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A B S T R A C T   

Reliable and efficient power modeling from meteorological wind data is vital for optimal implementation and 
monitoring of wind energy, and it is important for understanding turbine control, farm operational optimization, 
and grid load balance. Based on the idea that similar wind conditions lead to similar wind powers; this paper 
constructs a modeling scheme that orderly integrates three types of ensemble learning algorithms—bagging, 
boosting, and stacking—and clustering approaches to achieve wind power modeling from multiple wind-based 
meteorological factors in a wind farm. The paper also investigates the applications of different clustering al
gorithms and methodologies to determine cluster numbers in the modeling. The results reveal that all ensemble 
models with clustering exploit the intrinsic information in wind data and thus outperform models without 
clustering by approximately 15% on average in modeling wind power. The model with the best-performing 
Farthest First clustering is computationally rapid and with an improvement of around 30% compared with the 
baselines. Given the diversity introduced by clustering algorithms, the power modeling performance is further 
boosted by about 5% by introducing stacking that fuses ensembles with varying clusters. The proposed modeling 
framework thus demonstrates promise by delivering efficient and robust performance on the targeted problem.   

1. Introduction 

Wind energy is one of the most commercially viable renewable en
ergy sources, due to its natural abundance and non-reliance on fossil 
fuels, and has thus become integral to combating climate change. The 
Global Wind Energy Council estimates that 355 GW of new capacity will 
be installed between 2020 and 2024, with almost 71 GW of new capacity 
per year [1]. The rising prevalence of wind energy brings new challenges 
for planning electricity generation and dispatching grids because wind 
power varies intermittently and unpredictably with prevailing wind 
conditions. 

Establishing an accurate power model for a wind farm based on the 
empirical mapping of weather data is important to understand the 
relationship between wind and wind power generation, which in turn is 
significant for the safe and stable operation of a wind farm and its 
economic operation [2]. It is also important for farms to have a 

non-parametric power curve model that can be applied as a reference 
profile for the online monitoring generation process [3]. This article 
aims to conceptualize wind power modeling by using weather data, 
rather than only wind speed, to compute its corresponding wind power. 

1.1. Related works 

Driven by progress in computing affordability and capability and 
algorithmic advances, wind power can increasingly be modeled by 
physical, statistical, and hybrid methodologies. However, there is still 
room to improve these models [4]. 

A few studies have considered meteorological factors in wind power 
modeling. R. Liu et al. [5] inputted wind speed, wind direction, and air 
pressure to a power model based on multivariable phase space recon
struction—the similarity of time-series and linear regression—and 
demonstrated its superiority for forecasting under conditions where 
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wind power series fluctuate considerably. J. Ma et al. [6] used hourly 
wind speed and direction at the heights of 10 m and 100 m to establish a 
good performance model through multivariate empirical dynamic 
modeling. However, this type of research focused on mapping the 
relationship between weather data and wind power, without examining 
meteorological data themselves and their potential to improve these 
models. 

Ensemble learning also remains a popular approach to improving 
modeling, since it can reduce the variance and bias of learners. D. Niu 
et al. [7] established a wind-speed power model with wavelet decom
position and weighted random forest optimized by the niche immune 
lion algorithm. The model was subsequently tested in two empirical 
analyses. Y. Dong et al. [8] processed input data with wavelet packet 
decomposition and applied a stacking ensemble by evaluating the cor
relation coefficient between base learners for wind power forecast 
modeling. The model clearly showed the ensemble edge when the base 
learners have high accuracy and low correlations with one another. 
However, these studies were primarily algorithm-oriented and rarely 
considered wind data’s inherent characteristics in detail; meanwhile, 
their uses of decomposition to handle data increased the modeling time 
complexity. 

Wind has some internal trends that can be understood through data 
mining approaches. There have been some studies on clustering tech
nique applications in wind power modeling. V. Kushwah et al. [9] found 
that clusters of time series data showed identical trend components in 
wind speed data using a cluster-based statistical modeling technique, 
which showed better performance than other statistical ones. However, 
purely statistical models can suffer from underfitting problems when 
dealing with complex data. L. Dong et al. [10] utilized cluster analyses of 
the Numerical Weather Prediction (NWP) since wind power and corre
sponding meteorological data have the characteristic of daily similarity. 
This suggests that the clustering model is useful in the day-ahead 
modeling of wind power. K. Wang et al. [11] clustered NWP data con
sisting of daily wind speed, pressure, humidity, and temperature by 
K-means and fed the data into a deep belief network for day-ahead 
prediction modeling, showing that reduced volatility and sophisticat
ion in NWP data drove the outperformance. This also revealed the dif
ficulty of tuning hyperparameters in specific modeling problems, 
especially in network-based models. 

Fortunately, decision tree algorithms do not require the adjustment 
of many parameters. S. Tasnim et al. [12] proposed a K-means 
cluster-based ensemble regression by linear and support vector regres
sion for wind power forecast modeling and proved its superiority, with 
an up to 17.94% upgrade, by comparison with no-clustering and several 
ensemble models in seventy Australian wind sites. The upgrade, as 
compared with the baseline, is further enlarged to 20.63% by employing 
a transfer learning approach called multi-source domain adaptation, 
which includes a weighing method, innovatively calculated with data 
distributions by K-means clustering, to merge existing sites’ information 
for new sites’ power forecasting [13]. However, these efforts only used 
one certain clustering method and did not further explore other faster 
and more efficient clustering approaches. 

As evidenced above, the effectiveness of cluster-based wind energy 
modeling analysis has been validated by multiple relevant models at 
wind sites worldwide, with engineering applicability and values. 
Nevertheless, except for the K-means algorithm, other well-suited clus
tering algorithms are rarely employed in this field. Interestingly, in this 
journal, Ref. [10] presented the significance of investigating different 
clustering approaches in wind power modeling. Wang et al. [14] con
ducted a self-organizing map clustering for classifying data and used 
neural networks and support vector machines as base learners to create a 
Bayesian model averaging ensembles for analyzing wind power. The 
model adapts to different meteorological conditions, but its clustering 
approach and learners are neural network-based and thus with high 
temporal complexity. 

There remains a lack of comparative studies on ensemble learning 

wind power modeling with different clustering algorithms. Nor is there 
existing research that combines various clustering approaches-based 
stacking ensembles and considers the data diversities introduced by 
clustering for the modeling tasks. Both of these gaps are addressed in this 
study. 

1.2. Contribution 

Drawing on the literature review above, this study focuses on a wind 
farm in the Norwegian Arctic. A wind power modeling framework is 
proposed, which involves quantifying wind turbulence, clustering 
meteorological data, and ensemble learning. Firstly, an effective model 
integrating bagging and boosting is constructed. Secondly, four promi
nent clustering algorithms are systematically incorporated with models 
to form layered cluster-based ensembles and the best clustering 
approach is selected. Finally, stacking is employed to fuse these en
sembles with different clusters to establish a more accurate model. 

The principal contributions of this paper are thus as follows.  

1. This paper experimentally proves that farthest first clustering is a 
distinctive approach in clustering wind data for power modeling 
compared to K-means, expectation-maximization, and Canopy clus
tering algorithms. The paper shows that even the worst-performing 
layered cluster-based ensemble outperforms the one without clus
tering. This indicates the similarities and dissimilarities in wind data. 
However, even though these data are not related to an individual 
wind turbine, they can still be significantly reflected in wind power 
in an implicit form.  

2. Given the differences in results of different clustering algorithms, the 
paper proposes fusing layered ensembles with varying clusters with 
two-layer stacking to formalize a model that exceeds the optimal 
single clustering method. The stacking can more efficiently and 
quickly address the complex mapping task of nonlinear relationships 
between meteorological wind data and wind power.  

3. The paper builds a procedure for determining the cluster number 
with a heuristic elbow chart, an empirical formula, and an X-means 
clustering approach. The procedure may be further developed and 
refined into a technique for identifying cluster numbers on other 
problems.  

4. AdaBoost boosting with random forest bagging as its weak learner is 
apposite in the wind power models. These tree-based algorithms are 
computationally fast and parameter insensitive compared to the 
network-based ones. The proposed AdaBoost model statistically 
outperforms linear, neural network, and benchmark Adaboost 
approaches.  

5. The quantization of wind turbulence intensities—both wind speed 
and direction that are rarely considered in related research—is 
applied to wind power modeling in a novel manner. The study finds 
that both intensities can serve as new features for considering wind 
volatility in the modeling. 

The remainder of this paper is organized as follows: Wind meteo
rology and the use of data are described in Section 2. In Section 3, an 
elaborated description of the clustering approaches and statistical 
methods is presented. Section 4 shows the experimental procedure. 
Section 5 presents and discusses the obtained results. Finally, Section 6 
concludes this work, noting its implications and outlook. 

2. Wind power meteorology and data preparation 

2.1. Wind power 

Wind power generation is the conversion of wind kinetic energy into 
electricity. Ignoring losses in the conversion process, the actual output 
power of wind turbines can be expressed as in (1): 
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(1)  

where P represents the output power of the wind turbine (W); CP(v) 
represents wind energy utilization efficiency; ρ is the air density (kg/ 
m2); A represents the effective area swept by the wind turbine blades 
(m2); v is the wind speed (m/s); vmin, vmax, and vn respectively represent 
cut-in, cut-off, and rated wind speeds; and Pn is the rated wind power for 
the wind turbine. From (1), it is clear that the output of a wind turbine is 
primarily influenced by wind speed, air density, and swept area. 
Moreover, air density is primarily affected by temperature and pressure 
[15]. The swept area is related to the wind direction. 

2.2. Quantification of turbulence in the wind 

Turbulence arises when airflow moves through uneven landscapes or 
differences in air density. Turbulence is an immensely complicated flow 
phenomenon that is highly stochastic and difficult to characterize. In 
actual wind farm operations, turbulence is generated because of topo
graphic and climate conditions and weak effects between wind turbines. 
Turbulence has a particularly strong impact on wind power production: 
given similar wind speed conditions, the higher the turbulence intensity, 
the higher the impact on wind farm output power [16]. The wind tur
bine’s large inertia includes an impeller, whose rotation is behind wind 
speed change. Therefore, the turbine will not get the theoretically pre
dicted wind force, and the power output will go down. Empirically, at 
low wind speeds, turbulence increases turbine power production. 
However, when wind speed approaches the turbine’s furling speed, 
turbulence reduces production [17]. Nevertheless, turbulence is rarely 
considered in machine learning models of wind energy. An article in the 
journal [18] compared the effects of five popular learning algorithms 
and nine atmospheric variables on wind turbine power generation and 
found the following through statistical tests. First, for the five bench
mark algorithms, the selection of atmospheric features for wind power 
modeling is more important; second, the top five features that are most 
influential for modeling are, in order, wind speed, turbulent kinetic 
energy, temperature, turbulence intensity, and wind direction. Howev
er, turbulent kinetic energy is seldom recorded by wind sites due to its 
measurement complexity. Therefore, turbulence intensity is considered 
as an input feature in this study. 

Turbulence intensity, defined as wind speed standard deviation 
divided by the mean value over a short period [19], is the principal 
characteristic quantity of wind speed volatility. The turbulence intensity 
of direction is also applied as a quantitative tool to define turbulence 
behavior in wind direction. The turbulence intensities are shown in (2): 

ISP =
SSP

SP
, ID =

SD

D
(2)  

where ISP and ID are wind turbulence intensity of wind speed and di
rection; SP is wind speed; Ssp is its standard deviation of the previous 10 
min; D is wind direction index; SD is its period standard deviation. 

2.3. Data preparation 

The study centers on a 54 MW wind farm designed in northern 
Norway, located about 500 km inside the Arctic Circle; it stands out as 
one of the largest wind farms in the Arctic. This farm’s terrain features 
are a small hill, high steep mountains, and fjords, which are regarded as 
complex terrains. The wind power station company offered measure
ment of wind data with 10 min temporal resolution. We chose the five- 
dimensional meteorological wind data (wind speed and its variance, 
wind direction and its variance, and temperature) and power data from 

0:00 January 1, 2017 to 23:50 December 31, 2017. Specifically, we 
calculated the sine values of wind direction and its standard deviation as 
indicators of wind direction and its fluctuations. Further, the turbulence 
intensities of wind speed and sine value of direction were computed as 
quantitative indices of wind turbulence. In summary, 10-min resolution 
wind data—consisting of wind speed and sine direction and their tur
bulence intensities, temperature, and pressure—were employed to 
model wind power. These measurements contain small outliers and 
inevitable noise. However, the employed algorithm is insensitive to 
outliers, and this noise fits the standard normal distribution; therefore, 
they are not further considered. Because the scales of variables in the 
dataset vary widely, it is worth rescaling the original data into new data 
with similar proportions for each variable. Data normalization or stan
dardization can increase model convergence speed and improve some 
algorithms’ accuracy, especially in distance-based clustering [20]. 

3. Methodology 

3.1. Chosen clustering approaches 

Cluster analysis is an exploratory data mining technique for 
extracting useful information from high-dimensional datasets. It is a 
type of unsupervised learning approach to grouping similar hidden 
patterns [21] and classifying similar data into different subsets to give 
subset members identical attributes [22]. This classification requires 
quantifying the degree of similarity or dissimilarity between observa
tions. The clustering results are strongly dependent on the kind of sim
ilarity metric used [23]. The cluster number is typically unknown and 
needs to be designated according to prior knowledge or determined by 
some method. Several clustering methods have been proposed. Ref. [24] 
offered some factors for choosing a clustering method. The method 
should be able to effectively and precisely find the suspected cluster 
types, and it must resist errors in the datasets; further, it must have the 
availability of computing power. This paper selects four clustering ap
proaches: K-means, expectation-maximization, farthest first, and Can
opy. The first one is a baseline method, and the other three can be 
regarded as competitors. 

K-means: Among clustering algorithms, the K-means algorithm is 
one of the most popular and classical. It is a robust and versatile clus
tering algorithm proposed in Ref. [25]. The target of the K-means is to 
categorize observations into k clusters. K-means in this study is associ
ated with Euclidean distance. Given a set of n data points D =

{x1,…, xn} in Rd and an integer k, the K-means problem is to determine a 
set of k centroids C = {c1,…, cK} in Rd to minimize the following error 
function: 

E

(

C

)

=
∑

x∈D
min

k=1,…,K
‖ x − ck‖

2 (3) 

It is a combinatorial optimization that equals finding the partition of 
the n instances in k clusters whose associated set of mass centers mini
mizes Eq. (3) [26]. 

EM: The Expectation-Maximization (EM) algorithm is proposed by 
Ref. [27]. It provides a simple, easy-to-implement, and efficient tool for 
the learning parameters of a model [28], and is widely used. It finds the 
maximum likelihood or maximum posterior of the parameters in a 
probabilistic modeling process where the model relies on latent unob
servable variables. The EM first initializes distribution parameters, then 
alternates between two steps: computing the expectation of variables 
based on the assumed initial parameters; and maximization, which gives 
a maximum likelihood estimate of the current parameters through the 
expectation values of the latent variables. The two steps repeat itera
tively until the desired convergence is realized. When applied to clus
tering, the probabilistic model is established on the probability of each 
data sample to each cluster and distributes samples to the cluster with 
the largest possibility. The goal of EM clustering is to maximize the 
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overall probability or likelihood of the clusters. 
FF: The first utilization of Farthest First (FF) traversal is in Ref. [29]. 

FF is an effective greedy permutation method in computational geom
etry. Its underpinning is the traversal of a sequence of points in space 
where the initial point is specifically stochastic. The subsequent points 
are as remote as possible from the prior chosen set of points. FF clus
tering is the application of FF traversal in clustering, which was intro
duced in Ref. [30]. It is an optimized K-means with an analogous 
procedure, selecting the centroids first and assigning the samples to 
clusters with the maximum distance. Specifically, k numbers of cen
troids are generated by stochastically choosing a data point as the pri
mary cluster centroid and greedily selecting the second centroid when it 
is FF from the first centroid. The process is repeated k times. As soon as 
all the centroids are recognized, FF assigns all the other data to the 
cluster in which the data have the nearest feature distance. In contrast to 
K-means, FF merely requires one traversal to cluster data. All the cluster 
centers are real data points, not geometric clustering centroids, and their 
position is fixed in the computation [31]. In most cases, the speed of 
clustering is considerably increased because fewer reassignments and 
adjustments are involved. The FF traversal is described in Algorithm 1. 

Algorithm 1 
Farthest First clustering Algorithm.  

1. Farthest First Clustering (D: dataset, k: cluster number) { 
2. select random data as the first point and first centroid; 
3. // searching the data sample that is the farthest from the centroid 
4. for (I=2,…,k) { 
5. for (each remaining data sample in D) { 
6. calculate the total distance to the existing centroids;} 
7. select the sample with the largest distance as the new centroid; 
8. label the centroids as {c1, c2, …., ck}} 
9. //assignment the rest points {p1, p2, …., pn} 
10. for (each point pi) { 
11. calculate the distance function dist to each fixed cluster centroid; 
12. realize min {dist(pi, c1), dist (pi, c2), …, dist (pi, ck)]} 
13. put it to the cluster with minimum distance;} }  

Canopy: Canopy clustering was introduced in 2000, and its central 
idea was to use a cheap, approximate distance measure to divide the 
data into subsets efficiently. This clustering decreases computing time 
over K-means and EM clustering methods by more than an order of 
magnitude and reduces errors on large datasets [32]. Unlike K-means, 
which only uses one distance, the Canopy algorithm uses two threshold 
distances, the larger loose distance T1 and the smaller close distance T2. 
It begins by removing a random point r sample from the original dataset 
and starting a canopy centered at r. It then approximates all distances 
between r and the remaining data ri. If the distance is less than T2, it 
places ri in r canopy. If the distance is less than T1, it removes ri from a 
dataset. It repeats these steps until there is no more data to be clustered. 
However, Canopy needs to be tuned to the distance parameters and, 
according to Ref. [33], T1 and T2 can be obtained approximately using a 
heuristic based on attribute standard deviation. 

3.2. Determining the cluster number 

While various clustering methods are available, all of the mentioned 
methods require the cluster number before the clustering procedure. It is 
necessary to estimate the number due to the resulting partition of the 
data being dependent on its specification. 

There have been energy studies using validated clustering methods, 
such as the elbow chart [10], Davies–Bouldin index [34], etc., to 
conduct data analysis. However, according to Refs. [35,36], there is no 
standard method for determining cluster numbers. Therefore, this paper 
combines three methods—formula, plotting, and information value—to 
comprehensively find a suitable cluster number for our meteorological 
wind data. 

There is an empirical formula [37] to find the cluster number k. It is 
useful to check the range of k since it is not a precise approach. 

k = 1 + 3.2log 10 n (4)  

where n is the number of data points. This formula is inaccurate but can 
provide a reference for seeking k. 

The elbow method is a visually heuristic technique for choosing 
cluster numbers [38]. The elbow principle’s idea is that the total sum of 
squared errors between the sampling point in each cluster and the 
centroid (a smaller value means a more convergent result) is calculated 
with a series of k values. When the setup cluster number approximates 
the actual cluster number, the sum of squared errors will decrease 
swiftly. As the setup cluster number continues to grow, the Sum of 
Squared Errors (SSE) will continuously decrease, but more slowly [39]. 
Intuitive observation of turning points from elbow plots is sometimes 
vague. Still, it can provide a reasonable interval for searching for the 
value of k. 

The X-means approach offers an effective tool for finding the exact k. 
X-means: X-means is a variation of K-means clustering and can 

automatically determine the optimal cluster number in a dataset. It re
fines cluster assignment by repeatedly attempting subdivision segments 
and keeping the best resulting splits. It searches the space of cluster 
locations and the cluster number to optimize the Bayesian Information 
Criterion (BIC) measure [40]. The main parameters for X-means are the 
lower and upper bounds of the cluster number, which are found in the 
above two methods. It includes two steps that are repeated until they 
reach the required convergence. Primarily, the K-means algorithm is 
utilized to cluster the given dataset. Each cluster centroid is divided into 
two parts in opposite directions along a stochastic vector. The K-means 
algorithm is locally operated within the old cluster and generates two 
new clusters. By comparing the BIC scores of the original clustering 
structure with a new one, the splitting is either made or not. The idea is 
that splitting a single cluster into two clusters increases the BIC score, 
with two clusters being more probable than one. When k reaches the set 
upper bound, the splitting stops, and the algorithm reports BIC scores for 
each k value. 

3.3. Modeling ensemble learning algorithm 

The fundamental idea behind ensemble learning is to ensemble 
multiple algorithms or models to achieve an integrated model with 
better predictive performance [41]. The ensemble method can tactfully 
partition the dataset into smaller ones, train them separately, and then 
combine them with some strategies. The main strategies can be cate
gorized into three groups: boosting, bootstrap aggregating (shortened as 
bagging), and stacking. 

In the bagging procedure, new training sets are formed by taking 
from the original training set with a put-back. The averaging method for 
each new result of the training set is applied to reach the final result in a 
regression. Random forest [42] is an efficient bagging algorithm that 
uses decision trees as its base learners and offers decent performance and 
low computing costs. It is an improvement in the decision tree algorithm 
in which, essentially, multiple decision trees are merged. The creation of 
each tree depends on an independent bagging subset. Each tree in the 
forest has the same probability distribution. The final regression value 
can be determined by averaging each predictive value from each tree. 
Since random forest introduces perturbations in sampling and features, 
it dramatically improves generalization and avoids overfitting. Further, 
it can handle high-dimensional data without feature selection, and 
crucial features are derived during the training process [43]. 

Boosting [44] is an approach that boosts weak learners to strong 
learners. Adaptive boosting (shortened as AdaBoost) is a representative 
boosting algorithm. It continually builds weak learners to emphasize 
(with larger weights) on samples mislearned in the prior learner until 
the number of learners reaches the setup value or the loss function 
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reaches a threshold. For the regression problem, the weighted average is 
used to eventually obtain predicted values. Adaboost is highly accurate, 
can adequately construct weak learners, and is not susceptible to over
fitting. Meanwhile, it is sensitive to anomalous samples (which may 
receive large weights in iterations), affecting the performance of strong 
learners. For the numeric output for the strong learner hi(x) ∈ R, 
weighted averaging (5) is used for the final result [45]. 

H(x)=
∑M

i=1
wihi(x) (5)  

where wi is the weight of a weak learner and wi ≥ 0,
∑T

i=1wi = 1. 
Stacking is a representation learning technique that can extract valid 

features from data by employing meta-learning algorithms to learn how 
to optimally combine predictions from many base learners. Several 
different base models are first trained with the original dataset. A new 
model named meta-learner is then trained with each of the previous 
models’ outputs to get a final output [46]. The stacking result is typically 
better than its single base learner since the fusional ensemble combines 
varying types of base learners. The applied stacking is shown in Algo
rithm 2 [47]. 

Algorithm 2 
Stacking algorithm with four base learners and one meta-learner.  

Input: Dataset D = {(x1,y1), (x2,y2),…, (xm,ym)}

Base learner varying clustering approaches-based Adaboost algorithms L1,…,L4; 
Meta-learner linear regression L 

Process: 
1. for t = 1, 2,3, 4 do 
2. ht = Lt(D); 
3. // Train base leaners by Lt 

4. end for 
5. // Generate training set for meta-learner 

6. D′

= Ø ; 
7. for i = 1, 2,…,m do 
8. for t = 1, 2,3, 4 do 
9. zit = ht(xi); 
10. end for 
11. D′

= D′

∪ ((zi1, zi2,zi3, zi4),yi)

12. end for 
13. // Meta-learner h′ is established 
14. h′

= L(D′

)

Output: H(x) = h′

(h1(x),h2(x),…,hT(x))

A two-layer assemblage structure for regression, which can be 
categorized as a kind of layered cluster-based or oriented ensemble 
named by Ref. [48], is adopted to optimally incorporate clustering re
sults generated separately by the four above clustering approaches into 
the AdaBoost mechanism. The ensemble structure achieves excellent 
learning ability and prediction accuracy by mapping the first-layer 
clustering to the second-layer ensemble regression [21]. 

3.4. Proposed modeling strategy 

A proposed framework for clustering approach comparisons is dis
played in Fig. 1. It is inspired by wind energy meteorology, clustering 
approaches, and ensemble learning. The framework is a two-layer ar
chitecture, with four clustering algorithms in layer 1 and AdaBoost in 
layer 2. Specifically, the random forest is the weak learner for the 
AdaBoost, and Reduced-Error Pruning TREE (REPTREE) [49] is intro
duced to replace the decision tree in the random forest to reduce over
fitting that may be caused by the complicated ensemble model structure. 

Take K-means clustering as an example. Layer 1 uses Section 3.2 to 
identify the cluster number k and clusters the wind data into k clusters. 
Layer 2 employs each cluster to train the AdaBoost to learn AdaBoost 
and establish k submodels with labels. Subsequently, the test data, one 
by one, are classified into an existing cluster and loaded into the trained 
AdaBoost submodel corresponding to the cluster for wind power 
modeling, and overall performance is calculated. 

Analogously, the above procedure is also applied to EM, FF, and 
Canopy clustering approaches. More experimental details are presented 
in Section 4. 

Regarding stacking ensemble modeling, a novel method is put for
ward. It also consists of two layers, the first being base learners (Ada
Boost models with the four different clustering algorithms) and the 
second being linear regression Eq.(6) with Tikhonov regularization λ ‖

w‖1 (also named ridge regression [49] Eq.(7) to avoid overfitting caused 
by the complex model structure [50]). The reasons for this configuration 
are the following. First, the first layer has diversity in the layered en
sembles based on four clustering algorithms and may deeply extract data 
features and transmit them to the second layer. Second, the major risk of 
the second layer is that it learns the generated data from the first layer 
and is vulnerable to overfitting, so linear regression with a regular term 

Fig. 1. The procedure of the proposed strategy for wind power modeling.  
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is the learning algorithm in this layer. The first layer procedure is the 
same as in Fig. 1. It generates four sets of simulated power on training 
and test sets. Subsequently, the second layer uses the measured power 
and four generated power sets as the dependent and independent vari
ables, respectively, to build ridge regression on the training set and 
employs the learned regression to predict the power with the simulated 
test power on the test sets. 

f (x)=w⊤x + b (6)  

with a loss function J = 1
n
∑n

i=1(f(xi) − yi)
2
+λ‖w‖1 : 

min
w,b

1
n
∑n

i=1

(
wTxi + b − yi

)2

s.t. ‖ w‖1 ≤ t

(7)  

3.5. Model evaluation metrics and multiple comparisons 

Two metrics are utilized in evaluating the performance of different 
models in the test set. The first one is Normalized Mean Absolute Error 
(NMAE), while the second is Normalized Root Mean Square Error 
(NRMSE). They are negatively oriented, which means the smaller value 
is related to better performance. The NRMSE assigns a higher weight to 
larger errors because of the square calculation, meaning it punishes 
substantial prediction errors and reveals whether the regression has 
noticeable error variance. 

NMAE =

∑n
i=1|predictioni − observationi|

n

/∑n
i=1observationi

n
(8)  

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(predictioni − observationi)
2

n

√ /∑n
i=1observationi

n
(9) 

Two statistical approaches are used to check whether there are sta
tistically significant differences between the model’s performance. The 
Friedman test is used to check for differences in performance across 
multiple trials [51]. It tests column effects after adjusting for possible 
row effects. 

H0: The column data do not have a significant difference. 
Ha: They have a significant difference. 
Its statistic F is shown as: 

F =
12n

k(k + 1)

[
∑k

i=1
r2

i −
k(k + 1)2

4

]

(10)  

where k is the number of columns, ri is the mean value of row i, which 
follows χ2

(k− 1) under H0. 
Furthermore, the Tukey method is used for computing confidence 

intervals between the means of two populations. It is expressed as fol
lows: 

(Y1 − Y2)±
qk,n− k,1− α

̅̅̅
2

√ ⋅
̅̅̅̅̅̅̅̅̅̅
MSE

√
⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n1

+
1
n2

√

(11)  

where q is the Gaussian q-distribution, k is the number of populations, 
and n is its total size; MSE is the Mean Square Error within groups. 

4. Experiment setup 

This study extracts meteorological wind data from the Norwegian 
Water Resources and Energy Directorate, including a few abnormal 
negative values, at which the wind farm did not generate electricity but 
consumed grid power. All weather data are normalized as inputs to the 
models. First, the wind data are divided into a training set, accounting 
for 90%, and a test set, accounting for 10%. To fully apply the data, 
avoid overfitting, and improve generalization in modeling [52], 10-fold 

cross-validation is used in the training. Then, weather data are har
nessed in the test set to calculate the corresponding wind power, which 
is compared to the actual power data to obtain performance metrics. 

For the benchmark model, the processed training data are directly 
fed into the AdaBoost with random forest (Layer 2 in Fig. 1) (AdaRF). 
The number of iterations is set to 100 (trade-off between performance 
and computing speed). Random forest is the AdaBoost inner weak 
learners, and the number of REPTREE in each random forest is set to 10. 
The competitors are linear regression (LR), artificial three-layer neural 
networks (16 nodes in the hidden layer, which is found by a grid search 
from 6 to 20) (ANN), and AdaBoost with 20 decision trees (achieved by a 
grid search from 5 to 30 with an interval of 5) as its weak learners 
(AdaDT). 

Regarding the ensemble model based on clustering approaches, the 
range of cluster numbers for the weather data is first found by the elbow 
graph and empirical formula (4). Its exact value is determined using the 
X-means clustering method. Then, the four aforementioned clustering 
approaches are used to group the data in the training set and categorize 
the test data into established clusters to find the best-performing clus
tering algorithm. Finally, stacking is employed to combine layered 
cluster-based ensembles with different clustering algorithms to further 
explore avenues to upgrade power modeling. 

In this study, wind power modeling is realizing the relationship be
tween wind power and wind weather Wt. The model is shown in (12). 

P
∧

t = ft(Wt) + e (12)  

in which 

W = [V, IVturbulance, sin(θ), Isinturbulance(θ), T,P] (13)  

where P
∧

t is modeling wind power; ft (.) is the model that needs to be 
implicitly realized; Wt represents weather data that will be clustered by 
the four clustering approaches; e is the model error. 

5. Experiments and results 

5.1. Feature ranking and comparison for modeling without clustering 

The training wind data are initially harnessed to establish a multi
variate linear wind power regression model to check the feature 
attributing degree. The diagnosis (T statistic and its corresponding two- 
tailed p-value [53]) for the interpretation of each feature is shown in 
Table 1. 

All meteorological features are statistically significant in the linear 
modeling except pressure P. The features’ importance may be approx
imatively ranked by absolute values of T statistics in a descending scale 
as V, Sin(θ), T, IVturbulance, Isinturbulance(θ), P. Although pressure does not 
contribute to the linear regression, all above meteorological features are 
still accounted for in the modeling as pressure values are relatively 
stable and the presented models are clustering and tree models 
demanding low computations and feature selection. 

To enhance the verifiability of modeling results, the year is split into 
four quarters, Q1, Q2, Q3, and Q4, for individual power modeling. The 
statistical variability among quarterly data is initially analyzed in 
Table 2. Statistics and distribution disparities between meteorological 
wind and power quarterly datasets can be summarized, and quarterly 
data differ from yearly data. Therefore, separate modeling on these 
datasets can strengthen the proposed strategy’s credibility. 

The four quarterly and yearly normalized training data are sepa
rately entered into the proposed AdaRF, benchmarking LR, ANN, and 
AdaDT to map the relationship between wind data and wind power. 
Fig. 2 shows the results. Both NMAE and NRMSE increase significantly 
as time grows. The NMAE and NRMSE of AdaRF are significantly lower 
than the results obtained from multivariate linear regression. The 
average NMAE and NRMSE decrease by 52.98% and 46.31%, 
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respectively. The AdaRF decrease in NMAE and NRMSE (corresponding 
to the model improvement) is also evident when compared with ANN 
(NMAE 19.54% and NRMSE 10.43%) and AdaDT (NMAE 29.31% and 
NRMSE 17.95%). Fig. 3 displays the modeling power of a day, from 
which AdaRF appears close to real values but with several errors in 
points. This means the proposed AdaRF enables accurate power 
modeling based on weather data but still leaves room for refinement. 

5.2. Determination of an appropriate cluster number 

The size of the yearly dataset is 52,560; k is calculated to be 
approximately 16 in (4). Selecting this value as the midpoint, the total 
Sum of Squared Errors (SSE) of K-means is calculated with a starting 
point of k equals 2 and an endpoint of k equals 30. The elbow plot is 
drawn and displayed in Fig. 4. The precise value of the elbow point for 
the total sum of squared errors can be determined only approximately 

since the process is by intuition and experience. However, Fig. 4 still 
shows an interval, the cluster number k∈ [10,20], in which the decline of 
SSE begins to flatten from steep, and where the elbow point belongs to. 

To demonstratively find the precise value of k, an X-means approach 
is adopted. The lower and upper bounds of k are set as 10 and 20 
respectively according to the interval formerly found in Fig. 4. The 
optimized BIC score is 69,956.78 with a proper k value for the meteo
rological wind data equaling 11. 

Analogously, the k values for the four quarterly wind data, Q1, Q2, 
Q3, and Q4, are decided as 14, 8, 9, and 12, respectively. 

5.3. Comparison of different clustering approaches in modeling 

For the yearly dataset, the four clustering approaches yield varying 
numbers of samples per cluster, albeit at the same cluster number. Based 
on the four separate clustering methods separately with 11 clusters, four 
complete layered cluster-based ensembles are developed for clustering 
comparisons. Firstly, the wind weather data with different clustering 
approaches in the training and test sets are shown in Fig. 5. Each color 
represents a cluster, and the vertical axis shows the percentage of each 
number in the total dataset. 

The various clustering methods produce wildly different clustering 
results, even with the same k. The cluster sample number variance 
analysis reveals that the K-means method produces more homogeneous 
clustering than other methods. Even single-digit sample percentages are 
seen in the FF and Canopy algorithms for the training set. Apart from the 
K-means, all of the other three algorithms generate clusters that exceed 
one-fifth of the sample size. Second, the four clustering methods’ yearly 
meteorological wind test data are loaded into the layered cluster-based 
ensemble for wind power modeling. The NMAE and NRMSE are dis
played in Fig. 6. 

The model based on FF clustering intuitively presents the smallest 
NMAE and NRMSE, 32.35% and 33.64% reduction without clustering; 
the second smallest is the model with Canopy. The models with these 
two clustering approaches significantly improve their performance 
compared to the ones without clustering, while the K-means and EM 
algorithms also upgrade their models’ abilities. 

To further elaborate comparisons of clustering methods, analo
gously, layered cluster-based ensemble modeling with different clus
tering approaches is conducted on four quarterly wind datasets, and 
their NMAE and NRMSE are displayed in Fig. 7. The ranking of the 
models built on quarterly data is the same as those built on yearly data. 
Strengths in the FF and Canopy clustering algorithms are evident in each 
quarter. Moreover, a result is derived that the 3rd quarter-power model 
performs the best, followed by the 2nd quarter. This illustrates a more 

Table 1 
The wind features were selected by the statistical diagnosis of linear regression.  

Futures V IVturbulance Sin(θ) Isinturbulance(θ) T P 

T statistic; p-value 250.79; <0.0001 7.84; <0.0001 − 21.77; <0.0001 3.02; 0.0025 23.68; <0.0001 0.67; 0.5040 

Note: the term is shown as “T statistic; p-value.” The H0 is where the interpretation equals zero and its Ha is where the term is not zero; when the p-value is smaller than 
the set confidence level of 0.05, the H0 is rejected and the feature is attributed to the linear model. 

Table 2 
The statistics of the yearly and quarterly wind data.  

Dataset Statistics 

Average Standard deviation Skewness Kurtosis 

Year <0.0001 0.9983 4.9493 100.7258 
Q1 0.1988 0.8981 3.9305 87.7615 
Q2 − 0.0283 0.8729 5.4827 129.5278 
Q3 − 0.0356 0.8421 5.4604 118.6208 
Q4 − 0.1350 0.8873 4.7543 113.6719 
CoV for Statistics − 53584 0.0586 0.1157 0.1316 

Note: The different variables are standardized to similar scales, so the statistics 
of the various variables in the dataset are averaged and shown. Coefficient of 
Variation (CoV) is defined as the ratio of standard deviation to mean. 

Fig. 2. The performance comparison for power modeling without clustering.  

Fig. 3. The wind power modeling from weather data in the wind farm.  
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clear relationship between wind data and power from April to 
September, which is consistent with the intuition that the area has 
milder weather during this period. 

Multiple comparisons are conducted between the metrics from 
different cluster-based models between quarters. The Friedman test p- 
values of NMAE and NRMSE are both 0.0056 and much smaller than the 
confidence level of 0.05, so the null hypotheses are rejected. This leads 

to the conclusion that there are differences between the metrics of the 
various ensembles. 

Table 3 compares the average NMAE and NRMSE for models with 
different kinds of clustering against the ones without. Quarterly evenly, 
the new model reduces NMAE and NRMSE by 13.94% and 17.45%. 
Furthermore, performance improvement between the two models 
generally slumps from summer to winter. 

Regarding the best-performing FF clustering of the yearly dataset, 
Table 4 compares NMAE and NRMSE for the FF-based model to the 
original model. Both NMAE and NRMSE have an approximately 23%– 
34% decrease, which indicates this clustering approach is twice as good 
as the average clustering method in our case. Further, the superiority of 
FF is different with the quarter: the model boosting results are more 

Fig. 4. The elbow plot for finding cluster number k.  

Fig. 5. The clusters number percentage of different clustering approaches.  

Fig. 6. The NMAE and NRMSE of the power modes with different clustering 
methods for the yearly dataset. 

Fig. 7. The NMAE and NRMSE of the power models with different clustering methods for quarterly data.  

Table 3 
The average performance improvement between the models with clustering and 
the corresponding one without.   

Q1 Q2 Q3 Q4 

NMAE 13.66% 15.06% 16.29% 10.74% 
NRMSE 17.73% 19.60% 20.08% 12.37%  
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noticeable during warm periods compared to those during cold seasons. 
Further, the Canopy clustering-based approach also displays a 

satisfactory result, which improves the modeling performance by aver
ages of over 20% in NMAE and 25% in NRMSE, respectively. EM and K- 
means clustering-based approaches have relatively similar performance. 
However, they are still not as good as the FF and Canopy, as the above 
yearly analysis shows. 

Collectively, the Tukey method calculates the intervals with 95% 
confidence of metrics difference; Table 5 shows the bounds of these 
intervals between the yearly and quarterly models with no clustering 
and ones with varying clustering algorithms. The upper and lower 
bounds of the metrics difference between no and FF clustering are 
positive, indicating that the superiority of the FF is statistically signifi
cant across multiple datasets. Moreover, the upper bounds of all other 
differences are greater than the lower bounds of absolute values, illus
trating that normally distributed differences have positive means, which 
describes the other cluster-based models as outperforming no clustering 
in a probabilistic sense. Therefore, the edges of wind data clustering, 
ranking as FF, Canopy, K-means, and EM in order, before the layered 
ensemble modeling procedure, are demonstrated in our datasets. 

5.4. Stacking ensemble power modeling 

Section 5.1 demonstrates that the proposed AdaRF outperforms three 
other benchmarks (ANN, AdaDT, and LR in descending order). Section 
5.3 illustrates in Fig. 5 the four clustering algorithms yielding highly 
diverse clusters, and the cluster-based models work better. The AdaRF 
model is further refined by implementing a two-layer stacking structure 
(Cls-AdaRF): The first layer takes the four clustering outcomes in Fig. 5 
as inputs to AdaRF to generate four-layered cluster-based ensembles; the 
second layer combines these ensembles outputs by linear regression to 
yield final simulations. Its performance is compared with that of AdaRF 
without clustering (NCl-AdaRF) in Section 5.1 and AdaRF with FF 
clustering (FF-AdaRF) in Section 5.3. The comparison in Fig. 8 shows 
that Cls-AdaRF decreases more NMAE and NRMSE in percentage than 
NCl-AdaRF (NMAE 31.89% and NRMSE 34.74%) and FF-AdaRF (NMAE 
4.32% and NRMSE 5.71%). Its edge over FF-AdaRF indicates that 
stacking combined with four different clustering algorithms outperforms 
the best-layered ensemble with a single clustering. These model quar
terly variations are similar to those in Section 5.3. 

Likewise, placing benchmark algorithms ANN, AdaDT, and LR into 
this process eventually yields three cluster-based stacking ensembles, 
denoted as Cls-LR, Cls-ANN, and Cls-AdaDT. These models, including 
those that are run on the datasets separately, and their NMAE and 
NRMSE, are compared to those of Cls-AdaRF. Table 6 shows the differ
ence intervals calculated by the Tukey method and reveals that, except 
for Cls-AdaRF vs. Cls-ANN in NMAE (where the upper bound is 
considerably close to zero), all the intervals are negative, indicating a 

95% statistical significance among datasets for the Cls-AdaRF model’s 
strength. 

The percentage reductions in NMAE and NRMSE for Cls-AdaRF 
versus other models (corresponding to model improvement) are 
further calculated and presented in Fig. 9. On average, Cls-AdaRF de
livers over 20% improvements over its three competitors (within a 
standard deviation; Cls-AdaRF outperforms Cls-LR, Cls-ANN, and Cls- 
AdaDT by about 60%, 25%, and 35%, respectively.). 

Altogether, the Cls-AdaRF model is inferred to be a superior wind 
power model because it not only outperforms AdaRF without clustering 
but is also better than other stacking models. 

6. Conclusions 

This paper presents an ensemble learning approach that combines 
bagging, boosting, and stacking for modeling wind power from meteo
rological data. To mine the inherent characteristics of the data, four 
clustering approaches are used to process inputs for the layered en
sembles. Then, the layered cluster-based ensembles are fused within the 
stacking framework. The proposed models’ superiority is verified by 
diverse comparisons. 

The AdaRF can accurately model wind power. The algorithm cir
cumvents issues of an equal weighting of each tree in RF and AdaBoost 

Table 4 
The performance improvement between the models with FF clustering and the 
baseline.   

Q1 Q2 Q3 Q4 

NMAE 25.98% 31.94% 30.60% 23.24% 
NRMSE 28.83% 33.85% 31.68% 25.88%  

Table 5 
The bounds for paired comparisons of clustering across yearly and quarterly 
datasets.  

No clustering v.s. K-means EM FF Canopy 

NMAE Lower Bound − 0.0363 − 0.0414 0.0176 0.0011 
Upper Bound 0.0585 0.0534 0.1124 0.0959 

NRMSE Lower Bound − 0.0572 − 0.0642 0.0122 − 0.0030 
Upper Bound 0.1082 0.1012 0.1776 0.1624  

Fig. 8. The NMAE and NRMSE of the power models with different clustering 
methods for quarterly data. 

Table 6 
The bounds for paired comparisons of stacking across yearly and quarterly 
datasets.  

Cls-AdaRF v.s. Cls-LR Cls-ANN Cls-AdaDT 

NMAE Lower Bound − 0.3735 − 0.1398 − 0.1654 
Upper Bound − 0.2154 0.0183 − 0.0073 

NRMSE Lower Bound − 0.3896 − 0.1835 − 0.2011 
Upper Bound − 0.2097 − 0.0036 − 0.0212  

Fig. 9. The NMAE and NRMSE improvement of Cls-AdaRF versus other models 
for the yearly dataset. 
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and allows each learner to boost incrementally, and eventually creates a 
model with a good generalization. The overall performance of the pro
posed method is on average 33.94% in NMAE and 24.90% in NRMSE, 
lower as compared to the benchmarks in the cases excluding clustering. 

As no standard methods for identifying the cluster number exist, the 
paper uses a heuristic elbow graph, an empirical formula, and the X- 
means clustering algorithm to precisely determine the implied number 
for meteorological data. Interestingly, the number for the yearly dataset 
is 11, which is close to the month’s number. This result suggests that 
there may be analogous phenomena to measured wind data with 
monthly periodicity. 

A comparative study of AdaRF based on different clustering methods 
reveals, firstly, that the model with clusters significantly performs better 
than the model without, regardless of what clustering approach is 
employed. This suggests that similarities within the wind power data can 
correspond to similarities within the weather data. Secondly, among 
these clustering methods, the model with FF clustering provides the best 
modeling results. The reason is that FF is built on finding the data point 
furthest from the previous centroid as the new one; in other words, it 
emphasizes large differences between clusters. Upon this clustering, the 
fluctuations among the original meteorological data are considerably 
diminished, which in turn corresponds to a smoother wind power output 
and increases the accuracy of the wind power model. The fast comput
ability and accuracy of FF also suggest that the clustering technique can 
be applied to ultra-short-term wind power models. Thirdly, Canopy is 
the fastest among the four clustering methods and achieves comparable 
results. Therefore, Canopy can also serve as a favorable clustering 
approach when wind weather datasets are considerably large. 

Finally, the wind power model is further strengthened by using 
stacking Cls-AdaRF to fuse the layered ensembles with four clustering 
approaches. It can be interpreted as Cls-AdaRF working as a represen
tation learning—that is, effective features are automatically collected 
from raw data and fed into the second layer via multiple learners in the 
first layer; the second layer compiles and aggregates these features 
through linear regression with a regular term and effectively outputs 
simulations. 

Practically, given that the proposed well-performing wind power 
model does not involve complex network training and extensive 
parameter tuning and wind energy physical modeling, it can be easily 
transferred to other energy utilization scenarios. 

Further research, as suggested by the above conclusions, is needed to 
deeply optimize the base learners of stacking and their combination 
algorithms to deliver faster and more accurate modeling. Another di
rection is to incorporate this article’s in-the-now power modeling 
approach and meteorological data with historical wind power to achieve 
efficacious short-term power forecasting. 
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