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Introduction: Persistent inflammation and immune activation in the lungs are associated
with adverse outcomes such as radiation pneumonitis (RP) and poor survival in non-small-
cell lung cancer (NSCLC) patients. However, it is unknown how this is reflected by
leukocyte activation markers in serum.

Objective: The aim was to evaluate the serum levels of activation of different leukocyte
subsets and to examine those in relation to the pathogenesis of RP and survival in NSCLC.

Methods: We analyzed the serum levels of MPO, sCD25, sTIM-3, sPD-L1, sCD14,
sCD163, CCL19 and CCL21 in 66 inoperable NSCLC patients with stage IA-IIIA disease.
The patients were treated with stereotactic body radiation therapy (SBRT) or concurrent
chemoradiation therapy (CCRT), followed by regular blood sampling for 12 months after
treatment and for 5 years for survival.

Results: Nineteen (29%) patients developed RP, which occurred more frequently and
earlier in patients receiving CCRT than in those receiving SBRT. Increases in sCD25,
sTIM-3 and CCL21 levels were observed at the last 6 months of follow-up in patients who
had RP after SBRT. Patients who had RP after CCRT had higher sTIM-3 levels during the
first 3 months of follow-up. Baseline sCD25 was independently associated with both 2-
and 5-year mortality outcomes, while baseline sTIM-3 was independently associated with
2-year mortality.

Conclusion: We showed that T cell activation and exhaustion markers such as sCD25
and sTIM-3 are enhanced in patients developing RP and are associated with poor survival
in NSCLC.

Keywords: lung cancer, radiotherapy, stereotactic body radiation therapy, radiation pneumonitis, radiation-induced
lung injury (RILI), blood biomarkers, t cell, leukocyte subsets
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INTRODUCTION

In 2020, lung cancer was the second most diagnosed cancer in
the world and was the leading cause of cancer death. It is
estimated that 2.2 million new cases occurred in the world in
2020 (1).

Radiation therapy is the most commonly used treatment
modality for non-small-cell lung cancer (NSCLC) patients. It is
administered for curative purposes as a solo treatment or in
combination with surgery and/or chemotherapy for patients with
early-stage or locally advanced stage (stage I-III) NSCLC. It can
also be used as palliative treatment to prolong life and improve
quality of life for patients with distant metastases (stage IV).
Curative radiotherapy options are stereotactic body radiation
therapy (SBRT) and concurrent chemoradiation therapy
(CCRT). During the recent years, however, a number of novel
treatment modalities has been developed such as check-point
inhibitors and several tyrosine kinase inhibitors targeting specific
genetic alterations.

The lung is a complex organ consisting of at least 40 different
types of cells with distinct functions. This complexity is
associated with impaired regeneration potential, and
consequently, the lung is the organ most exposed to damage
following various forms of radiation therapy (2–4). The risk of
developing radiation-induced lung injury limits effective high-
dose thoracic radiation therapy for early-stage and locally
advanced NSCLC patients (5) (5). The reported incidence of
radiation pneumonitis (RP) after SBRT for NSCLC varies from
2% to 47% (6–11), and the incidence after CCRT varies from 5%
to 40% (12–17).

The tumour microenvironment (TME) plays an important
role in tumour growth (18) and in the outcome of treatment,
including affecting resistance to cancer treatment (19). TME of a
solid tumour consists of tumour cells, local cells, infiltrating
nontumour cells, molecules present in the vicinity of these cells
and cells comprising the blood and lymph vessels. Radiotherapy
affects cancer cells and the TME, in particular the tumour blood
vessels and cells of the immune system.

Radiation induces reactive oxygen species and reactive
nitrogen species (ROS and NGS), which cause damage to
mitochondrial DNA and to the alveolar–capillary barrier, both
of which are sensitive to the effects of ionizing radiation (20–22).
One of the many effects of radiation is increased vascular
permeability and exudation of proteins into the alveolar space,
causing the apoptosis of alveolar type-I pneumocytes. This
triggers an influx of inflammatory cells (e.g., neutrophils,
macrophages, and lymphocyte subsets) from the peripheral
and pulmonary vasculature that infiltrate the damaged lung.
These cells are further activated by ROS and NGS as well as
danger-associated molecular patterns (DAMPs), leading to the
release of various inflammatory molecules (23–26) and
contributing to altered tissue remodeling, fibrogenesis and local
and systemic inflammation associated with the development of
complications to radiotherapy (27, 28) and poor survival (29,
30). The radiation-induced release of cytokines and related
molecules the first 24 hours after radiation might be an
important contributor to RP (31–34).
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While clinical outcome like survival is the most important
parameter when evaluating novel treatment options, biomarkers
are of importance in order to predict treatment responses and
risk categories and even more importantly, to select correct
treatment options and to discover pathways that are not
modulated by the current treatment modalities.

The inflammatory response in the lungs causing the
development of RP and fibrosis is still not well understood. The
regulation and importance of the different inflammatory and
immune-related mediators in the TME are at present not clear. In
the present study, we examined the serum parameters of the
activation of different leukocyte subsets, including
myeloperoxidase (MPO) as a marker of neutrophil activation;
soluble CD25 (sCD25), soluble T cell immunoglobulin mucin
domain-3 (sTIM-3) and soluble programmed cell death 1 (sPD-1)
as markers of T cell activation and exhaustion; and sCD14 and
sCD163 as markers of monocyte/macrophage activation. We also
analyzed the levels of the homeostatic chemokines CCL21 and
CCL19 as mediators of lymphocyte trafficking. These markers were
evaluated in relation to RP and survival after curative radiotherapy
for early-stage and locally advanced NSCLC.
MATERIALS AND METHODS

Trial Design
This is a prospective, longitudinal, clinical, single-institution
(Vestfold Hospital Trust, Tønsberg, Norway) study for patients
with early-stage and locally advanced stage (stage IA-IIIA)
NSCLC (ClinicalTrials.gov NCT02428049).

Patients
Eligible patients were > 18 years old and had early-stage or locally
advanced-stage (stage IA-IIIA) NSCLC. Tumours were staged in
accordance with the Union for International Cancer Control,
Tumor, Node, Metastasis staging system 8th edition (TNM 8).
Patients were examined with CT scans of the chest and abdomen
and PET-CT, and all patients in stage IIIA were examined with
brain MRI. Patients were technically resectable but deemed
medically inoperable by a multidisciplinary tumour board, and
the assignment was independent of the study. Patients were
recruited from Vestfold Hospital Trust, Tønsberg, Norway,
received SBRT or concomitant chemoradiotherapy at Oslo
University Hospital, Radiumhospitalet, and underwent clinical
follow-up at Vestfold Hospital Trust. A total of 66 patients were
included in the study. Changes in pulmonary function, symptoms,
and radiological signs of RP after SBRT have previously been
studied in 44 of these patients (10).

Ethics
All patients provided written informed consent. The study was
conducted following legal and regulatory requirements as well as
with the general principles outlined in the International Ethical
Guidelines for Biomedical Research Involving Human Subjects
(Council for International Organizations of Medical Sciences
2002) and the Declaration of Helsinki (World Medical
July 2022 | Volume 13 | Article 875152
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Association 1996 and 2008). Regional Ethical Committee, REK
nr. 2013/169/REK sør-øst D. The trial is registered with
ClinicalTrials.gov (NCT02428049).

Blood Sample Processing
Peripheral venous blood was collected with 4-mL Vacutainer
tubes (BD Biosciences, San Diego, CA), kept in room
temperature for coagulation for one hour and then spun at
1610 g for 10 minutes. Serum samples were stored immediately
at –80°C in several aliquots in cryovials until analysis. Blood
samples were collected before radiotherapy (baseline), on the last
day of radiotherapy, at 1-1.5 months after treatment, and every 3
months thereafter until 12 months after radiotherapy. The
samples were thawed only once.

Enzyme Immuno-Assays
Serum levels of sCD14, sCD163, sCD25, sTIM-3, MPO, sPD-1,
CCL19 and CCL21 (Table 1) were measured in duplicate by
EIA using commercially available antibodies (R&D Systems,
Minneapolis, MN) in a 384-format using a combination of a
SELMA pipetting robot (Analytik Jena AG, Jena, Germany)
and a BioTek dispenser/washer (BioTek Instruments,
Winooski, VT). Absorption was read at 450 nm by using an
EIA plate reader (BioTek Instruments) with wavelength
correction set to 540 nm. Samples from a patient were run
on the same 384-well plate, with controls randomly distributed
on all plates; the intra- and interassay coefficients of variation
were <10%.

Radiotherapy
Of the 66 patients in this study, 44 were treated with SBRT, and
22 were treated with CCRT. SBRT was administered as a total
dose of 45–56 Gy in 3–8 fractions. The tumour was given an
inhomogeneous dose where the prescribed dose encompassed
the periphery of the planning target volume (PTV) and the
maximum dose in the tumour was approximately 150% of the
prescribed dose. Treatment planning was performed on an
ordinary CT series. Respiratory-dependent tumour movement
was visualized radiologically, and if more than 10 mm,
abdominal compression was used to reduce it. This was
applied for nine patients.

CCRT was administered with a radiation dose of 60-66 Gy
and two courses of cisplatin and etoposide for 18 patients. Four
patients were administered conventionally fractionated
radiotherapy of 60-66 Gy alone.
Frontiers in Immunology | www.frontiersin.org 3
Follow-Up Specifications
Follow-up included a physical examination by a pulmonologist
and pulmonary function evaluation at baseline, at 1-1.5 months
after treatment, and every 3 months thereafter until 12 months
after radiotherapy. CT scans were performed at all follow-up
visits except at 1-1.5 months and 9 months when chest X-rays
were carried out. Patients with symptoms were also referred for
CT scans at 1-1.5 months and 9 months. After the first year, CT
scans of the chest, a physical examination by a pulmonologist,
spirometry, and determination of the DLCO according to
national guidelines were performed two times the second year
and yearly for the next three years.

Grading of RP
The patients’ symptoms were graded according to the Common
Terminology Criteria for Adverse Events (CTCAE). Radiological
changes were graded according to the European Organization for
Research and Treatment of Cancer and Late Effects Normal
Tissues-Subjective, Objective, Management, Analytic (EORTC/
LENT-SOMA). Based on the CTCAE and EORTC/LENT-
SOMA grading, the patients were divided into the following
2 groups:

1. The no radiation pneumonitis group included patients with
mild symptoms equivalent to CTCAE grade 0-1 and with no,
patchy or increased density on imaging equivalent to EORTC
(LENT-SOMA) grade 2-3.

2. The radiation pneumonitis group included patients with
symptoms equivalent to CTCAE grade 2-5 and with patchy or
increased density on imaging equivalent to EORTC (LENT-
SOMA) grade 2-3. CTCAE grade 2 represents the need for
some medical intervention (e.g., steroids), and grade 3
indicates the use of supplemental oxygen (35). None of the
patients in this study had CTCAE grade 4 (life-threatening
respiratory dysfunction) or 5 (death).

All CT scans were evaluated by an experienced thoracic
radiologist focusing on RP.

Statistics
Patient characteristics were compared by using Student’s t test or
the chi-square test for continuous and categorical variables,
respectively (Table 2). We did not have samples from all
patients at all time points to analyze the temporal profile of the
markers; therefore, we used a univariate general linear model.
Markers were categorized as 0: baseline, before radiotherapy; 1:
last day of radiotherapy; 2: 1-1.5 months after radiotherapy; and
TABLE 1 | Markers included in the study.

Markers for Protein short name Protein full name

T cells activation and exhaustion sTIM3 T cell immunoglobulin and mucin domain-containing protein 3
sPD-1 Programmed cell death 1
sCD25 Soluble interleukin-2 receptor alpha chain (IL-2Ra)

Chemokine (chemotactic cytokines motif) family CCL19 Chemokine (C-C motif) ligand 19
CCL21 Chemokine (C–C motif) ligand 21

Neutrophil activation MPO Myeloperoxidase
Macrophage/monocyte activation sCD163 Cluster of differentiation 163

sCD14 Cluster of differentiation 14
July 2022 | Volume 13 | Article 875152
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3, 6, 9 and 12 months after radiotherapy. Markers were log-
transformed due to a skewed distribution. Markers were used as
dependent variables, RP (yes/no) and time were used as fixed
factors, and their interaction (RP*time) and patient number were
used as random factors. To limit multiple comparisons, post hoc
testing was performed only on variables where RP (between
groups) or the RP*time interaction (paired comparisons) was
significant. This model was also used within the two
radiotherapy groups. When comparing levels between RP
groups, MANCOVA was used for each time point with
smoking, radiotherapy, and stage as covariates. Paired
differences were assessed with paired t tests.

The discriminatory properties of baseline levels of serum
markers in relation to 2- and 5-year mortality were assessed by
receiver operating characteristic (ROC) analysis. The association
between significant markers and mortality was further assessed
with Cox regression analysis. Log levels of serum markers were
standardized, and hazard ratios (HRs) were expressed as the risk
per SD of the marker. As the sample size was limited, the most
important baseline characteristics were tested as covariates one
by one as well as with a propensity score composed of all of them.
The temporal profile of the selected serum markers in relation to
mortality was also assessed in the univariate general linear model
replacing RP with 2- or 5-year mortality. When comparing levels
between survivors and nonsurvivors, MANCOVA was used for
each time point with sex as a covariate.
RESULTS

Patients
The CONSORT study flow diagram is presented in Figure 1. The
study population and baseline characteristics in relation to the
study outcomes are presented in Table 2. From February 2014
until December 2017, 66 eligible patients were included with a
mean age of 73 years (range 51-90), of which 34 (52%) were
male. There were no EGFR-positive patients in our study cohort.
ALK fusion testing did not start until 2018 in Norway, so we have
no information about this. Nineteen (29%) patients developed
RP, which occurred more frequently and earlier in patients
receiving CCRT (n=22) than in those receiving SBRT (n=44)
Frontiers in Immunology | www.frontiersin.org 4
and was less frequent in previous smokers and more frequent
with advanced stage. RP on CT occurred after a median of 4.9
months after SBRT and 3 months after CCRP. The NSCLC
recurrence percentage was similar among patients with and
without RP (42% and 40%), the mean observation time was 30
months. Of the patients with RP, 75% had recurrence within 12
months versus 47% in patients without RP. Mortality was
assessed at 2 and 5 years, in which 20 (30%) and 41 (62%)
patients died, respectively. The only significant difference with
regard to these mortality groups was a higher proportion of male
patients who died before the 2-year follow-up.

Serum Markers and RP
The levels of serum markers in relation to RP, measured from
baseline until 12 months after treatment, are presented in
Supplementary Table 1. When evaluating the markers in
relation to RP in the group as a whole, no significant difference
in levels or temporal profile during the 12-month blood sampling
was detected (Figure 2A and Supplementary Figure 1A). Further
evaluation within the radiotherapy groups revealed that in patients
receiving SBRT, an increase in sCD25, sTIM-3 and CCL21 levels
was observed at the last 6 months of observation time in patients
who developed RP (Figure 2B). In patients receiving CCRT, those
who developed RP were characterized by higher sTIM-3 levels
during the first 3 months of follow-up (Figure 2). Serum levels of
MPO, sPD-1, sCD14, sCD163 and CCL19 showed no significant
differences in relation to RP in the two radiation groups (SBRT
and CCRT) (Supplementary Figure 1).

No difference in the level or course of the markers were found
between patients receiving CCRT or conventionally fractionated
radiotherapy alone, last group included only 4 patients.

Serum Markers and Mortality
We next evaluated whether baseline levels of serum markers could
predict 2- and 5-year mortality by discriminatory analysis. As
shown in Figures 3A, B, sCD25 was associated with bothmortality
outcomes, while sTIM-3 was associated with 2-year mortality. The
areas under the curve (AUCs) and 95% confidence intervals (CIs)
for all markers are shown in Supplementary Table 2.

We assessed these associations further using survival analysis.
As shown in Figure 3C, a one SD increase in baseline sCD25 was
TABLE 2 | Patient characteristics in relation to study outcomes.

Radiation Pneumonitis 2-year mortality 5-year mortality

No (n = 47) Yes (n = 19) No (n = 46) Yes (n = 20) No (n = 25) Yes (n = 41)

Age, years 73.7 (6.8) 71.2 (9.4) 73.4 (7.3) 71.9 (8.4) 73.0 (6.7) 72.9 (8.2)
Male sex 25 (53%) 9 (47%) 20 (44%) 14 (70%)* 13 (52%) 21 (51%)
SBRT 36 (77%)** 8 (42%) 34 (74%) 10 (50%) 20 (80%) 24 (59%)
CCRT 11 (23%) 11 (58%)* 12 (26%) 10 (50%) 5 (20%) 17 (42%)
Previous smoker 36 (77%)** 8 (42%) 34 (74%) 10 (50%) 18 (72%) 26 (63%)
COPD 27 (57%) 9 (47%) 25 (54%) 11 (55%) 12 (48%) 24 (59%)
Morphology 15 (38%) 7 (41%) 12 (32%) 10 (53%) 8 (33%) 14 (42%)
Stage III 8 (17%) 8 (44%)* 9 (20%) 7 (35%) 4 (16%) 12 (30%)
Emphysema 22 (47%) 9 (47%) 23 (50%) 8 (40%) 11 (44%) 20 (49%)
Radiation Pneumonitis 10 (22%) 9 (45%) 6 (24%) 13 (32%)
July
 2022 | Volume 13 | A
CCRT Concurrent chemoradiation therapy; SBRT Stereotactic body radiation therapy.
*p<0.05, **p<0.01.
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FIGURE 1 | The CONSORT study flow diagram.
A B

FIGURE 2 | Temporal profile of sCD25, sTIM-3 and CCL21 in relation to radiation pneumonitis (RP) in (A) all patients and (B) within patients receiving stereotactic
body radiation therapy (SBRT) or concurrent chemoradiation therapy (CCRT). The black p-value represents the effect of RP from the univariate general linear model,
while the green p-value represents the interaction with time (RP*time). *p < 0.05, **p < 0.01 vs. baseline. †p < 0.05, ††p < 0.01 vs. RP- same time-point.
Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 8751525
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associated with a 2.3- and 2.1-fold higher risk of death at the 2-
and 5-year follow-up, respectively. Furthermore, inclusion of the
strongest baseline predictors of mortality (Supplementary
Table 3) or a composite of these predictors had no influence
on the association between sCD25 and mortality. A one SD
increase in baseline sTIM-3 was associated with a 1.7-fold higher
risk of 2-year mortality and was not influenced by covariates.

Evaluation of the temporal profile of sCD25 and sTIM-3 in
relation to these outcomes is shown in Figures 3D, E. For
sCD25, high levels were observed during the first two months
in those who died. sTIM-3 remained mildly elevated in those
who died during the 12-month blood sampling.
DISCUSSION

The present study evaluated serum leukocyte activation markers in
NSCLC cancer patients in relation to RP andmortality. Whereas we
found no associations with neutrophil and monocyte activation
markers, which are traditionally thought to reflect acute and, to
some degree, chronic (monocyte) inflammation, we found
increased levels and different temporal profiles according to
radiation treatment of the T cell activation marker sCD25, T cell
exhaustion marker sTIM-3 and chemotactic T cell signal CCL21 in
patients who developed RP. Moreover, sTIM-3 and, in particular,
sCD25 predicted mortality independent of other demographics,
including RP and the mode of radiation treatment. Our study
suggests that the development of adverse outcomes in non-small-
cell lung cancer patients is linked to T cell activation and exhaustion.

T cell activation is typical in both cancer progression (36),
among others, in NSCLC (37, 38) and pneumonitis (39) due to
persistent T cell receptor stimulation and is accompanied by the
Frontiers in Immunology | www.frontiersin.org 6
expression of inhibitory receptors such as PD-1 and TIM-3 (40–42)
and T cell dysfunction (40). At the same time, radiotherapy
modulates several immunological processes: revelation of antigens,
activation of T lymphocytes, recruitment and accumulation of T
cells in the tumour, and acknowledgement and killing of tumour
cells by T lymphocytes. Our finding of increased levels of T cell
activation and exhaustion markers in patients who developed RP
indicates an active role in RP by likely overstimulation of T cells.

We could not, however, find any previous studies evaluating
circulating levels of T cell activation and exhaustion markers in
NSCLC or in response to RP. Herein, we found that changes in the
levels of T cell markers in relation to RP occurred at different times
according to radiation treatment. SBRT delivers the radiation dose
to the pulmonary tumour more precisely than CCRT, allowing an
escalation of SBRT treatment doses far beyond traditional
conventional radiotherapy, damaging healthy lung tissue to a
lesser extent and triggering RP more rarely and later than CCRT
(11). While T cell exhaustion is mostly used in relation to chronic
infections, we speculate that the enhanced early levels of sTIM-3
(i.e., within 3 months) in the CCRT group, without enhanced
sCD25 levels, could reflect the effects of more acute RP, which is
seen 1-3 months after CCRT (43–46), as a mechanism to prevent
persistent and overshooting T cell activation. The more gradual
increases in sTIM-3, sCD25 and CCL21 within the SBRT group
correlate with the later onset of RP in this group occurring after 5-10
months (9–11, 47–49). Although PD-1, another T cell exhaustion
marker, was not significantly associated with RP, the temporal
trajectory was similar to sTIM-3 in the SBRT group but not in the
CCRT group, possibly reflecting some different effects on T cell
subsets of these radiation modalities. The concurrent increase in the
T cell chemoattractant CCL21 in the SBRT group could potentially
be linked to T cell migration or effects in regional lymph nodes (50).
A

B

D

E

C

FIGURE 3 | Serum markers and mortality. (A) ROC analysis showing the AUC for baseline serum markers in relation to 2- and 5-year mortality. *p < 0.05, **p <
0.01, ***p < 0.001. (B) ROC curves for sCD25 and sTIM-3 with AUC (95% CI) in text. (C) Cox-regression analysis of baseline sCD25 and sTIM-3 in relation to
mortality. HRs represent risk per 1 SD (log) change in serum markers and are shown with inclusion of the strongest baseline predictors as well as a composite score
of these. Temporal profile of (D) sCD25 and (E) sTIM-3 in survivors (blue) and nonsurvivors (red). The black p-value represents the effect of mortality from the
univariate general linear model, while the green p-value represents the interaction with time (mortality*time). *p < 0.05 vs. baseline. †p < 0.05, ††p < 0.01 vs. survivors
at the same time point.
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As T cell exhaustion and dysfunction seem to be hallmarks of
cancer progression (51) and are the targets of current
immunotherapy (52), it is tempting to speculate that increased
sTIM-3 and sCD25 could link RP and poor prognosis in lung
cancer. However, while severe RP is associated with poor short-
term outcome, prognosis in milder cases seems to be more
dependent on underlying factors (53–55). Furthermore, we
found that the association between sCD25, sTIM-3 and
mortality was independent of both RP and the mode of
radiotherapy. In patients with glioblastoma (56) and melanoma
(57), only tumour-infiltrating, but not peripheral, T cells showed
enhanced levels of exhaustion-associated inhibitory receptors.

Thus, our findings could potentially reflect immunological
abnormalities in the TME, which has been associated with poor
prognosis in lung cancer (58). This may also support double
immunotherapy targeting both TIM-3 and PD-1, which has
indeed been shown to improve antitumour T cell responses in
preclinical models (59–61). Moreover, inflammation is a
recognized hallmark in carcinogenesis (62). Macrophages are
associated with chronic inflammation in cancer initiation and
promotion and are also involved in tumour progression and
metastasis (63). Tumour-associated macrophages correlate with
poor prognosis (64). Radiotherapy changes the TME by
attacking cancer cells, blood vessels and immune-related cells
in the TME. Immunological changes occur in the affected tissue
first and later become measurable in peripheral blood. The
absence of neutrophil and monocyte activation markers after
radiotherapy in our study suggests that those markers do not
play a crucial role in the pathogenesis of RP.

We were unable to find studies evaluating serum levels of the
monocyte/macrophage activation markers sCD14 or sCD163 or
the neutrophil activation marker MPO in relation to survival in
lung cancer patients. Enhanced tumour-associated CD163
expression by immunohistochemistry (IHC) was associated
with poor survival in a small study (65), while a larger study
(n=335) found no association between CD66b(+) neutrophils
and CD163(+) macrophages and survival in lung cancer patients
(66). Nevertheless, our data suggest that any potential activation
of these cells in RP or in relation to disease progression is not
reflected by circulating levels of activation markers.

Treatment with immune checkpoint inhibitors (ICIs) is a
relatively new class of therapeutic agents that have shown
impressive anticancer effects for a number of solid cancer types.
ICI-induced pneumonitis is a rare but severe side effect and is
occasionally fatal. Life-threatening pneumonitis has been reported
in up to 2% of cases (67–69). The incidence of ICI-induced
pneumonitis is higher in NSCLC than in other cancer types and
in combined therapy with radiotherapy or chemotherapy (6.5%–
10%) than in monotherapy (3%–4%) (70, 71). These findings can
be useful in the study of ICI-induced pneumonitis pathogenesis.

The occurrence of RP after SBRT is lower than after CCRT
(13, 14, 16, 72) and severe RP is quite uncommon (7, 8, 73).
SBRT techniques allow minimizes the size of the planning target
volume (PTV) and meaning the normal lung tissue in the target
volume. The larger irradiation fields increase values of
inflammation markers. In the present study, however, too few
Frontiers in Immunology | www.frontiersin.org 7
patients underwent conventionally fractioned radiotherapy alone
in the CCRT group to make any reliable comparison.

In conclusion, our findings showing increased sCD25 and
sTIM-3 in relation to RP and survival suggest that persistent T
cell activation and exhaustion may contribute to progression and
adverse outcomes in locally advanced NSCLC and support T
cell-targeted treatment in this disorder.
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