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resistance; 63% against 
≥2 drug classes
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GT1b/4
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Most patients were treated with the first
generation DAAs
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Highlights Lay summary

� An international cohort of 3,355 patients with

hepatitis C from 22 countries was evaluated for
drug resistance following DAA therapy.

� Nearly all patients harbored drug-resistant variants
after treatment failure, with over 2/3 having resis-
tance against >−2 drug classes.

� Pathways to drug resistance included enrichment
of highly resistant variants and selection of multi-
ple resistant variants.

� Previously unrecognized variants in patients who
failed NS5A inhibitors were identified at high
frequencies.

� Resistance selection was frequent in older people
with cirrhosis and those infected with genotypes
1b and 4 following DAA failure.
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Although direct-acting antiviral medications effec-
tively cure hepatitis C in most patients, sometimes
treatment selects for resistant viruses, causing anti-
viral drugs to be either ineffective or only partially
effective. Multidrug resistance is common in patients
for whom DAA treatment fails. Older patients and
patients with advanced liver diseases are more likely
to select drug-resistant viruses. Collective efforts from
international communities and governments are
needed to develop an optimal approach to managing
drug resistance and preventing the transmission of
resistant viruses.
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Background & Aims: Direct-acting antiviral (DAA) regimens provide a cure in >95% of patients with chronic HCV infection.
However, in some patients in whom therapy fails, resistance-associated substitutions (RASs) can develop, limiting retreat-
ment options and risking onward resistant virus transmission. In this study, we evaluated RAS prevalence and distribution,
including novel NS5A RASs and clinical factors associated with RAS selection, among patients who experienced DAA treat-
ment failure.
Methods: SHARED is an international consortium of clinicians and scientists studying HCV drug resistance. HCV sequence
linked metadata from 3,355 patients were collected from 22 countries. NS3, NS5A, and NS5B RASs in virologic failures,
including novel NS5A substitutions, were examined. Associations of clinical and demographic characteristics with RAS se-
lection were investigated.
Results: The frequency of RASs increased from its natural prevalence following DAA exposure: 37% to 60% in NS3, 29% to 80%
in NS5A, 15% to 22% in NS5B for sofosbuvir, and 24% to 37% in NS5B for dasabuvir. Among 730 virologic failures, most were
treated with first-generation DAAs, 94% had drug resistance in >−1 DAA class: 31% single-class resistance, 42% dual-class
resistance (predominantly against protease and NS5A inhibitors), and 21% triple-class resistance. Distinct patterns contain-
ing >−2 highly resistant RASs were common. New potential NS5A RASs and adaptive changes were identified in genotypes 1a,
3, and 4. Following DAA failure, RAS selection was more frequent in older people with cirrhosis and those infected with
genotypes 1b and 4.
Conclusions: Drug resistance in HCV is frequent after DAA treatment failure. Previously unrecognized substitutions continue
to emerge and remain uncharacterized.
Lay summary: Although direct-acting antiviral medications effectively cure hepatitis C in most patients, sometimes treatment
selects for resistant viruses, causing antiviral drugs to be either ineffective or only partially effective. Multidrug resistance is
common in patients for whom DAA treatment fails. Older patients and patients with advanced liver diseases are more likely to
select drug-resistant viruses. Collective efforts from international communities and governments are needed to develop an
optimal approach to managing drug resistance and preventing the transmission of resistant viruses.
Keywords: RAS; HCV; DAA; virologic failure; NS5A.
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Introduction
The discovery and licensing of direct-acting antiviral (DAA)
agents ushered in a new era of hepatitis C treatment. To date,
over 95% of DAA-treated patients have achieved cure, defined as
a sustained virologic response (SVR).1 Currently, approved regi-
mens for HCV contain a combination of DAAs, namely, NS3
protease inhibitors (PIs), NS5A replication complex inhibitors
(NS5AIs), and NS5B polymerase nucleoside (NI) and non-
nucleoside (NNI) inhibitors. NS5AIs (daclatasvir [DCV], ledi-
pasvir [LDV], elbasvir, and ombitasvir), PIs (simeprevir, grazo-
previr, asunaprevir, and paritaprevir/r), and NNI (dasabuvir
[DSV]) are considered "first-generation" DAAs because their ac-
tivities are restricted to specific genotypes (GTs). NS5AIs
(pibrentasvir [PIB] and velpatasvir [VEL]), PIs (glecaprevir and
voxilaprevir), and an NI (sofosbuvir [SOF]) are pan-genotypic and
referred to as "second-generation" DAAs.

Despite the remarkable progress in therapeutics, the extreme
genetic diversity of HCV and the inability to mount a protective
immune response against it present significant barriers to vaccine
development. Nevertheless, the success of these DAAs has rekin-
dled optimism around the potential for global elimination of HCV,
which will rely on the "Treatment as Prevention" approach in the
absence of an effective vaccine.2 One potential barrier to the
success of this approach is the selection of drug-resistant viruses.
The occurrence of resistance-associated substitutions (RASs),
either natural or during treatment, can limit the efficiency of
treatment and its scale-up. Transmission of resistant variants,
particularly among high-risk groups, is of potential concern.3

Paradoxically, the therapeutic success has made studying HCV
drug resistance a formidable task. Existing knowledge of HCV
drug resistance is often derived from small, regional, short-term
clinical studies with limited power to draw generalizable con-
clusions given the genetic heterogeneity of HCV GTs and sub-
types.4 Current treatment regimens combining highly potent
DAAs further mask the negative impact of RASs, making it
difficult to delineate the mechanism of virologic failure. In
studies where HCV resistance was addressed, there have been no
consistent criteria to define RASs and no standardization of
analytical methods. As a result, although Treatment Guidelines
have recommended resistance testing in a subgroup of patients
for some regimens, there has been no clear interpretation of drug
resistance results.1

The Surveillance of Hepatitis C Antiviral Resistance, Epide-
miology and methoDologies, SHARED, is an international con-
sortium which aims to better understand and avoid HCV drug
resistance and transmission through the development, applica-
tion, and sharing of HCV genomic data, methods, software, and
technologies.5 SHARED has brought together clinicians, virolo-
gists, and researchers from 22 countries, including over 110 in-
dividual clinics, hospitals, and reference laboratories. The pooled
database comprises HCV sequences linked with detailed patient
information, disease characteristics, treatment history, and clin-
ical outcomes. The comprehensive data collected and its diverse
sources provide an excellent opportunity to conduct in-depth
analyses, generating insights into HCV antiviral resistance that
are not possible from individual studies.

This report aims to a) provide a global resource on the
prevalence and characteristics of RASs across GTs in patients who
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failed DAA therapy, b) explore clinical characteristics associated
with RAS selection and, c) present evidence for new potential
RASs in the NS5A region of the HCV genome. These results will
raise awareness of HCV drug resistance, identify unmet needs,
and encourage further data sharing on RASs.
Patients and methods
SHARED database
The SHARED database contains multiple types of metadata
linked with HCV sequences.5 Data were collected at each col-
laborator’s site under protocols approved by local medical or
human research ethics committees. De-identified data were sent
through a secured file transfer protocol server to the coordi-
nating center at the University of British Columbia, Canada. Data
were curated, formatted, and stored in a relational database
using MYSQL. The schema of the SHARED database can be found
at https://hcvdb.med.ubc.ca. The SHARED study protocol con-
forms to the ethical guidelines of the 1975 Declaration of Hel-
sinki as reflected in a priori approval by the University of British
Columbia Research Ethics Board (H17-10589).

Sequence handling
Consensus nucleotide sequences for HCV NS3, NS5A, and NS5B
generated by population sequencing or next-generation
sequencing (NGS) were collected. The cut-offs for variant
calling were set at 15–20% for population sequencing and 5%
for NGS sequencing. Genotypes and subtypes were assigned by
mapping the sequences with a panel of 217 reference se-
quences downloaded from the International Committee on
Taxonomy of Viruses.4 Consensus nucleotide sequences from
each sample were codon aligned to the respective GT-specific
references (Table S1) using the NucAmino program adapted
from HIV, which was designed to handle IUPAC ambiguity
codons caused by multiple substitutions.6 Amino acid se-
quences generated from the NucAmino program were used for
RAS evaluations. Amino acids that differed from those in the
reference sequences were considered substitutions. In amino
acid positions with a mixture of 3 or fewer substitutions, this
mixture was parsed into individual amino acids proportionally,
e.g., Q30R/I (n = 7) was counted as Q30R (n = 3.5) and Q30I
(n = 3.5). Positions that contained >3 amino acids or a stop
codon were considered unknown and excluded from the
analysis.

Prevalence, class resistance, and patterns of resistance-
associated substitutions
The prevalence and patterns of natural RASs were evaluated
using the baseline HCV sequences from DAA-treated patients
and those waiting for treatment. The prevalence and patterns
of post-treatment NS3, NS5A, and NS5B RASs were examined
in virologic failures treated with PI-, NS5AI-, and NI/
NNI-containing regimens, respectively. Virologic failures were
considered for DAA class resistance evaluation if sequences
from NS3, NS5A, NS5B were available. Patients were stratified
by GT, and those who had >−1 GT-specific RAS variant per the
2020 EASL recommendations on the treatment of hepatitis C
were considered as harboring RAS in the prevalence analysis
2vol. 4 j 100462
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Table 1. Cohort characteristics.

Characteristics Total1

Number of patients, n 3,355
Sex, n (%) 3,273 (98%)

Male, n (%) 2,483 (76%)
Age, n (%) 2,417 (72%)

Age in 2021, median (IQR) 57 (51 - 63)
Ethnicity, n (%) 652 (19%)

Caucasian, n (%) 579 (89%)
Black, n (%) 20 (3%)
Other, n (%) 53 (8%)

Illicit drug use, n (%) 746 (22%)
Injection drug use, n (%)2 488 (65%)
Non-injection drug use, n (%)2 219 (29%)

Sexual orientation, n (%) 496 (15%)
Heterosexual, n (%) 290 (58%)
Homosexual, n (%) 187 (38%)
Bisexual, n (%) 18 (4%)

Coinfection, n (%) 2,030 (61%)
HIV-HCV, n (%)3 482 (24%)
HBV-HCV, n (%)3 73 (4%)

Fibrosis, n (%) 1,418 (42%)
F0-F1, n (%) 438 (31%)
F2, n (%) 286 (20%)
F3, n (%) 182 (13%)
F4, n (%) 512 (36%)

Cirrhosis, n (%) 2,139 (64%)
Yes, n (%) 911 (43%)

Hepatocellular carcinoma, n (%) 262 (8%)
Yes, n (%) 26 (10%)

Genotype4, n (%) 3,355 (100%)
GT1a, n (%) 1,145 (34%)
GT1b, n (%) 848 (25%)
GT1-other, n (%) 27 (1%)
GT2, n (%) 102 (3%)
GT3, n (%) 999 (30%)
GT4, n (%) 219 (7%)
GT5, n (%) 1 (0.03%)
GT6, n (%) 14 (0.4%)

DAA treatment5, n (%) 3,353 (100%)
NS5AI + NI, n (%) 1,990 (59%)
NS5AI + PI, n (%) 722 (22%)
PI + NI, n (%) 134 (4%)
NS5AI + PI + NI or NNI, n (%) 373 (11%)
Other, n (%) 134 (4%)

Response to DAA treatment, n (%) 3,015 (90%)
Sustained viral response 1,121 (37%)
Virologic failure 1,894 (63%)

Treatment history6, n (%) 2,260 (67%)
Treatment naïve, n (%) 1,557 (69%)
Treatment experienced, n (%) 703 (31%)

Prior PEG/RBV, n (%) 357 (51%)
Prior DAA, n (%) 107 (15%)
Unknown, n (%) 239 (34%)

HCV sequences, n 6,994
NS3, n (%) 1,872 (27%)
NS5A, n (%) 3,367 (48%)
NS5B, n (%) 1,755 (25%)

DAA, direct-acting antiviral; GT, genotype; NI, nucleoside (sofosbuvir); NNI, non-
nucleoside (dasabuvir); NS5AI, NS5A inhibitor; other, pegylated interferon +/-
ribavirin +/- DAA including boceprevir, telaprevir; PEG, pegylated interferon; PI,
protease inhibitor; RBV, ribavirin.
1 The number of patients with data available in the specified category
2 Injection drug use and non-injection drug use were not mutually exclusive; 189
(25%) participants engaged in both. Injection drug use and non-injection drug use
referred to having a history of drug use, including past and recent.
3 HIV- and HBV-coinfection with HCV were not mutually exclusive; 14 (0.7%) par-
ticipants were infected with HIV and HBV in addition to HCV.
4 Genotypes were derived from the HCV NS5A, NS3, or NS5B sequences. GT1-other
included GT1c/d/e/g/h/i/j/k/l/n/o. Non-GT1 subtypes included GT2a/b/c/d/i/j/m/r/q/
t/u, GT3a/b/g/h/i/k, GT4a/b/d/f/g/k/l/n/o/q/r/v, GT5a, GT6a/e/h/l/p/q/r/xe.
5 DAA treatment associated with the HCV sequence examined.
6 Treatment history at the time when DAA treatment was administered.
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(supplementary patients and methods – M1).1 The RAS pattern
and class RAS analyses included all substitutions from all listed
amino acid positions of the respective drug target genes in the
recommendations. Computations were done in Python v3.7 and
visualized using Matplotlib (https://www.python.org).

Potential NS5A substitutions associated with virologic failure
Amino acid sequences derived from NS5AI-naive and NS5AI-
exposed individuals were stratified according to their GTs/sub-
types. The analyses were restricted to the first 200 amino acids in
GTs 1a, 1b, 3, and 4 because most sequences collected were
limited to this region. Sequences from GTs 2, 5, and 6 were too few
to warrant analysis. Two independent methods were used. In the
first approach, the substitution frequency change (sFC) before and
after treatment at each amino acid position was determined.
Amino acids with an sFC greater than 2 standard deviations from
the background drifts were considered potentially associated with
selection pressure from treatment. In the second approach, a
pairwise comparison, with one amino acid at a time, between the
treated and untreated groups was conducted using Fisher’s exact
test. A Benjamini-Hochberg method was employed to determine
the minimum alpha values for multiple comparisons.7 In this
analysis, amino acid positions with a p value associated with a
false discovery rate of 15% (q <0.15) were considered positions of
interest. Specific amino acids within the positions of interest
associated with drug selection were identified using odds ratios
(supplementary patients and methods – M2).

Association of resistance-associated substitutions and clinical
factors
We assessed factors associated with the presence of NS3 and
NS5A RASs in sequences collected after treatment among people
who failed PI and NS5A therapy, respectively, with separate
models evaluating people receiving PI-based and NS5A-based
therapies. Patients who had >−1 RAS variant of the respective
drug target gene per the 2020 EASL recommendations were
considered as harboring RAS(s). Independent variables consid-
ered included sex, age, injection drug use, HIV coinfection,
cirrhosis, DAA regimen, treatment history, and HCV genotype.
The age of the cohort was divided into quartiles (<52, 52–58,
58–63, and >−64). Participants with a history of injection drug use
(past and recent) were categorized as people who inject drugs.
The definition of cirrhosis was based on the classification used by
each of the participating centers. Unadjusted logistic regression
analyses were performed to estimate odds ratios (ORs) and
corresponding 95% CIs to identify factors associated with the
presence of RASs in those who experienced treatment failure. All
included variables were considered for multivariate logistic
regression models to generate adjusted odds ratios (aORs) except
injection drug use due to incomplete data. Missing data was
assessed as its own category for all hypothesized predictor var-
iables with less than 90% data availability. The analysis was
performed using Stata v14.0 (StataCorp, College Station, Texas). A
p value <0.05 was considered statistically significant.
Results
Cohort characteristics
The study cohort (n = 3,355) comprised HCV sequences and
metadata from the SHARED database collected from Argentina,
Australia, Austria, Canada, France, Germany, Israel, Italy, Lux-
emburg, the Netherlands, Norway, New Zealand, Poland,
3vol. 4 j 100462
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Portugal, Romania, Russia, Slovenia, Spain, Switzerland, Sweden,
Turkey, and the United States.5 Overall, 76% (2,483/3,273) of the
population were male, and the median age was 57 years (inter-
quartile range: 51–63). Most SHARED data came from reference
laboratories and "real-world" clinics; therefore, not all records
had the same metadata, especially the behavioral information.
The available data are summarized in Table 1.

Clinically, 482 of 2,030 patients (24%) providing coinfection
data were co-infected with HIV. Most had advanced liver dis-
eases; over 40% had greater than F3 fibrosis score (694/1,418) or
cirrhosis (911/2,139), and 10% (26/262) had hepatocellular car-
cinoma. Most patients were infected with HCV GT1 (2,020/3,355,
60%) and GT3 (999/3,355, 30%). A majority were treated with
regimens containing an NS5AI: 59% (1,990/3,353) NS5AI+NI, 22%
(722/3,353) NS5AI+PI, and 11% (373/3,353) NS5AI+PI+NI/NNI. A
small group of patients (134/3,353, 4%) were prescribed a PI+NI
combination. Ribavirin (RBV) was used in 22% of the DAA
regimens.

Treatment response at the time of sample collection for
sequencing was reported in 90% (3,015/3,353) of the DAA-treated
patients; 37% (1,121/3,015) achieved SVR, and 63% (1,894/3,015)
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Fig. 1. Prevalence of resistance-associated substitutions in DAA-naïve and -e
with combination regimens containing a PI (SIM, GZR, PAR/r, GLE, ASV, VOX, BOC,
evaluated for the prevalence of RASs in NS3, NS5A, NS5B_SOF, and NS5B_DSV, re
prevalence. Patients who harbored >−1 RAS variant listed in the 2020 EASL recom
boceprevir; DAA, direct-acting antiviral; DCV, daclatasvir; DSV, dasabuvir; EBR, elb
and GT1b; GZR, grazoprevir; LDV, ledipasvir; NA, not available; NI, nucleoside inh
PAR/r, paritaprevir/ritonavir; PI, protease inhibitor; PIB, pibrentasvir; RAS(s),
telaprevir; VEL, velpatasvir; VOX, voxilaprevir.

JHEP Reports 2022
experienced virologic failure. Fig. S1 shows the distribution of
DAA regimens administered among the virologic failures in this
cohort. Among the DAA-treated patients, treatment history in-
formation was available in 2,260 patients, of whom 31% (703/
2,260) had prior treatment experience, mainly with pegylated
interferon and RBV (357/703, 51%).

A total of 6,994 HCV sequences, including NS3 (n = 1,872),
NS5A (n = 3,367), and NS5B (n = 1,755), were available, and 59%
of all sequences were collected at end-of-treatment or follow-up
visits after treatment; the remaining 41% were collected before
treatment.

Prevalence of resistance-associated substitutions in DAA-
naïve and -experienced patients
The natural RAS prevalence varied among GTs with an average
frequency of 37% (202/552) in NS3, 29% (417/1,597) in NS5A, 15%
(46/314) in NS5B_SOF, and 24% (16/66) in NS5B_DSV based on
the RAS variants listed in the 2020 EASL recommendations
(Fig. 1).1

The RAS prevalence increased following treatment failure
with an average frequency of 60% (317/531) in NS3, 80% (1,194/
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Fig. 2. Micro-representation of direct-acting antiviral class resistance after
failing first-line therapies. A subset of virologic failures (n = 730) with se-
quences available from all 3 drug target genes (NS3, NS5A, and NS5B) were
included for the analyses. Amino acid substitutions at all positions of the
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portional to the number of patients with detectable RASs. The intersecting
regions represent dual- or triple-class resistance. NS5AI, NS5A inhibitor; NI,
nucleoside inhibitor (sofosbuvir); PI, protease inhibitor; RASs, resistance-
associated substitutions.
1,487) in NS5A, 22% (223/999) in NS5B_SOF, and 37% (42/114) in
NS5B_DSV. The RAS prevalence varied among GTs in patients
who failed NS5AI-, PI- or SOF-containing regimens: 35–100% in
NS3, 74–100% in NS5A, and 0–47% in NS5B (NS5B_SOF), respec-
tively (Fig. 1). About 34–42% of GT1 patients who failed DSV had
detectable NS5B_DSV RAS. Compared to DAA-naïve patients, the
frequencies of NS3 RASs following DAA exposure were sig-
nificanlty higher in GTs 1a (64% vs. 44%, p <0.001), 1b (61% vs.
48%, p = 0.007), 3 (61% vs. 17%, p <0.001), and 4 (35% vs. 12%, p =
0.03) (Fig. 1A). Similarly, a notable difference of NS5A RAS
prevalence was seen in GT1a (74% vs. 18%, p <0.001), 1b (88% vs.
38%, p <0.001), and 3 (74% vs.17%, p <0.001) after NS5AI exposure
(Fig. 1B). There was no major difference in pre- and post-
treatment NS5B_SOF RAS frequencies (Fig. 1C). Interestingly,
the NS5B_DSV RAS prevalence was 0% (0/22) pre-treatment vs.
34% (22/65) post-treatment in GT1a, but similar before (16/44,
36%) and after (20/48, 42%) treatment in GT1b (Fig. 1D).

The RAS variants’ characteristics in different GTs are described
in the supplementary results – R1. Additionally, Table S2 sum-
marizes the newly observed RAS variants in the SHARED cohort
that were not listed in the 2020 EASL recommendations.
Direct-acting antiviral class resistance in patients after first-
line DAA therapies
HCV DAAs appear to generate little or no cross-resistance to
drugs from other classes. Rescue therapies switching to a
JHEP Reports 2022
different DAA class or adding a new DAA class not present in the
previous regimen are practical approaches to treat patients who
failed first-line therapies.8 Information on DAA class resistance
following treatment failure can provide insights on retreatment
strategies. To evaluate class resistance distribution following
DAA failure, we included only virologic failures (n = 730) with
available NS3, NS5A, and NS5B sequences to reduce sampling
bias. This subgroup’s patient characteristics and treatment
regimen distribution were similar to all virologic failures (n =
1,894) in the SHARED cohort (Table S3); most were treated with
the first-generation DAAs. Overall, 94% (683/730) of this sub-
group selected drug resistance against >−1 DAA class. Among
them, 31% (225/730) had single-class resistance, 42% (307/730)
harbored dual-class resistance, predominantly against PIs and
NS5AIs, 21% (151/730) selected resistance against all 3 DAA
classes, and 6% (47/730) did not have RAS (Fig. 2). The resistance
profiles following NS5AI+PI, NS5AI+SOF, and PI+SOF failure are
provided in Fig. S2A-C, which shows that resistance contributed
by SOF was small compared to those contributed by PIs and
NS5AIs. Nevertheless, 27% (23/85) and 31% (214/688) of patients
harbored dual-class resistance after PI+SOF and NS5AI+SOF
treatments, respectively. Strikingly, dual-class resistance in NS3
and NS5A increased to 62% (82/132) for those who failed
NS5AI+PI combinations.

Patterns of resistance-associated substitutions in NS5A
There are over 3,300 NS5A sequences in the SHARED database,
providing an opportunity to conduct an in-depth RAS charac-
terization. Since longitudinal samples were not usually available
from real-world clinics, we used the NS5A sequences collected
before (n = 1,546) and after (n = 1,480) NS5AI treatment and
compared the frequencies and RAS patterns to explore the
resistance pathways. This RAS pattern analysis mainly focused on
GT1a, 1b, 3, and 4; GT2 and GT6 could not be adequately eval-
uated due to the small sample size. The number of NS3 and NS5B
sequences was too small to permit analysis with confidence after
treatment and GT stratifications. For completeness, a summary of
the key RAS patterns in NS3, NS5A, and NS5B for all GTs is listed
in Tables S4–S7.

In GT1a, Q30R/H (163/424, 38%), followed by L31M (54/424,
13%) and Y93H/N (67/424, 16%), were most frequently detected in
the samples collected after exposure to NS5AIs (Fig. 3A). The fre-
quencies of RASs at these amino acids were low (<3%) at baseline
but rose 18- to 20-fold after treatment (Fig. 3A). M28V/T, present
in 4% (29/697) of the samples before treatment, had a modest 2-
fold increase in frequency after treatment. M28T and M28V
conferred up to 9,000- and 58-fold resistance in vitro, respectively,
to the first-generation NS5AIs.9 Among the 424 GT1a virologic
failures, 23% had no detectable RAS and 39% had single sub-
stitutions (Fig. 4). Q30R/H, L31M, and Y93H/N made up the ma-
jority of the viral variants with single substitutions (Table S4). In
HCV replicons, these RASs displayed high resistance levels tomost
NS5AIs (100’s- to 1,000’s-fold) except PIB (1- to 7-fold).9,10

The signature substitutions for GT1b after NS5AI failure were
L31M and Y93H in 31% and 73% of cases, respectively, out of 451
follow-up samples (Fig. 3B). These RASs existed at a moderate
level (�11%) at baseline but increased about 6-fold following
drug selection. A third RAS, R30Q, was present in 10% (27/262) of
patients before treatment and remained almost the same at 15%
(67/451) after treatment. R30Q and L31M have low resistance
(<3-fold) to NS5AIs. However, Y93H is highly resistant (30- to
1,325-fold) to all first-generation NS5AIs.9 In contrast to GT1a, in
5vol. 4 j 100462
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Fig. 3. NS5A resistance patterns in different genotypes. NS5A amino acid sequences obtained from patients treated with NS5A inhibitor-containing regimens
before (DAA: -) and after (DAA: +) treatment were grouped according to their genotypes. The number of sequences before/after DAA treatment was 697/424 in
GT1a, 262/451 in GT1b, 479/497 in GT3, 108/108 in GT4. The number of variant amino acids relative to the reference at each indicated position was enumerated
and normalized to the total number of sequences in the respective genotypes. The amino acids are colored according to their side-chain biochemical properties:
green = hydrophobic, purple = polar uncharged, orange = positively charged, red = negative charged, blue = special cases. The percentages of patients with
detectable RASs in genotypes 1a, 1b, 3, and 4 are shown. The NS5AI-naïve sequences contained subtypes 3a/b/g/h and 4a/d/f/l/o/q/r/v. The NS5AI-exposed se-
quences contained subtypes 3a/b/g/h/k and 4a/b/d/f/g/k/n/o/q/r/v. DAA, direct-acting antiviral; GT, genotype; RASs, resistance-associated substitutions.
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which most treatment failures had no or one substitution, 48%
(214/451) and 18% (79/451) of the GT1b virologic failures had 2 or
>−3 substitutions, respectively (Fig. 4). Most double substitutions
contained Y93H with L31M/V/I (Table S4).

Y93H emerged as the most commonly selected substitution in
GT3, with a 10-fold increase in frequency following treatment
failure (290/497, 58% in NS5AI-exposed vs. 27/479, 6% in NS5AI-
naive) (Fig. 3D). Another RAS, A30K/S, which existed at a mod-
erate level (40/479, 8%) at baseline, increased 2-fold after treat-
ment. Both RASs have limited impact on PIB but are highly
resistant to all other NS5AIs; 700- to 40,000-fold for Y93H and
50- to 177-fold for A30K.9 At virologic failure, 17% (85/497) of the
patients had no RAS, 38% (189/497) had single substitutions, and
38% (189/497) had 2 substitutions (Fig. 4). Most of the samples
JHEP Reports 2022
with single substitutions were characterized by Y93H, whereas
samples containing dual substitutions often presented as A30K/
S + Y93H or S62T/L + Y93H (Table S4).

One distinguishing feature in the RAS pattern for GT4
virologic failures was the presence of multiple substitutions
(Fig. 3D). Of the 108 follow-up samples, 102 (94%) contained
>−2 RASs (Fig. 4) (73% if position 62 was excluded). HCV vari-
ants containing L30R in combination with 1 to 3 substitutions
from L28M/S/V, M31V/L/I, P58T, or Y93H/C were common
(Table S4). L30R, mainly in GT4d as a natural polymorphism,
remained constant before and after treatment (77/108, 71% vs.
82/108, 76%). In HCV GT4a replicons, L30R conferred 30- to
180-fold resistance to DCV and LDV and <2-fold to VEL and
PIB.9
6vol. 4 j 100462
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A sizable portion of samples contained substitutions at amino
acids 58 and 62 with high frequencies before and after treatment
(Fig. 3). These amino acids were polymorphic in natural isolates.
The role of these 2 amino acids in drug resistance is unclear due
to limited in vitro data; however, all available results to date
showed minimal drug resistance except 58D/N.9

Novel substitutions potentially associated with virologic
failure in NS5A
Using 2 independent approaches, we performed a systematic
codon analysis across NS5A to identify novel substitutions
potentially associated with virologic failure. Similar analyses
were not conducted in NS3 and NS5B due to a limited number of
sequences after GT stratification and variable sequence lengths.
In the substitution frequency approach, the background genetic
fluctuations (mean sFC ± standard deviation) were similar among
the 4 GTs/subtypes examined: 0.003 ± 0.042 in GT1a, 0.009 ±
0.056 in GT1b, 0.009 ± 0.046 in GT3, and 0.012 ± 0.047 in GT4.
Several amino acids (with sFC >±0.1) potentially associated with
selection pressure from treatment were observed (Fig. 5A-D).
Additional amino acids with a false discovery rate of 15% were
identified in the pairwise comparison approach (Table 2). Known
RASs (listed in the 2020 EASL recommendations and discussed
earlier) at amino acids 28, 30, 31, 93 were confirmed by one or
both methods (supplementary results – R2).

In GT1a, previously unrecognized amino acid positions 48
(sFC = -0.12, p <0.0001), 73 (p = 0.0007), and 78 (sFC = -0.11, p
<0.0001) had a significant frequency change following drug se-
lection (Fig. 5A and Table 2). Within these positions, R48K (OR =
0.5, 95% CI 0.4–0.7), R73K (OR = 0.3, 95% CI 0.1–0.9), and R78K
(OR = 0.6, 95% CI 0.5–0.8) were negatively selected after NS5AI
JHEP Reports 2022
exposure (i.e., the level of substitutions decreased and the level
of wild-type increased); these were likely adaptive changes.

In GT3, several previously undescribed substitutions at amino
acid positions 13 (p = 0.002), 14 (sFC = 0.11, p <0.0001), 159 (sFC =
-0.17), and 171 (sFC = 0.15) were identified by one or both
methods (Fig. 5C and Table 2). Specifically, C13S (OR = 3.3, 95% CI
1.4–8.2), S14T (OR = 1.5, 95% CI 1.2–2.0), and E171D (OR = 13.9,
95% CI 1.7–114.2) were more frequently detected in patients
following NS5AI failure. In contrast, H159Q (OR = 0.3, 95% CI
0.1–0.9) was less frequently observed after treatment.

In GT4, several new amino acid positions were identified;
these included positions 6 (sFC = 0.14, p = 0.004), 17 (sFC = 0.18, p
<0.0001), 37 (sFC = -0.13), 56 (sFC = 0.13), 83 (sFC = 0.12, p =
0.0003), 117 (sFC = -0.13, p = 0.0009) (Fig. 5D and Table 2). The
odds of having W6R (OR = 4.0, 95% CI 1.3–12.7), S17T (OR = 34.3,
95% CI 2.0–583.3), T56R (OR = 18.5, 95% CI 1.1–325.4), and T83V
(OR = 12.3, 95% CI 1.6–96.9) were higher in patients after expo-
sure to NS5AIs. In contrast, L37F (OR = 0.5, 95% CI 0.3–0.9) and
D117E (OR = 0.1, 95% CI 0.02–0.5) were less frequently seen after
treatment.

Factors associated with resistance-associated substitutions in
virologic failure
To identify if clinical or demographic factors might affect RAS
selection, we examined the presence of post-treatment NS3 and
NS5A RASs in 531 PI- and 1,487 NS5AI-treated patients, respec-
tively, who failed to achieve SVR.

In the unadjusted bivariate analyses, the presence of NS3
RASs in patients following PI-treatment failure was positively
associated with cirrhosis (p = 0.001); and negatively associated
with HCV GT4 infection (p <0.001) (Table 3). In multivariate
7vol. 4 j 100462
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logistic regression adjusted analysis, having cirrhosis (aOR 1.93,
95% CI 1.09–3.43; p = 0.02) was independently associated with
increased NS3 RAS selection; while GT4 HCV infection (aOR 0.33,
95% CI 0.15–0.71; p = 0.005) was inversely associated with NS3
RASs compared to GT1a.

In the unadjusted bivariate analyses, the presence of NS5A
RASs in patients who failed NS5AI treatment were higher in
people aged 64 and over (p <0.001), having cirrhosis (p <0.001),
and being infected with GT1b (p <0.001) or GT4 (p <0.001)
(Table 3). Whereas, male patients (p <0.001) and those who were
co-infected with HIV were less likely to harbor NS5A RASs (p
<0.001). In multivariate logistic regression adjusted analyses,
older age (aOR 1.95, 95% CI 1.21–3.19; p = 0.01), cirrhosis (aOR
1.80, 95% CI 1.18–2.76; p = 0.01), GT1b (aOR 1.77, 95% CI
1.15–2.75; p = 0.01) and GT4 (aOR 10.20, 95% CI 3.52–29.56; p
<0.001) infections (compared to GT1a infections) were positively
and independently associated with the presence of NS5A RASs
post-treatment.
Discussion
Despite the high efficacy of DAAs, our results confirm a high
frequency of drug resistance in patients in whom treatment
JHEP Reports 2022
failed, mostly with first-generation DAAs. Although the current
EASL recommendations focused primarily on the pan-genotypic
DAAs and grazoprevir/elbasvir,1 many countries continue to use
first-generation DAAs to reduce the treatment cost and maxi-
mize the number of patients eligible for publicly funded
healthcare, so these drugs will remain relevant as part of the
global attempt to eradicate HCV. Almost all patients in our cohort
harbored drug-resistant variants after treatment failure, with
over two-thirds having resistance to >−2 DAA classes. Most pa-
tients were treated with NS5AIs, which have the lowest barrier
to resistance among all DAA classes. Importantly NS5AI RASs
tend to persist for a long time, presenting a challenge for
retreatment.11 Transmission of resistant viruses further threatens
global HCV elimination efforts. The spread of stable resistant
variants is frequently observed in viral infections, as witnessed
recently with SARS-CoV2.12 In the case of HCV, Q80K, a natural
PI-resistant polymorphism, descended from a single lineage
around the 1940s in the United States and expanded to 18–22%
of the GT1a patients in Europe in 2014.13,14 HCV variants in NS5AI
failures were characterized by complex RAS patterns interlaced
with multiple substitutions with a high level of resistance; a
critical question is whether these patients can be successfully re-
treated with salvage therapies. SOF/VEL/VOX or 16–24 weeks of
8vol. 4 j 100462



Table 2. Amino acid substitutions in NS5A before and after treatment.

Amino acid position Substitution frequency change1 FET p value False discovery
rate (q)2

Amino acid3 Odds ratio (95% CI)4

GT1a

28 0.07 <0.0001

ˇ

,** 0.003 M28T, M28V 2.6 (1.6–4.2)
30 0.46# <0.0001

ˇ

,** <0.001 Q30H, Q30K, Q30R,Q30E 36.0 (20.9–62.3)
31 0.17# <0.0001

ˇ

,** <0.001 L31M, L31V 18.1 (8.3–40.0)
48 -0.12# <0.0001

ˇ

,** 0.003 R48K (decrease) 0.5 (0.4–0.7)
73 -0.04 0.0007

ˇ

0.019 R73K (decrease) 0.3 (0.1–0.9)
78 -0.11# <0.0001

ˇ

,** 0.004 R78K (decrease) 0.6 (0.5–0.8)
93 0.18# <0.0001

ˇ

,** <0.001 Y93C, Y93H, Y93N 49.5 (15.5–158.3)
GT1b

28 0.08 <0.0001

ˇ

,** 0.001 L28M 5.4 (2.1–13.9)
31 0.38# <0.0001

ˇ

,** <0.001 L31I, L31M, L31V 7.4 (4.7–11.5)
93 0.63# <0.0001

ˇ

,** <0.001 Y93H 20.6 (13.4–31.7)
GT3

13 0.05 0.002

ˇ

0.114 C13S 3.3 (1.4–8.2)
14 0.11# <0.0001

ˇ

,** 0.085 S14T 1.5 (1.2–2.0)
93 0.54# <0.0001

ˇ

,** <0.001 Y93H 23.6 (15.3–36.2)
159 -0.17# 0.02 0.207 H159Q (decrease) 0.3 (0.1–0.9)
171 0.15# 0.02 0.207 E171D 13.9 (1.7–114.2)
GT4

6 0.14# 0.004

ˇ

0.115 W6R 4.0 (1.3–12.7)
17 0.18# <0.0001

ˇ

,** <0.001 S17T 34.3 (2.0–583.3)
28 0.31# <0.0001

ˇ

,** <0.001 L28S, L28V 10.5 (3.0–36.1)
30 0.13# 0.001 0.241 L30R 2.8 (1.2–6.4)
37 -0.13# 0.07 0.314 L37F (decrease) 0.5 (0.3–0.9)
56 0.13# 0.04 0.314 T56R 18.5 (1.1–325.4)
83 0.12# 0.0003

ˇ

0.015 T83V 12.3 (1.6–96.9)
93 0.20# <0.0001

ˇ

,** 0.001 Y93C, Y93H 9.3 (2.7–32.0)
117 -0.13# 0.0009

ˇ

0.031 D117E (decrease) 0.1 (0.02–0.5)

FET, Fisher’s exact test; GT, genotype.
1 Substitution frequency after treatment minus substitution frequency before treatment.
2 Acceptable false discovery rate was set at 15% (q-value <−0.15)
3 Specific amino acid substitution observed within the amino acid position of interest. "Decrease" represents decreased substitution frequency, i.e., the level of wild-type
reference amino acid increased.
4 Odds ratio for the amino acids at the positions of interest
# Substitution frequency change >2 standard deviations from the mean frequency change across the first 200 amino acids in NS5A.ˇ

below Benjamin Hochberg critical value with 15% false discovery rate (q <−0.15)
** FET p value < Bonferroni adjusted alpha level of 0.00025.
GLE/PIB + SOF and RBV are the regimens of choice (if available) to
re-treat patients following DAA treatment failure.1,15 In people
previously exposed to PIs and NS5AIs, 91–100% of the patients
achieved SVR, although only a minority of patients had multi-
class resistance in these studies.16–18 Lower SVR rates were
observed in GT3-infected patients with cirrhosis (69–92%), and
GT1- and GT3-infected patients with prior SOF/VEL experience
(78–85%).16,19–21 In moderately resource-limiting settings where
these new regimens may not be available, a resistance-guided
retreatment approach using first-generation DAAs with a
switch of the DAA drug class and additional RBV with or without
extended duration is a workable option.8,22,23

Circulating HCV displays a high degree of genetic heteroge-
neity; variants with every possible individual substitution are
generated daily.24 Under suboptimal drug concentrations, drug-
resistant variants are rapidly enriched, leading to viral break-
through or relapse. Based on resistance patterns before and after
treatment, we postulate several pathways of RAS development.
For example, a single highly resistant RAS with a low prevalence
could be enriched during treatment leading to drug resistance
(e.g., Q30R and Y93H/N in GT1a), or RASs with a moderate
prevalence and resistance could persist at the same level (e.g.,
A30K/S in GT3) leading to the same outcome. Similarly, a base-
line RAS with low resistance may acquire additional RASs as co-
JHEP Reports 2022
mutations (e.g., R30Q+Y93H in GT1b). Multiple low prevalence
RASs at baseline may be sequentially/simultaneously enriched
during treatment (e.g., 30R+31M/V+62E+93Y/C in GT4), leading
to virologic failure.

Although the effect of baseline RASs on the overall DAA
response is relatively small, reduced SVR rates in the presence of
pre-treatment RASs have been described for GT1a and even more
markedly for GT3 with cirrhosis.8,25 The resistance pathways
discussed above further support the importance of baseline RASs
on treatment outcomes. Emerging data from our analyses sug-
gested that L30R in GT4d might present as a natural poly-
morphism that precipitates virologic failure in this subtype.
Aside from the well-defined RASs, our exploratory studies have
identified several new substitutions associated with virologic
failure. Nevertheless, detailed reverse genetics and in vitro-
in vivo correlations are required to establish the biological rele-
vance of these substitutions. Lastly, individual polymorphisms
that do not affect drug susceptibility can mount a severe resis-
tance to DAAs when combined. For example, NS5A Q30R/K,
L31M, and H58D individually do not affect PIB in HCV replicons,
while Y93H only increases drug resistance by 2- to 7-fold.
However, Q30R+L31M+H58D in GT1a or Q30K+Y93H in GT3a
results in 1740- and 69-fold resistance, respectively, to PIB.9 In
the SHARED dataset, >75% of the patients who failed glecaprevir/
9vol. 4 j 100462



Table 3. Factors associated with NS3 and NS5A resistance-associated substitutions in virologic failures.

NS31 NS5A2

RAS present;
n (%)

n = 317

RAS absent;
n (%)

n = 214 Unadjusted OR p value
Adjusted OR

(95% CI) p value

RAS present;
n (%)

n = 1,194

RAS absent;
n (%)

n = 293 Unadjusted OR p value
Adjusted OR

(95% CI) p value

Sex
Female 91 (58) 65 (42) 1.00 – 1.00 – 270 (88) 38 (12) 1.00 – 1.00
Male 222 (60) 148 (40) 1.07 (0.73–1.57) 0.72 1.25 (0.79–1.99) 0.34 866 (78) 238 (22) 0.51 (0.35–0.74) <0.001 0.71 (0.47–1.07) 0.10

Age (quartiles)
<52 80 (57) 61 (43) 1.00 – 1.00 – 286 (76) 92 (24) 1.00 – 1.00
52-58 59 (52) 55 (48) 0.82 (0.50–1.34) 0.43 0.90 (0.31–1.54) 0.71 300 (76) 94 (24) 1.03 (0.74–1.43) 0.88 0.89 (0.62–1.29) 0.54
58-63 79 (63) 46 (37) 1.31 (0.80–2.14) 0.29 1.21 (0.71–2.06) 0.49 228 (80) 57 (20) 1.29 (0.89–1.87) 0.20 1.09 (0.72–1.67) 0.68
>− 64 70 (64) 40 (36) 1.33 (0.80–2.23) 0.27 1.18 (0.65–2.14) 0.60 316 (90) 36 (10) 2.82 (1.86–4.29) <0.001 1.97 (1.21–3.19) 0.01

History of injecting drug use
No 43 (56) 34 (44) 1.00 – 64 (81) 15 (19) 1.00 –

Yes 17 (61) 11 (39) 1.22 (0.51–2.95) 0.66 56 (70) 24 (30) 0.55 (0.26–1.14) 0.11
Unknown 257 (60) 169 (40) 1.20 (0.74–1.96) 0.46 1074 (81) 254 (19) 0.99 (0.56–1.77) 0.98

HIV
No 204 (60) 137 (40) 1.00 – 1.00 – 507 (85) 90 (15) 1.00 – 1.00
Yes 24 (48) 22 (52) 0.61 (0.32–1.16) 0.13 0.72 (0.33–1.58) 0.41 92 (69) 42 (31) 0.39 (0.25–0.60) <0.001 0.60 (0.35–1.04) 0.07
Unknown 93 (63) 55 (37) 1.14 (0.76–1.69) 0.53 0.99 (0.44–2.23) 0.98 595 (79) 161 (21) 0.66 (0.49–0.87) 0.004 1.02 (0.48–2.18) 0.96

Cirrhosis
No 70 (49) 72 (51) 1.00 – 1.00 – 212 (75) 71 (25) 1.00 – 1.00
Yes 129 (68) 62 (32) 2.14 (1.37–3.35) 0.001 1.93 (1.09–3.43) 0.02 520 (84) 98 (16) 1.78 (1.26–2.51) 0.001 1.80 (1.18–2.76) 0.01
Unknown 118 (60) 80 (40) 1.52 (0.98–2.34) 0.06 1.79 (0.93–3.43) 0.08 490 (84) 96 (16) 1.25 (0.89–1.74) 0.19 1.50 (0.95–2.37) 0.08

DAA regimen
NS5AI + PI + NI 98 (59) 69 (41) 1.00 – 1.00 – 149 (84) 29 (16) 1.00 – 1.00
NS5AI + PI 77 (55) 62 (45) 0.87 (0.55–1.38) 0.56 1.34 (0.77–2.33) 0.31 893 (79) 242 (21) 0.72 (0.47–1.10) 0.13 0.70 (0.41–1.19) 0.19
PI + NI or NS5AI + NI 92 (69) 41 (31) 1.58 (0.98–2.55) 0.06 1.39 (0.74–2.62) 0.30 147 (88) 20 (12) 1.43 (0.77–2.64) 0.25 1.18 (0.58–2.38) 0.65
PI + PEG/RBV 50 (54) 42 (46) 0.84 (0.50–1.40) 0.50 1.07 (0.54–2.10) 0.85 n.a. n.a. n.a. n.a. n.a. n.a.

Treatment history
Naïve 267 (60) 178 (40) 1.00 – 1.00 – 994 (80) 246 (20) 1.00 – 1.00
Prior PEG/RBV 36 (59) 25 (41) 0.96 (0.56–1.65) 0.88 0.58 (0.29–1.15) 0.12 140 (79) 38 (21) 0.91 (0.62–1.34) 0.64 0.65 (0.40–1.06) 0.08
Prior DAA 14 (56) 11 (44) 0.85 (0.38–1.91) 0.69 0.62 (0.23–1.64) 0.33 60 (87) 9 (13) 1.65 (0.81–3.37) 0.17 1.40 (0.63–3.14) 0.41

Genotype
1a 99 (64) 56 (36) 1.00 – 1.00 – 304 (74) 108 (26) 1.00 – 1.00
1b 178 (61) 113 (39) 0.89 (0.60–1.33) 0.58 0.78 (0.45–1.35) 0.40 383 (88) 52 (12) 2.62 (1.82–3.76) <0.001 1.77 (1.15–2.75) 0.01
1-other 1 (50) 1 (50) 0.57 (0.03–9.22) 0.69 0.56 (0.03–10.53) 0.70 19 (100) 0 (0) n.a. n.a. n.a. n.a.
2 5 (71) 2 (29) 1.41 (0.27–7.53) 0.69 1.44 (0.25–8.41) 0.69 23 (100) 0 (0) n.a. n.a. n.a. n.a.
3 14 (61) 9 (39) 0.88 (0.36–2.16) 0.78 1.19 (0.43–3.33) 0.74 362 (74) 126 (26) 1.02 (0.76–1.38) 0.89 0.83 (0.58–1.20) 0.32
4 18 (35) 33 (65) 0.31 (0.16–0.60) <0.001 0.33 (0.15–0.71) 0.005 97 (94) 6 (6) 5.74 (2.45–13.28) <0.001 10.20 (3.52–29.56)) <0.001
6 2 (100) 0 (0) n.a. n.a. n.a. n0.a0. 6 (86) 1 (14) 2.13 (0.25–17.91) 0.50 1.80 (0.20–16.48) 0.60

Values in bold denote statistical significance. Odds ratio and logistic regression analysis were used to generate the results.
DAA, direct-acting antiviral; GT, genotype; 1-other; GT1 subtypes excluding GT1a and GT1b; n.a., not applicable; –, reference; NI, nucleoside inhibitor; NS5AI, NS5A inhibitor; OR, odds ratio; PEG, pegylated interferon; PI, protease
inhibitor; RAS, resistance-associated substitution; RBV, ribavirin.
1 NS3 sequences from virologic failures treated with a PI-containing regimen.
2 NS5A sequences from virologic failures treated with an NS5AI-containing regimen.
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PIB or VEL/SOF/voxilaprevir had >−2 RASs in NS5A; each has
minimal resistance to NS5AIs, but their combined effect is largely
unknown. Combination RASs should be considered and charac-
terized when interpreting drug resistance results for the second-
generation DAAs.

Our studies showed that cirrhosis and older age are associ-
ated with the presence of RASs in patients who failed DAA
therapy, consistent with the observation of reduced SVR rates in
patients with advanced liver diseases.26 Hepatic disease, notably
cirrhosis, results in altered pharmacokinetics and pathophysio-
logic changes and can lead to treatment failure accompanied by
RAS. However, long infection duration could also influence RAS
selection. We have recently reported clock-like characteristics of
the HCV genome in which intra-host viral genetic diversity in-
creases over time.27 People with a longer duration of infection
may have increased viral diversity shaped by immune selection,
resulting in polymorphisms with increased fitness, including
RASs and other compensatory substitutions. Indeed, a high
prevalence of baseline NS5A RASs was reported in a cohort of
HIV-HCV patients with advanced fibrosis and cirrhosis and older
mono-infected patients in Poland.28 Although our database did
not document the duration of infection, older patients and those
with cirrhosis might have a long course of HCV infection. There is
evidence that most people start risk behaviors in the second to
third decade of life, and progression from acute hepatitis to
cirrhosis usually takes at least 10-20 years after infection.29 The
impacts of age, cirrhosis, and infection duration on viral diversity
are important for future research.

There are many limitations and challenges. By nature of the
real-world data collection, there is considerable variability and
heterogeneity in data reporting, clinical interpretations, and
length and location of HCV sequences, presenting structural and
contextual challenges during data merging and analysis. This
paper described HCV resistance mainly from the epidemic
strains of GT1a/b, 3, and 4; resistance profiles from the other GT/
subtypes are largely lacking. To comprehensively map global
patterns of HCV resistance, we need more non-GT1/3 sequences
from Africa, Asia, and South America. The current SHARED
dataset is biased towards first-line DAAs; retreatment data,
especially from the second-generation DAAs, are needed. The
analyses and interpretations in this study also suffered from
missing data (especially behavioral information), lack of longi-
tudinal samples, and lack of in vitro data. These deficiencies
underscore the pressing need to call for collective efforts across
JHEP Reports 2022
disciplines and organizations, including collaboration with
health agencies to integrate epidemiological and genomic data.
So far, SHARED participation and data contribution were entirely
voluntary; support from government and funding agencies will
provide the infrastructure required for data collection, knowl-
edge dissemination, and in vitro characterization of RASs.

Nevertheless, the diverse collective expertise from our con-
sortium has turned these challenges into an invaluable learning
opportunity to set up a workable database and streamline future
data collection. As a joint effort of clinicians, virologists and re-
searchers, SHARED offers a unique opportunity to widen our
knowledge of HCV drug resistance, improve resistance testing
and interpretations, guide clinical management of HCV in the
context of antiviral resistance, and provide a resource for
collaborative research. This manuscript’s pooled analyses,
including large patient numbers and diverse clinical and aca-
demic settings, have adequately illustrated the current real-
world HCV drug resistance landscape in patients treated with
the first-generation DAAs. This new information can help refine
future guidelines and generate a simple and actionable resis-
tance algorithm to guide treatment decisions. The SHARED
database is live, and as data accumulates, it will have sufficient
power to address relatively rare events, such as RAS character-
istics in "unusual" GTs/subtypes, novel RASs, and RAS charac-
teristics following salvage regimens. We hope that the database
can provide comprehensive surveillance of the global HCV
resistance landscape and transmission networks in the future.
SHARED is open to all scientists and clinicians who would like to
contribute data, scientific expertise, or financial support for HCV
drug resistance research. Interested researchers can contact the
corresponding author or any SHARED member. For more infor-
mation about SHARED, please visit https://hcvdb.med.ubc.ca.

Conclusions
Despite success in HCV therapeutics, drug resistance is almost
inevitable in patients who fail to achieve SVR. In addition to
providing the characteristics and clinical factors associated with
RASs, this study highlights the complexity and multi-
dimensional nature of drug resistance interpretation in HCV.
There is room for improvement in the definition of RASs, as
previously unknown mutations emerge and more epistatic in-
teractions between co-occurring mutations are uncovered. A
collaborative effort is required to keep HCV drug resistance in
check and safeguard global HCV elimination.
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