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The thesis is a collection of three papers, presented in an order which relates to
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of nonnegative and sums of squares polynomials. The papers are preceded by an
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Chapter 1

Introduction
In this thesis we study symmetries in real algebraic geometry. We study
the sets of invariant nonnegative and sums of squares polynomials with a
motivation coming from polynomial optimization. Our focus lies on invariant
polynomials with respect to the action of a finite reflection group. We discuss
e�cient representation of invariant sums of squares and study the sets of
symmetric nonnegative and sum of squares polynomials in countably infinitely
many variables. Moreover, we explore the combinatorial structure of ideals
corresponding to the irreducible representations of the hyperoctahedral group.

1.1 Representation and invariant theory

Representation theory concerns the study of groups by representing the elements
of a group as linear transformations on a vector space. Every representation of a
group on a vector space of dimension n naturally induces an action of the group
on a polynomial ring in n variables. Invariant theory is the study of polynomials
which are fixed under the action of a representation of the group. Both topics
are classical subjects lying in the intersections of algebra, combinatorics, linear
algebra and geometry. An introduction to the topic of representation theory of
finite groups can be found in [Mus93; Ser+77].
A linear representation of a group G is a pair (fl, V ) where V is a vector space
over a field K and fl : G ◊ V æ V a map which satisfies the following properties
for all ‡, · œ G, v œ V . We write ‡ · v for fl(‡, v).

1. The map V æ V, w ‘æ ‡ · w is linear,

2. id · v = v,

3. ‡ · (· · v) = (‡·) · v.

A linear representation of G is also called a G-module and the map fl is usually
understood from the context. We also say that G acts on V . We only consider the
case of characteristic zero and usually suppose K œ {R,C}. The case of positive
characteristic is called modular representation theory. There is another way to
present a representation more concretely as an embedding G Òæ GL(V ) which is
equivalent to the definition above. Examples of linear representations of a finite
group G are the trivial representation fl(G) = {id} and the regular representation
where V = K[G] is the group algebra equipped with vector space structure on
which G acts via left multiplication. A linear isomorphism „ : V æ W between
G-modules V and W is a G-isomorphism if „(‡ · v) = ‡ · „(v) for all v œ V and
all ‡ œ G.
Suppose that G acts on Kn. Let Xi = (0, . . . , 0, 1, 0, . . . , 0)T

œ Kn be the vector

1



1. Introduction

whose i-th coordinate is 1 and all others are 0. The induced action on the
polynomial ring is given via

‡ · f(X1, . . . , Xn) = f(‡ · X1, . . . , ‡ · Xn).

For instance, the symmetric group Sn acts on K[X1, . . . , Xn] via permutation of
variables. We have (1, 2) ·X1 ≠X2 = X2 ≠X1. A polynomial is called invariant if
and only if it is fixed under any element of the group. The underlying group action
should be understandable from the context. For example, constant polynomials
and polynomials of the form

q
‡œG

‡ · f(X1, . . . , Xn) are invariant for every
group G. The set of all invariant polynomials is denoted by K[X1, . . . , Xn]G
and has the structure of a ring as products and sums of invariant polynomials
are again invariant. Therefore, it is called the invariant ring. A fundamental
theorem of Hilbert from 1890 states that the invariant ring of a finite group is
finitely generated.
A G-module V is called irreducible if and only if V does not contain a linear
subspace U ”œ {{0}, V } which is closed under the action of G, i.e., ‡ · u œ U
for all ‡ œ G and for all u œ U . For a finite group the number of irreducible
representation equals the number of conjugacy classes. A fundamental theorem
by Maschke is that any G-module decomposes into a direct sum of irreducible
modules, if the characteristic of K is 0 [Mas98; Mas99]. The decomposition of
V into its direct sum of all the irreducible submodules up to G-isomorphism is
called isotypic decomposition.
In applications, objects often have some inherent symmetries which can be
exploited using techniques from representation theory. This can yield complexity
reduction and simplifications.
Papers I-III deal with di�erent aspects of representation theory. Paper I exploits
the symmetries to reduce complexity in computations which are used in Paper II
as a starting point for further theoretical investigations. In Paper III we consider
the combinatorial relation of ideals which are generated by G-modules.

Symmetric polynomials, partitions and Young tableaux

The study of symmetric polynomials has a solid algebraic and combinatorial
foundation. We call a polynomial f œ K[X1, . . . , Xn] symmetric if and only
if f(X1, . . . , Xn) = f(X‡(1), . . . , X‡(n)) for any permutation ‡ œ Sn. There
exist various families of symmetric polynomials in K[X1, . . . , Xn]. Examples of
symmetric polynomials are:

• For 1 Æ k Æ n the elementary symmetric polynomial e(n)
k

(X) =
q

Iµ[n]:|I|=n

r
iœI

Xi, e(n)
0 (X) = 1 and e(n)

k
(X) = 0 for k > n.

• For 1 Æ k Æ n the power sum polynomial p(n)
k

(X) =
q

n

i=1 Xk

i
, p(n)

0 (X) = 1
and p(n)

k
(X) = 0 for k > n.

• For – œ Nn the monomial symmetric polynomial m(n)
– (X) =

q
‡œSn

‡ ·

X–1
1 · · · X–n

n
.
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Representation and invariant theory

Elementary symmetrics and power sums form a polynomial generator system of
the ring of symmetric polynomials. Newton’s identities,

ke(n)
k

=
kÿ

i=1
(≠1)i≠1e(n)

k≠i
p(n)

i
(1.1)

for all k œ N, provide a polynomial map between those families [Mea92]. We
observe, for a given symmetric polynomial f(X1, . . . , Xn+k) we can set the last k
variables equal to 0 and obtain a symmetric polynomial f(X1, . . . , Xn, 0, . . . , 0)
which we regard as a symmetric polynomial in n variables. Similarly, for n Ø m
we embed Sm Òæ Sn.
A symmetric function f is a formal power series in countably infinitely many
variables which is invariant under the action of the group SŒ =

t
nœN Sn and

for which the set of degrees of the monomials in f is finite. The analogous
to elementary symmetric and power sum polynomials are the power sum and
elementary symmetric functions:

ek =
ÿ

IµN,|I|=k

Ÿ

iœI

Xi and pk =
ÿ

iœN
Xk

i
. (1.2)

Newton’s identities (1.1) provide polynomial transition maps between the first k
elementary symmetric and power sum functions, for all k œ N and any symmetric
function f is a polynomial in elementary symmetric (resp. power sum) functions.
The ring of symmetric functions R[X1, X2, . . .]SŒ can either be constructed
as the inverse limit or the direct limit of the rings of symmetric polynomials
([Mac98, §I.2]). We usually consider R[X1, X2, . . .]SŒ as the inverse limit with
respect to the transistion maps

R[X]Sn+1 æ R[X]Sn , f(X1, . . . , Xn+1) ‘æ f(X1, . . . , Xn, 0). (1.3)

Note for n Ø d we have

f(X1, . . . , Xn+1) = g(p(n+1
1 , . . . , p(n+1)

d
) ‘æ f(X1, . . . , Xn, 0) = g(p(n)

1 , . . . , p(n)
d

),

where the power sums are in a di�erent number of variables.
A partition ⁄ „ n is a sequence of nonnegative, non-increasing integers which sum
equals n. We identify partitions whose non-zero entries are all equal. For example,
we identify (3, 2) and (3, 2, 0, 0). Partitions are fundamental in the representation
theory of the symmetric group since they correspond to the conjugacy classes
and therefore to irreducible representations of n. The dominance order denoted
by E defines a partial order on the set of partitions of n via µ E ⁄ if and only
if

q
k

i=1 µi Æ
q

k

i=1 ⁄i for all k œ N. The dominance order occurs in algebraic
combinatorics and in the representation theory of the symmetric group. For
instance, the only irreducible representations that occur in the permutation
module Mµ = 1 ø

Sn
Sµ

are those corresponding to a partition ⁄ „ n with µ E ⁄

([Lam77, Theorem 1]).
A partition can also be uniquely represented by its diagram. A Ferrers diagram

3



1. Introduction

or a diagram associated with ⁄ „ n is a sequence of ordered boxes, where the i-th
row starting from the top contains ⁄i many boxes. For instance, the diagram
associated with (4, 3, 3, 1) is

.

A filling of a diagram of shape ⁄ „ n with all the integers in the set
[n] = {1, 2, . . . , n} is called a Young tableau or tableau. Those fillings were
first introduced by Young in 1901 [You19]. We call a tableau standard if and
only if the entries in every row and column are increasing. For instance, the
tableau

1 3 6 9
2 5 7
4 8 11

10

(1.4)

is standard. It turns out that the number of standard tableaux of shape ⁄ equals
the dimension of its associated irreducible representation ([Sag01, Theorem 2.6.5]).
Although the concept of diagrams and tableaux appears surprisingly simple these
objects have a rich impact on algebraic combinatorics and representation theory
(see e.g. [FF97; Sag90; Yon07]).
A bipartition of n is a pair of partitions (⁄, µ) such that ⁄ „ k and µ „ n ≠ k.
Bipartitions naturally occur in the representation theory of the hyperoctahedral
group Bn. There are various generalizations of the dominance order to a
partial order on bipartitions, for instance the ones introduced in [AMP81;
DJM95]. In Paper III we present a partial order on the set of bipartitions
which combinatorially explains the inclusion of certain associated Bn-modules.
This partial order could be seen as a generalization of the dominance order on
partitions.
Analogously to the tableaux of partitions we define bitableau for bipartitions. A
Young bitableau or bitableau of shape (⁄, µ) is a pair of tableaux of shape ⁄ and
µ such that all the integers in [|⁄| + |µ|] occur precisely once.

Finite reflection groups

Reflection groups have a rich and well understood algebraic, combinatorial and
geometric theory (see e.g. [Hum90; Kan01; LT09]). For all integers n we suppose
that the real vector space Rn is equipped with the euclidean inner product È·, ·Í.
We say that a group G is a finite reflection group if the group G acts on Rn for
some n and the group of linear transformations is generated by reflections. A
reflection is a linear map s– : Rn

æ Rn of the form x ‘æ x ≠ 2 Èx,–Í
È–,–Í – for some

– œ Rn. We usually just say that G is a reflection group and mean that G is
a finite reflection group. A generalization to complex vector spaces Cn are so
called pseudoreflections, which are linear maps ¸ : Cn

æ Cn fixing a hyperplane
pointwise and satisfying ¸m = 1 for some m œ N. A reflection group is called
essential if and only if no linear subspace of V is fixed pointwise. Every reflection

4



Representation and invariant theory

group is isomorphic to a direct product of essential reflection groups. A complete
combinatorial classification of reflection groups can be given through their Dynkin
diagrams based on a study of root systems of Lie algebras [Hum90]. It turns out
that there are four infinite series of essential reflection groups An, Bn, Dn, I2k

and six exceptional H3, H4, F4, E6, E7 and E8. We have Sn ƒ An≠1 as groups,
i.e., An≠1 is the symmetric group acting on Rn/R(1, . . . , 1), and Bn ƒ {±1} Ó Sn

is the hyperoctahedral group which acts on R[X1, . . . , Xn] via permutation of
variables and switching of signs. We write Bn for the hyperoctahedral group
when we do not regard Bn in the specific context of infinite series of reflection
groups. Note that the reflections s– of the symmetric group Sn come from
those – œ Rn with exactly two non-zero coordinates –i = 1 and –j = ≠1. The
additional reflections of the hyperoctahedral group Bn are of the form s– with –
has exactly one non-zero entry –i = 1. The group Dn is a subgroup of Bn of
index 2 which is generated by all permutations and all the sign changes which
switch an even number of signs.
Representation theory of reflection groups has some remarkable and elegant
properties.
First, there is the Chevalley-Shephard-Todd theorem: the invariant ring of a
group is isomorphic to a polynomial ring if and only if the group is a reflection
group. The theorem was initially proven by Shephard and Todd for each
essential reflection group separately [ST54] and a uniform proof was given shortly
afterwards [Che55]. The polynomial generators of the invariant ring of reflection
groups are not unique. However, the generators are homogeneous polynomials
and the multiset of their degrees is unique. For instance, the invariant ring of
the symmetric group Sn is a polynomial ring in the first n power sums or in the
elementary symmetric functions and the degrees of the generators are 1, 2, . . . , n.
Second, let J+ µ R[X1, . . . , Xn] be the ideal generated by invariant polynomials
of positive degree. The coinvariant algebra R[X1, . . . , Xn]G := R[X1, . . . , Xn]/J+
inherits the structure of a G-module. Whereas these algebras can be defined and
studied for all reductive groups, it was shown by Chevalley ([Che55, Theorem
(B)]) that R[X1, . . . , Xn]G ƒ R[G], i.e., the coinvariant algebra is isomorphic to
the regular representation of G if and only if G is reflection group.
In Paper I we use these properties of reflection group as a starting point for our
investigations.

Higher Specht polynomials

In general computing the isotypic decomposition of a G-module is a compu-
tationally challenging problem. However, formulas based on linear algebra
are known which require knowledge of the characters of the irreducible repre-
sentations ([Ser+77, Section 2.7]). Although, it is well known that for finite
groups the number of irreducible representations equals the number of conju-
gacy classes, it seems unreasonable that there exist natural bijections between
the set of conjugacy classes and characters [DJ86]. However, there are few
exceptions. For instance, for the symmetric group Sn there exists a natu-
ral bijection between the partitions of n and the irreducible representations.

5



1. Introduction

The conjugacy classes of Sn are indexed by partitions. The construction of
the irreducible representations was first investigated in [Spe37b]. Specht pre-
sented explicit representations in the polynomial ring. Today, the polynomials
which he constructed are known as Specht polynomials. For a partition ⁄
and a tableau T the Specht polynomial associated with T is the product of
the Vandermonde determinants of all columns of T and is denoted by sp

T
(X).

For instance, the Specht polynomial associated with the tableau (1.4) equals
sp

T
(X) =

r
i<jœ{1,2,4,10}(Xi≠Xj)

r
i<jœ{3,5,8}(Xi≠Xj)

r
i<jœ{6,7,11}(Xi≠Xj).

A presentation of the representation theory of the symmetric group can be found
in [FF97; Mus93; Sag01]. Less known is that Specht also provided explicit
representations of the irreducible representations of the hyperoctahedral group
Bn [Spe37a]. The Specht polynomial associates with a bitableau (T, S) is defined
as sp(T,S)(X) = sp

T
(X2) sp

S
(X2)

r
iœS

Xi, where X2 := (X2
1 , . . . , X2

n
).

The construction of Specht gives irreducible representations in the polynomial
ring. The vector space Èsp

T
: T is a tableau of shape ⁄ÍR is irreducible and

called the Specht module S⁄. However, Specht’s construction provides only one
representation for any partition. A generalization of Specht’s result to an explicit
decomposition of the coinvariant algebra K[X1, . . . , Xn]Sn was constructed in
[MY98]. Morita and Yamada introduce higher Specht polynomials which give all
irreducible representations. They provide a combinatorial algorithm and thus
explicit polynomials which decompose the coinvariant algebra. The construction
has been further generalized to pseudoreflection groups of type G(r, p, n) [MY98].
We recover the reflection groups Bn = G(2, 1, n) and Dn = G(2, 2, n).
Paper I uses the higher Specht polynomials to show that the isotypic decomposi-
tion stabilizes for the groups Sn, Bn and Dn acting in an increasing number of
variables on the subspace of the polynomial ring in a fixed degree (see Theorem
I.3.21). This was already known for the symmetric group ([Rie+13, Theorem
4.7.]) but their proof uses di�erent methods.

Specht ideals

Suppose that a group G œ {Sn, Bn} acts on the polynomial ring K[X1, . . . , Xn]
and V µ K[X1, . . . , Xn] is an irreducible representation. Then, the ideal
generated by V is closed under the action of G. For a partition ⁄ „ n we
call

I⁄ = (sp
T

: T tableau of shape ⁄) µ K[X1, . . . , Xn]

the Specht ideal of ⁄. Analogously, we write I(⁄,µ) for the Specht ideal associated
with a bipartition (⁄, µ). The definition of a Specht ideal does not depend
on the field and can also be applied in positive characteristic. The varieties
of Specht ideals are intersections of hyperplane arrangements of type A or B,
i.e., the hyperplanes are the reflection hyperplanes of the groups An and Bn.
The Specht ideals of the symmetric group have been studied in combinatorial
commutative algebra and in subspace arrangements [BPS05; Bro+16]. However,
applications in the solution of symmetric systems of polynomial equations exist
as well [MRV21].

6



Real algebraic geometry

Woo investigated in his doctoral thesis [Woo05] among other results algebraic
properties of Specht ideals. He proved that ideal inclusion of Specht ideals is
encoded by dominance of their associated partitions, characterized the Specht
varieties as disjoint unions of orbit sets and followed an unpublished proof of
Haiman to show the radicality of Specht ideals. Moreover, Woo proved that
the Specht polynomials contained in a Specht ideal form a universal Gröbner
basis. It seems that his results have been unknown to a wider mathematical
audience and several results have been rediscovered independently. In general,
a Specht ideal is not Cohen-Macaulay. The few cases of partitions for which
its associated Specht ideal is Cohen-Macaulay have been classified in [Yan21].
Free resolutions for certain types of Cohen-Macaulay Specht ideals were found in
[SY20] and their regularity was examined in [SY21]. Recently, a new proof of the
radicality of Specht ideals has been given [MOY22] and Gröbner fans of Specht
ideals were investigated [OY22]. Motivated by algorithmic purposes in solving
systems of equations the aforementioned results of Woo have been rediscovered
and extended in [MRV21]. Additionally, the authors proved which Specht ideals
are contained in a symmetric ideal I satisfying a sparsity condition. This allows
to obtain bounds on the number of di�erent coordinates of elements contained
in the a�ne variety of I.
Paper III studies the Specht ideals of the hyperoctahedral group. Notice that
the Bn-Specht ideals and their varieties form a poset with respect to inclusion.
We introduce a partial order on bipartitions in Definition III.4.1 and classify
the covering cases in Theorem III.4.3 which can be seen as generalization of
([Bry73, Proposition 2.3]). The partial order on bipartitions allows us to prove
analogous assertions to Theorem 1 and Corollary 1 in [MRV21]. We show that
the poset of Specht ideals is equivalent to the poset of bipartitions with respect
to bidominance in Theorem III.5.1, introduce an orbit type for Bn in Definition
III.6.2 and prove a decomposition of Specht varieties in Theorem III.6.6.

1.2 Real algebraic geometry

Real algebraic geometry concerns the study of solutions to polynomial equations
and inequalities in real closed fields. A real closed field is an ordered field (R, Æ)
whose field extension R(

Ô
≠1) is algebraically closed. A real closed field can be

considered as a generalization of the real numbers. The subject is linked to inner
mathematical areas such as analytic geometry, algebraic topology, analysis and
real algebra, but also has applications towards moment problems and convex
optimization. In particular, polynomial optimization problems can be solved
using methods from real algebraic geometry. We refer to [BCR13; BPC07] for a
comprehensive presentation of topics in real algebraic geometry.
The basic objects of study are semialgebraic sets, i.e., finite unions of sets of the
form

{x œ R
n : f(x) = 0, g1(x) > 0, . . . , gr(x) > 0},

for polynomials f, g1, . . . , gr œ R[X1, . . . , Xn]. In contrast to classical algebraic
geometry, the projection of a semialgebraic set is again semialgebraic which

7



1. Introduction

follows by the famous Tarski-Seidenberg theorem [Sei54; Tar98]. Moreover,
the following property of semialgebraic sets is a consequence of Tarski and
Seidenberg’s work. Let R

Õ denote a field extension of R which is also a real
closed field and f, g1, . . . , gr œ R[X1, . . . , Xn]. Then, the semialgebraic set
{x œ R

n : f(x) = 0, g1(x) Ø 0, . . . , gr(x) Ø 0} is non-empty if and only if the
semialgebraic set {x œ R

Õn : f(x) = 0, g1(x) Ø 0, . . . , gr(x) Ø 0} is non-empty.
We usually consider R = R the real numbers.
Real algebra is the algebraic foundation of real algebraic geometry in the sense
that algebraic geometry builds up on commutative algebra. For instance, there
is the notation of a real radical ideal which can be seen as the analogue to
the radical ideal in algebraic geometry. Let p, g1, . . . , gr œ R[X1, . . . , Xn] be
polynomials and J = (g1, . . . , gr) µ R[X1, . . . , Xn] denote the ideal generated
by g1, . . . , gr. Then the real radical ideal generated by g1, . . . , gr is denoted by
rrad(g1, . . . , gr) and equals

{f œ R[X1, . . . , Xn] : f2 +
mÿ

i=1
h2

i
œ J, m œ N, h1, . . . , hm œ R[X1, . . . , Xn]}.

The real Nullstellensatz says that a polynomial f is the constant 0 function on the
real algebraic variety {x œ Rn : gi(x) = 0, 1 Æ i Æ r} if and only if f is contained
in rrad(g1, . . . , gr) [Mar08]. We call a polynomial p œ R[X1, . . . , Xn] nonnegative
if and only if p attains only nonnegative values, i.e., if p(x) Ø 0 for all x œ Rn.
Since the reals are equipped with an order one can ask for Positivstellensätze in
analogy to Hilbert’s Nullstellensatz over the complex numbers. Such theorems
exist and can be used to provide a certificate for nonnegativity of a polynomial on
a semialgebraic set. The Krivine–Stengle Positivstellensatz was proven in [Kri64]
and independently rediscovered in [Ste74] which then received more recognition
internationally. We write �n =

q
R[X1, . . . , Xn]2 for the set of sums of squares,

i.e., those polynomials that can be written as a sum of squares of polynomials.
We denote by

P (g1, . . . , gr) :=

Y
]

[
ÿ

–œ{0,1}r

h–g–1
1 · · · g–r

r
: h– œ �n

Z
^

\

the preorder defined by g1, . . . , gr œ R[X1, . . . , Xn]. Then f Ø 0 on the
semialgebraic set {x œ Rn : g1(x) Ø 0, . . . , gr(x) Ø 0} if and only if there
exist q1, q2 œ P (g1, . . . , gr), s œ N such that

q1f = f2s + q2.

Sometimes, this theorem is called the Nichtnegativstellensatz. We can also replace
f Ø 0 by f > 0 and set s = 0. This theorem is known as the Positivstellensatz.
Algorithmically motivated, the search for algebraic nonnegativity certificates
leads to classifications that do not use denominators. Such certificates were
proven by Schmüdgen and Putinar [Put93; Sch91]. There have been several
articles on bounding the degrees in Schmüdgen’s and Putinar’s Positivstellensätze
[BM21; NS07; Sch04].
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Semidefinite programming

Let Symn(R) denote the set of real symmetric n ◊ n-matrices and Symn

+(R)
denote the cone of positive semidefinite n ◊ n matrices. The intersection of an
a�ne halfplane with the set Symn

+(R) is called a spectrahedron. Semidefinite
programming is a generalization of linear programming where a linear function
is optimized over a spectrahedron. Although spectrahedra are more complex
than polyhedra, a semidefinite program can be solved in polynomial time to a
given accuracy using numerical inner-point algorithms [EOL98]. Describing the
feasible sets of semidefinite programming is an ongoing research topic in applied
real algebraic geometry (see e.g. [BPT12]). Several combinatorial optimization
problems such as computing the Lovász number and sphere packings can be
formalized as semidefinite programs [Ali95; RG95]. If the dimension is small,
exact algorithms can also be applied [HNS19]. The complexity status of exact
algorithms is not yet known [Ram97].

Nonnegative polynomials and sums of squares

An application of real algebraic geometry lies in polynomial optimization where
one is interested in computing the global minima of a polynomial or the
constrained minima on a semialgebraic set.
A homogeneous polynomial is called a form and we denote the real vector
space of n-ary forms of degree d by Hn,d. We write Pn,2d for the set of
nonnegative forms in n variables of degree 2d. In general, testing nonnegativity
of a polynomial in more than two variables is an NP-hard problem even
for quartics [Blu+98; MK85]. For instance, a priori it is not clear that
g(X) = X4

1 ≠2X3
1 X3+X2

1 X2
3 +2X2

1 X2
2 ≠2X1X3X2

2 +X4
2 is nonnegative. However,

we have g(X) = (X2
1 ≠ X1X3 + X2

2 )2 which immediately shows f œ P3,4. We
call a polynomial p a sum of squares if and only if p can be written as a sum
of squares of polynomials. We write �n,2d for the set of homogeneous sums of
squares in n variables of degree 2d. Since �n,2d µ Pn,2d it is natural to ask if
the reverse inclusion is also true. We remark that a polynomial is nonnegative
(a sum of squares) if and only if its homogenization is nonnegative (a sum of
squares) [Mar08]. The sets �n,2d and Pn,2d are closed pointed convex cones.
Thus, one can use convex geometry to study these sets and there dual cones
�ú

n,2d
and P

ú
n,2d

. We recall that for a set C µ V the dual cone of C is the set
Cú = {¸ œ V ú : ¸(x) = 0 for all x œ C} which is a closed convex cone.
In 1888 Hilbert showed in a remarkable paper [Hil88] that there are only very few
cases of equality. Namely, if n = 2 or 2d = 2 or (n, 2d) = (3, 4). Actually, n = 2
follows from the fundamental theorem of algebra for univariate polynomials
and 2d = 2 follows from the diagonalization of quadratic forms. The equality
between the sets P3,4 and �3,4 is more di�cult to prove. Hilbert’s proof was
non-constructive and a constructive, but internationally not well recognized
proof of Hilbert’s results for (n, 2d) = (4, 6) was given in [Ter39]. Despite for the
simplicity of the formulation of the question it took almost 80 years until the
first recognized example of a nonnegative but not sum of squares polynomial

9



1. Introduction

appeared in the literature. The Motzkin polynomial [The65]

X4
1 X2

2 + X2
1 X4

2 ≠ 3X2
1 X2

2 + 1

was proven to be nonnegative and not a sum of squares. Its nonnegativity follows
from the arithmetic–geometric mean inequality. That the polynomial is not a
sums of squares can be proven by studying its Newton polytope. It turns out
that if a form is a sum of squares, then it is a sum of squares of forms of half
its degree. Finding nonnegative but not sums of squares polynomials has been
investigated since then by various authors. The Robinson polynomial [Rob69] is
an example of a form in 4 variables of degree 4. In a series of papers Choi and
Lam investigated nonnegative but not sums of squares biquadratics, the cones of
nonnegative and sums of squares forms, studied the extremal rays, and produced
further examples of nonnegative but not sums of squares polynomials [Cho75;
CL77a; CL77b]. More insight and examples have been provided in [Sch79] and
[Rez89].
The 17th Problem in Hilbert’s list of influential problems for mathematical
development in the 20th century at the International Congress of Mathematicians
in 1900 was whether every nonnegative polynomial is a sum of squares of
rational functions. This was proven in [Art27] and Artin’s proof set the
foundations of modern real algebra. A consequence of Artin’s solution is that
verifiability of nonnegativity of rational polynomials is decidable. This follows
from simultaneously searching for a decomposition into a sum of sums of squares
of rational functions and evaluating the polynomial at rational points.
As mentioned earlier, real algebraic geometry provides fruitful methods for solving
polynomial optimization problems. Let p œ R[X1, . . . , Xn] be a polynomial. Then

min
xœRn

p(x) = max
cœR

p ≠ c is nonnegative on Rn.

Lasserre proposed a hierarchy of semidefinite optimization programs to solve
polynomial optimization problems [Las01] based on the Positivstellensätze. Using
semidefinite programming it can be tested if a polynomial is a sum of squares
[CKP20]. In Paper II we apply semidefinite optimization to obtain certificates for
a polynomial being a sum of squares or not. Since nonnegativity is an immediate
consequence of being a sum of squares it is of interest to explore the relations
of the sets �n,2d and Pn,2d. Despite the complexity in finding nonnegative
polynomials which are not sums of squares Blekherman proved that for a fixed
degree there are significantly more nonnegative polynomials than sums of squares
[Ble06]. He measures the sizes of these cones by considering conical compact
bases and comparing the ratio of their volumes. He proves that the di�erence
between the sets of nonnegative and sums of squares forms grows in the number
of variables and asymptotic bounds on the ratio of the volumes of these sets are
given. It is shown that the di�erence between these sets grows in the number of
variables. On the contrary, there are results stating that for a fixed number of
variables on the hypercube [≠1, 1]n the sums of squares polynomials are dense
in the nonnegatives with respect to the ¸1-norm [BCR76; LN07].

10
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It turns out that Hilbert’s classification does not necessarily remain valid if
we restrict to invariant polynomials under the action of a group G. We write
P

G

n,2d
, �G

n,2d
for the intersections of Pn,2d, �n,2d with the set of invariant forms.

Again, the sets P
G

n,2d
, �G

n,2d
are closed pointed convex cones in the vector space

of invariant forms of degree 2d denoted by HG

n,2d
. We denote their dual cones

by P
G,ú
n,2d

, �G,ú
n,2d

. Although Hilbert’s classification remains valid for G = Sn the
symmetric group [CL77a; GKR16], it does not for G = Bn the hyperoctahedral
group. Harris proved equality for (n, 2d) = (3, 8) and (n, 4) for all n [Har99], but
in any other non-trivial case we have �Bn

n,2d
( P

Bn
n,2d

[GKR17].
In Paper I we discuss how representation theory can be exploited to determine if
P

G

n,2d
= �G

n,2d
. As applications we provide a new simple proof of Harris’ equality

case for even symmetric ternary octics (see Corollary I.4.2) and classify all the
equality cases for the reflection group Dn (see Theorem I.4.26). The classification
for the groups Bn and Dn turn out to be the same.
Exploiting symmetries in semidefinite optimization problems was first investi-
gated in [GP04] and further work on symmetries in semidefinite optimization
[DS10] and polynomial optimization [Rie+13] has been done. There exist various
computational applications, e.g., complexity reduction can be used to improve
bounds on spherical packings with symmetries [DGV+17]. In contrast to the
aforementioned work we focus on reflection groups and the higher Specht poly-
nomials allow a uniform treatment of the infinite series of groups (Sn)n, (Bn)n

and (Dn)n.
Due to Blekherman’s findings [Ble06] that there are significantly more nonnega-
tive forms than sums of squares for a fixed degree it is of interest to explore if
this remains true for invariant polynomials when the number of variables tends
towards infinity. In Paper II we study whether the sets of nonnegative and sums
of squares homogeneous symmetric functions are equal. We prove that this is
not the case for any non-trivial pair (n, 2d), and that the same is true in the
even symmetric setup (see Theorem II.5.1). We consider the ring of symmetric
functions as the inverse limit of the rings of symmetric polynomials with respect
to the transition maps (1.3). If we restrict to forms of degree 2d and n Ø 2d
then the transition maps induce isomorphism. For all n Ø 2d the dimension of
the vector space of symmetric n-ary forms of degree 2d equals the number of
partitions of 2d and we have nested chains

P
S2d
2d,2d

∏ P
S2d+1
2d+1,2d

∏ · · · ∏

‹

nØ2d

P
Sn
n,2d

=: PS
2d

;

�S2d
2d,2d

∏ �S2d+1
2d+1,2d

∏ · · · ∏

‹

nØ2d

�Sn
n,2d

=: SS
2d

.

The nestedness follows from the observation that if f(X1, . . . , Xn+1) is
nonnegative (a sum of squares) then f(X1, . . . , Xn, 0) is nonnegative (a sum of
squares). The sets PS

2d
,SS

2d
are called the limit sets of symmetric nonnegative

forms and symmetric sums of squares forms of degree 2d, which we also call
the sets of nonnegative and sums of squares symmetric homogeneous functions.
Analogously, we introduce the limit sets PB

2d
and SB

2d
of even symmetric functions.

11



1. Introduction

These sets define again pointed closed convex cones in the vector space of (even)
symmetric homogeneous functions of degree 2d (see Theorem II.2.5). The study
of the limit comes with additional complexity compared to the case of finitely
many variables. By Theorem II.5.8 the sets PS

2d
and PB

2d
are not semialgebraic

for 2d Ø 6, although the sets P
S2d
n,2d

and P
B2d
n,2d

are semialgebraic for all n and all
d. Moreover, in the multisymmetric setup we prove containment of elements in
the limit cones is not computationally traceable, i.e., it is undecidable if a given
multisymmetric function is contained in this cone (see Theorem II.6.1). This
is in sharp contrast to the case of finitely many variables, where determining
validity of nonnegativity of any polynomial is decidable.
A univariate real polynomial p œ R[t] of degree d is called hyperbolic if p has
only real roots z1, . . . , zd. We suppose p is monic, then

p(t) =
dŸ

i=1
(t ≠ zi) = td

≠ e1(z)td≠1 + e2(z)td≠2
û . . . + (≠1)ded(z),

where z = (z1, . . . , zd). Thus, the set of monic hyperbolic polynomials of degree
d can be identified with the set (e1, . . . , ed)(Rd). The Vandermonde map in n
variables of degree d is the function

Rn
æ Rd, x ‘æ (p1(x), . . . , pd(x))

and we denote its image by Mn,d. It follows from Newton’s identities that the
sets (e1, . . . , ed)(Rn) and Mn,d are images of each other under a polynomial
di�eomorphism for all n Ø d. Analogously, we define the even Vandermonde
map

Rn
æ Rd, x ‘æ (p2(x), . . . , p2d(x))

and denote its image by Nn,d. These maps are essential in Paper II. Let
‹d : Rd

æ Rfi(d), (x1, . . . , xd) ‘æ (xd

1, xd≠2
1 x2, . . . , xd) then the dual cones to the

nonnegative forms can be presented as follows

P
Sn,ú
n,2d

= cone(‹2d(Mn,2d)) and P
Bn,ú
n,2d

= cone(‹d(Nn,d)) ,

where cone(S) = {
q

m

i=1 ⁄ivi : m œ N, vi œ S, ⁄i œ RØ0} denotes the convex
conical hull of S µ Rm. Moreover, we study the images of Vandermonde maps
at infinity, i.e., the sets

Md := cl
A

€

nœN
Mn,d

B
and Nd := cl

A
€

nœN
Nn,d

B
,

and note
PS,ú

2d
= cone(‹2d(M2d)) and P

B,ú
2d

= cone(‹d(Nd)).

The boundaries of Mn,d and (e1, . . . , ed)(Rn) have been studied by various
authors [Arn86; Giv87; Kos89; Kos99; Meg92]. The elements x = (x1, . . . , xn) œ

Rn that are mapped to the boundary of Mn,d are uniquely defined by their

12
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multiplicity vectors of equal coordinates (see [Kos89, Theorem 1.14]). Since
the Vandermonde map is symmetric, we can restrict to points x œ Rn with
x1 Æ x2 Æ . . . Æ xn. Similarly, we characterize the boundary of Nn,d in terms of
the multiplicity vector of elements that are mapped to the boundary in Theorem
II.3.6. We explicitly parameterize the planar boundary of Nn,3 fl {p2 = 1} (see
Theorem II.3.7) and N3 fl {p2 = 1} (see Corollary II.3.10). Kostov investigated
the set ÊMd = cl

!t
nœN(e1, . . . , ed)(Rn)

"
and focused on explicit parametrizations

of the boundary for degree d = 4 [Kos04; Kos07]. He motivates his study since
the set ÊMd can be considered as the closure of the set of monic univariate
polynomials of degree d which can be extended to a hyperbolic polynomial. A
monic univariate polynomial p œ R[t] of degree d can be extended to a hyperbolic
polynomial if there exists a nonnegative integer k and a polynomial q œ R[t] of
degree Æ k ≠ 1 such that p(t)tk + q(t) is hyperbolic. Using Kostov’s results on
degree 4 and analysing the extremal rays of the cone SS,ú

4 we prove SS
4 ( PS

4
(see Theorem II.5.3). Moreover, we construct test sets to check if a symmetric
homogeneous function of degree 4 is nonnegative or a sum of squares (Theorem
II.5.4) and provide a uniform example of a nonnegative but not sum of squares
symmetric polynomial in any number of variables. We show in Theorem II.5.5
that for all n Ø 4 we have

4p4
1 ≠ 5p2p2

1 ≠
139
20 p3p1 + 4p2

2 + 4p4 œ P
Sn
n,4 \ �Sn

n,4.

The question of nonnegativity versus sums of squares for limits of (even)
symmetric forms has been studied before in a related version. Namely, through
a slight modification of the transition maps (1.3) to

1
n + 1

n+1ÿ

i=1
Xk

i
‘æ

1
n

nÿ

i=1
Xk

i

we obtain the ring of normalized symmetric functions as the inverse limit. In
contrast to symmetric functions we note that normalized symmetric functions
can be evaluated at the all one vector (1, 1, . . .). It was observed in [BR21]
that the normalized symmetric limit sets are equal in degree 4 and the authors
conjectured that this is true for all degrees. This was proven to be false in
[AB22] not only for the symmetric group and degree 2d Ø 6 but also in the even
symmetric setup and degree 2d Ø 10.

1.3 Tropicalization

Tropicalization is usually used in algebraic geometry to replace an algebraic
variety by its “combinatorial shadow”. On the one hand tropicalization loses
information but keeps combinatorial structures which may be simpler to
investigate. Tropicalization has applications in several fields of mathematics
such as algebraic geometry [MS21], intersection theory [AR10], moduli spaces
[Cav+16; Uli15], matroid theory and Hodge theory [Huh16]. We refer to [Bru+15;
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DS04; MS21] for an introduction to tropical geometry.
We use the definition of tropicalization as logarithmic limits. Log-limits have
first been studied in [Ber71] for complex algebraic varieties and were introduced
on semialgebraic sets in [Ale13]. For a set S µ Rn

Ø0 we define its tropicalization
as

trop(S) = lim
tæŒ

{(log
t
(x1), . . . , log

t
(xn)) : x = (x1, . . . , xn) œ S fl Rn

>0}.

Alessandrini proved that trop(S) is always a closed cone ([Ale13, Proposition
2.2]). More general, tropicalization can also be defined using valuations on the
field. We write R = (R ‡ {≠Œ}, ü, ¢) for the tropical semiring with tropical
addition a ü b := max{a, b} and tropical multiplication a ¢ b := a + b. The
natural element with respect to addition is ≠Œ and the natural element with
respect to multiplication is 0. We refer to [DS04] for background information.
The study of tropicalizations of convex cones which are contained in the
nonnegative orthant was investigated in [Ble+22b] to study problems in extremal
combinatorics. This was further developed in [BR22] to study binomial
inequalities of graph homomorphisms. Moreover, tropicalization has been applied
in real algebra to study the sets of nonnegative and sums of squares polynomials,
and their dual cones. [Ble+22a] concerns the study of truncated moments and
pseudomoments on semialgebraic sets. The authors show that tropicalization
provides new insights into limitations of sums of squares approximations of
nonnegative polynomials. Tropicalization is also used in [AB22] to study the
nonnegativity versus sums of squares question for normalized limits of symmetric
and even symmetric forms. In [AB22; Ble+22b; BR22] the authors focus on
convex cones which satisfy the Hadamard property. A set S µ Rn has Hadamard
property if it is closed under coordinatewise multiplication of elements in S.
For instance, a spectahedron defined as the positive semidefinite locus of a
symmetric matrix whose coe�cients are monomials has Hadamard property.
Tropicalizations of sets with Hadamard property have a nice structure, since
they are a closed convex cone ([Ble+22b, Lemma 2.1]). The tropical convex hull
of a set S µ Rn is defined as

tconv(S) := {a1 § x1 ü . . . ü al § xl : l œ N, a1, . . . , al œ R, x1, . . . , xm œ S}.

A set is called tropical convex if it equals its tropical convex hull. Thus, any
tropical convex set S µ Rn contains the all one vector 1 = (1, . . . , 1) œ Rn in its
linearity space, i.e., s + ⁄1 œ S for all s œ S and all ⁄ œ R. In tropical convex
geometry one usually studies the quotients of tropical convex sets in Rn/R1.
In Section 7 in Paper II we apply tropical convex geometry to study the limit
sets of even symmetric nonnegatives and sums of squares which is an approach
independently from the one used in the other sections in the paper. However,
tropicalization allows quantification of the di�erence of the sets of nonnegative
and sums of squares even symmetric limit forms. We show that the minimal
degree for which trop(PB,ú

2d
) and trop(SB,ú

2d
) are di�erent is 2d = 10 (see Theorem

II.7.1), although the sets are already di�erent for 2d œ {6, 8}. More general,
we show how trop(SB,ú

2d
) (see Lemma II.7.3) and trop(PB,ú

2d
) (see Proposition
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II.7.23) can be computed. Lemma II.7.3 can be seen as an expansion of ([Ble+22b,
Theorem 4.4.]) for spectrahedra defined by a matrix whose entries are monomials.
Computing trop(PB,ú

2d
) is challenging and we make a detour over Nd. We show

that the set Nd has Hadamard property. So we can use many of the techniques
in [Ble+22b; BR22]. Although the description of the image of the Vandermonde
map at infinity is challenging, we prove that trop(Nd) is a rational polyhedral
cone whose defining linear inequalities can be given uniformly in the number of
variables (see II.7.2). The defining linear inequalities actually arise from two
families of binomial inequalities in power sums. In general it is not known if

trop(cone(S)) = tconv(S) (1.5)

for all sets S µ Rn

Ø0. (1.5) is known for semialgebraic sets ([AGS19, Lemma
8]), but since we want to apply (1.5) to S = ‹d(Nd) which is not semialgebraic,
we prove the technical Proposition II.7.13 which shows (1.5) is also true for
sets S having Hadamard property. This allows us to deduce the computational
description of trop(PB,ú

2d
). The strategy of decomposing the tropicalization was

already applied in [AB22] for normalized limits. A similar question to (1.5)
has been investigated in [HLS19], where the authors prove that tropical convex
hull and ordinary convex hull commute in two dimensions but not in higher
dimensions.
The extremal rays in trop(PB,ú

2d
) that are not contained in trop(SB,ú

2d
) correspond

to inequalities in power sum symmetric functions. It was observed in [AB22]
that such inequalities can be used to produce examples of uniform nonnegative
polynomials which are not sums of squares for su�ciently large number of
variables. Such a polynomial is given by 1

18 p(25) + 3p(8,2) + 6p(6,4) ≠ 3p(6,22) (see
Proposition II.7.26).

1.4 Summary of Papers

Paper I analysis the description of the sets of sums of squares of forms which
are invariant under the action of a finite group. In contrast to the general
situation investigated in [GP04], we focus on the action of a reflection
group. Using representation theory we are able to use the symmetry
inherent in the convex cones to give more e�cient descriptions. In the
cases of An, Bn and Dn we use higher Specht polynomials [MY98] to
prove complexity bounds and uniform descriptions for a fixed degree.
Namely, we prove stabilization of the isotypic decomposition of Hn,d for a
fixed degree and increasing number of variables (Theorem I.3.21). Such
a stabilization was already known for the symmetric group ([Rie+13,
Theorem 5.5]) but proved with di�erent methods. As a consequence we
obtain a uniform representation of the invariant sums of squares for a fixed
degree (Corollary I.3.22) and we present explicit calculations as applications.
We give an elementary proof of Harris’ result on ternary octics ([Har99,
Theorem 4.1.]) (see Corollary I.4.2) and classify the nonnegativity versus
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sums of squares question for the group Dn (Theorem I.4.26). Finally, we
study smallish cones of invariant nonnegative forms. In general, the set
of nonnegative forms cannot be represented as a projection of a higher
dimensional spectrahedron whenever the set does not equal the cone of
sums of squares ([Sch18, Corollary 4.25]). We show that there are cases
such that the set of invariant nonnegative forms can be represented as a
projection of a higher dimensional spectrahedron, although the set does
not equal the cone of invariant sums of squares (see Theorem I.4.28).

Paper II discusses various aspects of symmetric nonnegative and sums of squares
forms uniformly in the number of variables and for countably infinitely
many variables. We describe the boundary of the even Vandermonde map
(Theorems II.3.6 and II.3.7 and Corollary II.3.10) which provides analogous
results to [Arn86] in finitely many variables and [Kos04; Kos07] at infinity.
We analyse the convex hull of the map of elementary symmetrics on the
probability simplex (Theorem II.4.1 and Corollary II.4.3) and explain how
the convex hull relates to test sets (Corollary II.4.8). This generalizes and
geometrically explains the test set in [CLR87] for even symmetric sextics.
Additionally, we discuss the combinatorial properties of the boundary,
classify the nonnegativity versus sums of squares question for (even)
symmetric homogeneous functions (Theorem II.5.1) and provide explicit
examples (see Theorem II.5.5). Moreover, we prove that determining
validity of nonnegativity for multisymmetric homogeneous functions on
copies of the probability simplex is undecidable (Theorem II.6.1) which
can be followed from [HN11] on undecidability of linear inequalities in
graph homomorphism densities. Finally, we present another approach to
study the set of nonnegative even symmetric homogeneous functions using
tropicalization. The tropicalization of the image of the even Vandermonde
map has a simple description (see Theorem II.7.2) which allows us
to compare the tropicalizations of the dual cones to even symmetric
homogeneous nonnegative and sums of squares functions. Therefore, we
provide several technical statements about tropical convex sets and sets
with Hadamard property.

Paper III studies the Specht ideals of the hyperoctahedral group Bn. The
Paper generalizes [MRV21] and shows that analogous statements to the
combinatorial and complexity theoretical statements on the symmetric
group and its Specht ideals exist for the hyperoctahedral group, as well.
The bipartitions of n naturally encode the irreducible representations of
Bn. We present a partial order on bipartitions of n (see Definition III.4.1)
which captures the poset structure of Specht ideal and variety inclusion
(Theorem III.5.1). We classify all the covering relations in the poset of
bipartitions (Theorem III.4.3) as in ([Bry73, Proposition 2.3]) for the poset
of partitions, and investigate other combinatorial properties which are
known for the poset of partitions with respect to dominance order. We
introduce the notation of a Bn-orbit of an element (Definition III.6.2) and
present a set decomposition of the Specht varieties based on the partial
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order and the orbit type (Theorem III.6.6). Finally, we present applications
to Bn-invariant ideals. We bound the dimension of the coordinate ring
(Theorem III.7.2) and the structure of elements in the a�ne variety based
on a sparsity condition (Corollary III.7.3).
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I

Abstract

We consider cones of real forms which are sums of squares and invariant
under a (finite) reflection group. Using the representation theory of these
groups we are able to use the symmetry inherent in these cones to give
more e�cient descriptions. We focus especially on the An, Bn, and Dn

case where we use so-called higher Specht polynomials to give a uniform
description of these cones. These descriptions allow us, to deduce that the
description of the cones of sums of squares of fixed degree 2d stabilizes
with n > 2d. Furthermore, in cases of small degree, we are able to analyze
these cones more explicitly and compare them to the cones of nonnegative
forms.
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I.1 Introduction

A real form (homogeneous polynomial) f œ R[X1, . . . , Xn] is called a sum of
squares if it admits a representation in the form f = f2

1 + . . . + f2
m

for some
real forms f1, . . . , fm œ R[X1, . . . , Xn] and it is called positive semidefinite or
nonnegative if it assumes only nonnegative values on Rn. We will denote by
�n,2d the cone of sums of squares forms in n variables of degree 2d and by Pn,2d

This work has been supported by European Union’s Horizon 2020 research and innovation
program under the Marie Sk≥odowska-Curie grant agreement 813211 (POEMA) and the Tromsø
Reserach Foundation grant agreement 17matteCR.
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I. Reflection groups and cones of sums of squares

the corresponding cone of nonnegative forms. Clearly, every sum of squares is
also nonnegative, and we therefore have the inclusion �n,2d µ Pn,2d. Hilbert
[Hil88] addressed and solved the question to characterize the cases, when the
two cones coincide. As it turns out this only seldom happens, namely only in the
case of bivariate forms (n = 2), quadratic forms (2d = 2), and ternary quartics
(n = 3, 2d = 4). Sums of squares play a fundamental role in real algebraic
geometry and have in the last two decades become also a very important tool
for polynomial optimisation (see for example [Sch09]). Several authors have
considered situations in which one supposes that the forms are invariant under
the action of a group: For a group G µ Gln(R) we denote by P

G

n,2d
and �G

n,2d

the invariant forms in the respective cones. Since this additional requirement
can shrink the dimensions of the cones, their study may become more tractable.
Furthermore, as presented in [GP04], representation theory of groups can be
particularly used to simplify the sums of squares decomposition. Building on
this, it was found in [Rie+13; Rie11] that sums of squares invariant under the
symmetric group are highly structured, and the complexity of a sum of squares
decomposition in this case stabilizes with n Ø 2d. Furthermore, symmetric sums
of squares appear quite naturally in various contexts (for example [Ray+18]).
This makes these cones an interesting object of study. Choi and Lam [CL77]
initiated a systematic study of Hilbert’s classification restricted to the case of
symmetric forms, and in a collaboration with Reznick they further provided a
complete study of the cone of even symmetric sextics [CLR87]. Whereas they
could show that in the sextic case there exists a form which is nonnegative but
not a sum of squares Harris [Har99], who studied the case of even symmetric
octics, was able to show that the cones of even symmetric ternary octics that are
sums of squares coincides with the nonnegative cone. Recently, Goel, Kuhlmann
and Reznick [GKR17] constructed even symmetric polynomials of every degree
2d > 8 and every number of variables n Ø 3 which are nonnegative but not a
sum of squares, so for even symmetric forms Harris’ example and the quartics
in any number of variables remain the only exceptional cases compared to
Hilbert’s classification. Despite the classical case analysis done by Hilbert, it can
also be interesting to study the quantitative comparison of sums of squares on
nonnegative polynomials in an asymptotic situation, i.e., when the number of
variables grows to infinity. In contrary to the general situation, where for large
numbers of variables almost every nonnegative form is not a sum of squares (see
[Ble06]), a detailed analysis of the symmetric sum of squares cone and symmetric
nonnegative cone in [BR21] showed that this is not the case in the symmetric
case and that in particular in the quartic case the two cones coincide in the limit.

In this article, we study further the previously mentioned lines of research
by focusing on the situation of sums of squares invariant under some families
of finite real reflection groups G µ Gln(R). Such groups are generated by a set
of orthogonal reflections across hyperplanes passing through the origin. The
invariant theory of these groups is well understood and generalizes the theory of
symmetric polynomials. Therefore, our setup provides a natural unification and
extension to the previously mentioned works on symmetric and even symmetric
forms.
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Introduction

Outline of the article and contributions: The beginning of the next section
gives a short general introduction to the machinery of symmetry reduction for
sums of squares based on linear representation theory. In the case of finite
reflection groups these techniques combined with results from invariant theory,
and in particular the coinvariant algebra and harmonic polynomials, allow for
a concrete description of the qudratic module of invariant sums of squares in
Theorem I.2.23. The results we give in this second section are similar to previous
works, notably [BR21; DGV+17; GP04; Val09].

Section I.3 then turns to the special situation of the three infinite families An,
Bn and Dn of irreducible reflection groups for which we can integrate the notion
of the higher Specht polynomials [ATY97; MY98] with the previously mentioned
techniques. These polynomial allow for a convenient way to combinatorially
describe an isotypic decomposition of the coinvariant algebra in the case of finite
reflection groups whose irreducible components fall to the classes An, Bn, Dn

(see Theorem I.3.7). As we show in Theorem I.3.10 this combinatorial description
then in turn implies a concrete characterization of the cone of invariant sums
of squares. In particular, we show in Theorem I.3.21 that if the degree 2d is
fixed and the number of variables n is growing, a stabilization of the isotypic
decomposition and a resulting combinatorial stabilization of the structure of the
cone of invariant sums of squares is happening in the case of all three families.

Building on these general results we study the cone of even symmetric (i.e.,
Bn-invariant) forms of degree 8 in more detail in Subsection I.4.1. In Theorem
I.4.1 we obtain an explicit description of the dual cone of even symmetric ternary
octics. As one application of this result we are able to revisit the remarkable
finding of Harris, which follow immediately from our description. Furthermore,
we provide a complete description of the cone of even symmetric octic sums of
squares for all number of variables in Theorem I.4.15. Following our discussion
of even symmetric forms we turn to forms that are Dn-invariant in Subsection
I.4.2. We first show in addition to the case of even symmetric ternary quartics
also all ternary quartics invariant by the slightly smaller group D3 are positive
semidefinite if and only if they can be written as a sum of squares (see Theorem
I.4.18). We then examine the dual cone of D4-invariant quartic sums of squares in
Theorem I.4.22, which turns out to be simplicial. Similarly to our approach in the
even symmetric case this yields in particular that every D4-invariant quarternary
quartic nonnegative form is a sum of squares. These results allow us to conclude
a complete charaterization of the cases in which for Dn-invariant forms we have
an equality between the cones of sums of squares and nonnegative forms (see
Theorem I.4.26). To conclude our considerations, we highlight some connections
to nonnegativity testing of forms with the help of semidefinite programming in
the last subsection. It follows from recent work of Scheiderer [Sch18] that the cone
of nonnegative forms in general is not a so called spectrahedral shadow, i.e., it
can in general not be represented as a feasibility set of semidefinite programming.
In contrast to this result, we observe that additionally to the cases where the cone
of invariant sums of squares coincides with the corresponding cone of nonnegative
forms, there are cases where we can represent the cone of nonnegative forms by
projections of sets defined by linear matrix inequalities.
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I. Reflection groups and cones of sums of squares

I.2 Invariant sums of squares

I.2.1 General symmetry reduction

Let X = (X1, . . . , Xn) always denote a tuple of variables and write R[X] =
R[X1, . . . , Xn] =

m
dœN0

Hn,d for the polynomial ring in these variables, where
Hn,d denotes the subspace of forms of degree d. Let G µ Gln(R) be a finite group
acting linearly on Rn. This action then naturally gives rise to an action of G on
the polynomial ring R[X1, . . . Xn] and thus we can view this R-vector space as a
G-module. It follows from Maschke’s theorem that this G-module is completely
reducible, and thus for any degree d there exists an isotypic decomposition, i.e.,
the G-module Hn,d decomposes into a direct sum of the form

Hn,d = V (1)
ü V (2)

ü · · · ü V (h) (I.1)

with V (j) = ◊(j)
1 ü · · ·ü◊(j)

÷j and Ëj := dim ◊(j)
i

, where ◊(u)
i1

, ◊(v)
i2

are G-isomorphic
if and only if u = v i.e., we denote by ÷j the multiplicity of an irreducible
G-module and by Ëj its dimension. Here, the ◊(j)

i
are the irreducible components

and the V (j) are the isotypic components, i.e., the direct sum of isomorphic
irreducible components. The component with respect to the trivial irreducible
representation in R[X] is the invariant ring R[X]G. In general, an irreducible
representation ◊(j)

i
will occur with infinite multiplicity in R[X]. Any irreducible

representation ◊ occurs dim ◊ many times in the regular representation R[G] of
G, i.e., Ë = ÷ for a representation ◊ in R[G]. For f œ R[X] we write ÈfÍG for
the G-module which is the linear span of {‡f : ‡ œ G}.

It is classically known that R[X]G is a finitely generated R-algebra, and
furthermore each isotypic component in R[X] is a finitely generated R[X]G-
module (see [Sta79, Theorem 1.3]). These properties follow for finite groups from
the existence of a linear projection onto R[X]G, called the Reynolds-Operator.

Definition I.2.1. For a finite group G the linear map

RG : Hn,d ≠æ HG

n,d

f ‘≠æ
1

|G|
q

‡œG
‡(f)

is called the Reynolds operator of G.

Remark I.2.2. Although we restrict to finite groups, most of the theory presented
in this section can be directly translated to the more general setup of reductive
groups.

An important tool for the study of invariant sums of squares is Schur’s lemma,
which we include for the convenience of the reader.

Lemma I.2.3 (Schur’s lemma). Let K be a field which is algebraically closed and
V be a G-module defined over K. Further, let V, W denote two irreducible G-
submodules of V . Then the G-module HomG(V, W) of G-homomorphism between
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V and W satisfies HomG(V, W) ƒ K if and only if V and W are G-isomorphic.
Otherwise, we have HomG(V, W) = 0.

Remark I.2.4. In the sequel, we will mostly work with G-modules defined over
the real numbers. In this setup, one devotes some care to the fact that irreducible
representations defined over the reals may be reducible over the complex numbers.
This additional di�culty is in fact not hard to overcome and, in particular, in
the case of real reflection groups, which are the main focus of this work, all
complexifications of real irreducible G-modules remain irreducible [Hum90].

Let V = Èf1ÍG be irreducible. As a consequence of Schur’s lemma, we obtain
that any G-homomorphism „ œ HomG(V, W) is uniquely defined by f2 := „(f1).
If further „ ”= 0 then for any Â œ HomG(V, W) we have Â = ⁄„ for a scalar
⁄ œ K. This motivates the following:

Definition I.2.5. Let V be a finite dimensional G-module with isotypic
decomposition

V =
ln

j=1

÷jn

i=1
◊(j)

i

and fji œ ◊(j)
i

be such that for every j each fji is the image of fj1 under a
G-isomorphism. Then (f11, . . . , f1÷1 , f21, . . . , fl÷l) is called a symmetry adapted
basis of V .

We point out that while a symmetry adapted basis of a G-module is usually
not a vector space basis, a system of linear generators is given by its G-orbit.
For a R-vector space W we write

q
W 2 for the sums of squares of elements in

W . Note, an invariant polynomial which can be expressed as a sum of squares
in the ring R[X] will not necessarily have a sum of squares decomposition in
invariant polynomials, i.e.,

R[X]G
‹ ÿ

R[X]2 ”=
ÿ

(R[X]G)2.

For instance, the symmetric polynomial X2
1 + X2

2 cannot be a sum of squares of
symmetric polynomials of degree 1.
By integrating the idea of a symmetry adapted basis together with Schur’s
lemma, one arrives at the following observation more or less directly (see also
[BR21; CKS09; GP04; Rie+13] for more details on the following statement).

Theorem I.2.6. Let {f11, f12, . . . , fl÷l} be a symmetry adapted basis of the G-
module Hn,d of forms of degree d. Then any G-invariant sum of squares form in
HG

n,2d
is contained in the set

lÿ

j=1
RG

!
Èfj1, . . . , fj÷j Í

2
R
"

In some situations, it is convenient to formulate Theorem I.2.6 in terms
of matrix polynomials, i.e., matrices with polynomial entries. For two k ◊ k
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I. Reflection groups and cones of sums of squares

symmetric matrices A and B we define their inner product as ÈA, BÍ = Tr(AB).
We define a block-diagonal symmetric matrix B with j blocks B(1), . . . , B(j) and

B(j) = (RG(fju · fjv))u,v. (I.2)

Then Theorem I.2.6 is equivalent to the following statement:

Corollary I.2.7. g œ �G

n,2d
if and only if g = ÈA1, B(1)

Í + . . . + ÈAl, B(l)
Í for

some Aj œ R÷j◊÷j symmetric and positive semidefinite matrices.

I.2.2 Representation theory of finite reflection groups

The aim of this subsection is to provide an introduction to the representation
theory of finite real reflection groups and how their symmetry can be exploited
to reduce complexity in calculations. The presented material is mainly based on
work in [BR21; DGV+17; GP04; Rie+13].

Definition I.2.8. A real reflection group is a pair (G, fl), where G is a finite group
and fl : G æ Gln a linear representation of G such that fl(G) is generated by
a set of reflections. A reflection group is essential if Rn does not contain a
non-trivial G-submodule.

Usually, we just say that a group G is a reflection group and the relevant
linear map fl should be understood from the context.

Example I.2.9.

(i) The symmetric group Sn on n letters is a reflection group acting via
coordinate permutation on Rn. The action of Sn on Rn is not essential, as the
linear subspace R · (1, . . . , 1) is fixed point wise. The induced action of Sn on
Rn/R · (1, . . . , 1) is known as the reflection group of type An≠1 and is essential.

(ii) The symmetry group of the regular m-gon is a reflection group denoted
by I2(m) and called dihedral group.

Remark I.2.10. Any real reflection group can be identified with a direct product
of essential reflection groups. The essential real reflection groups have been
classified and are precisely the infinite series An≠1, Bn, Dn, I2(m) and the six
exceptional reflection groups E6, E7, E8, F4, H3, H4 (see e.g. [Hum90]).

The reflection group of type Bn can be identified with the hyperoctahedral
group S2 Ó Sn acting on Rn via sign changing and permutation of coordinates.
Then Bn is generated by the reflections at {xi = ±xj}, for 1 Æ i Æ j Æ n.
Furthermore, Dn can be identified with the subgroup of Bn of index 2, generated
by the reflections at {xi = ±xj}, for 1 Æ i < j Æ n. Dn is the group of “even
sign changes”.

Theorem I.2.11 (Chevalley-Shephard-Todd). Let G be a finite group and let G
act linearly on Rn. Then the invariant ring R[X]G is as R-algebra isomorphic
to a polynomial ring if and only if G is a real reflection group. Moreover, in this
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case R[X]G is generated by n algebraically independent forms Â1, . . . , Ân, i.e.,
R[X]G = R[Â1, . . . , Ân].

While the generators are not unique but well explored (e.g., the elementary
symmetric or the power sum polynomials are generators of R[X]Sn), the multisets
of their degrees {d1, . . . , dn} are unique and

r
i
di = |G| (see e.g. [Hum90] for

further details).

Definition I.2.12. Let G be a reflection group which acts linearly on Rn and
R[X]G = R[Â1, . . . , Ân]. The forms Â1, . . . , Ân are the fundamental invariants
of G. Let (d1, . . . , dn) be the ordered sequence of degrees of the fundamental
invariants. We define

NG(k) := |{(–1, . . . , –n) œ Nn

0 : –1d1 + . . . + –ndn = k}|.

With this definition the following is a direct consequence of Theorem I.2.11.

Corollary I.2.13. Let G be a finite reflection group. The dimension of the vector
space of G-invariant forms of degree d equals NG(d), i.e., dim HG

n,d
= NG(d).

Example I.2.14.

(i) R[X]Sn = R[e1, e2, . . . , en] = R[p1, p2, . . . , pn], where
ej(X) :=

q
Iµ[n]:|I|=j

r
iœI

Xi are the elementary symmetric and pj(X) :=
q

n

i=1 Xj

i
are the power sum polynomials.

(ii) R[X]Bn = R[e1(X2), e2(X2), . . . , en(X2)] = R[p2, p4, . . . , p2n], where
X2 := (X2

1 , . . . , X2
n
).

(iii) R[X]Dn = R[p2, p4, . . . , p2n≠2, en].

(iv) R[X]I2(m) = R[X2
1 + X2

2 , (X1 +
Ô

≠1X2)m + (X1 ≠
Ô

≠1X2)m].

Remark I.2.15. For ⁄ := (⁄1, . . . , ⁄l) œ Nl we write p⁄ := p⁄1 · · · p⁄l for the l
products of the power sums p⁄i and analogously e⁄ for the products of elementary
symmetrics.

From a computational perspective, invariant theory as outlined above can
be used to reduce computations for polynomials in R[X] to the smaller ring
R[X]G. Since R[X] is in general a finite R[X]G-module, the quadratic module
R[X]G

u q
R[X]2 can be described conveniently. We outline this in the case

of reflection groups below by using the coinvariant algebra and a theorem of
Chevalley.

Definition I.2.16. The quotient algebra of the polynomial ring modulo the
ideal generated by the non-constant elements of the invariant ring is called the
coinvariant algebra of G and is denoted by R[X]G, i.e.,

R[X]G = R[X]/ (Â1, . . . , Ân)R[X] .
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I. Reflection groups and cones of sums of squares

Note, by definition the coinvariant algebra of G has the structure of a G-
module.

Theorem I.2.17 ([Che55]). Let G be a real reflection group acting linearly on Rn.
Then the coinvariant algebra R[X]G is as G-module isomorphic to the regular
representation and

R[X] ƒ R[X]G ¢R R[X]G
as graded R-algebras.

Corollary I.2.18. Let R[X]G = R[Â1, . . . , Ân] be a polynomial ring in the
fundamental invariants Â1, . . . , Ân and let R[X]G =

m
l

j=1 ÷j◊(j) be the isotypic
decomposition of the coinvariant algebra. Then there exists a symmetry adapted
basis f11, . . . , fl÷l œ R[X] of R[X]G and any f œ R[X] can be written as a sum
of polynomials of the form

lÿ

j=1

÷jÿ

i=1

ÿ

‡œG

gji,‡‡fji

for some gji,‡ œ R[X]G.

Proof. The existence of the symmetry adapted basis (f11, . . . , fl÷l) of R[X]G
follows by Schur’s lemma I.2.3. Further, by definition, the G-orbit of
(f11, . . . , fl÷l) spans the coinvariant algebra. The claim follows from the graded
tensor decomposition in Theorem I.2.17, since the basic tensors of R[X] are
elements described above. ⌅

The second summation in the representation of a polynomial in Corollary
I.2.18 goes up to ÷j . We recall that the multiplicity ÷j of an irreducible
representation ◊(j) in the coinvariant algebra equals its dimension Ëj .
Remark I.2.19. The calculation of a symmetry adapted basis of the coinvariant
algebra allows easily the computation of the isotypic decomposition of the G-
module Hn,d for any degree. As a rough general procedure, one needs to compute
the products of elements from the symmetry adapted basis with fundamental
invariants of G, such that the degree of the obtained forms equal d.

Definition I.2.20. Let S := {s1, . . . , s|G|} be a basis of R[X]G. Then we define
the matrix polynomial HS(Â1, . . . , Ân) œ R[Â1, . . . , Ân]|G|◊|G| entry wise

HS

u,v
:= RG(su · sv),

and each entry RG(su · sv) is expressed as a polynomial in the fundamental
invariants Â1, . . . , Ân.

Lemma I.2.21. Let f œ R[X] be G-invariant and let “ œ R[Â1, . . . , Ân] with
“(Â1, . . . , Ân) = f then f is a sum of squares if and only if “(Â1, . . . , Ân) admits
a representation of the form

“ = ÈT, HS
Í
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Invariant sums of squares

where T is a sum of squares matrix polynomial, i.e., T = LT L for a matrix
L œ R[Â1, . . . , Ân]n◊m and an integer 1 Æ m Æ n.

Proof. This follows from the decomposition R[X] ƒ R[X]G ¢R[X]G in Theorem
I.2.17. ⌅

Definition I.2.22. For every irreducible representation ◊(j) of G we construct
a matrix polynomial HËj œ R[Â1, . . . , Ân]÷j◊÷j in the following way: Let
R[X]G =

m
l

j=1 R[X]Ëj

G
be the isotypic decomposition of the coinvariant algebra

and {s1,1, . . . , s1,÷1 , s2,1, . . . , sl,÷l} be a symmetry adapted basis of R[X]G. Then
we define

HËj
u,v

= RG(sj,u · sj,v).

Combining above definition and lemma, and the results from Schur’s lemma
we immediately obtain

Theorem I.2.23. Let G be a finite reflection group with R[X]G = R[Â1, . . . , Ân].
Then,

�R[X]2 fl R[X]G =

Y
]

[g œ R[Â1, . . . , Ân] : g =
lÿ

j=1
ÈHËj , AjÍ

Z
^

\ ,

where Aj œ R[Â1, . . . , Ân]÷j◊÷j is a sum of squares matrix polynomial.

Example I.2.24. Let f œ R[X1, X2] be a form of degree 2d which is invariant
under the dihedral group I2(k). The dihedral group I2(k) has only irreducible
representations of dimension 1 or 2. In fact, if k is odd (resp. even), then 2
(resp. 4) representations of dimension one and k≠1

2 (resp. k≠2
2 ) representations

of dimension two. By block-diagonalisation we end up with HS(z) having 2
(resp. 4) 1 ◊ 1 blocks H◊1 , H◊2 (resp. H◊1 , . . . , H◊4) and k≠1

2 (resp. k≠2
2 ) 2 ◊ 2

blocks H◊3 , . . . , H
◊ k+3

2 (resp. H◊5 , . . . , H
◊ k+6

2 ). Then for n odd (resp. even)
f nonnegative if and only if there exist sums of squares matrix polynomials
Aj œ R[X2

1 + X2
2 , (X1 +

Ô
≠1X2)k + (X1 ≠

Ô
≠1X2)k]dim ◊j◊dim ◊j such that

f =
mÿ

j=1
ÈH◊j , AjÍ

and m = k+3
2 (resp. m = k+6

2 ).
For k = 3 the coinvariant algebra R[x, y]I2(3) decomposes into the direct sum of

◊(1) = È1Í, ◊(2) = È≠x3 + 3xy2
Í, ◊(3)

1 = ÈxÍI2(3), ◊(3)
2 = ÈxyÍI2(3),

where ◊(3)
1 and ◊(3)

2 are I2(3)-isomorphic through x ‘æ xy. Then H◊
(1) = (1),

H◊
(2) =

!
RI2(3)(3xy2

≠ x3)2"
and H◊

(3) =
3

RI2(3)(x2) RI2(3)(x2y)
RI2(3)(x2y) RI2(3)(x2y2)

4
.
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I. Reflection groups and cones of sums of squares

Definition I.2.25. Let G be a finite reflection group and ◊ be an irreducible
representation. We write hË

k
for the multiplicity of ◊ in (R[X]◊

G
)k.

I.e., hË

k
equals the multiplicity of ◊ in the isotypic decomposition of the

subspace of the coinvariant algebra of forms of degree k. We recall that NG(d)
denotes the vector space dimension of G-invariant forms of degree d (see I.2.13).

Corollary I.2.26. Let G be a finite reflection group and ◊ be an irreducible repre-
sentation. Then the multiplicity of the corresponding irreducible representation
in the G-module Hn,d equals

q
d

k=0 NG(d ≠ k) · hË

k
.

I.2.3 G-harmonic polynomials

In this subsection we present a specific basis of the coinvariant algebra for
reflection groups which can be simply computed.

Definition I.2.27. For a polynomial f(X) =
q

–
c–X–

œ R[X] we define f(ˆ) as
the linear operator

f(ˆ) : R[X] ≠æ R[X]
g ‘≠æ

q
–

c–
ˆ

–

(ˆX)– g
.

I.e., f(ˆ) is a linear map which is a formal sum of scaled partial derivatives.

Example I.2.28. Let f(X) = X2
1 + X1X2 œ R[X1, X2, X3], then f(ˆ) =

ˆ
2

ˆX1ˆX1
+ ˆ

2

ˆX1ˆX2
and f(ˆ)

!
X2

1 + X2
2 + X2

3 + X1X2X3
"

= 2 + X3.

Definition I.2.29. Let G be a reflection group and R[X]G = R[Â1, Â2, . . . , Ân].
The R-vector space of harmonic polynomials is defined as HG :=

!
R[X]G

"‹ with
respect to the inner product

È·, ·Í : R[X] ◊ R[X] ≠æ R[X]
(f, g) ‘≠æ ev(0,...,0) (f(ˆ)g(X)) .

Theorem I.2.30 ([Ber09]). Let G be a real reflection group and � :=
r

Li, be
the product of a minimal system of linear polynomials defining the reflection
hyperplanes. Then, the vector space of G-harmonic polynomials HG is generated
by all partial derivatives of �, i.e., HG = È

ˆ
–

(ˆx)– � : – œ Nn

0 ÍR. Furthermore,
HG is as G-module isomorphic to the regular representation of G and R[X] =
R[X]G ¢R HG.

Note, � is only defined up to scalar multiplication by c œ R \ {0}.
Remark I.2.31. Let G be a reflection group, Â1, . . . , Ân be the fundamental
invariants and consider the map

� : Rn
≠æ Rn

X ‘≠æ (Â1(X), . . . , Ân(X)).
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Then, thanks to a statement of Steinberg [Ste60] we have

� = det(Jac�)

where Jac� denotes the Jacobian of �. The choice of fundamental invariants
Â1, . . . , Ân does not matter.

Example I.2.32. For Sn the symmetric group acting on Rn via coordinate
permutation and Âi =

q
n

j=1 Xi

j
the power sums, we obtain � =

r
i<j

(xi ≠ xj)
equals the determinant of the Vandermonde matrix, which is precisely the
product over all reflections of Sn.

Remark I.2.33. Computing a basis of the coinvariant algebra R[X]G =
R[X]/R[X]G

>0, which is defined as a quotient space, is challenging and involves
the calculation of a Gröbner basis. However, the approach using harmonic
polynomials is more e�cient. It is based on linear algebra for given fundamental
invariants and the fundamental invariants of real reflection groups are well-known,
so one can simply calculate the polynomial � and all its partial derivatives.

I.2.4 Convex geometric properties of �
G and PG

The convex cones of sums of squares and nonnegative forms, and their dual
cones have been studied intensively in the research on nonnegativity versus sums
of squares (see e.g. [Ble12] on Hilbert’s inequality cases or [BPT12]). In this
subsection, we present known and adapted knowledge on the convex geometrical
properties of �G

n,2d
and P

G

n,2d
. We refer to ([BR21, Subsection 4.5]) for more

details.
The sets �G

n,2d
and P

G

n,2d
are convex cones, i.e., they are convex sets which

are closed under scalar multiplication by nonnegative scalars. Moreover, these
sets are closed and pointed, i.e., they do not contain a non-trivial linear subspace.
We refer to [Ble06] for details.
The dual cone of a set K µ RN is denoted by Kú and is defined as
Kú =

)
¸ œ RN,ú : ¸(K) ™ RØ0

*
.

Remark I.2.34. To study the set �G,ú
n,2d

we associate the elements in �G,ú
n,2d

with
positive semidefinite quadratic forms. We associate a linear functional ¸ œ HG,ú

n,2d

with a G-invariant quadratic form Q¸ defined as

Q¸ : Hn,d ≠æ R
f ‘≠æ ¸

!
RG(f2)

"
.

Note, although ¸ is defined on the space of invariant forms, the quadratic form
Q¸ is defined on the space of all forms.

Since our considered polynomials are homogeneous we have the following
description of the dual cone of invariant nonnegative forms. For a œ Rn we write
eva for the point-evaluation of a, i.e.,

eva : R[X] ≠æ R
f(X) ‘≠æ f(a).
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Proposition I.2.35 ([Ble06]). The dual cone of the nonnegative invariant forms
is the convex cone that is generated by all point-evaluations, i.e.,

P
G,ú
n,2d

= cone{eva : a œ Sn≠1
}.

By duality any f œ P
G

n,2d
contained in the boundary of P

G

n,2d
has a real zero.

We formulate the dual version of Theorem I.2.6.

Lemma I.2.36. Let ¸ œ HG,ú
n,2d

and {f11, . . . , f1÷1 , f21, . . . , fl÷l} be a symmetry
adapted basis of Hn,d and B(j) = (RG(fju · fjv))u,v. Then ¸ œ �G,ú

n,2d
if and only

if ¸(Bj) is positive semidefinite for all j = 1, . . . , l.

The following lemma enables the characterisation of extremal elements
through their kernels.

Lemma I.2.37 ([Ble12], Lemma 2.2). Let V be a R-vector space, A the vector
space of quadratic forms on V and A

+
µ A the cone of positive semidefinite

quadratic forms. Let L be a linear subspace of A and K be the section of A
+

with L, i.e., K = A
+

fl L. Then a quadratic form Q œ K spans an extreme ray
of K if and only if its kernel is maximal among all kernels of quadratic forms in
L, i.e., if ker Q ™ ker P for a P œ L, it is P = ⁄Q for some ⁄ œ R.

In order to examine the kernels of invariant quadratic forms, we use the
following construction. For a linear subspace W µ Hn,d, we define its quadratic
symmetrization with respect to G as

W <2> :=
Ó

h œ HG

n,2d
: h = RG

1ÿ
figi

2
for fi œ W and gi œ Hn,d

Ô
.

In order to characterize the extreme rays of �G,ú
n,2d

we use Lemma I.2.36 to
identify �G,ú

n,2d
with a linear section of the cone of positive semidefinite quadratic

forms on Hn,d with the subspace of G-invariant quadratic forms on Hn,d.

Proposition I.2.38 ([BR21]). An element ¸ œ �G,ú
n,2d

is extremal if and only if
ker Q¸ is maximal among all kernels of G-invariant quadratic forms on Hn,d. Let
W := ker Q¸, then W <2> is equal to the kernel of ¸. Moreover, if (f11, . . . , fl÷l)
is a symmetry adapted basis of Hn,d and

1
g11, . . . , gl÷

Õ
l

2
is a symmetry adapted

basis of W such that Ègji1ÍG ƒG Èfji2ÍG and gji1 ‘æ fji2 define the unique
G-isomorphism, then

W È2Í = ÈRG(gji1 · fji2) : 1 Æ j Æ l, 1 Æ i1 Æ ÷Õ
j
, 1 Æ i2 Æ ÷jÍR.

Proof. The first claim follows from Lemma I.2.37. The second claim follows
from the positive semidefiniteness of the quadratic form Q¸. The complexity
reduction gives the above description of W È2Í according to the use of a symmetry
adapted basis and by applying Schur’s lemma. ⌅
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To prove equality or inequality between the sets �G

n,2d
and P

G

n,2d
we can use

the dual approach.

Corollary I.2.39. Suppose the convex cones �G

n,2d
, P

G

n,2d
are full dimensional.

Then �G

n,2d
= P

G

n,2d
if and only if any extremal ray in �G,ú

n,2d
is generated by a

point-evaluation.

Proof. The primal cones P
G

n,2d
and �G

n,2d
are equal if and only if the dual cones

are equal. By Minkowski’s theorem, any ¸ œ �G,ú
n,2d

can be written as a sum of
extremal elements. If any extremal ray in �G,ú

n,2d
is generated by a point-evaluation,

then there exists a set M µ Rn such that

P
G,ú
n,2d

™ �G,ú
n,2d

= cone{eva : a œ M} µ cone{eva : a œ Sn≠1
} = P

G,ú
n,2d

where the last equality follows by Proposition I.2.35.
Conversely, if �G

n,2d
= P

G

n,2d
then also the dual cones are equal. However, P

G,ú
n,2d

is
the convex cone that is generated by all point-evaluations. Hence, any extremal
ray in �G,ú

n,2d
is generated by a point-evaluation. ⌅

I.3 Sums of squares invariant under An, Bn, and Dn

In this section we present an algorithmic approach for calculating a symmetry
adapted basis of the coinvariant algebra for reflection groups of type An≠1, Bn or
Dn which was introduced by Morita and Yamada [MY98]. We prove stabilization
of the isotypic decomposition for a fixed degree and large enough number of
variables, for those series of essential reflection groups.

I.3.1 Higher Specht polynomials

A well known classical construction of the irreducible Sn-modules in the
real polynomial ring is due to Specht [Spe37]. The Sn-generators of these
representations are called Specht polynomials. However, we are interested in the
decomposition of the coinvariant algebra. An elegant combinatorial algorithm
to decompose the coinvariant algebra into all irreducible submodules for all
pseudoreflection groups of type G(r, p, n) was introduced in [MY98]. In the
following, we briefly present their work.
We begin with recalling some basic definitions from combinatorics.

Definition I.3.1. A non-increasing sequence of positive integers ⁄ = (⁄1, . . . , ⁄l)
is called a partition and l is the length of ⁄. We denote by |⁄| =

q
l

i=1 ⁄i = n
the value of ⁄ and say that ⁄ is a partition of n, which we denote by ⁄ „ n, if
|⁄| = n. For partitions ⁄1 and ⁄2 we call the pair � = (⁄1, ⁄2) a bipartition and
allow ⁄1 = ÿ or ⁄2 = ÿ. We say that |�| = |⁄1

| + |⁄2
| = n is the value of � and

write � „ n when � is bipartition of n.

We always denote bipartitions by capital letters and partitions by small
letters. However, sometimes we write (⁄, ÿ) instead of ⁄ for a partition ⁄. I.e.,
we write also � instead of (⁄, ÿ) sometimes.
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Definition I.3.2. The Young diagram associated to a partition ⁄ „ n is a sequence
of ordered boxes starting from the left which i-th line contains ⁄i boxes. If
one fills the boxes with all the integers in [n], one calls the obtained object a
Young tableau or tableau of shape ⁄. If the numbers in all columns and rows are
increasing we call the tableau standard.
Bipartitions are associated with their pairs of Young diagrams. A Young bitableau
or bitableau is a filling of both diagrams with all the numbers in [n] and we call
it standard if both diagrams are standard.
We denote by YT(�) the set of (bi-)tableaux of shape � and by SYT(�) the
subset of standard (bi-)tableaux.

In the following, we will denote an irreducible representation indexed by a
(bi-)partition � by S�, i.e., S� is a Specht module. The underlying group should
be clear from the context.
The famous Robinson-Schensted correspondence gives a bijection between the
standard tableaux of shape ⁄ and the elements in the conjugacy class of Sn

which are labelled by ⁄. Hence, this number equals the multiplicity of the Specht
module S⁄ in the coinvariant algebra. The correspondence has been adapted
to pseudoreflection groups of type G(r, p, n) and in particular for the contained
series of reflection groups of types Bn = G(2, 1, n) and Dn = G(2, 2, n), e.g., see
([Cas11, Section 10]).

Following [ATY97; MY98] we construct a symmetry adapted basis of the
coinvariant algebra. The group Sn acts naturally on a tableau by replacing the
entry i with ‡(i) for ‡ œ Sn.

Definition I.3.3. Let T be a Young tableau of shape ⁄ „ n. The Sn-subgroups

CT := {‡ œ Sn : ‡T is obtained by permutation of the columns of T}

RT := {‡ œ Sn : ‡T is obtained by permutation of the rows of T}

are the column and row stabilizer of T . We define the formal linear combination

‘T := f⁄

n!
ÿ

‡œCT ,·œRT

sgn(‡)‡· œ R[Sn],

where f⁄ is the number of standard tableau of shape ⁄. For a bitableau
T = (T 1, T 2) we define ‘T 1 , ‘T 2 œ R[Sn] analogously and set ‘T := ‘T 1 · ‘T 2 .

We associate (bi-)tableau with sequences, monomials and polynomials:

Definition I.3.4. Let T = (T 1, T 2) œ YT(�) be a (bi-)tableau. The word of T is
the sequence w(T ) œ N|⁄| where we read and notate each column of the tableau
T 1 from the bottom to the top, starting from the left. We continue with this
procedure for the tableau T 2.
We define the index i(T ) œ N|�| of T as follows. The number 1 in the word
w(T ) has index 0. If k in the word has index p, then k + 1 has index p or p + 1
according as it lies to the right or the left of k. We call the sum of the entries of
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i(T ) the charge of T and write ch(T ).
We associate to a pair of (bi-)tableaux (T, S) œ YT(�) ◊ YT(�) a monomial
in n variables XS

T
:= Xi(w(S))1

w(T )1
· · · X

i(w(S))|�|
w(T )|�|

. Moreover, we define polynomials
associated to (T, S)

F S

T
:= ‘T · XS

T
œ R[X] and ‚F S

T
:= F S

T
(X2) ·

Ÿ

jœT 2

Xj

where X2 := (X2
1 , . . . , X2

n
).

We note, associating tableaux with words is a standard technique in the
combinatorics of tableaux (see e.g. [FF97]).

Example I.3.5. Let � = ((2, 1), (1)) „ 4 be a bipartition and S =
1

1 4
2 , 3

2
, T =

1
1 2
4 , 3

2
œ SYT(�). The word of S is w(S) = (2, 1, 4, 3) and the word

of T is w(T ) = (4, 1, 2, 3). We calculate the indices i(S) = (1, 0, 2, 1) and
i(T ) = (1, 0, 0, 0) and compute XS

T
= X1

4 X0
1 X2

2 X1
3 = X2

2 X3X4, F S

T
=

X2
1 X3X4 + X2

2 X3X4 ≠ X1X2
2 X3 ≠ X1X3X2

4 .

The authors in [MY98] introduced the following polynomials in analogy to
Specht’s polynomial representation of the irreducible Sn-modules.

Definition I.3.6. Let n œ N and let L := {(⁄, µ) „ n : ⁄ ”= µ, |⁄| Ø |µ|}.

I.3.6.1. For An≠1 the higher Specht polynomials are the polynomials)
F S

T
: (T, S) œ

t
⁄„n

SYT(⁄) ◊ SYT(⁄)
*

.

I.3.6.2. For Bn the higher Specht polynomials are the polynomialsÓ
‚F S

T
: (T, S) œ

t
�„n

SYT(�) ◊ SYT(�)
Ô

.

I.3.6.3. For Dn the higher Specht polynomials are the polynomials
I

‚F S

T
: (T, S) œ

€

�œL
SYT(�) ◊ SYT(�)

J
, and

Y
]

[
‚F S

(T 1,T 2) ± ‚F S

(T 2,T 1) : ((T 1, T 2), S) œ

€

⁄„ n
2

SYT((⁄, ⁄)) ◊ SYT((⁄, ⁄))

Z
^

\ .

If n is odd there are no partitions of n

2 . Thus, the Dn higher Specht
polynomials di�er in their structure when n is even or odd.

Theorem I.3.7 ([MY98], Theorem 3). For the reflection groups of type An≠1, Bn

or Dn the higher Specht polynomials form a vector space basis of the coinvariant
algebra. For (P, Q), (P Õ, QÕ) œ SYT(⁄)◊SYT(⁄) and (T, S), (T Õ, SÕ) œ SYT(�)◊

SYT(�) we have

S⁄
ƒAn≠1 ÈF (P

Õ
,Q

Õ)
(P,Q) ÍAn≠1 = ÈF (P

Õ
,Q

Õ)
(P ÕÕ,QÕÕ) : (P ÕÕ, QÕÕ) œ SYT(⁄)ÍR

S�
ƒBn È ‚F (T

Õ
,S

Õ)
(T,S) ÍBn = È ‚F (T

Õ
,S

Õ)
(T ÕÕ,SÕÕ) : (T ÕÕ, SÕÕ) œ SYT(�)ÍR
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I. Reflection groups and cones of sums of squares

Furthermore, for ⁄ ”= µ the associated irreducible Bn-representations (⁄, µ) and
(µ, ⁄) remain Dn-irreducible, but are Dn-isomorphic. For a pair ((T 1, T 2), S) of
standard bitableaux of shape (⁄, ⁄) „ n we have

È ‚F S

T
ÍDn = È ‚F S

T
+ ‚F S

(T 2,T 1)ÍDn ü È ‚F S

T
≠ ‚F S

(T 2,T 1)ÍDn ƒDn : S(⁄,⁄)
+ ü S(⁄,⁄)

≠

and the Dn-modules S(⁄,⁄)
+ ,S(⁄,⁄)

≠ are Dn-irreducible and non-isomorphic.

Moreover, we find the following as a consequence of Schur’s lemma I.2.3
and the statements in [MY98]: For the groups An≠1, Bn and Dn and standard
(bi-)tableaux T = (T 1, T 2), S1, S2 of shape � (resp. ⁄) the maps

F S1
T

‘æ F S2
T

for An≠1 and ‚F S1
T

‘æ ‚F S2
T

for Bn, Dn

define the (up to scalar multiplication) unique G-module isomorphisms. If
� = (⁄, ⁄), then the unique Dn-isomorphisms are

‚F S1
(T 1,T 2) ± ‚F S1

(T 2,T 1) ‘æ ‚F S2
(T 1,T 2) ± ‚F S2

(T 2,T 1) .

Definition I.3.8. Let G œ {An≠1, Bn, Dn} and � „ n be a (bi-)partition. We
write q�

d
for the multiplicity of the G-module S� in Hn,d.

Remark I.3.9. From Theorem I.3.7 we obtain a combinatorial description of
h◊

k
, i.e., of the multiplicity of an irreducible representation ◊ in the subspace of

the coinvariant algebra of forms of degree k. Namely, in the case of An≠1 ◊ is
labelled by a partition ⁄ „ n and

h⁄

k
= |{T œ SYT(⁄) : ch(T ) = k}|.

While for Bn and Dn ◊ is labelled by a bipartition � = (⁄, µ) „ n and

h�
k

= |{(T, S) œ SYT(�) : 2 ch(T, S) + |µ| = k}|.

In particular, the multiplicity of S� in Hn,d can be described combinatorially
through the number of standard (bi-)tableaux and the degrees of G

q�
d

=
dÿ

k=0
NG(d ≠ k) · h�

k
.

By integrating the above presented construction with the general setup, the
degrees of the considered reflection groups and the number of standard (bi-
)tableaux combinatorially encode the following information about the invariant
sums of squares.

Theorem I.3.10. Let G œ {An≠1, Bn}.

(1) The isotypic decomposition of Hn,d is
n

�„n

q�
d

· S�,

where � ranges over partitions for An≠1 and bipartitions for Bn.
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(2) There exists a symmetry adapted basis of the coinvariant algebra R[X]G
consisting of higher Specht polynomials (s�

1 , . . . , s�
Ë�

)�„n, where Ë� denotes
the dimension of S�. By defining symmetric matrix polynomials (H�

v,u
) =!

RG(s�
v

· s�
u

)
"

œ R[X]Ë�◊Ë� we have

�R[X]2 fl R[X]G =
I

g œ R[Â1, . . . , Ân] : g =
ÿ

�„n

ÈHËj , A�Í

J
,

where A� œ R[Â1, . . . , Ân]Ë�◊Ë� are sums of squares matrix polynomial.

(3) There exists a symmetry adapted basis of Hn,d =
m

�„n
q�

d
· S� such that

its elements
1

s�
1 , . . . , s�

q
�
d

2
which belong to the isotypic component q�

d
· S� are

products each of one higher Specht polynomial and a monomial in Â1, . . . , Ân.
By defining matrix polynomials B� =

!
RG(s�

v
· s�

u
)
"

v,u
œ

!
R[X]G

"q
�
d ◊q

�
d a form

f œ HG

n,2d
is a sum of squares if and only if

f =
ÿ

�„n

ÈB�, A�Í

for some positive semidefinite matrices A� œ Rq
�
d ◊q

�
d .

Proof. The isotypic decomposition of Hn,d can be realized through multiplying
the higher Specht polynomials of G of degree Æ d with products of fundamental
invariants by Theorems I.3.7 and I.2.17. For every k the multiplicity of G-
modules G-isomorphic to S� in the subspace of the coinvariant algebra of degree
k is precisely h�

k
, while NG(d ≠ k) gives the dimension of HG

n,d≠k
. Now, (2) and

(3) follow from Theorem I.2.23 and Corollary I.2.7. ⌅

Remark I.3.11. For Dn one can provide analogous assertions. The isotypic
decomposition in (1) and the sizes of the matrices in (2) and (3) di�er slightly,
since then the Dn-module S(⁄,⁄) decomposes into two irreducible Dn-modules,
and since S(⁄,µ) is Dn-isomorphic to S(µ,⁄).

Example I.3.12. The D4 fundamental invariants are the following:

p2 = X2
1 + X2

2 + X2
3 + X2

4 , p4 = X4
1 + X4

2 + X4
3 + X4

4 ,

p6 = X6
1 + X6

2 + X6
3 + X6

4 , e4 = X1X2X3X4,

i.e., we have R[X]D4 = R[p2, p4, p6, e4]. By Corollary I.2.18 and Theorem I.3.10
the symmetry adapted basis of H4,2 can be obtained by multiplying fundamental
invariants with higher Specht polynomials such that the degree equals 2.
We apply Theorem I.3.7 to calculate the D4 higher Specht polynomials. For a
bipartition � „ 4 the minimal degree of a higher Specht polynomial associated
with � is given by the smallest integer in {2 ch(T ) + |⁄2

| : T œ SYT(�)}.
Since the degrees of the fundamental invariants are at least 2, we need to
compute all higher Specht polynomials of degree 0 and 2. Therefore, we
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I. Reflection groups and cones of sums of squares

only need to consider bipartitions (⁄1, ⁄2) „ 4 with ⁄2
„ m œ {0, 2} as

otherwise the degree is odd. In the case ⁄2
„ 2 it must be ch(T ) = 0.

This can only occur for w(T ) = (1, 2, 3, 4) which forces � = ((2), (2)). The
possible remaining cases are �1 = ((4), ÿ), �2 = ((3, 1), ÿ), �3 = ((2, 2), ÿ), �4 =
((2, 1, 1), ÿ), �5 = ((1, 1, 1, 1), ÿ). We are looking for a standard bitableau T of
shape �j , j œ {1, 2, 3, 4, 5}, such that ch(T ) œ {0, 1}. The case that the charge
is 0 is only possible for �1. In the remaining cases, ch(T ) = 1 if and only if
T =

1
1 2 3
4 , ÿ

2
. Then, the D4-module S((2),(2)) decomposes by Theorem I.3.7

into two irreducible, non-isomorphic modules S((2),(2))
+ and S((2),(2))

≠ . Hence, the
D4-module H4,2 has the isotypic decomposition

H4,2 = S((4),ÿ)
ü S((3,1),ÿ)

ü S((2),(2))
+ ü S((2),(2))

≠ .

The relevant higher Specht polynomials are 1 for S((4),ÿ), X2
4 ≠ X2

1 for S((3,1),ÿ)

and X1X2 ± X3X4 for S((2),(2))
+ and S((2),(2))

≠ .

I.3.2 Stabilization of the isotypic decompositions

In the following, we prove a stabilization of the isotypic decompositions of the
Zn-modules Hn,d for large n and (Zn)n œ {(An≠1)n, (Bn)n, (Dn)n}.

Definition I.3.13. For a partition ⁄ = (⁄1, ⁄2, . . . , ⁄l) „ n we write ⁄ + 1 for the
partition of n + 1 obtained from ⁄ by replacing ⁄1 with ⁄1 + 1. For a bipartition
� „ n we define � + 1 as the bipartition (⁄ + 1, µ) „ n + 1.

Note, ⁄ + 1 = (⁄1 + 1, ⁄2, . . . , ⁄l). We use the combinatorial description of
the degrees of a symmetry adapted basis of Hn,d from Remark I.3.9. For An≠1
and a standard tableau T we have deg F T

T
= ch(T ), while for Bn and (T, S) we

have deg ‚F (T,S)
(T,S) = 2 ch(T, S) + |µ|. Our aim is to identify the relevant standard

(bi-)tableaux whose associated higher Specht polynomials occur in Hn,d.

Lemma I.3.14. Let k Ø 1 be an integer and ⁄ „ n = d + k be a partition. In the
case that the first row of a tableau T œ SYT(⁄) does not begin with 1, 2, . . . , k
we have deg F T

T
> d.

Proof. We assume that a standard tableau T of shape ⁄ does not contain
1, 2, . . . , k in the first row. Let k̃ be the first entry of T in the second row. It
must be k̃ Æ k and i(T ) does contain at least n ≠ k̃ + 1 entries which are larger
than or equal to 1. Therefore,

deg F T

T
= ch(T ) Ø n ≠ k̃ + 1 Ø n ≠ k + 1 = d + 1.

⌅

We formulate Lemma I.3.14 for bipartitions.

Lemma I.3.15. Let (⁄, µ) „ n be a bipartition, with |µ| Æ d and |⁄| Ø
d≠1

2 + j
for an integer j Ø 1. Let (T, S) be a standard bitableau of shape (⁄, µ) where
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–1 < . . . < –|⁄| are all the entries in T . Suppose the first row of T does not
begin with –1, . . . , –j then deg ‚F (T,S)

(T,S) > d.

Proof. We suppose that for some i Æ j the i-th entry in the first row of T is not
–i and let i be minimal with this property. Then –i must be the first entry in
the second row and |⁄| ≠ i + 1 entries in i(T, S) are at least 1. Hence

deg ‚F (T,S)
(T,S) = 2 ch(T, S) + |µ| Ø 2(|⁄| ≠ i + 1) Ø 2

3
d ≠ 1

2 + j ≠ j + 1
4

Ø d + 1.

⌅

We write T = (–ij) for a standard tableau T of shape ⁄ and –ij denotes the
entry in the i-th row and j-th coloumn of T , counted from the left to the right
and the top to the bottom. Analogously, we write (T, S) = ((–ij), (—ij)) for a
standard bitableau.

Definition I.3.16. For a partition ⁄ = (⁄1, . . . , ⁄l) „ n = d + k we define

�⁄

k
:= {(–ij) œ SYT(⁄) : –1j = j, 1 Æ j Æ k}.

For a bipartition � „ n = d + k we define ��
k

as the set

{((–ij), (—ij)) œ SYT(�) : (–1j) starts with the k smallest integers in {–ij}}

and (–1j) denotes the first row of T .
Example I.3.17.

�((3,1),(1))
3 =

Ó1
2 3 4
5 , 1

2
,
1

1 3 4
5 , 2

2
,
1

1 2 4
5 , 3

2
,
1

1 2 3
5 , 4

2
,
1

1 2 3
4 , 5

2Ô

Lemma I.3.18. Let n = d + k, ⁄ = (⁄1, . . . , ⁄l) „ n be a partition and

fl⁄

n,n+1 : �⁄

k
≠æ �⁄+1

k+1
S = (–ij) ‘≠æ ÂS = (Â–ij)

where Â–1j = j for 1 Æ j Æ –21. Further, Â–1j = –1j≠1 + 1 for j Ø –21 + 1 and
Â–ij = –ij + 1 for all i Ø 2 and j Ø 1.
The map fl⁄

n,n+1 is injective and i(S), i( ÂS) di�er only by a 0, i.e., any non-zero
entry in i(S) occurs with the same multiplicity in i( ÂS), while 0 occurs once more.
Furthermore, if k > d≠1 then for any ÂS œ �⁄+1

k+1 \fl⁄

n,n+1(�⁄

k
) we have ch( ÂS) > d.

Proof. Since S œ �⁄

k
is standard, we observe that –21 is the smallest integer

t for which –1t ”= t, if such a t exists, and otherwise –21 = maxj{–1j} + 1.
For S œ �⁄

k
the tableau ÂS of shape ⁄ + 1 is indeed standard: ÂS is filled

with 1, . . . , n + 1. Increasing rows and columns are inherited from S, as
–1–21 > –21, if –21 < maxj{–1j}. ÂS is clearly increasing in any column
from the second row onward. But also from the first row to the second.
For 1 Æ j Æ –21 this is clear from S. For j Ø –21 + 1 this follows because
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Â–1j = –1,j≠1 + 1 < –2,j≠1 + 1 < –2,j + 1 = Â–2j .
The smallest p which is written left of p ≠ 1 in w(S) (resp. w(ÂS)) is –21 if
–21 < maxj{–1j} and otherwise min{–22, –31}. From there any p > –21 is left
of p ≠ 1 in w(S) if and only if p + 1 is left of p in w(ÂS). Hence, i(S) and i(ÂS)
di�er only by a 0.
Consider Â⁄+1

n+1,n
: �⁄+1

k+1 æ YT(⁄) which maps a standard tableau ÂS to a tableau
S by removing the box of the first entry Â–1j in the first row of ÂS, that is strictly
smaller than Â–1j+1 ≠ 1, and if such an entry does not exist then the last entry.
The boxes to the right are shifted to the left such that one obtains a diagram.
Any entry that was to the right of Â–1j or in a row below is decreased by one. If
Â⁄+1

n+1,n
( ÂS) =: S is again standard, then Â⁄+1

n+1,n
¶ fl⁄

n,n+1(S) = S. This shows the
injectivity of fl⁄

n,n+1.
If S is not standard, then one entry in the first column must be smaller than
the entry below. Assume that this happens at S’s entry –1j . By assumption
j > k, but this means ⁄2 Ø j > k and we observe

ch( ÂS) Ø ⁄2 + 1 Ø k + 2 Ø d + 1.

⌅

We present the analogous assertion for bipartitions.

Lemma I.3.19. Let n = d + k, � = (⁄, µ) = ((⁄1, . . . , ⁄l), µ) „ n be a bipartition
and

fl�
n,n+1 : ��

k
≠æ ��+1

k+1
(T, S) = ((–ij), (—ij)) ‘≠æ ( ÂT , ÂS) = ((Â–ij), (Â—ij))

,

where ( ÂT , ÂS) is defined by: Let t be minimal with –1t ”= t, then Â–1j = j, 1 Æ j Æ t
and Â–1j = –1j≠1 + 1, for t + 1 Æ j Æ ⁄1 + 1, Â–ij = –ij + 1, when i Ø 2,
and Â—ij = —ij + 1 for all i, j. If such a t does not exist, then Â–1j = j for all
1 Æ j Æ ⁄1 + 1 and Â–ij = –ij + 1 if i Ø 2, j Ø 1 and Â—ij = —ij + 1 for all i, j.
Then the map fl�

n,n+1 is injective and i(S, T ), i( ÂS, ÂT ) di�er only by a 0, i.e., any
non-zero entry in i(S, T ) occurs with the same multiplicity in i( ÂS, ÂT ) and 0 occurs
once more. Furthermore, if k > d

2 ≠ 2 then for any ( ÂT , ÂS) œ ��+1
k+1 \ fl�

n,n+1(��
k

)
it must be 2 ch( ÂT , ÂS) > d.

Proof. For (T, S) œ ��
k

we note ( ÂT , ÂS) is indeed a standard bitableau of shape
� + 1, since increasing entries in all rows and columns are inherited from (T, S).
An integer p occurs left of p ≠ 1 in w(T, S) if and only if p + 1 occurs left of p in
w( ÂT , ÂS). In particular, i(T, S) and i( ÂT , ÂS) di�er only by an additional 0 entry
and hence their charges are equal.
Consider f : ��+1

k+1 æ YT(�) which maps an element ( ÂT , ÂS) œ ��+1
k+1 to a

bitableau of shape � by removing Â–11, if Â–11 ”= 1. Otherwise, we remove the box
containing the largest entry in the first row of ÂT that is no longer the predecessor
of the following number, and subtract 1 from any larger entry Â–ij , Â—ij . Then f
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is an inverse of fl�
n,n+1 and therefore fl�

n,n+1 is injective.
If f( ÂT , ÂS) is not standard, we have ⁄2 Ø k + 1. For k > d

2 ≠ 2 we have

2 ch( ÂT , ÂS) Ø 2(k + 2) > d.

⌅

Definition I.3.20. For m > n Ø d and (bi-)partitions �, ⁄ „ n we define
fl⁄

n,m
:= fl⁄+m≠n≠1

m≠1,m
¶ · · · ¶ fl⁄

n,n+1 and fl�
n,m

:= fl�+m≠n≠1
m≠1,m

¶ · · · ¶ fl�
n,n+1.

Now, we can prove the stabilization of the isotypic decomposition, which
was already proven in [Rie+13; Rie11] for the symmetric group with di�erent
methods.

Theorem I.3.21. Let n œ N, � „ n and Zn œ {An≠1, Bn, Dn}. For large enough
n the Zn- and Zn+1-isotypic decompositions are equal in the sense that S(⁄,µ)

occurs with the same multiplicity in Hn,d as S(⁄+1,µ) in Hn+1,d. The stabilization
of the isotypic decomposition of Hn,d occurs from n = 2d for An≠1, n = d for
Bn and n = 2d + 1 for Dn.

Proof. We restrict us to the cases An≠1 with n Ø 2d, and Bn with n Ø d. For
n > d the relevant fundamental invariants of degree Æ d are equal for Bn and
Dn. Thus, for Dn and n > 2d the same argument as for Bn applies, since no
bipartition of n can be of the form (⁄, ⁄). By iteration, it is su�cient to compare
the isotypic decompositions of Hn,d and Hn+1,d.

Let n Ø d and � = (⁄, µ) „ n be a bipartition with |µ| Æ d and Ÿ „ n Ø 2d
be a partition. Further, be f1, . . . , fm a symmetry adapted basis of the isotypic
compoment

m
m

i=1 S� (resp.
m

m

i=1 SŸ) from Theorem I.3.7. We suppose there
exist m standard (bi-)tableaux T := T1 and T2 . . . , Tm of shape � (resp. Ÿ)
with fj = fi ‚F Tj

T
(resp. fj = fiF

Tj

T
), for some fi œ R[X]Zn . fi can be chosen as a

product of fundamental invariants of Zn by a change of basis, since fifj must
be homogeneous. The degree of a polynomial fj is determined by the degrees
of fundamental invariants d1, . . . , dn, the charge of the standard (bi-)tableau Tj

and |µ|.
The degrees Æ d of fundamental invariants are equal for n and n + 1. By

Lemma I.3.14 we have T1, . . . , Tm œ �Ÿ

n≠d
and by Lemma I.3.18 for all i the

tableau flŸ

n,n+1(Ti) is standard with same charge as Ti. Furthermore, the map
flŸ

n,n+1 is injective and any standard tableau that is not contained in the image
has too large charge. The claim follows since only the standard tableaux in
flŸ

k,k+1(�Ÿ

k
) are possible options for higher Specht polynomials in Hn+1,d.

By the Lemmas I.3.15 and I.3.19 the standard bitableaux (T, S) of shape � with
2 ch(T, S) Æ d are in bijection with the standard bitableaux ( ÂT , ÂS) of shape � + 1
with 2 ch( ÂT , ÂS) Æ d and the bijection preserves the charge. Furthermore, our
bijection adds a 0 to the index of the image bitableau and preserves the other
entries.
Finally, note that S(d,d)

µ H2d,d, since the tableau 1 2 ... d

v w ...2d
with v = d + 1 and

w = d + 2 has charge d, but (d ≠ 1, d) is not a partition of 2d ≠ 1. Similarly,
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S(ÿ,(d))
µ Hd,d for the bitableau (ÿ , 1 2 ... d ) with charge 0. For Dn we observe

S((d),(d))
µ H2d,d but the D2d-module S((d),(d)) is special since it decomposes

which does not happen for S((d≠1),(d)). ⌅

We note the following for the group Dn. If n = d then an additional
fundamental invariant of degree d occurs, which does not occur for n > d
anymore. Thus, at least the trivial representation occurs with larger multiplicity
in Hd,d than in Hd+1,d.

Corollary I.3.22. For a fixed degree d and a sequence (Zn)n of reflection groups
(An≠1)n, (Bn)n or (Dn)n the symmetry adapted description of the set �Zn

n,2d
are

equal up to the map fl�
n,m

, for n Ø 2d, n Ø d or n > 2d respectively.

The corollary says that up to fl�
n,m

and fl⁄

n,m
the same matrix polynomials

can be used in a sum of squares representation.

Proof. This follows from Theorem I.3.21 and Lemmas I.3.14, I.3.15, I.3.18,
I.3.19. ⌅

The case n = 2d is the last where � „ n can be of the form � = (⁄, ⁄), i.e.,
the B2d-module S� is not D2d-irreducible in Hn,d but the B2d+1-module S�+1 is
D2d+1-irreducible in Hn+1,d (see Theorem I.3.7). Nevertheless, the multiplicities
of S� in H2d,d and Hn,d are equal for n Ø 2d. Moreover, whenever n Ø d for Bn,
or n > d in case of Dn one can use that if S�

µ Hn,d, for � = (⁄, µ) „ n, and d
even (odd), then |µ| must also be even (odd).

I.4 Concrete examples and applications

We apply the results from the preceding Section I.3 to solve nonnegativity versus
sums of squares questions. In contrast to the non-equivariant case, the Bn-
invariant forms have a non-trivial equality between the sets of even symmetric
sums of squares and nonnegative forms in 3 variables and degree 8. This was
proven by Harris [Har99]. In fact, it turns out that this case and quartics are the
only non-trivial equality cases [GKR17]. We will present a characterization of the
dual and primal cones of B3-invariant sums of squares ternary octics and obtain
a new elementary proof of Harris’ theorem. Moreover, we study Dn-invariant
forms, prove that P

D4
4,4 is a simplicial cone and answer the nonnegativity versus

sums of squares question there.
In general, testing nonnegativity of a polynomial in more than two variables
is already for quartics an NP-hard problem (see e.g., [Blu+98] or [MK85]). In
equivariant situations, it is therefore of interest to exploit the symmetry of
invariant polynomials to reduce this complexity. The works in [AV16; FRS18;
Har99; MRV21; Rie12; Rie16; Tim03] focus on providing test sets for verification
of nonnegativity of invariant polynomials. We also examine test sets for Bn and
Dn invariant forms and small degrees.
We remark that each group in the infinite series I2(m) of dihedral groups acts
on R2. In particular, any I2(m) invariant nonnegative form is a sum of squares.
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I.4.1 Even symmetric octics

One of the well known and rare cases of equality between sums of squares and
nonnegative forms in equivariant situations was proven by Harris [Har99]. Harris’
proof is quite analytical. In this subsection we derive a lower dimensional test
set for nonnegativity of even symmetric ternary octics and as a byproduct we
give a new proof of equality. Furthermore, we present a uniform description of
the cones of n-ary even symmetric sums of squares octics.

Theorem I.4.1. The dual cone of even symmetric ternary octic sums of squares
has the following description

�B3,ú
3,8 =

I
ev(a,

Ô
1≠a2,0), ev(b,c,c) : 1

2 Æ a Æ 1, 0 Æ b Æ 1, c =
Ú

(1 ≠ b2)
2

J
.

As a consequence of Theorem I.4.1 we can give a new proof for Harris’ result.

Corollary I.4.2 ([Har99], Theorem 4.1). The sets of nonnegative and sums of
squares even symmetric ternary octics are equal, i.e., �B3

3,8 = P
B3
3,8 .

Proof. By Theorem I.4.1 the cone �B3,ú
3,8 is generated by point-evaluations. Thus,

the claim follows from Corollary I.2.39. ⌅

We elaborate a study of the even symmetric sums of squares ternary octics.

Lemma I.4.3. The B3-module H3,4 has the isotpyic decomposition

H3,4 = 2 · S((3),ÿ)
ü 2 · S((2,1),ÿ)

ü 2 · S((1),(2))
ü S((1),(1,1)).

A symmetry adapted basis of H3,4 realising the B3-isotypic decomposition is given
by the following polynomials:

S((3),ÿ) :
)

e1(X2)2, e2(X2)
*

, S((2,1),ÿ) :
)

e1(X2)(X2
3 ≠ X2

1 ), X2
2 X2

3 ≠ X2
1 X2

2
*

,

S((1),(2)) :
)

e1(X2)X2X3, X2
1 X2X3

*
, S((1),(1,1)) :

)
(X2

3 ≠ X2
2 )X2X3

*
.

Proof. We need to determine the multiplicity of the irreducible B3-modules
S(⁄,µ) in H3,4 for all bipartitions (⁄, µ) „ 3. We can immediately exclude some
of them. Since we only need higher Specht polynomials of degree 0, 2 or 4 by
Theorem I.3.10, the degree - which equals 2 times the charge of a standard
bitableau of shape (⁄, µ) plus |µ| - must be 0, 2 or 4. However, this implies that
only bipartitions with µ œ {ÿ, (2), (1, 1)} are feasible to obtain an even degree.
By going through all the remaining cases one obtains precisely the following
higher Specht polynomials of degree 0, 2 and 4:

)
1, X2

3 ≠ X2
1 , X2

2 X2
3 ≠ X2

1 X2
2 , X2X3, X2

1 X2X3, (X2
3 ≠ X2

2 )X2X3.
*

Multiplying by the invariants 1, e1(X2)2 and e2(X2) results accordingly in the
above mentioned symmetry adapted basis. ⌅
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Corollary I.4.4. A form f œ HB3
3,8 is a sum of squares if and only if there exist

positive semidefinite matrices A(1), A(2), A(3)
œ R2◊2 and A(4)

œ R1◊1 such that

f = ÈA(1), B(1)
Í + ÈA(2), B(2)

Í + ÈA(3), B(3)
Í + ÈA(4), B(4)

Í

where the B(j)’s are the following matrix polynomials corresponding to the B3-
modules in H3,4

B(1) :=
1

e1(X2)4 e1(X2)2e2(X2)
e1(X2)2e2(X2) e2(X2)2

2
,

B(2) :=
3

2
3 e1(X2)4 ≠ 2e1(X2)2e2(X2) ≠3e1(X2)e3(X2) + 1

3 e1(X2)2e2(X2)
≠3e1(X2)e3(X2) + 1

3 e1(X2)2e2(X2) 2
3 e2(X2)2 ≠ 2e1(X2)e3(X2)

4
,

B(3) :=
3

1
3 e1(X2)2e2(X2) e1(X2)e3(X2)
e1(X2)e3(X2) 1

3 e1(X2)e3(X2)

4
,

B(4) :=
1

e1(X2)e3(X2) ≠
4
3

e2(X2)2 +
1
3

e1(X2)2e2(X2)
2

.

Proof. The matrices B(1), . . . , B(4) are the symmetrizations of the products of
the symmetry adapted basis from Lemma I.4.3. By Theorem I.2.6 any invariant
sum of squares form has such a representation. ⌅

Corollary I.4.5. A linear form ¸ œ HB3,ú
3,8 is contained in �B3,ú

3,8 if and only if the
following four matrices are positive semidefinite

3
m(14) m(2,12)

m(2,12) m(22)

4
,

3 2
3 m(14) ≠ 2m(2,12)

1
3 m(2,12) ≠ 3m(3,1)

1
3 m(2,12) ≠ 3m(3,1)

2
3 m(22) ≠ 2m(3,1)

4
,

3 1
3 m(2,12) m(3,1)
m(3,1)

1
3 m(3,1)

4
,

! 1
3 m(2,12) ≠

4
3 m(22) + m(3,1)

"
,

where we write m(14) := ¸(e1(X2)4), m(3,1) := ¸(e1(X2)e3(X2)), m(2,12) :=
¸(e1(X2)2e2(X2)) and m(22) := ¸(e2(X2)2).

Proof. By Lemma I.2.36 this is precisely the dual statement to Corollary I.4.4. ⌅

Remark I.4.6. We observe

HB3
3,8 = Èp4

2, p2
2p4, p2p6, p2

4ÍR

= Èe1(X2)4, e1(X2)e3(X2), e1(X2)2e2(X2), e2(X2)2
ÍR

is a 4-dimensional R-vector space. We choose as fundamental invariants the
elementary symmetric polynomials evaluated in X2 = (X2

1 , X2
2 , X2

3 ) and work
with the R-basis

!
e1(X2)4, e1(X2)e3(X2), e1(X2)2e2(X2), e2(X2)2"

of HB3
3,8 . We study the extremal rays in �B3,ú

3,8 and show that all of them are
spanned by point-evaluations. This is then used to prove Theorem I.4.1.
In the remaining part of the subsection we always use the following notation for
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an extremal element ¸ œ �B3,ú
3,8 . Q¸ denotes the associated B3-invariant quadratic

form on H3,4, W¸ := ker Q¸ its kernel and

W È2Í
¸

:= ker ¸ =
Ó

RG

1ÿ
figi

2
œ HG

n,2d
: fi œ W, gi œ Hn,d

Ô

(see Proposition I.2.38). A hyperplane in HB3
3,8 is of dimension 3. Thus, we

must have dim W È2Í
¸

= 3. By Lemma I.4.3 the isotypic decomposition of the
B3-submodule W¸ of H3,4 has the form

W¸ = ker Q¸ = – · S((3),ÿ)
ü — · S((2,1),ÿ)

ü “ · S((1),(2))
ü ” · S((1),(1,1)),

where –, —, “ œ {0, 1, 2} and ” œ {0, 1}.
Frequently, we use that ker ¸ is maximal among all kernels of elements in �G,ú

3,8 ,
i.e., when ker ¸ contains a non-trivial zero then ¸ must be a scalar of the point-
evaluation at this point (see Lemma I.2.37).

In the following lemmas we analyse possible combinations of the integers
–, —, “ and ” through a case distinction to obtain a classification of all extremal
elements in �B3,ú

3,8 .

Lemma I.4.7. Let ¸ œ �B3,ú
3,8 be an extremal element. Then – < 2, i.e., the

multipilcity of the trivial representation in W¸ is smaller than 2.

Proof. If – = 2 then e1(X2)2
œ W¸ and hence e1(X2)4

œ W È2Í
¸

= ker ¸. However,
any monomial of degree 8 that is a square occurs with positive coe�cients in
e1(X2)4, which implies ¸ = 0 must be the 0 map. ⌅

Lemma I.4.8. Let ¸ œ �B3,ú
3,8 be an extremal element and – = 0. Then ¸ is a

scalar of the point-evaluation evz, where z œ {(1, 1, 1), (1, 0, 0), (1, 1, 0)}.

Proof. In the case — = 2 we know by dimension reasons on W È2Í
¸

that any other
B3-module occurring in W¸ must already be contained in 2 · S((2,1),ÿ). However,
the forms in the module 2 · S((2,1),ÿ) have the common zero (1, 1, 1).
If — = 1, then it must be “ Ø 1 or ” = 1 such that W È2Í

¸
is a hyperplane. For

” = 1 the elements in W¸ have the common root (1, 1, 1). Now, we consider the
case — = 1, “ Ø 1. Thus for some pairs (a, b), (c, d) œ R2

\ {(0, 0)}

ae1(X2)(X2
3 ≠ X2

1 ) + b(X2
2 X2

3 ≠ X2
1 X2

2 ), ce1(X2)X2X3 + dX2
1 X2X3 œ W¸,

and the symmetrized products with elements in H3,4 are contained in W È2Í
¸

, i.e.,

0 =a

3
2
3m(14) ≠ 2m(2,12)

4
+ b

3
1
3m(2,12) ≠ 3m(3,1)

4
,

0 =a

3
1
3m(2,12) ≠ 3m(3,1)

4
+ b

3
2
3m(22) ≠ 2m(3,1)

4
,

0 = c

3m(2,12) + dm(3,1),

0 =cm(3,1) + d

3m(3,1).
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Now, we distinguish between m(3,1) equals or not equals 0:

i) In the case that m(3,1) ”= 0 we have that c + d

3 = 0. Since W¸ is a linear
space we can set c = 1 and d = ≠3. However, then the B3-module W¸

has the common zero (1, 1, 1). Thus ¸ is a scalar of the point-evaluation
ev(1,1,1) .

ii) Let m(3,1) = 0. We first assume that c ”= 0. Then m(2,12) = 0 and since
m(14) > 0 we have a = 0. Hence, b ”= 0 and m(22) = 0 which implies that
the elements in W¸ all vanish at (1, 0, 0) and ¸ is a scalar of ev(1,0,0).
If c = 0 we have

0 =a

3
2
3m(14) ≠ 2m(2,12)

4
+ b

3
1
3m(2,12)

4
,

0 =a

3
1
3m(2,12)

4
+ b

3
2
3m(22)

4
.

If a = 0 then ¸ is a scalar of ev(1,0,0), since any form in W È2Í
¸

has the zero
(1, 0, 0). Otherwise, we may assume that a = 1 since W È2Í

¸
is a linear space.

It is

0 =2
3m(14) + (≠2 + b

3)m(2,12),

0 =1
3m(2,12) + 2b

3 m(22).

Through scaling of ¸ and m(14) > 0, we can assume that m(14) = 1.
If b = 0, then 0 = m(14) = 1 which cannot be true. So b ”= 0 and
m(2,12) = 2

6≠b
, m(22) = 1

≠6b+b2 , for a non zero b ”= 6. From the positive
semidefiniteness conditions in Corollary I.4.5 we obtain from the first
matrix

det
3

1 m(2,12)
m(2,12) m(22)

4
Ø 0,

which implies that ≠2 Æ b < 0. And the positive semidefiniteness of the
last matrix in I.4.5

1
3m(2,12) ≠

4
3m(22) + m(3,1) Ø 0

implies that b Æ ≠2 or 0 < b < 6. Thus b = ≠2 and ¸ is the point-evaluation
ev( 1Ô

2 ,
1Ô
2 ,0) .

Finally, if “ Ø 1, then — = 1 or ” = 1. However, we have already examinied the
case — = 1. For ” = 1 the elements in W¸ have the common zero (1, 0, 0). Thus
¸ is a scalar of ev(1,0,0). ⌅

Therefore we proceed with the cases where – = 1, which implies that
ae1(X2)2 + e2(X2) œ W¸ for an a œ R, since e1(X2)4

”œ W¸. This means
for ker ¸

am(14) + m(2,12) = 0,
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am(2,12) + m(22) = 0.

Moreover, since m(14) > 0 and since ¸ is a linear form, without loss of generality
we can suppose m(14) = 1, as ¸ is then just a positive scalar. The positive
semidefinitness conditions with the reductions m(2,12) = ≠am(14), m(22) =
a2m(14) and m(14) = 1 are that the following four matrices must be positive
semidefinite.

1
1 ≠a

≠a a
2

2
,
1 2

3 +2a ≠ 1
3 a≠3m(3,1)

≠ 1
3 a≠3m(3,1)

2
3 a

2≠2m(3,1)

2
,
1

≠ 1
3 a m(3,1)

m(3,1)
1
3 m(3,1)

2
, ( ≠a

3 ≠ 4a2
3 +m(3,1) ) (I.3)

From the positive semidefiniteness of the second matrix and ≠a = m(2,12) Ø 0
we obtain a œ [≠ 1

3 , 0].
We now proceed with a case distinction on the paramaters —, “, ”:

Lemma I.4.9. Let ¸ œ �B3,ú
3,8 be an extremal element. If – = ” = 1, then ¸ is a

scalar of a point-evaluation in (1, 1, 0).

Proof. ” = 1 means that S((1),(1,1))
µ W¸ which implies (X2

3 ≠ X2
2 )X2X3 œ W¸

and
≠

a

3 ≠
4a2

3 + m(3,1) = 0.

Positiveness yields 0 Æ m(3,1) = 1
3 (a + 4a2) and therefore that a Æ ≠

1
4 . We use

that the determinant of the second matrix in (I.3) is nonnegative, i.e.,

0 Æ

3
2
3 + 2a

4 3
2
3a2

≠ 2m(3,1)

4
≠

3
≠

1
3a ≠ 3m(3,1)

42
= ≠

4
9a(1 + 3a)2(1 + 4a).

This is not satisfied for a < ≠
1
4 . Hence a = ≠

1
4 , m(14) = 1, m(3,1) = 0, m(2,12) =

1
4 , m(22) = 1

16 and ¸ is a scalar of ev!
1Ô
2 ,

1Ô
2 ,0

". ⌅

Lemma I.4.10. Let ¸ œ �B3,ú
3,8 be an extremal element. If – =

1, “ Ø 1, then ¸ is a scalar of a point-evaluation in (1, 0, 0), (1, 1, 1) orAÚ
1
2 +

Ò
a + 1

4 ,

Ú
1
2 ≠

Ò
a + 1

4 , 0
B

, for ≠
1
4 Æ a Æ 0.

Proof. We have S((1),(2))
µ W¸, i.e., for a pair (b, c) œ R2

\ {(0, 0)}

be1(X2)X2X3 + cX2
1 X2X3 œ W¸

and the symmetrized products with elements in H3,4 are contained in W È2Í
¸

, i.e.,

0 =b
≠a

3 + cm(3,1),

0 =bm(3,1) + c

3m(3,1).

Inserting ab

3 = cm(3,1) in the second equation gives b
!

a

9 + m(3,1)
"

= 0.
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a) We first assume that b ”= 0. Then m(3,1) = ≠
a

9 . In this case we obtain
from the positive semidefiniteness of the second matrix in (I.3) that

0 Æ
2
3a2

≠ 2m(3,1) = 2
3a(a + 1

3).

Thus a œ {0, ≠
1
3 }. If a = 0 then m(3,1) = m(2,12) = m(22) = 0 and

¸ = ev(1,0,0). For a = ≠
1
3 it is m(3,1) = 1

27 , m(2,12) = 1
3 , m(22) = 1

9 and
¸ = ev!

1Ô
3 ,

1Ô
3 ,

1Ô
3

" .

b) In the remaining case b = 0 we can assume by linearity of W¸ that c = 1,
which implies m(3,1) = 0. By the nonnegativity of the last 1 ◊ 1 matrix in
(I.3), i.e.,

0 Æ ≠
a

3 ≠
4a2

3 + m(3,1)

we obtain ≠
1
4 Æ a Æ 0. However, for any such ≠

1
4 Æ a Æ 0

it is m(14) = 1, m(3,1) = ≠a, m(2,12) = a2, m(22) = 0 and ¸ =
ev1

1
2 +

Ô
a+ 1

4 ,


1
2 ≠

Ô
a+ 1

4 ,0
2 .

⌅

Lemma I.4.11. Let ¸ œ �B3,ú
3,8 be an extremal element. If – = — = 1, then ¸

is a scalar of a point-evaluation in
3Ò

1+2
Ô

1+3a

3 ,
Ò

1≠
Ô

1+3a

3 ,
Ò

1≠
Ô

1+3a

3

4
, for

≠
1
3 Æ a Æ 0, or at

3Ò
1≠2

Ô
1+3b

3 ,
Ô

1+
Ô

1+3b

3 ,
Ô

1+
Ô

1+3b

3

4
, for ≠

1
3 Æ b Æ ≠

1
4 .

Proof. If — = 1 then S((2,1),ÿ)
µ W¸, i.e., for a pair (b, c) œ R2

\ {(0, 0)}

be1(X2)(X2
3 ≠ X2

1 ) + c(X2
2 X2

3 ≠ X2
1 X2

2 ) œ W¸

and the symmetrized products with elements in H3,4 are contained in W È2Í
¸

, i.e.,

0 =b

3
2
3 + 2a

4
+ c

3
≠

1
3a ≠ 3m(3,1)

4
,

0 =b

3
≠

1
3a ≠ 3m(3,1)

4
+ c

3
2
3a2

≠ 2m(3,1)

4
.

We distinguish two cases:

i) If b = 0, c = 1 or if b = 1, c = 0 then ≠
1
3 = a, m(3,1) = 1

27 and
¸ = ev!

1Ô
3 ,

1Ô
3 ,

1Ô
3

" .

ii) We continue with the remaining case b ”= 0 and c ”= 0. Since W¸ is a
vector space we assume without loss of generality that b = 1 and obtain
m(3,1) = 2

9c
+ 2a

3c
≠

a

9 and 2(1+3a)(≠3≠2c+ac
2)

9c
= 0. Hence a = ≠1

3 (then
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¸ = ev( 1Ô
3 ,

1Ô
3 ,

1Ô
3 )) or ≠3 ≠ 2c + ac2 = 0. If a = 0 then c = ≠

3
2 and

m(3,1) = ≠
4

27 which does not satisfy the positive semidefiniteness condi-
tions. If ≠

1
3 < a < 0 then either c = 1

a
≠

Ò
1+3a

a2 or c = 1
a

+
Ò

1+3a

a2 .

In the first case it is m(14) = 1, m(3,1) =
a

!
1+a

!
6+


1+3a

a2

""

9≠9a


1+3a

a2
, m(2,12) =

≠a, m(22) = a2. For any ≠
1
3 < a < 0 ¸ is the point-evaluation at3Ò

1+2
Ô

1+3a

3 ,
Ò

1≠
Ô

1+3a

3 ,
Ò

1≠
Ô

1+3a

3

4
.

In the second case it is m(14) = 1, m(3,1) =
a

!
1≠a

!
≠6+


1+3a

a2

""

9+9a


1+3a

a2
, m(2,12) =

≠a, m(22) = a2. However, m(3,1) Ø 0 is equivalent to ≠
1
3 <

a Æ ≠
1
4 . For any ≠

1
3 < a Æ ≠

1
4 ¸ is the point-evaluation at3Ò

1≠2
Ô

1+3a

3 ,
Ô

1+
Ô

1+3a

3 ,
Ô

1+
Ô

1+3a

3

4
.

⌅

Proof of Theorem I.4.1. In Lemmas I.4.7, I.4.8, I.4.9, I.4.10 and I.4.11 we have
seen that the extremal rays in �B3,ú

3,8 are all generated by point-evaluations.
Those generators are the point-evaluations at elements in the set

;1
a,


1 ≠ a2, 0

2
, (b, c, c) : 1

2 Æ a Æ 1, 0 Æ b Æ 1, c = 1
Ô

2


(1 ≠ b2)
<

.

⌅

Corollary I.4.12. P
B3
3,8 is the convex cone generated by the following six forms

e1(X2)4 ≠ 3e1(X2)2e2(X2), ≠9e1(X2)e3(X2) + e1(X2)2e2(X2), e2(X2)2 ≠ 3e1(X2)e3(X2),

e1(X2)2e2(X2), e1(X2)e3(X2), 3e1(X2)e3(X2) ≠ 4e2(X2)2 + e1(X2)2e2(X2)

and the following two families of forms
!

ae1(X2)4 + e1(X2)e2(X2), ae1(X2)e2(X2) + e2(X2)2 : ≠
1
3 Æ a Æ 0

"

Proof. These forms are precisely the sums of squares contained in the kernels
of extremal rays of �B3,ú

3,8 . Since �B3
3,8 = P

B3
3,8 by Corollary I.4.2, these forms are

also the extremal elements in the pointed convex cone P
B3
3,8 . The claim follows

from Minkowski’s theorem. ⌅

Remark I.4.13. Harris showed that � := {(a, a, b), (0, a, b) : a, b œ RØ0} is a test
set for even symmetric ternary octics and used this as main ingredient in his
proof of equality [Har99]. In fact, our description in Theorem I.4.1 provides the
subset of � consisting of all points of norm 1, which we derived from describing
�B3,ú

3,8 .
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I. Reflection groups and cones of sums of squares

Note, Harris result does not follow from Hilbert’s equality case �S3
3,4 = P

S3
3,4

under canonical identification through the S3-isomorphism

� : HB3
3,8 ≠æ HS3

3,4q
–œ2N3

0
c–X–

‘≠æ
q

–œ2N3
0

c–X
1
2 –

.

For g œ HS3
3,4 we have �≠1(g) = g(X2

1 , X2
2 , X2

3 ). Then g is nonnegative on R3
Ø0

if and only if �≠1(g) is nonnegative. However, the example

f(X) := e1(X2)e3(X2) = (X2
1 + X2

2 + X2
3 )(X2

1 X2
2 X2

3 ) œ P
B3
3,8

with �(f)(≠1, ≠1, 1) = ≠1 < 0 shows P
S3
3,4 ( �(PB3

3,8).

We demonstrate Theorem I.3.21, i.e., the stabilization of Bn-Specht modules
in Hn,d for large enough number of variables for d = 4. This allows a uniform
description of the sets �Bn

n,8, as observed in Corollary I.3.22.
We work with power means p(n)

i
(X) := 1

n

q
n

j=1 Xi

j
œ R[X]Sn . The upper index n

denotes that p(n)
i

is a power mean in n variables. For a partition ⁄ = (⁄1, . . . , ⁄l)
we write p(n)

⁄
:= p(n)

⁄1
· . . . · p(n)

⁄l
. A reason for working with power means is

that they are weighted, i.e., for all i and all n we have p(n)
i

(1, 1, . . . , 1) = 1 and
p(n)

i
(1, 0, . . . , 0) = 1

n
.

Lemma I.4.14. The Bn-isotypic decomposition of Hn,4 for n Ø 4 is

2 · S((n),ÿ)
ü 2 · S((n≠1,1),ÿ)

ü S((n≠2,2),ÿ)
ü 2 · S((n≠2),(2))

ü S((n≠2),(1,1))
ü S((n≠3,1),(2))

ü S((n≠4),(4)).

A symmetry adapted basis of Hn,4 realising the Bn-isotypic decomposition is
given by the following seven sets of polynomials

S((n),ÿ) :
Ó

p
(n)
(4) , p

(n)
(22)

Ô
, S((n≠1,1),ÿ) :

Ó
(X2

n ≠ X2
1 )p(n)

(2) , X4
n ≠ X4

1

Ô
,

S((n≠2,2),ÿ) :
)

(X2
1 ≠ X2

3 )(X2
2 ≠ X2

4 )
*

, S((n≠2),(1,1)) :
)

(X2
n ≠ X2

n≠1)Xn≠1Xn

*
,

S((n≠4),(4)) : {X1X2X3X4} , S((n≠3,1),(2)) :
)

(X2
n ≠ X2

1 )Xn≠2Xn≠1
*

S((n≠2),(2)) :
Ó

Xn≠1Xnp
(n)
(2) , (X2

n≠1 + X2
n)Xn≠1Xn

Ô
.

Proof. We determine the multiplicity of an irreducible Bn-module S(⁄,µ) in Hn,4
for bipartitions (⁄, µ) „ n using Theorem I.3.7. We can immediately exclude
some bipartitions. The fundamental invariants of degree Æ 4 are of degree 2 and
4. Only (⁄, µ) such that µ „ n2, with n2 Æ 4 can occur, since a corresponding
higher Specht polynomial has as a factor the monomial consisting of all products
of the Xi’s, where i ranges over the entries of the second bitableau. Furthermore,
we only need to consider bipartitions (⁄, µ) such that |µ| is even because a factor
of the higher Specht polynomial is of degree |µ|, while the additional factor
has even degree. We can restrict us to bipartitions (⁄, µ) such that there exist
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(T, S) œ SYT(⁄, µ) with 2 ch(T, S) + |µ| Æ 4. Therefore a charge Æ 2 is necessary.
We calculated all relevant higher Specht polynomials for n Ø 4:

S((n),ÿ) : {1} , S((n≠1,1),ÿ) :

I
X2

n ≠ X2
1 ,

1
n

n≠1ÿ

i=2

X2
i (X2

n ≠ X2
1 )

J
,

S((n≠2,2),ÿ) :
)

(X2
1 ≠ X2

3 )(X2
2 ≠ X2

4 )
*

, S((n≠2),(1,1)) :
)

(X2
n ≠ X2

n≠1)Xn≠1Xn

*
,

S((n≠4),(4)) : {X1X2X3X4} , S((n≠3,1),(2)) :
)

(X2
n ≠ X2

1 )Xn≠2Xn≠1
*

.

and S((n≠2),(2)) :
Ó

Xn≠1Xn, 1
n≠2 (X2

1 + . . . + X2
n≠2)Xn≠1Xn

Ô
. Multiplying

them with power means gives a Bn-symmetry adapted basis of Hn,4. However,
since

X4
n

≠ X4
1 œ Èp(n)

2 (X2
n

≠ X2
1 ), 1

n

n≠1ÿ

i=2
X2

i
(X2

n
≠ X2

1 )ÍR,

(X2
n≠1 + X2

n
)Xn≠1Xn œ Èp(n)

2 Xn≠1Xn,
1

n ≠ 2(X2
1 + . . . + X2

n≠2)Xn≠1XnÍR,

we can work with the above mentioned symmetry adapted basis. ⌅

Theorem I.4.15. For n Ø 4, f œ HBn
n,8 is a sum of squares if and only if there exist

positive semidefinite matrices A((n),ÿ), A((n≠1,1),ÿ), A((n≠2,2),ÿ), A((n≠2),(2))
œ

R2◊2 and A((n≠2),(1,1)), A((n≠4),(4)), A((n≠3,1),(2))
œ R1◊1

Ø0 such that

f = ÈA((n),ÿ), B((n),ÿ)
Í + ÈA((n≠1,1),ÿ), B((n≠1,1),ÿ)

Í + ÈA((n≠2,2),ÿ), B((n≠2,2),ÿ)
Í

+ ÈA((n≠2),(2)), B((n≠2),(2))
Í + A((n≠2),(1,1))B((n≠2),(1,1))

+ A((n≠4),(4))B((n≠4),(4)) + A((n≠3,1),(2))B((n≠3,1),(2))

where

B((n),ÿ) :=

A
p

(n)
(42) p

(n)
(4,22)

p
(n)
(4,22) p

(n)
(24)

B
,

B((n≠1,1),ÿ) :=

A
p

(n)
(4,22) ≠ p

(n)
(24) p

(n)
(6,2) ≠ p

(n)
(4,22)

p
(n)
(6,2) ≠ p

(n)
(4,22) p

(n)
(8) ≠ p

(n)
(42)

B
,

B((n≠2,2),ÿ) :=
3

≠n + 1
n2 p

(n)
(8) +

4n ≠ 4
n2 p

(n)
(6,2) +

n2 ≠ 3n + 3
n2 p

(n)
(42) ≠ 2p

(n)
(4,22) + p

(n)
(24)

4
,

B((n≠2),(2)) :=

A
p

(n)
(24) ≠ 1

n p
(n)
(4,22) 2p

(n)
(4,22) ≠ 2

n p
(n)
(6,2)

2p
(n)
(4,22) ≠ 2

n p
(n)
(6,2) 2p

(n)
(6,2) + 2p

(n)
(42) ≠ 4

n p
(n)
8

B
,

B((n≠2),(1,1)) :=
1

p
(n)
(6,2) ≠ p

(n)
(42)

2
,

B((n≠4),(4)) :=
1

p
(n)
(24) ≠ 6

n p
(n)
(4,22) + 3

n2 p
(n)
(42) + 8

n2 p
(n)
(6,2) ≠ 6

n3 p
(n)
(8) )

2
,

B((n≠3,1),(2)) :=
1

2
n2 p

(n)
(8) ≠ 2n+2

n2 p
(n)
(6,2) ≠ 1

n p
(n)
(42) + n+3

n p
(n)
(4,22) ≠ p

(n)
(24)

2
.

57



I. Reflection groups and cones of sums of squares

Proof. The matrices B(i) are the matrices which contain the symmetrized
products of the symmetry adapted basis of the Bn-module Hn,4 from Lemma
I.4.14. By Theorem I.2.6 any invariant sums of squares form has such a
representation. ⌅

We observe that for n Ø 4 the R-vector spaces

HBn
n,8 = Èp(n)

(24), p(n)
(4,22), p(n)

(42), p(n)
(4,2), p(n)

(6,2), p(n)
8 ÍR

have the same dimension. We identify the vector spaces with respect to the
isomorphism

p(n)
⁄

‘æ p(m)
⁄

for n, m œ NØ4. Blekherman and the second author studied symmetric quartic
forms [BR21] and defined a limit set as the linear span of all p⁄ := limnæŒ p(n)

⁄
.

They showed that for symmetric quartics the limits of the cones of sums of
squares and nonnegative forms are equal. As a first step towards a similar
result in the Bn case we provide a classification of the limit of the cones of even
symmetric octics which are sums of squares.
Remark I.4.16. The matrices in Theorem I.4.15 have the following limits for
n æ Œ

B
((n),ÿ) :=

3
p(42) p(4,22)
p(4,22) p(24)

4

B
((n≠1,1),ÿ) :=

3
p(4,22) ≠ p(24) p(6,2) ≠ p(4,22)
p(6,2) ≠ p(4,22) p(8) ≠ p(42)

4
,

B
((n≠2,2),ÿ) :=

!
p(42) ≠ 2p(4,22) + p(24)

"
,

B
((n≠2),(2)) :=

3
p(24) 2p(4,22)

2p(4,22) 2p(6,2) + 2p(42)

4
,

B
((n≠2),(1,1)) :=

!
p(6,2) ≠ p(42)

"
,

B
((n≠4),(4)) :=

!
p(24)

"
,

B
((n≠3,1),(2)) :=

!
p(4,22) ≠ p(24)

"
.

Corollary I.4.17. An even symmetric homogeneous octic limit sum of squares
inequality f has the form

f = –1p(42) + 2–2p(4,22) + –3p(24)

+ —1(p(4,22) ≠ p(24)) + 2—2(p(6,2) ≠ p(4,22)) + —3(p(8) ≠ p(42))
+ ”(p(6,2) ≠ p(42))

where
3

–1 –2
–2 –3

4
,

3
—1 —2
—2 —3

4
, (”) are positive semidefinite real matrices.

Proof. We observe that an invariant limit sum of squares coming from the
irreducible representation S((n≠2,2),ÿ), i.e., p(42) ≠ 2p(4,22) + p(24), is contained in
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Concrete examples and applications

the first line. The limit sum of squares p(24) from S((n≠4),(4)) is also contained
in the first line, while the limit form from S((n≠3,1),(2)), i.e., p(4,22) ≠ p(24), is
contained in the second line for —1 = 1. Furthermore,

(–, —)
3

p(24) 2p(4,22)
2p(4,22) 2p(6,2) + 2p(42)

4
(–, —)T

= 2—2(p(6,2) ≠ p(42)) + È
1

4—2 2–—
2–— –2

2
,

3
p(42) p(4,22)
p(4,22) p(24)

4
Í.

⌅

It is a question for further studies to determine the relation between the limit
cones of even symmetric sums of squares and nonnegatives octics.

I.4.2 Forms invariant under Dn

It is natural to wonder, to what extend Harris’ result on ternary forms invariant
under B3 carries over to the slightly smaller group D3. As is shown in
the following theorem we obtain equality between the sets �D3

3,8 and P
D3
3,8 .

Furthermore, we prove that P
D4
4,4 is a simplicial cone which gives a test set

for nonnegativity consisting of three points. We prove that for quaternary
quartics invariant under D4 we also have that nonnegativity implies having a
sums of squares representation. We conclude with a full characterization of the
nonnegativity versus sums of squares question for forms invariant under Dn.

Theorem I.4.18. The sets of nonnegative and sums of squares ternary octics
invariant under D3 are equal, i.e., �D3

3,8 = P
D3
3,8 .

Proof. The invariant ring R[X1, X2, X3]D3 = R[p2, e3, p4] is a polynomial ring
in the symmetric polynomials p2, e3 and p4. A vector space basis of HD3

3,8
is given by

!
p(24), p(4,22), p(42), p2e2

3
"
. In Remark I.4.6 we have seen that

HB3
3,8 = Èp(24), p(4,22), p(42), p(6,2)ÍR. The functions p6 and e2

3 occur linearly in the
following identity for symmetric functions in three variables

p(23) ≠ 3p(4,2) + 2p6 ≠ 6e2
3 = 0.

Hence we deduce that HD3
3,8 = HB3

3,8 . The claim follows by Corollary I.4.2. ⌅

Remark I.4.19. We have the same conical generators and test set for nonnegative
ternary octics invariant under D3 as for B3, i.e., a form f œ HD3

3,8 is nonnegative
if and only if f(y) Ø 0 for all y œ {(a, a, b), (0, a, b) : a, b œ RØ0}.

In the following we study quaternary quartics invariant under D4.

Lemma I.4.20. The D4-module H4,2 has the isotypic decomposition

H4,2 = S((4),ÿ)
ü S((3,1),ÿ)

ü S((2),(2))
+ ü S((2),(2))

≠ .
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I. Reflection groups and cones of sums of squares

A symmetry adapted basis which realizes the D4-module decomposition of H4,2 is
the following:

S((4),ÿ) :
)

p(2)
*

, S((3,1),ÿ) :
)

X2
4 ≠ X2

1
*

,

S((2),(2))
+ : {X1X2 + X3X4} , S((2),(2))

≠ : {X1X2 ≠ X3X4} .

Proof. By Theorem I.3.7 we have to determine the multiplicity of the irreducible
D4-modules labelled by bipartitions (⁄, µ) „ 4 of the form |⁄| Ø |µ|. We are
just interested in higher Specht polynomials of degree 0 or 2, since the only D4
fundamental invariant of degree Æ 2 is p2. Thus, it must be |µ| œ {0, 2}. If µ = ÿ,
then both bipartitions ((4), ÿ), ((3, 1), ÿ) have exactly one standard bitableau
whose charge is at most 1, i.e., they occur precisely once in H4,2. Any occurring
module labelled by (⁄, µ) with |µ| = 2 must have a standard bitableau with
index (0, 0, 0, 0). This can only occur if the word equals (1, 2, 3, 4). Thus, only
the bipartition ((2), (2)) has a standard bitableau with charge 0. By Theorem
I.3.7 the module S((2),(2)) decomposes into two irreducible D4-modules S((2),(2))

+
and S((2),(2))

≠ . We calculated the relevant higher Specht polynomials according
to Theorem I.3.7

)
1, X2

4 ≠ X2
1 , X1X2 + X3X4, X1X2 ≠ X3X4

*
,

and find accordingly the polynomials above. ⌅

Corollary I.4.21. A D4-invariant quaternary quartic f œ HD4
4,4 is a sum of

squares if and only if there exist positive numbers A(1), A(2), A(3), A(4)
œ RØ0

such that f = A(1)B(1) + A(2)B(2) + A(3)B(3) + A(4)B(4), where

B((4),ÿ) :=
!
p(22)

"
, B((3,1),ÿ) :=

3
2
3p(4) ≠

1
6p(22)

4
,

B((2),(2))
+ :=

3
1
6p(22) ≠

1
6p(4) + 2e4

4
, B((2),(2))

≠ :=
3

1
6p(22) ≠

1
6p(4) ≠ 2e4

4
.

Proof. The matrices B(i) are obtained by calculating the Reynolds operator
evaluated at squares of the symmetry adapted basis of the irreducible D4-modules
from Lemma I.4.20. By Theorem I.2.6 any invariant sum of squares form has
such a representation. ⌅

Theorem I.4.22. �D4,ú
4,4 is a simplicial cone with the following description

�D4,ú
4,4 = cone

)
ev(1,0,0,0), ev(1,1,1,≠1), ev(1,1,1,1)

*
.

Proof. Let ¸ œ �D4,ú
4,4 denote an extremal element. Let

W¸ := – · S((4),ÿ)
ü — · S((3,1),ÿ)

ü “ · S((2),(2))
+ ü ” · S((2),(2))

≠

be the D4-submodule of H4,2 which is the kernel of the associated quadratic
form, for –, —, “, ” œ {0, 1}. Now, we show that ¸ must be a scalar of one of
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the three point-evaluations above, respectively that W È2Í
¸

must have one of the
points as a zero.
Since p(22) is not contained in the boundary of �D4

4,4 it must be – = 0.
Furthermore, dimR W È2Í

¸
= 2 and therefore we have that precisely two of the

parameters are non-zero, because the symmetrized squares of the symmetry
adapted basis elements belonging to the D4-modules S((3,1),ÿ), S((2),(2))

+ and
S((2),(2))

≠ are linearly independent.

i) We start by examining the case “ = ” = 1. Then ¸(e4) = 0, ¸(p(22)) =
¸(p(4)) and

W È2Í
¸

= Èe4, p(22) ≠ p(4)ÍR.

W È2Í
¸

has the root (1, 0, 0, 0).

We proceed with the cases “ = — = 1 or — = ” = 1.

ii) We notice that if “ = — = 1 then

W¸ = ÈX2
4 ≠ X2

1 , X1X2 + X3X4ÍD4 ,

but all elements in W¸ have the common root (1, 1, 1, ≠1).

iii) If — = ” = 1 then

W¸ = ÈX2
4 ≠ X2

1 , X1X2 ≠ X3X4ÍD4

with the common root (1, 1, 1, 1).

⌅

Corollary I.4.23. The set of nonnegative and sums of squares quaternary quartics
invariant under D4 are equal, i.e., �D4

4,4 = P
D4
4,4 .

The corollary does not already follow from �B4
4,4 = P

B4
4,4 [Har99], because

HD4
4,4 \ HB4

4,4 ”= ÿ.

Proof. By Theorem I.4.22 the cone �D4,ú
4,4 is generated by point-evaluations.

Hence any extremal ray in �D4,ú
4,4 is spanned by a point-evaluation and the claim

follows from Corollary I.2.39. ⌅

By reformulating Theorem I.4.22 we obtain the following very simple test set
for D4-quartics:

Corollary I.4.24. A form f(X) = a(X2
1 + X2

2 + X2
3 + X2

4 )2 + b(X4
1 + X4

2 + X4
3 +

X4
4 ) + cX1X2X3X4, with a, b, c œ R, is nonnegative if and only if f(z) Ø 0 for

all z œ {(1, 0, 0, 0), (1, 1, 1, ≠1), (1, 1, 1, 1)}.

Proof. An invariant form f œ HD4
4,4 is nonnegative if and only if ¸(f) Ø 0 for all

¸ œ P
D4,ú
4,4 . By Corollary I.4.23 we have P

D4,ú
4,4 = �D4,ú

4,4 . But we saw in Theorem
I.4.22 that �D4,ú

4,4 has those 3 extreme rays. ⌅
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Corollary I.4.25. The convex cone P
D4
4,4 of nonnegative D4-quartics is a simplicial

cone generated by

4p(4) ≠ p(22), p(22) ≠ p(4) + 12e4, p(22) ≠ p(4) ≠ 12e4.

Proof. The sets P
D4
4,4 and �D4

4,4 are equal by Corollary I.4.23. The boundary of �D4
4,4

is equal to the union of all kernels of extremal elements in �D4,ú
4,4 intersected with

�D4
4,4. The claimed forms are precisely the invariant sums of squares contained in

the kernels of the three extremal rays in Theorem I.4.22. ⌅

The results from the previous two subsections allow to conclude the following
classification of the equivariant nonnegativity versus sums of squares question
for the reflection group Dn.

Theorem I.4.26. The sets �Dn
n,2d

and P
Dn
n,2d

are equal if and only if (n, 2d) œ

{(2, 2d), (n, 2), (n, 4), (3, 8)}.

Proof. Suppose that there exists f œ P
Bn
n,2d

\�Bn
n,2d

. This implies f œ P
Dn
n,2d

\�Dn
n,2d

.
Therefore, we can directly rely on the classification carried out in [GKR17] and
we only need to consider those cases specifically, where all even symmetric
positive semidefinite forms are sums of squares. These are only the following
non-trivial cases: (n, 2d) œ {(3, 8), (n, 4)}. But we have shown in Theorem I.4.18
that in the case (3, 8) the equality does survive, and while following Corollary
I.4.23 it does also for (4, 4). Furthermore, if n > 4 then the invariant quartics
with respect to Bn are precisely the invariant quartics with respect to Dn as
HBn

n,4 = Èp(22), p(4)ÍR = HDn
n,4 for n Ø 5, which completes the proof. ⌅

I.4.3 LMIs and nonnegativity testing

In general testing nonnegativity of a polynomial in more than two variables is
already for quartics an NP-hard problem (see e.g. [Blu+98] or [MK85]). On
the other hand, certifying that a given polynomial is a sum of squares can be
done with so called semidefinite programming. Although the complexity status
of this procedure in the Turing or in the real numbers model is not yet known
(see [Ram97]) SDPs can be solved numerically in polynomial time to a given
accuracy through the ellipsoid algorithm and this approach generally provides
a tractable way to certify that a polynomial is nonnegative, if it is a sum of
squares. For real symmetric matrices A, B œ Rn◊n we write A ≤ B if A ≠ B
is positive semidefinite. The feasible region of a semidefinite program is given
by the projection of a set defined by a linear matrix inequality (LMI), i.e., an
inequality of the form A0 + x1A1 + x2A2 + . . . + xnAn ≤ 0, where A0, . . . , An

are real symmetric matrices all of the same size and x1, . . . , xn are supposed
to be real scalars. The set of all x œ Rn satisfying a given LMI is called a
spectrahedron. For every f œ Hn,2d one can construct an LMI ([PW98]) which
possesses a solution if and only if f is a sum of squares. The corresponding
spectrahedron is called the Gram spectrahedron of f [Chu+16], and it represents
in fact all possible ways to decompose f into sums of squares. Accordingly,
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it is non-empty if and only if f is a sum of squares. The results presented
in the article can be directly transferred into the setup of symmetry adapted
Gram-spectrahedra, which were, for example, recently studied by [HHS21].

Theorem I.4.27. Let G be a finite reflection group and consider f œ HG

n,2d
and

◊1, . . . , ◊l be all non G-isomorphic irreducible representations. Then the Gram
spectrahedron of f can be defined by a block diagonal matrix, consisting of l
blocks B1, . . . , Bl and the size of the block Bi equals

dÿ

k=0
N(d ≠ k) · hËi

k
.

In particular, in the case G œ {An≠1, Bn, Dn} the size of the matrix is
independent of n, for large n

Proof. This follows from choosing a symmetry adapted basis of Hn,d and
Corollary I.2.26. When G œ {An≠1, Bn, Dn} the stabilization follows from
Corollary I.3.22 ⌅

A convex set which can be obtained as the projection of a higher dimensional
spectrahedron is called spectrahedral shadow. Following a question by Nemirovski,
which convex sets can be represented as projections of spectrahedra, Scheiderer
[Sch18] showed that the cones of nonnegative forms in general are not
spectrahedral shadows. In the next theorem we give some examples of invariant
nonnegative forms, which form spectrahedral shadows.

Theorem I.4.28. For all n the families of cones P
Sn
n,4 , P

Bn
n,6 , P

Bn
n,8 and P

Bn
n,10 are

spectrahedral shadows. Moreover, for forms in any of these families, there exists
an LMI of size O(n3) certifying the nonnegativity.

Proof. For n Æ 2 this is trivial, and in the case n = 3 this follows either from
Hilbert’s Theorem in the S3 case or from Harris’ result I.4.2 in the B3 case.
So we assume n Ø 4. By the half-degree principle, an element f œ HSn

n,4 is
nonnegative on Rn if and only if for any partition ⁄ „ n of length 2 the form
f⁄

œ H2,4 is nonnegative on R2, where f⁄(x, y) := f(x, . . . , x, y, . . . , y) and x
occurs precisely ⁄1 times and y ⁄2 times. Notice that each f⁄ is nonnegative if
and only if it is a sum of squares, i.e., if we have f⁄

œ �2,4. If we denote by �⁄

the linear map f ‘æ f̃⁄(x, y) and if ⁄1, . . . , ⁄m are all partitions of n with length
2 then

P
Sn
n,4 =

m‹

i=1

1
�⁄

i
2≠1

(�2,4)

which proves the claim in the Sn case. Using the half-degree principle
[Rie16, Theorem 3.1] for Bn and considering instead of f(X) œ R[X]Bn the
form f(

Ô
X1, . . . ,

Ô
Xn) œ R[X]Sn , one can argue analogously with slight

modifications. ⌅
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Remark I.4.29. In the case of symmetric polynomials, the above statement was
implicitly already stated in [Rie+13, Theorem 5.5] for symmetric quartic forms,
albeit without mentioning of the term spectrahedral shadow.

The core of the proof above is the reduction to bivariate forms through test
sets.

Theorem I.4.30. For the families of cones P
Sn
n,6 , P

Bn
n,12 and P

Bn
n,14 membership can

be decided with O(n3) many LMIs, each of which has size bounded independent
of n.

Proof. Using the half-degree principle [Rie16, Theorem 3.1] one finds that
membership in each of the above mentioned cones can be decided by reducing to
O(n3) many ternary forms, similarly to the proof above. For each of these ternary
forms, one can decide nonnegativity individually. De Klerk and Pasechnik [KP04]
provided a construction to decide nonnegativity of a ternary form of degree
2d by means of d/4 LMIs each of which is polynomial in d. Combining their
construction with the arguments above thus yields an LMI of the announced
size. ⌅
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Paper II

At the limit of symmetric
nonnegative forms

Jose Acevedo, Grigoriy Blekherman, Sebastian Debus, Cor-
dian Riener

II

Abstract

We study nonnegative symmetric and even symmetric forms uniformly
in the number of variables for a fixed degree and investigate their limits
which are known as symmetric functions. We relate our study to the
Vandermonde map at infinity, test sets for nonnegativity, classify all cases
for which the sets of nonnegative and sums of squares symmetric functions
are equal, and prove undecidability of verifiability of nonnegativity for
multisymmetric functions. Finally, we present an alternative approach to
prove strict inclusion between the sets of (even) symmetric homogeneous
functions which are nonnegative and sums of squares respectively based
on tropicalization. Tropicalization also provides quantitative information
on the di�erence between these sets.
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II. At the limit of symmetric nonnegative forms

II.1 Introduction

A real polynomial f œ R[X1, . . . , Xn] is called nonnegative if the associated
function assumes only nonnegative values and it is called a sum of squares if there
exists a decomposition f = q2

1 + . . . + q2
k

for real polynomials qi œ R[X1, . . . , Xn].
Clearly, in the latter case f is also nonnegative and moreover the algebraic identity
of a sum of squares decomposition certifies this nonnegativity. In particular, also
the fact that sums of squares decompositions can be found rather e�ciently with
the help of semidefinite programming has revived the interest in the question,
which polynomials are sums of squares, which originated from the work of Hilbert.
In this article we are focusing on symmetric and even symmetric polynomials.
Such polynomials are characterized through the property of being invariant
by all permutations of the variables. The natural restriction from symmetric
polynomials in n+1 variables to the symmetric polynomials in n variables defines
an inverse system with a limit which is sometimes also referred to as the ring of
symmetric functions [Mac98], and we study the limit objects corresponding to the
symmetric nonnegative polynomials and symmetric sums of squares respectively.
The elements of these limit can naturally be seen as functions defined on the
image at infinity of the so called Vandermonde map, which has been studied
extensively already by Arnold, Givental, and Kostov in finitely many variables
[Arn86; Giv87; Kos04; Kos89; Kos99] and at infinity [Kos04; Kos07]. Sometimes
the image is defined via the first elementary symmetric polynomials. This
di�erent viewpoint amounts to study the Vandermonde map composed with a
polynomial di�eomorphism induced by Newton’s identities. We study this set
in detail in the even symmetric setup, where we provide a description of the
boundary in the finite case (Theorem II.3.6) and show that the image at infinity is
not semialgebraic (see Corollary II.3.12) expanding on earlier work of Kostov. We
then turn to the cone of nonnegative symmetric homogeneous functions which also
is shown to be not semialgebraic. Moreover, we show that the elements of these
limit cones are, multisymmetric setup, not computationally traceable, i.e., the
membership problem for this cone is undecidable (see Theorem II.6.1). This is in
sharp contrast to the case of finitely many variables, where it follows from Artin’s
solution to Hilbert’s 17th problem that verifying nonnegativity of any polynomial
is decidable. Recently, tropicalization has been applied beyond classical algebraic
geometry in extremal combinatorics [Ble+22b; BR22] and applied real algebraic
geometry [AB22; Ble+22a]. Using tropicalization in the sense of log-limits
we study the combinatorial shadows of the dual cones of the nonnegative and
sums of squares homogeneous even symmetric functions. The tropicalization
of the image of the Vandermonde map at infinity is a polyhedral convex cone
(see Theorem II.7.2) and we provide via tropicalization a quantification of the
di�erence between the sets of nonnegative and sums of squares even symmetric
homogeneous functions. The limit behavior between the sets of sums of squares
and nonnegative polynomials was investigated earlier. The second author proved
that for a fixed degree there are significantly more nonnegative polynomials
than sums of squares [Ble06] by comparing the ratio of the volumes of conical
compact bases of these sets in di�erent number of variables. It is shown that
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the ratio grows in the number of variables and asymptotic bounds are given.
Limit behavior of the corresponding sets for symmetric forms has also been
investigated before but this was done using a di�erent notion of limit.
Every symmetric polynomial f œ R[X1, . . . , Xn] can be uniquely written as
a polynomial in the power sums f = g(p(n)

1 , . . . , p(n)
n ). Normalized limits of

symmetric polynomials have the form limnæŒ g(p(n)
1 /n, . . . , p(n)

n /n). The second
and fourth author proved that normalized limits of symmetric nonnegative and
sums of squares forms are equal in degree 4 and conjectured that equality is true
in any degree [BR21]. However, the first and second author showed in [AB22]
that equality for normalized limits does not survive to any higher degree and
strict inclusion occurs from degree 10 onward for the normalized limits of even
symmetrics forms but not for smaller degrees.

The paper is structured as follows: Section II.2 overviews the situation of
symmetric polynomials and functions, and introduces the limits of the cones
of invariant nonnegative and sums of squares forms. We initiate the study of
the even Vandermonde map in Section II.3 with the description of its boundary
and explicit parametrization in the plane. In Section II.4 we study the convex
hull of the image of the map whose coordinates are the elementary symmetrics
and analyse its combinatorial properties. Following this, we classify the cases of
equality between the limit cones of invariant nonnegative and sums of squares
forms and provide explicit examples in Section II.5. In Section II.6 we prove
that determining validity of nonnegativity is undecidable for multisymmetric
functions. Finally, we present a di�erent approach to the study of nonnegativity
versus sums of squares using tropicalization in Section II.7, before concluding
the paper with closing remarks and open questions in Section II.8.

II.2 Symmetric polynomials and functions

II.2.1 Symmetric polynomials and partitions

We call a polynomial symmetric if it is invariant with respect to the action of the
symmetric group Sn. The algebra of symmetric polynomials R[X1, . . . , Xn]Sn

is isomorphic to a polynomial ring. Our prototype of symmetric polynomials
which we often use are the power sum polynomials and elementary symmetric
polynomials p(n)

k
:=

q
n

i=1 Xk

i
and e(n)

k
:=

q
Iµ[n],|I|=k

r
iœI

Xi . It is classically
known that the polynomials p(n)

1 , . . . , p(n)
n and e(n)

1 , . . . , e(n)
n are algebraically

independent, and the ring of symmetric polynomials is isomorphic to a polynomial
ring in the power sums and in the elementary symmetrics, i.e.,

R[X]Sn = R[p(n)
1 , . . . , p(n)

n
] = R[e(n)

1 , . . . , e(n)
n

] .

Thus, any symmetric polynomial f œ R[X1, . . . , Xn]Sn can be written as
f = g(p(n)

1 , . . . , p(n)
n ) for a unique n-variate real polynomial g.

We write Bn for the hyperoctahedral group acting on R[X1, . . . , Xn] via
permutation of variables and switching of signs and note Bn = {±1} Ó Sn.
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II. At the limit of symmetric nonnegative forms

A Bn-invariant polynomial is called even symmetric. The ring of even symmetric
polynomials is isomorphic to a polynomial ring in the even power sums p(n)

2i
(X) =

p(n)
i

(X2) and in the elementary symmetrics evaluated in X2 := (X2
1 , . . . , X2

n
),

i.e.,
R[X]Bn = R[p(n)

2 , . . . , p(n)
2n

] = R[e(n)
1 (X2), . . . , e(n)

n
(X2)] .

A priori, the power sums and the elementary symmetrics provide equally good
bases to work with the vector space of (even) symmetric forms of a fixed degree.
We frequently interchange between elementary symmetrics and power sums since
we observe that both bases have advantages and disadvantages in the study of
invariant nonnegative and sums of squares forms.
A partition ⁄ = (⁄1, . . . , ⁄l) of n is a sequence of non-increasing, positive integers
whose value |⁄| :=

q
l

i=1 ⁄i equals n. We say that ÿ is the unique partition of
0 and write ⁄ „ n for ⁄ being a partition of n. A bipartition of n is a pair of
partitions (⁄, µ) satisfying |⁄| + |µ| = n. For a partition ⁄ = (⁄1, . . . , ⁄l) „ d we
write p(n)

⁄
:= p(n)

⁄1
p(n)

⁄2
· · · p(n)

⁄l
and e(n)

⁄
:= e(n)

⁄1
e(n)

⁄2
· · · e(n)

⁄l
.

Let HSn
n,d

(HBn
n,d

) denote the vector space of (even) symmetric forms in n

variables of degree d. The vector space HSn
n,d

has the linear bases
1

p(n)
⁄

: ⁄ „ d
2

and
1

e(n)
⁄

: ⁄ „ d
2

. Analogously, vector space bases of HBn
n,2d

are given

by
1

p(n)
2⁄

: ⁄ „ d
2

and
1

e(n)
⁄

(X2) : ⁄ „ d
2

, where 2⁄ = (2⁄1, 2⁄2, . . .). Note,
dim HSn

n,d
= dim HBn

n,2d
= fi(d) the number of partitions of d for all n Ø d.

II.2.2 Symmetric and even symmetric sums of squares

The problem of verifying nonnegativity occurs naturally in applications, e.g.,
in polynomial optimization. It is known to be an NP-hard problem already for
polynomials of degree 4 [Blu+98; MK85].
A real polynomial f(X1, . . . , Xn) is nonnegative if the polynomial attains only
nonnegative values, i.e., if f(a) Ø 0 for all a œ Rn. When a real polynomial
p œ R[X1, . . . , Xn] can be written as a sum of squares of real polynomial, i.e.,
if p = q2

1 + . . . + q2
m

for some polynomials q1, . . . , qm œ R[X1, . . . , Xn], then p is
called a sum of squares. It turns out that a polynomial is nonnegative (a sum
of squares) if and only if its homogenization is nonnegative (a sum of squares).
A form of degree 2d can only be a sum of squares of forms of degree d. Sums
of squares are obviously nonnegative but the converse statement is not true
in general. In 1888 Hilbert proved that any nonnegative form in n variables
and degree 2d is a sum of squares if and only if (n, 2d) œ {(2, 2d), (n, 2), (3, 4)}.
Nevertheless, it is regarded as a non-trivial task to provide nonnegative forms
that are not sums of squares [Sch09]. We write �Sn

n,2d
and P

Sn
n,2d

for the sets of n-
variate symmetric forms of degree 2d which are sums of squares and nonnegative
respectively. Analogously, we write �Bn

n,2d
and P

Bn
n,2d

for the corresponding sets
of even symmetric forms.
Several authors investigated the nonnegativity versus sums of squares question
for (even) symmetric forms [BR21; Cho75; CL77a; CL77b; CLR87; GKR16;
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GKR17; Har99]. Using representation theory one can describe the invariant
sums of squares under Sn and Bn more e�ciently and algorithmically [GP04].

It is well known that the irreducible representations of Sn correspond
to partitions of n, while the irreducible representations of Bn correspond to
bipartitions of n. The irreducible representations are called Specht modules and
are denoted by S⁄, resp. S(⁄,µ) (see e.g. [Sag01] for background information).
We recall useful properties of isoytpic decompositions with respect to (Sn)n or
(Bn)n and a fixed degree.

Proposition II.2.1 ([DR20; Rie+13]).

(i) The Sn-isotypic decomposition of Hn,d stabilizes for n Ø 2d. For a partition
⁄ = (⁄1, ⁄2, . . .) „ 2d the multiplicity of its irreducible representation in
H2d,d equals the multiplicity of (⁄1+k, ⁄2, . . .) in H2d+k,d and all irreducible
representations in H2d+k,d are of this form.

(ii) The Bn-isotypic decomposition of Hn,d stabilizes for n Ø d. For a
bipartition (⁄, µ) = ((⁄1, ⁄2, . . .), µ) of d the multiplicity of its irreducible
representation in H2d,d equals the multiplicity of ((⁄1 + k, ⁄2, . . .), µ) in
Hd+k,d and all irreducible representations in Hd+k,d are of this form.

Proposition II.2.2. For n Ø 2d there exist symmetric matrices A(1)
n œ1

HSn
n,2d

2n1◊n1
, . . . , A(l)

n œ

1
HSn

n,2d

2nl◊nl

such that any symmetric sum of squares
f œ HSn

n,2d
can be written as

f =
lÿ

i=1
Tr(A(i)

n
B(i))

for some real symmetric matrices B(i).

The same is true verbatim for Bn and n Ø d. Symmetry reduction and
higher Specht polynomials allow a uniform representation of the invariant sums
of squares in su�ciently large number of variables. Higher Specht polynomials
[MY98] allow the calculation of a so called symmetry adapted basis for Hn,d.
This basis gives immediately the isotypic decomposition of Hn,d. Wee refer to
([BR21, § 4]) for details.
Remark II.2.3. The following applies for both groups Sn and Bn. The matrices
A(i)

n in Proposition II.2.2 correspond to the isotypic components, i.e., to the
Specht modules, and the size of a matrix A(i)

n equals the multiplicity of its
associated irreducible representation in Hn,d. We have

A(i)
n

=
A

1
n!

ÿ

‡œSn

‡ · (fi,jfi,k)
B

j,k

where (fi,j) forms a symmetry adapted basis of Hn,d. Actually, the fij ’s can
be chosen uniformly for n Ø 2d, resp. n Ø d, if we embed Hn,d Òæ Hn+k,d and
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II. At the limit of symmetric nonnegative forms

substitute p(n)
i

by p(n+k)
i

. Then, all entries of A(i)
n are linear combinations in

the p(n)
⁄

’s with ⁄ „ 2d, whose coe�cients are rational functions in n with highest
degree 0.
We can also consider the limit for n æ Œ, by multiplication of the rows with
powers of n such that all rational functions in n on the diagonal of A(i)

n have
the same degree. In this way we obtain a characterization of the limit set of
symmetric sums of squares which is introduced in the next subsection.

II.2.3 Symmetric functions

In algebraic combinatorics the ring of symmetric functions is usually considered
in countably infinitely many variables and constructed as a specific limit of the
rings of symmetric polynomials in an increasing number of variables. Newton’s
identities and other identities of symmetric polynomials which do not depend on
the number of variables hold in this limit ring.

Let SŒ :=
t

nØ1 Sn be the permutation group of all finite subsets of N.
A symmetric function f is a formal power series f(X1, X2, . . .) in countably
infinitely many variables which is invariant with respect to the action of SŒ and
the set of degrees of the monomials in f is finite. A homogeneous symmetric
function is called a limit form. We denote the ring of symmetric functions by

R[X1, X2, . . .]SŒ .

Our prototypes of symmetric functions are the formal power series analogous
of the power sums and elementary symmetrics, i.e., the power sum functions
pk =

q
iœN Xk

i
and elementary symmetric functions ek =

q
IµN,|I|=k

r
iœI

Xi .
We observe

R[X1, X2, . . .]SŒ = R[p1, p2, . . .] = R[e1, e2, . . .] ,

i.e., the ring of symmetric functions is isomorphic to the ring of polynomials in
the the power sum functions and elementary symmetric functions. Newton’s
identities, i.e.,

pk = (≠1)k≠1kek +
k≠1ÿ

i=1
(≠1)k≠1+iek≠ipi (II.1)

for all k œ N, remain true if the number of variables n Ø k is finite. We refer to
[SF99] for background information.

Following ([Mac98, §I.2 Remark 1]) one can introduce the ring of symmetric
functions as inverse limit of the rings of symmetric polynomials. We observe
that if f œ R[X1, . . . , Xn+1]Sn+1 then f(X1, . . . , Xn, 0) which we consider as a
n-variate polynomial is Sn-invariant. For m Ø n we write

flm,n : R[X]Sm æ R[X]Sn
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Symmetric polynomials and functions

for the forgetful function that maps a symmetric polynomial in m variables to the
symmetric polynomial in n variables obtained from setting the last m≠n variables
equal to 0 and write fln := fln+1,n. For example, we have flm,n(p(m)

k
) = p(n)

k
.

Thus a power sum in m variables is mapped to the “same” power sum in n
variables. When we fix the degree we obtain from the algebraic independence of
power sums that the transition maps fln+k,n induce isomorphisms

R[X1, . . . , Xn, Xn+1, . . . , Xn+k]Sn+k

Æn
ƒ R[X1, . . . , Xn]Sn

Æn
(II.2)

for every k Ø 0. The ring of symmetric functions is then the inverse limit of
(R[X]Sn)n with respect to the transition maps fln in the category of graded
rings. Moreover, the homogeneous part of degree Æ d of the ring of symmetric
functions is again isomorphic to R[X1, . . . , Xn]Sn

Æd
for all n Ø d, i.e.,

R[X1, X2, . . .]SŒ
Æd

ƒ R[X1, . . . , Xn]Sn
Æd

with respect to pk ‘æ p(n)
k

.

When we compare sets of symmetric forms in di�erent number of variables
we do implicitly identify them using the transition maps flm,n but usually do
not write the isomorphism explicitly. The sequences

�Sn+k

n+k,d
µ �Sn

n,d
, P

Sn+k

n+k,d
µ P

Sn
n,d

(II.3)

are nested for all k Ø 1. These inclusions follow, since if f œ R[X1, . . . , Xn+k]Sn+k

is sum of squares/nonnegative, then fln+k,n(f) is also sum of squares/nonnegative.

Definition II.2.4. The limit sets of sums of squares and nonnegative symmetric
forms in n variables of degree 2d are defined as

SS
2d

:=
‹

nØ2d

�Sn
n,2d

and

PS
2d

:=
‹

nØ2d

P
Sn
n,2d

.

We also call SS
2d

and PS
2d

the sets of sums of squares and nonnegative
homogeneous symmetric functions.

In the Kuratowski convergence definition for sequences of convex sets [Kur14]
we have:

Theorem II.2.5. The sets SS
2d

and PS
2d

are full dimensional pointed closed convex
cones and

SS
2d

= lim
næŒ

�Sn
n,2d

, PS
2d

= lim
næŒ

P
Sn
n,2d

.

Proof. To prove that the limit sets defined in II.2.4 are indeed the limits of the
sequences of convex sets (�Sn

n,2d
)n and (PSn

n,2d
)n we need to prove

lim sup
n

�Sn
n,2d

µ SS
2d

µ lim inf
n

�Sn
n,2d

and

lim sup
n

P
Sn
n,2d

µ PS
2d

µ lim inf
n

P
Sn
n,2d
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II. At the limit of symmetric nonnegative forms

which follow from the nestedness of the sequences (II.3).
By definition the limit sets are closed pointed convex cones as intersections of
closed pointed convex cones. We have to show that they are also full dimensional.
However, this follows from ([BR18, Lemma 6.2.]) when we make sure that their
equation (6.3) holds also in our notion of limit. The second and fourth author
proved that the homogeneous part of R[X1, X2, . . .]SŒ of degree d is spanned by

{p⁄pµ : ⁄, µ „ d} fi {pa+bp⁄pµ : 1 Æ a, b Æ d, ⁄ „ d ≠ a, µ „ d ≠ b}.

This follows, since they show that one can divide the partitions of 2d into those
which have up to reordering the form (⁄, µ) for ⁄, µ „ d, or the form (a + b, ⁄, µ)
for 1 Æ a, b Æ d and ⁄ „ d ≠ a, µ „ d ≠ b. Using symmetry reduction we note, for
⁄, µ „ d the forms p(n)

⁄
, p(n)

µ œ Hn,d are equivariants of the Specht module S(n)

which implies

p(⁄,⁄) + p(µ,µ) ≠ 2p(⁄,µ) = lim
næŒ

p(n)
(⁄,⁄) + p(n)

(µ,µ) ≠ 2p(n)
(⁄,µ) œ SS

2d
.

Analogously, for some integers 1 Æ a, b Æ d and partitions ⁄ „ d ≠ a, µ „ d ≠ b

we have (Xa

1 ≠ Xa

2 )p(n)
⁄

, (Xb

1 ≠ Xb

2)p(n)
µ œ Hn,d are equivariants of the Specht

module S(n≠1,1) and

pa+bp⁄pµ = lim
næŒ

n

2
ÿ

‡œSn

1
n!‡ ·

1
(xa

1 ≠ xa

2)(xb

1 ≠ xb

2)p(n)
⁄

p(n)
µ

2

which shows that there exists a symmetric homogeneous function that is
a sum of squares and contains pa+bp⁄pµ linearly. Thus, the convex cones
SS

2d
µ PS

2d
contain a full dimensional subcone and are therefore full dimensional

themselves. ⌅

Remark II.2.6. Analogously, we can define transition maps for the hyperocta-
hedral group Bn to construct the ring of even symmetric functions denoted by
R[X1, X2, . . .]B which can be considered as a subring of the ring of symmetric
functions. The limit sets of even symmetric sums of squares and nonnegative
forms are defined analogously and denoted by SB

2d
,PB

2d
. Again, the sets SB

2d

and PB
2d

are full dimensional pointed convex cones.
It can be seen more directly that the limit cones of even symmetric functions

are full dimensional. Namely, every even power sum is already a sum of squares.
Therefore, it follows immediately that the convex cone SB

2d
contains a full

dimensional subcone.

Example II.2.7. We calculate a description of SB
6 . First, an isotypic decomposi-

tion of Hn,3 with respect to the group Bn has to be calculated. Using the higher
Specht polynomial approach we obtain for n Ø 3

Hn,3 ƒBn 2 · S((n≠1),(1))
ü S((n≠3),(3))

ü S((n≠2,1),(1))

and a system of equivariants is given by
)

Xn, X3
n

*
, {X1X2X3} ,

)
(X2

n
≠ X2

1 )Xn≠1
*

.
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The Vandermonde map

Then the representing matrices for the cones of sums of squares are

A(1)
n

=
A

p(n)
(23) p(n)

(4,2)
p(n)

(4,2) p(n)
(6)

B
, A(2)

n
=

3
1
6p(n)

(23) ≠
1
2p(n)

(4,2) + 1
3p(n)

(6)

4

A(3)
n

=
3

≠1
n(n ≠ 1)(n ≠ 2)p(n)

(23) + n + 1
n(n ≠ 1)(n ≠ 2)p(n)

(4,2) + ≠1
(n ≠ 1)(n ≠ 2)p(n)

(6)

4

which converge to the limit matrices

A(1) =
3

p(23) p(4,2)
p(4,2) p(6)

4
, A(2) =

3
1
6p(23) ≠

1
2p(4,2) + 1

3p(6)

4
,

A(3) =
!
p(4,2) ≠ p(6)

"
.

Thus,

SB
6 = {Tr(A(1)B(1)) + A(2)B(2) + A(3)B(3) : B(i) positive semidefinite} .

Remark II.2.8. The ring of symmetric functions can also be defined as a direct
limit. For positive integers m = n + k Ø n let „m,n denote the inverse of the
restriction of the map flm,n in (II.2). Then, „m,n(p(n)

k
) = p(m)

k
for all k Æ n and

thus we obtain injections R[X]Sn Òæ R[X]Sm . The ring of symmetric functions
can be constructed as the direct limit with respect to the transition maps „m,n

which is just the union of the sets R[X]Sn
Æn

.
We conclude the section with one more motivation for the identification

of (even) symmetrics in di�erent number of variables. Instead of identifying
power sums in arbitrary many variables using the transition maps flm,n we could
use as basis elements normalized power sums p̂(n)

k
(X1, . . . , Xn) := 1

n

q
n

i=1 Xk

i
.

Analogously, we define transition maps fl̂m,n which map a normalized power sum
to the “same” normalized power sum in a di�erent number of variables. This
results in the normalized limit of symmetric polynomials. The nonnegativity
versus sums of squares question in this setting was first investigated in [BR21].
The second and fourth author show that the normalized limit cones of symmetric
quartics are equal and conjectured that equality of normalized limits is true for
any degree. This was recently disproved in [AB22]. The first and second author
proved that the sets are di�erent already in degree 6 and for even symmetrics
from degree 10 onward.

II.3 The Vandermonde map

The Vandermonde map of degree d in n variables is the function

‹n,d : Rn
≠æ Rd

x ‘≠æ (x1 + · · · + xn, x2
1 + · · · + x2

n
, . . . , xd

1 + · · · + xd

n
)

.

The Vandermonde map and the analogous function in the first d elementary
symmetrics has been studied by various authors, for example in [Arn86; Giv87;
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II. At the limit of symmetric nonnegative forms

Kos89; Kos99; Meg92]. We write Mn,d = ‹n,d(Rn) for the image of the
Vandermonde map. In our work the Vandermonde map appears naturally
in the study of nonnegative symmetric forms. We observe that the images form
an increasing chain in the number of variables for a fixed degree d, i.e., we have
Mn,d ™ Mn+1,d for all n Ø 1. We are particularly interested in the image of
the Vandermonde map at infinity, i.e., in the closure of the union of all images
in an increasing number of variables

Md := cl
A Œ€

n=1
Mn,d

B
,

in the even Vandermonde map

‹e

n,d
: Rn

≠æ Rd

x ‘≠æ (x2
1 + · · · + x2

n
, x4

1 + · · · + x4
n
, . . . , x2d

1 + · · · + x2d

n
)

,

its image Nn,d = ‹e

n,d
(Rn), and its image at infinity Nd := cl (

tŒ
n=1 Nn,d) .

Kostov studied in [Kos04; Kos07] polynomial images of the set Md. He worked
with elementary symmetric polynomials instead of power sums and focused on
degree 4. Although p4 is non linearly in e1 and e2 we see that d = 4 is also the
largest degree d for which we can recover a description of Md as a linear image
of the corresponding map in the elementary symmetrics.
We have

PS,ú
2d

= cone (‹d (Md)) and PB,ú
2d

= cone (‹d (Nd)) , (II.4)

where ‹d : Rd
æ Rfi(d) is the monomial map (x1, . . . , xd) ‘æ (xd

1, xd≠2
1 x2, . . . , xd)

and cone(·) denotes the convex conical hull. We observe that the set Nn,d equals
the image of ‹n,d restricted to the nonnegative orthant.

II.3.1 Properties of the Vandermonde map

We collect properties of Vandermonde maps which will be relevant in the following
sections. In Section II.5 we analyse M4 to prove SS

4 ( PS
4 and the properties

of Nd will be essential in Section II.7 where we tropicalize Nd.

Lemma II.3.1. The sets Mn,d, Md are weighted homogeneous with respect to
all ⁄ œ R, and the sets Nn,d, Nd are weighted homogeneous with respect to all
⁄ œ RØ0, i.e., if (a1, . . . , ad) is contained then also (⁄a1, . . . , ⁄dad) for all ⁄ œ R
(resp. ⁄ œ RØ0).

Proof. We only prove the claim for Mn,d and Md since the proof works
completely analogously for Nn,d and Nd.
Let a = (a1, . . . , ad) œ Mn,d. By definition we have a = (p(n)

1 (x), . . . , p(n)
d

(x))
for some x œ Rn and hence

(⁄a1, ⁄2a2, . . . , ⁄dad) = (p(n)
1 (⁄x), . . . , p(n)

d
(⁄x)) œ Mn,d.

It follows by continuity that Md is weighted homogeneous. ⌅
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The Vandermonde map

Definition II.3.2. A set S µ Rn has Hadamard property if a · b :=
(a1b1, . . . , anbn) œ S for all a = (a1, . . . , an), b = (b1, . . . , bn) œ S.

Proposition II.3.3. The sets Md and Nd have Hadamard property and are closed
under addition.

Proof. We only prove the properties for Md since the arguments work analogously
for Nd.
The point ((x1 + · · · + xm) · (y1 + · · · + yn), . . . , (xd

1 + · · · + xd

m
) · (yd

1 + · · · + yd

n
)) is

the image of (x1y1, . . . , xmyn) under ‹mn,d. Thus, for x, y œ Md and sequences
(x(n))n, (y(n))n œ

tŒ
n=1 ‹n,d(Rn) which converge to x and y, we observe that the

Hadamard product of x(n) and y(n) gives a sequence whose limit is the Hadamard
product of x and y. So Md has Hadamard property.
If u, v œ

tŒ
n=1 ‹n,d(Rn)d then u = ‹m,d(x) and v = ‹n,d(y) for some x œ Rm

and y œ Rn. Hence u + v = ‹m+n,d(z) œ Md for z = (x, y) œ Rm+n being the
concatenation of x and y. So Md is closed under addition. ⌅

Proposition II.3.3 may fail for the finite cases Mn,d and Nn,d. The following
observation was already made in [Kos04; Kos07].

Proposition II.3.4. Md is a prism with respect to the first coordinate, i.e.,
(a1, a2, . . . , ad) œ Md if and only if (0, a2, . . . , ad) œ Md.

Proof. Let a = (a1, . . . , ad) œ Rd be a point and xn = ( ≠a1
n

, ≠a1
n

, . . . , ≠a1
n

) œ Rn

be a sequence. Then

Md – lim
næŒ

(p(n)
1 , . . . , p(n)

d
)(xn) = lim

næŒ
(≠a1,

a2
1

n
, . . . ,

(≠1)dad

1
nd≠1 ) = (≠a1, 0, . . . , 0).

Therefore, we have

a œ Md if and only if (0, a2, . . . , ad) = a + (≠a1, 0, . . . , 0) œ Md

since the set Md is closed under addition by Proposition II.3.3. ⌅

Lemma II.3.5. The points (1, t2, . . . , t2) and (0, 1, 1
t
, 1

t2 , . . . , 1
td≠2 ) belong to Md

for all positive integers t2.

Proof. Let q = (1, . . . , 1) œ Rk, so ‹k,d(q) = (k, . . . , k) œ Md for all positive
integers k. Now, since Md is a prism with respect to the first coordinate by
Proposition II.3.4, setting k = t2 we obtain (0, t2, . . . , t2), (1, t2, . . . , t2) œ Md

and vn,d( 1
t
, 0, . . . , 0) = ( 1

t
, 1

t2 , . . . , 1
td ) œ Md. Thus, we have (0, t2, . . . , t2) ·

( 1
t
, 1

t2 , . . . , 1
td ) = (0, 1, 1

t
, 1

t2 , . . . , 1
td≠2 ) œ Md since Md has Hadamard property

II.3.3. ⌅

79



II. At the limit of symmetric nonnegative forms

II.3.2 The boundary of the even Vandermonde map

The boundary of Mn,d has been described in ([Kos89, Theorem 1.14]). In
Theorem II.3.6 we present the description of the boundary of Nn,d which we
prove in Subsection II.3.3. We provide a parametrization of the boundary
of Nn,3, generalizations to projections of boundaries of higher degrees, and a
parametrization of the boundary of N3. We conclude with showing that Nd is
not semialgebraic for all d Ø 3.

We write ÂNn,d := (e(n)
1 , . . . , e(n)

d
)(Rn

Ø0) for the image of the first d elementary
symmetrics in n variables on the nonnegative orthant. It follows from Newton’s
identities (II.1) that Nd and ÂNd are the same up to a polynomial di�eomorphism
for n Ø d. For a = (a1, . . . , ad≠1) œ Rd≠1 we define the a�ne variety

V (a) = {x œ Rn : p(n)
2i

(x) = ai, 1 Æ i Æ d ≠ 1}.

Note that the variety V (a) is either empty or compact for all choices of a and
n Ø d Ø 2.

Theorem II.3.6. For n Ø d, the boundary of the sets Nn,d and ÂNn,d is given by
the closure of the set of evaluations at all points whose coordinates consist of
0 < x1 < x2 < . . . < xd≠1 and are of the following types:

(1e) d even, (x1, . . . , x1, x2, x3, . . . , xd≠1) with x2k≠1 has multiplicity Ø 1, while
x2k has multiplicity 1 for all k;

(1o) d odd, (0, . . . , 0, x1, x2, . . . , x2, x3, . . . , xd≠1) with x2k has multiplicity Ø 1
and 0 has arbitrary multiplicity, while x2k≠1 has multiplicity 1 for all k;

(2e) d even, (0, . . . , 0, x1, x2, . . . , x2, x3, . . . , xd≠1) with x2k has multiplicity Ø 1
and 0 has arbitrary multiplicity, while x2k≠1 has multiplicity 1 for all k;

(2o) d odd, (x1, . . . , x1, x2, x3, . . . , xd≠1) with x2k≠1 has multiplicity Ø 1, while
x2k has multiplicity 1 for all k.

Moreover, for x œ Rn of type (1e),(1o)/ (2e),(2o) p(n)
2d

attains a minimum/maxi-
mum at

V (p(n)
2 (x), . . . , p(n)

2d≠2(x)) .

If d is odd then e(n)
d

(X2) attains a minima/maxima at x of type
(1e),(1o)/ (2e),(2o) and otherwise a maxima/minima.

For a fixed a œ Rd≠1 and n Ø d there exists a scalar ca œ R such that

e(n)
d

(x) = (≠1)d≠1p(n)
d

(x) + ca

for all x œ V (a) which shows that the last claim on e(n)
d

(X2) follows from the
classification of the minima and maxima of p(n)

2d
.

The theorem above allows univariate parametrization of the boundaries of
Nn,3 in a finite number of variables and at infinity.
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The Vandermonde map

Theorem II.3.7. For n Ø 3, a parametrization of the boundary of the set

{(p(n)
4 (x), p(n)

6 (x)) : x œ Rn, p(n)
2 (x) = 1}

is given by the following n univariate parametrizations. The upper part of the
boundary is parametrized by

3
(1 ≠ t)2

n ≠ 1 + t2,
(1 ≠ t)3

(n ≠ 1)2 + t3
4

: 1
n

Æ t Æ 1 (II.5)

while the lower part is parametrized by the families
33

(1 ≠ t)2

n ≠ k ≠ 1 + t2,
(1 ≠ t)3

(n ≠ k ≠ 1)2 + t3
4

: 0 Æ t Æ
1

n ≠ k

4

0ÆkÆn≠2
. (II.6)

Proof. We note

{(p(n)
4 (x), p(n)

6 (x)) : x œ Rn

Ø0, p(n)
2 (x) = 1} = Nn,3 fl {p(n)

2 = 1}

and thus we can apply Theorem II.3.6 to determine the boundary. Since we
restrict to the nonnegative orthant we can consider instead the alternative
representation

{(p(n)
2 (x), p(n)

3 (x)) : x œ Rn

Ø0,
nÿ

i=1
xi = 1}

and II.3.6 still applies. Therefore, the boundary consists of the closure of the set of
all point evaluations in (p(n)

2 , p(n)
3 ) at all points (0, . . . , 0, x1, . . . , x1, x2, . . . , x2) œ

Rn of the form 0 < x1 < x2 of type (1o) or (2o) and whose sum equals 1.
Note that any point of type (2o) must be of the form (a, . . . , a, b) with 0 < a < b
and (n ≠ 1)a + b = 1. Thus, a = 1≠b

n≠1 , 1
n

< b < 1 and we observe that the upper
part of the boundary is indeed parametrized by the curve in (II.5).
We note that there are essentially n ≠ 1 points of type (1o). Namely, points of
the form

(0, . . . , 0¸ ˚˙ ˝
#=k

, a, b, . . . , b¸ ˚˙ ˝
#=n≠k≠1

)

for 0 Æ k Æ n ≠ 2 satisfying b = 1≠a

n≠k≠1 , a Æ
1

n≠k
. We obtain precisely the

parametrizations (II.6) of the lower part of the boundary. ⌅

We obtain parametrizations of the boundary of ÂNn,3 by applying the
polynomial di�eomorphism induced by Newton’s identities. See Figure II.2
for a visualisation of these boundaries.
Remark II.3.8. Theorem II.3.7 generalizes to a parametrization of the boundary
of the set

{(p(n)
2k

(x), p(n)
2m

(x)) : x œ Rn, p(n)
2 (x) = 1}

for 2 Æ k Æ m. However, we observe that the upper part of the boundary
cannot be described by just one smooth parametrizitation. This is since there
are essentially more points of type (2e) resp. (2o) than for k = 2 and m = 3,
where there is only 1. However, a careful analysis can lead to a description of
the boundary.
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II. At the limit of symmetric nonnegative forms

Figure II.1: The boundary of the sets Nn,3 fl {p(n)
2 = 1} for n = 3 (left) and

n = 5 (right)

Figure II.2: The boundary of the sets ÂNn,3 fl {p(n)
2 = 1} for n = 3 (left) and

n = 5 (right)

Example II.3.9. For 2 Æ k Æ 3, the lower part of the boundary of the set

{(p(4)
2k

(x), p(4)
8 (x)) : x œ R4, p(4)

2 (x) = 1}

is the union of the images of the following two parametrizations

!
2sk + tk + (1 ≠ 2s ≠ t)k, 2s4 + t4 + (1 ≠ 2s ≠ t)4"

: 0 Æ s Æ t Æ
1
2 ≠ s ,

(II.7)
3

sk + tk + 1
2k≠1 (1 ≠ s ≠ t)k, s4 + t4 + 1

8(1 ≠ s ≠ t)4
4

: 0 Æ s Æ t <
1
3 ≠

1
3s .

(II.8)

Parametrization (II.7) comes from the points with multiplicity vector
(x1, x1, x2, x3) and (II.8) from the points (x1, x2, x3, x3) and in both cases
0 < x1 < x2 < x3.
The upper part of the boundary is the union of the images of the following two
parametrizations

!
sk + 2tk + (1 ≠ s ≠ 2t)k, s4 + 2t4 + (1 ≠ s ≠ 2t)4"

: 0 Æ s Æ t Æ
1
3 ≠

1
3s ,

(II.9)
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!
sk + tk + (1 ≠ s ≠ t)k, s4 + t4 + (1 ≠ s ≠ t)4"

) : 0 Æ s Æ t Æ
1
2 ≠

1
2 t .

(II.10)

Parametrization (II.9) comes from the points with multiplicity vector
(x1, x2, x2, x3) and (II.10) from those with (0, x1, x2, x3) and in both cases
0 < x1 < x2 < x3.

We note that by going from Nn,3 fl {p(n)
2 = 1} to Nn+1,3 fl {p(n+1)

2 = 1} in
Theorem II.3.7 the upper part of the boundary grows slowly and converges. Its
limit has the parametrization (t, t3/2), 0 Æ t Æ 1. Moreover, every point on the
lower part of the boundary for n remains on the boundary for n + 1, but a single
new smooth curve is added. Namely, the smooth curve with parametrization

3
(1 ≠ t)2

n
+ t2,

(1 ≠ t)3

n2 + t3
4

, 0 Æ t Æ
1

n + 1

appears additionally.

Figure II.3: The boundary of the set N20,3 fl {p(20)
2 = 1}

We can immediately give a description of the boundary of N3 fl {p2 = 1}.

Corollary II.3.10. The boundary of the set N3 fl {p2 = 1} equals

Ó
(t, t3/2) : 0 Æ t Æ 1

Ô
fi

€

kœN>1

;3
(1 ≠ t)2

k
+ t2,

(1 ≠ t)3

k2 + t3
4

: 0 Æ t Æ
1

k + 1

<
.

We note that two di�erent parametrizations of the lower part of the boundary
3

(1 ≠ t)2

k
+ t2,

(1 ≠ t)3

k2 + t3
4

: 0 Æ t Æ
1

k + 1 and
3

(1 ≠ s)2

l
+ s2,

(1 ≠ s)3

l2 + s3
4

: 0 Æ s Æ
1

l + 1

intersect if and only if k = l≠1 or k = l+1 which can be verified using a computer
algebra system. Without loss of generality be k = l ≠ 1. The intersection has
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II. At the limit of symmetric nonnegative forms

cardinality 1 and the curves meet at
! 1

l
, 1

l2

"
for t = 1

l
and s = 0. Moreover, the

gradients (0, 0) and (≠2
l

, ≠3
l

) di�er at this point which shows that
! 1

l
, 1

l2

"
is a

singular point of the boundary.

Corollary II.3.11. The compact set N3 fl {p2 = 1} has countably infinite isolated
singular points which are the points of the form

3
1
k

,
1
k2

4
, k œ N>0 and (0, 0) .

Proof. It follows from the discussion above that only neighboring parametriza-
tions of the lower part of the boundary intersect and their intersection point
is a singular point of the boundary. The intersection points are all of the
form

1
1

k+1 , 1
(k+1)2

2
for all k œ N. However, (1, 1) is an intersection of the

parametriztation (t, t3/2), 0 Æ t Æ 1 of the upper part of the boundary and
((1 ≠ s)2 + s2, (1 ≠ s)3 + s3) : 0 Æ s Æ 1/2 of the lower part. For t = 1 and s = 0,
but again the gradients are di�erent which shows that (1, 1) is a singular point.
Moreover, any singular point must be an intersection of two parametrizations.
But the intersection points are precisely the points of the claimed form and the
limit point (0, 0).
Since all the singular points lie in the rational moment curve (t, t2) the points
are indeed isolated (see e.g. ([Bar02, Chapter II.9.])). ⌅

Corollary II.3.12. The sets Nd and ÂNd are not semialgebraic for all d Ø 3.

Proof. We show that N3 is not semialgebraic. The general case follows, since for
d Ø 3 we observe N3 = fi(Nd), where fi : Rd

æ R3 denotes the projection onto
the first 3 coordinates. Moreover, ÂNd is a polynomial image of the set Nd which
must then also be non semialgebraic.
We suppose that the set N3 is semialgebraic. Then the intersection K of N3 with
the hypersurface {p2 = 1} must also be semialgberaic. However, by Corollary
II.3.11 the semialgebraic set K has countably infinite isolated singular points.
Let T denote the union of all the singular points. The union of all singular
points of a semialgebraic set is again semialgebraic since this condition can be
formalized as the vanishing and non-vanishing of certain polynomial equalities.
Thus, T is semialgebraic. By ([BCR13, Theorem 2.4.4]) every semialgebraic set is
the disjoint union of a finite number of semialgebraically connected semialgebraic
sets. However, there are countably infinite isolated points in T which contradicts
T being semialgebraic. In particular, N3 cannot be semialgebraic. ⌅

II.3.3 Proof of Theorem II.3.6

We provide a proof of Theorem II.3.6. Our proof is an adaption of the work in
[Arn86; Kos89], which can also be found with more details in [Meg92; Rai04].

Lemma II.3.13. Let a œ Rd≠1. Then a point x œ V (a) with at least d ≠ 1 distinct
non-zero absolute values of coordinates is a smooth point.
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The Vandermonde map

Proof. This follows by considering the Jacobian of (p(n)
2 , . . . , p(n)

2d≠2) evaluated at
x. Indeed, for the rank of this matrix to be strictly less than d ≠ 1, x cannot
have d ≠ 1 distinct non-zero coordinates up to absolute value. ⌅

Lemma II.3.14. Let a œ Rd≠1. The critical points of p(n)
2d

on the regular part
of V (a) are exactly the points with precisely d ≠ 1 distinct absolute values of
non-zero coordinates.

Proof. This follows by considering the Jacobian of (p(n)
2 , . . . , p(n)

2d≠2). We find
that this matrix has rank d ≠ 1 at a point x if and only if x has exactly d ≠ 1
distinct non-zero squares of coordinates. ⌅

I.e., up to Bn-action a critical point is of the form

(x1, x2, . . . , xd≠1, y1, . . . , yn≠(d≠1)) œ Rn

Ø0,

with #{| x1 |, | x2 |, . . . , | xd≠1 |} = d ≠ 1, yi œ {x1, x2, . . . , xd≠1, 0}, and xi ”= 0
for all i.

The following proposition is an adaption of ([Arn86, § 5 Corollary]) from
power sums to even power sums for which a proof can be found in ([Meg92,
Proposition 7]) and ([Rai04, Proposition 3.2.5.]).

Proposition II.3.15. Let a œ Rd≠1. For a critical point x of p(n)
2d

on V (a) let m0
denote the number of times 0 appears, and mi denote the number of times the
i-th smallest positive coordinate appears. Further set ri = mi ≠ 1. Then, if d is
odd (even), the Hessian of p(n)

2d
on V (a) at the point x is the sum of a negative

(positive) definite quadratic form on Ra and a positive (negative) definite form
on Rb, where a =

q
i<d,i ”œ2N ri and b = m0 +

q
i<d,iœ2N ri.

Proof. Let x be a critical point which we assume without loss of generality to
have only nonnegative coordinates. By Lemma II.3.14 we can assume

x = (0, . . . , 0¸ ˚˙ ˝
m0

, x1, . . . , x1¸ ˚˙ ˝
r1

, . . . , xd≠1, . . . , xd≠1¸ ˚˙ ˝
rd≠1

, x1, . . . , xd≠1)

for some positive pairwise distinct xi’s. Let

x̃ = (0, . . . , 0¸ ˚˙ ˝
m0

, x1, . . . , x1¸ ˚˙ ˝
r1

, . . . , xd≠1, . . . , xd≠1¸ ˚˙ ˝
rd≠1

) œ Rn≠d+1

denote the point consisting of the first n ≠ d + 1 coordinates of x. The first
n ≠ d + 1 coordinates can be used as a system of local coordinates for V (a) in a
neighborhood of x by II.3.14.
We note that there exist Lagrange multipliers ⁄ú

1, . . . , ⁄ú
d≠1 œ R such that all

partial derivatives of the Lagrangian function

L(X) = p(n)
2d

(X) ≠

d≠1ÿ

i=1
⁄ú

i
(p(n)

2i
(X) ≠ ai)
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II. At the limit of symmetric nonnegative forms

vanish at x. Thus, there exists an univariate polynomial

g(t) := 2dt2d≠1
≠

d≠1ÿ

i=1
2i⁄ú

i
t2i≠1 = t(2dt2d≠2

≠

d≠1ÿ

i=1
2i⁄ú

i
t2i≠2)

such that any coordinate of x, and in particular x̃, is a root of g which shows
that the zeros of g are contained in {0, ±x1, . . . , ±xd≠1}. By the intermediate
value theorem we note gÕ(t) has d ≠ 1 positive zeros v1, . . . , vd≠1 satisfying
0 < v1 < x1 < v2 < x2 < . . . < xd≠2 < vd≠1 < xd≠1. Moreover, since the
leading coe�cient of gÕ(t) is positive we can observe

gÕ(xd≠1) > 0, gÕ(xd≠2) < 0, gÕ(xd≠3) > 0, . . . , (≠1)qgÕ(x1) < 0, (≠1)qgÕ(0) > 0

with q œ N>0, and q even if and only if d is odd.
Then, the Hessian of the Lagrangian function satisfies

(h1, . . . , hn≠d+1)d2L(x̃)(h1, . . . , hn≠d+1)T =(h2
1 + . . . + h2

m0 )gÕ(0) + (h2
m0+1 + . . . + h2

m0+r1+1)gÕ(x1)

+ . . . + (h2
m0+r1+...+rd≠2+1 + . . . + h2

n≠d+1)gÕ(xd≠1)

since ˆ
2
L

ˆXiˆXj
= 0 for i ”= j, and ˆ

2
L

ˆXiˆXi
= gÕ(xi). This shows that the Hessian

of p(n)
2d

on V (a) at x has indeed the claimed form. ⌅

Remark II.3.16 ([Rai04], Proposition 3.2.5). The last proposition implies that
p(n)

2d
is a Morse function on V (a) for a œ Rd≠1.

Thus, we immediately obtain:

Corollary II.3.17. Let x be a critical point of p(n)
2d

on V (a). Then x is a strict
local minimum/maximum if x is of type (1e),(1o)/ (2e),(2o) (depending on d
even or odd).

The following was proven by Kostov for the Vandermonde map ([Kos89,
Lemma 2.2]).

Lemma II.3.18. Let d Ø 2. The image of the function p(n)
2d

: Rn
æ R on the

set {x œ Rn : (p(n)
2 , . . . , p(n)

2d≠2)(x) = a} is either empty or an interval for all
a œ Rd≠1.

Proof. Givental proves that the set

{x œ Rn

Ø0 : xi Æ xi+1, ’ i} fl {x œ Rn : (p(n)
2 , . . . , p(n)

2d≠2)(x) = a}

is generically either contractible or empty [Giv87]. Kostov showed that generically
implies globally ([Kos89, Lemma 2.6]). Thus, the image of p(n)

2d
on the restriction

is connected and compact. Therefore, the non-empty image of p(n)
2d

on the set
{x œ Rn : (p(n)

2 , . . . , p(n)
2d≠2)(x) = a} is an interval. ⌅

Finally, we can present a proof of Theorem II.3.6.
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Proof of Theorem II.3.6. For n Ø d, the even Vandermonde map (p(n)
2 , . . . , p(n)

2d
)

maps elements in the interior of the cone 0 Æ x1 Æ . . . Æ xn to points in the
interior of the image Nd, and points from the boundary to the boundary [Giv87].
Thus, any point of type (1e),(1o) or (2e),(2o) is indeed mapped to the boundary.
Now, we assume that (p(n)

2 , . . . , p(n)
2d

)(x) is contained in the boundary of the set
Nn,d and is non-singular. Then, since the set

p(n)
2d

1
V ((p(n)

2 , . . . , p(n)
2d≠2)(x))

2

is an interval by Lemma II.3.18, we observe that p(n)
2d

is either minimized
or maximized at x on the interval V ((p(n)

2 , . . . , p(n)
2d≠2)(x)). We can apply

Corollary II.3.17 and obtain that x must be of type (1e),(1o) or (2e),(2o).
If (p(n)

2 , . . . , p(n)
2d

)(x) is a singular point then x can be obtained as the limit of a
sequence of such points. ⌅

II.4 The convex hull for elementary symmetrics and test sets
for nonnegativity

Similarly to our work in Section II.3 we analyze the convex hull of the images of
elementary symmetric polynomials and power sums on the nonnegative orthant
in a fixed number of variables and at infinity. Although, the boundary of the
image described in Theorem II.3.6 is the same for elementary symmetrics and
power sums up to di�eomorphism, we show that the convex hull of the image of
elementary symmetrics satisfies useful properties which are not shared by the
convex hull of the image of power sums. The descriptions of the vertices of the
convex hulls can be reformulated in terms of test sets to verify nonnegativity of
specific even symmetric (limit) forms. The test sets are a generalization of the
degree 6 case investigated by Choi, Lam and Reznick [CLR87]. Moreover, we
use Gale’s evenness condition to describe the facets of the convex hull.

Let �n := {x œ Rn

Ø0 :
q

n

i=1 xi = 1} denote the n ≠ 1 dimensional
probability simplex and � := limnæŒn �n = cl

!t
nœN �n

"
the infinite probability

simplex. For n Ø d we provide a description of the convex sets En,d :=
conv((e(n)

2 , . . . , e(n)
d

)(�n)), and Ed := cl
1t

nØd
En,d

2
, which turn out to be

a polytope with n vertices in the first case and respectively the closure of a
union of nested polytopes. We note En,d = conv(fi( ÂNn,d fl {p(n)

2 = 1})) and
Ed = conv(fi( ÂNd fl {p2 = 1})), where fi : Rd

æ Rd≠1 denotes the projection onto
the last d ≠ 1 coordinates.

The following theorem was already known before in di�erent contexts. For
instance, it can be found in [For87; KKR12]. The result appeared even earlier in
the context of extremal combinatorics and was proven by Bollobás in the plane
[Bol76] to give a description of the convex hull of the range of edge versus triangle
densities, and the result was extended to larger dimensions shortly afterwards.
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II. At the limit of symmetric nonnegative forms

Theorem II.4.1. The set En,d is equal to the polytope

conv
;33

k

2

4
1
k2 , . . . ,

3
k

d

4
1
kd

4
: k œ [n]

<
,

where
!

k

j

"
= 0 if k < j. For d Ø 3 the polytope En,d has n vertices.

We recall that for a convex set S µ Rn a point a œ S is extremal if the set
S \ {a} is again convex. We follow ([Zha22, Lemma 5.4.3]) for a proof of II.4.1.

Proof. By the Krein-Milman theorem every compact and convex set is equal
to the convex hull of its extremal elements. The extremal elements of En,d are
precisely the minima of a�ne linear maps on En,d.
Let n Ø d and „(e2, . . . , ed) = c1 + c2e2 + . . . + cned : Rn

æ R be an a�ne non-
constant linear map on En,d and let xú be a mininizer of „ú = „(e(n)

2 , . . . , e(n)
d

)
on �n. We show that xú = (1/k, . . . , 1/k, 0, . . . , 0) up to permutation for a
1 Æ k Æ n. We assume that x1, x2 > 0 and write „ú(x) = x1A+x2B+x1x2C+D,
where A, B, C, D are functions in x3, . . . , xn. Then, since „ú is symmetric A = B
and by fixing x1 + x2 = xú

1 + xú
2 we obtain „ú(x) = x1x2C + DÕ. We have,

if C(xú) Ø 0 we set either x1 = 0 or x2 = 0 with holding x1 + x2 = xú
1 + xú

2
fixed and obtain that xú was not a minimum. If C(xú) < 0 we obtain „ú(xú) is
minimized at xú

1 = xú
2. Iteratively, we observe xú = (1/k, . . . , 1/k, 0, . . . , 0).

It follows from Corollary II.4.5 that all the claimed points are indeed vertices of
En,d. ⌅

Figure II.4: The sets E3,2 (left) and E6,2 (right)

For En,3 Theorem II.4.1 is equivalent to the following theorem by Choi, Lam
and Reznick.

Theorem II.4.2 ([CLR87], Theorem 3.7). Let f(p(n)
2 , p(n)

4 , p(n)
6 ) be an even

symmetric sextic in n Ø 3 variables. Then, f is nonnegative if and only if
f

!
1, 1

k
, 1

k2

"
is nonnegative for all k œ [n].

For n Ø 3 we observe from Newton’s identities

p(n)
2 (X) = 1 , p(n)

4 (X) = 1 ≠ 2e(n)
2 (X2) , p(n)

6 (X) = 1 ≠ 3e(n)
2 (X2) + 3e(n)

3 (X2) .
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Thus, the power sums p(n)
4 and p(n)

6 are linear in e(n)
2 (X2) and e(n)

3 (X2) on {x :
p(n)

2 (x) = 1}. An even symmetric sextic has the form f = c1p(n)
(23)+c2p(n)

(4,2)+c3p(n)
(6) .

The only non linearly occurring power sum is p(n)
(2) = e(n)

1 (X2). However,
for testing nonnegativity we can restrict to p(n)

(2) = 1 since f is a form.
Thus, f is nonnegative if and only if f(1, p4, p6) is nonnegative on the set
conv{(p(n)

4 (x), p(n)
6 (x)) : x œ �n} which we show to be a linear transformation

of En,3 in Proposition II.4.4.
Since

lim
næŒ

33
k

2

4
1
k2 , . . . ,

3
k

d

4
1
kd

4
=

3
1
2! , . . . ,

1
d!

4

we immediately obtain a description of the limit.

Corollary II.4.3. Ed = conv
ÓÓ1!

k

2
" 1

k2 , . . . ,
!

k

d

" 1
kd

2
: k œ N

Ô
‡ {

! 1
2! ,

1
3! , . . . , 1

d!
"
}

Ô
.

Proof. We observe that the set
t

nØd
En,d is convex: if v, w œ

t
nØd

En,d then
for some integer N we have v, w are contained in the convex set En,d, because
the sets En,d are nested. Thus, Ed is convex as the closure of the convex sett

nØd
En,d. We note

33
k

2

4
1
k2 , . . . ,

3
k

d

4
1
kd

4
,

3
1
2! ,

1
3! , . . . ,

1
d!

4
œ Ed

per definition and since Ed is closed. Thus, the set on the right hand side is
contained in Ed. Moreover, we have

En,d µ conv
;;33

k

2

4
1
k2 , . . . ,

3
k

d

4
1
kd

4
: k œ N

<
‡ {

3
1
2! ,

1
3! , . . . ,

1
d!

4
}

<

for any n Ø d and thus

cl

Q

a
€

nØd

En,d

R

b µ conv
;3

1
2! ,

1
3! , . . . ,

1
d!

4
,

33
k

2

4
1
k2 , . . . ,

3
k

d

4
1
kd

4
: k œ N

<

since the set on the right hand side is closed. ⌅

Figure II.5 displays E20,2 and visualizes how the additional vertices eventually
accumulate around the point

! 1
2! ,

1
3! , . . . , 1

d!
"
.

We deduce the following proposition from Newton’s identities and by
observing

3
1
k

,
1
k2 , . . . ,

1
kd≠1

4
=

3
p(n)

i

3
1
k

, . . . ,
1
k

, 0, . . . , 0
44

2ÆiÆd

.
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Figure II.5: The set E20,2

Proposition II.4.4. For n Ø d, the map

�d :
Ó1!

k

2
" 1

k2 , . . . ,
!

k

d

" 1
kd

2
: k œ [n]

Ô
≠æ

)! 1
k

, 1
k2 , . . . , 1

kd≠1

"
: k œ [n]

*
1!

k

2
" 1

k2 , . . . ,
!

k

d

" 1
kd

2
‘≠æ

! 1
k

, 1
k2 , . . . , 1

kd≠1

"

induces an a�ne isomorphism on the vector spaces Rd≠1.

Proof. Let n Ø m Ø 2 and n Ø k be nonnegative integers. Let zm :=
(1, 2, . . . , m ≠ 1, 0, . . . , 0) œ Rn. Then by Vieta’s formula we have

3
k

m

4
1

km
=

r
m≠1
i=1 (k ≠ i)
m! · km≠1

= 1
m! · km≠1 (km≠1

≠ e(n)
1 (zm)km≠2

± · · · + (≠1)m≠1(e(n)
m≠1(zm))

= 1
m! ≠

1
2(m ≠ 2)!

1
k

+ · · · + (≠1)m≠1

m

1
km≠1

which shows that for any k œ [n] the same a�ne linear relation of the
m-th coordinates of points in the sets

Ó1!
k

2
" 1

k2 , . . . ,
!

k

d

" 1
kd

2
: k œ [n]

Ô
and

)! 1
k

, 1
k2 , . . . , 1

kd≠1

"
: k œ [n]

*
is satisfied. ⌅

Thus, for all degrees d there exists indeed a bijective linear map, even though
Newton’s identities provide only polynomial transition maps between ÂNd and
Nd. For instance, already the power sum p(n)

4 is quadratic in e(n)
2 for n Ø 4.

Corollary II.4.5. For n Ø d Ø 2, the set conv
Ó1!

k

2
" 1

k2 , . . . ,
!

k

d

" 1
kd

2
: k œ [n]

Ô

does not contain the point
1!

n+1
2

" 1
(n+1)2 , . . . ,

!
n+1

d

" 1
(n+1)d

2
.

Proof. This follows immediately from Proposition II.4.4 since it is true for the
points on the moment map (see e.g. ([Bar02, Chapter II.9.])). ⌅
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We observed in Corollary II.3.11 that the projection of the set Nn,3 fl {p(n)
2 =

1} onto its last two coordinates is contained in conv{( 1
k

, 1
k2 ) : k œ [n]}. So it

seems naturally to ask whether an analogous result to Theorem II.4.1 in the
power sums generalizes to higher degrees. We provide a negative answer in terms
of the convex hull of points of the form (1/k, . . . , 1/kd≠1) on the moment curve.

Figure II.6: The polytopes with vertex sets {(1/k, 1/k2) : k œ [n]} for n = 3
(left) and n = 6 (right)

Proposition II.4.6. Let d Ø 4. Then, for su�ciently large n (and in the limit)
the set

conv
;3

1
k

,
1
k2 , · · · ,

1
kd≠1

4
: k œ [n]

<

does not contain the set (p(n)
2 , p(n)

3 , . . . , p(n)
d

)(�n).

Proof. We consider f = 2p(n)
4 ≠ 3p(n)

(3,1) + p(n)
(2,12). The form f is nonnegative

on the convex hull of the rational points on the moment curve of the form
(1/k, 1/k2, 1/k3), since

f(1/k, 1/k2, 1/k3) = (k ≠ 3/2)2
≠ 1/4

k3 Ø 0

for all k œ N. However, for n = m + 1 we have

f(a, 1, . . . , 1¸ ˚˙ ˝
#1Õs=m

) = ≠ma3 + a2m2 + a2m + 2am2
≠ 3am + m3

≠ 3m2 + 2m =: gm(a)

and thus for fixed m we observe gm(a) has a negative leading coe�cient.
For su�ciently large a > 0 we must have f(a, 1, . . . , 1) < 0. Therefore,
f cannot be globally nonnegative and since f is homogeneous f cannot be
nonnegative on the restriction to p(n)

2 = 1, i.e., f is not nonnegative on
the probability simplex �n. This shows the existence of a point in the
set (p(n)

2 , p(n)
3 , . . . , p(n)

d
)(�n) \ conv

)! 1
k

, 1
k2 , · · · , 1

kd≠1

"
: k œ [n]

*
and the claim

follows. ⌅

91



II. At the limit of symmetric nonnegative forms

We reformulate the descriptions of the vertex sets of En,d and Ed to provide
test sets for nonnegativity of certain homogeneous even symmetric polynomials
and functions.

Theorem II.4.7. Let f = f(e(n)
1 (X2), e(n)

2 (X2), . . . , e(n)
d

(X2)) be an even sym-
metric form in n Ø d variables in which only e(n)

1 (X2) occurs non linearly. Then,
f is nonnegative if and only if

f

3
1,

3
k

2

4
1
k2 , . . . ,

3
k

d

4
1
kd

4

is nonnegative for any k œ [n].

Proof. Since f(e(n)
1 (X2), e(n)

2 (X2), . . . , e(n)
d

(X2)) is homogenous we can restrict
to the case p(n)

2 (X) = e(n)
1 (X2) = 1. As f is linear in the remaining elementary

symmetrics we observe f is nonnegative if and only if f is nonnegative on the
convex hull of the image of the elementary symmetrics on �n. By Theorem
II.4.1 the convex hull equals

En,d = conv
33

k

2

4
1
k2 , . . . ,

3
k

d

4
1
kd

: 1 Æ k Æ n

4
.

In particular, f is nonnegative if and only if f(1, y2, . . . , yd) is nonnegative on the
vertices of En,d, which are precisely the claimed points as observed in II.4.5. ⌅

Corollary II.4.8. Let f(e1(X2), e2(X2), . . . , ed(X2)) be an even symmetric limit
form in which only e1(X2) occurs non linearly. Then, f is nonnegative if and
only if f is nonnegative on the discrete set

;3
1,

3
k

2

4
1
k2 , . . . ,

3
k

d

4
1
kd

4
: k œ N

<
fi

;3
1,

1
2! , . . . ,

1
d!

4<
.

Actually, we note that the test set for even symmetric forms in Theorem
II.4.7 and the description of En,d in Theorem II.4.1 are reformulations and thus
equivalent. The same is true for the description of the limit Ed and the limit test
set in Corollaries II.4.3 and II.4.8.
Remark II.4.9. The result of Choi-Lam-Reznick, i.e., Theorem II.4.2, can
be recovered from Theorem II.4.7. Newton’s identities provide a linear
transformation between (e(n)

2 , e(n)
3 ) and (p(n)

2 , p(n)
3 ) for e(n)

1 = p(n)
1 = 1. However,

a generalization of test sets to higher degrees cannot be given in the power sum
basis which follows from Proposition II.4.6 where we considered degree 4.

For d Ø 3 we have seen that the sets ÂNd and Nd are not semialgebraic in
Corollary II.3.12. Thus, the set Ed cannot be semialgebraic since it is the convex
hull of ÂNd fl {p2 = 1}.
Remark II.4.10. A proof by contradiction of Corollary II.3.12 may be done by
assuming the set Ed is semialgebraic. We do know that Ed has countably infinite
vertices by Corollary II.4.5. The union of all vertices of a semialgebraic set is
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The convex hull for elementary symmetrics and test sets for nonnegativity

again semialgebraic ([Sin15, Remark 2.16 (a)]), but this set would then consist
of infinitely semialgebraically connected components which cannot be satisfied
by any semialgebraic set ([BCR13, Theorem 2.4.4]). From knowing that Ed is
not semialgberaic we can deduce that the sets ÂNd and Nd are not semialgebraic
since slices of the convex hull of these sets with {p2 = 1} are polynomial images
of Ed.

In the remaining part of the section we show that the facets of En,d can be
described by Gale’s evenness condition. For every n Ø d Ø 3 we note that the
convex polytope

conv
;3

1
k

,
1
k2 , . . . ,

1
kd≠1

4
: k œ [n]

<

is a cyclic polytope C(n, d ≠ 1) by definition (see e.g. ([Zie12, Section 0])). We
immediately obtain

Corollary II.4.11. The set En,d is a cyclic polytope.

Proof. It follows from Proposition II.4.4 that En,d is a cyclic polytope as an
a�ne transformation of the cyclic polytope C(n, d ≠ 1). ⌅

The facets of C(n, d ≠ 1) (and thus of En,d) are fully characterized by Gale‘s
evenness condition. We write k =

! 1
k

, 1
k2 , . . . , 1

kd≠1

"
.

Theorem II.4.12 ([Gal63]). For n > d, the facets of C(n, d) are given by all
{k : k œ S}, where S µ [n] is any set of size d satisfying

• If d is even, then S is either a disjoint union of consecutive pairs {i, i + 1},
or a disjoint union of consecutive pairs {i, i + 1} and {1, n}.

• If d is odd, then S is a disjoint union of consecutive pairs {i, i + 1} and
either the singleton {1} or {n}.

For d Ø 3 the cyclic polytope En,d has 2
!

n≠e

e≠1
"

facets if d = 2e even, and
n

n≠e

!
n≠e

e

"
facets if d = 2e + 1 is odd ([Zie12, Exercise 0.9]). The vertices �≠1

n,d
(k)

of facets of En,d come from those index sets S µ [n] described in Theorem II.4.12
for all k œ S.

We follow ([Zie12, Page 14]) where Ziegler describes the H-representation of
C(n, d). For S = {k1, . . . , kd≠1} µ [n] with |S| = d ≠ 1 let ˜̧

S : Rd≠1
æ R be the

linear map

det

Q

ccccca

1 1 . . . 1
X1 k1 . . . kd≠1
X2 k2

1 . . . k2
d≠1

. . . . . .
. . . . . .

Xd≠1 kd≠1
1 . . . kd≠1

d≠1

R

dddddb
.

It follows from properties of the Vandermonde determinant, that
˜̧
S(k, k2, . . . , kd≠1) = 0 if and only if k œ S. Thus, ˜̧

S defines a linear map which
kernel is generated by all k œ S. The H-representation of C(n, d) is then given
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II. At the limit of symmetric nonnegative forms

by inequalities of the form ±˜̧
S(X) Æ rS for all facet defining sets S µ [n] and

some rS œ R. We write ¸S for ˜̧
S multiplied by ≠1 to the correct power.

We have En,d = �≠1
d

(conv{(1/k, . . . , 1/kd≠1) : k œ [n]}) by Proposition II.4.4.
Thus, we can formulate the H-representation of En,d.

Proposition II.4.13. Let n Ø d be nonnegative integers. Let Cd≠1 denote the
collection of facet defining sets of C(n, d ≠ 1) in Theorem II.4.12. Then the
H-representation of En,d is given by the inequalities

{¸S ¶ �d(X) Æ rS : S œ Cd≠1}.

Proof. The claim follows from the discussion above and since

En,d = �≠1
d

(conv{(1/k, . . . , 1/kd≠1) : k œ [n]})
= �≠1

d
({x œ Rd≠1 : ¸S(x) Æ rS , S œ Cd≠1})

by Proposition II.4.4, we have

En,d = {x œ Rd≠1 : ¸S ¶ �d(x) Æ rS , S œ Cd≠1}.

⌅

Remark II.4.14. The boundary of the di�eomorphic sets

(p(n)
2 , . . . , p(n)

d
)(�n) and (e(n)

2 , . . . , e(n)
d

)(�n)

has the combinatorial structure of a cyclic polytope in the sense that the boundary
can be considered as a glueing of patches. Each patch is a hypersurface and
contains d cusps. The cusps are precisely the elements of the families of d-subsets
of [n] above satisfying Gale’s evenness condition.

Example II.4.15. Using Sage ([Ste07]) we calculate the defining inequalities of
En,2 for 3 Æ n Æ 6 and obtain:

E3,2 = {x œ R2 : x2 Ø 0, x1 ≠ 9x2 Ø 0, ≠4x1 + 9x2 Ø ≠1},

E4,2 = {x œ R2 : x2 Ø 0, x1 ≠ 6x2 Ø 0, ≠11x1 + 18x3 Ø ≠3, ≠4x1 + 9x2 Ø ≠1},

E5,2 = {x œ R2 : x2 Ø 0, ≠4x1 + 9x2 Ø ≠1, ≠11x1 + 18x2 Ø ≠3,

≠ 7x1 + 10x2 Ø ≠2, x1 ≠ 5x2 Ø 0},

E6,2 = {x œ R2 : x2 Ø 0, ≠4x1 + 9x2 Ø ≠1, ≠11x1 + 18x2 Ø ≠3,

≠ 7x1 + 10x2 Ø ≠2, ≠34x1 + 45x2 Ø ≠10, 2x1 ≠ 9x2 Ø 0}.

The code can be found in Appendix B.

In the sequel we analyse what happens with facets of En,d for increasing n.
For a set S µ [n] containing n we write Sm := S \ {n} ‡ {m} for any integer
m Ø n or m = Œ.

Let S µ [n] be a facet defining set of En,d.
First, suppose d is odd. If S =

v
{i, i + 1} then S is also a facet defining set of
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The convex hull for elementary symmetrics and test sets for nonnegativity

Em,d for any m Ø n. If S does not have such a form then Sm is a facet defining
set of Em,d.
Second, suppose d is even. If S =

v
{i, i + 1} ‡ {1} then S is also a facet defining

set of Em,d for any m Ø n. If S does not have such a form then Sm is also a
facet defining set of Em,d.

We observe that for a facet Sn of En,d, which depends on n œ Sn, the sequence
of facets (Sm)mØn of the cyclic polytopes Em,d converges to a “limit facet”. More
precisely:

Proposition II.4.16. Let n Ø d Ø 2 and let S µ [n] be a facet defining set of
indices of En,d. If d is odd we assume S =

v
{i, i + 1} ‡ {1, n}. If d is even we

assume S =
v

{i, i+1}‡{n}. Then, for all m Ø n the inequalities ¸Sm ¶�d Æ rSm

corresponding to a facet of Em,d converge to an inequality ¸SŒ ¶�d Æ rSŒ defining
a facet of Ed.

Proof. Because all but one of the vertices of the facets corresponding to Sm are
equal, the remaining sequence of changing vertices converges to the limit vertex

33
m

2

4
1

m2 , . . . ,

3
m

d

4
1

md

4
æ

3
1
2! ,

1
3! , . . . ,

1
d!

4
œ Ed, m æ Œ.

Thus, the facets corresponding to Sm in Em,d converge to the facet SŒ in Ed.
By continuity the defining linear inequalities must also converge which was to
show. ⌅

We can show that Ed is contained in a set defined as an intersection of
countably infinite halfspaces.

Proposition II.4.17. Let d Ø 2 and Ce := {S µ N fi {Œ} : |S| = d, S =
v

{i, i +
1}‡{1, Œ}} and Co := {S µ Nfi{Œ} : |S| = d, S = {Ÿ}‡

v
{i, i+1}, Ÿ œ {1, Œ}}.

Then

Ed =
;

x œ Rd≠1 : ¸S ¶ �d(x) Æ rS : S œ Ce, if d ≠ 1 is even;
S œ Co, if d ≠ 1 is odd

<

Proof. We restrict us to the case where d ≠ 1 is even, since the odd case follows
analogously. Let Z denote the set on the right hand side. Z is a closed convex
set as the intersection of closed convex sets.
We have

am :=
33

n

2

4
1
n2 , . . . ,

3
n

d

4
1

nd

4
œ Em,d

for any m Ø n. Thus, the facet defining inequalities of Em,d are valid on
am. Furthermore, the limit inequalities are valid on am by continuity (see
Proposition II.4.16). We have am œ Z, because all the countably infinite
inequalities defining Z are valid at am. Since Z is convex and closed we have
Ed = conv{(1/2!, . . . , 1/d!), am : m œ N} µ Z. ⌅
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II. At the limit of symmetric nonnegative forms

II.5 The limits of the positivity cones PS
2d,PB

2d

We prove that for any non-trivial case we have strict inclusion between the limit
sets of sums of squares and nonnegative limit forms, i.e., we show

Theorem II.5.1. SS
2d

( PS
2d

for all 2d Ø 4 and SB
2d

( PB
2d

for all 2d Ø 6.

For any other degree we have equality by Hilbert’s famous theorem from 1888
and since �Bn

n,4 = P
Bn
n,4 for all n [Har99]. Our proof of the theorem is divided into

two parts. The first part considers symmetric quartic functions, while the second
part treats the cases of (even) symmetric functions of degree Ø 6 simultaneously
and uses the non semialgebraicness of the set Nd for d Ø 3 proven in Section
II.3.

II.5.1 Symmetric quartics

Besides answering the nonnegativity versus sums of squares question for
symmetric quartics, we present test sets for verifying nonnegativity and being a
sum of squares. This leads to the construction of a uniform nonnegative but not
sum of squares symmetric function of degree 4 which turns out to be never a
sum of squares.

We begin with presenting all the limit symmetric quartic sums of squares.
Therefore, we state the isotypic decomposition

Hn,2 ƒSn 2 · S(n)
ü 2 · S(n≠1,1)

ü S(n≠2,2)

with the representing matrices for the limit
3

p(22) p(2,12)
p(2,12) p(14)

4
,

3
p(2,12) p(3,1)
p(3,1) p(4)

4
,
!
p(22) ≠ p(4)

"
.

The dual cone to sums of squares quartics at infinity, SS,ú
4 , is the spectrahedron

containing precisely the (a, b, c, d, e) œ R5 such that X = A ü B ü C ≤ 0 where

A =
3

a b
b c

4
, B =

3
b d
d e

4
, and C = c ≠ e. Thus, the primal cone SS

4 is

described with a = p(14), b = p(2,12), c = p(22), d = p(3,1), e = p(4).
It is well known that the dual of the cone of sums of squares can be identified
with a set of positive semidefinite quadratic forms. The second and fourth author
show in [BR21] that an analysis of the extremal rays in the symmetric case can
be done similarly to the general case [Ble12; BS17]. The extremal rays of SS,ú

4
correspond to positive semidefinite quadratic forms with maximal kernel, i.e.,
to those vectors (a, b, c, d, e) œ R5 for which X is positive semidefinite and the
quadratic form has maximal kernel ([BS17, Proposition 4.20]).

Proposition II.5.2. Every point in the set

S = {(1, t2, t4, st2, s2t2) | t Ø 0, s œ [≠t, t]}

spans an extreme ray of SS,ú
4 . Moreover, every extreme ray of SS,ú

4 is spanned
by a point in S or by (0, 0, 1, 0, 0) or (0, 0, 1, 0, 1).
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We present a case analysis on the kernel of the quadratic form analogously
to ([BR21, Lemma 5.2]).

Proof. Suppose (a, b, c, d, e) spans a extreme ray of Sú
4. We begin by a case

distinction on the rank of X.

Case rank A = 1 and rank B = 0. If rank B = 0 then b = d = e = 0. Hence,
since rank A = 1 then either a = 0 or c = 0. If c = 0 we have a extreme
ray spanned by (1, 0, 0, 0, 0), and if a = 0 we have a extreme ray spanned by
(0, 0, 1, 0, 0).

Case rank A = 1 and rank B = 1. If b = 0 then from B we get d = 0, and
from A either a = 0 or c = 0. In the first case then c ”= 0 and c = e will give
maximal kernel, so (0, 0, 1, 0, 1) spans a extreme ray. In the second case then
from C we get e = 0, so rank B = 0, impossible. If a = 0 then from A we get
b = 0 and the same follows. So we can assume from now on that a and b are
nonzero.

From det A = det B = 0 we obtain c = b2/a and e = d2/b. So
(a, b, c, d, e) = (a, b, b

2

a
, d, d

2

b
), and dividing by a we obtain (1, t, t2, d

b
t, d

2

b2 t)
where t = b

a
. Setting s = d

b
we obtain (1, t, t2, st, s2t). If C = 0 then c = e

and so b3 = ad2 or b

a
= d

2

b2 , i.e., t = s2, and so we obtain the family of
extreme rays (1, s2, s4, s3, s4) for s œ R \ {0}. If C > 0 then c > e or t > s2, and
we get the family of extreme rays (1, t, t2, st, s2t) with t > 0 and s œ (≠t1/2, t1/2).

The cases rank A = 2 or rank B = 2 cannot occur due to the maximality of
the kernel of the positive semidefinite quadratic form. ⌅

Kostov describes in [Kos07] the set M4 but in the coordinates of ele-
mentary symmetrics. He writes �d(Œ) to denote the closure of the sett

nØ1(e(n)
1 , e(n)

2 , . . . , e(n)
d

)(Rn) which he calls the set of stably hyperbolic poly-
nomials of degree d. Kostov motivates the study of �d(Œ) through explain-
ing that the set is the closure of the set of all monic hyperbolic polynomials
whose first d+1 coe�cients are contained in {1}◊

t
nØ1(e(n)

1 , e(n)
2 , . . . , e(n)

d
)(Rn).

The paper focuses on degree 4 and the parametrization of the boundary of
�4(Œ) fl {x œ R4 : x1 = 0, x2 = ≠1}. Since M4 and �4(Œ) are weighted
homogeneous by Lemma II.3.1 and prisms with respect to the first coordinate by
Proposition II.3.4 this is not a restriction of the general case. Newton’s identity
provides an isomorphism

M4 fl {x œ R4 : x1 = 0, x2 = 1} ƒ �4(Œ) fl {x œ R4 : x1 = 0, x2 = ≠1}.

Combining Kostov’s results on M4 with the description of the dual cone
SS,ú

4 allows us to prove the following theorem.

Theorem II.5.3. SS
4 ( PS

4 .
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Proof. Setting s = 1 in Proposition II.5.2 we see that, for all t Ø 1, (1, t2, t4, t2, t2)
spans a extreme ray of Sú

4. Any such extreme ray comes from a point evaluation if
and only if (1, t2, t2, t2) œ M4 by (II.4), i.e., if the point is contained in the image
of the Vandermonde map at the limit. The proof of Lemma II.3.5 shows that
(1, t2, t2, t2) œ M4 implies (0, 1, 1

t
, 1

t2 ) œ M4. However (0, 1, 1
t
, 1

t2 ) /œ M4 when
t2 is not an integer which was proven by Kostov ([Kos07]) but formulated for
the image of elementary symmetric functions. For example, for t = 2Ô

3 we claim
that (0, 1,

Ô
3

2 , 3
4 ) /œ M4. To prove this we transform to elementary symmetric

coordinates using Newton’s identities, and rescale appropriately so that the first
two coordinates are (0, ≠1), giving the last two coordinates (

Ô
6

3 , ≠
1
4 ). We see

that this point lies strictly above the arc B1 (since 1 < t = 2Ô
3 < 2) by using the

parametrization given in ([Kos07, p.102]), i.e., we verify (0, ≠1,
Ô

6
3 , ≠

1
4 ) ”œ �4(Œ).

Namely, we prove that if 2
Ô

2
3 cos3 t+ 2

Ô
2

3 sin3 t =
Ô

6
3 then 1

2 ≠cos4 t≠sin4 t < ≠
1
4 .

Equivalently

cos3 t + sin3 t =
Ô

3
2 (II.11)

∆ cos4 t + sin4 t >
3
4 .

For this purpose observe that squaring the supposed equality (II.11) implies

3
4 = (cos3 t + sin3 t)2

= (cos4 t + sin4 t)(cos2 t + sin2 t) + 2 cos3 t sin3 t ≠ cos2 t sin2 t

Therefore, using the Pythagorean identity and 2 sin t cos t = sin t we obtain

cos4 t + sin4 t = 3
4 + cos2 t sin2 t(1 ≠ sin 2t) Ø

3
4 .

It only remains to prove that equality is impossible, which happens if and only
if cos t = 0 or sin t = 0 or t = fi

4 or t = 5fi

4 but neither of these satisfy all the
above equations simultaneously. ⌅

Based on Kostov’s description of the boundary of �4(Œ) fl {x œ R4 : x1 =
0, x2 = ≠1} and Proposition II.5.2 we present test sets for quartic limits to be
nonnegative or a sum of squares.

Let K be Kostov’s leaf ([Kos07, Fig. 2]), i.e., the image of the parametrization
of the boundary of �4(Œ) fl {x œ R4 : x1 = 0, x2 = ≠1}. Then the extreme
points of conv(K) are precisely the cusps of the arcs of K. Since K has countably
infinite cusps the set conv(K) has countably infinite vertices. Let K

Õ be the
projection of M4 fl {p2 = 1} onto the last two coordinates.
We observe, K

Õ is the image of K under a linear invertible map coming from
Newton’s identities and so the extreme points of conv(KÕ) are the images of
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the extreme points of conv(K) under the same map. By ([Kos07, p. 102]) the
extreme points of conv(K) are

IA
±

2
3

Ú
2
s

,
1
2 ≠

1
s

B
: s œ N>0

J
.

Thus, we obtain that the set T of extreme points of conv(KÕ) equals

T = {(±n≠1/2, n≠1) : n œ N>0}.

This observation su�ces to provide a test set for nonnegativity. Since the first
coordinate of Md is free by Lemma II.3.5 and we can restrict to p2 = 1 by
homogeneity, then a limit symmetric quartic

f := c1p
4
1 + c2p2p

2
1 + c3p3p1 + c4p

2
2 + c5p4

is nonnegative if and only if each univariate polynomial in the family

F Õ := {c1x4 + c2x2 + c3p3x + c4 + c5p4 | (p3, p4) œ K
Õ
}

is nonnegative (if p2 = 0 then p4 = 0 because p2
2 Ø p4 Ø 0, and p3 = 0 because

p2p4 Ø p2
3 and in such case c1 Ø 0). Now, since any convex combination of

nonnegative polynomials is nonnegative then f is nonnegative if and only if each
univariate polynomial in the family conv(F Õ) is nonnegative. Moreover, since
the coe�cients of the polynomials in this family depend linearly on p3 and p4
then f is nonnegative if and only if each univariate polynomial in the family

F = {c1x4 + c2x2 + c3p3x + c4 + c5p4 | (p3, p4) œ T , p3 > 0}

is nonnegative. We note that it is su�cient to restrict to the test set
{(n≠1/2, n≠1) : n œ N>0}.

Theorem II.5.4. Let f(p1, p2, p3, p4) be a limit symmetric quartic. Then, f is
nonnegative if and only if f is nonnegative on the discrete set of parallel lines

{(x, 1, n≠1/2, n≠1) | x œ R, n œ N>0}.

Moreover, f is a sum of squares if and only f it is nonnegative on

{(x, 1, u, u2) | x œ R, 0 Æ u Æ 1}.

Proof. The first claim follows from the discussion above while the second follows
from setting p2 = 1 in the description of SS,ú

4 in Proposition II.5.2. ⌅

To the best of our knowledge the following is the first uniform sequence of
symmetric nonnegatives but not sum of squares polynomials, i.e., the coe�cients
are independently from the number of variables.

Theorem II.5.5. The limit symmetric quartic f := 4p4
1≠5p2p2

1≠
139
20 p3p1+4p2

2+4p4
belongs to the set PS

4 \ SS
4 . The corresponding forms are nonnegative in any

number of variables. Moreover, these forms are never sums of squares for any
number of variables n Ø 4.
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Proof. We write fn for f considered as quartic form in n variables. For x œ R
we define the auxiliary quadratic polynomial

gx(u) := 4x4
≠ 5x2

≠ 139/20xu + 4 + 4u2.

Then, f œ PS
4 if and only if gx(u) Ø 0 for all u œ S := {

1Ô
n

: n œ N>0} fi {0}

and x œ R, while f œ SS
4 if and only if gx(u) Ø 0 for all 0 Æ u Æ 1 and x œ R

using the test set II.5.4.
We have g1(0.85) ¥ ≠0.0175 < 0 and so f ”œ SS

4 . Thus, fN ”œ �S
N,4 for some

N Ø 4, but we have already f ”œ �S
4,4 and verified this using the SumsOfSquares

package ([CKP20]) in Macaulay2 ([Eis+01]).
We still have to prove f œ PS

4 . We claim that for each x œ R, gx(u) has roots
either in [ 1Ô

2 , 1] or [≠1, ≠
1Ô
2 ], or has no real roots. Since the coe�cient of xu

in gx(u) is negative, it su�ces that for all x Ø 0, gx(u) has roots in [ 1Ô
2 , 1] or

has no real roots. This follows since for x < 0 everything gets reflected over the
y-axis because the only coe�cient of gx(u) that changes when x æ ≠x is the
coe�cient of u. Considering the discriminant and x Ø 0, we have gx(u) has only
roots in [ 1Ô

2 , 1] if and only if

4
Ô

2 Æ +6.95x ±


≠64x4 + 128.3025x2 ≠ 64 Æ 8

for any x Ø 0 such that ≠64x4 + 128.3025x2
≠ 64 Ø 0. Otherwise, gx(u) has no

real roots. The set of all points in R for which ≠64x4 + 128.3025x2
≠ 64 Ø 0

is an interval [a, b] µ [0.96, 1.04] µ RØ0. We observe 4
Ô

2 ≠ 6.95x Æ 0 and
8 ≠ 6.95x Ø 0 on [0.96, 1.04]. Now, the claim follows from the global inequalities

64x4
≠ 80x2

≠
278

Ô
2

5 x + 96 Ø 0

64x4
≠ 80x2

≠
556
5 x + 128 Ø 0.

⌅

Example II.5.6. The limit form 4p4
1 ≠ 5p2p2

1 ≠ 4
Ô

3p3p1 + 4p2
2 + 4p4 is contained

in the boundary of SS
4 but not in the boundary of PS

4 . To see this we consider

gx(u) = 4u2
≠ 4

Ô

3xu + 4x4
≠ 5x2 + 4

= (2u ≠

Ô

3x)2 + 4(x2
≠ 1)2

and observe gx(u) = 0 if and only if x = ±1 and u = ±

Ô
3

2 . However, this shows
that gx(v) is strictly positive for any v œ S, but attains 0 at u =

Ô
3

2 œ

1
1Ô
2 , 1

2
.

II.5.2 The remaining cases

By the Tarski-Seidenberg transfer principle the sets P
Sn
n,2d

and P
Bn
n,2d

are
semialgebraic. We show that for any even degree 2d Ø 6 the limit set of
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The limits of the positivity cones PS
2d

,PB
2d

nonnegative (even) symmetric forms is not semialgebraic. This implies strict
inclusion between the limit sets of (even) symmetric sums of squares and positive
semidefinite forms of degree 2d. It also demonstrates that the limit case has a
higher level of complexity even though we work with symmetric functions.

Lemma II.5.7. The dual cone of a semialgebraic set S µ Rn is also semialgebraic,
i.e., the set Sú = {a œ Rn :

q
n

i=1 aiwi Ø 0, ’w œ S} is semialgebraic.

Proof. We observe

Sú = {a œ Rn : ÷w œ S,
nÿ

i=1
aiwi < 0}

c

= fi

A
{(a, w) œ Rn

◊ Rn : w œ S,
nÿ

i=1
aiwi < 0}

Bc

,

where fi : Rn
◊ Rn

æ Rn denotes the projection onto the first n coordinates.
Thus, Sú is semialgebraic. ⌅

Theorem II.5.8. For any even degree 2d Ø 6 the cones PS
2d

and PB
2d

are not
semialgebraic.

Proof. We fix the products of power sum functions as a basis of the vector space
of homogeneous symmetric functions of degree 2d. We observed in (II.4) that the
dual cone to the even symmetric nonnegative limit forms is the convex conical
hull of a polynomial image of the image of the even Vandermonde map at infinity,
i.e.,

PB,ú
2d

= cone(‹d(Nd)).

However, for n Ø 3 the set Nd is known to be non semialgebraic by Corollary
II.3.12. Thus, the set ‹d(Nd) must also be non semialgebraic as a polynomial
image of Nd. Since the convex conical hull of a non semialgebraic set is also
not semialgebraic we obtain that PB,ú

2d
is not semialgebraic for all d Ø 3. In

particular, the set PB
2d

is not semialgebraic by Lemma II.5.7.
Let d Ø 3. We suppose that the set

PS
2d

ƒ

Y
]

[(c⁄)
⁄„fi(2d) :

ÿ

⁄„fi(2d)
c⁄p⁄ is psd

Z
^

\ .

is semialgebraic and consider the linear subspace

H2d := {(c⁄)⁄„fi(2d) : cµ = 0, ’µ ”œ

€

mØ0
(2N)k

}

containing the subspace of even symmetric forms of degree 2d. Then, the
intersection K2d := PS

2d
fl H2d is semialgebraic. However, K2d ƒ PB

2d
which we

already know to be not semialgebraic. This is a contradiction and therefore the
set PB

2d
cannot be semialgebraic. ⌅
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II. At the limit of symmetric nonnegative forms

We obtain strict inclusion between (even) symmetric sums of squares and
nonnegative limit forms for degree 2d Ø 6.

Corollary II.5.9. Let 2d Ø 6. Then, the set of all (even) symmetric sums of
squares limit forms of degree 2d is strictly contained in the set of all (even)
symmetric nonnegative limit forms of degree 2d, i.e.,

SS
2d

( PS
2d

, and SB
2d

( PB
2d

.

Proof. For any degree 2d the sets SS,ú
2d

and SB,ú
2d

have spectrahedral represen-
tations and are therefore semialgebraic. Thus, their duals are semialgebraic by
Lemma II.5.7 which shows that the set of nonnegatives cannot be equal to the
set of sums of squares. ⌅

II.6 Undecidability of nonnegativity for multisymmetric
functions

We prove that the problem of verifying nonnegativity of multisymmetric functions
is undecidable using the vertex description of the convex set Ed in Section II.4.
We follow work on undecidability in graph homomorphism densities [BRW22;
HN11].

We consider the diagonal action of the group S
k

n
=

r
k

i=1 Sn via
permutation of k groups of variables (Xi,j)1ÆiÆk,1ÆjÆn on R[Xk] :=
R[X1,1, . . . , X1,n, . . . , Xk,1, . . . , Xk,n]. Then, S

k

n
acts as a reflection group on

R[Xk] and the invariant ring is again a polynomial ring in elementary symmetrics,
i.e.,

R[Xk]S
k
n = R[e(n)

1,(1), . . . , e(n)
n,(1), . . . , e(n)

1,(k), . . . , e(n)
n,(k)],

where e(n)
l,(i) denotes the l-th elementary symmetric function in Xi,1, . . . , Xi,n.

Analogously, we define the invariant ring under the diagonal action of B
k

n
, i.e., k

copies of the signed symmetric group. A form is called (even) multisymmetric
or (even) k-symmetric if it is invariant under S

k

n
(Bk

n
). In particular, any (even)

symmetric form is (even) 1-symmetric. Analogous to the definition of (even)
symmetric limit forms in Subsection II.2.3, we define (even) multisymmetric
limit forms. Let

�k :=

Y
]

[(x1,1, . . . , xk,1, x1,2, . . . , xk,2, . . .) :
ÿ

jØ1
xi,j = 1, xi,j Ø 0, ’i, j

Z
^

\

denote k-copies of the infinite probability simplex. Now, we prove undecidability
of the determination of validity of nonnegativity of even k-symmetric limit forms
on copies of the probability simplex.

Theorem II.6.1. The following problem is undecidable.

Instance: A positive integer k and a k-symmetric limit form f .
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Undecidability of nonnegativity for multisymmetric functions

Question: Does the inequality f(x) Ø 0 hold for all
x = (x1,1, . . . , xk,1, x1,2, . . . , xk,2, . . .) œ �k?

In the proof we follow ([HN11, § 5]) and use their notation. Hatami and
Norin’s work concerns undecidability of determining the validity of polynomial
inequalities between graph homomorphism densities for graphons. Their proof
answers negative a question of Lovász ([Lov08, Problem 17]). By adapting
only very few parts of Hatami and Norin’s proof we show that an undecidable
problem can be embedded into the problem of deciding nonnegativity for even
multisymmetric limit forms. Namely, by Matiyasevich’s solution to Hilbert’s
tenth problem ([Mat70]) deciding nonnegativity of multivariate polynomials on
the natural numbers is undecidable. We relate the nonnegativity of a multivariate
polynomial on Nk to the nonnegativity of a k-symmetric function on �k.

Proof of Theorem II.6.1. By ([HN11, Lemma 5.1]) it follows from Matiyasevich’s
solution to Hilbert’s tenth problem that the following validity problem is
undecidable:

Instance: A positive integer k and a polynomial p œ Z[Y1, . . . , Yk].

Question: Do there exist x1, . . . , xk œ
)

1 ≠
1
n

: n œ N
*

with p(x1, . . . , xk) <
0?

From Corollary II.4.3 we know that the convex hull of the image of the scaled
elementary symmetric functions 2e2, 6e3 on the infinite probability simplex equals

C := conv
;

(1, 1),
3

1 ≠
1
n

,
(n ≠ 1)(n ≠ 2)

n2

4
: n œ N

<
.

Let g(x) := 2x2
≠ x and define the piecewise linear function

L(x) := 3t2
≠ t ≠ 2

t(t + 1) x ≠
2(t ≠ 1)

t + 1

on the interval [0, 1], where t œ [0, 1) is chosen such that x œ

Ë
1 ≠

1
t
, 1 ≠

1
t+1

È

for some t œ
)

1 ≠
1
n

: n œ N
*

, and L(1) := 1. The piecewise linear function L

takes the same value as g on all the endpoints of the intervals
Ë
1 ≠

1
t
, 1 ≠

1
t+1

È

and L(x) Ø g(x). Further, let R := {(x, y) œ [0, 1]2 : y Ø L(x)}. The images of
each piecewise linear part of L on [0, 1] are precisely the facets of the lower part
of the boundary of C.
Let p œ R[Y1, . . . , Yk] be a polynomial and let M be the sum of the absolute
values of its coe�cients multiplied by 100 deg(p). Consider the real auxiliary
polynomial q(Y1, . . . , Yk, Z1, . . . , Zk) defined as

q := p
kŸ

i=1
(1 ≠ Yi)6 + M

A
kÿ

i=1
Zi ≠ g(Yi)

B
.
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II. At the limit of symmetric nonnegative forms

Then, by ([HN11, Lemma 5.4]) and the observation (1, 1) œ R the following are
equivalent:

(i) q(x1, . . . , xk, y1, . . . , yk) < 0 for some x1, . . . , xk, y1, . . . , yk with (xi, yi) œ

R for all 1 Æ i Æ k;

(ii) p(x1, . . . , xk) < 0 for some x1, . . . , xk œ {1, 1 ≠
1
n

: n œ N}.

Now, we consider the map

· : R[Y1, . . . , Yk, Z1, . . . , Zk] ≠æ R[Xk]Sk

f(Y1, . . . , Yk, Z1, . . . , Zk) ‘≠æ
rk

i=1 e3 deg f
1,(i) · f

3
e2,(1)
e2

1,(1)
, . . . ,

e2,(k)
e2

1,(k)
,
e3,(1)
e3

1,(1)
, . . . ,

e3,(k)
e3

1,(k)

4
.

For f œ R[Y1, . . . , Yk, Z1, . . . , Zk] the rational function ·(f) is actually an even
k-multisymmetric limit form. This is, since e2,(i) and e2

1,(i) (resp. e3,(i) and e3
1,(i))

have degree 2 (resp. 3) and thus every monomial in the rational multisymmetric

function f

3
e2,(1)
e2

1,(1)
, . . . ,

e2,(k)
e2

1,(k)
,
e3,(1)
e3

1,(1)
, . . . ,

e3,(k)
e3

1,(k)

4
has degree 0. Note that multiplying

by e3 deg f

1,(i) ensures that ·(f) has always nonnegative exponent in e1,(i).

We claim that the following assertions are equivalent

(a) q(x1, . . . , xk, y1, . . . , yk) < 0 for some x1, . . . , xk, y1, . . . , yk with (xi, yi) œ

R for all 1 Æ i Æ k;

(b) ·(q) attains a negative value on �k.

We suppose (a). Hatami and Norin show in the proof of ([HN11, Lemma 5.4])
that
q(x1, . . . , xk, y1, . . . , yk) < 0 for x1, . . . , xk, y1, . . . , yk with (xi, yi) œ R for all
1 Æ i Æ k then the xi’s can be chosen as x1, . . . , xk œ {1, 1 ≠

1
n

: n œ N}, and
yi = L(xi). Thus, ·(q) is negative on �k by Corollary II.4.3. More precisely,
e1,(i) = 1, e2,(i) = xi and e3,(i) = yi is feasible and thus ·(q) is not nonnegative.
Suppose q(x1, . . . , xk, y1, . . . , yk) Ø 0 for any xi, yi with (xi, yi) œ R for all
1 Æ i Æ k, then ·(q) is nonnegative on �k, since E

k

3 µ Rk.
So the assertions (ii) and (b) are equivalent. This proves the Theorem since

we have embedded an undecidable problem into the problem which we claimed
to be undecidable. ⌅

Remark II.6.2. We deduce from Theorem II.6.1 that there cannot exist a
unified algorithm or e�ective certificate to determine the validity of polynomial
inequalities of multisymmetric functions on copies of the probability simplex.
Note that for a finite number of variables it follows by Artin’s solution to Hilbert’s
17th problem [Art27] that validity of polynomial inequalities on semialgebraic
sets is decidable.
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Tropicalization

II.7 Tropicalization

Another approach to study the limit cones of nonnegative and sums of squares
forms uses tropicalization. This approach is developed independently from our
previous studies and provides quantitative information on how PBn

2d
and SBn

2d

di�er. Tropicalization is often used to study real or complex algebraic varieties.
In [Ble+22b; BR22] the authors introduced and studied the tropicalization of
graph profiles and densities to provide applications of tropicalization in extremal
combinatorics. Moreover, tropicalization was recently applied in real algebra
to study the sets of nonnegative and sums of squares polynomials, and their
duals. The work in [Ble+22a] concerns the study of truncated moments and
pseudomoments on semialgebraic sets and provides new insights into limitations of
sums of squares approximations. The first and second author apply tropicalization
to study the nonnegativity versus sums of squares question for normalized limits
of even symmetric forms [AB22].

Let
log

a
: Rs

>0 ≠æ Rs

(x1, . . . , xs) ‘≠æ (log
a
(x1), . . . , log

a
(xs))

denote the logarithm map for a positive a > 0. Further denote log := log
e

the logarithm map with respect to e and trop : Rs

>0 æ Rs denotes the
tropicalization which is defined as limtæŒ log

t
. For a set S µ Rs

Ø0 we write
log (S) := log (S fl Rs

>0) and trop(S) := trop(S fl Rs

>0).
By ([Ale13, Proposition 2.2]) trop(S) is a closed cone for any set S µ Rs

Ø0.
Large parts of this section are technical. We list the main results for which no
further notation is needed.

Theorem II.7.1. The minimal degree 2d for which trop(PB,ú
2d

) ( trop(SB,ú
2d

) is
2d = 10.

We present in Lemma II.7.3 how trop(SB,ú
2d

) can be computed. Actually,
the lemma provides only an inclusion but we will see that our spectrahedra
SB,ú

2d
satisfy additional structure such that the lemma can be applied. The

tropicalization of PB,ú
2d

is more challenging. We take a detour and start with
tropicalizing Nd. The polyhedral cone trop(Nd) turns out to have a simple
description, although it is challenging to understand the set Nd.

Theorem II.7.2. The tropicalization of the image of the even Vandermonde map
has the following characterization:

trop (Nd) =
I

(y1, . . . , yd) œ Rd :
I

yk + yk+2 Ø 2yk+1 , k = 1, . . . , d ≠ 2
dyd≠1 Ø (d ≠ 1)yd .

JJ

We combine Theorem II.7.2 with the technical Proposition II.7.13 to obtain
a description of trop(PB,ú

2d
) in Proposition II.7.23.

The guideline to this section is as follows. In Subsection II.7.1 we present
how one can tropicalize the dual to the sums of squares. In II.7.2 we investigate
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II. At the limit of symmetric nonnegative forms

properties of max-closed sets. II.7.3 deals about tropicalization of sets having
Hadamard property. In Subsection II.7.4 we use the knowledge about max-closed
sets to prove Theorem II.7.2 and present the tropicalization of the dual to the
nonnegative functions. Finally, we present explicit examples in Subsection II.7.5
and how those can be applied to study nonnegativity versus sums of squares for
even symmetric homogeneous functions.

II.7.1 Tropicalization of SB,ú
2d

Tropicalizations of spectrahedra have been investigated in ([AGS20, Theo-
rem 5.17]) where some assumptions on the tropicalization are made. In prin-
cipal, we may use their results to understand trop(SB,ú

2d
). However, our spec-

tahedra have a specific structure which makes their analysis simpler. Lem-
mas 4.1 and 4.3 in [Ble+22b] describe the tropicalization of spectrahedra
{x œ Rs

Ø0 : A(x) ≤ 0} defined by a symmetric matrix A(X) whose entries
are monomials in X = (X1, . . . , Xs). In general, the spectrahedra SB,ú

2d
may not

be of this form.
We work with products of even power sums as a vector space basis of the

even symmetric limit forms. The dual cone to the sums of squares is contained
in the nonnegative orthant, i.e., SB,ú

2d
µ Rfi(d)

Ø0 , since any basis element is a sum
of squares.

Although the technical Lemma II.7.3 provides only one inclusion for the
tropicalization of spectrahedra, it provides the correct answer for the spectrahedra
SB,ú

2d
which we compute in Subsection II.7.5 for 2d Æ 10.

We use the following notation: max{a œ ÿ} := ≠Œ and if L = (Lij(X))ij is
a symmetric matrix, whose entries Lij(X) = Lji(X) =

q
s

k=1 aijkXk are real
linear forms on Rs, we write ¸+

ij
:= {k : aijk > 0}, ¸≠

ij
:= {k : aijk < 0} and

¸ij := {k : aijk ”= 0}.

Lemma II.7.3. Let L = (Lij(X))i,j = (
q

s

k=1 aijkXk)i,j be a symmetric N ◊ N
matrix whose entries are real linear forms on Rs. Let K := {x œ Rs

Ø0 : L(x) ≤ 0}

and let T µ Rs be the set of all points x œ Rs which satisfy the following two
conditions

(1) max{xk : k œ ¸+
ii

} Ø max{xk : k œ ¸≠
ii

}, for any 1 Æ i Æ N .

(2) max{xk : k œ ¸+
ii

} + max{xk : k œ ¸+
jj

} Ø 2 max{xk : k œ ¸ij}, for any
1 Æ i < j Æ N .

If for all v œ int(T ) the inequalities in (1) and (2) are strict then cl (int(T )) µ

trop (K) µ T .

Proof. First, we show trop (K) µ T . The conditions (1) and (2) follow for every
element v œ trop (K) from the positive semidefiniteness of the 1 ◊ 1 and 2 ◊ 2
principal minors of the defining matrix L.
Next, we prove cl (int(T )) µ trop(K). It su�ces to show that any v œ int(T ) is
contained in trop(K), since trop(K) is a closed set by ([Ale13, Proposition 2.2]).
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Let v œ int(T ). We show that tv := (tv1 , . . . , tvs) œ K for all t > 0 su�ciently
large. By assumption, all the inequalities in (1) and (2) are strict at v. We
consider the diagonal entries of L at tv. Let q œ [n] be an index at which the
maximum over all xj with j œ ¸+

ii
is attained. Then vq > 0 and vk ≠ vq < 0 for

all k with aiik < 0. Thus, for all k œ ¸≠
ii

we have tvk≠vq æ 0 if t æ Œ. Hence,
for su�ciently large t

Lii(tv)
tvq

=
ÿ

kœ¸ii

aiiktvk≠vq =
ÿ

kœ¸
+
ii

aiiktvk≠vq Ø aiiq > 0.

Now, let k Ø 2 and consider the Leibniz formula of the leading k ◊ k-principal
minor of L(tv) given by

ÿ

‡œSk

sgn(‡)
kŸ

i=1
Li‡(i)(tv).

We treat the product of linear forms in tv as univariate exponential polynomials
in t and claim

deg
t

A
kŸ

i=1
Lii(tv)

B
> deg

t

A
kŸ

i=1
Li‡(i)(tv)

B
(II.12)

for any ‡ œ Sk \ {id}. Equivalently to (II.12), since L is symmetric

deg
t

A
kŸ

i=1
L2

ii
(tv)

B
> deg

t

A
kŸ

i=1
Li‡(i)(tv)L‡(i)i(tv)

B
.

The leading coe�cient of the univariate exponential polynomial
r

k

i=1 L2
ii

(tv)
equals a product of positive coe�cients of each Lii by assumption (1). Combining
(1) and (2) we obtain at tv

deg
t

!
LiiL‡(i)‡(i)

"
= deg

t
(Lii) + deg

t

!
L‡(i)‡(i)

"

> 2 deg
t

!
Li‡(i)

"
= deg

t

!
Li‡(i)L‡(i)i

"
.

Therefore,
q

‡œSk
sgn(‡)

r
k

i=1 Li‡(i)(tv) > 0 for all su�ciently large t. Analo-
gously, for any k ◊ k principal minor of L(tv) the product of the diagonal entries
has degree larger than the product of any other generalized diagonal obtained
from a permutation of the indices. Thus, for all t su�ciently large we have
tv

œ K. ⌅

Remark II.7.4. In general, the set T in Lemma II.7.3 is not necessarily convex,
since the inequalities over the max do not need to split into a finite sum of linear
inequalities. However, T is a polyhedral fan, i.e., a polyhedral complex in which
every polyhedron is a cone from the origin [Ale13]. We showed that all interior
points of the fan are guaranteed to lie in the tropicalization.
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II. At the limit of symmetric nonnegative forms

Proposition II.7.5.
trop(SB,ú

6 ) =
)

(y(23), y(4,2), y(6)) œ R3 : y(23) + y(6) Ø 2y(4,2), y(23) Ø y(4,2) Ø y(6)
*

.

Proof. By Example II.2.7 the set SB
6 has the description:

3
p(23) p(4,2)
p(4,2) p(6)

4
,

3
1
6p(23) ≠

1
2p(4,2) + 1

3p(6)

4
,
!
p(4,2) ≠ p(6)

"
. (II.13)

We observe that the set

S :=

Y
]

[ (y(23), y(4,2), y(6)) œ R3 :
y(23) + y(6) Ø 2y(4,2),

max{y(23), y(6)} Ø y(4,2),
y(4,2) Ø y(6)

Z
^

\

equals the defined auxiliary set T in Lemma II.7.3 and note max{y(23), y(6)} = y(6)
implies y(23) = y(4,2) = y(6) œ S. Thus, the max-inequality can be replaced by a
linear inequality. The set S is a full dimensional closed convex polyhedral cone.
Therefore we have S = cl(int S) µ trop(SB,ú

6 ) µ S by Lemma II.7.3 which shows
that we can apply Lemma II.7.3 to determine trop(SB,ú

6 ) and trop(SB,ú
6 ) has

indeed the claimed form. ⌅

The following example shows that the condition of all inequalities in (1) and
(2) being strict for all points in the interior of the auxiliary set T cannot be
omitted.

Example II.7.6. Note that by an orthogonal change of basis with
3

1 0
1 ≠1

4

the 2 ◊ 2 matrix in (II.13) equals
3

p(23) p(23) ≠ p(4,2)
p(23) ≠ p(4,2) p(23) + p(6) ≠ 2p(4,2)

4
.

The new 2 ◊ 2 matrix and the two 1 ◊ 1 matrices provide again a description
of SB

6 . The auxiliary set in Lemma II.7.3 applied to the new matrices becomes
T = {(y(23), y(4,2), y(6) œ R3 : y(23) Ø y(4,2) Ø y(6)}. However, condition (2) in
II.7.3 on the new 2 ◊ 2 matrix requires the inequality 2p(23) Ø 2p(23) to be strict
for all points in the interior of T which can certainly not be true. Moreover, we
saw in Proposition II.7.5 trop

1
SB,ú

6

2
( T .

II.7.2 Properties of max-closed sets

We prove some general properties of max-closed sets and in particular examine
the structure of extremal rays of convex cones which are max-closed. These
results will be used to present the defining linear inequalities of the convex cone
trop(Nd) in Subsection II.7.4.

Let ü denote tropical addition with respect to taking the coordinate wise
maximum, i.e., for x, y œ Rn we have

x ü y := (max (x1, y1), . . . , max (xn, yn)) .
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Definition II.7.7. Let M µ Rn be a set. Then M is called max-closed if xüy œ M
for all x, y œ M . The max-closure M of M is the smallest max-closed set
containing M . For a œ R and x œ Rn we write a § x = (a + x1, . . . , a + xn) to
denote tropical scalar multiplication.

We observe that the max-closure of a set M µ Rn is the intersection of
all max-closed subsets of Rn containing M . Therefore, the max-closure is well
defined since the intersection is non-empty as Rn is a max-closed set which
contain M .

In the following lemma we provide a description of the max-closure of sets
M µ Rn which contain a vector v œ Rn

>0 in their linearity space, i.e., x+⁄v œ M
for all ⁄ œ R and all x œ M . We denote by Qi µ Rn the orthant where the i-th
coordinate is non-positive and any other nonnegative, i.e.,

Qi := {x œ Rn : xi Æ 0, xj Ø 0 ’j œ [n] \ {i}}.

Lemma II.7.8. Let M µ Rn and let v œ Rn

>0 be contained in the linearity space
of M . Then, the max-closure of M equals

u
n

i=1 M + Qi.

Proof. We write „M :=
u

n

i=1 M + Qi.
First, we prove that any x œ „M is the tropical sum of elements in M . Let x œ „M .
We have to show the existence of y1, . . . , ym œ M with x = y1 ü y2 ü . . . ü ym.
Since x œ „M there exist yi œ M and gi = (gi1, . . . , gin) œ Qi such that x = yi +gi

for all i. Since gii Æ 0, gij Ø 0 for j ”= i we have y1 ü . . .üyn = (y11, . . . , ynn) and
xi Æ yii. Assume that for some i actually yii > xi. Then let ⁄ œ R>0 such that
xi = yii ≠ ⁄vi. By assumption Âyi := yi ≠ ⁄v œ M and x = Âyi + gi + ⁄v œ M +Qi

since gii + ⁄vi = 0 and any other coordinate is positive. Thus, there exist
y1, . . . , yn œ M with x = y1 ü . . . ü yn.
Second, we prove that any tropical sum of elements in M is contained in „M .
Let y1, . . . , yk œ M and x := y1 ü . . . ü yk. For any j œ [n] let ij œ [k] be such
that xj = yijj . Since xk Ø yijk for any k œ [n] it is x œ yij + Qj . In particular,
x œ

u
i
M + Qi.

Finally, we show that „M is max-closed. For a, b œ „M there exist finite sequences
of elements in M such that a and b are their tropical sums. However, a ü b is
the tropical sum of all those elements and we have already seen that „M is closed
under tropical summation with elements in M .
Thus, „M is max-closed and the elements in „M are precisely the tropical sums of
elements in M which proves the claim. ⌅

Corollary II.7.9. Let S µ Rn be a convex cone containing v œ Rn

>0 in its linearity
space. Then, the max closure of S is a convex cone.

Proof. The max-closure of S is the intersection of convex cones by Lemma II.7.8.
Thus the max-closure is again a convex cone. ⌅

We denote the all one vector (1, . . . , 1) by 1.
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Definition II.7.10. Let M µ Rn be a set. M is called tropical convex if the set M
contains all tropical convex combinations, i.e., all points of the form a § x ü b § y
for all x, y œ M and all a, b œ R with aüb = 0. We define the tropical convex hull
tconv(M) of M as the smallest set containing all tropical convex combinations
of M + R · 1, i.e.,

tconv(M) = {a1 § x1 ü . . . ü al § xl : l œ N, a1, . . . , al œ R, x1, . . . , xm œ M}.

We refer to ([DS03, Proposition 4]) for a proof of the set theoretical description
of tconv(M) in Definition II.7.10. Note that M +R · 1 contains 1 in its linearity
space. Thus, the set tconv(M) is the max-closure of M + R · 1. We observe

tconv(M) =
n‹

j=1
(M + R · 1 + Qj) (II.14)

which follows from Lemma II.7.8.

Corollary II.7.11. Let M µ Rn contain an element in Rn

>0 in its linearity space.
Then, the linear inequalities characterizing the max-closure of M are the linear
inequalities on M with exactly one non-positive coordinate.

Proof. By Lemma II.7.8 we have

M
ú =

A
n‹

i=1
(M + Qi)

Bú

=
nn

i=1
Mú

fl Qú
i
.

The claim follows now from Qú
i

= Qi. ⌅

We apply Corollary II.7.11 to show that all extremal rays of trop(Nd)ú have
exactly one nonnegative coe�cient.
Remark II.7.12. Analogous results for the min-closure and the tropical convex
hull can be obtained by using min convention instead of defining tropical addition
as coordinate wise maximum.

II.7.3 Properties of sets having Hadamard property

We prove technical properties about tropicalizations of sets which have Hadamard
property. Although the results presented here are theoretical, we apply them in
Subsection II.7.4 to compute trop(PB,ú

2d
).

For a given set S µ Rn

Ø0 and a polynomial map f computing trop(cone(f(S)))
may be way more di�cult than computing trop(f(S)). Subsection II.7.4 focuses
on the non semialgebraic set S = Nd. The following useful proposition is known
for sets S which are semialgebraic ([AGS19, Lemma 8]). We prove that it remains
valid when S has Hadamard property, although it may fail in general.

Proposition II.7.13. Let S µ Rn

Ø0 and assume the set S has Hadamard property.
Then,

trop(cone(S)) = tconv(trop(S)).
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Even though we could immediately prove the reverse inclusion, we present
some lemmas which will allow us to prove the primal inclusion.

Lemma II.7.14 ([BR22], Lemma 2.2.). Let S µ Rn

Ø0 be a convex cone and
assume that S has Hadamard property. Then, trop(S) is a max-closed convex
cone.

The lemma is actually proven in a more general context for semirings closed
under coordinate wise addition and Hadamard multiplication.

The following lemma from [AB22] will be useful to prove one of the inclusions,
since certain linear inequalities valid on trop

1
PB,ú

2d

2
transfer to binomial

inequalities in power sums. We provide a proof for completeness.

Lemma II.7.15 ([AB22]). Let I ( [n] and m œ [n] \ I. Then, the set of all points
x œ Rn

Ø0 satisfying the binomial inequality
Ÿ

iœI

x–i
i

Ø xd

m
,

where –i, d œ N>0 and d =
q

iœI
–i is a convex cone.

Proof. It su�ces to prove that the inequality holds for conical combinations
–x+—xÕ of points x and xÕ which satisfy it. By considering more than n variables
if necessary we prove the following, where J is a set of indices of size d. The claim
follows then from replacing J by I and allowing natural numbers as exponents.
We claim

Ÿ

jœJ

(–xj + —xÕ
j
) 1

d Ø –

Q

a
Ÿ

jœJ

xj

R

b

1
d

+ —

Q

a
Ÿ

jœJ

xÕ
j

R

b

1
d

Ø –xm + —xÕ
m

.

The second inequality follows by hypothesis, and the first inequality is known as
Mahler’s inequality which is a direct consequence of the following inequality: If
ai, bi œ RØ0 then

dŸ

i=1
(ai + bi)

1
d Ø

A
dŸ

i=1
ai

B 1
d

+
A

dŸ

i=1
bi

B 1
d

.

Mahler’s inequality is trivial if one of the ai, bi’s is 0. Otherwise, if all ai and bi

are positive it follows after adding the AM-GM inequalities below:

1
d

dÿ

i=1

ai

ai + bi

Ø
(
r

ai)
1
d

r
(ai + bi)

1
d

,

1
d

dÿ

i=1

bi

ai + bi

Ø
(
r

bi)
1
d

r
(ai + bi)

1
d

.

⌅
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Remark II.7.16. Not all binomial inequalities necessarily transfer to a convex
cone or even to Minkowski sums. For example, x–

Ø x— does not transfer
if – = (1, 1, 1) and — = (2, 1, 0). For instance, we observe x = (1, 0, 0) and
y = (0, 1, 0) satisfy the inequality but their sum x + y = (1, 1, 0) does not.

We obtain a generalization of Lemma II.7.15 to real exponents.

Corollary II.7.17. Let I ( [n] and m œ [n] \ I. Then, the set of all points
x œ Rn

Ø0 satisfying the inequality
Ÿ

iœI

x–i
i

Ø xd

m
,

where –i, d œ R>0 and d =
q

iœI
–i is a convex cone.

Proof. First we observe that Lemma II.7.15 generalizes to homogeneous binomial
inequalities, where d, –i œ Q>0 and d =

q
iœI

–i. This can be seen from taking
the exponential on both sides of the inequality with respect to the least common
denominator of all reduced fractions d, –i.
Now, we notice that a real homogeneous binomial inequality can be approximated
by a sequence of rational binomial inequalities. Note that the intersection of
convex cones is again a convex cone. Thus, II.7.15 remains also valid when
–i œ R>0. ⌅

We are prepared to present a proof of the main result Proposition II.7.13.

Proof of Proposition II.7.13. We suppose z œ tconv(trop(S)), i.e., we have
z = a1 § v1 ü . . . ü ak § vk for some ai œ R and vi œ trop(S). First, we
show that ai § vi œ trop(cone(S)) for all 1 Æ i Æ k. Since vi œ trop(S) we have

vi = lim
mæŒ

log 1
·m

(w(m)
i

)

for a sequence (w(m)
i

)m µ S fl Rs

>0 and a sequence (·m)m µ (0, ‘) converging to
0 ([Ale13, Proposition 2.1]). For all m we have 1

·
ai
m

w(m)
i

œ cone(S) and

ai § vi = ai § lim
mæŒ

log 1
·m

(w(m)
i

)

= lim
mæŒ

log 1
·m

3
1

·ai
m

4
§ log 1

·m
(w(m)

i
)

= lim
mæŒ

log 1
·m

3
1

·ai
m

w(m)
i

4

which shows ai § vi œ trop(cone(S)). Since cone(S) has Hadamard property,
we observe that the set trop(cone(S)) is max-closed by Lemma II.7.14. Thus,
z œ trop(cone(S))) because z is a tropical sum of the ai § vi’s.
To prove the remaining inclusion we first note that trop(cone(S)) and
tconv(trop(S)) are closed convex cones in Rn by ([Ble+22b, Lemma 2.2 (2)]).
More precisely, this follows since cone(S) has Hadamard property and because
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trop(S) is a closed convex cone the set tconv(trop(S)) is the intersection of
closed convex cones by (II.14). We show instead the equivalent formulation

tconv(trop(S))ú
™ trop(cone(S))ú.

Corollary II.7.11 implies

tconv(trop(S))ú =
A

n‹

k=1
trop(S) + R · 1 + Qk

Bú

=
nn

k=1
trop(S)ú

fl R · 1
ú

fl Qú
k

=
nn

k=1
trop(S)ú

fl {z œ Rn : zi Ø 0, i ”= k, zk Æ 0,
ÿ

i ”=k

zi = ≠zk}.

Therefore, any extremal ray in tconv(trop(S))ú has precisely one negative
coe�cient and the sum over all positive coe�cients equals the absolute value of the
negative coe�cient. By ([BR22, Proposition 2.4]) any – = –+ ≠ –≠ œ trop(S)ú

with –+, –≠ œ Rn

Ø0 and –≠ ”= 0 transfers to a valid binomial inequality
x–+ Ø x–≠ on S. Thus, any extremal ray in tconv(trop(S))ú gives rise to
a valid homogenenous binomial inequality x–

Ø x— , and — has precisely one
non-zero entry and

q
n

i=1 –i =
q

n

i=1 —i. We saw in Corollary II.7.17 that the
set of all solutions in Rs

Ø0 of the real homogeneous binomial inequality forms
a convex cone containing S. Thus, it is a valid binomial inequality on the set
cone(S). We deduce that any extremal ray in tconv(trop(S))ú is contained in
trop(cone(S))ú. ⌅

II.7.4 Tropicalization of Nd and PB,ú
2d

We prove in Theorem II.7.2 a uniform description of trop(Nd) as a polyhedral
cone and present a motivation for the defining linear inequalities. The proof uses
methods from ([BR22, § 2.1]). Then, we determine trop(PB,ú

2d
) via decomposing

the tropicalization using the results in Subsection II.7.3. The decomposition
technique was already applied by the first and second author in their study of
normalized limits [AB22].

We begin with presenting some properties of Nd which allow us to apply the
results in Subsections II.7.2 and II.7.3.

Lemma II.7.18. The set trop(Nd) is a max-closed closed convex cone containing
the line spanned by (1, 2, 3, . . . , d) and the ray spanned by the all one vector 1.

Proof. The set Nd has Hadamard property and is closed under addition by
Proposition II.3.3. Since Nd µ Rd

Ø0 has Hadamard property, trop(Nd) is a closed
convex cone by ([Ble+22b, Lemma 2.2 (2)]). Moreover, since Nd is closed under
addition the set trop(Nd) is max-closed by ([BR22, Lemma 2.2]). For ⁄ œ R we
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have

2⁄(1, 2, . . . , d) = lim
mæŒ

log 1
·m

A3
1

·⁄
m

42
,

3
1

·⁄
m

44
, . . . ,

3
1

·⁄
m

42d
B

for any sequence (·m)m µ R>0 converging to 0, and

1 = log
m

(m, . . . , m) = log
m

((12 + . . . + 12), (14 + . . . + 14), . . . , (12d + . . . + 12d))

for all m œ N. Thus, we have inclusions R ·(1, 2, 3, . . . , d),RØ0 ·1 µ trop(Nd). ⌅

The following corollary will be useful in our proof of the characterization of
trop(Nd).

Corollary II.7.19. An extreme ray of trop(Nd)ú is spanned by a vector with at
most one negative coordinate.

Proof. This follows directly from Corollary II.7.11. The set trop(Nd) is a max-
closed convex cone which contains the line R · (1, 2, . . . , d) by Lemma II.7.18.
Since trop(Nd) is max-closed it contains (1, 2, . . . , d) in its linearity space. ⌅

Corollary II.7.20. The set ‹d(Nd) is a cone and has Hadamard property.
Moreover, the set PB,ú

2d
is a convex cone which has Hadamard property.

Proof. Since any z œ Nd is the limit of a sequence in
tŒ

n=1 ‹e

d,n
(Rn) we can use

that the map ‹d ¶ (p(n)
2 , . . . , p(n)

2d
) is homogeneous and obtain that ‹d(Nd) is a

cone. For x = ‹d(a), y = ‹d(b) œ ‹d(Nd) we have

(x1y1, . . . , xsys) = (ad

1bd

1, ad≠2
1 a2bd2

1 b2, . . . , adbd) œ ‹d(Nd)

since Nd has Hadamard property by Proposition II.3.3.
The set PB,ú

2d
= cone(‹d(Nd)) has Hadamard property because Hadamard

multiplication of convex combinations of elements in ‹d(Nd) gives again a convex
combination of elements in ‹d(Nd). ⌅

We make one additional definition before presenting the description of
trop(Nd).

Definition II.7.21. Let S µ Rn be a cone containing a point v œ Rn

>0 in its
linearity space. Then we define the double hull of S as the max-closure of the
convex hull of S. We write dh(S).

Now, we can prove Theorem II.7.2 i.e., the description of the polyhedral
cone trop(Nd). We show that the following families of power sum binomial
inequalities transfer to a linear characterization of trop(Nd).

1. pk+1
2k

Ø pk

2k+2 for all positive integers k.

2. p2k · p2k+4 Ø p2
2k+2 for all positive integers k.
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I.e., we show trop(Nd) is characterized by the linearizations of those inequalities.
The first family of inequalities comes from the well-known monotonicity of
p-norms and the second family follows from Muirhead’s inequality [Mui02], since

p(n)
2k

· p(n)
2k+4 ≠ p(n)2

2k+2 =
ÿ

1Æi ”=jÆn

X2k

i
X2k+4

j
≠ X2k+2

i
X2k+2

j

for any n and
3

1/2 1/2
1/2 1/2

4 3
2k

2k + 4

4
=

3
2k + 2
2k + 2

4
.

The case distinction in the proof goes analogously to ([BR22, Theorem 2.15])
which proves the tropicalization of graph profiles of sets of even cycles.

Proof of Theorem II.7.2. Let Q denote the closed convex cone on the right hand
side.
Claim 1: trop (Nd) µ Q.
By ([Ble+22b, Lemma 2.2 (2)]) trop(Nd) = cl (conv(log(Nd))) since Nd has
Hadamard property. Thus, by taking logarithm the families of binomial
inequalities in power sums from the discussion above transfer to valid linear
inequalities on log(Nd) which are preserved under taking the convex hull.
Moreover, those inequalities are precisely the linear inequalities defining Q.
Claim 2: The rays 1 = (1, . . . , 1), (1, 2, . . . , d), (≠1, ≠2, . . . , ≠d) are contained
in trop (Nd).
This was shown in Lemma II.7.18.
Claim 3: We have Q µ dh (cone(1, (1, 2, . . . , d), (≠1, ≠2, . . . , ≠d))), and so
Q µ trop (Nd).
Let S := cone(1, (1, 2, . . . , d), (≠1, ≠2, . . . , ≠d)) and let D := dh(S) denote its
double hull. From Corollary II.7.11 we know that D

ú =
m

d

i=1 S
ú

fl Qi, where
Qi is the orthant of Rd in which the i-th coordinate is non-positive and any
other coordinate is nonnegative. Therefore, the set of extreme rays of D

ú is
contained in the union of extreme rays of S

ú
fl Qi for i œ [d]. We point out that

the extreme rays of D
ú correspond to linear inequalities valid on D.

For all i the closed convex cone S
ú

fl Qi is defined by d + 3-many inequalities,
since

S
ú = {(a1, . . . , ad) œ Rd : a1 + . . . + ad Ø 0, a1 + 2a2 + . . . + dad = 0}.

We observe that S
ú is not a full dimensional convex cone. At least d ≠ 1 many

inequalities of S
ú

fl Qi must be tight to form an extreme ray. In particular, d ≠ 2
of the inequalities in Ai := {a1 + . . . + ad Ø 0, aj Ø 0, ai Æ 0, j ”= i} are tight for
some i œ [d]. In the following we examine the various combinations for which
d ≠ 2 of these inequalities are tight.
We consider a ray r := (r1, . . . , rd) of S

ú
fl Qi with d ≠ 2 many tight inequalities

from Ai. Thus, there are at least d ≠ 3 many tight inequalities of Qi.

(1) Let rfl = 0 be the tight inequalities for fl œ [d] \ {k, l} together with
krk + lrl = 0. Furthermore, we assume rk + rl > 0 and rk, rl > 0. This
gives a contradiction.
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(2) Let rfl = 0, fl œ [d] \ {k, l} and krk + lrl = 0 be the tight inequalities and
rk + rl > 0, rk > 0, rl < 0. Without loss of generality be rl = ≠k
then rk = l and 0 < rk + rl = l ≠ k implies that l > k. Thus
r = (0, . . . , 0, l, 0, . . . , 0, ≠k, 0, . . . , 0) where l is the k-th and ≠k the l-
th coordinate.

(3) Let r1 + . . . + rd = 0, r1 + 2r2 + . . . + d · rd = 0, rfl = 0, fl œ [d] \ {k, l, m}

be the tight inequalities and rk, rl, rm > 0. This gives a contradiction.

(4) Let r1 + . . . + rd = 0, r1 + . . . + d · rd = 0, rfl = 0, for fl œ [d] \ {k, l, m}

be the tight inequalities and rk, rl > 0, rm < 0. Without loss of generality
be 0 > rm = k ≠ l, i.e., l > k. Then 0 Æ rk = l ≠ m, 0 < al = m ≠ k and
l > m > k. Thus r = (0, . . . , l ≠ m, 0, . . . , k ≠ l, . . . , m ≠ k, 0, . . . , 0), where
l ≠ m is the k-th, k ≠ l the m-th and m ≠ k the l-th coordinate.

The proof of Claim 3 in ([BR22, Theorem 2.15]) shows that many of the above
inequalities are redundant since they are conic, convex combinations of the
inequalities defining Q.
Thus Q µ D and we know D µ trop (Nd) because trop(Nd) is a convex cone
by Lemma II.7.18 containing the line R · (1, 2, . . . , d) and the ray RØ0 · 1 by
Claim 1, and since trop(Nd) is a max-closed set by definition. Thus, we obtain
Q µ trop(Nd). ⌅

We present an example for 3 Æ d Æ 5.

Example II.7.22.

(i) trop(N3) = {(y1, y2, y3) œ R3 : y1 + y3 Ø 2y2, 3y2 Ø 2y3};

(ii) trop(N4) = {(y1, y2, y3, y4) œ R4 : y1 + y3 Ø 2y2, y2 + y4 Ø 2y3, 4y3 Ø 3y4};

(iii) trop(N5) = {(y1, y2, y3, y4, y5) œ R5 : y1+y3 Ø 2y2, y2+y4 Ø 2y3, y3+y5 Ø

2y4, 5y4 Ø 4y5}.

Instead of following the upper line in the diagram (II.15) we first tropicalize
Nd which we already understand.

Rd

Ø0 Rfi(d)
Ø0 Rfi(d)

Ø0

Rd Rfi(d) Rfi(d)

‹d

trop

conv

trop

‹̃d tconv

(II.15)

where

‹̃d : Rd
≠æ Rfi(d)

(X1, . . . , Xd) ‘≠æ (dX1, (d ≠ 2)X1 + X2, . . . , Xd)

denotes the tropicalization of the monomial map ‹d whose coordinates are the
expressions of the form

q
d

i=1 –iXi where –i œ N0 and
q

d

i=1 i–i = d. Our goal
is to show an analogous to the result in [AB22] on normalized limits.
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Proposition II.7.23. trop(PB,ú
2d

) = tconv (‹̃d (trop (Nd))).

Claim 1 transfers verbally from [AB22] and we present the proof for
completeness.

Proof. We have trop(PB,ú
2d

) = trop (cone(‹d (Nd))). We divide the proof into
two parts.
Claim 1: ‹̃d (trop(Nd)) = trop (‹d(Nd)).
The sets Nd and ‹d(Nd) contain the all one vector 1 and satisfy the Hadamard
property by Proposition II.3.3 and Corollary II.7.20. Thus, by ([Ble+22b, Lemma
2.2 (2)]) Claim 1 is equivalent to

‹̃d (cl(conv(log(Nd)))) = cl (conv(log(‹d(Nd)))) .

However,

cl(conv(log(‹d(Nd)))) = cl(conv(‹̃d(log(Nd)))) = cl(‹̃d(conv(log(Nd)))),

where the first equality follows from the definition of log and the second equality
follows because taking convex hull and applying a linear map commute. Moreover,
since ‹̃d is injective and linear we have ‹̃d(cl(A)) = cl(‹̃d(A)) for all sets A µ Rfi(d).
Therefore, Claim 1 follows.
Claim 2: trop(cone(S)) = tconv(trop(S)) for S = ‹d(Nd).
This follows from Proposition II.7.13 since the set S has Hadamard property by
Corollary II.7.20.

Therefore,

trop(PB,ú
2d

) = trop(cone(‹d(Nd))) = tconv(trop(‹dNd)) = tconv(‹̃d(trop(Nd)))

which was to prove. ⌅

II.7.5 Applications and examples

We present the tropicalization of PB,ú
2d

and SB,ú
2d

for degrees 6, 8 and 10. Since
SB

4 = PB
4 , the tropicalization of the dual cones of quartics must be equal. In

Theorem II.7.1 we show that strict inclusion between the tropicalizations of the
dual cones occurs for the first time in degree 10, even though we have SB

6 ( PB
6

and SB
8 ( PB

8 by Corollary II.5.9. We use a linear inequality valid on trop(PB,ú
10 )

but not on trop(SB,ú
10 ) to provide an example of a form in PB,ú

10 \ SB,ú
10 .

We define systems of linear equations in 3, 5 and 7 variables whose
coordinates are indexed by the partitions of 6, 8 and 10 which contain
only even entries. L1 :=

)
y(23) + y(6) Ø 2y(4,2), y(4,2) Ø y(6)

*
, L2 :=I

y(24) + y(42) Ø 2y(4,22), y(4,22) + y(8) Ø 2y(6,2),

y(42) Ø y(8), y(6,2) Ø y(42).

J
and L3 equals

Y
]

[

y(6,22) Ø y(4,22), y(8,2) Ø y(6,4), y(6,4) Ø y(10),

y(6,22) + y(10) Ø 2y(8,2), y(42,2) + y(10) Ø 2y(6,4), y(42,2) Ø y(8,2),

y(4,23) + y(6,4) Ø 2y(42,2), y(4,23) + y(8,2) Ø 2y(6,22), y(25) + y(42,2) Ø 2y(4,23)

Z
^

\
.

We write Li(y) if y satisfies all inequalities in Li.
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Proposition II.7.24. The sets trop(SB,ú
2d

) are convex polyhedral cones for 2d œ

{6, 8, 10}. Moreover,

trop(SB,ú
6 ) = {(y(23), y(4,2), y(6)) œ R3 : L1(y)};

trop(SB,ú
8 ) =

)
(y(24), y(4,22), y(42), y(6,2), y(8)) œ R5 : L2(y)

*
;

trop(SB,ú
10 ) = {(y(25), y(4,23), y(42,2), y(6,22), y(6,4), y(8,2), y(10)) œ R7 : L3(y)}.

Proof. We already proved the description of trop(SB,ú
6 ) in Proposition II.7.5.

We omit here the calculations of the sets SB,ú
8 ,SB,ú

10 which can be calculated
using symmetry reduction and higher Specht polynomials (see Remark II.2.3
and ([DR20, Theorem 4.15.]) provides a description for octics expressed in
elementary symmetrics). The naive tropicalization from Lemma II.7.3 gives
also in degrees 8 and 10 a full dimensional closed polyhedral convex cone which
then completes the proof of the Proposition since the auxiliary sets T satisfy
T = cl(int(T )) µ trop(SB,ú

2d
) µ T . ⌅

The representations given above are actually H-representations of the
polyhedral cones. We present a proof of Theorem II.7.1 saying that the minimal
degree for which trop(PB,ú

2d
) ( trop(SB,ú

2d
) is 2d = 10.

Proof of Theorem II.7.1. In Example II.7.22 we have calculated trop(Nd) for
3 Æ d Æ 5. We can apply Proposition II.7.23 to obtain trop(PB,ú

2d
), i.e., we

calculate a vertex representation of the polyhedral cone trop(Nd) and apply ‹̃d.
Then we calculate the tropical convex hull and compare the cones trop(SB,ú

2d
)

calculated in II.7.24 with trop(PB,ú
2d

). The computations were done using Sage
and the code can be found in Appendix A. ⌅

The convex polyhedral cones in degree 10 di�er in the following sense.
Every linear inequality in the H-representation of trop(SB,ú

10 ) is also in the
H-representation of trop(PB,ú

10 ), but there exists precisely one additional linear
inequality

y(25) + y(6,4) + y(8,2) Ø 3y(6,22)

in the H-representation of trop(PB,ú
10 ).

We can use this linear inequality to produce an example of a limit nonnegative
but not sum of squares even symmetric function of degree 10. This was already
done verbatim for an analogous inequality for normalized limits and degree 6 in
[AB22].

Lemma II.7.25 ([AB22]). Let a1, a2, a3 œ R>0 such that a1a2a3 = 1. Then the
even symmetric limit form

a1p(25) + a2p(6,4) + a3p(8,2) ≠ 3p(6,22)

is nonnegative, i.e., the form is nonnegative in any number of variables.
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Proof. By ([Gan79, p. 203]) we have p(2k,2k) Æ p(2k+2,2k≠2) for any k Ø 1. In
particular, we have p3

6 Æ p8 · p6 · p4. Therefore

p(6,22) = 3
Ò
p3

6p
6
2 Æ

3
Ò
p8p6p4p6

2

and we obtain by the claim from the arithmetic and geometric mean inequality

3
Ò
p8p6p4p6

2 = 3
Ò

(a1p(25))(a2p(6,4))(a3p(8,2)) Æ
a1p(25) + a2p(6,4) + a3p(8,2)

3 .

⌅

Proposition II.7.26. The even symmetric limit form

1
18p(25) + 3p(8,2) + 6p(6,4) ≠ 3p(6,22)

is nonnegative but not a sum of squares.

Proof. The nonnegativity of the limit form follows from Lemma II.7.25. The
dual spectrahedron SS,ú

10 is the set of all (a, b, c, d, e, f, g) œ R7 such that the
following 7 matrices are positive semidefinite:

Q

a
a b b c
b d d f
b d c e
c f e g

R

b ,

A
b ≠ c c ≠ e d ≠ e
c ≠ e e ≠ g f ≠ g
d ≠ e f ≠ g f ≠ g

B
, (b ≠ 3d ≠ 3c + 5f + 6e ≠ 6g) , (c ≠ d) .

1
a ≠ 3b + 2c 3b ≠ 3d ≠ 6c + 6e

3b ≠ 3d ≠ 6c + 6e 6d + 3c ≠ 15f ≠ 12e + 18g

2
, (a ≠ 10b + 15d + 20c ≠ 20f ≠ 30e + 24g) ,

(d ≠ 2f ≠ e + 2g) .

Note that the linear map ¸ = (450228, 75326, 24986, 12656, 8325, 4159, 2803) :
R7

æ R is contained in SS,ú
10 and satisfies ¸( 1

18 p(25) +3p(8,2) +6p(6,4) ≠3p(6,22)) =
≠49/3. Thus, the limit form cannot be a sum of squares. ⌅

Note, replacing a = p(25), b = p(4,23), c = p(6,22), d = p(42,2), e = p(8,2), f =
p(6,4), g = p(10) in the proof above gives the matrices that define the set SS

10.

II.8 Conclusion and open questions

In this article we studied the sets of nonnegative and sums of squares (even)
symmetric functions. Our results provide new insights into the discrepancy
of the cones of nonnegative and sums of squares of symmetric polynomials in
an increasing number of variables. Although the cones �Sn

n,2d
and P

Sn
n,2d

are
shrinking and approach limits, those limits are still di�erent. We observed that
the limit has even a higher complexity in some sense since the set of nonnegative
symmetric functions is no longer semialgebraic and testing nonnegativity of
multisymmetric functions is no longer decidable. We observed that working with
power sums turns out to be useful to describe the image of the Vandermonde
map, while elementary symmetrics provide more information on the convex hull.
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II. At the limit of symmetric nonnegative forms

Although the analytical description of the image of the even Vandermonde map
is a di�cult task it has very nice combinatorial properties. The boundary has
the combinatorial structure of a cyclic polytope. Moreover, we described the
combinatorial shadow of the image of the even Vandermonde map at infinity,
i.e., its tropicalizations, through a simple set of linear inequalities arising from
two families of binomial inequalities in power sum functions. Our presented
proof of SS

2d
( PS

2d
for all 2d Ø 4 and SB

2d
( PB

2d
for all 2d Ø 6 is unsatisfactory

in a certain way. We show that the sets of nonnegative limit forms in those
degrees are not semialgebraic, while the sets of sums of squares are semialge-
braic. The proof does not provide quantitative information on the di�erence
of the sets SS

2d
and PS

2d
. However, we used tropicalization to give quantitative

information in the sense that we compared the H-representations of the cones
trop(PB,ú

2d
) and trop(SB,ú

2d
) for degree 2d = 10 and used a linear inequality in

trop(PB,ú
10 )ú

\ trop(SB,ú
10 )ú to find a form in PB

10 \ SB
10. The computations for

degree 10 can be similarly done in higher degrees.

In Section II.4 we presented the countably infinite vertices of the convex set
Ed. Moreover, we showed that Ed is the union of nested cyclic polytopes. We
conjecture that the defining linear inequalities of the set Ed can also be deduced
from Gale’s evenness condition. Then the set Ed would be an intersection
of countably infinite halfspaces and Proposition II.4.17 would actually be an
equality.

Conjecture II.8.1. Let d Ø 2, Ce := {S µ N fi {Œ} : |S| = d, S =
v

{i, i + 1} ‡

{1, Œ}} and Co := {S µ N fi {Œ} : |S| = d, S = {Ÿ} ‡
v

{i, i + 1}, Ÿ œ {1, Œ}}.
Then in the notation from Section II.4

Ed =
;

x œ Rd≠1 : ¸S ¶ �d(x) Æ rS : S œ Ce, if d ≠ 1 is even;
S œ Co, if d ≠ 1 is odd

<

In Theorem II.6.1 we showed that the problem of determining validity of
nonnegativity of multisymmetric functions on copies of the probability simplex is
undecidable by embedding the problem of deciding nonnegativity of multivariate
polynomials on copies of the natural numbers into our problem. Since validity
of nonnegativity of univariate polynomials on the natural numbers is decidable
we conjecture that Theorem II.6.1 is true for symmetric functions.

Conjecture II.8.2. The following determination of validity problem is decidable.

Instance: A symmetric limit form f .

Question: Is f(X) < 0 for some X œ �?

We noticed in Section II.7 that trop(SB,ú
2d

) is a rational polyhedral cone for
degree 2d Æ 10. However, we only proved that trop(SB,ú

2d
) is a polyhedral fan in

general (see Remark II.7.4). On the other hand, we showed trop(PB,ú
2d

) is always
a rational polyhedral cone. Thus, an open question is whether trop(SB,ú

2d
) is a

rational polyhedral cone for all degrees. The open question would have a positive
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answer if it was possible to define the spectrahedra SB,ú
2d

through matrices having
only monomials as coe�cients. Then SB,ú

2d
has Hadamard property which shows

that trop(SB,ú
2d

) is a convex cone by ([Ble+22b, Lemma 2.2]).
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Appendix A

In the following we list the code used for calculating the tropicalizations in Sage
[Ste07]. The code to calculate the max-closure was provided by Josephine Yu.

Listing II.1: Code to calculate max-closure
1 # Computes tropical convex hull
2 def tropConv(P):
3 d = P.ambient_dim();
4 I = matrix.identity(d);
5 E = I.rows();
6 sectors = [Polyhedron(rays=[E[j] for j in range(d) if j != i],
7 lines=[Sequence([1 for k in range(d)])]) for i in range(d)];
8 MinkSums = [P.minkowski_sum(S) for S in sectors];
9 tconv = MinkSums[0];

10 for i in range(1,d):
11 tconv = tconv.intersection(MinkSums[i])
12 return tconv
13
14 # non-normalized even symmetric sextics:
15 print(’nn even sym sextics:’)
16
17 # The first 0 is for >=0, coordinates are in lexicographic order p2,p4,p6
18 emoment6=Polyhedron(ieqs=[[0,2,-1,0],[0,0,3,-2],[0,1,-2,1]]);
19
20 # extreme rays for k
21 emoment6.Vrepresentation()
22
23 # trop of monomial partition map -- from p2,p4,p6,p8 to p2222,p422,p44,
24 # p6p2,p8 && image of extreme rays above
25 M6=matrix([[3,0,0],[1,1,0],[0,0,1]]);
26 M6*vector([1,2,3]);
27 M6*vector([0,-1,-2]);
28 M6*vector([0,-2,-3]);
29
30 # cone spanned by the image of the extreme rays above
31 im_emoment6=Polyhedron(rays=[[1,1,1],[-1,-1,-1],[0,-1,-2],[0,-2,-3]]);
32
33 #tropical convex hull of im_k (trop of nnevenPSD_6*)
34 epsd6=tropConv(im_emoment6);
35
36 # print(’ieqs for trop(nneP_6*):’)
37 epsd6.Hrepresentation()
38
39 print(’sos6:’)
40 sos6=Polyhedron(ieqs = [[0,1,-2,1],[0,1,-1,0],[0,0,1,-1]]);
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41 sos6.Hrepresentation()
42
43 # we compare the cones
44 print(’trop psd* subset trop sos*:’)
45 epsd6._is_subpolyhedron(sos6)
46 print(’trop sos* subset trop psd*:’)
47 sos6._is_subpolyhedron(epsd6)
48
49 ## non-normalized even symmetric octics:
50 print(’nn even sym octics:’)
51
52
53 # The first 0 is for >=0, coordinates are in lexicographic order p2,p4,
54 # p6,p8
55 emoment8=Polyhedron(ieqs=[[0,2,-1,0,0],[0,0,3,-2,0],[0,0,0,4,-3],
56 [0,1,-2,1,0],[0,0,1,-2,1]]);
57
58 # extreme rays for k
59 emoment8.Vrepresentation()
60
61 # trop of monomial partition map -- from p2,p4,p6,p8 to p2222,p422,p44,
62 # p6p2,p8 && image of extreme rays above
63 M8=matrix([[4,0,0,0],[2,1,0,0],[0,2,0,0],[1,0,1,0],[0,0,0,1]]);
64 M8*vector([1,2,3,4]);
65 M8*vector([0,-2,-3,-4]);
66 M8*vector([0,-1,-2,-3]);
67 M8*vector([0,-3,-6,-8]);
68
69 # cone spanned by the image of the extreme rays above
70 im_emoment8=Polyhedron(rays=[[1,1,1,1,1],[-1,-1,-1,-1,-1],[0,-2,-4,-3,-4],
71 [0,-1,-2,-2,-3],[0,-3,-6,-6,-8]]);
72
73 # tropical convex hull of im_k (trop of nnevenPSD_8*)
74 epsd8=tropConv(im_emoment8)
75
76 print(’ieqs for trop(nneP_8*):’)
77 epsd8.Hrepresentation()
78
79 print(’sos8:’)
80 sos8=Polyhedron(ieqs = [[0,1,-1,0,0,0],[0,0,0,1,0,-1],[0,0,0,-1,1,0],
81 [0,0,1,0,-1,0],[0,0,1,0,-2,1],[0,1,-2,1,0,0]]);
82 sos8.Hrepresentation()
83
84 # we compare the cones
85 print(’trop psd* subset trop sos*:’)
86 epsd8._is_subpolyhedron(sos8)
87 print(’trop sos* subset trop psd*:’)
88 sos8._is_subpolyhedron(epsd8)
89
90
91 ## Non normalized even symmetric psd decics:
92 print(’nn even sym decics:’)
93
94 # The first 0 is for >=0, coordinates are in lexicographic order: p2,p4,p6,
95 # p8,p10
96 emoment10=Polyhedron(ieqs = [[0,2,-1,0,0,0],[0,0,3,-2,0,0],[0,0,0,4,-3,0],
97 [0,0,0,0,5,-4],[0,1,-2,1,0,0],[0,0,1,-2,1,0],[0,0,0,1,-2,1]]);
98 emoment10.Vrepresentation()
99
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100 # trop of monomial partition map -- from p2,p4,p6,p8,p10 to
101 # p22222,p4222,p442,p622,p64,p82,p10 && image of extreme rays of emoment10
102 M10=matrix([[5,0,0,0,0],[3,1,0,0,0],[1,2,0,0,0],[2,0,1,0,0],
103 [0,1,1,0,0],[1,0,0,1,0],[0,0,0,0,1]]);
104 M10*vector([1,2,3,4,5]);
105 M10*vector([0,-2,-3,-4,-5]);
106 M10*vector([0,-3,-6,-8,-10]);
107 M10*vector([0,-1,-2,-3,-4]);
108 M10*vector([0,-4,-8,-12,-15]);
109
110 # cone spanned by the image of the extreme rays above
111 im_emoment10=Polyhedron(rays=[[1,1,1,1,1,1,1],[0,-2,-4,-3,-5,-4,-5],
112 [0,-3,-6,-6,-9,-8,-10],[0,-1,-2,-2,-3,-3,-4],[0,-4,-8,-8,-12,-12,-15]]);
113
114 # tropical convex hull of im_d (trop of evenPSD_10*)
115 epsd10=tropConv(im_emoment10);
116
117 print(’ieqs for trop(nneP10*):’)
118 epsd10.Hrepresentation()
119
120 print(’sos10:’)
121 sos10=Polyhedron(ieqs = [[0,1,-1,0,0,0,0,0],[0,0,1,0,-1,0,0,0],[0,0,0,-1,
122 1,0,0,0],[0,0,0,1,0,0,-1,0],[0,0,0,0,0,-1,1,0],[0,0,0,0,0,1,0,-1],[0,1,-2,
123 1,0,0,0,0],[0,1,0,0,-2,0,0,1],[0,0,1,-2,0,1,0,0],[0,0,1,0,-2,0,1,0],[0,0,
124 0,1,0,-2,0,1],[0,0,0,0,1,0,-2,1]]);
125 sos10.Hrepresentation()
126
127 # we compare the cones
128 print(’trop psd* subset trop sos*:’)
129 epsd10._is_subpolyhedron(sos10)
130 print(’trop sos* subset trop psd*:’)
131 sos10._is_subpolyhedron(epsd10)

Appendix B

Listing II.2: Sage code used to calculate inequalities defining En,2
1 print("d=2 ,n=3")
2 ele32 = Polyhedron(vertices=[(0,0),(1/2^2,0),(3/(3^2),1/3^3)])
3 ele32.Hrepresentation()
4
5 print("d=2 ,n=4")
6 ele42 = Polyhedron(vertices=[(0,0),(1/2^2,0),(3/(3^2),1/3^3),
7 (6/(4^2),4/(4^3))])
8 ele42.Hrepresentation()
9

10 print("d=2 ,n=5")
11 ele52 = Polyhedron(vertices=[(0,0),(1/2^2,0),(3/(3^2),1/3^3),
12 (6/(4^2),4/(4^3)),
13 (2/5, 2/25)])
14 ele52.Hrepresentation()
15
16 print("d=2 ,n=6")
17 ele62 = Polyhedron(vertices=[(0,0),(1/2^2,0),(3/(3^2),1/3^3),
18 (6/(4^2),4/(4^3)),(2/5, 2/25),(5/12, 5/54)])
19 ele62.Hrepresentation()
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Abstract

Specht polynomials classically realize the irreducible representations of
the symmetric group. The ideals defined by these polynomials provide
a strong connection with the combinatorics of Young tableaux and
have been intensively studied by several authors. We initiate similar
investigations for the ideals defined by the Specht polynomials associated
to the hyperoctahedral group Bn. We introduce a bidominance order on
bipartitions which describes the poset of inclusions of these ideals and
study algebraic consequences on general Bn-invariant ideals and varieties,
which can lead to computational simplifications.
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III. The poset of Specht ideals for hyperoctahedral groups

III.1 Introduction

Symmetries provide beautiful connections between algebra, geometry and e�cient
computations: on the one hand, the symmetries of geometrical objects can be
described with the algebraic language of group theory, while on the other
hand algebraic problems a�ording additional structure can be solved more
e�ciently once symmetry is appropriately taken into consideration. A particular
incarnation of these phenomena occurs when studying algebraic systems of
polynomial equations whose solution set is invariant under a group action. In
this set-up, when looking at the corresponding polynomial ideal, the machinery
of invariant and representation theory can be employed to gain information
about the solutions of the initial system, and to simplify its resolution.

This kind of questions have been extensively studied in the literature for
the symmetric group Sn, acting on the polynomial ring K[X1, . . . , Xn] over a
field K by permuting variables. In particular, it has been observed in di�erent
computational tasks that the understanding of this action can lead to substantial
algorithmic improvements (see for example [BR21a; BR21b; Fau+20; HS21;
KLM20; Mou+22; Rie+13; RS18]. These improvements mostly build on the fact
that in this situation, both representation and invariant theory are classically
understood, and are closely related to the combinatorics of partitions and Young
Tableaux. More precisely, the irreducible representations of Sn are in bijection
with the partitions of n, through a construction due to Specht: for every partition,
one can define a polynomial whose Sn-orbit spans an irreducible Sn-module,
called Specht module [Spe37b]. This motivates the study of Specht ideals, the
ideals generated by such modules, since they can be seen as building blocks of the
action of the symmetric group on a polynomial ring. The study of these objects
has shown to be fruitful from various aspects, and the connection between these
ideals and the combinatorics of partitions turns out to be deeper: not only there is
a bijection between Sn-Specht ideals and partitions of n, but this correspondence
respects the poset structures. First results were proven by Haiman and Woo (see
Woo’s doctoral thesis [Woo05]), and then independently revisited and extended
for algorithmic purposes in [MRV21]. In turn, this combinatorial understanding
also provides information on these ideals from the point of view of commutative
algebra: for instance they all are radical [MOY21], and the partitions for which
they are Cohen-Macaulay are understood [Yan21]. The study of these ideals
has also paved algorithmic ways to simplify calculations for Sn-closed ideals and
their corresponding varieties. They allow to understand the symmetry of the
coordinates of the points in the variety, which in turn gives information on their
dimension. This information can then be used to design more e�cient algorithms
by reducing the number of variables.

In this article, we initiate a similar study for the action of the hyperoctahedral
group Bn on a polynomial ring K[X1, . . . , Xn]. The field K is assumed to be
infinite, although many results remain valid for finite fields. In this representation,
this group can be seen as the group generated by permutations of variables
and sign switches of variables, namely maps sending Xi to ≠Xi. The group is
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Sn-Specht ideals

isomorphic to the Weyl group of type B and appears in several di�erent areas, as
hyperplane arrangements ([AM17, Section 6.7],[Abe+20]), representation theory
[Che93; CS93; Mus93], and has applications in the study of non negative even
symmetric polynomials [CLR87; Har99] and optimization [DGV+17]. Similarly to
the case of permutations, this situation is profoundly connected to combinatorics.
In this case, instead of partitions, the irreducible representations of Bn are in
bijection with bipartitions of n. Furthermore, polynomial generators of the
irreducible Bn-modules can be constructed in a similar way [Spe37a]. We aim
at a first investigation of the corresponding ideals with the goal to extend the
connections between algebra and combinatorics as far as possible. In contrast
to the Sn-case where there is a natural order on partitions, several orders are
possible on bipartitions [AMP81; DJM95]. However, while in the Sn case the
poset of the standard order on partitions reflects the corresponding poset of ideal
inclusions, none of the previously studied orders of bipartitions satisfies this
property. Therefore, we define another order on bipartitions. After studying the
basic properties of this order, we are able to show that it indeed translates well
to the ideal inclusion. Similarly to the case of Sn, this combinatorial connection
finds consequences for the corresponding varieties. In addition to the inclusion of
varieties we are able to give a complete characterization in terms of orbit types
of the points in these varieties. Further, this gives information on the possible
orbit types of points in general Bn-invariant varieties, allowing for complexity
reduction in the resolution of Bn-closed polynomial systems.

The paper is structured as follows: Section III.2 overviews the situation of
Sn-Specht ideals. We initiate the study of Bn-Specht ideals in Section III.3 with
definitions and natural connections to the Sn case. In Section III.4 we define
our order for bipartitions and study its combinatorial properties. Following
this, we show equivalence between our poset of bipartitions and the posets of
Specht ideals and varieties in Section III.5. In Section III.6, study possible
decompositions of Specht varieties in terms of orbit types. Finally, we extend
our study to general Bn-invariant ideals in Section III.7, before concluding the
paper with closing remarks and open questions in Section III.8.

III.2 Sn-Specht ideals

III.2.1 Definitions

A partition ⁄ = (⁄1, . . . , ⁄l) of n is a sequence of non-increasing non negative
integers such that

q
iØ1 ⁄i = n. We write ⁄ „ n when ⁄ is a partition of n and

say that ÿ is the unique partition of 0. The size of a partition ⁄ is | ⁄ |=
q

iØ1 ⁄i.
The length of a non-empty partition ⁄ = (⁄1, ⁄2, . . .) „ n is the maximal l œ N0
with ⁄l > 0, while the length of ÿ is 0. We denote the length by len(⁄). For
any partition ⁄ = (⁄1, . . . , ⁄l) „ n we use the convention that ⁄s = 0 for every
s > l + 1.

Let ⁄, µ „ n be partitions of the same size. Then ⁄ dominates µ if and only
if

q
k

j=1 ⁄j Ø
q

k

j=1 µj for any k. We denote domination by µE ⁄. A partition ⁄
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III. The poset of Specht ideals for hyperoctahedral groups

can be represented via its (Young) diagram, i.e., the ordered sequence of boxes
from the left to the right and the top to the bottom, where the i-th line contains
⁄i many boxes. We say that the associated diagram has shape ⁄. A tableau of
shape ⁄ is a filling of a diagram of shape ⁄ with all the numbers [n] = {1, . . . , n}.

Then, we write sh(T ) = ⁄ if T is a tableau of shape ⁄. For instance, S =
9 3 6 4
2 1 8
5 7

is a tableau of shape (4, 3, 2). A generalized tableau is a filling of a diagram with
elements in K. The conjugate partition ⁄‚ of a partition ⁄ is the partition whose
diagram is the one obtained from the diagram of ⁄ by interchanging the rows
and columns.

For a sequence (i1, . . . , im) of natural numbers, we define the associated
Vandermonde polynomial in the variables Xi1 , . . . , Xim as

�(i1,...,im)(X) =
Ÿ

j<kœ[m]
(Xij ≠ Xik ),

while �(i) =
r

ÿ(Xij ≠ Xik ) = 1.

Definition III.2.1. Let T be a tableau of shape ⁄ „ n with m columns and let Ti

be the sequence of natural numbers containing the entries of the i-th column of
T from above to below. Then, the associated Sn Specht polynomial sp

T
(X) is

the product of all the column Vandermonde polynomials of the columns, i.e.,

sp
T

(X) =
mŸ

j=1
�Tj .

For the tableau S of shape (4, 3, 2) above, we have sp
S

(X) equals

�(9,2,5)(X)�(3,1,7)(X)�(6,8)(X)�(4)(X)
= (X9 ≠ X2)(X9 ≠ X5)(X2 ≠ X5)(X3 ≠ X1)(X3 ≠ X7)(X1 ≠ X7)(X6 ≠ X8).

Definition III.2.2. Let ⁄ be a partition of n. We define the Sn-Specht ideal

I⁄ = Èsp
T

(X) : T is a tableau of shape ⁄Í µ K[X1, . . . , Xn]

and the Sn-Specht variety

V⁄ = {a œ Kn : f(a) = 0 for all f œ I⁄} µ Kn

associated to ⁄.

The group Sn acts transitively on the set of tableaux of shape ⁄, where an
element ‡ œ Sn acts on a tableau T by replacing every entry i in a box by ‡(i).
Thus, the Sn-Specht ideal I⁄ is the ideal generated by the Sn-orbit of a Specht
polynomial of a tableau of shape ⁄.

Definition III.2.3. For a partition ⁄ „ n we write S⁄ = S⁄1 ◊ S⁄2 ◊ . . . µ Sn and
define the Sn-orbit set H⁄ = {z œ Kn : StabSn(z) ƒ S⁄}. If z œ H⁄ we call ⁄
the Sn-orbit type of z.
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The orbit set of any partition is non-empty and the H⁄’s define a set partition
of Kn. For instance, H(3,2,2,1) is the Sn orbit of the set

{(a1, a1, a1, a2, a2, a3, a3, a4) œ Kn : ai ”= aj , ’i ”= j}.

III.2.2 Inclusions and applications

The dominance order for integer partitions is well studied and understood. We
recall that if (P,4) is a poset and p, q œ P then p covers q if and only if p ”= q,
q 4 p, and for any r œ P , q 4 r 4 p implies r œ {p, q}. Brylawski studied
the lattice of integer partitions of n with respect to the dominance order and
classified the covering relations ([Bry73, Proposition 2.3]). Let ⁄, µ „ n be
partitions. Then, µ E ⁄ is a covering if and only if ⁄ is of the form

⁄ = (µ1, . . . , µi≠1, µi + 1, µi+1, . . . , µj≠1, µj ≠ 1, µj+1, . . . , µl),

and either j = i + 1 or µi = µj≠1 (and µi≠1 > µi and µj > µj+1 to ensure that
µ is a partition). In particular, the diagram of shape µ can be obtained from
the diagram of shape ⁄ via moving one box from the end of row i to row j.

Example III.2.4. The following are two coverings of partitions displayed by their
diagrams.

D and D .

The following theorem shows the equivalences of the posets of partitions with
respect to dominance order, and the posets of Sn-Specht ideals and varieties
with respect to inclusion.

Theorem III.2.5 ([MRV21], Theorem 1). Let ⁄ and µ be partitions of n. Let I⁄, Iµ

denote their associated Sn-Specht ideals and V⁄, Vµ their associated Sn-Specht
varieties. Then, the following assertions are equivalent:

III.2.5.1. The partition ⁄ dominates µ, i.e. ⁄ D µ;

III.2.5.2. The Sn-Specht ideal I⁄ contains the Sn-Specht ideal Iµ, i.e. I⁄ ∏ Iµ;

III.2.5.3. The Sn-Specht variety V⁄ is contained in the Sn-Specht variety Vµ,
i.e. V⁄ µ Vµ.

The Sn-Specht varieties can be decomposed using Sn orbit sets.

Theorem III.2.6 ([MRV21], Corollary 1). Let µ „ n be a partition. Then, the
associated Sn-Specht variety is

Vµ =

Q

a
€

⁄Eµ

H⁄

R

b
c

=
€

⁄”Eµ

H⁄.
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III. The poset of Specht ideals for hyperoctahedral groups

This characterization already shows that in general K[X1, . . . , Xn]/I⁄ is
not Cohen-Macaulay for a Sn-Specht ideal I⁄, since the varieties are not
equidimensional. Yanagawa classified the few cases when a Specht ideal is
Cohen-Macaulay.

Theorem III.2.7 ([Yan21], Corollary 4.4). The ring K[X1, . . . , Xn]/I⁄ is Cohen-
Macaulay if and only if ⁄ is one of the following form

III.2.7.1. ⁄ = (n ≠ d, 1, . . . , 1);

III.2.7.2. ⁄ = (n ≠ d, d);

III.2.7.3. ⁄ = (a, a, 1).

The authors in [MOY21; Woo05] prove that a Sn-Specht ideal is radical.
Their proof uses Theorem III.2.6, i.e., that Sn-Specht varieties can be written as
disjoint unions of Sn orbit sets, and the non-emptyness of any orbit set H⁄.

III.3 Definition and first properties of Bn-Specht ideals

III.3.1 Definitions

A bipartition of n is a pair (⁄, µ), where ⁄ „ n1, µ „ n2 are partitions
and n1 + n2 = n. We denote the set of all bipartitions of n by BPn. A
(Young) bidiagram of a bipartition (⁄, µ) is the pair of diagrams of shape ⁄
and µ. A bitableau is a filling of a bidiagram with all the numbers in [n]. We
write sh(T, S) = (⁄, µ) if (T, S) is a bitableau of shape (⁄, µ). For example,

(T Õ, SÕ) =
3 4 3

2
5

,
6
1

4
is a bitableau of shape ((2, 1, 1), (1, 1)). When we

consider representatives of Bn-orbits of points, we do not need to distinguish
between the signs of coordinates. Thus, we write X2 = (X2

1 , . . . , X2
n
) and

analogously z2 = (z2
1 , . . . , z2

n
) for points z œ Kn. A generalized bitableau is a

filling of a bidiagram with elements in K.

Definition III.3.1. Let (T, S) be a bitableau and let Ti, Si be the sequences of
natural numbers containing the entries of the i-th column of T and S from above
to below. Then, the associated Bn Specht polynomial is

sp(T,S)(X) = sp
T

(X2) sp
S

(X2)
Ÿ

kœS

Xk =
Ÿ

iØ1
�Ti(X2)

Ÿ

jØ1
�Sj (X2)

Ÿ

kœS

Xk

where the notation sp
T

is naturally adapted in this context to a Tableau
T which is not necessarily filled with the integers 1, . . . , k. For the bitableau
(T Õ, SÕ) of shape ((2, 1, 1), (1, 1)) above, we have

sp(T,S)(X) = �(4,2,5)(X2) · �(3)(X2) · �(6,1)(X2) · X6X1

= (X2
4 ≠ X2

2 )(X2
4 ≠ X2

5 )(X2
2 ≠ X2

5 )(X2
6 ≠ X2

1 )X1X6.

From now on, if not specified, Specht polynomials will stand for Bn-Specht
polynomials.
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Definition III.3.2. Let (⁄, µ) be a bipartition of n. We define the Bn-Specht ideal

I(⁄,µ) = Èsp(T,S)(X) : (T, S) is a bitableau of shape (⁄, µ)Í µ K[X1, . . . , Xn]

and the Bn-Specht variety

V(⁄,µ) = {z œ Kn : f(z) = 0 for all f œ I(⁄,µ)} µ Kn

associated to (⁄, µ).

Again, the Bn-Specht ideal I(⁄,µ) is the ideal generated by the Sn orbit of a
Specht polynomial of a bitableau of shape (⁄, µ). We observe that switching of
signs of variables in a Specht polynomial sp(T,S) returns ± sp(T,S). Thus, I(⁄,µ)
also equals the Bn orbit of sp(T,S).

III.3.2 Relations between Bn and Sn Specht polynomials

Definition III.3.3. Let ⁄ „ n1, µ „ n2 be partitions. Then, the glueing of ⁄ and
µ is the partition ⁄ ‡ µ = (⁄1 + µ1, ⁄2 + µ2, . . .) „ n1 + n2. The concatenation
⁄ ‚ µ „ n1 + n2 is the partition obtained by rearranging (⁄1, . . . , ⁄s, µ1, . . . , µt)
in decreasing order.

The glueing ⁄ ‡ µ defines indeed again a partition. Since ⁄i Ø ⁄i+1 and
µi Ø µi+1 we have ⁄i + µi Ø ⁄i+1 + µi+1 for any i.

Example III.3.4. The glueing of the partitions (3, 2, 2), (4, 1) with diagrams

,

is the partition (7, 3, 2) with diagram

.

Lemma III.3.5. Let ⁄, µ be two partitions. Then, we have

(⁄ ‡ µ)‹ = ⁄‹
‚ µ‹.

As a consequence, the columns of the diagram of shape ⁄ ‡ µ are in bijection
with the columns in the bidiagram of shape (⁄, µ).

Proof. Let fl =
!
⁄‹

‚ µ‹"‹. Then

flk =| {j, (⁄‹
‚ µ‹)j > k} | = | {j, (⁄‹)j > k} + #{j, (µ‹)j > k} |

= ((⁄‹)‹)k + ((µ)‹)‹)k

= ⁄k + µk

= (⁄ ‡ µ)k.

The last claim of the statement follows, since the columns of ⁄ ‡ µ are the rows
of its conjugation. ⌅
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III. The poset of Specht ideals for hyperoctahedral groups

The previous Lemma provides a natural connection between bitableaux of
shape (⁄, µ) and Tableaux of shape ⁄‡µ. Concretely, let (T, S) be a bitableau of
shape (⁄, µ). Then, we can consider the tableau T ‡ S of shape ⁄ ‡ µ, where the
columns of T ‡ S are filled like the columns of T and S. When two columns in
⁄ ‡ µ have the same length, they are ordered by their occurrence in the bitableau

(T, S) from the left to the right. For instance, for (T ú, Sú) =
3 1 2 10 9

4 8 7
6

,
3
5

4

we have T ú
‡ Sú =

1 2 10 3 9
4 8 7 5
6

. Since this map is invertible we get:

Proposition III.3.6. The tableaux of shape ⁄ ‡ µ are in 1:1 correspondence with
the bitableaux of shape (⁄, µ). A bijection is given by (T, S) ‘æ T ‡ S.

The lemma below describes the connection between Sn and Bn-Specht
polynomials. In particular, it motivates the definition of the same operations on
the bidiagram of shape (⁄, µ) and on the diagram of its glueing ⁄ ‡ µ via moving
some of the boxes in a diagram in section III.4.

Lemma III.3.7. Let (⁄, µ) œ BPn be a bipartition and let (T, S) be a bitableau of
shape (⁄, µ). Then

sp(T,S)(X1, . . . Xn) = sp
T ‡S

(X2
1 , . . . , X2

n
)

Ÿ

jœS

Xj .

Proof. It is an immediate consequence of Proposition III.3.6, since the Specht
polynomials are defined as product of Vandermonde polynomials on the columns
of the glued partition. ⌅

III.3.3 Existing orders on bipartitions

As mentioned in the introduction, partial orders on the set of bipartitions of n
have been studied by several authors. Let (⁄, µ), (⁄Õ, µÕ) œ BPn be bipartitions.
For instance the following statements define partial orders:

Iq
jÆk

⁄Õ
j

Æ
q

jÆk
⁄j , for all k, and

| ⁄Õ
| +

q
jÆk

µÕ
j

Æ| ⁄ | +
q

jÆk
µj , for all k.

(III.1)

was introduced in [DJM95] to study Hecke algebras of type Bn, and was
recently proven to occur naturally in the field of spin group theory [Xia18].
Ariki generalized their order to multipartitions to study Hecke algebras of type
G(m, 1, n) [Ari01]. The partial order

I
| ⁄Õ

|<| ⁄ |, or
| ⁄Õ

|=| ⁄ |, and ⁄Õ E ⁄, µÕ E µ.
(III.2)

was formalized in [AMP81] to construct Bn-irreducible representations based on
a more general procedure valid for finite groups. The partial orders (III.1) and
(III.2) are not equivalent. For instance, in (III.1) the bipartitions ((2), (1)) and

136



The poset of bipartitions

((1, 1, 1), ÿ) are not comparable, while the latter is larger than the first in (III.2).

Moreover, these orders do not capture inclusions of ideals and varieties.
Namely, for both orders, we have the following ordering of bipartitions of n = 2:

((2), ÿ) º ((1, 1), ÿ) º ((1), (1)),

while the corresponding ideals are

I((1,1),ÿ) =< X2
1 ≠ X2

2 >( I((1),(1)) =< X1, X2 >( I(2),ÿ =< 1 > .

In the next section, we introduce a new order on bipartitions that will capture
inclusion of Specht ideals.

III.4 The poset of bipartitions

In this section we introduce our new order for bipartitions:

Definition III.4.1. Let (⁄, µ), (⁄Õ, µÕ) œ BPn be biparitions of n. We say that
(⁄, µ) bidominates (⁄Õ, µÕ) if and only if

kÿ

j=1
(⁄Õ

j
+ µÕ

j
) Æ

kÿ

j=1
(⁄j + µj), and

k≠1ÿ

j=1
(⁄Õ

j
+ µÕ

j
) + ⁄Õ

k
Æ

k≠1ÿ

j=1
(⁄j + µj) + ⁄k

for all positive integer k. If (⁄, µ) bidominates (⁄Õ, µÕ) we write (⁄Õ, µÕ) E (⁄, µ).
We call E the bidominance order.

We point out that the first condition is just a condition on the glueing of the
bipartitions, i.e.,

⁄Õ
‡ µÕ E ⁄ ‡ µ.

Example III.4.2. The following bipartitions of 8 are comparable: ((2, 1, 1), (3, 1))E
((3, 2), (2, 1)), since

2 Æ 3, 5 Æ 5, 6 Æ 7, 7 Æ 8, 8 Æ 8.

However, the bipartitions ((2), (1, 1)) and (ÿ, (4)) are not comparable, since 2 > 0
but 3 < 4.

Although we use the same symbol for dominance and bidominance, this should
not create any confusion, as they are defined on sets with empty intersection.
We identify bipartitions with their associated bidiagrams and speak about boxes
in a bipartition.
It follows from the definition that our bidominance order is a partial order on
BPn, and the previous example shows that it is not a total order.
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Before proving our main theorem in the next section, we need a better
understanding of our poset of bipartitions.

The smallest element in (BPn,E) is (ÿ, (1, . . . , 1)), while the largest element
is ((n), ÿ). The following theorem characterizes the covering relations in the poset
(BPn,E). It turns out that there are four di�erent cases, that are illustrated in
Example III.4.4.

Theorem III.4.3. Let (⁄, µ), (⁄Õ, µÕ) œ BPn be bipartitions and let i = min{j œ

[n] : (⁄j , µj) ”= (⁄Õ
j
, µÕ

j
)}. Then, (⁄, µ) covers (⁄Õ, µÕ) if and only if one of the

following statements is true:

III.4.3.1. µ = µÕ, ⁄ covers ⁄Õ with respect to the dominance order on partitions
with ⁄Õ

i
= ⁄i ≠ 1, and for k such that ⁄Õ

k
= ⁄k + 1, we have µi≠1 = µi = . . . = µk;

III.4.3.2. ⁄ = ⁄Õ, µ covers µÕ with respect to the dominance order on
partitions, with µÕ

i
= µi ≠ 1, and for k such that µÕ

k
= µk + 1, we have

⁄i = ⁄i+1 = . . . = ⁄k+1;

III.4.3.3. ⁄ ”= ⁄Õ, µ ”= µÕ and ⁄i > ⁄Õ
i
. If k is maximal with ⁄i = ⁄k,

then µi = µk, (⁄Õ
j
, µÕ

j
) = (⁄j ≠ 1, µj + 1) for any integer i Æ j Æ k, and

(⁄Õ
j
, µÕ

j
) = (⁄j , µj) otherwise;

III.4.3.4. ⁄ ”= ⁄Õ, µ ”= µÕ, ⁄i = ⁄Õ
i

(and therefore µi > µÕ
i
). If k is maximal

with µi = µk, then ⁄i+1 = ⁄k+1, (µÕ
j
, ⁄Õ

j+1) = (µj ≠ 1, ⁄j+1 + 1) for any integer
i 6 j 6 k and there is equality otherwise.

The example below shows instances for all the covering cases of bipartitions.
The boxes that are moved are colored in red.

Example III.4.4.

• An example of a covering of type (1), where i = 2 and k = 4:
Q

a ,

R

b D

Q

a ,

R

b .

• An example of a covering of type (2), where i = 1 and k = 4:
Q

ca ,

R

db D

Q

ca ,

R

db .

• An example of a covering of type (3), where i = 2:
Q

a ,

R

b D

Q

a ,

R

b .
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• An example of a covering of type (4), where i = 1:
Q

ca ,

R

db D

Q

ca ,

R

db .

One can think of the cases (3) and (4) as moving a partial column from the
left diagram in the bidiagram (⁄, µ) to the right side and staying in the same
row, or from moving a partial column from the right diagram to the left and
going down one row.

Now we present a proof of the theorem.

Proof of Theorem III.4.3. We start the proof by showing that operations (1)≠(4)
define covering relations. Suppose that (⁄Õ, µÕ) is obtained from (⁄, µ) by one
of these operations. We need to show that (⁄, µ) covers (⁄Õ, µÕ), that is, if
(⁄ú, µú) is such that (⁄, µ) D (⁄ú, µú) D (⁄Õ, µÕ), then either (⁄ú, µú) = (⁄, µ) or
(⁄ú, µú) = (⁄Õ, µÕ). Since the proofs for operations (2) and (4) are respectively
similar to (1) and (3), we will focus on these two operations.

(A) Suppose that (⁄Õ, µÕ) is obtained from (⁄, µ) by operation (1). In particular,
µ = µÕ, and there exists 1 < i < k such that ⁄Õ

i
= ⁄i ≠ 1, ⁄Õ

k
= ⁄k + 1,

⁄Õ
j

= ⁄j for j ”= i, k and µi≠1 = . . . = µk. It is not di�cult to show, by
taking the di�erence between two consecutive partial sums, that

’j œ {1, . . . i ≠ 1, k + 1, . . .}, ⁄j = ⁄ú
j

= ⁄Õ
j

and µj = µú
j

= µÕ
j
,

as well as µú
k

= µk = µÕ
k
. Since µú

i≠1 = µi≠1 = µk = µú
k
, this implies that

µú
i≠1 = . . . = µú

k
as well. In turn, this means that

⁄ = (⁄i, . . . , ⁄k) D ⁄ú = (⁄ú
i
, . . . , ⁄ú

k
) D (⁄Õ

i
, . . . , ⁄Õ

k
) = ⁄Õ.

By hypothesis, ⁄ covers ⁄Õ, so that either ⁄ú = ⁄ or ⁄ú = ⁄Õ. In turn, this
shows that (⁄, µ) covers (⁄Õ, µÕ).

(B) Now, we assume that (⁄Õ, µÕ) is obtained from (⁄, µ) by operation (3). This
means, that there exists i 6 k such that ⁄i = ⁄k > ⁄k+1, µi≠1 > µi = µk

and ⁄Õ
j

= ⁄j ≠ 1, µÕ
j

= µj + 1, for i Æ j Æ k and otherwise ⁄Õ
j

= ⁄j and
µÕ

j
= µj .

As above we observe that

’j < i or j > k, ⁄j = ⁄ú
j

= ⁄Õ
j

and µj = µú
j

= µÕ
j
.

In the same way, it is easy to show that

’i 6 j 6 k, ⁄j + µj > ⁄ú
j

+ µú
j
> ⁄Õ

j
+ µÕ

j
= ⁄j + µj ,

and
’i 6 j 6 k, ⁄j > ⁄ú

j
> ⁄Õ

j
= ⁄j ≠ 1.

Together, this implies that

’i 6 j 6 k, ⁄ú
j

œ {⁄j , ⁄j ≠ 1} and µú
j

œ {µj , µj + 1}.
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a) Assume first that ⁄ú
i

= ⁄i ≠ 1. Then for i 6 j 6 k,

⁄j ≠ 1 6 ⁄ú
j
6 ⁄ú

i
= ⁄i ≠ 1 = ⁄j ≠ 1

which implies ⁄ú
j

= ⁄j ≠ 1 and µú
j

= µj + 1, that is, (⁄ú, µú) = (⁄Õ, µÕ).
b) On the other hand, if ⁄ú

i
= ⁄i or equivalently µú

i
= µi, then for

i 6 j 6 k, we have

µj 6 µú
j
6 µú

i
= µi = µj

which implies that µú
j

= µj = and ⁄ú
j

= ⁄j , that is (⁄ú, µú) = (⁄, µ).

Thus, they describe a covering relation in the poset (BPn,E).
Now, we prove the converse. Let (⁄, µ) and (⁄Õ, µÕ) be two di�erent

bipartitions of n and assume that (⁄Õ, µÕ) E (⁄, µ). We show that there exists
a bipartition (⁄ú, µú) of n that can be obtained from (⁄, µ) through one of
the cases (1)-(4), and (⁄Õ, µÕ) E (⁄ú, µú) E (⁄, µ). Let i œ N be minimal with
(⁄i, µi) ”= (⁄Õ

i
, µÕ

i
).

(A) We consider first the case where ⁄i > ⁄Õ
i

and show that we can obtain
(⁄ú, µú) using one of the operations (1),(3), or (4). Let k œ N be maximal
with ⁄i = ⁄k.
We begin our analysis with distinguishing between the following two cases.
Either there exists a p œ N such that i Æ p Æ k and µp < µp≠1 or not,
with the convention that µ1 < µ0.

a) First, we assume that there exists such a p and we fix the minimal
p with this property. Then µp is the first place after µi≠1 where
we can put a box to still obtain a partition. Let q œ N be minimal
such that p Æ q Æ k and µq = . . . = µk. We define (⁄ú, µú) as the
bipartition of n with (⁄ú

j
, µú

j
) = (⁄j ≠1, µj +1) for every q Æ j Æ k and

otherwise (⁄ú
j
, µú

j
) = (⁄j , µj). We observe easily that (⁄ú, µú) E (⁄, µ)

and ⁄ú
‡ µú = ⁄ ‡ µ D ⁄Õ

‡ µÕ, and we are just left with verifying

⁄ú
t

+
t≠1ÿ

j=1
(⁄ú

j
+ µú

j
) Ø ⁄Õ

t
+

t≠1ÿ

j=1
(⁄Õ

j
+ µÕ

j
),

for any t œ N. However, this is clear for any t < q and t > k. If
q 6 t 6 k, we have

⁄Õ
t
6 ⁄Õ

i
6 ⁄i ≠ 1 = ⁄t ≠ 1 = ⁄ú

t

and
t≠1ÿ

j=1
(⁄ú

j
+ µú

j
) =

t≠1ÿ

j=1
(⁄j + µj) Ø

t≠1ÿ

j=1
(⁄Õ

j
+ µÕ

j
)
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so that we also have

⁄ú
t

+
t≠1ÿ

j=1
(⁄ú

j
+ µú

j
) Ø ⁄Õ

t
+

t≠1ÿ

j=1
(⁄Õ

j
+ µÕ

j
).

This is operation (3).
b) Next, we assume that no such p exists. In particular, i > 1 and

µi≠1 = . . . = µk. We consider the closest possible free place in the
bidiagram (⁄, µ), namely we take r > k to be the minimal integer
with ⁄r < ⁄k ≠ 1 or (⁄r = ⁄k ≠ 1 and µr < µk). Such a r always
exists, since we allow ourselves to extend the partitions with empty
rows. If it did not exist, that would mean that ⁄k = 1 and µk = 0.
By definition of k and i, this would mean that ⁄Õ

j
= ⁄j for 1 6 j < i,

µÕ
j

= µj for 1 6 j < i, that 1 = ⁄k = . . . ⁄i > ⁄Õ
i

= 0. Also, we
have 0 = µk = · · · = µi≠1 = µÕ

i≠1. That means that the sizes of
the bipartitions (⁄, µ) and (⁄Õ, µÕ) are di�erent, which is absurd. We
proceed again with a case distinction.

i. Let us start with assuming that ⁄r = ⁄k ≠ 1 and µr < µk. We
define µú

j
= µj ≠ 1 and ⁄ú

j+1 = ⁄j+1 + 1 for all k Æ j Æ r ≠ 1,
while µú

j
= µj and ⁄ú

j+1 = ⁄j+1 for any other j œ N0. Since
⁄k+1 < ⁄k and µr≠1 = µk > µr, (⁄ú, µú) is a bipartition. Clearly
(⁄ú, µú) E (⁄, µ). By construction we have

⁄ú
t

+
t≠1ÿ

j=1
(⁄ú

j
+ µú

j
) = ⁄t +

t≠1ÿ

j=1
(⁄j + µj) Ø ⁄Õ

t
+

t≠1ÿ

j=1
(⁄Õ

j
+ µÕ

j
)

for any t œ N. Also, for t < k or t > r, we have

tÿ

j=1
(⁄j + µj) =

tÿ

j=1
(⁄ú

j
+ µú

j
)

Thus, it remains to show this inequality holds for k 6 t < r. The
following inequalities follow from the definitions of k, i and r:

⁄ú
k

= ⁄k = ⁄i > ⁄Õ
i
+ 1 > ⁄Õ

k
+ 1,

⁄ú
t

= ⁄t + 1 = ⁄k ≠ 1 + 1 > ⁄Õ
k

+ 1 > ⁄Õ
t

+ 1 for k < t 6 r
µú

t
+ 1 = µt = µk = µi≠1 = µÕ

i≠1 > µÕ
t

for k 6 t < r.

This shows that ⁄ú
‡ µú D ⁄Õ

‡ µÕ, and we obtain (⁄ú, µú) from
(⁄, µ) by operation (4).

ii. Finally, we assume that ⁄r < ⁄k ≠ 1. In particular, µi≠1 =
. . . = µr≠1 and ⁄r≠1 = . . . = ⁄k+1 = ⁄k ≠ 1 = . . . = ⁄i ≠ 1. We
distinguish between two cases.
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• First, assume that µr≠1 > µr. We define ⁄ú
r

= ⁄r + 1 6 ⁄r≠1
and µú

r≠1 = µr≠1 ≠ 1 > µr, while µú
j

= µj and ⁄ú
j

= ⁄j

otherwise. Then (⁄ú, µú) is a well-defined bipartition, and as
usual, (⁄ú, µú) E (⁄, µ). Also, proving that (⁄Õ, µÕ) E (⁄ú, µú)
is straightforward, except maybe proving that

r≠1ÿ

j=1
(⁄ú

j
+ µú

j
) >

r≠1ÿ

j=1
(⁄Õ

j
+ µÕ

j
).

But as previously, we have:

⁄ú
j

= ⁄j = ⁄Õ
j

for 1 6 j < i
µú

j
= µj = µÕ

j
for 1 6 j < i

⁄ú
j

= ⁄j = ⁄i > ⁄Õ
i
+ 1 > ⁄Õ

j
+ 1 for i 6 j 6 k

⁄ú
j

= ⁄j = ⁄k ≠ 1 = ⁄i ≠ 1 > ⁄Õ
i
> ⁄Õ

j
for k < j 6 r ≠ 1

µú
j

= µj = µi≠1 = µÕ
i≠1 > µÕ

j
for i 6 j 6 r ≠ 2

µú
r≠1 = µi≠1 ≠ 1 = µÕ

i≠1 ≠ 1 > µÕ
r≠1 ≠ 1

All together, this gives
r≠1ÿ

j=1
(⁄ú

j
+ µú

j
) >

r≠1ÿ

j=1
(⁄Õ

j
+ µÕ

j
) + (k ≠ i) >

r≠1ÿ

j=1
(⁄Õ

j
+ µÕ

j
)

as wanted. This also means that we obtain (⁄ú, µú) from
(⁄, µ) by operation (4).

• We are left with the case µr = µr≠1. By a previous remark,
this means that µi≠1 = . . . = µr. We set µú = µ and
⁄ú

k
= ⁄k ≠ 1, ⁄ú

r
= ⁄r + 1, and otherwise ⁄ú

j
= ⁄j . Then, by

assumption (⁄ú, µú) is a bipartition and (⁄ú, µú) E (⁄, µ). It
is also straightforward to show that (⁄ú, µú) D (⁄Õ, µÕ) except
maybe the partial sums inequalities in rows k to r. Since
⁄ú

k
+ ⁄ú

r
= ⁄k + ⁄r, we only need to look at rows k to r ≠ 1.

To this purpose, we remark that:

⁄ú
j

= ⁄j = ⁄Õ
j

for 1 6 j < i
µú

j
= µj = µÕ

j
for every j

⁄ú
j

= ⁄j = ⁄i > ⁄Õ
i
+ 1 > ⁄Õ

j
+ 1 for i 6 j < k

⁄ú
k

= ⁄k ≠ 1 = ⁄i ≠ 1 > ⁄Õ
i
> ⁄Õ

k

⁄ú
j

= ⁄j = ⁄k ≠ 1 = ⁄i ≠ 1 > ⁄Õ
i
> ⁄Õ

j
for k < j 6 r ≠ 1

Then for any k 6 j < r, we have
jÿ

t=1
(⁄ú

t
+ µú

t
) >

jÿ

t=1
(⁄Õ

t
+ µÕ

t
) + (k ≠ i) >

jÿ

t=1
(⁄Õ

t
+ µÕ

t
)

and in the same way

⁄ú
j

+
j≠1ÿ

t=1
(⁄ú

t
+ µú

t
) > ⁄Õ

j
+

j≠1ÿ

t=1
(⁄Õ

t
+ µÕ

t
).
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Thus we obtain (⁄ú, µú) from (⁄, µ) by operation (1).

(B) It remains to deal with the case ⁄i = ⁄Õ
i
, and µi > µÕ

i
. It can

easily be deduced from the previous case, by noticing the following: let
fl = (µ1, µ1, µ2, . . .) and flÕ = (µ1, µÕ

1, µÕ
2, . . .), then (fl, ⁄) and (flÕ, ⁄Õ) are

bipartitions of n + µ1 such that (fl, ⁄) D (flÕ, ⁄Õ). If j is minimal such that
(flj , ⁄j) ”= (flÕ

j
, ⁄Õ

j
), then j = i + 1 and flj = µi > µÕ

i
= flÕ

j
. From what we

have just seen, there exists (flú, ⁄ú), obtained from (fl, ⁄) by operations
(1), (3) and (4), such that (fl, ⁄) D (flú, ⁄ú) D (flÕ, ⁄Õ). It is then clear that
flú

1 = fl1 = flÕ
1 = µ1. Let µú = (flú

2, flú
3, . . .). It is clear that (⁄ú, flú) is

a bipartition and obviously (⁄, µ) D (⁄ú, µú) D (⁄Õ, µÕ). Moreover if we
obtained (µú, flú) from (µ, fl) by operations (1), (3) or (4) respectively, we
obtain (⁄ú, µú) from (⁄, µ) by operations (2), (4) and (3) respectively.

⌅

It is in general not true that if ⁄ is a partition covering ⁄Õ, then (⁄, µ) covers
(⁄Õ, µ), as the following example shows:

Example III.4.5. Consider (⁄, µ) = ((3, 3, 2, 1), (2, 2, 2, 1)) and (⁄Õ, µÕ) =
((3, 2, 2, 2), (2, 2, 2, 1)). Indeed, it is µ1 = µ2 = µ3 > µ4. Thus, there exist
bipartitions which lie in between.

Q

a ,

R

bD

Q

a ,

R

bD

Q

a ,

R

b D

Q

a ,

R

b.

Since the poset of partitions for the standard order is a lattice, it is natural
to ask whether this holds for our order on bipartitions. However, this is not
the case already for n = 4. Consider a = ((2), (1, 1)) and b = ((2, 2), ÿ). Now
take c = ((2, 1, 1), ÿ). It is covered by both a and b, so if a and b have a meet,
that is a greatest lower bound, it has to be c. However, for d = (ÿ, (2, 2)), d < a
and d < b, but c and d are not comparable. Similarly, one can ask if the poset
(BPn,E) is graded,i.e., any maximal chain has equal length. However, already
for n = 3 the poset is non-graded since there exist maximal chains of length 6
and 7.

III.5 The posets of Specht ideals and varieties

In this section, we state and prove our main theorem:

Theorem III.5.1. Let (⁄, µ) and (Ë, Ê) be bipartitions of n. Let I(⁄,µ), I(Ë,Ê)
denote their associated Specht ideals and V(⁄,µ), V(Ë,Ê) their associated Specht
varieties. Then, the following assertions are equivalent:

III.5.1.1. The bipartition (⁄, µ) bidominates (Ë, Ê), i.e. (⁄, µ) D (Ë, Ê);

III.5.1.2. The Bn-Specht ideal I(⁄,µ) contains the Bn-Specht ideal I(Ë,Ê), i.e.
I(⁄,µ) ∏ I(Ë,Ê);
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III.5.1.3. The Bn-Specht variety V(⁄,µ) is contained in the Bn-Specht variety
V(Ë,Ê), i.e. V(⁄,µ) µ V(Ë,Ê).

We start with the first implication, namely that a dominance of bipartitions
implies the containment of the corresponding Bn-Specht ideals.

Proposition III.5.2. Let (⁄, µ), (⁄Õ, µÕ) œ BPn be bipartitions of n and let
(⁄Õ, µÕ) E (⁄, µ). Then, I(⁄Õ,µÕ) µ I(⁄,µ).

Proof. It is su�cient to prove the theorem in the four covering cases in III.4.3.
In cases (1) and (2), we have in particular (⁄Õ E ⁄ and µÕ = µ) or (µÕ E µ

and ⁄Õ = ⁄), and the result follows from the proof of ([MRV21, Theorem 1]),
combined with the definition of Bn-Specht polynomials.

Now, we consider case (3). In this case, to go from (⁄Õ, µÕ) to (⁄, µ), we remove
a number a of boxes from a column U1 in µÕ, that will be added to a column
U2 in ⁄Õ. We can restrict our attention to these two columns. Let b =| U2 |, we
then have | U1 |= a+ | U2 |= a + b. Let A = {1, . . . , a}, B1 = {a + 1, . . . , a + b}

and B2 = {a + b + 1, . . . , a + 2b}. Up to permutation, it su�ces to show that
the polynomial

P (X) = �B2(X2)�AfiB1(X2)
Ÿ

iœAfiB1

Xi

is in the ideal generated by polynomials of the form �S(X2)�
S

(X2)
r

iœS
Xi,

where {1, . . . , a + 2b} is the disjoint union of S and S, and | S |= a + b. Let us
consider

Q(X) = �AfiB2(X2)�B1(X2)
Ÿ

iœB1

Xi,

which is a polynomial of the expected form, and

Q̃(X) = Q(X)
Ÿ

iœA

Xi

= �AfiB2(X2)�B1(X2)
Ÿ

iœAfiB1

Xi,

Note that we have:

deg(P ) = b(b ≠ 1) + (a + b)(a + b ≠ 1) + a + b = 2b2 + a2 + b(2a ≠ 1)

and

deg(Q) = (a + b)(a + b ≠ 1) + b(b ≠ 1) + b = 2b2 + a2 + b(2a ≠ 1) ≠ a

so that P and Q̃ have the same degree. We are going to show that P is a
combination of ‘(‡)‡ · Q̃ for ‡’s in G = SAfiB1 . Note that we can rewrite

�AfiB2(X2) = �A(X2)�B2(X2)
Ÿ

iœA

R(X2
i
)
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where
R(y) =

Ÿ

jœB2

(y ≠ X2
j
).

Then, since
r

iœAfiB1
Xi and �B2(X2) are invariant by G, we can factor them

out and focus on the remaining terms, then looking at

P ú(X) = �AfiB1(X2)

and

Qú(X) = �A(X2)�B1(X2)
Ÿ

iœA

R(X2
i
).

Also consider the subgroup H = SA ◊ SB1 of G. Then, for ·1 œ SA, ·2 œ SB1 ,
we have ·1·2(�A(X2)) = ‘(·1)(�A(X2)) and ·1·2(�B1(X2)) = ‘(·2)(�B1(X2)),
and because

r
iœA

R(X2
i
) is H-invariant, we get

‘(·1·2)·1·2Qú = Qú,

allowing us to consider the sum

Q =
ÿ

‡œG/H

‘(‡)‡Qú,

and we claim that P ú = Q.
First, we show that P ú divides Q, namely that for every i ”= j œ A fi B1,

X2
i

≠ X2
j

divides Q. Since for every ‡ œ G, ‡Q = ±Q, and G acts transitively
on pairs (i, j), it is enough to check that X2

1 ≠ X2
2 divides Q. We hence have

to show that Q vanishes when imposing X2
1 = X2

2 . To see this, first observe
that the terms in the sum are in correspondence with set partitions K fi K of
A fi B1, where | K |= a. Indeed, up to permutation by elements of H, we only
need to choose where to send the subset A = {1, . . . , a}. Now, if ‡ sends 1 and
2 in the same subset, the corresponding Vandermonde determinant in ‘(‡)‡Qú

vanishes whenever X2
1 = X2

2 . We then only need to focus on partitions where
1 and 2 are not in the same subset. There are two kinds of such partitions:
those with 1 œ K and 2 œ K, and those 2 œ K and 1 œ K. The transposition
(12) naturally induces a bijection between these sets of partitions. If ‡ œ G is
a representative for a partition of the first kind, then (12)‡ is a representative
for the corresponding partition of the second kind. When X2

1 = X2
2 , we have

(12)‡Qú(x) = ‡Qú(x), and because ‘((12)‡) = ≠‘(‡), the two corresponding
terms cancel out.

Then, we need to check that P ú and Q have the same leading term
with respect to the lexicographical ordering. The leading term of P ú is
X2(a+b≠1)

1 X2(a+b≠2)
2 · · · X2

a+b≠1. Then, for ‡ œ G sending {1, . . . , k} onto K,
the partial degree of ‡Qú in X1 is

I
2(a ≠ 1) + 2b if 1 œ K

2(b ≠ 1) if 1 /œ K
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and therefore ‡Qú can give a contribution to the leading term of Q only if 1 œ K.
By the same argument, 2 has to be in K, and in the end, K = {1, . . . , a}: Indeed,
assume there is a minimal i 6 a with i /œ K. Then, the leading term of ‡Qú is of
the form X2(a+b≠1)

1 X2(a+b≠2)
2 . . . X2(a+b≠j+1)

j≠1 X2(b≠1)
j

m where m is a monomial
in the variables Xj+1, . . . , Xa+b. Since, j Æ a, then 2(b ≠ 1) < 2(a + b ≠ j),
and therefore the leading monomial of ‡Qú is strictly lower than that of
Qú. Thus, the leading term of Q is exactly the leading term of Qú, which
is X2(a+b≠1)

1 X2(a+b≠2)
2 · · · X2

a+b≠1, as expected. This concludes the covering case
(3).

The proof for the covering case (4) is very similar. In this situation, to go
from (⁄Õ, µÕ) to (⁄, µ), we remove a boxes from a column U1 in ⁄Õ, before adding
them to a column U2 in µÕ, with | U2 |= b and | U1 |= a+b+1. We can apply the
previous argument, where this time A = {1, . . . , a}, B1 = {a + 1, . . . , a + b + 1},
B2 = {a + b + 2, . . . , a + 2b + 1},

P = �AfiB1(X2)�B2(X2)
Ÿ

iœB2

Xi

Q = �B1(X2)�AfiB2(X2)
Ÿ

iœAfiB2

Xi

and
Q̃ = (

Ÿ

jœA

Xj)Q

= �B1(X2)�AfiB2(X2)
Ÿ

iœA

X2
i

Ÿ

iœB2

Xi.

⌅

The second implication of III.5.1 is clear, it remains to prove that (3) implies
(1):

Proposition III.5.3. Let (⁄, µ), (Ë, Ê) be bipartitions and V(⁄,µ) µ V(Ë,Ê). Then,
(⁄, µ) D (Ë, Ê).

To prove this implication, we will consider two types of points in Kn:

Lemma III.5.4. Let (Ë, Ê) œ BPn and � = Ë ‡ Ê be a partition of n. Consider
the point

z = (a1, . . . , a1¸ ˚˙ ˝
�1

, a2, . . . , a2¸ ˚˙ ˝
�2

, . . . , am, . . . , am¸ ˚˙ ˝
�m

)

with a2
i

”= a2
j

if i ”= j and ai ”= 0 if i 6 len(Ê).

i) z /œ V(Ë,Ê).

ii) If (⁄, µ) œ BPn is a bipartition such that z /œ V(⁄,µ), then ⁄ ‡ µ D �.

Proof.
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i) Let (T, S) be the generalized bitableau of shape (Ë, Ê) which has the filling

Q

ccccccccca

a1 a1 · · · a1

a2 a2 · · ·

...

...

ah · · ·

,

a1 a1 · · · · · · a1

a2 a2 · · · · · ·

...

al · · ·

R

dddddddddb

.

i.e., the i-th row of both T and S contains only ai’s. The assumption ai ”= 0
for i 6 len(Ê) ensures that S contains no 0 entry, and by construction the
squares of column entries are pairwise di�erent. Thus, z œ V c

(Ë,Ê).

ii) By assumption, there is a bitableau (T, S) of shape (⁄, µ) such that
sp(T,S)(z) ”= 0. Then, according to Lemma III.3.7, there is a tableau
U = T ‡ S of shape ⁄ ‡ µ such that sp

U
(z2) ”= 0. Therefore z2 does not

belong to the Sn-Specht variety V⁄‡µ, and ([MRV21, Prop 1.ii)]) gives

� = �(z) = �(z2) E ⁄ ‡ µ,

which proves the Lemma.

⌅

Lemma III.5.5. Let (Ë, Ê) œ BPn be a bipartition of n. Consider the point

z = (0, . . . , 0¸ ˚˙ ˝
Ë1

, a1, . . . , a1¸ ˚˙ ˝
Ê1+Ë2

, a2 . . . , a2¸ ˚˙ ˝
Ê2+Ë3

, . . . , am, . . . , am¸ ˚˙ ˝
Êm+Ëm+1

)

with a2
i

”= a2
j

if i ”= j and ai ”= 0. Then:

i) z /œ V(Ë,Ê).

ii) If (⁄, µ) œ BPn is a bipartition such that z /œ V(⁄,µ), then

k≠1ÿ

j=1
(⁄j + µj) + ⁄k Ø

k≠1ÿ

j=1
(Ëj + Êj) + Ëk

for any integer k Ø 1.

Proof.
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i) Let (T, S) be the generalized bitableau of shape (Ë, Ê) which has the filling
Q

ccccccccca

0 0 · · · 0

a1 a1 · · ·

...

ah · · ·

,

a1 a1 · · · a1

a2 a2 · · ·

...

...

al · · ·

R

dddddddddb

i.e., Ëi contains only ai≠1’s and Êi contains only ai’s, where a0 = 0. We
observe that no entry in S equals 0 and the squares of column entries are
pairwise di�erent. Thus, we have z œ V c

(Ë,Ê).

ii) By assumption, there exists a bitableau (T, S) of shape (⁄, µ) such that

0 ”= sp(T,S)(z) = sp
T

(z2) sp
S

(z2) ·

Ÿ

jœS

zj .

Let (T ú, Sú) be the generalized bitableau obtained from (T, S) by replacing
i with ai in any box. This means that the zeros of z are written in T ú

and no column in T ú or Sú contains entries with equal squares. Since
permutation of the column entries can only change the sign of sp(T,S)(z),
we can assume that the entries in every column in (T ú, Sú) are sorted
increasingly by the indices of the ai’s from above to below, and with
a0 = 0.
We obtain that all the 0’s must be written in the first row of T ú which
implies ⁄1 Ø Ë1. Now, for an integer k Ø 1 the ak’s in (T ú, Sú) must be
written in di�erent columns in the generalized bitableau (T ú, Sú). Since
the entries in (T ú, Sú) are written with increasing indices in each column
from the top to the bottom, we know that the aj ’s with 0 6 j 6 k must
be written within the first k rows of S and the first k + 1-rows in T . Thus,
by the pigeon hole principle, we have

kÿ

j=1
(⁄j + µj) + ⁄k+1 Ø

kÿ

j=1
(Ëj + Êj) + Ëk+1.

⌅

Now, we can prove Proposition III.5.3:

Proof of Proposition III.5.3. The assumption is equivalent to V c

(Ë,Ê) µ V c

(⁄,µ).
We have to prove that ⁄ ‡ µ D Ë ‡ Ê and that

q
k≠1
j=1 (⁄j + µj) + ⁄k Ø

q
k≠1
j=1 (Ëj + Êj) + Ëk for every integer k Ø 1.
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For the first claim, consider the point

z = (a1, . . . , a1¸ ˚˙ ˝
Ë1+Ê1

, a2, . . . , a2¸ ˚˙ ˝
Ë2+Ê2

, . . . , am, . . . , am¸ ˚˙ ˝
Ëm+Êm

)

with a2
i

”= a2
j

for i ”= j, and ai ”= 0 if i Æ len(Ê). According to i) in Lemma III.5.4,
z œ V c

(Ë,Ê). By assumption, we then have z œ V c

(⁄,µ), and ii) in Lemma III.5.4
gives

⁄ ‡ µ D �(z) = Ë ‡ Ê.

For the second claim, consider the point

z = (0, . . . , 0¸ ˚˙ ˝
Ë1

, a1, . . . , a1¸ ˚˙ ˝
Ê1+Ë2

, a2 . . . , a2¸ ˚˙ ˝
Ê2+Ë3

, . . . , am, . . . , am¸ ˚˙ ˝
Êm+Ëm+1

)

with a2
i

”= a2
j

for i ”= j, and ai ”= 0. According to i) in Lemma III.5.5, z œ V c

(Ë,Ê).
By assumption, we then have z œ V c

(⁄,µ), and ii) in Lemma III.5.5 gives

k≠1ÿ

j=1
(⁄j + µj) + ⁄k Ø

k≠1ÿ

j=1
(Ëj + Êj) + Ëk

for any integer k Ø 1. ⌅

III.6 Orbit types

In this section we define orbit types of elements in Kn with respect to the action
of the hyperoctahedral group. Compared with the Sn-orbit types, they allow a
finer set decomposition of Kn since one distinguishes whether coordinates are
0 or not. This leads to a set partition of the Bn-Specht varieties based on the
combinatorics of the poset (BPn,E).

Recall that if z = (a1, . . . , an) œ Kn, then the Sn-orbit type of z is the
unique partition �(z) = (�1, . . . , �l) „ n such that StabSn(z) ƒ Z/�1Z ◊

. . . ◊ Z/�lZ, or equivalently, there exists b1, . . . , bl pairwise distinct such that
z œ Sn · (b1, . . . , b1¸ ˚˙ ˝

�1

, . . . , bl, . . . , bl¸ ˚˙ ˝
�l

).

Definition III.6.1. Let ⁄ = (⁄1, . . . , ⁄m) „ n be a partition and t œ N0. Let
j = min{i : ⁄i < t} with the convention that j = m + 1 if t = 0. Then
the t-cut of ⁄ is the bipartition (fl, ‡) defined as fl = (t, · · · , t, ⁄j , · · · , ⁄m) and
‡ = (⁄1 ≠ t, · · · , ⁄j≠1 ≠ t). We denote it by cut(⁄, t).

We have cut(⁄, 0) = (ÿ, ⁄) while cut(⁄, t) = (⁄, ÿ) for any t > ⁄1. We observe
that if cut(⁄, t) = (‡, fl), then ‡ ‡ fl = ⁄.

We are now ready to define the Bn-orbit type of a point in Kn and the notion
of Bn-orbit set:
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Definition III.6.2. Let z œ Kn. The Bn-orbit type of z is

�(z) = cut(�(z2), tz)

where tz is the number of 0 coordinates of z.
For (⁄, µ) œ BPn, the Bn-orbit set associated to (⁄, µ) is then

H(⁄,µ) = {z œ Kn : �(z) = (⁄, µ)} .

We observe that Bn-orbits sets might be empty. The non-empty Bn-orbits
sets correspond to bipartitions (⁄, µ) such that ⁄1 = . . . = ⁄len(µ)+1. Moreover,
if (⁄, µ) is such that H(⁄,µ) ”= ÿ, then any point z œ H(⁄,µ) is of the following
form: let m = len(µ). Then there exists non-zero elements a1, . . . , al œ K, with
distinct squares such that

z = ‡ · (a1, . . . , a1¸ ˚˙ ˝
⁄1+µ1

, . . . , am, . . . , am¸ ˚˙ ˝
⁄1+µm

, 0, . . . , 0¸ ˚˙ ˝
⁄1

, am+1, . . . , am+1¸ ˚˙ ˝
⁄m+2

, . . . , al, . . . , al¸ ˚˙ ˝
⁄l+1

)

for some ‡ œ Bn. It is straightforward that l = m if len(⁄) 6 m (which implies
⁄ = ÿ) and l = len(⁄) ≠ 1 if len(⁄) > m.

Example III.6.3. We present the orbit types of K3. Let a, b, c œ Kú be such that
they have distinct squares.

z �(z)
(0, 0, 0) ((3), ÿ)

(±a, 0, 0) ((2, 1), ÿ)
(±a, ±b, 0) ((1, 1, 1), ÿ)
(±a, ±a, 0) ((1, 1), (1))

(±a, ±a, ±a) (ÿ, (3))
(±a, ±a, ±b) (ÿ, (2, 1))
(±a, ±b, ±c) (ÿ, (1, 1, 1))

The remaining bipartitions ((2), (1)), ((1), (2)), ((1), (1, 1)) of 3 have an empty
orbit set.

The following proposition follows from the previous definitions and comments:

Proposition III.6.4. Let z œ Kn and (⁄, µ) = �(z). Then �(z2) = ⁄ ‡ µ.
Moreover, the Bn-orbit sets define a set partition of Kn, namely Kn =v

(⁄,µ)œBPn
H(⁄,µ).

Proposition III.6.5. Let z œ Kn, and (⁄, µ) œ BPn. Then:

III.6.5.1. z ”œ V�(z),

III.6.5.2. z ”œ V(⁄,µ) ∆ (⁄, µ) D �(z).

Proof. Let (Ë, Ê) = �(z) and m = len(Ê). Then there exists ‡ œ Bn and
a1, . . . , al œ Kú with distinct squares such that z = ‡zÕ with

zÕ = (a1, . . . , a1¸ ˚˙ ˝
Ë1+Ê1

, . . . , am, . . . , am¸ ˚˙ ˝
Ë1+Êm

, 0, . . . , 0¸ ˚˙ ˝
⁄1

, am+1, . . . , am+1¸ ˚˙ ˝
Ëm+2

, . . . , al, . . . , al¸ ˚˙ ˝
Ël+1

).
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Since the Specht varieties are invariant under the action of Bn, we can assume
that z = zÕ. With this shape, we can apply Lemma III.5.4 to z which gives
immediately (1), and partly (2): if z /œ V (⁄, µ), then ⁄ ‡ µ D Ë ‡ Ê. It remains
to prove that if z ”œ V (⁄, µ), then

q
k≠1
j=1 (⁄j + µj) + ⁄k Ø

q
k≠1
j=1 (Ëj + Êj) + Ëk for

any integer k Ø 1. To do so, it is enough to observe that since Ë1 = . . . = Ëm+1,
the point

zÕÕ = (0, . . . , 0¸ ˚˙ ˝
Ë1

, a1, . . . , a1¸ ˚˙ ˝
Ê1+Ë2

, a2 . . . , a2¸ ˚˙ ˝
Ê2+Ë3

, . . . , am, . . . , am¸ ˚˙ ˝
Êm+Ëm+1

)

is in the same orbit, and we can apply Lemma III.5.5 to conclude the proof.
⌅

As a consequence of our previous results, we get a decomposition of Bn-Specht
varieties in terms of orbit sets:

Theorem III.6.6.

V(⁄,µ) =

Q

a
€

(Ë,Ê)œBPn,(Ë,Ê)E(⁄,µ)
H(Ë,Ê)

R

b
c

=
€

(Ë,Ê)œBPn,(Ë,Ê) ”E(⁄,µ)
H(Ë,Ê).

Proof. The collection
)

H(Ë,Ê) : (Ë, Ê) œ BPn

*
defines a set partition of Kn by

definition, which explains the second equality.
In order to prove the first one, we first assume that z ”œ V(⁄,µ). By
part (2) in Proposition III.6.5 we obtain that (⁄, µ) D �(z). Thus z œt

(Ë,Ê)œBPn,(Ë,Ê)E(⁄,µ) H(Ë,Ê).
Conversely, let z œ

t
(Ë,Ê)E(⁄,µ) H(Ë,Ê). In other words, �(z) E (⁄, µ). Then,

part (1) in Proposition III.6.5 implies z ”œ V�(z). On the other hand, by
Theorem III.5.1, V(⁄,µ) µ V�(z). Therefore z ”œ V(⁄,µ). ⌅

Example III.6.7. We calculate the Specht variety corresponding with the
bipartition ((1, 1), (2)) using Theorem III.6.6. The bipartitions (Ë, Ê) encoding
non-empty orbit sets such that (Ë, Ê) ” E((1, 1), (2)) are the bipartitions in

� = {((2, 2), ÿ), ((2, 1, 1), ÿ), (ÿ, (4)), ((3, 1), ÿ), ((4), ÿ)} µ BP4 .

Then,

V((1,1),(2)) =
€

(⁄,µ)œ�
H(⁄,µ)

= H((2,2),ÿ) fi H((2,1,1),ÿ) fi H(ÿ,(4)) fi H((3,1),ÿ) fi H((4),ÿ),

which means
V((1,1),(2)) = B4 · {(0, 0, a, a), (0, 0, a, b), (a, a, a, a), (0, 0, 0, a), (0, 0, 0, 0) : a, b œ K>0}.

One might look for a more natural orbit-type, only involving the number
of zeroes of a point, and the Sn-orbit-type of the remaining non-zero squared
coordinates. Indeed, our previous decomposition can be reformulated in such a
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way, and it can be obtained either using Sn-invariance and results of [MRV21], or
as a consequence of our previous results on bipartitions. We just briefly describe
here the latter approach because such a point of view, even if it gives a natural
decomposition, does not give information on inclusions of Bn-Specht varieties,
which will be needed for our applications in the next section.

If z = (a1, . . . , an) œ Kn is a point, then

StabSn(a2
1, . . . , a2

n
) ƒ S�1 ◊ . . . ◊ S�l ◊ St

where �1 > . . . > �l and t is the number of zero coordinates of z. We could
have defined the orbit type of z as

�(z) = (t, (�1, . . . , �l)).

Then, there is a bijection Ï between the set of pairs (t, �) where n > t > 0
and � „ n ≠ t and the set of bipartitions (⁄, µ) such that H(⁄,µ) ”= ÿ given by

(t, �) ‘æ cut((�1, �2, . . . , �l, t), t)

where (�1, �2, . . . , �l, t) denotes the partition obtained by rearranging
(�1, �2, . . . , �l, t) in non increasing order.

Now, for t 6 0 and � „ n≠ t, if we denote by Gt,� = {z œ Kn; �(z) = (t, �)},
we have by construction

Gt,� = H„(t,�).

Moreover, „ preserves the orders in the following sense: for t fixed, „(t, �) E
„(t, �Õ) in our poset of bipartitions if and only if � E �Õ in the poset of partitions.
Also, it is obvious that if t > ⁄1, then z œ V(⁄,µ).

As a consequence, our decomposition in Theorem III.6.6 becomes in this
context

!
V(⁄,µ)

"c =
⁄1€

t=1

€

�,

„(t,�)E(⁄,µ)

Gt,�.

Actually, if one fixes 0 6 t 6 ⁄1, one can prove that

„(t, �) E (⁄, µ) … � E ⁄(t)
‡ µ,

where ⁄(t) is defined as follows: if s = max{i; ⁄i > k}, then

⁄(t) = (⁄1, . . . , ⁄s≠1, ⁄s + ⁄s+1 ≠ k, ⁄s+2, . . . , ⁄l).

Finally, we can reformulate the decomposition as:

!
V(⁄,µ)

"c =
⁄1€

t=1

€

�E⁄(t)‡µ

G(t,�).
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III.7 Applications to Bn-invariant ideals

III.7.1 Specht ideals in Bn-invariant ideals

The main result in the article [MRV21] studies the Sn-Specht ideals contained
in an ideal I which is globally invariant under the action of Sn. We give here
the main ideas of this statement, before extending it to the case of Bn.

For P a polynomial in an Sn-invariant ideal I µ K[X1, . . . , Xn] of degree d,
we denote by wt(Pd) the number of variables appearing in the highest component
Pd of P . Moreover, for a monomial m of degree d in P , the partial degrees of m
induce a partition (k1, . . . , k¸), and under the assumption wt(Pd) + d Æ n, we
have in particular wt(Pd) + ¸ Æ n, and therefore we can define the partition

µ(m) = (k1 + 1, k2 + 1, . . . , k¸ + 1, 1, . . . , 1¸ ˚˙ ˝
n≠d≠¸

)

of n. It is then proved ([MRV21, Theorem 4]) that for every monomial
m œ Mon(Pd), the ideal I contains every sp

T
for which sh(T ) E µ(m)‹.

The proof works as follows: up to permutation of the variables, we may
assume that

m = Xk1
1 Xk2

2 · · · Xk¸
¸

and since wt(Pd) + d Æ n, there exists d = k1 + . . . + k¸ many variables in
{X1, . . . Xn} that do not appear in Pd. More precisely, we can take I1, . . . , I¸,
disjoint subsets of {1, . . . , n} such that for any 1 Æ i Æ ¸, there are ki elements
in Ii, and none of them appears in Pd. Then, if for 1 Æ i Æ ¸, Ji = {i} fi Ii, we
can prove

�J1 · · · �J¸ = k

k1! · · · k¸!
ÿ

‡œSymJ1 ◊···◊SymJ¸

‘(‡)‡(�I1 · · · �I¸P ) (III.3)

where �I is the Vandermonde polynomial of the ordered set I and k ”= 0.
Now, we want to generalize this result to Bn-invariant ideals. First, we need

to associate a bipartition to a given monomial:

Definition III.7.1. Let m be a monomial in K[X1, . . . , Xn]. There exist unique
sets I1 and I2 such that we can write m as

m =
Ÿ

iœI1

X2ki
i

Ÿ

iœI2

X2ri
i

Ÿ

iœI2

Xi

and ki ”= 0. Denote ¸ =| I1 |, d1 =
q

iœI1
ki, s =| I2 |, and d2 =

q
iœI2

ri. The
sets {ki, i œ I1} and {ri, i œ I2} respectively induce partitions (⁄1, . . . , ⁄¸) of d1
and (µ1, . . . , µs) of d2. If moreover we assume that ¸ + s + d1 + d2 Æ n, we can
define a bipartition �(m) of n by

�(m) = (⁄̃, µ̃) = ((⁄1 + 1, ⁄2 + 1, . . . , ⁄¸ + 1, 1, . . . , 1¸ ˚˙ ˝
n≠(¸+s+d1+d2)

), (µ1 + 1, µ2 + 1, . . . , µs + 1)).
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Finally, we define

�ú(m) = (⁄̃‹, µ̃‹) = (n ≠ (s + d1 + d2), ¸, ⁄̃‹
3 , . . .), (s, µ̃‹

2 , . . .)),

which is a bipartition of n as well.

With this notion, we get, for Bn-invariant ideals:

Theorem III.7.2. Let I µ K[X1, . . . , Xn] be a Bn-invariant ideal, and let P œ I.
Assume that m is a monomial in the homogeneous component of highest degree
of P . Using the notation of Definition III.7.1, assume that wt(Pd) + d1 + d2 6 n.
Then, we have the ideal inclusion

I�ú(m) µ I.

Proof. Up to permutation, we may assume that

m =
¸Ÿ

i=1
X2ki

i

¸+sŸ

i=¸+1
X2ri

i

¸+sŸ

i=¸+1
Xi

and that the coe�cient of m in P is 1. Let ‘i œ Bn the map changing Xi in ≠Xi.
Then, the polynomial

P ≠ ‘iP

2
is a polynomial in I whose terms are exactly the terms of P having an odd
degree in Xi, and therefore divisible by Xi. After applying this transformation
for every i œ {¸ + 1, . . . , ¸ + s}, we may substitute P with a polynomial of the
form

P̃ (X)
¸+sŸ

i=¸+1
Xi,

containing m in its leading term, and where every term in P̃ has even degree in
Xi, for every i œ {¸ + 1, . . . , ¸ + s}. Further, for i /œ {¸ + 1, . . . , ¸ + s}, we can
apply the transformation

P̃ (X) + ‘iP̃ (X)
2

to get a polynomial which is still in I, but its terms are exactly the terms of P
having an even degree in Xi. In the end, we may assume that P is of the form:

P (X) = Q(X2)
¸+sŸ

i=¸+1
Xi,

where m is still a monomial of the leading term.
Now we can apply a strategy similar to the one described for Sn-invariant

ideals. Since ¸ + s + d1 + d2 Æ wt(Pd) + d1 + d2 Æ n, there exists d1 + d2 =
k1 + . . . + k¸ + r1 + . . . + rs many variables in {X1, . . . Xn} that do not appear in
Pd, and we can take I1, . . . , I¸, I¸+1, . . . , I¸+s, disjoint subsets of {1, . . . , n} such

154



Applications to Bn-invariant ideals

that for any 1 Æ i Æ ¸, there are ki elements in Ii, for any ¸ + 1 Æ i Æ ¸ + s, there
are ri elements in Ii, and none of them appears in Pd. Then, for 1 Æ i Æ ¸ + s,
denote

Ji = {i} fi Ii,

and �̃J(X) = �J(X2) the Vandermonde polynomial associated with the
variables X2

i
for i œ J . Consider

R(X) = P (X)�̃I1 · · · �̃I¸+s

Ÿ

iœI¸+1◊···◊I¸+s

Xi

We then have for T := Sym
J1 ◊ · · · ◊ Sym

J¸+s

ÿ

‡œT

‘(‡)‡(R(X)) =
ÿ

‡œT

‘(‡)‡(P (X)�̃I1 · · · �̃I¸+s

Ÿ

iœI¸+1◊···◊I¸+s

Xi)

=
ÿ

‡œT

‘(‡)‡

Q

aQ(X2)�̃I1 · · · �̃I¸+s

Ÿ

iœJ¸+1◊···◊J¸+s

Xi

R

b

=
Ÿ

iœJ¸+1◊···◊J¸+s

Xi

ÿ

‡œSymJ1 ◊···◊SymJ¸

‘(‡)‡
!

Q(X2)�̃I1 · · · �̃I¸+s

"

= k1! · · · k¸! · r¸+1! · · · r¸+s!�̃J1 · · · �̃J¸
�̃J¸+1 · · · �̃J¸+s

Ÿ

iœJ¸+1◊···◊J¸+s

Xi

where the last equality follows from (III.3). Therefore, I contains the
polynomial

�̃J1 · · · �̃J¸�̃J¸+1 · · · �̃J¸+s

Ÿ

iœJ¸+1◊···◊J¸+s

Xi

which is one of the generators of I�ú(m). By symmetry, we get the theorem. ⌅

Corollary III.7.3. Let I µ K[X1, . . . , Xn] be a Bn-invariant ideal, and let P œ I.
Assume that m is a monomial in the leading term of P . Using the notation
of Definition III.7.1, assume that wt(Pd) + d1 + d2 6 n. Then, we have the
inclusion of varieties

V (I) µ V (I�ú(m))

and V (I) fl H(Ë,Ê) = ÿ for any bipartition (Ë, Ê) œ BPn bidominated by �ú(m).

Proof. The inclusion of varieties follows immediately from the set inclusion in
Theorem III.7.2, while the second claim follows from the set partition of Specht
varieties in Theorem III.6.6. ⌅

We illustrate how this can be applied:

Example III.7.4. Let P = X2X3(X2
1 ≠ 1) œ K[X1, . . . , X4]. The polynomial

P contains a unique monomial m = X2
1 X2X3 of highest degree. Using the

notation of Definition III.7.1 we obtain wt(P4) = 3, l = 1, s = 2, d1 = 1, d2 = 0,
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�(m) = ((2), (1, 1)), and �ú(m) = ((1, 1), (2)). Let I denote the ideal that
is generated by the Bn orbit of P . Then, by Corollary III.7.3 it must be
V (I) µ V((1,1),(2)). Thus, we have

V (I) µ B4 · {(0, 0, a, a), (0, 0, a, b), (a, a, a, a), (0, 0, 0, a), (0, 0, 0, 0) : a, b œ K>0}.

We observe that V (I) = {(1, 1, 1, 1), (0, 0, 0, a), (0, 0, 0, 0) : a œ K}. Thus V (I)
contains already points of three of the five possible orbit types.

III.7.2 Connections with Representation Theory

We assume that K = C, or K = R if G is a real reflection group. Let
G be a finite group acting linearly on the polynomial ring K[X1, . . . , Xn].
The polynomials fixed by this action form a finitely generated subalgebra
K[X1, . . . , Xn]G. Moreover, each finite group admits - up to isomorphism -
a finite number of irreducible K[G]-modules and the action on K[X1, . . . , Xn]
can be decomposed into isotypic components, i.e., we have a decomposition of
the form

K[X1, . . . , Xn] =
n

‰

K[X1, . . . , Xn]‰,

where ‰ runs over the pairwise non-isomorphic representations and each isotypic
component K[X1, . . . , Xn]‰ contains only pairwise isomorphic K[G]-submodules.
Notice, that with this notion the invariant polynomials K[X1, . . . , Xn]G
correspond to the trivial representation. Clearly, K[X1, . . . , Xn] has the
structure of a K[X1, . . . , Xn]G-module. Finally, let J+ µ K[X1, . . . , Xn]
be the ideal generated by invariant polynomials of positive degree. Then
the algebra K[X1, . . . , Xn]G := K[X1, . . . , Xn]/J+ is called the coinvariant
algebra. Whereas these algebras can be defined and studied for all finite
groups, it was shown by Chevalley ([Che55, Theorem (B)]) and Sephard-Todd
([ST54]) that for finite reflection groups, these algebras are very regular and
moreover that they charaterize finite reflection groups by what is now known as
Chevalley–Shephard–Todd theorem:

Theorem III.7.5 ([Che55; ST54]). Let G be a finite group. Then, the following
are equivalent

III.7.5.1. G is a group generated by reflections.

III.7.5.2. The algebra of polynomial invariants K[X1, . . . , Xn]G is a (free)
polynomial algebra.

III.7.5.3. The algebra K[X1, . . . , Xn] is a free module over K[X1, . . . , Xn]G

III.7.5.4. K[X1, . . . , Xn]G a�ords the regular representation of G, i.e.,

K[X1, . . . , Xn]G ƒ

n

‰

dim(‰)‰,

where ‰ runs over the pairwise non-isomorphic representations of G.
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Applications to Bn-invariant ideals

Let (⁄, µ) œ BPn be a bipartition, denote by K[X1, . . . , Xn](⁄,µ) the isotypic
component corresponding to (⁄, µ), and by I(⁄,µ) the associated Specht ideal.
Notice that by Theorem III.7.5, K[X1, . . . , Xn](⁄,µ) is also a finitely generated
K[X1, . . . , Xn]G module, generated by s⁄,µ many elements, where s⁄,µ denotes
the dimension of the corresponding irreducible representation. It follows from
([MY98, Theorem 1 (2)]) that s⁄,µ is in fact equal to the number of standard
bitableaux of shape ⁄, µ. We note the following Proposition:

Proposition III.7.6. Let d be minimal with

V := K[X1, . . . , Xn](⁄,µ) fl K[X1, . . . , Xn]Æd ”= ÿ.

Then, the multiplicity of an irreducible representation of type (⁄, µ) in V is 1.
This unique irreducible representation is given by the Bn-Specht polynomials of
shape (⁄, µ). Moreover, K[X1, . . . , Xn](⁄,µ) is contained in the ideal generated
by this unique irreducible representation, i.e.,

K[X1, . . . , Xn](⁄,µ) µ I(⁄,µ).

Proof. Since K[X1, . . . , Xn](⁄,µ) is a direct sum of irreducible Bn-modules
isomorphic to the standard Bn-Specht module, W(⁄,µ), it is enough to show
that for every Specht polynomial Q = sp(T,S) with sh(T, S) = (⁄, µ), and every
Bn-isomorphism „, the polynomial

P = „(Q)

is divisible by Q. First, for every i œ {1, . . . , n}, if ‘i is the map replacing Xi

with ≠Xi, since „ respects the action of Bn, we must have

‘iP =
I

≠P if i œ S

P if i /œ S
,

which implies that P is of the form

P (X) = P̃ (X2)
Ÿ

iœS

Xi.

Then, for every · switching two elements in a same column of T or S, we must
have · P̃ = ≠P̃ , so that P is divisible by Q. ⌅

Remark III.7.7. We remark that the statement about multiplicity 1 of an
irreducible representation in Proposition III.7.6 does not apply in general.
Consider the real reflection group Dn µ Bn which is generated by all permutations
and those maps that switch an even number of signs. Then the Bn-irreducible
representation of type (⁄, µ) and (µ, ⁄) remain Dn-irreducible if ⁄ ”= µ, but are
Dn-isomorphic. By Theorem III.5.1 we have

I((2),(1,1)) ”µ I((1,1),(2)) and I((1,1),(2)) ”µ I((2),(1,1)).
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Thus, no polynomial in the Bn-orbit of (X2
3 ≠ X2

4 )X3X4 divides the polynomial
(X2

1 ≠ X2
2 )X3X4 although

Èsp(T,S) : sh(T, S) = ((2), (1, 1))ÍK ƒDn Èsp(T,S) : sh(T, S) = ((1, 1), (2))ÍK.

The Dn-irreducible representation ((2), (1, 1)) occurs for the first time in
K[X1, . . . , X4]Æ4 but with multiplicity 2.

Combining Corollary III.7.3 with Proposition III.7.6 we obtain the following.

Theorem III.7.8. Let I µ K[X1, . . . , Xn] a Bn-invariant ideal satisfying the
conditions of III.7.3. Consider the the associated coordinate ring RI =
K[X1, . . . , Xn]/I. Then, viewed as a K[Bn]-module, RI does not contain any
irreducible K[Bn]-submodule which is isomophic to W⁄,µ. Moreover, RI is a
finite K[X1, . . . , Xn]Bn module of rank bounded by

q
(Ë,Ê)E(⁄,µ) s2

(Ë,Ê).

III.8 Conclusion and open questions

We initiated in this article the investigation of a class of polynomial ideals which
are naturally linked to the action of a group on a polynomial ring. Our results
provide an analogue of the relation of the combinatorics of integer partitions
and Sn-Specht ideals to bipartitions and Bn-Specht ideals. The present work
shows that it is indeed possible to derive an analogous connection between
combinatorics and algebra for the case of the hyperoctahedral group as was
observed in the case of the symmetric group. Both groups are finite reflection
groups, and they thus share important similarities from a view point of invariant
theory and representation theory. Our results here lead to the natural question,
if similar relations between integer (bi)-partitions and ideals can be derived
for other (pseudo)-reflection groups. Indeed, in [MY98] a similar basis of the
coinvariant algebra is provided for complex reflection groups of type G(r, p, n),
where r, p, n œ ZØ1 and p | n. We recover G(1, 1, n) ƒ Sn, G(2, 1, n) ƒ Bn,
and G(2, 2, n) ƒ Dn. It seems plausible to envision similar results to the ones
presented here in these cases as well. More precisely, that there is a partial
order on r-multipartitions, which are linked to the irreducible representations
of the complex reflection group G(r, 1, n), which transfers to the inclusion of
the G(r, 1, n)-Specht ideals and their corresponding varieties. Furthermore, it
remains to investigate if the Bn-Specht ideals also have similarly nice algebraic
properties as their Sn counter parts. Indeed, it is known that the Sn-Specht
ideals are radical (see [MOY21, Theorem 1.1] and [Woo05, Proposition 4]). Both
proofs rely on the understanding of the Sn-Specht varieties in terms of orbit
sets, i.e., Theorem III.6.6, and crucially depend on the property that any Sn-
orbit set is non-empty which is not true for Bn-Specht varieties. Nevertheless,
computational evidence for small number of variables motivates the conjecture,
similar to the Sn situation ([Lie21; MOY21; Rie21; Woo05]).

Conjecture III.8.1. The Bn-Specht ideals are radical. Moreover, for
a bipartition (⁄, µ) œ BPn the Bn-Specht polynomials {sp(T,S) :

158



References

(T, S) is a bitableau of shape (Ë, Ê) E (⁄, µ)} form a universal Gröbner basis of
I(⁄,µ).

Finally, Yanagawa [Yan21] classified the partitions for which the associated
Sn-Specht ideals are Cohen-Macaulay and it would be interesting to derive
a similar characterization of bipartitions (⁄, µ) for which the corresponding
Bn-Specht ideals have this property.
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