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Linking climate variability and change to the phenological response of species is
particularly challenging in the context of mountainous terrain. In these environments,
elevation and topography lead to a diversity of bioclimatic conditions at fine scales affecting
species distribution and phenology. In order to quantify in situ climate conditions for
mountain plants, the CREA (Research Center for Alpine Ecosystems) installed 82
temperature stations throughout the southwestern Alps, at different elevations and
aspects. Dataloggers at each station provide local measurements of temperature at
four heights (5 cm below the soil surface, at the soil surface, 30 cm above the soil
surface, and 2m above ground). Given the significant amount of effort required for
station installation and maintenance, we tested whether meteorological data based on
the S2M reanalysis could be used instead of station data. Comparison of the two datasets
showed that some climate indices, including snow melt-out date and a heat wave index,
can vary significantly according to data origin. More general indices such as daily
temperature averages were more consistent across datasets, while threshold-based
temperature indices showed somewhat lower agreement. Over a 12 year period, the
phenological responses of four mountain tree species (ash (Fraxinus excelsior), spruce
(Picea abies), hazel (Corylus avellana), birch (Betula pendula)), coal tits (Periparus ater) and
common frogs (Rana temporaria) to climate variability were better explained, from both a
statistical and ecological standpoint, by indices derived from field stations. Reanalysis data
out-performed station data, however, for predicting larch (Larix decidua) budburst date.
Overall, our study indicates that the choice of dataset for phenological monitoring ultimately
depends on target bioclimatic variables and species, and also on the spatial and temporal
scale of the study.
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INTRODUCTION

Mountainous environments present large heterogeneity in
bioclimatic conditions over short distances (Bliss, 1962;
Scherrer and Körner, 2011). Indeed, elevation and meso-
topography (slope angle, aspect and form) cause important
variations in local temperature, soil moisture and snow cover
duration (Choler, 2005). For instance, snow beds are
characterized by longer snow cover duration, increased soil
moisture and a lack of soil freezing during the winter months,
in contrast to adjacent wind-blow ridge crests experiencing
shallow snowpack and frequent sub-zero mid-winter soil
temperatures (Löffler, 2007; Choler, 2018). Snow melt-out can
be more than 1 month later in a depression compared to a nearby
ridge only several meters away (Ford et al., 2013), creating
intricate bioclimatic gradients that drive species community
structure and productivity over short distances in alpine
environments (Carlson et al., 2015; Giaccone et al., 2019).
Measuring the effects of climate change and its consequences
on mountain biodiversity in the context of complex
environmental gradients continues to represent an important
challenge for ecologists (Körner and Hiltbrunner, 2021).
Available gridded climate data sets at continental-scale only
partly capture the variability of bioclimatic drivers at scales
relevant to organisms in mountains. Ecologists working in
mountain environments typically require not only high spatial
resolution climate layers, but also long-term datasets that can be
utilized to explain observed changes in plant phenology,
distribution or abundance (Suding et al., 2015).

Species phenology is a key response to climate changes, such as
increasing spring temperature, decreasing snow cover or late
spring frost with important implications for ecosystem
functioning (Cook et al., 2012; Vitasse et al., 2019, 2021). Key
bioclimatic parameters affecting species phenology can be
calculated from temperature sensors at different heights above
and below the ground surface. Growing degree days (GDD) and
chilling days are calculated from air sensors and partly determine
plant phenology (Dantec et al., 2014; Asse et al., 2018). Both
parameters can be calculated from measures taken at specific
heights, for example 2 m for trees or 30 cm for herbaceous
vegetation. Soil temperature stabilized at ± 0°C is related to
the presence of snow on the soil surface (Reusser and Zehe,
2011; Schmid et al., 2012; Teubner et al., 2015). Snow melt-out
can be an essential parameter initiating vegetation end of
dormancy for some species (Jonas et al., 2008; Petraglia et al.,
2014; Körner et al., 2019; Jabis et al., 2020; Marumo et al., 2020),
or animal breeding period (Bison et al., 2020). Moreover, snow
cover duration is an important factor affecting species that change
their coat color to white in winter, such as ptarmigan (Lagopus
spp.) and mountain hare (Lepus timidus; Melin et al. (2020);
Zimova et al. (2020)), or to access food resources (Espunyes et al.,
2022). Finally, measuring the duration and intensity of summer
heat waves, calculated from air sensors, is critical in order to
assess the ability of plants and animals to cope with extreme heat
events. Relationships between climatic variables and species
phenology are not straightforward. For instance, recent studies
show that plant productivity is positively related to temperature

as long as water is available (Orsenigo et al., 2014; Cremonese
et al., 2017; Francon et al., 2020). In addition, effects of air
temperature on vegetation phenology can be difficult to
capture with asymmetric effects of nighttime temperature
(minimum day temperature) and daytime temperature
(maximum day temperature) (Shen et al., 2016, 2018; 2022a).
Accordingly, temperature stations with sensors at various heights
above and below ground provide invaluable measurements used
to capture local climate variability, change and extreme events
affecting mountain biodiversity, in terms of species distribution,
abundance and phenology. However, maintaining temperature
field stations is demanding in terms of time, expense and
technical expertise. In addition, overseeing a dense network of
point-based stations may not be feasible for ecologists particularly
over a large area and over the long-term (Thornton et al., 2022).

Ecologists often use modeled gridded data to investigate
species responses to climate. CHELSA (Karger et al., 2017)
and Worldclim (Fick and Hijmans, 2017) are heavily used by
biologists, for example to predict future species distributions in
a climate change context (Schorr et al., 2012; Brun et al., 2020).
These gridded datasets typically provide interpolated data at
monthly, seasonal and annual time steps at a resolution of 1 km2

but lack the daily or even hourly temporal resolution necessary
to calculate many of the aforementioned bioclimate indices.
Furthermore, most gridded climate datasets do not provide
information about seasonal snow cover at the scale of
mesotopographic gradients, which is an essential parameter
regulating ecosystem functioning in temperate mountain
environments (Xie et al., 2021). The SAFRAN-Crocus-
MEPRA (S2M) reanalysis provides meteorological variables
including temperature, wind, incoming solar radiation,
precipitation and snow pack height (Durand et al., 1993;
Vernay et al., 2021). S2M has been specifically developed for
mountain areas, including the Pyrenees, Corsica and the French
Alps, giving predicted variables by massif and for classes of
slope, aspect and elevation. In an alpine context, Francon et al.
(2020), used S2M data to highlight a negative effect of drought
and warm summer temperatures on Rhododendron ferrugineum
shrub growth since the 1990s, before which shrub growth was
limited by snow cover duration and summer temperature.
Although widely used for ecological applications, previous
studies have not compared the ecological relevance of S2M
outputs with local temperature station observations as
phenological predictors.

Given the high spatial and temporal heterogeneity of
climate fields in mountainous environments, we ask whether
available modeled climate data (e.g., S2M) are sufficient to
relate bioclimatic factors to local phenological responses, or on
the contrary are local climate measurements necessary. This
question came up after analyzing data from the Phenoclim
program that has the objective to analyze and predict
phenological changes in mountain species throughout the
southwestern European Alps. In this paper, we present
CREA Mont-Blanc’s (Research Center for Alpine
Ecosystems) temperature stations functioning and data
processing. Then, we compare seasonal and monthly
temperature indices and snow cover duration between S2M
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and temperature stations. Finally, we test the statistical and
ecological relevance of these two data sources for predicting
observed phenological responses of target species. Based on
our results, we assess the respective strengths and weaknesses
of the two datasets for relating long-term shifts in phenology to
bioclimatic variables.

MATERIALS AND METHODS

CREA Mont-Blanc developed the Phenoclim program in 2004
in order to quantify relationships between climate parameters
and species phenology (Phenoclim, 2020). Within this citizen
science program, participants observe phenological stages of
target species over the course of the year to highlight an
advance or delay in species phenology over time. CREA
Mont-Blanc installed temperature stations in species
monitoring sites throughout the southwestern Alps to
provide local temperature measurements. Using Phenoclim
data, Pellerin et al. (2012); Asse et al. (2018, 2020); Bison et al.
(2020) and Bison et al. (2021) documented the effects of
climate variability on trees, coal tits (Periparus ater), and
common frogs (Rana temporaria), respectively. We use
temperature and phelogical data from the Phenoclim
program for the present work.

Temperature Stations
Temperature stations were designed specifically for CREAMont-
Blanc to link temperature to species phenology. The network of
82 stations covers the French Alps and a part of the neighboring
Swiss and Italian Alps (Figure 1A). Stations did not all cover the
same time period and some sensors stopped functioning, leading
tomissing values (SupplementaryMaterial S1.2). During the last
year taken into account in this study (i.e., 2018), 57 stations were
running. Stations cover a wide range of elevations, from 200 to
2,700 m, and various substrates, slopes and aspects
(Supplementary Material S1.1).

Stations are composed of a white 3.5 m aluminum tube, of which
the first 70 cm are inserted into the soil through a sheath
(Figure 1B). Their white color limits heating by sun rays and
merges in the landscape, at least in winter. The components of
the stations (solar panel, sensors, antenna) are made from Inox steel
for rigidity and resistance to corrosion. Their shape is designed to
avoid snow accumulation. Solar panels allow station electrical
autonomy and a voltage regulator ensures battery recharge.
Battery autonomy alone is around 60 days. Temperature stations
have four “onewire” Dallas DS18B20 sensors inside brass cases
embedded in a ventilated atmospheric shelter. Stacked PVC cups are
resistant to ultraviolet radiation and allow air circulation, while
protecting sensors from direct sun rays. Sensors are positioned at
5 cm below the soil surface, at the soil surface, 30 cm above the soil

FIGURE 1 | Location of the stations (A) and description of their components (B).
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surface, and 2m above ground (Figure 1B). These four heights were
chosen according to species living conditions: the 2 m sensor gives
information for tree and tall shrub canopy temperature conditions,
the 30 cm for herbs and dwarf shrubs, and the 0 and −5 cm sensors
give the temperature for short-stature alpine vegetation plant roots
and soil fauna. The sensor located at −5 cm also informs us of the
presence of snow. An electronic card ensures system functioning:
measurements, data processing, storage and data transmission. Data
are sent through the GPRS module integrated into the electronic
card and uploaded to an FTP server. Sensors take a measurement
every 15 min and data are sent to the server every hour.

Data Processing
Data were first screened using an automated script to remove
erroneous measurements and date errors. We also manually
checked data validity. We removed recurring errors such as
strings of particular values known to be wrong, identical
values recorded by the four sensors at the same time, and
sudden variations. Finally, by comparing station data to S2M,
we highlighted periods during which some stations had abnormal
measurements, which we subsequently deleted.

Missing Data Imputation
When the missing data period was equal or inferior to 4 h, we
used the R function “na.approx” from package zoo (Zeileis and
Grothendieck, 2005) to interpolate missing values. At a given
time, if sensor 1 or 2 (Figure 1B) had missing values, and sensor 3
recorded two following values inferior to 2°C, superior to −2°C
and with a variance inferior to 0.2°C, we estimated that the
missing values equaled zero, meaning that sensor 1, 2 and 3
were under the snow. Following the same rule applied to sensor 2,
we completed sensor 1 missing values, and vice versa. For sensors
1, 2 and 3, if the 300 measures before and after a period of
maximum 300 missing values, were inferior to 2°C and superior
to −2°C, we estimated that missing values equaled 0°C.

Data processing was done with R version 3.3.3 (R Core Team,
2020).

Climate Models
We used daily mean air temperature values from the SAFRAN
model developed by the French National Center of Meteorological
Research (CNRM/CEN). SAFRAN is a meteorological analysis
which combines output from a numerical weather prediction
model and in situ observations (Durand et al., 1993; Vernay
et al., 2021). SAFRAN predicts various meteorological variables at
1-hour time steps such as temperature, wind, precipitation and
radiation. The SAFRAN-Crocus-MEPRA (S2M)model chain (Brun
et al., 1989, 1992; Vionnet et al., 2013) predicts snow pack height and
other physical properties based on meteorological inputs from
SAFRAN. S2M outputs are generated for 23 alpine massifs
throughout the French Alps, and further divided into 300m
elevation classes, six aspects (N, NE, E, SE, S, SW, W, and NW)
and three slope classes (0, 20°, 40°). Vernay et al. (2021) define a
massif as a conceptual object corresponding to a mountainous area
(of about 1,000 km2 on average) over which the meteorological
conditions are considered homogeneous at a given elevation.We did
not consider different slopes as they only slightly influence

temperature and snowpack values in the S2M analysis. Hence,
we assigned stations to S2M elevation classes, by massif, for
purposes of comparative analysis. We chose not to interpolate
model values to the exact elevation of the stations, as the
relationship between elevation and temperature is not always
linear, for example in the case of temperature inversions.

Climate and Phenological Indices
We compared several seasonal indices known to influence species
phenology, calculated from stations and S2M data. We also
investigated whether species responses to climatic parameters
depended on input data (station or S2M data). We carried out
comparative analyses between 1 January 2006 and 1 August 2018.
S2M models are only available in France, therefore we excluded
Italian and Swiss stations from subsequent analyses. We
also removed nine stations that were outsidemassifs defined in S2M.

Daily Averages
We first calculated daily mean, minimum and maximum
temperatures from the 2 m sensor of station data to compare
them to S2M data. Daily values were only calculated when at least
80% of the daily measurements were available.

Chilling
Chilling is defined as the frequency of days with a daily mean
temperature < 5°C from September 1st to December 31st and is
known to affect sprout dormancy (Dantec et al., 2014; Asse et al.,
2018). We calculated the number of chilling days using the 2 m
sensor of each station and associated S2M class, for each year
when all data were available from September 1st to December
31st for at least 8 years.

Growing Degree-Days
In relation to spring phenology of target tree species, we defined
growing degree days (GDD) as the sum of daily air temperatures
above a 0°C threshold between January 1st and April 1st (Asse et al.,
2018). We calculated GDD using the 2 m sensor of each station and
associated S2M class, for each year when all data were available from
September January 1st and April 1st for at least 8 years.

Heat Wave Index
We calculated the number of heat wave days for each station and
year following the methods of Corona-Lozada et al. (2019). This
method is based on the calculation of warm days and then heat
waves. We counted the number of days presenting an air
temperature above the 90th percentile, based on daily S2M
temperature values for a 1981–2010 reference period. Heat
waves are determined as episodes of at least three consecutive
days above the daily temperature threshold. Lastly, we summed
the number of heat waves for each year and station.We compared
the number of heat waves between S2M and stations that
presented at least five summers with complete data.

Snow Occurrence
We compared snowmelt-out dates estimated by S2M and stations.
In the case of stations, we considered a snow layer to be present
when soil temperature at −5 cm was stabilized around 0°C (±2°C)
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during 3 days, and the variance between mean soil temperature of
these 3 consecutive days was inferior to 0.7°C (Reusser and Zehe,
2011; Schmid et al., 2012; Teubner et al., 2015).We determined the
presence of a snow layer from S2Mwhen snow height was > 0 cm.
For comparison, we determined the longest continuous period
with a snow layer from S2M and station data for each winter (Klein
et al., 2016). We considered days of snow from September 1st to
July 31st of the following year. We accepted a continuous period
with a maximum of 10 days without snow. We designated snow
melt-out date as the last day of this snow period.

We compared snowmelt-out dates between S2M and stations for
which we could calculate snow melt-out date for at least 5 years (22
stations). Several stations were then excluded as they ran for less than
5 years, or had missing values during their running period. Winters
were excluded when stations did not record temperature for at least
10 days, or their longest snow period ended with missing values.

We also visually observed snow presence on a daily basis in
Chamonix (1,045 m) and Montroc (1,410 m) during the winter
months (Figure 1).

Effects of Chilling and Growing Degree Days on Tree
Phenology
We compared relationships between temperature (chilling and
GDD) and budburst dates for five tree species, calculated using
stations and S2M. We obtained budburst dates for ash (Fraxinus
excelsior), spruce (Picea abies), hazel (Corylus avellana), birch
(Betula pendula) and larch (Larix decidua) from the Phenoclim
project (Phenoclim, 2020). We attributed observations to the
closest stations when they were included within an observation
perimeter of 15, 7.5, 3.75, or 1.9 km radius from the station and had
a difference in altitude with the station inferior to 100 m. Several
observation zones could be associated with the same station.

Relationships Between Snow Melt-Out and Frog
Egg-Spawning Date
We investigated the effects of snow melt-out on common frog
maximum egg-spawning date (Rana temporaria) using S2M and
station datasets. The common frog egg-laying dates were noted
for several ponds at Loriaz (1970 m) and Vallorcine (1,340 m,
Figure 1A) by CREA Mont-Blanc employees and volunteers
(Bison et al., 2021). We then calculated the maximum egg-
spawning date as the date with the maximum number of
spawn in the ponds.

Relationships Between Snow Melt-Out, Spring Air
Temperature and Coal Tits Laying Date
We calculated the mean egg laying date of coal tits (Periparus
ater) at two elevations (Vallorcine, 1,340 m and Loriaz, 1915 m;
Figure 1) from weekly birdhouse observations (Bison et al.,
2020). We assessed co-variation between egg laying date and
snow melt-out date, and spring air temperature.

Statistical Analyses
We computed linear regressions between indices calculated from
S2M as the response variable and stations as the predictor, and
calculated R.adj2 (adjusted R squared), RMSE (root mean squared

error) and MAE (mean absolute error) of the regressions. When
R.adj2 was superior to 0.70, we also used major axis (MA)
estimation tests to calculate slopes of the regressions for each
station (Warton et al., 2006), and the best-fit common regression
slope among all stations, as well as confidence intervals (Warton
and Weber, 2002). MA is relevant when comparing two datasets
that both present potential errors (stations and S2M).

To investigate whether the quality of the regressions between daily
means calculated from stations and data from S2M varied according
to months, we calculated the R.adj2 of the regressions for each month
and station. Relationships were tested only if at least 25 daily averages
were available for the month, during 5 years, for each station.

We assessed differences between snow melt-out date calculated
from both datasets, for each stations and massif in order to detect
potential spatial variability in agreement between stations and S2M
data. We then compared the beginning (onset) and end (melt-out
date) of the snow covered period across visual observations, station
and S2M data, at two sites in the Chamonix Mont-Blanc valley
(Chamonix—1,050 m and Montroc—1,430 m), for each year,
considering that visual observations were the reference (true value).

For each of the four perimeters considered (15, 7.5, 3.75, or
1.9 km radius), we computed linear mixed models testing the
effects of GDD and chilling days on budburst dates of each
species, considering stations as a random factor (as in Asse
et al. (2018)), for a total of 28 stations. We then compared AIC
between models computed with predictor variables calculated
from station and S2M data. We also compared differences in
AIC between models implemented with data coming from
different observation perimeters to investigate whether station
models had a better support when data were closer to the
station.

We tested the relationship between the mean of the maximum
egg-laying date for both sites, by year, and snowmelt-out with the
two datasets with linear models. Following Bison et al. (2020), we
used linear models to evaluate how snow melt-out date and mean
spring air temperature influenced the mean of laying date of coal
tits at the two elevations, included as an interaction with the two
others variables, using stations and S2M data.

Analyses were carried out with R (R Core Team, 2020) version
4.0.3 and packages smatr (Warton et al., 2012) and nlme
(Pinheiro et al., 2020).

RESULTS

According to the MA test, slopes of the regressions between daily
averages, chilling and GDD calculated from stations and S2M
varied according to stations (Table 1).

Daily Averages
Figure 2 illustrates a typical year of data produced by an example
station, with seasonal snow cover indicated by stable soil
temperatures around 0°C and higher variability recorded by
above-ground sensors.

Daily mean temperatures at 2 m recorded by stations were well
correlated to air temperatures predicted by S2M each month
(mean R.adj2 = 0.92 ± 0.06), with average slopes of 0.97 (±0.08)
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and a mean error of 0.02. However correlations were lower in
winter (Figure 3).

In addition, daily minimum and maximum temperatures at
2 m recorded by stations were well correlated to minimum an
maximum air temperatures predicted by S2M each month
(mean R.adj2 = 0.83 ± 0.1, and mean R.adj2 = 0.77 ± 0.1),
with average slopes of 0.91 (±0.07) and 0.97 (±0.1), and a mean
error of 0.02 and 0.03, respectively. The average difference
between minimum temperatures calculated from S2M and
from stations was equal to 1.28°C, and −2.27°C for maximum
temperatures.

Chilling
The regression between the number of chilling days calculated
from S2M and stations had a global R.adj2=0.73 (min = 0.58, max
= 0.98) and a low dispersion (RMSE = 7, Table 1; Figure 4A).

Growing Degree-Days
R.adj2 of the regressions between GDD calculated from station
and S2M, for each station, varied from 0.75 to 0.97 (Figure 4B)
with a global R.adj2=0.73 (Table 1).

Heat Wave Index
The relationship between station and S2M data was weak (R.adj2

= 0.35, Table 1). Correlations between the number of heat wave
days calculated from stations and S2M varied according to
stations, with some stations even presenting a negative
relationship (Figure 5). However, inter-annual patterns of
warm summers were similar between data from stations and
S2M with 2009, 2012 and 2017 standing out as exceptionally
warm summers (Figure 6). Stations tended to estimate more heat
waves than S2M (mean difference = 12 ±14 days).

Snow Occurrence
Correlation strengths between station and S2M dates of snow onset
and snow melt-out were low (R.adj2 = 0.25 and R.adj2 = 0.46,
respectively), and presented high dispersion (RMSE > 20, Table 1).

Differences between S2M and station snow melt-out dates
varied according to stations and years, with a maximum
difference of 108 days. Snow melt-out dates calculated by
stations were usually earlier than the ones assessed by S2M
(average difference = 26 ±26 days). However, three stations

TABLE 1 | Results from linear regressions between indices calculated from S2M and stations. adj R2 = adjusted R2, RMSE = Root mean squared error, MAE = Mean
Absolute Error, Slope = best-fit common regression slope calculated from MA, CIs = 95% confidence intervals of the slopes, Nb Obs = Number of observations.

adj R2 p.value RMSE MAE Slope CIs-s Nb Obs

Daily averages 0.96 <0.001 1.6 1.2 1.01 1.01–1.01 140,659
Chilling 0.70 <0.001 7.0 7.3 0.90 0.84–0.99 247
GDD 0.73 <0.001 61.7 53.2 1.05 0.99–1.12 298
Number of heat waves 0.35 <0.001 14.2 12.5 — — 119
Snow melt-out 0.46 <0.001 25.6 25 — — 282
Snow onset 0.25 <0.001 23.2 19.6 — — 282

FIGURE 2 | Temperatures measured from two sensors (−5 cm below
soil surface and 2 m above the soil) of the station in Montroc and respective
S2M air temperatures, during the year 2016.

FIGURE 3 | Adjusted R squared from regressions between daily average
temperatures calculated from the stations and from S2M. Regressions were
computed for each station and month.
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from the Vercors exhibited consistently later snowmelt-out in the
case of stations compared to S2M (Figure 7).

Snow onset in the fall calculated from S2Mwas in general closer
to human observations than stations, while snow melt-out in the

spring was usually estimated with a delay by S2M in comparison to
stations and observations (Figure 8). Differences between
observations, S2M and stations varied according to years.

Effects of Chilling and Growing Degree
Days on Tree Phenology
The effects of chilling and GDD on budburst date for the five tree
species were similar whether we used S2M or station data
(Table 2). In both cases GDD had a significant effect on
budburst date, whereas chilling had a significant effect on
budburst date only for ash, and birch using station data, with
a p.value < 0.05. Based on AIC differences between S2M and
station models, support for models computed with S2M data
decreased with the observation perimeter for birch, hazelnut and
ash. Models based on station data had stronger support than the
ones based on S2M data for spruce no matter the perimeter of
observation. In contrast, there was more support for S2M models
than station models concerning larch, and support increased with
decreasing perimeter of observation.

Relationships Between Snow Melt-Out and
Frog Egg-Spawning Date
Snow melt-out and maximum egg-spawning dates were well
correlated using S2M or station dates (R.adj2=0.63, p.value <
0.0001 and R.adj2=0.68, p.value < 0.0001, respectively). However,
the common frog often laid its eggs before snow melt-out
determined by S2M, which is impossible because ponds are

FIGURE 4 | Relationship between number of chilling days (A) and growing degree days (B) calculated from S2M and from stations, with stations having at least
8 years with accurate data. Lines represent the linear regressions of the number of chilling days or GDD calculated from S2M as a function of chilling days or GDD
calculated from stations, for each station. Colors represent stations. The black line corresponds to the linear model taking all stations together.

FIGURE 5 | Number of days of heat waves calculated from stations and
S2M for each station (colors) having at least five summers with complete data.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9120487

Laigle et al. Temperature Stations or Meteorological Models?

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 6 | Number of heat waves calculated from each station (points) and median among all stations for each year (blue line).

FIGURE 7 | Boxplot of differences in snow melt-out date between S2M and stations for each station having at least 5 years with accurate data, divided by massif
and by increasing order of elevation.
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not accessible. The maximum delay between egg-spawning date
and snow melt-out date was 28 and 18 days in 2012, at low and
high elevation, respectively (Figure 9).

Relationships Between Snow Melt-Out,
Spring Air Temperature andCoal Tits Laying
Date
The model testing the effects of spring temperature and snow
melt-out date on coal tits laying date had a lower AIC using
station data (AIC = 86.3) and a higher R.adj2 (R.adj2=0.66) than
the model implemented with S2M data (AIC = 92.5, R.adj2=0.43).
In both cases, snow melt-out did not have an effect on laying date
(p.value > 0.1), but spring temperature had a significant effect
using station data (p.value = 0.04) and a non significant effect
using S2M data (p.value = 0.09).

DISCUSSION

Quantifying bioclimatic drivers in mountains at temporal and
spatial scales relevant to biological activity remains a long-
standing and persistent challenge for ecologists. While most
species distribution models are based on kilometer-
resolution gridded climate data sets (Schorr et al., 2012;
Karger et al., 2017; Cornes et al., 2018), several studies have
highlighted the significant influence of microclimate on alpine
plant composition (Scherrer and Körner, 2011; Carbognani
et al., 2016), distribution (Randin et al., 2009; Graae et al.,
2018) and phenology (Wang et al., 2014), but see (Zellweger
et al., 2019). Here, in order to understand and predict
species phenological responses to climate, we assessed the
relevance of using bioclimatic variables derived from
either local temperature stations or obtained from a

FIGURE 8 | Beginning and ending of the longest period with a snow cover, according to S2M, stations and visual observations at Montroc and Chamonix.
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mountain range-scale meteorological model (S2M).
Several indices showed little sensitivity to data-source
while others presented significant differences according to

data origin, with strong implications for resulting
relationships between climate variability and species
phenology.

TABLE 2 | Estimates and AIC from linear mixed models testing the effects of GDD and number of chilling days on five tree species budburst dates, using S2M or station data,
and their AIC difference (S2M - station model). Models were tested with phenological data observed at a distance inferior to 15, 7.5, 3.75, and 1.9 km from the closest
station. ***, **, * indicate statistical significance at p < 0.01, 0.05 and 0.10, respectively.

Species Area S2M Station AIC diff

AIC RMSE GDD chilling AIC RMSE GDD chilling

L. decidua 15 478.1 8.0 −0.08*** −0.10 479.4 8.9 −0.08*** −0.02 −0.7
7.5 603.7 8.0 −0.08*** −0.01 607.5 9.0 −0.09*** 0.04 −3.8
3.75 617.6 8.0 −0.08*** −0.01 621.6 8.9 −0.09*** 0.05 −4
1.9 636.5 7.9 −0.08*** −0.01 640.4 8.8 −0.09*** 0.04 −3.9

P. abies 15 427.7 9.6 −0.08*** −0.02 419.1 9.0 −0.09*** 0.13 8.6
7.5 503.9 9.1 −0.07*** −0.02 495.4 9.2 −0.09*** 0.12 8.5
3.75 507.2 9.4 −0.08*** 0.00 499.2 9.2 −0.10*** 0.13 8
1.9 526.4 9.4 −0.08*** 0.00 519.1 9.3 −0.10*** 0.14 7.3

F. excelsior 15 527.9 8.4 −0.06*** 0.27** 533.6 9.0 −0.05*** 0.28** −5.7
7.5 617.5 8.9 −0.05*** 0.21* 620.6 9.2 −0.05*** 0.25** −3.1
3.75 599.0 8.4 −0.05*** 0.26** 597.9 8.4 −0.05*** 0.32*** 1.1
1.9 598.8 8.4 −0.05*** 0.29*** 596.5 8.3 −0.05*** 0.35*** 2.3

C. avellana 15 412.5 7.3 −0.06*** 0.12 414.8 7.4 −0.06*** 0.11 −2.3
7.5 459.9 7.2 −0.07*** 0.06 454.1 7.2 −0.07*** 0.04 5.8
3.75 451.5 6.9 −0.07*** 0.06 449.8 6.7 −0.07*** 0.08 1.7
1.9 411.0 7.0 −0.07*** 0.12 408.9 6.6 −0.06*** 0.11 2.1

B. pendula 15 523.2 9.7 −0.07*** 0.15 512.6 8.8 −0.08*** 0.25** 10.4
7.5 619.8 9.2 −0.06*** 0.07 605.9 8.1 −0.09*** 0.25** 13.9
3.75 619.7 9.2 −0.06*** 0.08 605.5 8.1 −0.09*** 0.26** 14.2
1.9 629.2 9.2 −0.06*** 0.08 613.6 8.1 −0.09*** 0.25** 15.6

FIGURE 9 | Maximum frog egg-spawning date and snow melt-out date estimated from stations and S2M, in julian days, according to years, at low and high
elevation.
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Comparison of Climate and Snowpack
Indices
We found the strongest agreement between daily average
temperatures measured by the two datasets. Although GDD
and chilling days, which are based on temperature averages,
also showed fairly strong agreement between the two datasets,
the introduction of a threshold reduced correlation strength as
compared to average temperatures. Indeed, on average, Vernay
et al. (2021) highlighted that SAFRAN minimum temperature is
0.2°C higher and the maximum temperature is 0.4°C lower than
the absolute value of hourly temperatures. We found even
stronger differences, with an average difference of 1.3°C
between S2M minimum temperatures and stations, and of
−2.27°C between S2M maximum temperatures and stations.
These variations in temperature above or below the threshold
level could therefore lead to pronounced shifts in the resulting
index. Validation of models using daily or monthly averages,
which is common practice (Quintana-Segui et al., 2008; Fick and
Hijmans, 2017; Caillouet et al., 2019), can thus mask more subtle
differences in absolute temperature values, which may be
significant for the biological functioning of organisms.

Certain bioclimatic indices such as snow onset andmelt-out dates,
or heat wave index, showed strong differences depending on data
source (S2M or stations). These indices also depend on thresholds,
either above a certain reference air temperature or above a minimum
number of days estimated with snow on the ground. The heat wave
index was particularly sensitive to initial differences in air temperature
values, given that it is based on both the magnitude and duration of
events. Temperature estimation by S2M leads to a mean deviation of
−0.4°C on maximum temperature which can partly explain the lower
number of heat waves calculated by S2M (Vernay et al., 2021).
Moreover, differences could have been exacerbated owing to the
fact that the reference threshold (90th percentile) for heat waves were
calculated only from S2M data, as station data did not have sufficient
historic depth. Collectively, our results suggest using caution when
applying modeled data to estimate bioclimatic variables that are
threshold dependent, both from the standpoint of statistical
performance and for determining temperature based physiological
thresholds that rely on absolute values.

Modelling spatial variability in snow cover duration in complex
mountain terrain is notoriously difficult, and is a topic of ongoing
research (Vionnet et al., 2021). Estimating snow presence from
sub-surface soil temperature is known to be a reliable local measure
(Reusser and Zehe, 2011; Schmid et al., 2012; Teubner et al., 2015),
and in our case proved to be quite consistent with visual
observations. However, given that snow onset was often
estimated later from stations compared to S2M, it is possible
that stations exhibited a lag between snow onset and measured
temperatures around 0°C. In addition, snow melt-out was usually
predicted later by S2M than stations. Our results are in accordance
with Vionnet et al. (2016) who found that S2M is adequate to
predict snow onset but can make predictions that are 25 days
earlier or later than actual observations of snow offset dates.

Pronounced differences in snow cover duration of up to
1 month or more between stations and S2M data are, in the
end, not so surprising, considering that S2M provides outputs

for broad topographic classes. Previous work indicated differences
of up to a month or more in snow cover duration within a 300 m
band of elevation based on meso-topography and local
heterogeneity in snow cover accumulation and ablation
(Carlson et al., 2015). Moreover, S2M underestimates snow
ablation by wind as it is a local phenomena, as well as strong
snowpack melting (Quéno et al., 2016; Vionnet et al., 2016). Snow
presence is highly influenced bymicro-topography and underlying
or adjacent plant canopies (Sturm et al., 2001; Revuelto et al., 2015;
Belke-Brea et al., 2020) and complex phenomena such as wind
transport and redistribution of snow due to avalanches (Vionnet
et al., 2021). All of these challenges make it difficult to precisely
predict local snowpack conditions using models (Ford et al., 2013;
Vionnet et al., 2019). Finally, snow predictions from S2M result
from both SAFRAN and CROCUS outputs, and thereby
accumulate errors from both models (Vernay et al., 2021).
Quantifying spatial variability in snow cover duration remains a
challenge for ecologists seeking to predict species distribution and
phenology at specific locations, particularly in forested
environments where snow mapping approaches based on
optical remote sensing are less effective (Dedieu et al., 2016).

Effects of Climate Indices on Species
Phenology
In accordance with results presented above, statistical models
testing the effects of chilling and GDD on budburst dates led to
similar results using either dataset. Overall, phenological and
climate indices followed the same directional trends across years.
However, station models out-performed S2M models when we
decreased the acceptable distance between budburst observations
stations, which underscored the relevance of local climate data for
predicting local biological responses.

It is worth mentioning that larch was an important exception
to this pattern, with models consistently showing increased
performance in the case of S2M predictors regardless of buffer
size. One possible explanation could be a lack of temperature
stations located along elevation gradients, which would be
necessary in order to predict heterogeneous budburst
responses to warming with respect to elevation. Given that
larch phenology is understood to be advancing at higher
elevations and experiencing delay at lower elevations (Asse
et al., 2018; Vitasse et al., 2018), a single temperature station
located in the middle of the gradient might blur the signal and
lead to a weaker result compared to S2M temperature values
consistently available for 300 m elevation bands. However,
Lembrechts et al. (2019) also found that species distribution
models are better explained by local temperatures with some
species being exceptions. In general and with respect to predicting
tree budburst date relative to climate, we found S2M data to be
quite reliable and sufficient for assessing directional long-term
trends.

In the case of coal tits and frogs, models yielded similar
statistical results, but mechanisms could not always be
biologically explained by both datasets. For instance, egg-
spawning dates of frogs usually occurred before dates of snow
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melt-out estimated by S2M, in contrast to snow melt-out
consistently preceding egg-spawning when snow cover
predictors were derived from station data. Given the observed
link between snow melt-out and rapidly ensuing spawning of the
European common frog in mountain habitats (Bison et al., 2021),
in order to avoid erroneous predictions, it seems important to
have not only a statistical correlation but also an ecologically
relevant estimate of local snow melt-out timing. In many cases,
accurate meteorological and snowpack data appear essential not
only to understand phenological mechanisms, but also in order to
predict non-linear and threshold-based responses to climate
variability and change.

We show that the choice of broad scale or local climatic
datasets depends on the initial questions and the biological
model. Stations provide precise data for a particular site with
high temporal resolution (15 min) that allows for calculating
complex bioclimatic variables. The four sensors give
measurements at different heights making pertinent the use of
station data to link temperatures to surrounding biodiversity.
This feature is of particular interest when studying temperature
effects on biodiversity as air and soil temperatures can
significantly differ (Kollas et al., 2014; Shen et al., 2020,
2022b), with sometimes mean annual temperature differences
up to 10°C (Lembrechts et al., 2021). The −5 cm sensor can
inform us about living conditions of roots and soil invertebrates,
and is used to estimate snow presence, the 0 and 30 cm sensors
can be used to link temperatures to herbaceous vegetation or
ground dwelling animals, the 2 m sensor is helpful at studying
effects of air temperature on tree growth. The higher precision of
station data helps in understanding actual mechanisms affecting
species phenology (based on temperature thresholds, or snow
cover duration), as opposed to simply studying relative trends in
climate and species’ response over time. Moreover, we found that
agreement between station and climate model outputs fluctuates
according to season and local factors. Temporal variation in
differences between datasets is difficult to understand and
changes according to stations irrespective of elevation or
slope. When comparing S2M daily temperature averages to
station data at the scale of France, Quintana-Segui et al.
(2008) and Caillouet et al. (2019) also highlighted spatial and
seasonal variations in S2M biases, and reported a similar RMSE
as compared to our study (1.5°C). One explanation could be the
number of stations used as input for the S2M analysis that varied
according to massif, elevation and years, and the size of the
considered homogeneous units [massif and 300 m elevation
classes, Vionnet et al. (2016); Vernay et al. (2021)]. Moreover,
physical parametrisation and horizontal resolution of the model
input for S2M changed over time. These temporal changes had
particularly strong effects on winter trend biases (Vernay et al.,
2021). In winter, the climate is also more variable because of
greater wind, and possible temperature inversions (Vitasse et al.,
2017). Accordingly, we observe greater differences between
datasets during the winter months. Due to these
considerations, we did not detect a perfect linear relationship
between indices calculated from both datasets. Species are
sensitive to small changes in temperature, therefore
differences between S2M data and absolute values can have

strong implications in the understanding of species responses
to climate. We then suggest that station data are more accurate
for the study of local phenomena, and especially of biological
processes.

CONCLUSION

Given the uncertainties of climate model predictions, we
recommend the use of local climate stations when possible,
however station data also present some limitations. The
downsides of station data include 1) inevitably limited spatial
coverage, 2) often limited historical depth, which is typically key
for long-term studies with respect to climate, 3) frequent missing
values due to technical malfunctions and 4) high cost, both financial
and in terms of human resources, of installation andmaintenance, 5)
impossibility to make predictions for the future. Given these
constraints and in light of our results, we consider widely
available and state-of-the-art reanalysis data to be appropriate for
assessing long-term trends in species phenological responses at
broad scales, such as tree budburst, with respect to climate
variation. In contrast, we conclude that in situ temperature data
remains preferable for assessing physiologically-based hypotheses
tied to inter-annual climate variability, especially in alpine
ecosystems and when using bioclimatic variables based on snow
cover duration and temperature thresholds.
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