
����������
�������

Citation: Hatamzad, M.; Polanco

Pinerez, G.; Casselgren, J. Addressing

Uncertainty by Designing an

Intelligent Fuzzy System to Help

Decision Support Systems for Winter

Road Maintenance. Safety 2022, 8, 14.

https://doi.org/10.3390/

safety8010014

Academic Editors: Amir Khorram

Manesh and Tom Brijs

Received: 1 November 2021

Accepted: 15 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

safety

Article

Addressing Uncertainty by Designing an Intelligent Fuzzy
System to Help Decision Support Systems for Winter
Road Maintenance
Mahshid Hatamzad 1,* , Geanette Polanco Pinerez 1 and Johan Casselgren 2

1 Department of Industrial Engineering, UiT/The Arctic University of Norway,
8514 Narvik, Nordland, Norway; geanette.polanco@uit.no

2 Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden;
johan.casselgren@ltu.se

* Correspondence: mahshid.hatamzad@uit.no

Abstract: One of the main challenges in developing efficient and effective winter road maintenance
is to design an accurate prediction model for the road surface friction coefficient. A reliable and
accurate prediction model of road surface friction coefficient can help decision support systems to
significantly increase traffic safety, while saving time and cost. High dynamicity in weather and road
surface conditions can lead to the presence of uncertainties in historical data extracted by sensors. To
overcome this issue, this study uses an adaptive neuro-fuzzy inference system that can appropriately
address uncertainty using fuzzy logic neural networks. To investigate the ability of the proposed
model to predict the road surface friction coefficient, real data were measured at equal time intervals
using optical sensors and road-mounted sensors. Then, the most critical features were selected based
on the Pearson correlation coefficient, and the dataset was split into two independent training and
test datasets. Next, the input variables were fuzzified by generating a fuzzy inference system using
the fuzzy c-means clustering method. After training the model, a testing set was used to validate the
trained model. The model was evaluated by means of graphical and numerical metrics. The results
show that the constructed adaptive neuro-fuzzy model has an excellent ability to learn and accurately
predict the road surface friction coefficient.

Keywords: adaptive neuro-fuzzy inference system (ANFIS); prediction methods; road surface friction;
road transportation safety; winter road maintenance

1. Introduction
1.1. Motivation

Low temperatures and heavy snowfall can be problematic for road users, especially in
countries with long and harsh cold-weather conditions. Road safety can be significantly
reduced due to slippery surface conditions and poor visibility [1]. Adverse weather can
decrease the reliability and productivity of the surface transportation system. In addition,
it increases traffic delays and the likelihood of vehicle accidents that may lead to severe
injuries and fatalities [2]. To minimize these negative impacts, roads must be kept clear of
ice and snow through chemical (salting) and mechanical (plowing) operations, referred
to as winter road maintenance (WRM) techniques. WRM helps to increase the friction
between tires and the road surface to prepare the road for normal traffic flow, meaning that
the road users can drive as fast as in summer (effective WRM); however, this can result in
high expenses (inefficient WRM).

Prediction of the road surface friction coefficient (RSFC) can help decision makers to
plan in advance for the type and timing of WRM to improve decision support systems (DSS).
The prediction of RSFC is a comprehensive calculation from different performance aspects
using multiple physical dynamic variables (e.g., weather temperature, ice layer, snow
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height, etc.), which often shows a nonlinear relationship between road surface friction and
the considered variables. In fact, sensors are not always able to measure road surface condi-
tions (RSC) precisely, due to various reasons such as signal noise. Therefore, uncertainties
need to be considered to enhance the accuracy of prediction models and improve the WRM
performance.

1.2. Significance of the Topic

An accurate RSFC prediction model helps decision makers to effectively prepare for
and respond to severe road conditions in winter (such as snowstorms and sharp reductions
in RSFC), in order to maximize road safety for road users. Addressing uncertainty in a
prediction model allows decision makers to systematically prevent hazards (such as fatal
vehicle accidents) and strategically organize WRM resources to mitigate the detrimental
impacts that a disaster can cause. In addition, avoiding the use of extra salt (chemicals) on
the road surface minimizes cost and environmental impacts. In fact, high WRM quality
and using an optimal salt quantity minimizes damage to vehicles, road infrastructure,
vegetation, lakes, rivers, etc.

1.3. State-of-the-Art Method

There are several studies that present various methods to reach effective and efficient
WRM. Shao and Lister [3], the authors used air temperature, wind speed, surface tem-
perature, and dew-point as input variables to develop an automated road ice prediction
model. Mohseni [4] applied a regression model to select the strongest features (pavement
temperature, latitude, air temperature, elevation, and depth into the asphalt concrete layer)
to develop a prediction model for low pavement temperature based on laboratory tests.
Kangas et al. [5] developed a simulation model named RoadSurf using numerical weather
forecasts as input to predict road surface temperature and condition. Moreover, developing
sensor technologies has had a significant impact on monitoring road surface conditions
in winter. Ye et al. [6] presented a review about developing and implementing advanced
technologies to achieve safe and efficient WRM. Ewan et al. [7] investigated the reliability of
an optical sensor to measure snow depth, water depth, and surface state (dry, wet, icy, etc.).
Feng and Fu [8] investigated the performance of pavement sensors, and their results show
that a sensor cannot always detect friction precisely. However, WRM effectiveness and
efficiency can be improved by developing data-driven approaches using historical data
collected by sensors. Ahabchane et al. [9] proposed a data-driven regression model using
geometry, weather, and telemetry data to predict the amount of salt and abrasives in street
segments. Pan et al. [10] applied deep neural networks to classify RSC according to images.
Liu et al. [11] utilized machine learning algorithms (gradient-boosting) to develop road sur-
face temperature forecasting. Roychowdhury et al. [12] applied neural networks to design
a methodology to estimate RFSC. Panahandeh et al. [13] employed machine learning (ML)
classification algorithms to predict RFCS for connected vehicles. Pu et al. [14] developed a
daily RSFC prediction model using a long–short-term memory neural network based on
the following three scenarios: (i) considering only daily friction data, (ii) selecting water
thickness as an input variable, and (iii) selecting road surface temperature and water thick-
ness as predictors. Their results showed that the second scenario had the highest accuracy.
ML algorithms are powerful techniques to predict different nonlinear problems. Optical
and road-mounted sensors are mostly used to measure data-related road surface conditions.
Sometimes, numerical data derived from sensors can be associated with uncertainty due to
imprecision, vagueness, or ambiguity. Song et al. [15] estimated maximum RSFC under
uncertainty using deep learning. Matusko et al. [16] presented a new approach by adding
neural networks to the friction estimator model, to enhance the estimation quality by com-
pensating for the impacts of uncertainties. Kim et al. [17] designed a system for composite
friction control, which included friction uncertainty using recurrent fuzzy neural networks.
While previous research studies have contributed significantly to developing different
dimensions of WRM, there has, thus far, been no study to predict RSFC by designing an
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adaptive neuro-fuzzy inference system (ANFIS), which is able to handle the uncertainty
hidden in historical data extracted by sensors. An adaptive fuzzy RSFC prediction model
with high accuracy plays an important role in making WRM plans in advance, in order to
achieve effective and efficient WRM.

1.4. Contributions

Reviewing previous studies on WRM reveals that it is not easy to establish an accurate
data-driven RSFC prediction model, due to dynamic weather conditions that can lead to
variation in road surface conditions. In addition, historical data collected by sensors can be
associated with uncertainty, which must be modeled. To model this complex problem, the
main contribution of this study is the design of an ANFIS model to predict RSFC using real
data measured by optical and road-mounted sensors. The ANFIS model fuzzifies the crisp
data for simulating this complex problem, associated with uncertainty.

1.5. Outline of the Paper

The remainder of this paper is organized as follows. Section 2 explains the summary
of ANFIS. The data and methods are defined in Section 3. In Section 4, we present results.
Finally, in Section 5, a conclusion is drawn.

2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Crisp numerical data points can be fuzzified and represented by membership functions
(MFs) [18]. In recent years, artificial intelligence methods, including fuzzy intelligent
techniques, have been extensively used in different fields such as economics, medicine,
and engineering. The ANFIS model was proposed by Jang in the 1990s [19] and can
be considered as a universal estimator for predicting long- and short-term effects [20].
ANFIS is a five-layer adaptive network that illustrates the relationship between inputs
and outputs to simulate complex problems associated with uncertainties by creating fuzzy
variables [21]. The ANFIS network utilizes the learning ability of neural network concepts
and the reasoning mechanisms of the Takagi–Sugeno fuzzy interference system (FIS) [22].
Due to using both fuzzy logic and neural networks, ANFIS can benefit from both models’
principles in a single model. The inference system employs fuzzy “if-then” rules, which
have a learning ability to estimate nonlinear functions [23].

3. Data and Methods

Figure 1 shows the framework of this study and its different steps, which are explained
in this section.

3.1. Data Collection

Although there is an obvious relationship between road surface conditions and
weather conditions, the proposed model’s input variables are defined as conditions that
impact the WRM performance. In addition, the output variable is defined as a result gained
from the input variables. One of the major benefits of the data-driven model is that different
kinds of inputs and outputs are allowed to be included in the model without having special
relationships. Moreover, all of the input variables have a similar opportunity to affect the
road conditions. Therefore, here, air temperature, surface temperature, ice layer, snow layer,
water thickness, and snow height were chosen as input variables and RSFC was chosen
as the output variable. Historical data of these variables were measured every 10 min
and collected from the Swedish Transport Administration’s RWIS station on a European
road at test site E18 in February 2019. The test site E18 is located in Sweden, Northern
Europe, between Enköping and Västerås, the latitude and longitude are approximately
59.724 and17.029 [24], and the type of pavement was asphalt. The road weather station
measured air temperature. Optical sensors measured ice layer (mm), snow layer (mm) (new
snow), and RSFC. A road-mounted sensor measured surface temperature (◦C), snow height
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(mm) (both new and old snow), and water thickness (mm). Table 1 shows the statistical
description of the dataset.
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Table 1. Statistical description of the dataset.

Variables Count Mean Std Min 25% 50% 75% Max

Ice layer 3847 0.019 0.059 0.000 0.000 0.000 0.000 0.510
Snow layer 3847 0.037 0.146 0.000 0.000 0.000 0.000 1.040

Water thickness 3847 0.060 0.135 0.000 0.000 0.030 0.060 1.880
Snow height 3847 2.562 5.341 0.000 0.000 0.000 2.000 47.000

Surface temperature 3847 0.607 4.627 −14.600 −1.500 1.100 3.300 14.200
Air temperature 3847 0.813 4.978 −20.000 −0.900 1.900 3.800 10.400
RSFC (output) 3847 0.750 0.149 0.110 0.780 0.810 0.820 0.820



Safety 2022, 8, 14 5 of 14

In Table 1, the first column shows the number of observations, which are equal for all
variables. The second and third columns illustrate the mean value and standard deviation of
observations, respectively. The fourth and eighth columns are the minimum and maximum
values for each variable. The fifth, sixth, and seventh columns demonstrate the 25th
percentile (the lower or first quartile), 50th percentile (the median), and 75th percentile (the
upper or third quartile), respectively.

3.2. Feature Selection

In the previous step, variables influencing RSFC were initially chosen. However,
reducing the number of input variables decreases the model complexity and enhances the
training process, which can lead to enhancing the model accuracy. Therefore, we used
the Pearson correlation coefficient to select the most significant predictors. Table 2 shows
the absolute value of correlation between the input variables and RSFC. Out of six input
variables, four variables (ice layer, snow layer, water thickness, and snow height) were
highly correlated with RSFC. Thus, these four input variables were used to design an RSFC
prediction model.

Table 2. Pearson correlation coefficients between input variables and RSFC.

Input Absolute Value of Correlation between Input and RSFC

Ice layer 0.88
Snow layer 0.69

Water thickness 0.65
Snow height 0.61

Surface temperature 0.29
Air temperature 0.27

3.3. Dividing the Dataset into Training and Testing Sets

The dataset needed to be divided into training and testing sets. The training dataset
optimizes the parameters of the model, and the test dataset evaluates the model perfor-
mance to predict RSFC. In this study, 70% of the observations were considered for training
the ANFIS model and the rest of the observations were applied to test the model, since the
testing set needs to be large enough to lead to meaningful statistical results. Table 3 shows
the statistical information of the testing set.

Table 3. Statistical description of the testing set.

Variables Mean Std Min Max

Ice layer 0.016 0.047 0.000 0.380
Snow layer 0.015 0.053 0.000 0.830

Water thickness 0.045 0.135 0.000 1.880
Snow height 0.067 0.099 0.000 1.890

RSFC (output) 0.756 0.133 0.120 0.820

3.4. Generating Basic Fuzzy Inference System

In this stage, input variables were fuzzified by using Genfis3 in Matlab software.
Genfis3 generates a structure based on the fuzzy inference system (FIS) using the fuzzy
c-means (FCM) clustering method by extracting some fuzzy rules, which model the data
behavior. The number of clusters specifies the number of rules and membership functions.
We selected the ‘Sugeno’ type because Sugeno is more flexible to design a system more
precisely [20]. The number of clusters was five, and the clustering (FCM) options were
selected according to the default values in Matlab. The types of the input and output MFs
were Gaussian and Linear, respectively. The number of input and output MFs (clusters)
was five, equal to the number of fuzzy rules.
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3.5. Training Using ANFIS

The training epoch number was set as 200, the initial step size was 0.01 with a de-
crease rate of 0.9 and an increase rate of 1.1, and the hybrid method was selected as the
optimization method [25]. Increasing and decreasing the step sizes balances the exploration
and exploitation to enhance the convergence speed and drive the process from the local
minimum solution.

3.6. Evaluating Performance of ANFIS

A total of 3847 data points were considered in this study, of which 2693 (70%) obser-
vations were for training and 1154 (30%) were for testing the model. Figure 2 and Table 4
depict the structure of the ANFIS network designed in this study to predict the RSFC in
winter. In fact, five layers built the ANFIS model based on node functions. The first layer
was the “if part”, or fuzzification; the second layer was implications (rules); the third layer
was normalization; the fourth layer was the “then part”, or defuzzification; and the fifth
layer was the summation part (output) [20]. According to the collected road dataset, the
fuzzy clustering of the predictors for a one-month period is presented in Figure 3. The
degree of membership was between 0 and 1. A degree of membership of 0 means that
the value does not belong to the given fuzzy set. A degree of membership of 1 means the
value certainly belongs to the given fuzzy set. However, if the value of membership is
between 0 and 1, it demonstrates the degree of uncertainty with which the value belongs in
the given fuzzy set. The information and parameters of the MFs for each input (i.e., mean
and standard deviation) and output (coefficients and constant) are shown in Tables 5–7.
We considered five clusters for each input, and the output based on trial and error, which
demonstrated the best results.
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Table 4. ANFIS network information used in this study.

Network Information Number

Number of nodes 57
Number of linear parameters 25

Number of nonlinear parameters 40
Total number of parameters 65

Number of training data pairs 2693
Number of testing data pairs 1154

Number of fuzzy rules 5
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(c) water thickness, and (d) snow height.

Table 5. Information about selected inputs and output.

Variable Range Number of mf

Ice layer [0, 0.51] 5
Snow layer [0, 1] 5

Water thickness [0, 1.75] 5
Snow height [0, 47] 5

RSFC (output) [0.11, 0.82] 5

Table 6. Parameters (Mean and Std values) of each Gaussian mf (cluster) for inputs.

mf
Ice Layer Snow Layer Water Thickness Snow Height

Mean Std Mean Std Mean Std Mean Std

mf 1 0.085 0.022 0.198 0.077 0.254 0.128 13.643 3.005
mf 2 0.150 0.040 0.106 0.040 0.139 0.059 9.121 2.202
mf 3 0.024 0.016 −0.001 0.043 0.030 0.530 0.087 2.666
mf 4 0.072 0.060 0.301 0.091 0.141 0.065 20.379 4.365
mf 5 0.046 0.046 0.064 0.028 0.065 0.018 4.593 1.551
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Table 7. Parameters (coefficients and constant values) of each linear mf for the output.

mf Coeff1 Coeff2 Coeff3 Coeff4 Constant

mf 1 −1.737 −0.284 −0.022 0.017 0.585
mf 2 0.598 −4.210 0.599 0.009 0.664
mf 3 −2.547 3.370 0.510 0 0.816
mf 4 −1.216 −0.237 −0.038 −0.001 0.689
mf 5 2.680 −0.026 −2.737 0.025 0.623

After building the base FIS, the model was trained by ANFIS. Figure 4 shows a 3D
view of the relationship between the ice layer, snow layer, and RSFC. A 3D view of the
relationship between parameters helps us to extract the relationship between effective
variables to predict RSFC. For instance, in Figure 4, if the value of the ice layer is less
than 0.3, the value of the snow layer has no measurable impact on the created value of the
RSFC. The ANFIS rule viewer (for trained data) is shown in Figure 5. Each input column
displays five Gaussian membership functions for each input variable and each row shows
a particular rule. Hence, each membership function has a specific rule and maps the values
of each input variable to rule input values. The output column indicates how various rules
can be applied to the RSFC (output variable) [26].
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Figures 6–10 visualize ANFIS performance for the training and test datasets. The
graphs demonstrate that predicted values are close to the real values most of the time.
Only a few numbers show obvious errors, which could be due to (i) these targets not
being scientifically justifiable, or (ii) this method not being suitable to predict these targets.
Figure 10 shows the residual plots that show the difference between real values and
predicted values for both the training and testing datasets. As is clear, the value of 0 in
the residual plots has the highest number and the residual plots are normally distributed,
which means that ANFIS is the correct selection for our dataset. In addition, MSE and
RMSE were selected as the evaluation metrics to evaluate the model performance (Table 8).
RMSE values for the training and test datasets are 0.035 and 0.038, respectively. The low
error of the test set indicates that the ANFIS model has a good generalization performance
to effectively predict RSFC based on historical data for an unseen dataset.
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Table 8. MSE and RMSE values achieved by the ANFIS model for both training and testing datasets.

Evaluation Metric Training Set Testing Set

MSE 0.0012 0.0015
RMSE 0.0350 0.0380

4. Analytic Results

Analysis of the variables affecting the RSFC prediction model enables us to drive
future insights to accurately predict different road surface conditions at a particular time.
The RSFC prediction model helps us to discover the relationship between variables and
eventually leads to an improvement in decision-making procedures. We utilized the most
informative scatter chart (Figure 11) to plot the RSFC, ice layer, and the amount of chemicals
used for WRM to extract valuable findings.

Generally, driving conditions are divided into the following three categories: (i) normal
road conditions (RSFC ≥ 0.3), (ii) bad conditions (0.15 < RSFC < 0.3), and (iii) very bad
conditions (RSFC ≤ 0.15). When the friction coefficient is under 0.15, the rate of accidents
can be four times higher than in conditions with a friction coefficient of 0.35–0.44 [27]. In
the previous figure, the data points are shown based on different values of the friction
coefficient. It is clear that, with an increase in the thickness of the ice layer on the road
surface, the RSFC drops sharply. If no chemicals (e.g., salt) are used on the road surface,
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this leads to a drastic reduction in road safety. Therefore, the RSFC prediction model
contributes to detecting these dangerous situations in advance and taking action to both
prevent dangerous vehicle accidents on the road and mitigate their associated severe
consequences. Moreover, when the ice layer is thinner than 0.2 mm, using a small amount of
salt contributes to increasing friction on the road surface. When the ice layer is almost 0 mm,
using a high quantity of chemicals (salt) on the ground leads to extra expense (including
materials, trucks, and truck drivers). Chemicals (salt) are not only the main reason for
rust and corrosion on vehicles, but also exacerbate the harm to road infrastructure such as
concrete bridges. Furthermore, salt has negative impacts on the environment, caused by
melting into rivers, lakes, and into soil, damaging vegetation.
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5. Conclusions

In this paper, ANFIS was used to design a data-driven model to accurately manage
the uncertainty hidden in historical data and predict the road surface friction coefficient in
winter. The model was implemented in MATLAB software using real data, measured by a
road weather information system, optical sensors, and road-mounted sensors at test site
E18 in Sweden in February 2019. The graphical and numerical results of ANFIS modeling
demonstrate the high reliability and accuracy of the model in handling uncertainty and
predicting the road surface friction coefficient. This model can be considered as a main
computational component in decision support systems, to assist decisions made about the
type and time of winter road maintenance in a quantitative manner. Thus, the findings of
this paper can be used to develop a winter road maintenance strategy for both pre-disaster
and post-disaster periods. This accurate prediction model can help decision makers to make
plans in advance, which will lead to optimizing the level of service. Preparing the optimal
number of trucks and materials in real-time to treat snowy and icy roads leads to improved
road transportation safety (by increasing the friction between tires and road surface), traffic
flow (by removing snow and ice on the road), and economic productivity (by avoiding the
use of extra materials and trucks). However, ANFIS demands computational power, and
its performance is significantly dependent on data quantity and quality and specifying the
number of member functions for input and output variables. Hence, in future, researchers
should search for alternative mathematical methods that are less dependent on data.
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