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1 Introduction

The goal of this thesis, following the project paper “An energy balance model
on a circle”, is to investigate aspects of climate models at the lowest rung of
the climate model hierarchy. These are the energy balance models. Such models
were first introduced by Budyko[1] and Sellers[2] in 1969. We will however focus
on a type of energy balance model that was introduced by North in 1975[3],[4].
Characterised by diffusive heat transport, and having only one feedback mech-
anism, the polar ice sheet. The choice of absorption function also allows the
model to be analytically soluble.
The derivation of the model will be based on the lecture notes by Per Kris-
ten Jakobsen[5][6][7][8], in which boundary formulation methods are applied to
energy balance models for different domains. Including a circle, the focus of
this thesis. Application on a circle gives a further simplified version to North’s
spherical model. It is, as ever, important to thoroughly analyse the simpler
models of the climate model hierarchy to better understand the more sophisti-
cated, complex models. We also want to investigate how simple we can make
the model while still retaining a satisfactory description of the phenomena of
interest.
In the project leading up to this thesis a North type energy balance model for a
circle was derived, and investigated for the case of no continents. As the model
was symmetric, only the upper half circle was considered. For the time depen-
dent case, a pseudo-spectral code based on Fourier modes was implemented,
and was validated using artificial sources. For the stationary case, a boundary
formulation for two ice edges was derived. Stationary solutions to the energy
balance model were then found by solving the boundary equations using ana-
lytical and/or numerical methods. Bistability was observed and a bifuctation
diagram was constructed. The pseudo-spectral code, along with a finite differ-
ence code, was used to test the stationary solutions for stability. As this forms
the basis of our work in this thesis, there are several cases of reused derivations
from the project paper presented as needed.
The current thesis will build on this and investigate topics that emerge from
the introduction of continents to the circle model. The continents are given a
separate feedback mechanism of a snow edge, adding the snow-albedo feedback
to the ice-albedo feedback of the ocean. It is of interest how the introduction,
placement and size of the continents influence the bistability of the system. The
effects of different incoming radiation will also be considered.
We set out to find the relation between asymmetry in continent placement and
dimensions of the bifurcation area. How large would the range of values with
several possible states be if situated towards the poles versus the equator? In in-
troducing asymmetry the whole circle must be considered in solving the model.
Applying to a symmetric cases, would there exists solutions that break the north
south reflection symmetry? In these pursuits, unexpected results led us to down
additional paths of inquiry. In varying the incoming radiation function, addi-
tional areas of feedback appeared in the form of multiple disjoint snow intervals
within one continent. How many intervals can exist depending on the func-

3



tion? And what are the stability properties of such solutions? Finally, the most
important question came from studying the shapes and stability properties of
the bifurcation diagram for different continent placements. The most striking
feature of the original model is the catastrophic drop into an ice covered planet
with a minor decrease in the solar constant. The additional feedback mecha-
nism is tied to the number of possible solutions, and depending on the stability
of these solutions, could the magnitude of the plunge be reduced? If there are
stable states between the tipping point and the ice planet solution, there could
be a more gradual step by step process. Examining this possible link between
number of feedbacks and mitigating the temperature steady state drop off will
be the focus of this thesis.
In centring the investigation around the bifurcation diagram, we set our fo-
cus mostly on stationary solutions. The boundary formulation method will be
adapted to the new surfaces and continue to be our main method of solution.
Additionally, the continuation and bifurcation software Auto-07p will be used
to supplement the bistability analysis. To test the stability of the stationary
solutions, a finite difference code for the energy balance model, able to work
both with and without continents present, is designed. To validate the imple-
mentation we will be using artificial sources, and also compare it to the spectral
code for the case of no continents.

2 Energy balance model

To derive our energy balance model, we first consider a general domain D in
R3. The model derivation is based on the lecture notes by Per Kristen Jakobsen
[5][7]. At some point p at time t we assume three quantities are defined:

e(p, t) energy density

q(p, t) energy flux density

h(p, t) energy source density
(1)

For domain D with boundary S and with unit normal n pointing outwards from
D, we define two scalar quantities.
Total energy in D at t, for an infinitesimal element of volume, dV, as

E(t) =

∫
D

dV e(p, t). (2)

Total injected/extracted energy to/from D at t as

H(t) =

∫
D

dV h(p, t). (3)

And we have a total amount of energy flowing through an infinitesimal element
of area, dA, of

q(p, t) · n dA. (4)
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From these equations and interpretations, (2), (3) and (4), we have the identity

dE

dt
= −

∫
S

dAq(p, t) · n+H, (5)

which states that the change in total energy in D in time must be equal to the
total injected energy into D and energy flowing into D through the surface S,
or the opposite. This energy balance law in integral form can be written in
differential form using Gauss theorem

d

dt

∫
D

dV e(p, t) = −
∫
D

dV∇ · q(p, t) +
∫
D

dV h(p, t)

⇓∫
D

dV {∂te(p, t) +∇ · q(p, t)− h(p, t)} = 0

(6)

And since it is to hold for any domain D we have

∂te(p, t) +∇ · q(p, t)− h(p, t) = 0, (7)

assuming e and h are bounded, and q is continuously differentiable.

2.1 Thermodynamic assumptions

We will now use some common relations between e, q and T for our energy
balance model. We also introduce expressions relevant for our application in
climate science, where we want to model the energy balance for earth or an
exoplanet.
We assume the system is in local thermodynamic equilibrium, meaning suffi-
ciently small parts of the system are in equilibrium, and its equation of state in
an infinitesimal region around p can then be approximated as

e(p, t) = C(p)T (p, t), (8)

where C(p) is the heat capacity, and T (p, t) the thermodynamic temperature
(in Kelvin).
Since heat flows from high temperature points to low temperature points we
have

q(p, t) = −K(p)∇T, K(p) > 0 (9)

where K(p) is the heat conductive parameter. Heat flows in the opposite direc-
tion of positive change in temperature, and the magnitude of the flux depends
on the conductivity of the material.
Inserting (8) and (9) into the energy balance model (7), we have

C∂tT = ∇ · (K∇T ) + h (10)
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For our model we will transition to measuring temperature in Celsius, which is
the most common temperature scale in climate science.

In the application of climate science we can write the source term, h, as

h = h+(1− a) + h−, (11)

where h+ is the incident solar radiation, and h− is thermal (typically heat)
radiation outwards, and a is the albedo. The albedo expresses how reflective
the material is, as it gives the fraction of incident radiation reflected back.
A simple common albedo model that we will use for our model is

a(T ) =
{ a1(p), T (p) > −Ts(p)
a2(p), T (p) < −Ts(p)

(12)

where T (p) is the temperature in Celsius at point p, and Ts(p) is the absolute
value of the temperature for the ice-water phase transition at p, which we know
will be negative. a1(p) is the albedo for water, and a2(p) for ice.

The loss of energy in outward radiation, described by h−, happens at some
height in the atmosphere where scattering of infrared radiation by gases ends.
The higher the height of the layer, the higher the surface temperature is. To
model the complex atmospheric processes that determine the height of the layer,
we let the amount of infrared radiation that is expelled into space be given as

h− = A(p) +B(p)T (p), A,B > 0, (13)

where T (p) is the surface temperature. This is an empirical formula where
outgoing radiation is determined by surface temperature. A and B are typically
assumed constant. For incoming radiation, described by h+, we let

h+ = QS(p), (14)

where Q is the solar(earth)/stellar(exoplanet) constant, the absolute size of the
radiation, and S(p) describes how solar/stellar radiation is distributed.

Inserting (11), with (12), (13) and (14), into the energy balance model (10)
we get

C∂tT = ∇ · (K∇T )−BT +QS(p)(1− a(T ))−A. (15)

This is a highly nonlinear PDE, containing a step function dependent on T.
Yet, it is important to note that the model (15) is linear as long as we are not
crossing the critical value of −Ts. This is a property we will make use of in
trying to find an analytic solution of the model.

2.2 A circle with continents

We will be working with a circle as our region, and need to express the energy
balance model in appropriate coordinates. A visual representation of the model
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is shown in figure 1. In general we have the following formulas, using metric
coefficients.

The square of the element of length for a chosen set of local coordinates be-
comes

dl2 = gijdxidxj (16)

where gij are the metric coefficients of the space, with respect to {xi}, the
chosen local coordinates (note Einstein summation). We let {ei} be the unit
vectors of the local coordinate system, and a basis to the vector fields tangent
to the coordinate curves on the surface we are mapping to.

The square matrix of metric coefficients is denoted {gij}, its inverse {gij}, and
the determinant of the matrix |g|.

With this, we can express the formulas for the gradient of a scalar function
φ as

(∇φ)i = gij∂xj
φ, (17)

and the divergence of a vector field φ = φiei as

∇ ·φ =
1√
|g|
∂xi

(
√
|g|φi). (18)

We are deriving a model for a circle, that we chose to be of radius R with angle
θ, where θ = 0 is the substellar point(closest to the sun). For this circle in the
x, z plane we get

dl2 = dx2 + dz2 = (−R sin(θ)dθ)2 + (R cos(θ)dθ)2 = R2dθ2 (19)

And we have a single metric coefficient gθθ = R2 =⇒ |g| = R2. We can use (17)
and (18) to find an expression for the Laplace Beltrami operator, ∇ · (K∇T ),
on the circle

∇φ(θ) = 1

R2
∂θφEθ =

1

R
∂θφeθ (20)

∇ ·φ =
1

R
∂θ(Rφθ) (21)

where Eθ = Reθ is the unnormalized basis vector in θ direction and eθ is the
unit vector in θ direction. Then for a function φ(θ) and constant C we get

∇ · (C∇φ(θ)) = ∇ · (C 1

R
∂θφeθ) =

1

R
∂θ(C

1

R
R∂θφ) =

1

R
∂θ(C∂θφ) (22)

Using (22) in the energy balance model (15) we get the one dimensional model
for the circle

C∂tT − 1

R
∂θ(K∂θT ) +BT = QS(θ)(1− a(θ))−A. (23)
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Figure 1: The circle which is the region for the energy balance model, (23). S
is the substellar point, A the antistellar point, and T the terminators.

2.3 Specifications

2.3.1 Continents

We will consider the case where there are continents, which entails that the
heat conductivity, K(θ), is not constant over the entire circle. Instead the circle
will consist of regions of different heat conductivity. The land mass will have a
different conductivity from the ocean, that will depend on geographical factors.
Assuming each land region has a constant conductivity, also assumed for the
water/ice, we have for a region i

K(θ) = Ki, in region i (24)

Where Ki is a constant value. The ocean region is defined to be region 0,
and the subsequent regions 1,2... are different continents. We will also have
a different albedo for the continents and ocean, which in the same way will
be assumed constant for each continent/ocean. Unlike the ocean, we will not
assume transition to ice within the continents, but instead consider a coverage
of snow. For this transition the transitional temperature Ts is different, and we
will set

Ts(θ) =
{ Ts0 = 10◦C, for sea - ice
Ts1 = 0◦C, for land - snow

(25)
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giving the new formula for the albedo ai(T ) on the continents

ai(T ) =
{ aci, T > 0◦C
aS , T < 0◦C

, i = 1, 2, ... (26)

where aci is the albedo for a continent i=1,2,..., in addition to

a0(T ) =
{ aW , T > −10◦C
aI , T < −10◦C

(27)

for the ocean. Consequently, aW is the water albedo, aI the ice albedo, and aS
the snow albedo.

The energy balance model for the circle (23) then takes the form

C∂tT −Di∂θθT +BT = QS(θ)(1− ai(T ))−A, (28)

where we have defined the constant Di =
Ki

R , the thermal diffusivity, and albedo
ai for each region i.
With the changing diffusive constant D and albedo function for different regions,
there is now a discontinuity in the region boundaries. We are not just changing
the source term (which is discontinuous within regions at critical temperature
as well) but also the rate of diffusion, giving a different operator. This will cause
the temperature distribution to not be smooth, as it does not have a continuous
derivative across these boundaries.

2.3.2 Radiation distribution function S

Our planet is tidally locked, it does not rotate around its axis, as it is modelled
as a circle. It is in essence a 1D line, and it would not make sense to include a
higher dimensional component for a simple model.
With this we will use a reflection symmetric radiation distribution function that
has decreasing intensity with distance from θ = 0, the substellar point, and no
incoming radiation for the half of the sphere around the antistellar point

S(θ) = S(−θ)

S(θ) =
{ 1− sinθ, 0 ≤ θ ≤ π/2

0, π/2 ≤ θ ≤ π

(29)

This is a type of distribution function that has been used to model tidally
locked exoplanets, for instance by Checlair, Menou and Abbot[9]. In reality the
incoming radiation from the sun is time dependent, and changes based on the
solar cycle among other effects. In our model we use a time averaged constant.

2.3.3 Removing the dimension of temperature

To simplify working with our model we can write it in a spatially dimensionless
form. Temperature for the model (28) has the dimension Celsius, and if we let
Ts0 = 10◦C be our scale for temperature

T = Ts0T
′, (30)
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where T ′ is a dimensionless number, we can rewrite the model in terms of T ′.
For a completely dimensionless form, we would also have to remove the scale
for time and use t′, where t = 1st′. But since we will mostly be considering
the stationary case, where time does not come into play, this will not be of
importance.
Dividing (28) by Ts0 = 10◦C and Di we get for each region

γi∂tT
′ − ∂θθT

′ + βiT
′ = ηiS(θ)(1− a′i(T

′))− αi, (31)

with scaled parameters

γi =
C

Di
, βi =

B

Di
, ηi =

Q

DiTs0
, αi =

A

DiTs0
. (32)

The albedo ai(T ) becomes

a′i(T
′) =

{ aci, T ′ > 0
aS , T ′ < 0

, i = 1, 2, ... (33)

and

a′0(T
′) =

{
aW , T ′ > −1
aI , T ′ < −1

(34)

in both cases. For further use of the model, primes will be dropped.
In each region the calculations will be the same, with only a difference of con-
stants between regions.

2.3.4 Constants

We assume constant values for A and B, using the values

A = 192.2

B = 3.85
(35)

We also assume a constant heat capacity C(θ) = C. It will then have the same
value for different temperatures, and will be the same for water and ice. We
will use

C = 13.2 (36)

And for the albedo we have
aW = 0.38,

aI = 0.60,

aS = 0.60,

ac1 = 0.60,

(37)

for water, ice, snow, and the first continent respectively.
We will as in North’s model we set the critical temperature to be

Ts0 = 10◦C, (38)
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for the water-ice transition. Meaning the water region transitions to ice for
temperatures below −Ts0. And equivalently

Ts1 = 0◦C, (39)

is chosen for land-snow.
All units are SI units, except temperature.

2.3.5 Diffusive coefficient

As was done by North[3][4], the value for the diffusive coefficient was found
empirically by fitting the current ice edge position and solar constant for earth
(current for North, value of θ = arcsin 0.95 ≈ 1.25 and Q = 1338W/m2), and
best approximated temperature distribution.
North also discussed many ways to calculate different models for the diffusivity[4].
Including having a different diffusivity for the ice and water regions. North con-
siders the possibility that the heat transport by the ocean is suppressed, and
proposes that the diffusion can be modelled as

D = Da +Dbh(θ, θf ),

h(θ, θf ) =
{

1, θ < θf
0, θ > θf

,
(40)

where θf is the ice edge, and that in accordance with the fraction of energy
carried by the oceans, Db should be about 30% of the sum (Da +Db). We then
have

Dwater = Da +Db θ < θf ,

Dice = Da θ > θf ,

Dice = 0.7 ∗Dwater,
(41)

We will not assume a different diffusivity for ice and water in this thesis, but we
will use this logic for continents. Continents were introduced as having different
conductivity, and thus diffusivity, from water. According to Sellers data[2], the
main sources of meridional heat transport are ocean currents, water vapour
in air, and air currents. And a continent should, depending on the geological
factors, suppress these methods of transport to a degree.
For the first continent, with i = 1, a desert biome will be assumed. As a desert
has similar qualities to arctic regions, being arid and having an extremely barren
terrain, it can be assumed to suppress heat transport to the same degree as
North reasoned for ice. The values we will use for the constant Di is then

D0 = 2.11

D1 = 0.7 ∗ 2.11
(42)

where D0 is the diffusivity for the water region, and D1 for the continent. For
additional continents, i = 2, 3, ..., other choices of biomes can be made, and the
degree of heat transport suppression could be adjusted according to assessed
moisture levels.
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3 Boundary formulation solution

The energy balance model (28) is linear as long as we do not cross the constant
critical value thresholds given by Ts(θ), equation (25). We will now take advan-
tage of this fact to actually be able to find analytical solutions to the model.
The piece wise linearity makes it very well suited for boundary formulations.
We thus employ Green’s functions and derive the boundary formulation for the
case of continents and both ice and snow edges on the water and land sections,
respectively, and will focus on finding the stationary solutions of the model.
In the stationary case

∂tT = 0, (43)

which gives the model

−Di∂θθT +BT = QS(θ)(1− ai(T ))−A, (44)

and in spatially dimensionless form

− ∂θθT + βiT = ηiS(θ)(1− ai(T ))− αi. (45)

We also define
hi(θ) = ηiS(θ)(1− ai(T ))− αi, (46)

with functions and parameters defined in section 2.3.
With this, the first step is to derive the fundamental integral identity for L.
Then, find a Green’s function and its properties. Applying the integral identity
using the Green’s function and the solution of our boundary value problem, the
equation (45) with boundary conditions, we can then get an expression for the
solution that relates values of the solution inside the domain to its values on
the boundaries.
When we have solved the boundary equations for the stationary solutions we
will investigate for bistability, and if present, how the placing of the continents
and their size influence the bistability of the system.

3.1 Boundary conditions

Since we have a model for a closed circle, we must have the boundary condition

T (θ) = T (θ + 2π). (47)

This condition will always hold for our circular model. To derive the boundary
formulation we need to know more values the unknown function takes at said
boundaries. We will return briefly to the first basic energy balance law we
deduced.
For the stationary case (5) becomes∫

S

dAq · n = H =

∫
V

dV h(p, t) (48)
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For a small surface section Sϵ we get

lim
ϵ→0

∫
Sϵ

dAq · n → 0 (49)

assuming h is smooth and bounded. Applying this around the boundary θ = ±π
for the circle we get, using (9), the condition

(q+ − q−) · n = (−KTθ(π)eθ +KTθ(−π)eθ) · n = 0 (50)

where q+ is the value infinitesimally above the boundary (+π), and q− below,
with n = −eθ in this case. The resulting boundary condition is then

Tθ(π) = Tθ(−π). (51)

Applying at a continent border, θci, we also get

K+Tθ(θc+) = K−Tθ(θc−) (V )

⇕
D+Tθ(θc+) = D−Tθ(θc−) (V ),

(52)

where + denotes the value infinitesimally above the boundary, and - below.
The derivatives from above and below are then proportional by a constant de-
termined by the difference in the diffusive coefficient D.

For a symmetric surface, either with no continents or with symmetric place-
ment of continents, the equation (45) and the condition of the boundary are
both symmetric. It would then be reasonable to be able to restrict to a sym-
metric solution.

T (θ) = T (−θ) (53)

This also gives another condition

Tθ(θ) = Tθ(−θ)
⇕

Tθ(0) = −Tθ(0)
⇕

Tθ(0) = 0

(54)

For the solution to be continuously differentiable at the boundary at least two
times, such that we get a classical solution we must also have

Tθ(π) = Tθ(−π) = 0 (55)

which ensures that Tθ(θ) is smooth at the boundary.
Now we can proceed with finding the stationary solution using a boundary
formulation.
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3.2 Fundamental integral identity

First we derive an integral identity for Li = −∂θθ + βi on the interval [θ0, θ1].
For the derivation we drop the i subscript, the process is the same for all sec-
tions. Letting ϕ and ψ be smooth functions defined on the interval, and using
integration by parts we have∫ θ1

θ0

dθLϕψ =

∫ θ1

θ0

dθ(−ϕθθ + βϕ)ψ

= −ϕθψ|θ1θ0 +
∫ θ1

θ0

dθϕθψθ +

∫ θ1

θ0

dθβϕψ

= −ϕθψ|θ1θ0 +
(
ϕψθ|θ1θ0 −

∫ θ1

θ0

dθϕψθθ

)
+

∫ θ1

θ0

dθβϕψ,

(56)

which gives the integral identity∫ θ1

θ0

dθ{Lϕψ − ϕLψ} = (ϕψθ − ϕθψ)|θ1θ0 . (57)

3.3 Green’s function

A Green’s function for L, is a function that satisfies

LK(p, ξ) = δξ(p) (58)

for a point p, where δξ(p) is the delta function at point ξ. The Dirac delta
function is defined in such a way that∫

C

dl δξ = 1 (59)

if ξ ∈ C, else wise the integral is 0. In polar coordinates we get∫ π

−π

dθ Rδξ(θ) = 1 (60)

In terms of the standard Dirac delta in 1D this Dirac delta is

δξ(θ) =
1

R
δ(θ − ξ). (61)

Since it is dependent on R it is a dimensional quantity, and we have to find
the Green’s function for the dimensional form of the energy balance equation
for the stationary case (44). A Green’s function K(θ, ξ) for the dimensional
L = −D∂θθ +B satisfies

−D∂θθK(θ, ξ) +BK(θ, ξ) = δξ(θ)

⇕

−DKθθ(θ, ξ) +BK(θ, ξ) =
1

R
δ(θ − ξ)

(62)
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Letting K̄ be the dimension of the Green’s function we can express the dimen-
sionless form with K ′, K = K̄K ′ as

−K ′
θθ(θ, ξ) + βK ′(θ, ξ) = γδ(θ − ξ) (63)

with dimensionless parameters

β =
BR2

K0
, γ =

R

K0K̄
, (64)

we can choose a Green’s function such that γ = 1 ⇒ K̄ = R/K0. And dropping
the prime the dimensionless Green’s function solves

LK(θ, ξ) = −Kθθ(θ, ξ) + βK(θ, ξ) = δ(θ − ξ) (65)

From the properties of the Dirac delta function, for θ ̸= ξ we have the equation

−Kθθ(θ, ξ) + βK(θ, ξ) = 0, θ ̸= ξ (66)

Integrating over a small interval Iϵ = (ξ − ϵ, ξ + ϵ)∫ ξ+ϵ

ξ−ϵ

dθ{−Kθθ(θ, ξ) + βK(θ, ξ)} =

∫ ξ+ϵ

ξ−ϵ

dθδ(θ − ξ) = 1

⇕

−Kθ(ξ + ϵ, ξ) +Kθ(ξ − ϵ, ξ) +

∫ ξ+ϵ

ξ−ϵ

dθβK(θ, ξ) = 1

(67)

The delta function integrating to 1 holds because it is concentrated infinitesi-
mally close to x = ξ. Taking the limit when ϵ→ 0 we get

K+
θ (ξ, ξ)−K−

θ (ξ, ξ) = −1
(68)

assuming K(x; ξ) is continuous in θ and ξ, where

K
+/−
θ (ξ; ξ) = lim

ϵ→0
Kθ(ξ ± ϵ; ξ) (69)

and since we postulate that K(x; ξ) is continuous at θ = ξ we also have

K+(ξ; ξ)−K−(ξ; ξ) = 0. (70)

Solving the equation (66) we find the general solution

K(θ, ξ) =

{
a(ξ) cosh(

√
βθ) + b(ξ) sinh(

√
βθ), θ > ξ

c(ξ) cosh(
√
βθ) + d(ξ) sinh(

√
βθ), θ < ξ

(71)
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as θ ̸= ξ, and it can have different solutions on either side. Applying (68) and
(70)

a(ξ) sinh(
√
βξ) + b(ξ) cosh(

√
βξ)

−c(ξ) sinh(
√
βξ)− d(ξ) cosh(

√
βξ) = − 1√

β

a(ξ) cosh(
√
βξ) + b(ξ) sinh(

√
βξ)

−c(ξ) cosh(
√
βξ)− d(ξ) sinh(

√
βξ) = 0

⇕

c(ξ) = a(ξ)− 1√
β
sinh(

√
βξ)

d(ξ) = b(ξ) +
1√
β
cosh(

√
βξ)

(72)

which gives

K(θ, ξ) =

{ a(ξ) cosh(
√
βθ) + b(ξ) sinh(

√
βθ), θ > ξ

a(ξ) cosh(
√
βθ)− 1√

β
sinh(

√
βξ) cosh(

√
βθ)

+b(ξ) sinh(
√
βθ) + 1√

β
cosh(

√
βξ) sinh(

√
βθ), θ < ξ

(73)

Using the identity

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y) (74)

we have

K(θ, ξ) =

{
a(ξ) cosh(

√
βθ) + b(ξ) sinh(

√
βθ), θ > ξ

a(ξ) cosh(
√
βθ) + b(ξ) sinh(

√
βθ) + 1√

β
sinh(

√
β(θ − ξ)), θ < ξ

(75)
where a(ξ) and b(ξ) are arbitrary. With this it makes sense to choose

a(ξ) = − 1

2
√
β
sinh(−

√
βξ)

b(ξ) = − 1

2
√
β
cosh(−

√
βξ) (76)
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which by applying (74) again means

− 1

2
√
β
sinh(

√
β(θ − ξ)), θ > ξ

− 1

2
√
β
sinh(

√
β(θ − ξ)) +

1√
β
sinh(

√
β(θ − ξ)), θ < ξ

⇕

− 1

2
√
β
sinh(

√
β(θ − ξ)), θ > ξ

1

2
√
β
sinh(

√
β(θ − ξ)), θ < ξ

(77)

and finally we have the Green’s function

K(θ, ξ) =

{
− 1

2
√
β
sinh(

√
β(θ − ξ)), θ > ξ

1
2
√
β
sinh(

√
β(θ − ξ)), θ < ξ

. (78)

Inserting the section dependent constants again it becomes

Ki(θ, ξ) =

{
− 1

2
√
βi

sinh(
√
βi(θ − ξ)), θ > ξ

1
2
√
βi

sinh(
√
βi(θ − ξ)), θ < ξ

. (79)

The Green’s function is dependent on βi, and is thus different for each region,
but the difference is only in scaling.

3.4 Integral identity and boundary equations

We now apply the integral identity using a Green’s function for L and the
solution of the boundary value problem. Inserting ψ = T (θ) and ϕ = Ki(θ, ξ)
into (57) and using LiT = hi(θ) gives∫ θ1

θ0

dθ{LiKi(θ, ξ)T (θ)−Ki(θ, ξ)hi(θ)}

= (Ki(θ, ξ)Tθ(θ)−Kiθ(θ, ξ)T (θ))|θ1θ0 ,
(80)

and using that Ki(θ, ξ) is a Green’s function for Li we have∫ θ1

θ0

dθ{δ(θ − ξ)T (θ)−Ki(θ, ξ)hi(θ)}

= (Ki(θ, ξ)Tθ(θ)−Kiθ(θ, ξ)T (θ))|θ1θ0
⇕

T (ξ) =

∫ θ1

θ0

dθKi(θ, ξ)hi(θ) + (Ki(θ, ξ)Tθ(θ)−Kiθ(θ, ξ)T (θ))|θ1θ0 ,

(81)
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If we let ξ approach the boundaries at [θ0, θ1] we get expressions for the bound-
ary values T (θ0) and T (θ1).

ξ → θ0

T (θ0) =

∫ θ1

θ0

dθK+
i (θ, θ0)h(θ) +Ki(θ1, θ0)Tθ(θ1)−Kiθ(θ1, θ0)T (θ1)

−K−
i (θ0, θ0)Tθ(θ0) +K−

iθ(θ0, θ0)T (θ0)

(82)

ξ → θ1

T (θ1) =

∫ θ1

θ0

dθK−
i (θ, θ1)hi(θ) +K+

i (θ1, θ1)Tθ(θ1)−K+
iθ(θ1, θ1)T (θ1)

−Ki(θ0, θ1)Tθ(θ0) +Kiθ(θ0, θ1)T (θ0)

(83)

With these equations we have just derived we can find the solutions T (ξ) for
different intervals [θ0, θ1] using known values for T (θ), Tθ(θ) and the Green’s
function.
The two equations (82) and (83) are the general forms of the boundary equa-
tions we can get for each segment of curve Cj = [θ0, θ1], j = 0, 1, 2... where
the model is linear. We get two equations for each segment, which are used to
solve for the unknown values.
The equation (81) is the general integral identity, which can be used to find
the solution, T (ξ), for each segment of curve Cj by inserting the solutions of
the boundary equations.
Combining the solutions for the different segments gives the total solution tem-
perature distribution.

3.5 Segments and important angles

We must split the circle into intervals with constant values for albedo a and
diffusivity D in order to solve the boundary formulations for T , and combine
the intervals to find the total solution.
When we have symmetry we only consider the interval [0, π] only, as we assume
a symmetric solution around π = 0. Without continents, which is naturally
symmetric, we only have to split into a water interval and an ice interval.
With the introduction of one continent, there are 4 intervals to consider if we
still have symmetry, and 8 without. The four being land, snow, water, ice for
one half-circle, and 8 being the doubled amount for the whole circle. It should
also be possible to have several disjoint intervals of snow and ice depending on
the circumstances.
To more easily grasp the situations we introduce the following representations
for the areas

18



Land
Snow
Water
Ice
Substellar point ↑

The split into different segments happens at two different types of important
angles. For any given case, the number of segments Cj is decided by the number
of these angles. The first type of important angles is the continent edge posi-
tions, of which we get two additional for every continent included. The second,
and most important for the calculations, is the positions at the critical phase
transitional temperature (25).

3.5.1 Continent edges

We must split into different intervals for the different regions i where the con-
stants change values. The edges of the continents, which will be labeled θcib, θcia
for continent i, are non- continuous points with temperature values that are un-
known. The edges however are known, as we choose the placements of the
continents.
For a continent spanning interval [θcib, θcia] within an ocean interval [θ0, θ1] we
would get the three segments of curve Cj

C0 =[θ0, θcib],

C1 =[θcib, θcia],

C2 =[θcia, θ1].
(84)

to consider. For each region the constants are different, we have to insert the
i value of the region into the equations (82), (83) and (81) when solving. For
these Cj we would have i=0 for C0 and C2, and i=1,2... for C1 depending on
the continent. We find the boundary equations for each interval, the segments
(84) yielding 6 equations in total.

3.5.2 Ice and snow edges

We must also consider the situation with ice edges and snow edges within the
ocean regions and land regions respectively. The positions of the ice and snow
edges are determined by the critical temperatures for phase transition, and are
unknowns.
With an ice edge, denoted θf , within the ocean interval, θf ∈ [θ0, θ1], there are
two intervals to consider. They will have different h0(θ) functions because of
the different albedos from a(T ). As the ice edge position is determined by

T (θf ) = −1, (85)
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we have this as a known boundary value, but the angle θf itself is unknown.
Within the ocean interval we would get the segments of curve

C0 =[θ0, θf ],

C1 =[θf , θ1]. (86)

Equivalently, we have for a snow edge, denoted θs, within a continent, θs ∈
[θcib, θcia], two intervals with different hi(θ), i=1,2,..., functions. We have known
boundary value

T (θs) = 0, (87)

where the angle θs is unknown. Within the continent interval we would get the
segments of curve Cj

C0 =[θcib, θs],

C1 =[θs, θcia]. (88)

Depending on the situation and planet surface we are considering we can
have one or several edges within a continent or ocean interval.

Since the angles θf and θs are unknown, and the equations (82), (83) and
(81) depend on them in non-linear ways, solving for them is much harder than
solving for unknown values of T (θ) and Tθ(θ). The more of these critical tem-
perature positions we have, the more segments we will have to split the circle
into, and the harder it will be to solve the resulting system.

3.6 Solution for one symmetric continent

With one continent which is centred around π = 0, meaning we have symmetry,
and considering the case where we have one ice edge and one snow edge, we
get 4 intervals on the upper half circle. Since there is only one continent, and
we have symmetry, we denote the position of the continent edge simply as θc.
Subscript i = 1 for land/snow and i = 0 for water/ice is dropped to reduce
clutter.
We apply (81) for θs ∈ [0, θc], θf ∈ [θc, π], and using the conditions (52) , (54),
(55) and (85),(87) we get
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Land interval [0, θs], with hl(θ) = h1(θ) where a(T ) = ac1

T (ξ) =

∫ θs

0

dθK(θ, ξ)hl(θ) +K(θs, ξ)Tθ(θs)−Kθ(θs, ξ)T (θs)

−K(0, ξ)Tθ(0) +Kθ(0, ξ)T (0)

⇕

T (ξ) =

∫ θs

0

dθK(θ, ξ)hl(θ) +K(θs, ξ)Tθ(θs) +Kθ(0, ξ)T (0)

(89)

ξ → 0

T (0) =

∫ θs

0

dθK(θ, 0)hl(θ) +K(θs, 0)Tθ(θs) +K−
θ (0, 0)T (0) (90)

ξ → θs

T (θs) = 0 =

∫ θs

0

dθK(θ, θs)hl(θ) +K+(θs, θs)Tθ(θs) +Kθ(0, θs)T (0) (91)

Snow interval [θs, θc], with hs(θ) = h1(θ) where a(T ) = as

T (ξ) =

∫ θc

θs

dθK(θ, ξ)hs(θ) +K(θc, ξ)Tθ(θc)−Kθ(θc, ξ)T (θc)

−K(θs, ξ)Tθ(θs) +Kθ(θs, ξ)T (θs)

⇕

T (ξ) =

∫ θc

θs

dθK(θ, ξ)hs(θ) +K(θc, ξ)Tθ(θc)−Kθ(θc, ξ)T (θc)−K(θs, ξ)Tθ(θs)

(92)
ξ → θs

T (θs) = 0 =

∫ θc

θs

dθK(θ, θs)hs(θ) +K(θc, θs)Tθ(θc)

−Kθ(θc, θs)T (θc)−K−(θs, θs)Tθ(θs)

(93)

ξ → θc

T (θc) =

∫ θc

θs

dθK(θ, θc)hs(θ) +K+(θc, θc)Tθ(θc)

−K+
θ (θc, θc)T (θc)−K(θs, θc)Tθ(θs)

(94)

Water interval [θc, θf ], with hw(θ) = h0(θ) where a(T ) = aw

T (ξ) =

∫ θf

θc

dθK(θ, ξ)hw(θ) +K(θf , ξ)Tθ(θf )−Kθ(θf , ξ)T (θf )

−K(θc, ξ)Tθ(θc) +Kθ(θc, ξ)T (θc)
(95)
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ξ → θc

T (θc) =

∫ θf

θc

dθK(θ, θc)hw(θ) +K(θf , θc)Tθ(θf ) +Kθ(θf , θc)

−K−(θc, θc)Tθ(θc) +K−
θ (θc, θc)T (θc)

(96)

ξ → θf

T (θf ) = −1 =

∫ θf

θc

dθK(θ, θf )hw(θ) +K+(θf , θf )Tθ(θf ) +K+
θ (θf , θf )

−K(θc, θf )Tθ(θc) +Kθ(θc, θf )T (θc)
(97)

Ice interval [θf , π], with hi(θ) = h0(θ) where a(T ) = ai

T (ξ) =

∫ π

θf

dθK(θ, ξ)hi(θ) +K(π, ξ)Tθ(π)−Kθ(π, ξ)T (π)

−K(θf , ξ)Tθ(θf ) +Kθ(θf , ξ)T (θf )

⇕

T (ξ) =

∫ π

θf

dθK(θ, ξ)hi(θ)−Kθ(π, ξ)T (π)−K(θf , ξ)Tθ(θf )−Kθ(θf , ξ)

(98)

ξ → θf

T (θf ) = −1 =

∫ π

θf

dθK(θ, θf )hi(θ)−Kθ(π, θf )T (π)

−K−(θf , θf )Tθ(θf )−K−
θ (θf , θf )

(99)

ξ → π

T (π) =

∫ π

θf

dθK(θ, π)hi(θ)−K+
θ (π, π)T (π)

−K(θf , π)Tθ(θf )−Kθ(θf , π)

(100)

This gives 8 equations, (90), (91), (93), (94), (96), (97), (99) and (100), for
the 8 unknowns T (0), T (π), Tθ(θf ), θf , T (θc), Tθ(θc), Tθ(θs) and θs. The
situation can be represented visually as
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Using the reasoning for the condition (54) Tθ(θf ) and Tθ(θs) are the same
approaching from both sides (adjacent intervals), while the condition on Tθ(θc)
is given by (52). For all Green’s functions evaluated at the boundaries, the
upper boundary has θ > ξ and takes the corresponding value from the formula
(79) and equivalently the lower boundary has θ < ξ. The integrals over the
segments are split around the undefined value at ξ∫ u

−l

=

∫ ξ

−l

+

∫ u

ξ

. (101)

where u and l are the upper and lower boundaries.
As the eight boundary equations are non-linear in θs and θf , but linear in the
other unknown values of T (θ) and Tθ(θ), we first express the other unknowns in
terms of θs and θf . Substituting these into two of the equations we are reduced
to a system of two equations we must solve for θs and θf on the form

F (θs, θf ) =0,

G(θs, θf ) =0, (102)

which is then solved for θs and θf for a given solar/stellar constant Q. To get a
solution we must first set the size of the continent, determined by the position
of θc. As a default value we choose

θc =
π

8
, (103)

which gives a continent of size l = π/4, symmetric around π = 0.
Solving for the unknowns and using (89), (92), (95) and (98) we get solutions
for T (ξ) each interval, which together gives the temperature distribution for the
upper half-circle.

Mathematica was used to analytically solve the 8 equations for the 6 unknowns
T (0), T (π), Tθ(θf ), T (θc), Tθ(θc) and Tθ(θs), then substitute into two equations
for a system (102), which could then be solved for θs and θf for a given Q.
While it could be possible to solve (102) analytically, it becomes very complex
and time consuming. At a situation with one edge, θs or θf , it is feasible, but
at two edges and above it must be solved numerically.
The system (102) solved for the value Q = 800 is shown in figure 2.
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Figure 2: The temperature distribution for Q = 800.

3.7 Bifurcation diagram

Now we will consider how the solution changes for different values of Q. De-
pending on the value, the planet will get hotter or colder and the situation will
change accordingly.
We derived the boundary formulation for the case of an ice edge and a snow edge
on the upper half circle, and symmetry around π = 0, but for certain values of
Q it will be too warm for a ice/snow edge to exist. Whether it is the snow or ice
that disappears first depends on the parameters. There will also be values of Q
where it will be warm enough that neither edge can exist, or cold enough that
the whole planet is covered in ice and snow. Short hand notation L = Land,
S = Snow, W = Water, I = Ice will be used to show the order of areas for
these situations.
Generally, the temperature T (θ) decreases from the substellar point towards the
antistellar point, and we expect

T (π) < T (θ) < T (0) ∀θ ∈ (0, π). (104)

This was already assumed for the area distribution of the previous solution We
can then find the values of Q that determine the transitions to these different
situations as follows.

3.7.1 Situations depending on solar constant Q

For the waterworld, and snowball situations we can assume that the lowest
Q that gives a waterworld, T (θ) ≥ 0 ∀θ ∈ (0, θc) and T (θ) ≥ −1 ∀θ ∈ (θc, π),
is the solution where

T (π) = −1, (105)
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and the highest Q that gives a snowball, T (θ) < 0 ∀θ ∈ (0, θc) and T (θ) <
−1 ∀θ ∈ (θc, π), is the solution where either

T (0) = 0, T (θc) < −1 or T (θc) = −1, T (0) < 0. (106)

We find the boundary equations for the segments

C0 =[0, θc], a1(T ) =ac1/as,

C1 =[θc, π], a0(T ) =aw/ai, (107)

LW

SI

by using the general expressions (82) and (83), with the appropriate albedo
values. Then we solve for the values of Q using Mathematica. The waterworld
value will be denoted Qw, and the snowball value Qi.

Other possible situations that follow from assumption (104) is the ice cap
situation, T (θ) ≥ 0 ∀θ ∈ (0, θc) and T (π) < −1, with boundary equations for
segments and constant albedos

C0 =[0, θc], a1(T ) =ac1,

C1 =[θc, θf ], a0(T ) =aw,

C2 =[θf , π], a0(T ) =ai,
(108)

LWI

the ice cover situation, T (θ) < −1 ∀θ ∈ (θc, π) and T (0) ≥ 0, with bound-
ary equations for segments and constant albedos

C0 =[0, θs], a1(T ) =ac1,

C1 =[θs, θc], a1(T ) =as,

C2 =[θc, π], a0(T ) =ai,
(109)

LSI

and the snow cover situation, T (θ) < 0 ∀θ ∈ (0, θc) and T (θc) ≥ −1, with
boundary equations for segments and constant albedos

C0 =[0, θc], a1(T ) =as,

C1 =[θc, θf ], a0(T ) =aw,

C2 =[θf , π], a0(T ) =ai.
(110)
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SWI

For these situations we will, by the same process as with two angles, reduce
the equations, but now down to a single function on the form

F (θs/θf ) = 0. (111)

Solving for each situation we can investigate which values of Q there exists a
solution, and with this we can find possible bifurcations.

3.7.2 Branches of solutions

Analysing the areas with solutions for the different situations, we find several
overlaps. One value of Q can therefore correspond to several different solution
branches in these areas of overlap, and we have a bifurcation. Figure 4 shows a
representation of the different situations.
For our chosen constants, we get for the waterworld and snowball boundaries

Qw ≈ 11593.9,

Qi ≈ 1083.28.
(112)

where T (θc) = −1, T (0) < 0 was the limiting case for Qi. By investigating the
system for θs and θf (102) it was found that there is one solution for

Qa < Q < Qb, (113)

where
Qa ≈ 734.29,

Qb ≈ 1073.54.
(114)

For the ice cap situation the θf function on the form (111) had one solution
for

Qa < Q < Qw. (115)

For the ice cover situation the θs function on the form (111) had no solutions.
And finally for the snow cover situation the θf function on the form (111) had
two solutions for

Qc < Q < Qb, (116)

and one solution for
Qb < Q < Qi, (117)

else wise no solutions. The value Qc is the point where the solution curve folds.
To find an explicit value for Qc, we can use the fact that in this point we must
have

F (θf ) = 0, F ′(θf ) = 0. (118)

Using this we can solve for Qc and θf , and the resulting value was found to be

Qc ≈ 1058.04. (119)
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These results are condensed in the bifurcation diagram in figure 3, plotted in
Mathematica, which shows the temperature T (0) at the substellar point as a
function of the solar/stellar constant Q. The temperature T (0) continues to
increase/decrease with increasing/decreasing Q with a steady rate outside the
interval shown in the graph.

Figure 3: The bifurcation diagram, showing T (0) as a function of Q. Result
from Mathematica.

For the values of T (0) < −0.42 we have the snowball situation, between
T (0) = −0.42 and T (0) = 1.09 are the ice and snow edge, and snow cover (two
fold) solutions. Above is the ice cap solution, transitioning into the waterworld
situation at much higher values of Q. The area Qa < Q < Qc has three possible
solution branches for the same value of Q, and the short zone Qc < Q < Qb as
many as 5 possible branches.
From the corresponding values of θf we can see that in the section Qa < Q < Qi

we have a large icecap, and for Qi < Q we have a smaller icecap that shrinks
with increasing Q, transitioning into the waterworld situation. The snow edge
first appears at around T (0) = 1, and moves from θs = θc towards θs = 0 with
decreasing T (0).
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Figure 4: Drawn figure of the bifurcation diagram, showing T (0) as a function
of Q for the different areas. (Comprehensive recreation. Not to scale.)

The values of Q shown in the figure are given in (112), (114) and (119).
The ice edge reaches θf = π/2 at Q ≈ 2016.37. This suggests the ice edge
recedes more rapidly for the areas close to the substellar point with increasing
Q, and then slows down as the icecap gets smaller, and the incoming radiation
required to heat the entire planet is so large that the substellar point will have
temperatures in the hundreds of Celsius. This is a result of the tidally locked
model, and would not be realistic for a rotating planet like the earth.
Having found expressions for the stationary solutions, we can now check their
stability by reintroducing the time dependency, which we will do in the following
sections.

4 Pseudo-spectral solution

To find solutions to the model that are time dependent, the first solution
method that will be explored is a pseudo-spectral method based on Fourier
modes.
We are considering the case of no continents, K(θ) = K0 =⇒ Γi = Γ0 and
a(T ) = a0(T )(subscript will be suppressed), and using the spatially dimension-
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less model that now has the form

γ∂tT − ∂θθT + βT = ηS(θ)(1− a(T ))− α, (120)

with functions and parameters defined in section 2.3.
Our first step in solving this inhomogenous partial differential equation(PDE)
is to apply the finite Fourier transform. The solutions of the problem, T, are
expressed as a series of eigenfunctions of the spatial part of the differential
operator defining the equation, with time dependent coefficients. The PDE is
converted into an infinite set of coupled ordinary differential equations(ODEs),
that is used to solve for the Fourier coefficients of the series. But, for our case,
the albedo term presents a challenge. As it is a step function in T, it makes the
right hand side (r.h.s.) of the equation highly non-linear and hard to evaluate
in spectral form. We cannot solve for the coefficients analytically.
To work around this, we can solve the ODEs using a numerical ODE solver. We
can then update the r.h.s. term for each iteration, by transforming back from
spectral domain to the description using T, evaluating it, and transforming
again.
In summary, we solve recursively for T (θ, t), transforming back and forth form
the spectral representation for each step, starting from an initial value.
We will then use an artificial source test to validate the implementation.

4.1 Finite Fourier transform

The spatial part of the differential operator, denoted L, for our PDE (120) is
given by

LT = −∂θθT + βT (121)

The complete set of eigenfunctions for the spatial part of L, are the solutions of
the eigenvalue problem

LT = λT (122)

Using the definition for L we get

∂θθT = (β − λ)T. (123)

Depending on the value of lambda we get different solutions. The eigenfunction
solution if λ < β is

T (θ) = ae
√
β−λθ + be−

√
β−λθ,

(124)

if λ > β

T (θ) = aei
√
λ−βθ + be−i

√
λ−βθ

(125)

and if λ = β
T (θ) = aθ + b,

(126)
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where a and b are arbitrary constants. Using the periodic boundary condition
(47) that T must satisfy, we get for λ < β

T (θ + 2π) = ae
√
β−λθe

√
β−λ2π + be−

√
β−λθe−

√
β−λ2π

T (θ) = ae
√
β−λθ + be−

√
β−λθ

⇓

e
√
β−λ2π = e−

√
β−λ2π = 1 ⇒

√
β − λ = ik, k = 1, 2...

(127)

But β ∈ R and λ < β, so we must have a, b = 0.
For λ > β

T (θ + 2π) = aei
√
λ−βθei

√
λ−β2π + be−i

√
λ−βθe−i

√
λ−β2π =

T (θ) = aei
√
λ−βθ + be−i

√
λ−βθ

⇓

ei
√
λ−β2π = e−i

√
λ−β2π = 1 ⇒

√
λ− β = k, k = 1, 2...

(128)

and for λ = β
T (θ + 2π) = aθ + b

T (θ) = a(θ + 2π) + b = aθ + 2πa+ b

⇓
2πa+ b = a+ b ⇒ a = 0

(129)

(a, b = 0 gives a zero eigenfunction, and lambda are not eigenvalues.) This
gives us an equation for λ

k2 = λ− β

⇕
λk = k2 + β, k = 0, 1, 2...

(130)

and we now have the eigenfuction

Tk(θ) = ceikθ, k ∈ Z, (131)

where c is a constant, all the three solutions are contained in variation of k in
(131). Choosing the inner product

(f, g) =

∫
C

f(θ)g∗(θ) dθ (132)

where C is the circle. We then have

(Tk, Tk) =

∫
C

c2 dθ = 2πc2
(133)
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and we can find the normalised eigenfunction Tk, with (Tk, Tk) = 1, as

Tk =

√
1

2π
eikθ. (134)

We can express the solution T using the inverse finite Fourier transform

T =
∑
k

CkTk, (135)

where the coefficients are defined by the finite Fourier transform

Ck = (T, Tk). (136)

To find the coefficient we multiply the equation (120) with Tk and integrate over
the circle

γ∂tCk + λkCk = Dk, (137)

where we have defined

Dk = (h(T ), Tk),

h(T ) = ηS(θ)(1− a(T ))− α.
(138)

4.2 Discrete Fourier transform

To use the method numerically, we would like to use the fast Fourier transform
(FFT). FFT is an algorithm that computes the discrete Fourier transform (DFT)
of a sequence of numbers. But since we are using a pseudo-spectral method,
where we have to evaluate in both spectral form and description by T, and
interchange between the two, we must have congruence between the DFT used
numerically and the analytic finite Fourier transform.
Writing out the finite FT (136) and inverse finite FT (135) we get

Ck =
1√
2π

∫
C

T (θ) e−ikθ

T =
1√
2π

∞∑
k=−∞

Ck e
ikθ (139)

using the midpoint rule for integrals, with 2N intervals of length ∆θ and mid-
point θj = j∆θ for the jth sub interval, we can approximate

Ck ≈ 1√
2π

N−1∑
j=−N

T (θj) e
−iλkθj∆θ, (140)

where λk = k∆λ denotes steps in spectral domain, and we note that ∆λ = 1
per definition of our eigenvectors, and we have ∆θ = 2π

2N = π
N . Evaluating T
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on this grid, and truncating the sum with the same bounds, we get

T (θj) ≈
1√
2π

N−1∑
k=−N

Ck e
iλkθj . (141)

We then have the approximated, discrete, truncated finite Fourier transforms
as

Ck ≈ ∆θ√
2π

N−1∑
j=−N

Tj e
−iπ kj

N , k = −N, ..., N − 1

Tj ≈
∆λ√
2π

N−1∑
k=−N

Ck e
iπ kj

N , j = −N, ..., N − 1
(142)

where Tj ≡ T (θj). For generality we will now consider the notation of the
equivalent and similarly derived discretized truncated Fourier transform (the
different signs of the exponents are interchangeable letting k run from N to -N
instead, and −k → l)

Fl =
∆x√
2π

N−1∑
j=−N

fj e
iπ jl

N , l = −N, ..., N − 1 (DFT )

fj =
∆λ√
2π

N−1∑
l=−N

Fl e
−iπ jl

N , j = −N, ..., N − 1 (IDFT )
(143)

In general we have the relation

∆x∆λ = π/N (144)

if we want to avoid aliasing. This comes from letting 2∆x = pmin = 2π
∆λ , where

2∆x is the shortest detectable period on the grid, and pmin the shortest period
f(x) can have.

4.3 Implementation

The transformed version of the PDE (137) with the value of λk (130) gives

∂tCk =
1

γ
(Dk − (k2 + β)Ck), k = 0, 1, 2... (145)

With this, an iterative method can be used to numerically solve the differen-
tial equation, and find an approximate solution Ck(t). When we have found
the Fourier coefficients Ck(t), we can use the inverse Fourier transform to get
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the solution T (θ, t) of the original PDE (120). The transformations derived in
section A.1 must also be applied for implementation in python. We define

f(θ) = T (θ, 0)

Fk(λ) = Ck(0) (146)

where Fk(λ) is the finite Fourier transform of f(θ), to make (145) an initial
value problem.
The method that was used to solve the equation numerically was the ode in-
tegration solver from Pythons scipy library. Setting the solar constant to be
Q = 1338, and choosing the initial function

f(θ) = 0 (147)

we get the pseudo-spectral solution shown in figure 5, for T (θ, t) up to t = 7.

(a) (b)

(c) (d)

Figure 5: The numerical solution for T (θ, t) for the energy balance model (120)
with initial value (147), and the stationary solution at Q = 1338 at (a) t = 1.
(b) t = 3. (c) t = 5. (d) t = 10.
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We can see the temperature spikes around the substellar point, while it drops
rapidly towards the poles, at ±π/2, and evens out further towards the antistellar
point. The spike in temperature at the substellar point then rounds more out
over time, and the area around the antistellar point cools further. This seems
to be logical considering that the sun/star heats the closest point most strongly,
and that the heat is spreading and evening out over time.
At t > 5 the distribution settles more slowly into a seemingly stationary state.
Using what we found in the previous section, the value of Q = 1338 should only
have one possible stationary solution. Plotting this ice edge stationary solution
(no continents) alongside the pseudo spectral solution we see this seems to be
what the distribution is converging towards.
The ice edge position is situated around ±1.04 radians when the change starts
to slow. This follows expectations considering the diffusive constant was fitted
to give an ice edge θ = 0.95, and an approximately realistic distribution, with
Q = 1338 but for one continent present. For no continent the diffusivity is
higher, and the edge further out.

5 Finite difference solution

The second method for finding time dependent solutions to the model (28)
that will be considered is a finite difference algorithm. This will allow us to
solve for time dependent solutions, and to examine how the stationary solutions
change in time if disturbed from their time independent state. As such, we can
test the stability of the stationary solutions.
The finite difference method is based on replacing derivatives in differential
equations with discrete approximations, and evaluating on a grid to produce a
system of equations. These equations can then be solved to find approximations
of the exact values.
Considering the time dependent version of the energy balance model

γi∂tT − ∂θθT + βiT = hi(T ) = ηiS(θ)(1− ai(T ))− αi, (148)

with the boundary conditions that were found in section 3, we discrete the
boundary value problem on a uniform grid

θj = dθj, j = 0, ..., N

tn = kn, n = 0, ..., T
(149)

Where h is the step length in space, and k in time. The grid becomes (θj , tn).

The derivatives are replaced by approximation formulas. The derivative in time,
∂tT , by the forward difference formula

Tt =
Tn+1
j − Tn

j

k
(150)
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and the second derivative in space by the centred difference formula

Tθθ =
Tn
j−1 − 2Tn

j + Tn
j+1

dθ2
(151)

When substituted into the energy balance model (148) we get:

γi
Tn+1
j − Tn

j

k
−
Tn
j−1 − 2Tn

j + Tn
j+1

dθ2
+ βiT

n
j = h n

ij (152)

Tn+1
j = (γi − 2s− kβi)

1

γi
Tn
j +

s

γi
(Tn

j−1 + Tn
j+1) +

k

γi
h n
ij , s =

k

dθ2
(153)

For the boundaries we can use the centre difference, which requires the intro-
duction of the ghost points Tn

−1 and Tn
N+1.

We must also consider the continent edges θci, where the temperature function
is continuous, but not continuously differentiable. Using the boundary condi-
tion (52) we can find an expression binding the solution on either side of the
edge. Using the backward difference below the edge, and the forward difference
above, we get for the upper edge of a continent i

Di

(Tn
Ni−2 − 4Tn

Ni−1 + 3Tn
Ni

2dθ

)
= D0

(−3Tn
Ni

+ 4Tn
Ni+1 − Tn

Ni+2

2dθ

)
(154)

Tn
Ni

=
1

3(Di +D0)
(Di(4T

n
Ni−1 − Tn

Ni−2) +D0(4T
n
Ni+1 − Tn

Ni+2)) (155)

where Tn
Ni

is the point approximately at θci, labeled with a and b for upper
and lower edge when applicable. For the lower edge, the diffusivity is switched
D0 ↔ Di. It is also possible to split into two schemes bound by this point
exactly defined at θci, with a jointly non-uniform grid.
The numerical scheme is then

Tn+1
j = (γi − 2s− kβi)

1

γi
Tn
j +

s

γi
(Tn

j−1 + Tn
j+1) +

k

γi
h n
ij

j = {0, ..., N} \ {Ni}

Tn
Ni

=
1

3(Di +D0)
(Di(4T

n
Ni−1 − Tn

Ni−2) +D0(4T
n
Ni+1 − Tn

Ni+2))

D0 ↔ Difor lower edge of continent i

(156)

For use of the finite difference algorithm, it is assumed that the functions change
gradually. But this is not fulfilled for the function Hi(T ), being a step functions
in T. To fix this problem, we can instead use an approximated step function
that is smooth but steep. A function that works for our purposes is for example

ai(T ) =
a1 + a2

2
+
a1 − a2

2
tanh(100(T +

Ts
Ts0

)). (157)

for a region i with Ts = Ts1 we then have tanh(100T ), and for the water region
i = 0 we have tanh(100(T + 1)). We still have to change at the boundaries of
regions.
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5.1 Continent symmetry

When we have symmetry we can restrict to only considering the upper half
circle. When this is the case we have θ0 = 0, θN = π and thus dθ = π−0

N = π
N .

For the ghost points, the boundary conditions (55) and (54) gives

Tn
1 − Tn

−1

2dθ
= 0 ⇔ Tn

−1 = Tn
1 , (158)

Tn
N+1 − Tn

N−1

2dθ
= 0 ⇔ Tn

N+1 = Tn
N−1. (159)

If we do not have symmetry, or instead want to consider the whole circle, then

θ0 = −π, θN = π and dθ = π−(−π)
N = 2π

N .
For the ghost points we use the periodic condition (47), and all points must
satisfy

Tn
j = Tn

j+N . (160)

5.2 Pseudo spectral comparison

Since we have two methods of finding the time dependent solution, we can now
see if they agree. Considering again the case of no continents, with the value
Q = 1338 and initial value (147) (as was done in section 4.3), we get the result
shown in figure 6. The plot shows the resulting distribution when t = 10 has
been reached, and since the case is symmetric we show only the upper half-circle
for a closer look.

Figure 6: The numerical solution for T (θ, t) for the energy balance model (120)
with no continents, with initial value (147) and Q = 1338 at t = 10.

36



As both the time dependent solutions seem to agree, it gives more validity
to both methods derivation and implementation.

5.3 Artificial source test

To verify our implementation we will use an artificial source test. A solution
that satisfies the boundary conditions is for example

T (θ, t) = cos(θ)
(
1 +

1

1 + t

)
(161)

Inserting into the partial differential equation we find the artificial source func-
tion that corresponds to assuming this solution

γi∂tT − ∂θθT + βiT = ρ(θ, t) (162)

ρ(θ, t) = −γicos(θ)
1

(1 + t)2
+ cos(θ)

(
1 +

1

1 + t

)
+ βicos(θ)

(
1 +

1

1 + t

)
=

(
− γi

(1 + t)2
+ (1 + βi)

(
1 +

1

1 + t

))
cos(θ)

=
(
− γi

(1 + t)2
+ (1 + βi)

(2 + t

1 + t

))
cos(θ)

(163)

Comparing the chosen solution to the finite difference solution over time, but
with the right hand side now being set as (163), will give an idea of the accuracy
of the implementation.
With the artificial source (163) we get the comparisons shown in figure 7 between
the chosen function (161) and the numerical solution of (162) for T (θ, 10). The
result shows a close approximation to the exact function, and validates our
implementation. The finite difference solution should therefore give a good
approximation for the time dependent case of the energy balance model (120).
Since the pseudo spectral implementation was shown in 5.2 to agree with the
finite difference implementation, this also further validates the pseudo spectral
implementation.
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Figure 7: The the exact solution (161), blue, and numerical solution for T (θ, t)
for the equation (162), orange, at t = 10.

6 Stability

Since we have found more than one possible stationary solution for the same
values of Q, it is important to examine the stability of these solutions, as it can
determine which of the states the system is inclined to occupy.
The stationary solutions found in section 3 are by definition time invariant, and
should not change over time. To give some base line credibility to both our
stationary solutions and the finite difference implementation, we can run the
code for an amount of time and see if it behaves as expected. Considering the
case Q = 1338 again with the solutions that were found in section 3.6 we get
the result in figure 8 for time t = 10.
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Figure 8: The the stationary solution for the case of one symmetric continent
with Q = 1338, θc = π/4, blue, and numerical solution for T (θ, t), orange, at
t = 10.

We can see the time dependent solution overlaps closely with the station-
ary solution, which gives more validity to both derivations and implementations.

Now we introduce a small perturbation to the stationary solutions. Letting
T0(θ) denote a stationary solution, we have the initial temperature function

T (θ, 0) = T0(θ) + δT (θ). (164)

The perturbation was chosen to be

δT (θ) = ±ϵ cos θ, (165)

where ϵ is a small number, set to be ϵ = 0.1 in general. With this function the
total change is zero over the interval, but the substellar and antistellar temper-
atures are perturbed positively or negatively. Examining the development over
time after the perturbation, we can either see the temperature relax into the
original stationary state, or change to some different state. In the latter case we
can conclude that the stationary solution is unstable. For most situations the
planet can be in the stationary solutions appear to be stable. But where there
are multiple possible states for the same Q, things get more complicated.
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We note that the stability results we perceive in this analysis is on a certain
timescale. The radiation distribution function is averaged over long timescales,
to be independent of time, but would on a shorter timescale have fluctuations.
It is also impossible to know if the states are truly stable further into the future,
on a larger timescale. This is a limitation built into our model.

6.1 One symmetric continent stability

We will now apply this method to the one continent solution from sections 3.6
and 3.7. Examining the solutions a value of Q = 1065 ∈ (Qc, Qb) where there
are 5 possible solutions, for both cases of the perturbation (165) positive and
negative sign and ϵ = 0.1, 0.01, we get the results shown in figures 9, 10, 11,
12, and 13. The colour coding for the different situations will be as follows

SI snowball Purple
SWI2 snow cover (lower T (0) branch) Cyan
SWI1 snow cover (upper T (0) branch) Cyan
LSWI ice and snow edge Green
LWI ice cap Red

Positive ϵ = 0.1 perturbation is shown unless another choice yields a dif-
ferent conclusion. The first graphs shows the stationary solutions against the
finite difference solutions for the perturbation, and the second graphs show the
difference between the finite difference solutions and the stationary solutions
over time (norm of difference).

(a) (b)

Figure 9: (a) Snowball stationary solution SI, line, finite difference solution
(+ϵ = 0.1 perturbation), dotted line, for t=10. (b) Difference between solutions.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Lower snow cover stationary solution SWI2, line, finite difference
solution, dotted line for (a) +ϵ = 0.1 perturbation, t=10. (c) −ϵ = −0.01
perturbation, t=20. (e) −ϵ = −0.1 perturbation, t=20. (b,d,f) Difference
between solutions.
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(a) (b)

(c) (d)

Figure 11: (a) Upper snow cover stationary solution SWI1, line, finite differ-
ence solution (+ϵ = 0.01 perturbation), dotted line, for t=30. (c) −ϵ = −0.01
perturbation, t=30. (b,d) Difference between solutions.

The snowball and ice cap solutions seem to settle back to the stationary
solutions for both the positive and negative perturbation, but for the snow and
ice edge (LSWI) and snow cover (SWI) solutions we can observe the difference
from the stationary solutions grow. We can conclude that the LSWI and SWI2
solutions are unstable, while the snowball and ice edge solutions appear to be
stable. But we need to consider SWI1 more closely, as behaves stable in that it
settles into a solution (flattening difference curve), but not at the value of the
calculated stationary solution. The norm of difference is large, and much larger
than the initial perturbed stationary solution.
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(a) (b)

Figure 12: (a) Snow and ice edge stationary solution LSWI, line, finite difference
solution (+ϵ = 0.1 perturbation), dotted line, for t=10. (b) Difference between
solutions.

(a) (b)

Figure 13: (a) Ice edge stationary solution LWI, line, finite difference solution
(+ϵ = 0.1 perturbation), dotted line, for t=10. (b) Difference between solutions.

Some of the growing difference curves flatten out over time. Comparing the
end result to the other stationary solutions we can see that the solution most
likely settles into another stationary state. The shape of the LSWI solution
suggests it transitions into the ice cap solution. In the same way, the SWI2 so-
lution seems to transition to the snowball solution with a large enough negative
perturbation. But with positive perturbation, the change is more gradual and
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does not settle. At least not at a rate as fast as for the other solution. This is
probably because it ”falls into” the other states above but does not settle and
is further drifting again.
The upper snow cover solution does seem to settle into a stationary state as well,
but it is not the stationary solution or any other solution. Yet it is very close.
This is probably because of the approximation made in the finite difference code.
There will always be some numerical error but this larger discrepancy can be
explained by the tanh approximation for albedo function, which we will see later
has a strong effect on areas with sharp folds. Using the tool Auto-07p to find the
approximated stationary solution, we find that the slightly different stationary
state seen here is in fact the stationary solution for the approximated prob-
lem, with a substellar temperature of T (0) ≈ −0.0583 instead of the analytic
T (0) ≈ −0.0923. The SWI1 then appears to be stable for small perturbations.

The unstable middle solutions will in general, depending on the perturbation
direction, transition to one of the seemingly stationary outer solutions. The rate
of change depending on the proximity to other solutions, stable and unstable.
We can use this method to check the stability in other cases going forwards.
Having bistability where only the upper and lower lines are stable in a folded
area is generally what we expect, but for the short interval Qc < Q < Qb we
seem to have tristability, due to the stable behaviour of the SWI1 solution. This
suggests there could, for a different configuration, exist a middle step between
the ice cap and snowball situations.

7 Effects on bistability

7.1 Variation of continent parameters

With the stationary solution found in section 3, we can now investigate how
the placement of the continents and their size influences the bistability of
the system which was shown in section 5. Using the case of one symmetric
continent considered in section 3.6 and 3.7 as a starting off point, we will
vary the position of the continents edges and solve in the same way to find the
bifurcation diagram. What we will measure as the influence on bistability is the
dimensions of the bifurcation area. Figure 14 is an illustration of this, using
the original diagram 3.
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Figure 14: The bifurcation area for the case of section 3.6 and 3.7, enclosed by
a red box.

The area of interest is the red box, and its height and width will be measured
for a different continent. In general we define for the upper and lower edge of
the continent

θc1 = +
l

2
+ ϵ,

θc0 = − l

2
+ ϵ,

(166)

where l is the size of the continent and ϵ the shift of the centre from the substellar
point. Both in radians. Note that when only l is varied we can use the previously
derived equations, one symmetric continent with a new θc, but when ϵ is varied
we have to consider the non-symmetric case. We will have the same intervals
as before, but must also add the segments of the lower half circle. There will
also be a different range of possible situations, especially with a high ϵ. The
full circle case corresponding to the one in section 3.6 would have the following
segments Cj

{[−π, θf ], [θf , θc0], [θc0, θs0], [θs0, 0], [0, θs1], [θs1, θc1], [θc1, θf ], [θf , π]}, (167)

which are intervals of Ice, Water, Snow, Land, Land, Snow, Water, Ice.
Representing the areas as before
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Land
Snow
Water
Ice
Substellar point ↑

We can show (167) visually as

The double land interval can be considered one interval [θs0, θs1]. As our
radiation distribution function (29) is a piecewise function it can also be useful
to keep a split around 0 the during computation.
When solving the equations for the non-symmetric case we cannot use the sym-
metric boundary conditions in section 3.1, but will use the conditions (47),
(51), (52) and (85), (87). Using these intervals and conditions with the general
formulae (82), (83) we get the equations, and with solved equations and the
general integral identity (81) we get the solutions.

7.1.1 Effects of size

Letting only the size of the continent vary, we can use the symmetric solution
derived in section 3.6 and 3.7. We set

θc =
l

2
, l ∈ (0, 2) (168)

Examining the bifurcation diagram for different lengths, we get the dimensions
shown in figures 15 and 16.

(a) (b)

Figure 15: The dimensions of the bifurcation area for a symmetric continent
with size given by (168). (a) Width ∆Q. (b) Height ∆T .
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Figure 16: The area of the red box A = ∆Q∆T for a symmetric continent with
size given by (168).

Both the height and the width of the area of bifurcation increases with the
size of the continent, first in a seemingly linear way. The area increase in the
same area is thus more quadratic. Interestingly, the size l = 1 seems to be a big
turning point. Examining the form and components of the bifurcation diagram
hints as to why this happens. A collection of the bifurcation diagrams can be
found in appendix A.2.
At a size of about l = 1 the snow cover situation ceases to have any solution.
Instead, the previously solution-less ice cover situation now has a solution.
This would mean the continent at that point is so large that with cooling the
ice edge reaches the continent egde before the snow edge reaches the substellar
point. While below it was the opposite. The other situations also vary between
having one and two solutions in ranges of Q where solutions exist. The the ice
and snow edge solution, for instance, has two solutions for a small interval of Q
values when l passes around l = 0.9.
These kinds of shifts change which situation has its solutions at the outermost
values of Q in the area, and result in the sudden shifts in width we observe. As
for the slower increase after l = 1, this seems to be because the diagram has less
folds, and approaches the form observed for no continents (l = 0). It becomes
in essence a waterworld only with a lower diffusivity, and continent size is no
longer affects the size significantly.

7.1.2 Effects of position

Letting only the position of the continent vary, we must use the non-symmetric
solution. Using the short hand notation L = Land, S = Snow, W = Water,
I = Ice, the new situations to consider, in addition to the ones found for the
symmetric case, are illustrated in table (1).
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IWLSWI

IWLSI

IWSLSI

IWSI

IWISI

Table 1: Possible situations for a shifted continent.

The situation has solutions depending on the magnitude of the shift ϵ. The
case IWSLSI is relevant for a minor shift, and IWLSI takes its place when the
shift is increased further. IWISI becomes relevant when the shift brings it closer
to the pole. We will consider the original size (103) used in section 3.6,

θc1 = +
π

8
+ ϵ,

θc0 = −π
8
+ ϵ.

(169)

Examining the bifurcation diagram for increasing continental shift ϵ, we get the
dimensions shown in figures 17 and 18.

(a) (b)

Figure 17: The dimensions of the bifurcation area for a continent of size θc = π/8
with position given by (169). (a) Width ∆Q. (b) Height ∆T .
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Figure 18: The area of the red box A = ∆Q∆T for a continent of size θc = π/8
with position given by (169).

Both the width and height of the area decreases rapidly with increasing
position, with a slight increase of width when ϵ ≈ 0.4 which is when the continent
no longer connects with the substellar point. The area flattens out past this
point. A collection of the bifurcation diagrams can be found in appendix A.3.
The bifurcation area grows with increasing continent size and gets smaller with
increasing position. From this we conclude that the bifurcation area is largest
with ϵ ≈ 0 and l ⪆ 1, a large continent around the equator.

7.2 Variation of radiation distribution function

In the previous section it was discovered that the bifurcation area was smaller
the further the position of the continent was from the substellar point, and
larger the bigger the size of the continent, with diminishing returns and less
folds beyond l ≈ 1. Based on this result, we will now consider a continent of
size l = 1 around the substellar point, or

θc1 = +
1

2
,

θc0 = −1

2
,

(170)

to maximise the area of interest while keeping the continent small enough to
give unique effects, not just a planet with lower diffusivity. To further investi-
gate this case we will try to vary a different element.
In section 2.3 we defined the radiation distribution function (29), which is a
”tent” shaped piece-wise function with a sharp peak and rapid decline. For a
planet like earth that rotates, it would be appropriate to model the function
as much flatter, as the incoming radiation is distributed along the circle at the
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given longitude instead of a point. The function used by North was based on
the second Legendre polynomial, and determined by astronomical calculations.
We now want to examine what happens if we flatten the distribution for our
circle model, and approach what is used for a rotating planet instead of tidal
locking.
To investigate the effects of steepness of the curve a new function S(θ) is intro-
duced

S(θ) = e−cθ2

. (171)

The Gaussian function has a rounded peak, and the constant c can be varied to
adjust its width. We will first try a slope of similar shape to North’s.

7.2.1 North approximate shape

Using the value c = 1/2, we get a slope with approximately the same shape
as North’s function for θ ∈ (0, π/2). Finding the bifurcation diagram by the
method of sections 3.6 and 3.7 we get the result shown in figure 19.

Figure 19: The bifurcation diagram for one symmetric continent with a North-
like radiation distribution function, (171) with c=1/2.

The color coding is as follows:

LWI ice cap Red
LSWI ice + snow edge Green
SLSWI two snow zones Black –
SLWI ice + snow edge (var.) Yellow
SWI snow cover Cyan
LSI ice cover Blue
SI snowball Purple

Table 2: Possible situations for a function (171) with c=1/2.

50



This bifurcation diagram looks quite similar to the one found with the tent
S(θ) function and l = π/4 seen in figure 3, but a new fold has appeared. A
closer look can be seen in figure 20.

Figure 20: A segment of the bifurcation diagram in figure 19.

Among the new lines is a version of the ice and snow edge solution, but with
snow in the interior of the continent (yellow). It seems the broader radiation
distribution allows the land closest to the ocean to absorb more heat, as there is
more incoming radiation further from the peak, and also receive more from the
ocean due to its higher heat diffusivity. We can thus no longer assume condition
(104) of an absolute decrease of temperature, for this and further cases. It is
then more difficult to calculate transitional values of Q between situations, as
we have to determine the peak of the temperature distribution.

SLWI

SLSWI

Even more interesting is the other new possibility, which is a case of several
disjoint areas of snow within one continent. More than just encroaching from
one or both edges, we get interchanging intervals. Such a possibility logically
follows the situation of the internal snow area, but adds a whole new layer of
intrigue. And most certainly, of complication.

7.2.2 Effects of function width

Inspired by the discoveries of several snow zones, we further increase the width
of the Gaussian (171). We consider the value c = 1/10, and solve to find the
bifurcation diagram once again. Keeping in mind the results of the previous
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calculation, we expect the possible situations we have to solve for get increas-
ingly difficult. If we first consider only the cases we have seen before we get the
result shown in figure 21.

Figure 21: The incomplete bifurcation diagram for one symmetric continent
with radiation distribution function (171) with c=1/10.

The cases that are present are the same ones seen in table 2, only excluding
the double snow zone (SLSWI), and with the addition of a solution with ice
close to the continent (SIWI). This new addition suggests the peak temperature
can now also be situated outside the continent entirely.

SIWI

Examining the plot, we can see that the rounded snow cover portion (For-
merly cyan) has grown larger. And the line that was the snow and ice edge
solution (green) has split into two, with a large void in between. These two
lines being the LSWI ans SLWI solutions, inner and outer snow area. By the
same logic as the previous case, this void is probably bridged by one or several
cases of multiple snow zone solutions.
Trying to find solutions for the case of two snow edges, both with snow at the
substellar point as before (SLSWI) and with land (LSLWI), then with three
edges, and so on, we get the result in figure 22.
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Figure 22: The bifurcation diagram for one symmetric continent with radiation
distribution function (171) with c=1/10.

The colourful area contains the multiple snow zone solutions. The colour
coding is as follows:

LSLWI Red

LSLSWI Yellow

LSLSLWI Lime –

LSLSLSWI Green

SLSLSLWI Cyan

SLSLSWI Blue

SLSLWI Purple

SLSWI Magenta

Table 3: Multiple snow zone situations for a function (171) with c=1/10.

A closer look can be seen in figure 23.
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Figure 23: A segment of the bifurcation diagram in figure 22.

At a glance the dense, rapidly varying area looks like an error in computation.
Even at the heights of 10 (5 on upper half circle) snow edges, 11 intervals on
the continents, the bifurcation diagram is not complete. There could be just a
couple more situations, or there could be an infinite amount. The calculations
get more and more complicated as the number of unknown angles θs with a
non-linear dependence increases. Before trying to find successive situations we
will analyse the distribution of the snow zones.
Where the edges are situated in relation to each other, and the lengths of the
land and snow intervals, is presented in figures 24 and 25, for the values of Q
where a solution exists. We denote the snow edges θs0, θs1,..., on the upper half
circle. The plots are the cases with the most edges (LSLSLSWI, SLSLSLWI).
Plots for the other cases can be seen in appendix A.4.

(a) (b)

Figure 24: The angles θs0, θs1, ..., in blues, and the differences θs1 − θs0,..., in
reds, for LSLSLSWI.
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(a) (b)

Figure 25: The angles θs0, θs1, ..., in blues, and the differences θs1 − θs0,..., in
reds, for SLSLSLWI.

The snow edges for the solutions with land at the substellar point move closer
to 0 with increasing Q. And, judging from the overlapping and approximately
constant differences, the size of the snow/land intervals both remains the same
for the different values of Q, and is of equal size to each other. The solutions
with snow at the substellar point behaves in the same way, but in the opposite
direction. The distribution of the zones is reminiscent of a waveform, with a
set wavelength. Considering that the temperature is above zero for land and
below for snow, that is precisely how the temperature distribution looks inside
the continent. Temperature distributions are included in appendix A.5.
To further investigate this phenomenon, applying another method could be
useful. The complicated computations along with a lack of confirmation of
correctness makes solving for further situations less useful. Not to mention the
stability testing of said solutions.

8 Additional analysis tool AUTO-07p

To proceed in our analysis of the multiple snow zones solutions we will use
the Continuation and bifurcation software for ordinary differential equations
AUTO-07p. A guide on how to install and run AUTO is included in appendix
A.6.
The energy balance model (28) is a partial differential equation, which AUTO
has some methods of analysis for. But as the name suggests, it is both more
suited to and more thorough at examining ordinary differential equations. To
work around this, we can use a finite difference approximation as we did for the
time dependent solution in section 5. Except now we only need to apply it to
the spatial derivative.
The second derivative in space will as before be replaced by the centred difference
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formula, but we will increase to the fourth order

Tθθ =
−Tn

j−2 + 16Tn
j−1 − 30Tn

j + 16Tn
j+1 − Tn

j+2

12dθ2
. (172)

We do this because the computations will get very heavy, and to get any kinds
of useful results we need a high level of accuracy. When substituted into the
energy balance model (148) we get:

γi∂tTj −
−Tj−2 + 16Tj−1 − 30Tj + 16Tj+1 − Tj+2

12dθ2
+ βiTj = hij (173)

∂tTj =
1

12γidθ2
(−Tj−2+16Tj−1−30Tj +16Tj+1−Tj+2)−

βi
γi
Tj +

1

γi
h n
ij (174)

For the boundaries we use the fourth order centre difference, which requires the
introduction of the ghost points Tn

−1, T
n
−2 and T

n
N+1, T

n
N+2. Using the symmetry,

we get when considering only the half circle

Tn
−1 = Tn

1 , Tn
−2 = Tn

2 , Tn
N+1 = Tn

N−1, Tn
N+2 = Tn

N−2, (175)

and the full circle

Tn
−1 = Tn

N−1, Tn
−2 = Tn

N−2, Tn
N+1 = Tn

1 , Tn
N+2 = Tn

2 . (176)

We must also update the expression binding the solutions on either side of the
continent edge. Using the backward difference below the edge and the forward
difference above, in the fourth order, we get for the upper edge of the continent

D1

(3Tn
N1−4 − 16Tn

N1−3 + 36Tn
N1−2 − 48Tn

N1−1 + 25Tn
N1

12dθ

)
=D0

(−25Tn
N1

+ 48Tn
N1+1 − 36Tn

N1+2 + 16Tn
N1+3 − 3Tn

N1+4

12dθ

)
,

(177)

Tn
N1

=
1

25(D1 +D0)
(D1(−3Tn

N1−4 + 16Tn
N1−3 − 36Tn

N1−2 + 48Tn
N1−1)

+D0(48T
n
N1+1 − 36Tn

N1+2 + 16Tn
N1+3 − 3Tn

N1+4)).
(178)

Of course, there is now the issue of the point Tn
N1−1 depending on Tn

N1+1, and
Tn
N1+1 depending on Tn

N1−1. Crossing the threshold where the second derivative
does not exist. We therefore use a custom stencil for sampled points for these
two cases[10]. For Tn

N1−1 we use a backward difference with +1 one point

Tθθ =
Tn
N1−5 − 6Tn

N1−4 + 14Tn
N1−3 − 4Tn

N1−2 − 15Tn
N1−1 + 10Tn

N1

12dθ2
, (179)

and for Tn
N1+1 we use a forward difference with -1 one point

Tθθ =
10Tn

N1
− 15Tn

N1+1 − 4Tn
N1+2 + 14Tn

N1+3 − 6Tn
N1+4 + Tn

N1+5

12dθ2
. (180)
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Both are of fourth order. For the full circle case we would have to do this for
both the upper edge N1a, and the lower edge N1b. And as before, diffusivity is
switched for the lower edge, D0 ↔ D1.

The ODE version of our PDE is then

∂tTj =
1

12γidθ2
(−Tj−2 + 16Tj−1 − 30Tj + 16Tj+1 − Tj+2)−

βi
γi
Tj +

1

γi
h n
ij

∂tTN1−1 =
1

12γidθ2
(Tn

N1−5 − 6Tn
N1−4 + 14Tn

N1−3 − 4Tn
N1−2 − 15Tn

N1−1 + 10Tn
N1

)

− βi
γi
Tj +

1

γi
h n
ij

Tn
N1

=
1

25(D1 +D0)
(D1(−3Tn

N1−4 + 16Tn
N1−3 − 36Tn

N1−2 + 48Tn
N1−1)

+D0(48T
n
N1+1 − 36Tn

N1+2 + 16Tn
N1+3 − 3Tn

N1+4))

∂tTN1+1 =
1

12γidθ2
(10Tn

N1
− 15Tn

N1+1 − 4Tn
N1+2 + 14Tn

N1+3 − 6Tn
N1+4 + Tn

N1+5)

− βi
γi
Tj +

1

γi
h n
ij

Tn
−1 = Tn

1

Tn
N+1 = Tn

N−1

(181)
for considering the upper half circle. This is the case we will by default be
considering to maximise accuracy.

8.1 Implementation

The solutions found with AUTO continue the investigation of the case of one
symmetric continent with l = 1 and S(θ) given by (171) with c = 1/10.
The first tests with auto was done with the original second order finite difference,
but by switching to fourth order the computation was much faster. This is
specifically since the fourth order accuracy let us use a larger DS (pseudo-
arclength stepsize) in AUTO, while still being able follow the solution families.
The results were still the same, so the figures presented will be from both cases.
Letting AUTO generate the bifurcation diagram for us, we get for different
amounts of points N the results in figures 26 and 27. The N = 400 case is
shown side by side with the Mathematica solution in figure 28. From the new
scaling of Q in AUTO, the substellar temperature T (0) is plotted as a function
of

q =
ηi
γi

=
Q

CT0
, (182)

a scaled Q. You will notice that some of the plots look very messy . This is a
quirk of AUTO, where numerical errors can be interpreted as folds, resulting in
an overabundance of labels.
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(a) (b)

Figure 26: The AUTO bifurcation diagram for (a) N = 100. (b) N = 200.

(a) (b)

Figure 27: The AUTO bifurcation diagram for (a) N = 300. (b) N = 400.

The second thing we notice is that the shape of the bifurcation closely re-
sembles what we saw in section 7.2.2, and we have gotten verification that the
possible numerical error that was observed seems to be actual stationary so-
lutions! We will now see what we can gather about this specific part of the
diagram by using AUTO.
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(a) (b)

Figure 28: (a) The AUTO bifurcation diagram for N = 400. (b) The Mathe-
matica solution. For comparison q = Q/132, (182).

The smaller the number of grid points, or resolution, the more jagged the
bifurcation diagram becomes. The labels denote folds, so for the low resolution
cases the plots get pretty messy with fold labels. Seeing as the labels disappear
with increasing resolution, we can attribute them to numerical errors in compu-
tation. At the highest resolution there is still some probable error to be seen at
labels 4,5,6, which will presumably disappear with a further increase. Note that
the lack of continuation from points 96 in N = 200 is simply a termination of
calculation to shorten the duration, which will henceforth be used for the more
heavy cases.
Even still, all the cases shown show the same number of multiple ice edge so-
lutions. Five lines sandwiched between the two one-snow-zone solutions. The
N = 400 case has about 64 sample points inside the continent, and should
definitely be able to capture a wavelength with 3 peaks and more. If resolu-
tion does nothing, something else must have a part in determining the amount.
We need to consider the hyperbolic tangent function for the albedo (157) that
we are using in our finite difference approximation. We could try increasing
the sharpness of the hyperbolic tangent approximation to be closer to the step
function.
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8.2 Albedo function sharpness

Letting ctanh denote the constant which was formerly set to 100 in the hyperbolic
tangent function for the albedo (157), we now try the case of

ctanh = 200 (183)

Running AUTO again for the case of N = 300 we get the result shown in figure
29. With a close up of the multiple snow zone area in figure 30, compared to
the Mathematica solution in figure 31. The obvious mess lets us know that
the sharpness of the hyperbolic tangent function also makes the diagram more
jagged. We would require an even higher number of dicretization points to make
this case smooth.

Figure 29: The AUTO bifurcation diagram for N = 300, ctanh = 200.

We can see that now there are more folds visible, counting 7 lines in between.
Presumably, increasing ctanh further would gradually reveal more and more
folds. Using the exact step function makes it very hard for AUTO to detect the
sudden sharp turns of the bifurcation diagram, the DS has to be so small that
even getting past the first fold becomes a big hurdle.

60



Figure 30: The multiple snow zone solutions for N = 300, ctanh = 200.

(a) (b)

Figure 31: (a) The AUTO bifurcation diagram for N = 400. (b) The Mathe-
matica solution. For comparison q = Q/132, (182).
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One thing we can conclude from this investigation is that an exact step
function seems to be a requirement for the full, possibly infinite, range of analytic
solutions to appear. At least, the sharpness of the jump in albedo must be
sufficiently sharp for any folds beyond just a couple of snow intervals to appear.
On an actual planet like earth, we would assume that there will be at least a
certain gradient in the transition. This could mean that these states are even
less likely to appear naturally than the other states previously found unstable.
AUTO provides a stability analysis for the points in the diagram, which we will
consult to confirm the bistability.

8.3 Stability of multiple snow zones solutions

In AUTO, the sign of PT, the point number, in the fort.7 file is used to
indicate stability. The sign − is stable, and + is unstable. Investigating the
files for each run we can then determine which solutions are stable. To read the
file, pay attention to

• PT, − if stable, + if unstable

• LAB, figure fold labels

• U(1), substellar temperature, plotted against q in the bifurcation diagrams

• PAR(1), scaled Q value, q (182).

Excerpts of the fort.7 file for N = 400 with ctanh = 100, at transitions between
+ and -, can be seen in figure 32 and 33. A plot of the stable and unstable
zones based on the fort.7 data is shown in figure 34. The areas the labels refer
to can be seen in figure 28.

(a)

(b)

(c)

Figure 32: The fort.7 file for N = 400, ctanh = 100, at the
(a) Q = 0 area. (b) transition at label LAB=2. (c) transition at label LAB=3.
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(a)

(b)

(c)

Figure 33: The fort.7 file for N = 400, ctanh = 100, at the
(d) transition at label LAB=4. (e) transition at labels LAB=5,6. (f) transition
at label LAB=14.

(a) (b)

Figure 34: The stability data from the fort.7 file for N = 400, ctanh = 100.
Red... unstable, Blue - stable. Upper (a) by data points, lower (a) by T (0).

Before reaching the first fold, and after the last fold, we have stability. But
also in the area between label 3 and 4. There is a small zone of stability between
5 and 6, as can be seen in 33(e), but this is most likely a numerical error. As
expected, the multiple snow zone solutions seem to all be unstable. The same
goes for the middle situations previously found as unstable in section 6.1, while
the snowball(SI), ice edge (LWI) and upper snow edge solution (SWI) are still
stable.
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The overall stability is the same as before, in the sense that only the SI, LWI
and SWI solutions are stable in the area with multiple solutions. In the interval
with a SWI solution we do not have bistabilty, but instead three possible stable
solutions.

9 Stability and feedback discussion

As has been observed, the introduction of continents and its consequence of in-
cluding several feedbacks, not just the ice-albedo but an additional snow-albedo
feedback inside a separated area, has resulted in an increase in the number of
possible states of the system for a single value of the solar constant Q in certain
areas. It was also found that less difference in incoming radiation over the sur-
face resulted in an occurrence of even more possible states, with more feedback
areas. By examining the bifurcation diagrams we can see how the now existing
intermediary stable solutions could change the dynamic of having sudden tip-
ping points in varying the solar constant, to a more gradual decrease.
The initial simple ice-albedo model had stable solutions that were far removed in
the values of their temperature distributions. In changing Q across the threshold
of existing solutions for either, there would be a large jump or tipping point.

(a) (b)

Figure 35: Drop in stationary solution from LWI to SI, no continents.

From the intermediary stationary solutions resulting from the additional
feedback, the gap is split. If these solutions are placed in such a way that the
stationary solutions are consecutive along values of Q, they could serve as a
middle step between the upper and lower stable solutions. We get more tipping
points, but each drop in temperature is smaller, less drastic. For our parameters,
this seems to be the case for a continent shifted towards the pole, but not too
far removed from the equator. Diagrams can be viewed in appendix A.2 and
A.3. Considering the case of one continent with l = π/4, ϵ = 0.41 for instance,
there is a clear middle ”step” in the drop of.
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Figure 36: The bifurcation diagram for ϵ = 0.41.

(a) (b)

Figure 37: Drop in stationary solution from LWI, to SWI, to SI, one continent.

Building on a simple model and introducing more feedbacks could be some-
thing that avoids a large drop in state temperature, and instead causes a small
step by step drop off. Removing the possibility of an abrupt transition to an ice
covered planet with a small decrease in Q that was initially seen in the simplest
North-like case.
The results of varying the radiation distribution function showed that a less
concentrated S(θ) causes more intermediary solutions which, while unlikely to
be relevant themselves for a realistic system, suggest that a planet with a more
evenly distributed radiation, from rotation or otherwise, is more inclined to ex-
hibit a bifurcation with several possible simultaneous states. This is in tune
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with the results by Checlair[9], in which tidally locked planets will not neces-
sarily exhibit even the snowball bifurcation in a realistic setting. We also here
see a connection between number of folds and more areas of feedback.

(a) (b)

(c) (d)

Figure 38: Possible structure of a drop in stationary solutions s1-s4/s5.

Considering the earth, it has a larger concentration of landmass on the upper
hemisphere, which would fit with a moderately pole shifted continent for which
we have observed steps, it rotates, which gives a less concentrated S(θ), and it
will have a myriad of feedbacks based on its actual complexity. Larger, more
complex climate models consider a wide range of feedbacks. Our result gives
an idea that the effects of those feedback mechanisms could contribute to the
models having a more continuous range of stationary solutions for different solar
constants.

10 Symmetry breaking

We have in cases of symmetric continent distribution restricted to solutions that
are symmetric around θ = 0 in finding the stationary solutions. If there was
only one solution to the problem there would be no question about if a solution
on the other interval maps to a given solution on the other interval, as there
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is only one solution. This meaning if T (θ) is a solution to the energy balance
model

C∂tT −Di∂θθT +BT = QS(θ)(1− ai(T ))−A, (184)

and T (−θ) is also a solution, then T (θ) = T (−θ) because there is only one
solution in the solution space.
But, since we have seen there can be three, five, and even ten and above possible
solutions for certain values of Q, this is not necessarily true. There could be
solutions where T (θ) ̸= T (−θ), where one solution maps into one of the other
possible solutions across θ = 0. If there were two possible solutions T1(θ) and
T2(θ) we could have

T (θ) = T1(θ), T (−θ) = T2(−θ) (185)

If so the ice and snow edges would have different positions on the upper and
lower half circle of the planet. We would have symmetry breaking.
During the investigation of the effects of continent size and the multiple snow
zone solutions, the full circle was included in the calculations along side the
upper half circle consideration. Both in Mathematica and Auto-07p. In these
calculations, there was no obvious discrepancy to be observed in the results. A
symmetry breaking solution could still be possible, but no such situation was
discovered.

11 Conclusion

Introducing continents to the circle model has let us investigate what effects
they can have on the bistability of the system and the stationary states avail-
able, based on their configuration and the incoming radiation.
Continents were introduced to the circle model (23) by letting the heat con-
ductivity K(θ) take different constant values in different regions i, along with
having different sets of albedos ai(T ). The transitional temperature was also
given different values for the ocean ice and the continent snow. These additions
created a more complex partial differential equation, but it simply had to be
split into more segments for a boundary formulation solution. The general so-
lution method for stationary solutions was to use the segments and boundary
conditions that applied in the general formulae (82), (83) to get the equations,
and the solved equations and the general integral identity (81) to get the solu-
tions.
We considered the case of one symmetric continent of a set size, solved the
boundary equations to find stationary solutions, and constructed the bifurca-
tion diagram 3. It was found that there were up to 5 possible solutions, 3 in
the range Qa < Q < Qc and 5 in range the Qc < Q < Qb.
Designing the finite difference code to work with and without continents gave
us the scheme (156). It was tested against the pseudo-spectral solution, (135)
with (137), for the case of no continents giving the result in figure 6, and then
with an artificial source (163), giving the result in figure 7. Both validated the
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implementation. Checking its behaviour at a stationary solution, as seen in 8,
also strengthened our faith in both the finite difference code and the analytical
solutions.
The finite difference scheme was used to test the stability of the stationary so-
lutions for one symmetric continent. All the solutions between the snowball
solution at the bottom and the ice cap solution at the top were unstable, except
for the upper snow edge solution. The unstable solutions transitioned to the two
exterior, seemingly stable, solutions depending on the direction of perturbation.
This was shown in figures 9 - 13. With three possible stable solutions, there
was tristability in the small area containing the intermediary stable solution.
Varying the size and position of one continent we found the relations in figures
15, 16 and 17, 18 for the dimensions of the bifurcation area. We concluded
that the bifurcation area was largest, while still retaining its interesting quali-
ties, with ϵ ≈ 0 and l ≈ 1. A large continent symmetric around the equator.
Varying the radiation distribution function S(θ) from the ”tent” shaped (29)
to a North-like slope (171) with c = 1/2 we discovered new possible situations
where the assumption of absolute decrease of temperature from the substellar
point (104) was no longer valid. A snow edge with snow on the innermost part
of the continent and a situation with three disjoint segments of snow, which
gives the bifurcation diagram in figures 19 and 20. Flattening the slope further
with c = 1/10 we found several, seemingly endless, multiple snow zone solutions.
Giving the rapidly folding bifurcation diagram seen in figures 22 and 23. By
analysing the placements of the snow edges for the areas of Q where the solu-
tions exist, plotted in figures 24 and 25, we found that the size of the snow/land
intervals both remains the approximately same for the different values of Q, and
of equal size to each other. The positions all moving to or from the substellar
point, depending on if the situation has land or snow at the equator. The tem-
perature distribution thus forms a wave shape on the continent, propagating
with Q.
Using Auto-07p we replicated the bifurcation diagram with multiple snow zones,
in figure 28, verifying the existence of these solutions. Although, the number of
folds were less than we found analytically. By increasing the sharpness of the
hyperbolic tangent approximation to the albedo (157) we observed an increase
in the amounts of folds. Expecting that a realistic situation would have at least
some gradient in the transition, the zones would be very unlikely. At least a
large number of them. We could also see from AUTOs stability feature that the
multiple snow zone solutions were predictably unstable, while the same situa-
tions as previously were stable. Those three being the snowball, ice edge and
snow cover solutions.
In conclusion, the S(θ) variation showed that a less concentrated S(θ) causes
more intermediary solutions which suggest that a planet with a more evenly
distributed radiation, from rotation or other factors, is more inclined to have
several possible simultaneous states, and showed a link between the amount of
folds and more areas of feedback.
Studying the shapes and stability properties of the bifurcation diagram for dif-
ferent continent placements, we found cases where an intermediary stable solu-
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tion was situated in a way that the stationary solutions were consecutive along
values of Q, and we had a ”step” between the tipping point and the ice planet
solution. This suggest that with introduction of more feedback mechanisms we
get more tipping points, but each drop in temperature is less drastic. Result-
ing in a more gradual step by step process, and removing the possibility of an
abrupt transition to an ice covered planet with a small decrease in Q, that was
initially seen in the simplest North-like case.
The model is overall quite simple, especially considering the complexity of cli-
mate, and has several limitations. The only surface parameters affecting the
outward energy flux is the ice and snow edge positions, and the atmosphere
phenomena are all simply parameterized by surface temperature with assumed
homogeneous cloud cover. Spatial heat transport is determined by diffusion
with a piecewise constant thermal diffusivity, and we assume a homogeneous
heat capacity for the planet. We use a time averaged incoming solar radiation,
and this and our limited interval of consideration means we are constrained to
a certain time scale. We also assume symmetry for the solutions in symmetric
cases. When solving with the full circle, no signs of symmetry breaking were
discovered for the symmetric configurations. It is still possible that such solu-
tions exist.
We have observed how an introduction of continents changed the bistability,
and how varying the placement and the radiation distribution function affected
the bifurcation area’s dimension and shape. We found by considering these
changes, and their stability properties, that increasing the number of feedbacks
could possibly have an effect on mitigating the temperature steady state drop
off. Although we derived a simple energy balance model on a circle, that we
could actually solve analytically with boundary formulations due to linearity
when not crossing critical points, we have found some surprisingly complicated
results. While also giving a satisfactory description of the phenomena of inter-
est, although there are limitations to its accuracy.
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A Appendix

A.1 Python DFT

We will be implementing the pseudo-spectral code in Python. To be able to use
Python’s DFT to approximate (143) we must find the transformation between
the conventions. Python (numpy) convention for DFT is

ur =

n−1∑
s=0

vs e
−i2π rs

n , r = 0, ..., n− 1 (DFT )

vs =
1

n

n−1∑
r=0

ur e
i2π rs

n , s = 0, ..., n− 1 (IDFT )
(186)

To begin transforming (143) into (186), we shift the indices

r = N + j,

s = N + l. (187)

When substituted into (143) this gives

Fs−N =
∆x√
2π

2N−1∑
r=0

fr−N eiπ
(r−N)(s−N)

N ,

fr−N =
∆λ√
2π

2N−1∑
s=0

Fs−N e−iπ
(r−N)(s−N)

N .
(188)

We have
eiπ

(r−N)(s−N)
N = e−iπre−iπseiπNeiπ

rs
N , (189)

and we introduce the scaling

Fs−N = αsvs,

fr−N = βrur, (190)
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which when substituted into (190) then gives

αsvs =
∆x√
2π

2N−1∑
r=0

βrur e
−iπre−iπseiπNeiπ

rs
N

βrur =
∆λ√
2π

2N−1∑
s=0

αsvs e
iπreiπse−iπNe−iπ rs

N

⇕

vs =
∆x√
2π

2N−1∑
r=0

βr
αs
ur e

−iπre−iπseiπNeiπ
rs
N

ur =
∆λ√
2π

2N−1∑
s=0

αs

βr
vs e

iπreiπse−iπNe−iπ rs
N

(191)

we must choose αs, βr and n/N in such a way as to get these expressions on the
form (186). We choose

αs = α0 e
−iπs

βr = β0 e
iπre−iπN

n = 2N

(192)

and must have
∆x√
2π

β0
α0

=
1

2N

∆λ√
2π

α0

β0
= 1

(193)

using (144) we can see that only need to impose one. Considering the first
fraction and choosing

α0 = ∆x

√
2N√
π

β0 = 1
(194)

we get the transformations

vs =
1

∆x

√
π√
2N

eiπsFs−N , s = 0, ..., n− 1

ur = e−iπreiπNfr−N , r = 0, ..., n− 1
(195)
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Fl = ∆x

√
2N√
π
e−iπ(N+l)vN+l, l = −N, ..., N − 1

fj = eiπ(N+j)e−iπNuN+j , j = −N, ..., N − 1
(196)

where the python DFT corresponds to the IDFT, and vice versa.

A.2 Symmetric continent size variation

Bifurcation diagrams from the variation of size l for one symmetric continent,
using the radiation distribution (29). The colour coding is as follows:

LWI ice cap Red
LSWI ice and snow edge Green
SWI snow cover Cyan
LSI ice cover Blue
SI snowball Purple

Stable
- - - - - - -
Unstable

Selected cases for l is shown in figures (39) - (47).

Figure 39: The bifurcation diagram for l = 0. No continent.
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Figure 40: The bifurcation diagram for l = 0.2.

Figure 41: The bifurcation diagram for l = 0.4.
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Figure 42: The bifurcation diagram for l = 0.6.

Figure 43: The bifurcation diagram for l = 0.8.
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Figure 44: The bifurcation diagram for l = 1.

Figure 45: The bifurcation diagram for l = 1.02.
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Figure 46: The bifurcation diagram for l = 1.3.

Figure 47: The bifurcation diagram for l = 2.
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A.3 Continent of set size position variation

Bifurcation diagrams from the variation of position ϵ for one continent, using
the radiation distribution (29). The colour coding is as follows:

IWLWI Black
IWSLSWI Red
IWSWI Orange
IWLSWI Yellow
IWLSI Green
IWSLSI Cyan
IWSI Blue
IWISI Purple
ISI Black

Selected cases for ϵ is shown in figures (48) - (55).

Figure 48: The bifurcation diagram for ϵ = 0.02.
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Figure 49: The bifurcation diagram for ϵ = 0.04.

Figure 50: The bifurcation diagram for ϵ = 0.08.
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Figure 51: The bifurcation diagram for ϵ = 0.12.

Figure 52: The bifurcation diagram for ϵ = 0.24.
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Figure 53: The bifurcation diagram for ϵ = 0.41.

Figure 54: The bifurcation diagram for ϵ = 0.59.
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Figure 55: The bifurcation diagram for ϵ = 1.2.

A.4 Multiple snow zones distribution

We considered the case of a symmetric continent with radiation distribution
function (171) with c = 1/10, and a continent size l = 1. A collection of
plots of where the snow edges are situated in relation to each other, and the
lengths of the land and snow intervals, for the situations of multiple snow zones
is presented in this section. figures 56,57,58,59 and 61 show the cases of 2-4
snow edges for the values of Q where a solution exists. We denote the snow
edges θs0, θs1,..., on the upper half circle.

(a) (b)

Figure 56: The angles θs0, θs1, ..., in blues, and the differences θs1 − θs0,..., in
reds, for LSLWI.
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(a) (b)

Figure 57: The angles θs0, θs1, ..., in blues, and the differences θs1 − θs0,..., in
reds, for SLSWI.

(a) (b)

Figure 58: The angles θs0, θs1, ..., in blues, and the differences θs1 − θs0,..., in
reds, for LSLSWI.
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(a) (b)

Figure 59: The angles θs0, θs1, ..., in blues, and the differences θs1 − θs0,..., in
reds, for SLSLWI.

(a) (b)

Figure 60: The angles θs0, θs1, ..., in blues, and the differences θs1 − θs0,..., in
reds, for LSLSLWI.
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(a) (b)

Figure 61: The angles θs0, θs1, ..., in blues, and the differences θs1 − θs0,..., in
reds, for SLSLSWI.

A.5 Multiple snow zones temperature distributions

A selection of temperature distributions for the case of a symmetric continent
with radiation distribution function (171) with c = 1/10 and a continent size
l = 1, is shown in figures 62-70. The solar constant is set to Q ≈ 390. Colour
coding follows table 3.

(a) (b)

Figure 62: The LSLSLSWI temperature distribution.
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(a) (b)

Figure 63: The SLSLSLWI temperature distribution.

(a) (b)

Figure 64: The LSLSLWI temperature distribution.

(a) (b)

Figure 65: The SLSLSWI temperature distribution.
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(a) (b)

Figure 66: The LSLSWI temperature distribution.

(a) (b)

Figure 67: The SLSLWI temperature distribution.

(a) (b)

Figure 68: The LSLWI temperature distribution.
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(a) (b)

Figure 69: The SLSWI temperature distribution.

(a) (b)

Figure 70: (a) The LSWI temperature distribution. (b) The SLWI temperature
distribution.

A.6 Installation and basic use guide for AUTO-07p on
Windows

To successfully set up AUTO-07p on your Windows computer you must in
addition to the program itself install an Unix-like environment to run AUTO,
and you should have a version of Python of at least version 2.3. It is also strongly
recommended to install NumPy and Matplotlib.

A.6.1 Unix-like environment MSYS

The recommended environment to run AUTO is MSYS2, which can be down-
loaded from https://www.msys2.org. After installing using the wizard de-
faults, start MSYS2 using MinGW 64bit. Update the package database and
base packages by running

pacman -Syu,
then, start MSYS MSYS from the start menu and run again
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pacman -Syu.
Now, install at least the the packages

• gcc-fortran

• mingw-w64-x86_64-python-matplotlib

• make

by using pacman -S <name>. Now we proceed with setting up AUTO.

A.6.2 AUTO file configuration

The AUTO file auto-07p-master.zip is available via https://github.com/

auto-07p/auto-07p.
When unzipped, rename the folder 07p, and wrap it in another folder auto. This
is to conform with AUTOs expected file tree. Then place this folder named auto

under in the directory MSYS/home/username, where username is your username.
(can also be unzipped with gunzip in MSYS, after placing in username folder).
Now you should be able to run configure and make to compile AUTO. InMinGW
64bit, move from home to the sub-directory of auto/07p by using the command

cd auto/07p,
then type

./configure,
which checks your system for required compilers and libraries. When finished,
type

make

to compile AUTO and its ancillary software. After compilation, you may type
make clean

to remove unnecessary files.

A.6.3 File manipulation

AUTO is still not completely ready for use, although this is the end of the
manual. The files require a bit of tinkering to work on a windows computer. In
the home directory, which you can reach by typing

cd ../.. or cd $HOME,
create a hidden file named .bashrc by typing the command touch

touch .bashrc,
which is an empty file where you will write (using Notepad, ect.) the string:

source /home/username/auto/07p/cmds/auto.env.sh

(instead of username, you will write your specific user name. If there are spaces,
you could be in trouble.) Note that a file .bashrc may already exist. In that
case, you can just type the string in this file.
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Figure 71: The file .bashrc edited.

Under the Windows environment, edit the file named profile which is in the
folder:

C:\msys64\ect

adding the following string at the end of the file
. ~/.bashrc

This allows the .bashrc file to be correctly invoked.

Figure 72: The file profile edited.

Now we will be editing the AUTO source file. Under Windows, in the
directory:

C:\msys64\home\username\auto\07p\cmds

edit the file auto.env.sh. You should un-comment line 9 (i.e. remove the
character ‘#’ at the beginning of the row). The line gives the path to python on
your computer, edit it so it is correct. For the case of installation via Windows
store it will look like

PATH="/c/Program Files/WindowsApps/PythonSoftwareFoundation.

Python.3.8_3.8.2800.0_x64__qbz5n2kfra8p0/python3.8:/

bin:/c/Program Files/gfortran/bin:$PATH"

The file should look something like this
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Figure 73: The file auto.env.sh edited.

The set-up is now finished, and if you are lucky, AUTO should run just fine.
You should exit from the MinGW-Shell in order to reboot the environment
variables. You can do that by typing:

exit

You can test if it worked by trying to run one of the AUTO demos.

A.6.4 Running AUTO

AUTO can be run from MSYS2 using MinGW 64bit. You can either type just
auto

to enter the AUTO command line user interface (CLUI), or
auto name.auto

to run an auto file with name name. Running
auto clean.auto

cleans the directory of output files, if the directory you are working in contains
this auto file. Every demo has a clean file, and an auto file with the demo name.
The file runs a python script that can instruct auto to run the given problem
one or several times, and change parameters between runs, ect. This will be
illustrated by running a demo file.

Assuming that you are in your home directory, type:
cd auto/07p/demos/ab

to access the demo ab. To run the auto file, containing instructions for auto on
runs to perform, you type

auto ab.auto

When the run is finished, the easiest way to plot the result is to just enter AUTO
CLUI, by typing auto, and then in the CLUI giving the command

plot(’ab’)

This should give you what is shown in figure 74.
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Figure 74: The result of AUTOs ab demo.

To start using AUTO on your own problem the easiest way is to copy an
appropriate demo file, and change it as required. You need to supply the equa-
tions file name.f90, which defines the problem, and the constants file c.name,
which gives the parameters. You can supply your own equations file name.c

written in C if you prefer, an example in c can be found in the python demo
file python/n-body/3d.c. But if you are equally unfamiliar with the languages
you’ll have an easier time learning a little free-form Fortran (.f90), as most de-
mos use this.
In the name.f90 file the most important component is the FUNC subroutine,
where F (i) gives the derivative of variable i. Figure 75 shows the ab demo
FUNC. The ordinary differential equations for the problem are

u′1 = −u1 + p1(1− u1)e
u2 ,

u′2 = −u2 + p1p2(1− u1)e
u2 − p3u2. (197)

So you write F (1) = u′1 and So F (2) = u′2. Something important to remember
in Fortran is to give the type of every variable you define, generally as integer
or double precision.
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Figure 75: FUNC subroutine in the ab demo.

The second component you will always have to include is the STPNT sub-
routine. This is where you initialize the solution. You give an initial solution
for the ODE, and define the parameters. Figure 76 shows the ab demo STPNT.
You can name the parameters, like variables, but it will only be defined in the
subroutine. The PAR(i) definition is global. U(i) in the ab demo gives the
initial solution

u1 = 0,

u2 = 0. (198)

It is VERY important to give a good approximation of a solution, preferably
analytic, if you want AUTO to find the continuation. AUTO can be particular
about it. The parameters can be set or be allowed to vary. This is done in
the constants file. Figure 77 shows the file for the ab demo. ICP is a list of
parameters that are allowed to vary. In demo ab this is PAR(2), initially set to
be PAR(2) = 8..
In order to set a limit to values you want it to take, you can use UZSTOP . In
the demo file we can see the computation is set to stop if the parameter reaches
the value PAR(2) = 18.0.
You must also tell AUTO how many parameters the problem has, using NPAR.
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Figure 76: STPNT subroutine in the ab demo.

Figure 77: The constants file for the ab demo.

AUTO uses pseudo-arclength continuation for following solution families.
The pseudo-arclength stepsize (DS) is the distance between the current solution
and the next solution on a family. This is the parameter that controls com-
putation the most, and you will need to experiment with it to find the best
setting for your problem. DS gives the step size, but if IADS > 0 AUTO is set
to adapt the pseudo-arclength stepsize after every IADS steps. Then DSMIN
and DSMAX controls the range DS may take. It is important to remember
that if DS is too large, AUTO might not find the branching points/folds. But,
the smaller the DS, the longer the computation will take. Other important
parameters are as follows.
NDIM gives the dimension of the ODE, for ab it is 2.
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IPS gives the type of problem AUTO should solve. IPS = 1 is stationary solu-
tions of ODEs with detection of Hopf bifurcations, including stability analysis.
NTST and NCOL controls the time discretization AUTO does automatically.
NMX gives the maximum number of steps to be taken along any family, and
can cut the computation just like the limit on the parameter UZSTOP .

The last thing we will touch on, is the name.auto file. You can do separate
runs and merge them to one data set, most easily using an auto file with direc-
tions.

Figure 78: The auto file with a split run.

You could do two different runs ab1 with one constant file, ab2 with another,
and put them together ab = ab1 + ab2. For instance in positive and negative
direction of some starting value (DS > 0, DS < 0). You can also, as shown in
figure 78, run until AUTO stops, either by reaching maximum number of iter-
ations NMX or stopping by UZSTOP , and continuing from that point with
different parameters.
If the stopping cause is NMX, you start from equation e = ab(”MX1”). The
number 1 giving the run number.
If the stopping cause is UZSTOP , you start from equation e = ab(”UZ1”).
This will let you save on computation time, by having a smaller DS up to a
certain point for instance.

For more detailed and in depth overview of commands and functions, please
consult the AUTO manual.
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