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We propose controllers for leader-follower attitude synchronization of spacecraft formations in the presence of disturbances, that
is, the leader spacecraft is controlled to follow a given reference, while a follower spacecraft is controlled to synchronize its motion
with the leader’s. In the ideal disturbance-free scenario, we show that synchronization takes place asymptotically. Moreover,
we show the property of uniform practical asymptotic stability which implies that the synchronization is robust to bounded
disturbances.

1. Introduction

In recent years, formation flying has become an increas-
ingly popular subject of study. This is a new method of
performing space operations, by replacing large and complex
spacecraft with an array of simpler microspacecraft, bringing
out new possibilities and opportunities of cost reduction,
redundancy, and improved resolution aspects of onboard
payload. One of the main challenges is the requirement of
synchronization between spacecraft; robust and reliable con-
trol of relative position and attitude is necessary to make the
spacecraft cooperate to gain the possible advantages made
feasible by spacecraft formations. For fully autonomous
spacecraft formations, both path- and attitude-planning
must be performed online which introduces challenges like
collision avoidance and restrictions on pointing instruments
towards required targets, with the lowest possible fuel
expenditure.

Synchronization of dynamical systems was first studied
by Christian Huygens in the XVIIth century. In recent years,
the problem has obtained increasing interest in various
research areas due to its impact in technology development
and challenges it imposes; see, for example, [1–4].

Model-based controlled synchronization consists in
using the physics laws and control theory in order to
induce synchronization in dynamical systems. Successful

instances include synchronization of robot manipulators
[5, 6], leader-follower spacecraft formations [7–10], and
ship replenishment operations [11, 12]. Another form of
synchronization is consensus, in which a group of systems
coordinate their motion without any subsystem having a
higher hierarchy with respect to the others. An instance
of consensus is cooperative control in which a group of
systems is controlled in a way that they collaborate in
order to achieve a task as a team of agents. Examples
may be found in the areas of autonomous vehicles [13–
15], underactuated marine vessels [16, 17], and rigid bodies
[18–20].

In this paper, we address the simultaneous control
problems of attitude tracking and leader-follower synchro-
nization. That is, we propose a tracking controller for
the leader spacecraft which makes it follow a prescribed
reference. Independently, we construct a synchronization
control law for the follower spacecraft which makes it track
the attitude of the leader, thereby synchronizing in the
classical master-slave configuration.

Our controllers are reminiscent of classical tracking
controllers for robot manipulators passivity-based control
which exploits the system’s physical properties; see [21]. For
tracking control, see the passivity-based PD+ of [22] and the
wrongly called “sliding-mode” controller of [23] which may
rather be casted in the passivity-based framework.
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Figure 1: Cascade interconnection of two dynamical systems.

Although insightful, these popular control approaches
for robot manipulators may not be directly applied in
spacecraft tracking control and synchronization. The first
obstacle is the specificity of spacecraft nonlinear models,
expressed in quaternion coordinates. We revise the model in
the following section.

Besides the difficulties imposed by the modeling of
spacecraft, simultaneous tracking control and master-slave
synchronization implicitly suggest controlling the leader
spacecraft towards a reference independently of the slave
system dynamics. Correspondingly, the synchronization
controller inevitably couples the follower spacecraft to
the dynamics of the leader. However, the synchronization
controller is demanded to achieve the task regardless of
the master dynamics as well as the reference that system
intends to track. The ability to control two coupled systems
separately is called separation principle and is known not to
hold in general for nonlinear systems (see e.g. [24]). This is
where cascades theory enters in play.

Cascaded systems theory consists in analyzing complex
systems by dividing them in subsystems simpler to control
and to analyze (see [25] and references within). It must
be emphasized that such representation is purely schematic,
for the purpose of analysis only. Generally speaking, the
stability analysis problem consists in finding conditions for
two systems as in Figure 1 so that, considering that both
subsystems separately are stable, they conserve that property
when interconnected.

In the context of the present paper, the block on
the left corresponds to the leader system in closed loop
with a tracking controller, while the block on the right
consists in the follower spacecraft in closed loop with the
synchronization controller. The blocks are interconnected via
the tracking errors of the leader system. Hence, in the ideal
case, when the leader spacecraft is perfectly controlled, the
systems are decoupled.

The topic of cascaded systems have received a great deal
of attention and has successfully been applied to a wide
number of applications. In [26], a cascaded adaptive control
scheme for marine vehicles including actuator dynamics was
introduced, while [27] solved the problem of synchroniza-
tion of two pendula through use of cascades. The authors
of [28] studied the problem of global stabilizability of feed-
forward systems by a systematic recursive design procedure
for autonomous systems, while time-varying systems were
considered in [29] for stabilization of robust control, while
[30] established sufficient conditions for uniform global
asymptotical stability (UGAS) of cascaded nonlinear time-
varying systems. The aspect of practical and semiglobal
stability for nonlinear time-varying systems in cascade was
pursued in [31, 32]. A stability analysis of spacecraft forma-
tions including both leader and follower using relative coor-
dinates is presented in [10], where the controller-observer

scheme is proven input-to-state stable, and backstepping
was applied in [17] for leader-follower formation control
of multiple underactuated autonomous underwater vehicles
(AUVs). For the control problems at hand, we show that the
closed-loop system has the property of uniform asymptotic
stability. Significantly, uniform asymptotic stability guar-
antees robustness with respect to bounded disturbances.
In this regard, we extend our result to the case where
bounded perturbations affect the system (atmospheric drag,
gravity gradient, etc.). In this scenario, we guarantee uniform
practical asymptotic stability. This pertains to the case when
there exists a steady-state tracking and synchronization error
which can be arbitrarily diminished via an appropriate
tuning of the control parameters.

The contribution of this paper is application of the
framework for stability analysis of cascaded systems of rigid
bodies in leader-follower formation and synchronizvation of
PD+ and sliding surface control laws adapted for quaternion
space. The equilibrium points of the PD+ controller in
closed loop with the rigid body dynamics are proven
uniformly asymptotically stable (UAS) when disturbances
are considered known, while a sliding surface controller is
utilized to prove uniform practical asymptotical stability
(UPAS) when disturbances are considered unknown but
bounded. Simulation results of a leader-follower spacecraft
formation are presented to show the performance of our
proposed control laws.

The rest of the paper is organized as follows: in Section 2,
we recall the modeling of rigid bodies in quaternion coor-
dinates and present the main theoretical tools of cascaded
systems theory, which are instrumental to our control
design. Controller design is presented in Section 3 for
known disturbances while for unknown but upper-bounded
disturbances in Section 4. Simulation results are presented in
Section 5, and everything is wrapped up with conclusions in
Section 6.

2. Mathematical Background

In the following, we denote by ẋ the time derivative of a
vector x, that is, ẋ = dx/dt; moreover, ẍ = d2x/dt2, and
‖ · ‖ denotes the �2 norm of vectors and induced �2 norm
of matrices. Coordinate reference frames are denoted by
F (·), where the superscript denotes the frame in question.
Moreover, we denote a rotation matrix between frame a
and frame b by Rb

a ∈ SO(3), and the angular velocity of
frame a relative to frame b, referenced in frame c, is denoted
by ωc

b,a ∈ R3. We denote by x(t; t0, x(t0)) the solutions of
the differential equation ẋ = f (t, x) with initial conditions
(t0, x(t0)). When the context is sufficiently explicit, we may
omit the arguments of a function, vector or matrix.

2.1. Cartesian Coordinate Frames. The coordinate reference
frames used throughout the paper are defined as follows.

Earth-Centered Inertial Frame. The Earth-centered inertial
(ECI) frame is denoted by F i and has its origin in the center
of the Earth. The axes are denoted by xi, yi, and zi, where
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the zi-axis is directed along the axis of rotation of the Earth
toward the celestial North Pole, the xi-axis is pointing in
the direction of the vernal equinox, Υ, which is the vector
pointing from the center of the sun toward the center of
the Earth during the vernal equinox, and finally the yi-axis
completes the right-handed orthonormal frame.

Spacecraft Orbit Reference Frame. The orbit frame is denoted
by F so, where the sub-/superscript s = l, f denotes the
leader and follower spacecraft, respectively, such that we
throughout the paper denote, for example, F lo and F f o as
F so, which has its origin located in the center of the mass
of the spacecraft. The er-axis in the frame coincides with the
vector r = [rx, ry , rz]

� from the center of the Earth to the
spacecraft, and the eh-axis is parallel to the orbital angular
momentum vector, pointing in the orbit normal direction.
The eθ-axis completes the right-handed orthonormal frame.
The basis vectors of the frame can be defined as

er = r
r

, eθ = eh × er , eh = h
h

, (1)

where h = r× ṙ is the angular momentum vector of the orbit,
h = |h| and r = |r|. This frame is also known as the local
vertical/local horizontal (LVLH) frame.

Spacecraft Body Reference Frame. The body frame of the
spacecraft is denoted by F sb and is located at the center of
the mass of the spacecraft, and its basis vectors are aligned
with the principle axis of inertia.

2.2. Quaternions. The attitude of a rigid body is often
represented by a rotation matrix R ∈ SO(3) fulfilling

SO(3) = {R ∈ R3×3 : R�R = I, det R = 1
}

, (2)

which is the special orthogonal group of order three.
Quaternions are often used to parameterize members of
SO(3) where the unit quaternion is defined as q = [η,ε�]� ∈
S3 = {x ∈ R4 : x�x = 1}, where η ∈ R is the scalar part
and ε ∈ R3 is the vector part. The rotation matrix may be
described by [33]

R = I + 2ηS(ε) + 2S2(ε), (3)

where the matrix S(·) is the cross product operator defined
as

S(ε) = ε× =

⎡

⎢
⎢
⎢
⎣

0 −εz εy

εz 0 −εx
−εy εx 0

⎤

⎥
⎥
⎥
⎦

, (4)

where ε = [εx ,εy ,εz]�. The inverse rotation can be per-
formed by using the inverse conjugate of q as q = [η,−ε�]�.
The set S3 forms a group with quaternion multiplication,
which is distributive and associative, but not commutative,
and the quaternion product of two arbitrary quaternions q1

and q2 is defined as [33]

q1 ⊗ q2 =
⎡

⎣
η1η2 − ε�1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

⎤

⎦. (5)

2.3. Kinematics and Dynamics. The time derivative of (3) can
be written as [33]

Ṙa
b = S

(
ωa
a,b

)
Ra
b = Ra

bS
(
ωb
a,b

)
, (6)

and the kinematic differential equations can be expressed as
[33]

q̇s = T
(

qs
)
ωsb
i,sb, (7)

where

T
(

qs
) = 1

2

⎡

⎣
−εTs

ηsI + S(εs)

⎤

⎦ ∈ R4×3. (8)

The dynamical model of a rigid body can be described by
a differential equation for angular velocity and is deduced
from Euler’s moment equation. This equation describes the
relationship between applied torque and angular momentum
on a rigid body as [34]

Jsω̇sb
i,sb = −S

(
ωsb
i,sb

)
Jsωsb

i,sb + τ sbs , (9)

where τsbs ∈ R3 is the total torque working on the body frame
and Js = diag{Jsx, Jsy, Jsz} ∈ R3×3 is the moment of inertia.
The torque working on the body is expressed as τsbs = τ sbsa +
τsbsd, where τsbsd is the disturbance torque and τsbsa is the actuator
(control) torque. It might be desirable to express the rotation
between the body frame and the orbit frame which can be
done by applying

ωsb
s,sb = ωsb

i,sb − Rsb
i ω

i
i,s, (10)

where ωi
i,s = S(ris)vi

s/r
i�
s ris, and ris and vi

s are the spacecraft
radius and velocity vector, respectively, represented in the
inertial frame.

2.4. Cascaded Systems Theory. A typical nonlinear cascaded
time-varying system on closed-loop dynamical form is
expressed as

Σ1 : ẋ1 = f1(t, x1) + g(t, x)x2, (11)

Σ2 : ẋ2 = f2(t, x2), (12)

where x1 ∈ Rn, x2 ∈ Rm, x = [x�1 , x�2 ]�, and the
functions f1(·, ·), f2(·, ·), and g(·, ·) are continuous in their
arguments, locally Lipschitz in x, and uniform in t, and
f1(·, ·) is continuously differentiable in both arguments.
Note that (12) is decoupled from (11), hence, it will be called
the driving system, and its state enters as an input to the
upper system with state x1 through the interconnection term
g(t, x)x2.

In the context of this paper, the dynamics

ẋ1 = f1(t, x1) (13)

represents the synchronization error dynamics of the leader-
follower configuration, assuming that perfect tracking is
achieved for the leader system, that is, the tracking error for
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the latter is represented by x2, and its closed-loop dynamics
under tracking control will be represented by (12).

We will evoke [25, Theorem 1] to prove uniform
asymptotic stability of the equilibrium point of a closed-
loop system on the form (11)-(12) under the following
assumptions.

Assumption 1. There exist constants c1, c2, δ′ > 0 and a
Lyapunov function V(t, x1) for (13) such that V : R≥0 ×
Rn → R≥0 is positive definite, radially unbounded, V̇(t,
x1) ≤ 0 and

‖ ∂V
∂x1

‖‖x1‖ ≤ c1V(t, x1) ∀‖x1‖ ≥ δ′, (14)

∥
∥
∥
∥
∂V

∂x1

∥
∥
∥
∥ ≤ c2 ∀‖x1‖ ≤ δ′. (15)

Assumption 2. There exist two continuous functions ξ1, ξ2 :
R≥0 → R≥0 such that g(t, x) satisfies

∥
∥g(t, x)

∥
∥ ≤ ξ1(‖x2‖) + ξ2(‖x2‖)‖x1‖. (16)

Assumption 3. There exists a class K function α(·) such that,
for all t0 ≥ 0, the trajectories of the system (12) satisfy

∫∞

t0
‖x2(t; t0, x2(t0))‖dt ≤ α(‖x2(t0)‖). (17)

The Theorem cited above may be extended to the case
when the subsystems possess the weaker property of practical
asymptotic stability. This pertains to the situation in which
the errors do not converge to zero but to a bounded region
that may be made arbitrarily small; see [35]. A related
popular concept, for instance, in control of mechanical
systems is that of ultimate boundedness. However, practical
asymptotic stability is stronger than ultimate boundedness
since the later is only a notion of convergence and does not
imply stability in the sense of Lyapunov. In other words, the
fact that the errors converge to a bounded region does not
imply that they remain always arbitrarily close to it.

3. Uniform Asymptotic Stabilization

We are ready to present the first results on tracking and
synchronization cascade-based control. The control strategy
relies on using models for two single spacecraft coupled
through synchronized control, and stability properties are
proved using cascade theory for known disturbances, that is,

we assume that the disturbances τ lbld and τ
f b
f d can be modeled

correctly (see, e.g., [34, 36, 37]).

3.1. Problem Formulation. The control problem is to design
two controllers; the first one makes the states ql(t), ωlb

i,lb(t),

and ω̇lb
i,lb(t) converge towards the generated references spec-

ified as qd(t), ωlb
i,d(t), and ω̇lb

i,d(t), satisfying the kinematic
equation

q̇d = T
(

qd
)
ωlb
i,d, (18)

and acts as a solution to the dynamical model presented in
(9). It should be noted that we apply (10) and its derivative to
the generated reference rather than the dynamical equation
to keep a simple control law structure compared to [38]. The
second controller is designed as a synchronizing controller

to make the states q f (t) and ω
f b
i, f b(t) converge towards ql(t)

and ω
f b
i,lb(t). The error quaternion q̃s = [η̃s, ε̃

�
s ]� is found by

applying the quaternion product

q̃s = qs ⊗ qd =
⎡

⎣
ηsηd + ε�s εd

ηdεs − ηsεd − S(εs)εd

⎤

⎦, (19)

where the sub-/superscript s = l, f denotes the leader and
follower spacecraft, respectively, and the error kinematics can
be expressed as [39]

˙̃qs =
1
2

T
(

q̃s
)

esω, (20)

where esω = ωsb
i,sb − ωsb

i,d is the angular velocity error. Due to
the redundancy in the quaternion representation, q̃s and −q̃s

represent the same physical attitude, but, mathematically, it
differs by a 2π rotation about an arbitrary axis. Therefore, we
are not able to achieve a global representation since the term
global refers to the whole state space Rn according to [35].
Since both equilibrium points represent the same physical
representation, the equilibrium point which requires the
shortest rotation is usually chosen, thus minimizing the path
length; hence, q̃s+ = [1, 0�]� is chosen if η̃s(t0) ≥ 0 and q̃s− =
[−1, 0�]� is chosen if η̃s(t0) < 0. For the positive equilibrium
point, an attitude error function is chosen as esq+ = [1 −
η̃s, ε̃

�
s ]� (see [9]), while, for the negative equilibrium point,

the attitude error function is chosen as esq− = [1 + η̃s, ε̃
�
s ]�.

In accordance with general kinematic relations

ėsq± = Tse

(
esq±

)
esω, (21)

where

Tse

(
esq±

)
= 1

2

⎡

⎣
±ε̃�s

η̃sI + S
(
ε̃s
)

⎤

⎦. (22)

The attitude error function is chosen a priori and kept
throughout the maneuver even if η̃s(t) should happen to
switch sign for some t. The control problem is presented
as a cascaded system on the form (11)-(12), where the
states are defined as x1 = [e�f q, e�f ω]� and x2 = [e�lq, e�lω]�.
The control objective is to stabilize the equilibrium point
(e f q(t), e f ω(t), elq(t), elω(t)) = (0, 0, 0, 0) as t → ∞ for all
initial values.

3.2. Control of Leader Spacecraft. For control of the leader
spacecraft attitude, we incorporate a model-dependent con-
trol law as in [40]. It is assumed that we have available
information of its attitude ql , angular velocity ωlb

i,lb, and
inertia matrix Jl, and, temporarily, we assume to know
external perturbations. We choose the equilibrium such that
elq± = [1 ∓ η̃l, ε̃

�
l ]� is either the positive or negative
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equilibrium point, which does not change during the
maneuver. By pure conventionalism, consider the positive
equilibrium, that is, elq = elq+. We define desired attitude
qd(t), desired angular velocity ωlb

i,d(t), and desired angular

acceleration ω̇lb
i,d(t) which are all bounded functions. The

control law is expressed as

τ lbla = Jlω̇lb
i,d − S

(
Jlωlb

i,lb

)
ωlb
i,d − klqT�leelq − klωelω − τ lbld ,

(23)

where klq > 0 and klω > 0 are feedback gain scalars. By
insertion of (23) into (9), the system is on form (12), and,
by applying the property S(ωlb

i,lb)Jlωlb
i,lb = −S(Jlωlb

i,lb)ωlb
i,lb, we

obtain the closed-loop dynamics

Jl ėlω +
(
klωI− S

(
Jlωlb

i,lb

))
elω + klqT�leelq = 0. (24)

A radial unbounded, positive definite Lyapunov function
candidate is defined as

Vl = 1
2

e�lωJlelω +
1
2

e�lqklqelq > 0 ∀elω /= 0, elq /=0. (25)

Indeed, we have

1
2

min
{
jlm, klq

}
‖x2‖2 ≤ Vl ≤ 1

2
max

{
jlM , klq

}
‖x2‖2,

(26)

where jlm ≤ ‖Jl‖ ≤ jlM . By differentiation of (25) and
inserting (24) and (21), we obtain

V̇l = e�lqklqTleelω + e�lω
[

S
(

Jlωlb
i,lb

)
− klωI

]
elω − e�lωklqT�leelq,

(27)

where the first part of the second term in (27) is zero because
S(Jlωlb

i,lb) is a skew-symmetric matrix, which leads to

V̇l = −e�lωklωelω ≤ 0 (28)

so the origin of the system is uniformly stable and the
trajectories are bounded. The rest of the proof consists in
showing that the position errors and the velocity tracking
errors are square integrable. Then it suffices to invoke [41,
Lemma 3].

Let Vl(t) = Vl(elq(t), elω(t)) and x2(t) = [elq(t)�,
elω(t)�]�. Then, from (28), we obtain by integrating on both
sides

∫ t

t0
V̇l(s)ds = −

∫ t

t0
e�lω(s)klωelω(s)ds, (29)

−Vl(t) + Vl(t0) = klω

∫ t

t0
‖elω(s)‖2ds. (30)

Since −Vl(t) ≤ 0, we can write

klω

∫ t

t0
‖elω‖2ds ≤ Vl(t0)

= 1
2

(
e�lω(t0)Jlelω(t0) + e�lq(t0)klqelq(t0)

)

≤ 1
2

max
{
jlM , klq

}
‖x2(t0)‖2,

(31)

and thus
∫ t

t0
‖elω(s)‖2ds ≤ c3‖x2(t0)‖2, (32)

where c3 = max{ jlM , klq}/2klω.
Now let Wl(t) =Wl(elq(t), elω(t)) such that

Wl(t) = elq(t)�Tle(t)klqJlelω(t), (33)

and, by differentiation, we obtain

Ẇl(t) = ė�lq(t)Tle(t)klqJlelω(t)

+ e�lq(t)Ṫle(t)klqJlelω(t) + e�lq(t)Tle(t)klqJl ėlω(t).

(34)

By inserting Ṫ�le(t)elq(t) = Gl(t)elω(t), where

Gl(t) = 1
2

[
η̃l(t)I + S

(
ε̃l(t)

)]− 1
4

I, (35)

and (21) and (24) into (34), we obtain

Ẇl = e�lω(t)T�le(t)Tle(t)klqJlelω(t) + e�lωG�
l (t)klqJlelω(t)

− e�lq(t)Tle(t)klq
[
−S
(

Jlωlb
i,lb(t)

)
+ klωI

]
elω(t)

− e�lq(t)Tle(t)k2
lqT�le(t)elq(t)

≤ −c4

∥
∥
∥elq

∥
∥
∥

2
+ c5‖elω‖2 +

∥
∥
∥elq

∥
∥
∥c6‖elω‖,

(36)

where c4 = k2
lq/4, c5 = klq jlM‖G�

l (t)‖,

c6 =
klq

2
(∥∥
∥S
(

Jlωlb
i,lb(t)

)∥∥
∥ + klω

) , (37)

and ‖G�
l (t)‖ ≤ 3/4. The last term of (36) can be rewritten as

∥
∥
∥elq

∥
∥
∥c6‖elω‖ ≤ κ‖elω(t)‖2 +

c2
6

κ

∥
∥
∥elq(t)

∥
∥
∥

2
, (38)

and by choosing κ
 1 such that c4 > 2c2
6/κ, we obtain

Ẇl(t) ≤ − c4

2
∥
∥
∥elq(t)

∥
∥
∥

2
+ (c5 + κ)‖elω(t)‖2

. (39)

By applying the same line of arguments as in (29)–(31) and
inequality (32), (39) may be expressed as

Wl(t0) + (c5 + κ)c3‖x2(t0)‖2 ≥ c4

2

∫ t

t0

∥
∥
∥elq(s)

∥
∥
∥

2
ds. (40)

By inserting the upper bound

‖Wl(t0)‖ ≤ 1
2

max
{
klq, jlM

}∥∥
∥elq(t0)

∥
∥
∥‖elω(t0)‖

≤ max
{
klq, jlM

}(∥∥
∥elq(t0)

∥
∥
∥

2
+ ‖elω(t0)‖2

)

≤ max
{
klq, jlM

}
‖x2(t0)‖2

(41)



6 International Journal of Aerospace Engineering

into (40), the expression may be written as
∫ t

t0

∥
∥
∥elq(s)

∥
∥
∥

2
ds ≤ c7‖x2(t0)‖2, (42)

where c7 = 2(1/2 max{klq, jlM} + (c5 + κ)c3)/c4.
We conclude from Lemma 3 of [41] that the origin is

uniformly exponentially stable.

3.3. Control of Follower Spacecraft. For control of the follower
spacecraft attitude, we incorporate a similar control law as
in Section 3.2 but add terms for synchronization. For the
control law, it is assumed that we have available information
of the attitude and angular velocity for both spacecraft and
inertia matrix, J f , and that all perturbations are known
and accounted for. In the following, it is assumed that the
equilibrium point is chosen such that e f q± = [1∓ η̃ f , ε̃�f ]� is
either the positive or negative equilibrium point and does not
change during the maneuver. The control law is expressed as

τ
f b
f a = J f ω̇

f b
i,d − S

(
J f ω

f b
i, f b

)
ω

f b
i,d

− k f q

(
T�f ee f q − T�leelq

)
− k f ω

(
e f ω − elω

)
− τ f b

f d,

(43)

where k f q > 0 and k f ω > 0 are feedback gain scalars and the
last two terms are for synchronization. By insertion of (43)
into (9), we obtain the closed-loop rotational dynamics

ė f ω = J−1
f

[
−
(
k f ω − S

(
J f ω

f b
i, f b

))
e f ω

−k f qT�f ee f q + k f qT�leelq + k f ωelω
]

= f (x1) + g(x)x2,

(44)

where f (x1) is similar to the closed-loop system derived in
Section 3.2 hence the proof of uniform asymptotic stability
follows along similar lines.

The interconnection function is

g(x) =
⎡

⎣
J−1
f k f qT�le 0

0 J−1
f k f ω

⎤

⎦. (45)

In what follows we show that Assumptions 1–3 hold and,
hence, that the origin of the closed-loop system is uniformly
asymptotically stable.

Proof of Assumption 1. We start by considering δ′ = 1 (where
in this case δ′ is the parameter given in Assumption 1). By
evaluating (14) on Vf , we obtain
∥
∥
∥e�f ωJ f + e�f qk f q

∥
∥
∥‖x1‖ ≤ c1Vf (x1)

= c1

2

[
e�f ωJ f e f ω + e�f qk f qe f q

]
,

(46)

and by applying the triangular inequality on the left side of
(46) and squaring, we obtain

(∥∥
∥e�f ωJ f

∥
∥
∥ +

∥
∥
∥e�f qk f q

∥
∥
∥
)2
‖x1‖2

≤ c2
1

4

[
e�f ωJ f e f ω + e�f qk f qe f q

]2
.

(47)

On the left side of (47), we apply ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ ≤
2(‖x‖2 + ‖y‖2) and j f m ≤ ‖J f ‖ ≤ j f M such that

(∥∥
∥e�f ωJ f

∥
∥
∥ +

∥
∥
∥e�f qk f q

∥
∥
∥
)2

≤ 2ϕ
(

e�f ωJ f e f ω + e�f qk f qe f q

)
,

(48)

where ϕ = max{ j f M , k f q}. By insertion of (48) in (47), we
obtain

2ϕ
(

e�f ωe f ω + e�f qe f q

)
≤ c2

1ρ

4

(
e�f ωe f ω + e�f qe f q

)
, (49)

where ρ = min{ j f m, k f q}, and thus, we have to choose

c1 ≥
√

8ϕ
ρ

(50)

to fulfill (14). For (15), we have that
∥
∥
∥e�f ωJ f + e�f qk f q

∥
∥
∥ ≤ c2, (51)

and by using the triangular inequality and squaring and
applying (48) we obtain

2ϕ2‖x1‖2 ≤ c2
2. (52)

Since ‖x1‖ ≤ 1, we have to choose

c2 ≥
√

2ϕ (53)

to fulfill (15), and thus Assumption 1 is fulfilled.

Proof of Assumption 2. Since ‖Tle‖ = 1/2, (45) obviously
fulfills the growth rate criteria of (16), such as

∥
∥g(x)

∥
∥ ≤ 1

2

[(
1
J2
x

+
1
J2
y

+
1
J2
z

)
(
k2
f q + 4k2

f ω

)
]1/2

= ξ1,

(54)

where ξ1 is constant, and thus Assumption 2 is fulfilled.

Proof of Assumption 3. This assumption holds because
‖x2(t)‖ converges to zero exponentially fast.

We conclude that the equilibrium point (elq , elω, e f q,
e f ω) = (0, 0, 0, 0) of the cascaded system is UAS.

The proof for the other equilibria follows mutatis
mutandis.

4. Robustness to Disturbances

In this section, we develop our results from Section 3
by introducing unknown bounded disturbances. We use a
control law reminiscent of the Slotine and Li controller for
manipulators; see [23], based on a control structure which
has often been shown to be favorable from a stability analysis
point of view. In the case of bounded additive nonvanishing
disturbances, a steady-state error is unavoidable; hence, only
practical asymptotic stability may be obtained. Although the
control approach is the same, the technical analysis tools are
more sophisticated. We refer the reader to [32].
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4.1. Control of Leader Spacecraft. We start by assuming
that we have available controller gains according to θ1 =
[k f q, k f ω], θ2 = [klq , klω] ∈ Θ1 = Θ2 = R2

>0. The
uniform asymptotic stability in Section 3.2 is a result of
the assumption that τ lbld is known and accounted for in the
control law. We relax this assumption and assume that τ lbld
is unknown, but bounded, and thus there exists a βl > 0
such that ‖τ lbld‖ ≤ βl . Note that many of the disturbances
for Earth-orbiting spacecraft can be reasonably well modeled

as f̂sb
sd , which can be added to the overall analysis such that

f̃sb
sd = fsbsd − f̂sbsd . This strategy can reduce the upper bound

such that ‖f s̃bsd (t)‖ < βs̃ < βs, based on the quality of the
disturbance modeling. We apply the control law

τ lbla = Jlω̇lb
i,r − S

(
Jlωlb

i,lb

)
ωlb
i,r − klqT�leelq − klωsl, (55)

ωlb
i,r = ωlb

i,d − ΓlT�le
(

elq
)

elq , (56)

sl = ωlb
i,lb − ωlb

i,r = elω + ΓlT�leeql , (57)

where klq > 0, klω > 0 and Γl = Γ�l > 0 are feedback gains,
and, by inserting (55) into (9), we obtain the closed-loop
dynamics

ṡl = J−1
l

[
S
(

Jlωlb
i,lb

)
sl − klqT�leelq − klωsl

]
. (58)

A radial unbounded, positive definite Lyapunov function
candidate is defined as

Ṽl = 1
2

(
s�l Jlsl + e�lqklqelq

)
> 0 ∀sl /=0, elq /= 0, (59)

and, by differentiation of (59) and insertion of (58), we
obtain

˙̃Vl = −s�l klωsl − e�lqTleΓklqT�leelq + s�l τ
lb
ld

= −χ�2 Qlχ2 + s�l τ
lb
ld

≤ −qlm
∥
∥
∥χ2

∥
∥
∥

2
+ βl

∥
∥
∥χ2

∥
∥
∥,

(60)

where χ2 = [e�lq, s�l ]�, Ql = diag{TleklqΓlT�le , klωI}, and

qlm > 0 is the smallest eigenvalue of Ql. Accordingly, ˙̃Vl <
0 when ‖χ2‖ > βl/qlm = δ2, and, as βl increases, it can
be counteracted by increasing the controller gains. Hence,
the perturbed system is uniformly practically asymptotically
stable (UPAS); see [35]. We cannot claim semiglobal results
for the same reasons as we cannot claim global results.
Nevertheless, we assume that both Δ1 and Δ2 can be chosen
arbitrary large to make it easier to follow the line of the proof.

4.2. Control of Follower Spacecraft. A similar disturbance as
in Section 4.1 is introduced which are bounded such that
‖τ f b

f d‖ ≤ βf , and we apply a synchronizing controller based
on the Slotine and Li structure such as

τ lbf a = J f ω̇
f b
i,r − S

(
J f ω

f b
i, f b

)
ω

f b
i,r − k f q

(
T�e f e f q − T�leelq

)

− k f ω

(
s f − sl

)
,

(61)

where ω
f b
i,r and s f are defined similar to (56)-(57). By

inserting (61) into (9), we obtain

ṡ f = f̃
(
χ1

)
+ g̃
(
χ
)
χ2, (62)

where χ1 = [e�f q, s�f ]� and χ = [χ�1 , χ�2 ]�, and f̃ (χ1) and g̃(χ)
are on the same form as (58) and (45), respectively.

The rest of the proof consists in verifying the conditions
of [32, Theorem 3.3].

Proof of Assumption 3.2 (see [32]). The function g̃(χ)χ2 is
uniformly bounded both in time and in θ2 and vanishes with
χ2; thus, for any θ1 ∈ Θ1, we choose

Gθ1

(∥∥χ
∥
∥) = 1

2

[(
1
J2
x

+
1
J2
y

+
1
J2
z

)
(
k2
f q + 4k2

f ω

)
]1/2

,

Ψθ1

(∥∥
∥χ2

∥
∥
∥
)
= ‖χ2‖,

(63)

thus, Gθ1 (‖χ‖) is constant and Ψθ1 (‖χ2‖) is of class K∞, and
the assumption is fulfilled for all θ2 ∈ Θ2 and all χ ∈ S3 ×
R3 × S3 ×R3.

Proof of Assumption 3.4 (see [32]). This Assumption was
proven in Section 4.1.

Proof of Assumption 3.5 (see [32]). By applying the same rea-

soning as in Section 4.1, we achieve ˙̃V f < 0 when
‖χ1‖ > βf /q f m = δ1, where q f m > 0 is the smallest
eigenvalue of Q f = diag{T f ek f qΓ f T�f e, k f ωI}, which is
defined similar to Ql in (60). An increase of βf can as well be
counteracted by increasing the controller gains; thus, given
any Δ1 > δ1 > 0, there exists a parameter θ�1 (δ1,Δ1) ∈
Θ1. We choose αδ1,Δ1

(‖χ1‖) = 1/2 min{ j f m, k f q}‖χ1‖2 and
αδ1,Δ1 (‖χ1‖) = 1/2 max{ j f M , k f q}‖χ1‖2, and thus the first
part of the assumption is fulfilled, and the second part is
fulfilled for αδ1,Δ1 (‖χ1‖) = min{k f q/4, k f ω}‖χ1‖2. The last
inequality also holds similar to (51)–(53) with cδ1,Δ1 (‖χ1‖) =√

2σ‖χ1‖1/2, and thus Assumption 3.5 holds for all χ1 ∈
H(δ1,Δ1), where Δ1 can be chosen arbitrary large by
assumption.

Proof of Assumption 3.6 (see [32]). We define a LFC for the
leader and follower spacecraft as

Ṽl f (t, x) = 1
2

(
s�l Jlsl + e�lqklqelq + s�f J f s f + e�f qk f qe f q

)
,

(64)

which is lower and upper bounded by

αl f =
1
2

min
{
jlm, j f m, klq , k f q

}∥
∥χ
∥
∥2, (65)

αl f = 1
2

max
{
jlM , j f M , klq , k f q

}∥
∥χ
∥
∥2, (66)

respectively, and it can be shown that the second equation of
[32, Proposition 2.13] is fulfilled by differentiation of (64).
There exists a positive constant Δ0 such that for any given
positive number δ1, Δ1, δ2, Δ2, satisfying Δ1 > max{δ1,Δ0}
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Figure 2: Attitude and angular velocity error and control torque for leader ((a), (c), (e)) and synchronizing follower ((b), (d), (f)) spacecraft
during maneuver without measurement noise and disturbances.
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Figure 3: Attitude and angular velocity error and control torque for leader ((a, (c), (e))) and synchronizing follower ((b, (d), (f))) spacecraft
during maneuver including measurement noise and disturbances.
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and Δ2 > δ2, there exists a δ1 such that αl f (δ1) < αl f (Δ1).
As mentioned in Section 4.1, given any βl , we can achieve
any δ2 by increasing the gains θ2, and thus there exits a
parameter θ�2 ∈ D f2 (δ2,Δ2) ∩ Θ2, such that by applying
the last inequality of [32, Proposition 2.13] using the bounds
(65), we see that the first equation of Assumption 3.6 is
fulfilled for

γ(Δ1) =

√
√
√
√
√

min
{
jlm, j f m, klq , k f q

}
Δ2

1

max
{
jlM , j f M , klq , k f q

} . (67)

We have that

α−1
δ1,Δ1

◦ αδ1,Δ1 (δ1) =

√
√
√
√
√

max
{
j f M , k f q

}
δ2

1

min
{
j f m, k f q

} , (68)

then, for any Δ� > δ� > 0, there exist parameters δ1, δ2, Δ1,
and Δ2 such that

min

⎧
⎪⎨

⎪⎩
Δ1,Δ2,

√
√
√
√
√

min
{
jlm, j f m, klq , k f q

}
Δ2

1

max
{
jlM , j f M , klq , k f q

}

⎫
⎪⎬

⎪⎭
≥ Δ� (69)

since Δ1 and Δ2 can be chosen arbitrarily large and the
constants jsm, jsM , ksq, ksω > 0, and

max

⎧
⎪⎨

⎪⎩
δ2,

√
√
√
√
√

max
{
j f M , k f q

}
δ2

1

min
{
j f m, k f q

}

⎫
⎪⎬

⎪⎭
≤ δ� (70)

is fulfilled since, by decreasing δ1, k f q is increased but only of
order one, and thus the two last inequalities of Assumption
3.6 are fulfilled and Assumption 3.6 holds. It can then be
concluded that the equilibrium points of the cascaded system
are UPAS.

By setting elq = elq− or e f q = e f q−, the other three proofs
are performed in a similar way, and we thus conclude that the
set of equilibrium points (elq±, elω, e f q±, e f ω) = (0, 0, 0, 0) are
UPAS.

5. Simulations

In the following, simulation results of a leader spacecraft in
an elliptic LEO with the follower spacecraft following the
same orbit with one-second delay are presented to validate
the proposed approach. The simulations were performed
in Simulink using a variable sample-time Runge-Kutta
ODE45 solver with relative and absolute tolerance of 10−9.
The moments of inertia were chosen as Jl = J f =
diag{4.35, 4.33, 3.664}kgm2, and the spacecraft orbits were
chosen with apogee at 750 km, perigee at 600 km, inclination
at 71◦, and the argument of perigee and the right ascension of
the ascending node at 0◦. The initial conditions were chosen
as ql(t0) = [−0.3772,−0.4329, 0.6645, 0.4783]�, q f (t0) =
1/
√

4[1, 1, 1, 1]�, ωl(t0) = [0.1 − 0.30.2]�, and ω f (t0) =
[0.2 − 0.30.1]�, controller gains as ksq = 1, ksω = 2, and
Γs = I for (23), (43), (55), and (61), and desired trajectory
as ω̇d = 0.1[−10c2

0 cos(8c0t), 48c2
0 sin(16c0t),−8c2

0 cos(4c0t)],

ωd its integrate, and qd(t0) = [1, 0]�, where c0 = π/to
and to denotes the orbital period. For relative attitude
(synchronization error) and angular velocity between the
leader and follower spacecraft, we define q̃sy = q f ⊗ ql and
esy = e f ω − elω, respectively.

In Figure 2, simulation results are presented without dis-
turbances and noise. From Figure 2(a) we see that the leader
spacecraft settles at the negative equilibrium, the angular
velocity error go towards zero, and the actuator torque is
presented in the bottommost plot. On the right-hand side
we see that the relative attitude and angular velocity error
go towards zero, and thus the follower spacecraft is able to
synchronize with the leader spacecraft. The bottommost plot
on the right hand depicts the follower actuator torque.

In the second set of simulation results, we introduce
measurement noise as σBn = {x ∈ Rn : ‖x‖ ≤ σ} which
was added according to ẽq = (eq +0.05B4)/‖eq +0.05B4‖ and
ẽω = eω + 0.01B3 for both the leader and follower spacecraft.
Also, since we are considering a slightly elliptic LEO, we
only considered the disturbance torques which are the major
contributors to these kind of orbits, that is, gravity gradient
torque and torques caused by atmospheric drag and J2 effect
(cf. [34, 36, 37]). The latter is caused by nonhomogeneous
mass distribution of a planet. The torques generated by
atmospheric drag and J2 were induced because of a 10 cm
displacement of the center of mass. All disturbances are
considered continuous and bounded.

As it can be seen from Figure 3, the control laws derived
for unknown disturbances also are able to make the leader
track the reference and make the follower synchronize with
the leader, similar to the results from the first simulation.
One notable difference is that these control laws are in
general faster than the results presented in Figure 2, though
demanding larger absolute control torque.

6. Conclusions

In this paper, we have presented control laws for leader-
follower synchronization of spacecraft, performed stability
analysis based on cascade theory, and proven the equilibrium
points of the overall system to be uniformly asymptotically
stable (UAS) when disturbances were assumed to be known,
and uniformly practically asymptotically stable (UPAS)
when unknown, but bounded disturbances were included.
Simulation results were presented to validate the proposed
method for the overall system showing that the follower
spacecraft was able to synchronize with the leader spacecraft
in a satisfactor way even when disturbances were presented.

References

[1] I. Blekhman, Synchronization in Science and Technology, ASME
Press Translations, ASME Press, New York, NY, USA, 1988.

[2] A. Rodriguez-Angeles, Synchronization of mechanical systems,
Ph.D. thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, 2002.

[3] H. Nijmeijer and A. Rodriguez-Angeles, Synchronization of
Mechanical Systems, vol. 46 of World Scientific Series on
Nonlinear Science, Series A, 2003.



International Journal of Aerospace Engineering 11

[4] E. Kyrkjebø, Motion coordination of mechanical systems: leader-
follower synchronization of euler-lagrange systems using output
feedback control, Ph.D. thesis, Department of Engineering
Cybernetics, Norwegian University of Science and Technology,
Trondheim, Norway, 2007.

[5] A. Rodriguez-Angeles and H. Nijmeijer, “Coordination of two
robot manipulators based on position measurements only,”
International Journal of Control, vol. 74, no. 13, pp. 1311–1323,
2001.

[6] A. K. Bondhus, K. Y. Pettersen, and H. Nijmeijer, “Master-
slave synchronization of robot manipulators,” in Proceedings
of the IFAC Symposium on Nonlinear Control Systems Design,
Stuttgart, Germany, 2004.

[7] J. Lawton and R. W. Beard, “Elementary attitude formation
maneuver via leader-following and behaviour-based control,”
in Proceedings of the AIAA Guidance, Navigation and Control
Conference, Denver, Colo, USA, 2000.

[8] A. K. Bondhus, K. Y. Pettersen, and J. T. Gravdahl,
“Leader/follower synchronization of satellite attitude without
angular velocity measurements,” in Proceedings of the 44th
IEEE Conference on Decision and Control, and the European
Control Conference (CDC-ECC ’05), pp. 7270–7277, Seville,
Spain, December 2005.

[9] R. Kristiansen, Dynamic synchronization of spacecraft—
modeling and coordinated control of leader-follower spacecraft
formations, Ph.D. thesis, Department of Engineering Cyber-
netics, Norwegian University of Science and Technology,
Trondheim, Norway, 2008.

[10] E. I. Grøtli, Robust stability and control of spacecraft formations,
Ph.D. thesis, Norwegian University of Science and Technology,
2010.

[11] S. H. Fu, C. C. Cheng, and C. Y. Yin, “Nonlinear adaptive
tracking control for underway replenishment process,” in
Proceeding of IEEE International Conference on Networking,
Sensing and Control, vol. 2, pp. 707–712, Taipei, Taiwan, March
2004.

[12] E. Kyrkjebø, E. Panteley, A. Chaillet, and K. Y. Pettersen,
“A virtual vehicle approach to underway replenishment,” in
Group Coordination and Cooperative Control, K. Y. Pettersen,
J. T. Gravdahl, and H. Nijmeijer, Eds., vol. 336 of Lecture Notes
in Control and Information Sciences, pp. 171–189, Springer,
Berlin, Germany, 2006.

[13] J. R. Lawton, B. J. Young, and R. W. Beard, “Decentralized
approach to elementary formation maneuvers,” in Proceedings
of IEEE International Conference on Robotics and Automation
(ICRA ’00), vol. 3, pp. 2728–2733, April 2000.

[14] G. Antonelli and S. Chiaverini, “Kinematic control of platoons
of autonomous vehicles,” IEEE Transactions on Robotics, vol.
22, no. 6, pp. 1285–1292, 2006.

[15] F. Arrichiello, Coordination control of multiple mobile robots,
Ph.D. thesis, Cassino University, Cassino, Italy, 2006.

[16] F. Arrichiello, S. Chiaverini, and T. I. Fossen, “Formation
control of marine surface vessels using the null-space-based
behavioral control,” in Group Coordination and Cooperative
Control, K. Y. Pettersen, J. T. Gravdahl, and H. Nijmeijer, Eds.,
vol. 336 of Lecture Notes in Control and Information Sciences,
chapter 1, pp. 1–19, Springer, Berlin, Germany, 2006.

[17] R. Cui, S. S. Ge, B. voon Ee How, and Y. Sang Choo, “Leader-
follower formation control of underactuated autonomous
underwater vehicles,” Ocean Engineering, vol. 37, no. 17-18,
pp. 1491–1502, 2010.

[18] H. Bai, M. Arcak, and J. T. Wen, “Adaptive motion coordi-
nation: using relative velocity feedback to track a reference
velocity,” Automatica, vol. 45, no. 4, pp. 1020–1025, 2009.

[19] A. Sarlette, R. Sepulchre, and N. E. Leonard, “Autonomous
rigid body attitude synchronization,” Automatica, vol. 45, no.
2, pp. 572–577, 2009.

[20] D. V. Dimarogonas, P. Tsiotras, and K. J. Kyriakopoulos,
“Leader-follower cooperative attitude control of multiple rigid
bodies,” Systems and Control Letters, vol. 58, no. 6, pp. 429–
435, 2009.

[21] R. Ortega, A. Lorı́a, P. J. Nicklasson, and H. Sira-Ramı́rez,
Passivity-based Control of Euler-Lagrange Systems: Mechanical,
Electrical and Electromechanical Applications, Comunications
and Control Engineering, Springer, London, UK, 1998.

[22] B. Paden and R. Panja, “Globally asymptotically stable ’PD+’
controller for robot manipulators,” International Journal of
Control, vol. 47, no. 6, pp. 1697–1712, 1988.

[23] J. J. E. Slotine and W. Li, “On the adaptive control of robot
manipulators,” International Journal of Robotics Research, vol.
6, no. 3, pp. 49–59, 1987.

[24] F. Mazenc, L. Praly, and W. P. Dayawansa, “Global stabilization
by output feedback: examples and counterexamples,” Systems
and Control Letters, vol. 23, no. 2, pp. 119–125, 1994.

[25] A. Lorı́a and E. Panteley, “Cascaded nonliear time-varying
systems: analysis and design,” in Advanced Topics in Control
Systems Theory, vol. 311 of Lecture Notes in Control and
Information Sciences, chapter 2, pp. 23–64, Springer, Berlin,
Germany, 2005.

[26] T. I. Fossen and O.-E. Fjellstad, “Cascaded adaptive control
of ocean vehicles with significant actuator dynamics,” in
Proceedings of the IFAC World Congress, Sydney, Australia,
1993.

[27] A. Lorı́a, H. Nijmeijer, and O. Egeland, “Cascaded synchro-
nization of two pendula,” in Proceedings of the American
Control Conference, 1998.

[28] M. Jankovic, R. Sepulchre, and P. V. Kokotovic, “Constructive
Lyapunov stabilization of nonlinear cascade systems,” IEEE
Transactions on Automatic Control, vol. 41, no. 12, pp. 1723–
1735, 1996.

[29] Z. P. Jiang and I. M. Y. Mareels, “A small-gain control method
for nonlinear cascaded systems with dynamic uncertainties,”
IEEE Transactions on Automatic Control, vol. 42, no. 3, pp.
292–308, 1997.

[30] E. Panteley and A. Loria, “On global uniform asymptotic sta-
bility of nonlinear time-varying systems in cascade,” Systems
and Control Letters, vol. 33, no. 2, pp. 131–138, 1998.

[31] A. Chaillet and A. Lorı́a, “Uniform semiglobal practical
asymptotic stability for non-autonomous cascaded systems
and applications,” Automatica, vol. 44, no. 2, pp. 337–347,
2008.

[32] A. Chaillet, On stability and robustness of nonlinear systems:
applications to cascaded systems, Ph.D. thesis, UFR Scientifique
D’Orsay, Paris, France, 2006.

[33] O. Egeland and J. T. Gravdahl, Modeling and Simulation for
Automatic Control, Marine Cybernetics, Trondheim, Norway,
2002.

[34] M. J. Sidi, Spacecraft Dynamics and Control, Cambridge
University Press, New York, NY, USA, 1997.

[35] W. Hahn, Stability of Motion, Springer, Berlin, Germany, 1967.
[36] O. Montenbruck and E. Gill, Satellite Orbits. Models, Methods,

Applications, Springer, Berlin, Germany, 1st edition, 2001.
[37] J. R. Wertz, Ed., Spacecraft Attitude Determination and Control,

Kluwer Academic Publishers, London, UK, 1978.
[38] Ø. Hegrenæs, J. T. Gravdahl, and P. Tøndel, “Spacecraft

attitude control using explicit model predictive control,”
Automatica, vol. 41, no. 12, pp. 2107–2114, 2005.



12 International Journal of Aerospace Engineering

[39] T. I. Fossen, Marine Control Systems: Guidance, Navigation,
and Control of Ships, Rigs and Underwater Vehicles, Marine
Cybernetics, Trondheim, Norway, 2002.

[40] J. T. Y. Wen and K. Kreutz-Delgado, “The attitude control
problem,” IEEE Transactions on Automatic Control, vol. 36, no.
10, pp. 1148–1162, 1991.

[41] A. Lorı́a, E. Panteley, D. Popovic, and A. R. Teel, “δ-persistency
of excitation: a necessary and sufficient condition for uniform
attractivity,” in Proceedings of the 41st IEEE Conference on
Decision and Control, vol. 3, pp. 3506–3511, Las Vegas, Nev,
USA, December 2002.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


