module Ztriv. Using Theorem 10.11,
construct a free Z-module resolution

U� = P� 
Z Q� �! Ztriv:

It is easy to check that this resolution is actually a free resolution over the ring
Z [G�H], because

R1 
Z R2 � Z [G�H]
as abelian groups, while all di¤erentials D� in the complex, as well as the projection
� : U0 �! Ztriv, are in fact G�H-module homomorphisms. �

Lemma 10.13. E(Zp � Zp;Zp) ' Zp � Zp � Zp:
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Proof. By taking HomZ[G�H](�; A) on the projective resolution in Lemma 10.12,
we get

0 �! HomZ[G�H](Ztrivial; A) �! A �! A�A �! A�A�A �! A�A�A�A �! ::

where the di¤erentials are some maps consisting ofD� hgi andN� hgi. When A is the
trivial G�H-module, D� hgi (a) = 0; N� hgi (a) = ord(g)a:When G = H = A = Zp;
we get that N� hgi (a) = 0 2 Zp; so all di¤erentials in between the A0s are the zero
map. Hence, H2(G;A) ' Zp � Zp � Zp: �
Theorem 10.14. The natural homomorphism

EZ(Zp � Zp;Zp) �! E(Zp � Zp;Zp)
is a monomorphism, but not an isomorphism.

Proof. EZ(Zp � Zp;Zp) � Zp � Zp, while E(Zp � Zp;Zp) ' Zp � Zp � Zp. �
Remark 10.15. It is well-known that there are two non-isomorphic non-abelian
groups of order p3. Let us denote them G

�
p3
�
and H

�
p3
�
. The center of both is a

cyclic subgroup with p elements. The group E(Zp�Zp;Zp) consists of p3 elements,
and describes central extensions

0 �! Zp �! E �! Zp � Zp �! 1:

The zero element of E(Zp � Zp;Zp) corresponds to the case E � Zp � Zp � Zp.
Some p2� 1 elements of E(Zp�Zp;Zp) correspond to the case E � Zp�Zp2 . The
remaining p3 � p2 elements are subdivided into two classes, corresponding to the
two cases E � G

�
p3
�
and E � H

�
p3
�
.
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