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Abstract

We introduce some novel adaptations of Life-Like Automata. We focus mainly on some modifications of the original rules

where the evolution of the system is depending from the step and the zone of the grid. We study also the properties of

some novel non-deterministic adaptations.

1 Introduction and Goals

Conway’s Game of Life is a discrete cellular automaton where several cells, represented as squares, evolve in an infinitely

wide square grid (or board). [1, 3, 4, 6]. In particular, in the original, oldest and most used rule, the cells within the grid

follow a simple behavior:

� any empty cells with exactly three living cells in the neighborhood will become alive at the next step (generation);

� any living cells with exactly two or three living cells in the neighborhood will remain alive at the next step;

� any other cells will die or remain dead during the next step.

→ → →

Figure 1: Conway’s Game of Life

This rule, called Life (from now on, R1), is commonly marked with the notation B3/S23, where the two sets of numbers

define the born and surviving cells. In general any couple of subsets of {0, 1, 2, 3, 4, 5, 6, 7, 8} can be used in place of the

subsets {2} and {2, 3} of the first rule. These are called Life-like rules (from now on, LL-rules) [2, 7]:

B3678/S34678 (Day and Night, from now on R2), B35678/S5678 (Diamoeba, R3), B3/S023 (DotLife, R4), B37/S23

(DryLife, R5), B3/S12 (Flock, R6), B3457/S4568 (Gems, R7), B36/S23 (Highlife, R8), B38/S238 (HoneyLife, R9), B3/S012345678

(Life Without Death, R10), B2/S0 (Live Free or Die, R11), B36/S245 (Logarithmic Replicator Rule, R12), B345/S5

(LongLife, R13), B368/S238 (LowDeath, R14), B3/S12345 (Maze, R15), B368/S245 (Move/Morley, R16), B1357/S1357

(Replicator, R17), B2/S (Seeds, R18), B3678/S235678 (Stains, R19), B36/S125 (2×2, R20).

There are many ways to generalize the above concept and form other kind of rules, but we will focus mainly on the LL

ones. However, most of the novel adaptations we discuss can be intuitively adapted to non-LL Rules.

We refer to some structures as Gun (pattern that repeats periodically while generating spaceships). Oscillator (pattern that

repeat itself after a certain number of iterations). Spaceship (pattern that after a certain number of iterations reappears in

different position on the board). Puffer (pattern that after a certain number of iterations reappears in different position

on the board and leaving a trail of cells behind). Still life (pattern not changing between generations). The smallest and

1Affiliation: University of Tromsø (Norway). ORCID: https://orcid.org/0000-0002-5495-6863.

1



most common spaceship (for R1 and other rules) is called Glider. We mention also the Block pattern, a square of two by

two cells, among the still life patterns.

Cellular automata as Conway’s Game of Life have been used to simulate phenomena in wide-ranging areas as Mathe-

matics, Physics and Chemistry [11, 8]. However, phenomena that can be in principle described by cellular automata are

limited by the static determinism of basic automata rules. If we have a phenomenon that changes with time, we might

need a rule that changes at each step (Step-Depending Rule), if the phenomenon is not uniform, a nonuniform rule could

be needed (Zone-Depending Rule). If the phenomenon is finally driven by random factors, Probability-Dependant Rules

might be used in place. Of course, the most general cases might include a combination of two or more of the previously

mentioned schemes. One practical example, which is only theoretical at the moment, might be cloud formation. A single

rule for cloud formation (with a gridded sky) could be not reliable as different temperature and humidity conditions affect

cloud formation, in a similar way, geographical features affect the phenomenon and finally, clouds can form in random places

given the correct conditions. Step-Depending, Zone-Depending Rule and Probability-Dependant Rules can respectively and

theoretically solve each one of these problems. So our main objective is to increase the simulation possibilities of cellular

automata.

2 Step-Depending Rule

In regular settings of totalistic cellular automata, there exists a rule that changes the board at each of the steps of the

game:

B0
R→ B1

R→ B2
R→ B3 ... Bk

R→ Bk+1 ...

This global rule could be modified in a way that on each step of the board, a different rule acts:

B0
R1→ B1

R2→ B2
R3→ B3 ... Bk

Rk+1→ Bk+1 ...

Both periodical or aperiodical rules can be used in place. This is a generalization of Alternating Rules [6].

3 Zone-Depending Rule

Let {Ai}i∈{1,...,r} a finite partition of the grid (Aj ∩Ak = ∅ ∀j 6= k,
⋃

1≤i≤r

Ai = initial grid) and let Ri, i ∈ {1, ..., r} a finite

family of LL-rules, we can define a game if we consider the rule Rj acting on the partition Aj at each step. If we call R∗

the rule defined in a such way, we can describe the evolution of the game as follows:

B0
R∗

→ B1
R∗

→ B2
R∗

→ B3 ... Bk
R∗

→ Bk+1 ...

It is sufficient to consider a finite partition of the initial grid as the possible rules considered are finite. As the possible

B/S rules depend on twice the number of adjacent cells, is it possible to assume without loss of generality and without

discarding trivial rules that r ≤ 218 = 262144.

4 Step and Zone-Depending Rule

Let {Aj
i}i∈{1,...,rk} a finite partition of the grid and let R∗i,j , i ∈ {1, ..., rk} a finite family of rules for each j ∈ N. We can

now define a wider family of games by letting the rule R∗i,j act on Aj
i step number i. If we call R∗k the rule defined by the
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union of all rules at step k, we can write:

B0
R∗

1→ B1
R∗

2→ B2
R∗

3→ B3 ... Bk

R∗
k+1→ Bk+1 ...

Again, we can consider ri ≤ 218. It is obvious that we can obtain both purely step- and time-dependent rules as particular

cases of these set of rules.

4.1 Layered Life

We introduce a particular case of Step and Zone-Depending Rules we call Layered Life: LetR0, R
a
1 , R

a
2 , ..., R

a
k−1, R

d
1, R

d
2, ..., R

d
k−1

(LL-)rules.

We first assume that there is a bijection of the cells for each couplet of boards. We consider the trivial case obtained by

fixing a center and a couplet of orthogonal directions in each board, since each considered grid is squared and orthogonal.

At each level and step e define k + 1 boards rules:

� B0 is the board where the (LL-)rule R0 acts;

� B1 is the board where Ra
1 (Rd

1) acts on B1 in the corresponding alive (resp. dead) cells of B0;

� B2 is the board where Ra
2 (Rd

2) acts on B2 in the corresponding alive (resp. dead) cells of B1;

� ...

� Bk is the board where Ra
k−1 (Rd

k−1) acts on Bk in the corresponding alive (resp. dead) cells of Bk−1.

We consider the evolution of Bk as output of the automata. A more general alternative could be to consider some logical

functions involving all the boards used. Here we will limit ourselves to the configuration with k = 1. Initializing each board

with a nonempty state can lead to a nontrivial evolution of the system.

4.2 Parallel Life

We introduce another novel particular case of Step and Zone-Depending Rule: Let Ra
1 , R

a
2 , ..., R

a
k−1, R

d
1, R

d
2, ..., R

d
k−1 (LL-

)rules. If we have k different boards, each one of them initialized with a given configuration of cells, we define for each step

:

� B1, the board where Ra
k (Rd

k) act in the corresponding alive (resp. dead) cells of Bk;

� B2), the board where Ra
1 (Rd

1) act in the corresponding alive (resp. dead) cells of B1;

� ...

� Bk, the board where Ra
k−1 (Rd

k−1) act in the corresponding alive (resp. dead) cells of Bk−1.

We can consider as output of the automata the evolution of a fixed board.

The latter definition allows a mutual perturbation of the boards, while the former only allow perturbations in one sense.

5 Probability-Dependant Rules

Let {αl,0, αl,1, ..., αl,8, αd,0, αd,1, ..., αd,8} ∈ [0, 1] , we can define a new rule RP by means of a local definition:
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Rp(cell) =



living with probability 1− αl,0 if cell is living and its neighborhood counts 0 cells,

living with probability 1− αl,1 if cell is living and its neighborhood counts 1 cell;

...

living with probability 1− αl,8 if cell is living and its neighborhood counts 8 cells;

living with probability αd0 if cell is dead and its neighborhood counts 0 cells;

living with probability αd1
if cell is dead and its neighborhood counts 1 cell;

...

living with probability αd8
if cell is dead and its neighborhood counts 8 cells.

Given the vastity of these possible rules, we consider a weakened yet expressive subfamily of the previous one that is

clearly connected to conventional rules:

Let R a (LL-) rule, α, ω ∈ [0, 1]. We define a new rule Rp with the property that living cells are generated according to R,

but they only are alive in the actual board at the next step with probability 1− α. In the same way next generation cells

are dead according to rule R, except for the fact that they have probability equal to ω of being alive in the actual board.

We can consider these additional steps as filtering of living and dead cells.

It is clear that if α = 0 and ω = 0, then Rp is coinciding with R. If α = ω = 1
2 , then the automaton is completely random

and not depending anymore on the initial rule.

Structures as those mentioned in the first section cannot exist except for the trivial cases corresponding to a purely

deterministic rule. Any stable pattern will be indeed perturbated and modified given enough time.

→ → →

Figure 2: Possible Random Evolution of R1

6 Properties

Statement 1. Let {Aj
i}i∈{1,...,rk} a finite partition of the grid and R∗i,j , i ∈ {1, ..., rk} a finite family of rules for each j ∈ N

(as defined previously), then if an unperturbated (that is not influenced by external cells) pattern is a still life pattern with

identical evolution for each of the rules acting on the cells occupied by the pattern for each of the steps t, t+ 1, ...t+ l, then

the pattern is a still life pattern for the composite rules R∗t , R
∗
t+1, ..., R

∗
t+l. For example, if we consider a composite rule

where acting primary rules are Life (R1, white in pictures below) and Highlife (R8, gray in pictures below) that changes

every two steps as in the figure below, we can clearly see that the Block pattern (which is a still life for both the rules

mentioned before) is a still life pattern for the composite rule.

→ → →

Of course the statement has validity also in case only Step or Zone-Depending Rules are used in place, in this case we have:
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Statement 2. If in

B0
R1→ B1

R2→ B2
R3→ B3 ... Bk

Rk+1→ Bk+1 ...

A still life pattern for the rules Ri+1, Ri+2, ..., Ri+r is present in Bi, there will be a still life pattern corresponding to the

sequential evolutions of the initial pattern in Bi+1, Bi+2, ..., Bi+r.

Statement 3. If in

B0
R∗

→ B1
R∗

→ B2
R∗

→ B3 ... Bk
R∗

→ Bk+1 ...

A still life pattern for the rules Ri+1, Ri+2, ..., Ri+r is present in Bi, there will be a still life pattern corresponding to the

sequential evolutions of the initial pattern in Bi+1, Bi+2, ..., Bi+r.

If we consider the block pattern (which is an example of still life for both the rules life and Highlife) at the initial step

of a game in which the acting rules are R2k−1 = life and R2k =Highlife for each k ∈ N. We have that the block is an

example of still life for the Step-Depending rule. A similar and more general statement can be given:

Statement 4. Let {Aj
i}i∈{1,...,rk} a finite partition of the grid and R∗i,j , i ∈ {1, ..., rk} a finite family of rules for each j ∈ N,

then if an unperturbated pattern evolves in the same way for each of the rules of the space occupied by it for each of the

steps t, t+ 1, ...t+ l, then the pattern will evolve in the same way for each of R∗t , R
∗
t+1, ..., R

∗
t+l. An analogous statement is

valid for purely Time and Step depending rules, but we omit it as it is similar with previously mentioned statements.

If we consider a composite rule where acting primary rules are again Life (white in pictures below) and Highlife (gray in

pictures below) that changes every two steps as in the figure below, we see that the Glider pattern (which evolves identically

in the two rules mentioned) evolves identically also in the composite rule.

→ → → →

Figure 3: Evolution of Pattern in Zone-depending Grid.

7 Dynamic Behavior

Starting from a commonly used character classification of cellular automata [6]:

� Stable: rules in which patterns tend to stabilize quickly and show little activity;

� Chaotic: rules in which patterns tend to show complex behavior, but do not generally explode;

� Explosive: rules in which patterns tend to grow without bound.

The following table shows a recap of all rules we use, their definition and their behavior:
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Rule Name B/S Behaviour

R1 Life B3S23 C

R2 Day and Night B3678/S34678 S

R3 Diamoeba B35678/S5678 S

R4 DotLife B3/S023 E

R5 DryLife B37/S23 E

R6 Flock B3/S12 C

R7 Gems B3457/S4568 E

R8 HighLife B36/S23 C

R9 HoneyLife B38/S238 E

R10 Life Without Death B3/S012345678 E

R11 Live Free or Die B2/S0 E

R12 Logarithmic Replicator Rule B36/S245 S

R13 LongLife B345/S5 S

R14 LowDeath B368/S238 C

R15 Maze B3/S12345 E

R16 Move/Morley B368/S245 S

R17 Replicator B1357/S1357 E

R18 Seeds B2/S E

R19 Stains B3678/S235678 S

R20 2×2 B36/S125 C

We consider several configurations to indicate the character of the composite LL-Rules. We remark that since no strict

definition for the character exists, it only has to be considered as a soft criterion to understand the behavior of the automata.

We used several Python programs to simulate the grids and the plots. Despite the fact that our code was not optimized, an

adaptation of hashlife [9] is in theory possible for some of the modifications mentioned. In particular by considering more

families of memorized arrays for Step-depending automata, one for each different used rule. For Zone-depending automata

if the grid is periodic we can consider small windows having the same rule configuration. In all cases we expect more

memory to be required [9].

We discuss the behavior of several particular cases of the above mentioned automata, first of all S1 (or scheme 1) we

consider a step-dependent configuration in which two of the LL-Rules alternate periodically:

→ → →

Figure 4: S1 Scheme.

B0
R1→ B1

R2→ B2
R1→ B3 ... B2k

R1→ B2k+1
R2→ ...

Secondly (S2), we consider a purely zone-dependant domain, where even rows follow a LL-Rule and odd rows follow

another, we found this character table.
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→ →

Figure 5: S2 Scheme.

We simulate (S3), another purely zone-dependant domain where points with even row and column follow a LL-Rule and

the others (odd row and odd column) follow another LL-Rule from the initial ones given.

→ →

Figure 6: S3 Scheme.

We study (S4) the Step- and Time-Dependant scheme where each of the rules is equivalent to R2, but they alternate

at each step: by construction, we know (since both LL-Rules are S2 and when they are reversed the result doesn’t change)

that the behavior of this scheme is equivalent to S2.

→ → →

Figure 7: S4 Scheme.

We define (S5) a particular case of Layered life. More precisely if we consider Ra/Rb, alive and dead cells in the

secondary board (which evolves according to Rb) define which rules (resp. between Ra and Rb) will be used in the main

board. In the secondary subscheme the rule on the secondary board is R1, and the ones on the main board will be again

Ra and Rb respectively.

→ → →

Figure 8: Possible Rule Subdivision of S5 Scheme.

We study (S6) several configurations of Parallel Life. We use in particular two different subschemes, in the first we use

only two rules Ra/Rb, cells that not overlap follow rule a, cells that overlap follow rule b. For the second subscheme the

living and dead cells define where rule 1 and 4 act on the second board, vice versa cells living and dead cells define where

rule a and b will act. Of course the update will be simultaneous and all the process we mentioned is executed at each step.

We noticed that in the last two cases it is not possible to give a classification as in the schemes S1-S4. The underlying

grid influences too much the result to have a general scheme. As a rule of thumb we can se that explosive patterns prevail

assuming they have enough room in the grid and initial number of cells. We can also state that in the case of nonexplosive
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automata, the rule with a higher number of cells in the plane, prevales for the behavior, again assuming a proportionate

number of initial cells.

Finally (S7), we describe several cases of random automata. We adapt the definitions of dynamics as follow. We will

use three different and nonexclusive criteria:

A - Growth

� Collapsing: rules in which patterns tend to stabilize towards a state comparable to the fluctuations of an empty board,

� Stable: rules with patterns that generally stabilize in terms of growth without much change on the border,

� Unstable: rules with patterns that generally stabilize in terms of growth, but with chaotic contour change.

� Growing: rules in which patterns tend to grow by accretion.

B - Internal Turbulence of Compact Pattern

� Quiet: rules showing changes in compact patterns comparable to noise fluctuations,

� Noisy: the activity of the compact patterns is principally due to its internal change, which shows greater activity than

pure noise,

� Flickering: the activity of compact patterns is mainly due to the internal noise of more separated subpatterns.

C - Persistant Pattern Generation

We discuss the tendency of a rule (with strong dependency to ω) to generate persisting patterns out of pure noisy

background, we will use relative terms and indicators as low (L), medium (M) and high (H). This term includes the

Capacity of big patterns to form spontaneously from empty areas, their persistance and their capacity to fill the board.

It is clear that the first criterion covers all the possible cases, as rules that not grow or collapse have a stable number of

cells that can have a stable or unstable border. If we have a compact pattern, then if its change is not comparable to the

only noise, it can be formed by one compact pattern, or more pieces that change rapidly, and in particular the rule tend to

amplify the changes due to noise. The third criterion covers all possible cases by construction. Of course again these have

to be considered only as soft criteria, as no rigorous mathematical statement is in place.

We found that in all four cases (S1-S4) the table of charaters is simmetrical, it seems indeed that in the pure time-

dependant case the initial rule does not affect significantly the long-term behavior of the automata. In the other two cases of

zone-dependant rules we found that the symmetry of the character table depends on the symmetry of the domain (inverting

upper and lower direction is equivalent to a traslation upward or downward -resp. diagonally- of one unit). The upper

diagonal entries of the matrix represent the behavior of the first, second and third example, where the two rules considered

are given from the table. For the main diagonal, in all the four cases R1-R4, the rule is coinciding with the initial one so

the behavior is already known [6]. In the S4 case, even though the rules used are identical to the S2 ones, the behavior can

radically change, we mark with the apex for the second entry of the matrix the rule that are different in S4 w.r.t S2, with

the respective value indicated by the apex letter. We found a main cause for this behavior. With fixed grid the growing

patterns can be blocked inside (or amplified by) their permanence in a zone with the same rule. When the two rules change

place the pattern can be dragged in (or destroyed by) another zone of the board recursively. We found that in some cases

(as R2-R11 and R3-R11) the patterns in S2 were producing horizontal structures that remained trapped between lines of

different rules while exploding for S4. However this behavior was not universal as for example R1-R7 and R3-R15 do not

generally show this phenomenon.

We also noticed that between S2 and S4 none of the rules with different behavior had a Chaotic charater in S4. We

want also to remark that patterns containing R7 or R11 had a bigger inclination to change their behavior w.r.t. other rules.
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S1-S4

Rule R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 C s,s,s s,s,s c,c,c c,c,c s,s,s s,se,e s,c,c c,c,c e,e,e

R2 S s,s,s s,s,s s,s,s s,s,s e,e,e s,s,s s,s,s e,e,e

R3 S s,s,s s,s,s s,s,s e,ce,e s,s,s s,s,s e,e,e

R4 E c,e,c s,s,s s,se,e s,c,c c,c,c e,e,e

R5 E s,s,s s,se,e c,cs,c e,c,c e,e,e

R6 C s,se,s s,e,s s,s,s s,se,e

R7 E s,se,e s,se,e e,e,e

R8 C c,c,c e,e,e

R9 C e,e,e

R10 E

Rule R11 (E) R12 (S) R13 (S) R14 (C) R15 (E) R16 (S) R17 (E) R18 (E) R19 (S) R20 (C)

R1 (C) s,e,e s,s,s s,s,s c,c,c e,e,e s,s,s e,e,e s,e,s s,e,e s,c,s

R2 (S) s,ce,s s,s,s s,s,s s,s,s e,e,e s,s,s e,e,e s,e,s e,e,e s,e,s

R3 (S) s,ce,s s,s,s s,s,s s,s,s s,es,e s,s,s e,c,e s,e,s s,e,e e,s,s

R4 (E) s,e,e s,s,c s,s,s c,c,c e,e,e s,s,c e,e,e s,e,e s,e,e s,ce,e

R5 (E) s,e,e s,s,s s,s,s c,c,c e,e,e s,s,s e,e,e s,e,s s,e,e s,c,s

R6 (C) e,e,s s,s,s s,s,s s,es,s s,e,e s,s,s e,e,e e,e,s s,e,e s,s,s

R7 (E) s,se,e s,se,e s,e,e s,se,e e,e,e s,se,e e,e,e s,e,e e,e,e s,se,c

R8 (C) s,e,e s,s,s s,s,s c,c,c e,e,e s,s,s e,e,e s,e,s c,e,e c,e,s

R9 (C) s,e,e s,s,s s,s,s e,c,c e,e,e s,s,s e,e,e s,e,s c,e,e s,s,s

R10 (E) e,e,e e,e,e e,es,e e,e,e e,e,e e,e,e e,e,e e,se,e e,e,e e,e,e

Rule R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

R11 E s,e,s s,se,e s,e,e e,e,e s,e,s e,e,e e,e,e s,e,e e,e,s

R12 S s,s,s s,s,s e,e,e s,s,s e,e,e s,e,s e,e,e c,c,s

R13 S s,s,s e,es,e s,s,s e,e,e s,e,c s,es,e s,s,s

R14 C e,e,e s,s,s e,e,e s,e,s e,e,e e,e,s

R15 E e,e,e e,e,e e,se,e e,e,e c,e,e

R16 S e,e,e s,e,s e,e,e c,s,s

R17 E e,e,e e,e,e e,e,e

R18 E s,e,e e,e,e

R19 S s,e,e

R20 C
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S7

(α, ω) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

( 1
50 ,

1
50 ) G-F-H U-N-M G-Q-L G-F-H U-F-H U-F-H G-N-M G-F-H G-F-H G-Q-H

( 1
50 ,

1
150 ) C-F-M C-F-L G-Q-L G-F-H C-F-M C-F-M G-N-L C-F-M C-F-M G-H-H

( 1
50 ,

1
250 ) C-F-L C-F-L G-Q-L G-F-H C-F-L C-F-M G-N-L C-F-L C-F-M G-Q-H

( 1
150 ,

1
50 ) G-F-H U-Q-M G-Q-L G-F-H U-F-H U-F-H G-N-M G-F-H G-F-H G-Q-H

( 1
150 ,

1
150 ) G-F-M C-N-L G-Q-L G-F-H G-F-M C-F-M G-N-L C-F-M G-F-M G-Q-H

( 1
150 ,

1
250 ) C-F-L C-F-L G-Q-L G-F-H G-F-L C-F-M G-N-L G-F-L G-F-M G-Q-H

( 1
250 ,

1
50 ) G-F-H G-Q-M G-Q-L G-F-H G-F-H G-F-H G-N-M G-F-H G-F-H G-Q-H

( 1
250 ,

1
150 ) G-F-M C-Q-L G-Q-L G-F-H G-F-M C-F-M G-N-L G-F-M G-F-M G-Q-H

( 1
250 ,

1
250 ) G-F-L C-Q-L G-Q-L G-F-H G-F-L C-F-M G-N-L G-F-M G-F-L G-Q-H

(α, ω) R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

( 1
50 ,

1
50 ) G-F-H G-F-M G-F-M G-F-H G-Q-H G-F-M G-N-H G-F-H G-N-H G-F-H

( 1
50 ,

1
150 ) G-F-H C-F-L G-F-L C-F-M G-Q-H C-F-L G-F-H G-F-H G-F-M G-F-H

( 1
50 ,

1
250 ) G-F-H C-F-L G-F-L C-F-L G-Q-H C-F-L G-F-H G-F-H G-F-M U-F-M

( 1
150 ,

1
50 ) G-F-H G-F-M G-F-M G-F-H G-Q-H G-F-M G-N-H G-F-H G-N-H G-F-H

( 1
150 ,

1
150 ) G-F-H C-F-L G-F-L G-F-M G-Q-H C-F-L G-F-H G-F-H G-F-H G-F-H

( 1
150 ,

1
250 ) G-F-H C-F-L G-F-L G-F-L G-Q-H C-F-L G-F-H G-F-H G-F-M G-F-M

( 1
250 ,

1
50 ) G-F-H G-F-M G-F-M G-F-H G-Q-H G-F-M G-N-H G-F-H G-F-H G-F-H

( 1
250 ,

1
150 ) G-F-H C-F-L G-F-L G-F-M G-Q-H C-F-L G-F-H G-F-H G-F-M G-F-H

( 1
250 ,

1
250 ) G-F-H C-F-L G-F-L G-F-L G-Q-H C-F-L G-F-H G-F-H G-F-M G-F-M

8 Character Mixing

Let a board where a purely Step-Depending (resp. purely Zone-Depending) Rule acts. We want to answer the following

question: if one of the rules has a character, which percentage rule steps (resp. percentage of board cells) needs to have a

different character so the overall rule is nonexplosive? Again we limit ourselves to the case of two different rules acting on

the board. We plot all the combinations where the investigated rule acts on 100%, 80%, 60%, 40%, 20%, 0% of cells (resp.

steps). In particular darker green shadings indicate higher concentration of the investigated rule, lighter green indicate

lower concentrations. For the explosive case, we consider only R7 (Gems) R15 (Maze) and R17 (Replicator) and their

combinations with R1, R2, R3, R6, R8, R9, R12, R13, R14, R16, R19, R20.

These first plots refer to the Step-Depending case:
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SD-E R1 R2 R3 R6

R7

R15

R17

R8 R9 R12 R13

R7

R15

R17
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R14 R16 R19 R20

R7

R15

R17

Similarly if different points of the grid have different rules (Zone-depending case).
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ZD-E R1 R2 R3 R6

R7

R15

R17

R8 R9 R12 R13

R7

R15

R17
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R14 R16 R19 R20

R7

R15

R17

For the chaotic case, we only show plots for R1,R14,R20 (resp. Life, Highlife, 2×2), these plots show again the step-

depending case:
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SD-C R2 R3 R4 R5

R1

R14

R20

R7 R10 R11 R12

R1

R14

R20
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R13 R15 R16 R17

R1

R14

R20

R20

R1

R14

R20

Again we show the Zone-depending case, but corresponding to the chaotic automata:
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ZD-C R2 R3 R4 R5

R1

R14

R20

R7 R10 R11 R12

R1

R14

R20
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R13 R15 R16 R17

R1

R14

R20

R20

R1

R14

R20

We finally consider R2, R3, R11 (resp. Day and Night, Diamoeba, Live Free or Die) as representants the class of stable

automata. We show once again the Step-depending case first:
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SD-S R1 R4 R5 R6

R2

R3

R11

R7 R8 R9 R10

R2

R3

R11
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R11 R14 R15 R17

R2

R3

R1

R18 20

R2

R3

R11

Finally, the mixing of stable and not stable automata for the Zone-depending case:
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ZD-S R1 R4 R5 R6

R2

R3

R11

R7 R8 R9 R10

R2

R3

R11
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R11 R14 R15 R17

R2

R3

R1

R18 20

R2

R3

R11

From an observation of these plots, we notice that in general the transition between one character and another is obtained

more or less smoothly as the number of cells changes. We noticed however a number of cases where the character for mixed

cells changes drastically, for example we can mention R7-R2 of the tables SD-E and ZD-E, R20-R2 for SD-C and ZD-C

and R2-R4 for SD-S and ZD-S. We also noticed that also small amounts of cells with a different behavior can completely

change the automaton, for example in the R17-R2 of SD-E and ZD-E we see that spikes of the original automaton (i.e.

Replicator, due to the cyclical copying of the pattern across the grid) are not seen even with small concentrations of another

automaton. We noticed this phenomenon also in the case of random automata.
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9 Structures

We found several different nontrivial structures, we will list them below. If the behavior is particularly interesting we will

show also the respective evolution.

For S1-S6 we introduce the convention of indicating the mixed rule with the notation {Ra1, ..., Rai}/{Rb1, ..., Rbj} (i.e.,

the pattern is obtained for each of the combinations of Raī and Rbj̄ , and in particular if Raī = Rbj̄ we obtain the original

LL-rule). When this is used in the pictures, the white (resp. gray for S5 and S6) refers to the first rule mentioned. This

notation has demonstrated a big degree of compactness as we noticed frequently that schemes that repeat share one of the

forming rules. In order to reduce the number of degree of freedom of all possible tests of S5 and S6, we consider only some

particular cases. For S6, we found a low number of significant patterns, but this is no surprise, as by construction the

freedom of the system is reduced, so simple patterns form more hardly, we noticed this behavior, although the reduction of

freedom is lower, also for S5.

We finally use some modified grids:

Figure 9: Grids with Superposition (Resp. S5, S6).

to show the respective superposition of cells of S5 and S6. In the former case the lower level cell is represented by the

small square and the higher level cell is represented by the hollow one. In the latter we refer to the output of the automaton

as the bottom right section of the square.
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Scheme Pattern Number Properties/Remarks Picture

S1 P1 Oscillator for each combination of {R6,R10,R15,R20}/{R1,R4,R5,R8,R9,R14,R19}

and {R1,R4,R5,R8,R9,R14,R19}/{R6,R10,R15,R20} (P=8). It is a still

life pattern for {R6}/{R6,R10,R15,R20}, {R20}/{R6,R15}.

S1 P2 Oscillator, P=2 for {R11}/{R1,R2,R3},

{R11}/{R1,R2,R3,R5,R7,R8,R9,R12,R13,R14,R16,R19},

{R18}/{R1,R2,R3,R5,R7,R8,R9,R12,R13,R14,R16,R19}, {R18}/{R2}

and (with different behavior) for {R17}/{R2,R3,R7,R13}. It is still life

for several Rules (As R4).

S1 P3 Oscillator, P=2 for {R18}/{R2} and (with different behavior) for

{R17}/{R2,R3,R7,R13}. It has P=4 for R4/R18 and R18/R4. It is

moreover a still life pattern for {R4,R10}/{R4/R10},{R4}/{R18}.

S1 P4 Oscillator, P=2 {R2,R3}/{R18} P=2 (different behavior) R17/R2,

P=4 {R8,R12,R14,R16,R19}/{R2,R3,R7,R13} P=4 (different behavior)

R18/R4.
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S1 P5 Oscillator, P=4 for {R1,R4,R5,R8,R9,R14,R19}/{R20}.

S1 P6 Oscillator with P=2 for R7, spaceship (orthogonal) for

{R12,R16}/{R2,R7}, {R7}/{R12,R16}. Interestingly this pattern

evolves into the P1 pattern for every of the considered rules such that

the P1 pattern is an oscillator.

S1 P7 Spaceship (orthogonal), P=2 {R12,R16}/{R7}. It contains the previous

pattern.

S1 P8 It is still life for {R10,15}/{R10,R15}, it is a puffer with P=12 for

R4/R11.

S1 P9 Spaceship, P=7 (diagonal){R12,R16}/{R12,R16}, oscillator with p=12

for R19/R4 and p=5 for R19/R7.

S2 P10 Oscillator P=6 for {R1,R4,R5,R8,R9,R14,R19}/{R6,R20}, still life for

{R6,R10,R15,R20}/{R1,R4-R6,R8-R10,R12,R14-R16,R19,R20}.

S2 P11 Still life for {R6,R10,R15,R20}/{R6,R10,R15,R20}.

S2 P12 Oscillator, P=2 for {R2}/{R3,R7,R13}, spaceship (orthogonal), P=2

{R6,R20}/{R1,R4,R5,R9,R14}.

S2 P13 Oscillator, P=5 for {R1,R4,R5,R9,R14}/{R7}, p=2 for

{R3,R7,R13}/{R10,R15,R19}.
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S2 P14 Spaceship (orthogonal), P=2 for {R11,R18}/{R7,R13}.

S2 P15 Gun, P=34 for {R1,R5,R9}/{R20}. It emits pattern 11 in both horizon-

tal directions.

S2 P16 Spaceship (orthogonal), P=1 for {R11,R18}/{R7,R13}.

S2 P17 Puffer, P=8 for {R18}/{R7,R13}. It emits pattern P15 in the opposite

direction.

S3 P18 Still life for {R6,R10,R15,R20}/{R6,R10,R15,R20}.

S3 P19 Oscillator, P=8 for {R1,R5,R8,R9,R14}/{R13}, P=10 for {R2}/{R16}.

S3 P20 Spaceship (diagonal), P=10 for {R18}/{R1,R5,R8,R9,R14,R19}, P=10

for {R2}/{R16}.

S3 P21 Still life for {R1,R4-R6,R8-R10,R12,R14-R16,R19,R20}/{R1,R4-R6,R8-

R10,R12,R14-R16,R19,R20}, oscillator, P=18 for {R1,R4,R5,R8,

R9,R14,R19}/{R3}.
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S4 P22 Still life for {R6,R10,R15,R20}/{R6,R10,R15,R20} (as P10 and P17).

S4 P23 Spaceship (orthogonal), P=2 for {R11,R16}/{R6,R10,R15,R20}.

S4 P24 Spaceship (orthogonal), P=8 for {R20}/{R8,R14}.

S4 P25 Spaceship (orthogonal), P=4 for {R12,R16}/{R1,R4,R5,R8,R9,R14}.

S5 P26 Still life for {R4,R10,R11}/{R6,R10,R15,R20}*, oscillator, P=2 for

{R17}/{R6,R10,R15,R20}*. It works similarly if the two background

points are diagonally disposed on the plane.

S5 P27 Still life for {R6,R10,R15,R17,R20}/{R1,R2,R4,R5,R8-

R10,R14,R15,R19}*, {R6,R10,R15,R17,R20}/{R1-R10,R12-

R16,R19,R20}** , oscillator, P=2 for {R11,R18}/{R1,R2,R4,R5,R8-

R10,R14,R15,R19}*, {R11,R18}/{R1-R10,R12-R16,R19,R20}**.

S5 P28 Oscillator, P=12 for {R17}/{R12}*,

S5 P29 Still life for {R4,R10,R11}/{R6,R10,R15,R20}*, oscillator, P=14 for

{R17}/{R6,R10,R15,R20}*,

S5 P30 Oscillator, P=12 for {R17}/{R12,R16}*.
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S5 P31 Spaceship, diagonal P=12 for {R17}/{R1,R5,R8,R9,R14,R19}*,

{R17}/{R1,R2,R3,R5,R8,R9,R12,R14,R16,R19}**.

S6 P32 Oscillator, P=2 for {R3,R12,R16}/{R1,R4,R5,R8,R9,R14,R19}*,

{R3,R6,R12,R16,R20}/{R1,R4,R5,R8,R9,R10,R14,R15,R19}**.

S6 P33 Still life for {R4,R10}/{R1,R2,R4,R5,R8,R9,R10,R14,R15,R19},Oscillator,

P=2 for {R17}/{R1,R2,R4,R5,R8,R9,R10,R14,R15,R19}.

→ → → → →

Figure 10: The cyclic evolution for the pattern P1.

→

→

→ → →

→ → →

Figure 11: The four different cyclical evolutions detected for P4.

→

Figure 12: The cyclic evolution for the pattern P26.
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→ → → → →

→ → → →

Figure 13: The cyclic evolution for the pattern P28.

→ → → → →

Figure 14: Part of the cyclic evolution for the pattern P29, only half of it is shown as the rest can be obtained by translation.

→ → → →

Figure 15: Part of the cyclic evolution for the pattern P31, only half of it is shown as the rest is rotated as the last picture

coincides with the first rotated and mirrored.

→

Figure 16: The cyclic evolution for the pattern P33.

Conclusions

We have shown several novels adaptations of Life-Like automata, that are built with the purpose of increasing the expressive

capacity of those in the current literature. They are, as many definitions from cellular automata, prone to generalization

for non Life-Like rules. It could be an interesting step for future research to study the synthesys of structures [8], or apply

them to different grids, dimensions and schemes [10].
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A Evolution of Cell Population

This section includes many plots showing the evolution (in term of number of cells) for all the used configurations S1-S7.

For clearer comparison we show both the behaviors (i.e., green (resp. red) plot if the initial rule is on the horizontal (resp.

vertical) axis of the table). For S5 and S6, we show also the bottom layer cell counts, in dashed lines. In all cases the

considered grid has finite size of 300x300 cells. For S1-S4 and S7, the initial condition is given by an empty table except for

the central 100x100 square. We filled this square with random cells having density of 1/2 (≈ 5000 units). For S5 and S6

the central sets of cells have been moved diagonally by 20 cells in opposite directions. This is to have a starting condition

with all the possible nonempty states (cell of the first layer only, cell of the second layer only and cells in both layers).

For the S5 plots, the entry Ra/Rb is charactreized by having Ra in the first layer and both Ra and Rb in the second one.

Similarly for S6, the seed to generate the cells in the central square was generally different in the configurations, but we

initialized the configurations in the same plot with the same initial pattern (e.g. alternating R1/R2 and R2/R1) with the

same pattern. In all of the cases S1-S4 plots on the main diagonal of the tables are coinciding with the well-known rules

mentioned in the first chapter. For better readability we have split the plots in subtables (see following scheme). Symbols in

the table are to remark that plots in the main diagonal reflect the structure of the table (i.e., upper triangular or squared).

Additional information about these plots can be found in the sections Dynamic Behaviour and Character Mixing of the

main text. We also want to remark that in some cases these tables were not containing enough information to determine

the characters. For example, in (S1T1, R1/R4) the population plots diverge as a consequence of the specific initial seed in

in one of the cases. We performed several runs with seeds having identical characteristics to unveil the effective behavior

of the automaton. Finally, we noticed that although these plots might not suffice to determine the behavior of automata,

they often contain really important information about the automata character and properties:

� An increasing graph is generally associated with Exploding patterns (Growing or with higher Persistant Pattern

generation in cases of random automata), e.g. S1T4, R2/R17; ω = 1
250 , R11.

� Noise in later stages of exploding patterns is generally caused by the incresing number of cells of the automaton (e.g.

S1T2, R1/R10). In many cases of slowing down of the curve, the filling of the grid and subsequents fluctuations of

the automaton are present e.g. S1T2, R2/R10).

� Graph that stabilize quickly are generally associated with stable behaviors (Resp. Stable or Collapsing in the case of

random automata) e.g. S1T2, R4/R6; ω = 1
250 , R12.

� Chaotic and Exploding automata tend to have more fluctuations than Stable ones (S1T3, R1/R13, R1/14, R1/15).

� Chaotic and Explosive rules plot tend to diverge more easily with different initial conditions (R1/R11, R4/R14).

� Explosive patterns can have a drop in their number of cells before actually starting to grow. This means that to grow

some pattern organization is needed (S2T3, R4/R11).

� Random automata can vary strongly with small perturbations on α or ω (ω = 1
150 , R20).

Rules R1-R5 R6-R10 R11-R15 R16-R20

R1-R5 T1 (N) T2 (�) T3 (�) T4 (�)

R1-R5 T5 (N) T6 (�) T7 (�)

R1-R5 T8 (N) T9 (�)

R1-R5 T10 (N)
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A.1 S1

These plots show the cell populations for rules that alternate according to the scheme S1 previously mentioned.

S1T1 R1 R2 R3 R4 R5

R1

R2

R3

R4

R5
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S1T2 R6 R7 R8 R9 R10

R1

R2

R3

R4

R5

S1T3 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5
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S1T4 R16 R17 R18 R19 R20

R1

R2

R3

R4

R5

S1T5 R6 R7 R8 R9 R10

R6

R7

R8

R9

R10
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S1T6 R11 R12 R13 R14 R15

R6

R7

R8

R9

R10

S1T7 R16 R17 R18 R19 R20

R6

R7

R8

R9

R10
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S1T8 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5

S1T9 R16 R17 R18 R19 R20

R11

R12

R13

R14

R15
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S1T10 R16 R17 R18 R19 R20

R16

R17

R18

R19

R20

A.2 S2

These plots show the cell populations for rules that act in parallel lines according to the scheme S2 previously mentioned.
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S2T1 R1 R2 R3 R4 R5

R1

R2

R3

R4

R5

S2T2 R6 R7 R8 R9 R10

R1

R2

R3

R4

R5
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S2T3 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5

S2T4 R16 R17 R18 R19 R20

R1

R2

R3

R4

R5
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S2T5 R6 R7 R8 R9 R10

R6

R7

R8

R9

R10

S2T6 R11 R12 R13 R14 R15

R6

R7

R8

R9

R10
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S2T7 R16 R17 R18 R19 R20

R7

R7

R8

R9

R10

S2T8 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5
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S2T9 R16 R17 R18 R19 R20

R11

R21

R13

R14

R15

S2T10 R16 R17 R18 R19 R20

R16

R17

R18

R19

R20
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A.3 S3

These plots show the cell populations for rules that act in chessboard-like boards according to the scheme S3.

S3T1 R1 R2 R3 R4 R5

R1

R2

R3

R4

R5
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S3T2 R6 R7 R8 R9 R10

R1

R2

R3

R4

R5

S3T3 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5
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S3T4 R16 R17 R18 R19 R20

R1

R2

R3

R4

R5

S3T5 R6 R7 R8 R9 R10

R6

R7

R8

R9

R10
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S3T6 R11 R12 R13 R14 R15

R6

R7

R8

R9

R10

S3T7 R16 R17 R18 R19 R20

R7

R7

R8

R9

R10
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S3T8 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5

S3T9 R16 R17 R18 R19 R20

R11

R21

R13

R14

R15
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S3T10 R16 R17 R18 R19 R20

R16

R17

R18

R19

R20

A.4 S4

These plots show the cell populations for rules that act in parallel lines that shift periodically according to the scheme S4.
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S4T1 R1 R2 R3 R4 R5

R1

R2

R3

R4

R5

S4T2 R6 R7 R8 R9 R10

R1

R2

R3

R4

R5
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S4T3 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5

S4T4 R16 R17 R18 R19 R20

R1

R2

R3

R4

R5
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S4T5 R6 R7 R8 R9 R10

R6

R7

R8

R9

R10

S4T6 R11 R12 R13 R14 R15

R6

R7

R8

R9

R10
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S4T7 R16 R17 R18 R19 R20

R7

R7

R8

R9

R10

S4T8 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5
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S4T9 R16 R17 R18 R19 R20

R11

R21

R13

R14

R15

S4T10 R16 R17 R18 R19 R20

R16

R17

R18

R19

R20
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A.5 S5

First subscheme. These plots show the cell populations for rules that act in parallel lines that shift periodically according

to the scheme S5. We remark that if we consider Ra/Rb (resp. row and column number rule of the matrix), alive and dead

cells in the secondary board (which evolves according to Rb) define which rules (resp. between Ra and Rb) will be used in

the main board. The dashed lines show the respective bottom (secondary) layers of the automata.

S5AT1 R1 R2 R3 R4 R5

R1

R2

R3

R4

R5
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S5AT2 R6 R7 R8 R9 R10

R1

R2

R3

R4

R5

S5AT3 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5
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S5AT4 R16 R17 R18 R19 R20

R1

R2

R3

R4

R5

S5AT5 R6 R7 R8 R9 R10

R6

R7

R8

R9

R10
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S5AT6 R11 R12 R13 R14 R15

R6

R7

R8

R9

R10

S5AT7 R16 R17 R18 R19 R20

R7

R7

R8

R9

R10
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S5AT8 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5

S5AT9 R16 R17 R18 R19 R20

R11

R21

R13

R14

R15
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S5AT10 R16 R17 R18 R19 R20

R16

R17

R18

R19

R20

Second subscheme. The rule on the secondary board is R1, and the ones on the main board will be again Ra and Rb

respectively. The dashed lines show again the respective secondary layers of the automata.

S5BT1 R1 R2 R3 R4 R5

R1

R2

R3

R4

R5
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S5BT2 R6 R7 R8 R9 R10

R1

R2

R3

R4

R5

S5BT3 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5
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S5BT4 R16 R17 R18 R19 R20

R1

R2

R3

R4

R5

S5BT5 R6 R7 R8 R9 R10

R6

R7

R8

R9

R10
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S5BT6 R11 R12 R13 R14 R15

R6

R7

R8

R9

R10

S5BT7 R16 R17 R18 R19 R20

R7

R7

R8

R9

R10

62



S5BT8 R11 R12 R13 R14 R15

R1

R2

R3

R4

R5

S5BT9 R16 R17 R18 R19 R20

R11

R21

R13

R14

R15

63



S5BT10 R16 R17 R18 R19 R20

R16

R17

R18

R19

R20

A.6 S6

First subscheme. We use two rules Ra/Rb (resp. row, column in the matrix), cells that not overlap follow rule a, cells that

overlap follow rule b. The dashed lines show the respective bottom (secondary) layers of the automata.
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Second subscheme. Living and dead cells define where rule 1 and 4 act on the second board, vice versa cells living and

dead cells define where rule a and b will act. The dashed lines show again the respective secondary layers of the automata.
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A.7 S7

These plots show the cell populations for random cellular automata with several choices for the coefficients α and ω (Scheme

S7). To produce the following plots, we have assigned in particular ω ∈
{

0,
1

50
,

1

100
,

1

150
,

1

200
,

1

250

}
and shown in each

picture the plots for α = 0 (black), α =
1

250
(blue), α =

1

200
(green), α =

1

150
(red), α =

1

100
(cyan), α =

1

50
(yellow)

ω = 0 R5k + 1 R5k + 2 R5k + 3 R5k + 4 R5k + 5

R1− 5

R6− 10

R11− 15

R16− 20

ω =
1

250
R5k + 1 R5k + 2 R5k + 3 R5k + 4 R5k + 5

R1− 5

R6− 10

R11− 15

R16− 20
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ω =
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ω =
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R5k + 1 R5k + 2 R5k + 3 R5k + 4 R5k + 5
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R16− 20

ω =
1

50
R5k + 1 R5k + 2 R5k + 3 R5k + 4 R5k + 5

R1− 5

R6− 10

R11− 15

R16− 20

B Open Problems

Open Problem 1. Find a composite rule, in particular a purely Time-depending one (or prove that such example does

not exist) such that a Garden of Eden [5] for one of the composing rules is not a Garden of Eden i.e., configuration that

has no predecessor. for the composit rule.
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Open Problem 2. Find a non trivial pattern (or prove that such example does not exist) that for two different step- and

time-depending rules is a spaceship and a gun.

Open Problem 3. Find a pattern that evolves in 5 or more differen ways for Step- or Zone-depending rules.

Open Problem 4. Find a non trivial gun and spaceship for Parallel life for prove that such example does not exist).

Open Problem 5. Find complex structures (as puffers or guns) for S5 and S6.

Open Problem 6. Find if it is possible to derive other cellular automata (e.g. Generations [6]) from the rules defined in

this paper.
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