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Abstract
In this paper we prove new continuous refinements of some Jensen type inequalities
in both direct and reversed forms. As applications we also derive some continuous
refinements of Hermite–Hadamard, Hölder, and Popoviciu type inequalities. As
particular cases we point out the corresponding results for sums and integrals
showing that our results contain both several well-known but also some new results
for these special cases.
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1 Preliminaries
Classical inequalities are extremely important for several parts of mathematical sciences
as well as their applications in engineering and natural sciences. This is one reason of the
great and increasing interest to further develop and apply this important area. Here we
just mention two such types of recent fairly recent developments:

1. It is well known that the classical Jensen inequality is more or less equivalent to the
concept of convexity. It is also well known that the Jensen inequality implies several of the
classical inequalities, see e.g. the books [10, 18] and the P.-L. Lions related material [19].
Moreover, by using some variations of the concept of convexity, some refined versions
of classical inequalities have been proved. The first paper concerning a refinement of the
Jensen inequality with this idea is [1], and for the first application of this result, see [16].
See also [6] and [20]. Moreover, by using other variations of the concept of convexity, other
refinements of some classical inequalities have been obtained, see e.g. [2] and [3] and the
references in these papers.

2. The classical inequalities can in several cases be given in a more unified continuous
and/or e.g. Banach function spaces setting. See e.g. [12–14], and [15] and the references
given there.
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The main aim of this paper is to further complement and develop 1. and 2. by first prov-
ing some new continuous versions of Jensen type inequalities in both direct and reversed
form by using the concept of strong convexity. Moreover, as applications we derive some
corresponding continuous Hermite–Hadamard, Hölder, and Popoviciu type inequalities.
For another interesting use of strongly convex functions, we also refer to [11].

In this paper we use some usual notations for measure spaces. Let (X,μ) and (Z,λ) be
two probability measure spaces. Let α : X × Z → [0,∞〉 be a measurable mapping such
that

∫
X

α(x, z) dμ(x) = 1 for each z ∈ Z (1)

and
∫

Z
α(x, z) dλ(z) = 1 for each x ∈ X. (2)

In [20] a continuous refinement of the Jensen inequality is given.

Theorem 1.1 Let (X,μ) and (Z,λ) be two probability measure spaces, and let α : X ×Z →
[0,∞〉 be a measurable function on X ×Z satisfying (1) and (2). If ϕ is a real convex function
on the interval I ⊆ R, then for the function f : X → I , f ,ϕ ◦ f ∈ L1(μ), it holds that

ϕ

(∫
X

f dμ

)
≤

∫
Z
ϕ

(∫
X

f (x)α(x, z) dμ(x)
)

dλ(z) ≤
∫

X
(ϕ ◦ f ) dμ. (3)

If ϕ is concave, then the reversed signs of the inequalities hold in (3).

If λ is a discrete measure, the refinement of the Jensen inequality has been rediscovered
recently, see e.g. [7], while similar results can be found in [5, 6, 17] for some particular
cases of α.

One of our objectives is to give results for strongly convex functions. So, let us evoke a
definition and some useful facts about that class of functions.

Definition 1.2 Let I be an interval of the real line. A function ϕ : I → R is called a strongly
convex function with modulus c > 0 if

ϕ
(
tu + (1 – t)v

) ≤ tϕ(u) + (1 – t)ϕ(v) – ct(1 – t)(u – v)2

for all u, v ∈ I and all t ∈ [0, 1].

The theory of strongly convex functions is vast, but here we point out only a very useful
characterization of it. Namely, a function ϕ is strongly convex with modulus c > 0 if and
only if the function ψ(x) = ϕ(x) – cx2 is convex [11]. The Jensen inequality for strongly
convex functions is given in its discrete and integral form in [9]. A slightly modified result
is the following theorem.

Theorem 1.3 Let (X,μ) be a probability measure space, I be an interval in R. Let ϕ : I → R
be a strongly convex function with modulus c > 0, and let f : X → I be a function such that
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f , f 2 ∈ L1(μ). Then

ϕ

(∫
X

f dμ

)
≤

∫
X

(ϕ ◦ f ) dμ – c
∫

X
(f – f̄ )2 dμ, (4)

where f̄ =
∫

X f dμ.

The paper is organized as follows: in Sect. 2 we derive the announced refinement of the
Jensen inequality (see Theorem 2.1). In order to be able to see that our results generalize
and unify some other recent results in the literature (see [5, 7, 17], and [21]), we point
out some more or less direct consequences of Theorem 2.1 (see Corollaries 2.3 and 2.4).
The corresponding results both for convex and strongly convex functions are discussed
and proved in Sect. 3 (see Theorems 3.1 and 3.2). As applications, we derive in Sect. 4
some corresponding new continuous versions of the Hermite–Hadamard inequality (see
Theorem 4.1). Moreover, in Sect. 5 the corresponding results concerning the Hölder and
Popoviciu inequalities are discussed and proved (see Theorem 5.1). Finally, in order to
put more light on the “gaps” in some of our inequalities, we use Sect. 6 to derive some
important properties of the functionals describing these gaps (see Theorems 6.1 and 6.2).

2 Refinements of the Jensen inequality for strongly convex functions
The main result in this section reads as follows.

Theorem 2.1 Let the assumptions of Theorem 1.1 hold. If ϕ : I → R is a strongly convex
function with modulus c > 0 and f : X → I is a function such that f , f 2 ∈ L1(μ), then

ϕ

(∫
X

f dμ

)
≤

∫
Z
ϕ

(∫
X

f (x)α(x, z) dμ(x)
)

dλ(z)

– c
∫

Z

(∫
X

f (x)α(x, z) dμ(x) – f̄
)2

dλ(z)

≤
∫

X
(ϕ ◦ f ) dμ – c

∫
X

(f – f̄ )2 dμ, (5)

where f̄ =
∫

X f dμ.

Proof Since the function ϕ is strongly convex, the function ϕ – c(·)2 is convex, and for it
the refinement (3) holds. Therefore, after adding the term c(

∫
X f dμ)2 = cf̄ 2 on each side

of the refinement of the Jensen inequality, we get

ϕ

(∫
X

f dμ

)
≤

∫
Z
ϕ

(∫
X

f (x)α(x, z) dμ(x)
)

dλ(z)

– c
[∫

Z

(∫
X

f (x)α(x, z) dμ(x)
)2

dλ(z) – f̄ 2
]

≤
∫

X
(ϕ ◦ f ) dμ – c

[∫
X

f 2 dμ – f̄ 2
]

. (6)
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Let us transform the term
∫

X f 2 dμ – f̄ 2 as follows:

∫
X

f 2 dμ – f̄ 2 =
∫

X
f 2 dμ – 2f̄ · f̄ + f̄ 2

=
∫

X
f 2 dμ – 2

∫
X

f̄ f dμ +
∫

X
f̄ 2 dμ =

∫
X

(f – f̄ )2 dμ.

We denote F(z) :=
∫

X f (x)α(x, z) dμ(x). Using the Fubini theorem and the properties of
the weight α, we obtain

F̄ :=
∫

Z
F(z) dλ(z) =

∫
Z

(∫
X

f (x)α(x, z) dμ(x)
)

dλ(z)

=
∫

X

(∫
Z
α(x, z) dλ(z)

)
f (x) dμ(x)

=
∫

X
1 · f (x) dμ(x) = f̄ . (7)

Under this notation and using the same method as previously, we find that the second
term in the middle expression of (6) is equal to

–c
[∫

Z
F2(z) dλ(z) – F̄2

]
= –c

∫
Z

[∫
X

f (x)α(x, z) dμ(x) – f̄
]2

dλ(z). (8)

By combining (6)–(8) we obtain (5), and the proof is complete. �

Remark 2.2 Since c > 0, the chain of inequalities in (5) can be followed by ≤ ∫
X(ϕ ◦ f ) dμ.

So Theorem 2.1 is indeed a genuine refinement of the Jensen inequality.

It is interesting to state the corresponding refinements for some particular cases such as
for discrete and for integral Jensen’s inequality with finitely many functions.

Corollary 2.3 (i) Let –∞ ≤ a < b ≤ ∞, ϕ : I → R be a strongly convex function with
modulus c. Let w, f ,αi : [a, b] → R, i = 1, 2, . . . , n, be integrable functions such that w,αi ≥ 0,∑n

i=1 αi(x) = 1 for each x ∈ [a, b],
∫ b

a w dx 
= 0,
∫ b

a αiw dx 
= 0, and f ([a, b]) ⊆ I . Then the
following refinement of the Jensen inequality holds:

ϕ

(
1

W

∫ b

a
fw dx

)
≤ 1

W

n∑
i=1

(∫ b

a
αiw dx

)
ϕ

(∫ b
a αifw dx∫ b
a αiw dx

)

–
c

W

n∑
i=1

(∫ b

a
αiw dx

)(∫ b
a αifw dx∫ b
a αiw dx

– f̄
)2

≤ 1
W

∫ b

a
(ϕ ◦ f )w dx –

c
W

∫ b

a
(f – f̄ )2w dx

≤ 1
W

∫ b

a
(ϕ ◦ f )w dx, (9)

where W =
∫ b

a w dx and f̄ = 1
W

∫ b
a fw dx.
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(ii) Let wj, j = 1, . . . , m, be nonnegative numbers such that
∑m

j=1 wj 
= 0, let αij, i = 1, . . . , n,
j = 1, . . . , m, be nonnegative numbers such that

∑m
j=1 wjαij 
= 0, i = 1, . . . , n, and

∑n
i=1 αij = 1,

j = 1, . . . , m. Let fj, j = 1, . . . , m, be real numbers from an interval I . Then, for any strongly
convex function ϕ : I → R with modulus c, the following refinement of the discrete Jensen
inequality holds:

ϕ

(
1

W

m∑
j=1

wjfj

)
≤ 1

W

n∑
i=1

( m∑
j=1

wjαij

)
ϕ

(∑m
j=1 wjαijfj∑m
j=1 wjαij

)

–
c

W

n∑
i=1

( m∑
j=1

wjαij

)(∑m
j=1 wjαijfj∑m
j=1 wjαij

– f̄
)2

≤ 1
W

m∑
j=1

wjϕ(fj) –
c

W

m∑
j=1

wj(fj – f̄ )2

≤ 1
W

m∑
j=1

wjϕ(fj), (10)

where W =
∑m

j=1 wj and f̄ = 1
W

∑m
j=1 wjfj.

Proof (i) By applying Theorem 2.1 for

Z = Z1 ∪ · · · ∪ Zn, Zi = [i – 1, i〉, Zn = [n – 1, n], i = 1, 2, . . . , n – 1,

X = [a, b], dμ(x) =
w(x)
W

dx, dλ(z) =
1

W

(∫ b

a
αiw dx

)
dz for z ∈ Zi,

α(x, z) = W
αi(x)∫ b

a αiw dx
for z ∈ Zi,

the inequalities in (5) become (9).
(ii) By applying Theorem 2.1 for the same substitutions for Z and λ as we did in the proof

of the first part, together with the following:

X = X1 ∪ · · · ∪ Xm, Xi = [i – 1, i〉, Xm = [m – 1, m], i = 1, 2, . . . , m – 1,

dμ(x) =
w(x)
W

dx, w(x) = wj, f (x) = fj, αi(x) = αij for x ∈ Xj,

the inequalities in (5) and trivial arguments give (10). The proof is complete. �

Also, we state a refinement with finitely many functions with partition of the space X.
Namely, we get the following.

Corollary 2.4 Let the assumptions of Theorem 1.3 hold. Let X1, . . . , Xn be a partition of
the set X. Let μ have the additional property that

∫
Xi

dμ 
= 0, i = 1, 2, . . . , n.
Then, for any strongly convex function ϕ : I → R with modulus c, the following refinement

of the Jensen inequality holds:

ϕ

(∫
X

f dμ

)
≤

n∑
i=1

(∫
Xi

dμ

)
ϕ

(∫
Xi

f dμ∫
Xi

dμ

)
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– c
n∑

i=1

(∫
Xi

dμ

)(∫
Xi

f dμ∫
Xi

dμ
– f̄

)2

≤
∫

X
(ϕ ◦ f ) dx – c

∫
X

(f – f̄ )2 dμ

≤
∫

X
(ϕ ◦ f ) dμ, (11)

where f̄ =
∫

X f dμ.

Proof Let us use the same partition of the space Z as in the proof of Corollary 2.3, where
the functions αi are defined as

αi = χXi , i = 1, 2, . . . , n.

Here, χS denotes the characteristic function of the set S. Then the assumptions of The-
orem 2.1 are satisfied. Hence, (5) and a trivial estimate show that the inequalities in (11)
hold. The proof is complete. �

If in Corollary 2.4 we put X = [a, b], a = a0 < a1 < a2 < · · · < an = b and Xi = [ai–1, ai〉 for
i = 1, 2, . . . , n, dμ = w(x)

W dx, then the inequalities in (11) become as follows:

ϕ

(
1

W

∫ b

a
fw dx

)
≤ 1

W

n∑
i=1

(∫ ai

ai–1

w dx
)

ϕ

(∫ ai
ai–1

fw dx∫ ai
ai–1

w dx

)

–
c

W

n∑
i=1

(∫ ai

ai–1

w dx
)(∫ ai

ai–1
fw dx∫ ai

ai–1
w dx

– f̄
)2

≤ 1
W

∫ b

a
(ϕ ◦ f )w dx –

c
W

∫ b

a
(f – f̄ )2w dx

≤ 1
W

∫ b

a
(ϕ ◦ f )w dx, (12)

where W =
∫ b

a w dx and f̄ = 1
W

∫ b
a fw dx.

Remark 2.5 When the function ϕ is convex i.e. when c = 0, some of the above-mentioned
results are already known.

The refinement via two functions α1, α2, α1 + α2 = 1 involving integrals for convex func-
tion ϕ has been published very recently in paper [7] together with applications in the in-
formation theory. The results for finite sequences for convex function ϕ are given in [21].

The result of Corollary 2.4 for n = 2 and c = 0 is the main result in paper [5].
If c = 0 i.e. if ϕ is a convex function, then the corresponding result of (12) is given in the

paper [17].

3 Refinements of the reverse Jensen inequality for convex and strongly convex
functions

The simplest form of the reverse Jensen inequality is the following inequality where one
weight is positive while the second one is negative:
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Let ϕ be a real convex function on I . If p and q are positive numbers such that p – q > 0,
then

(p – q)ϕ
(

pa – qb
p – q

)
≥ pϕ(a) – qϕ(b) (13)

for all a, b ∈ I such that pa–qb
p–q ∈ I .

This follows from the definition of a convex function: ϕ(tx + (1 – t)y) ≤ tϕ(x) + (1 – t)ϕ(y),
t ∈ [0, 1], x, y ∈ I after the substitutions

t =
p – q

p
, x =

pa – qb
p – q

, y = b.

The reverse Jensen inequality for integrals follows from Lemma 4.25 in the book [18,
p. 124] and has the following form.

Theorem 3.1 Let (X,μ) be a probability measure space. Let u0, f0 ∈ R, u0 > 1. Let ϕ be a
real convex function on an interval I and f0 ∈ I . Let f be a function on X such that f and
ϕ ◦ f are integrable and u0f0–

∫
X f dμ

u0–1 ∈ I . Then

(u0 – 1) · ϕ
(u0f0 –

∫
X f dμ

u0 – 1

)
≥ u0ϕ(f0) –

∫
X

(ϕ ◦ f ) dμ. (14)

If ϕ is concave, then the reversed inequality holds.

The most known consequences of the previous inequality are the Popoviciu inequal-
ity and the Bellman inequality, which are reversed inequalities of the Hölder and the
Minkowski inequalities, respectively. Here we give a proof of it since we will use one step
of that proof in our further investigation.

Proof By putting in (13)

p = u0, q = 1, a = f0, b =
∫

X
f dμ,

we obtain that

(u0 – 1) · ϕ
(u0f0 –

∫
X f dμ

u0 – 1

)
≥ u0ϕ(f0) – ϕ

(∫
X

f dμ

)

≥ u0ϕ(f0) –
∫

X
(ϕ ◦ f ) dμ, (15)

where in the last inequality we use the Jensen inequality for integral. �

The following theorem is a continuous refinement of the previously mentioned reverse
Jensen inequality for integrals.

Theorem 3.2 (Continuous refinement of the reverse Jensen inequality for convex func-
tion) Let the assumptions of Theorem 1.1 hold. Additionally, let u0 ∈ R be such that u0 > 1.
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Let ϕ be a real convex function on an interval I and f0 ∈ I . Let f be a function on X such
that f and ϕ ◦ f are integrable and u0f0–

∫
X f dμ

u0–1 ∈ I . Then

(u0 – 1) · ϕ
(u0f0 –

∫
X f dμ

u0 – 1

)

≥ u0ϕ(f0) –
∫

Z
ϕ

(∫
X

f (x)α(x, z) dμ(x)
)

dλ(z)

≥ u0ϕ(f0) –
∫

X
(ϕ ◦ f ) dμ. (16)

If ϕ is concave, then the reversed signs of the inequalities hold.

Proof Using the first inequality in (15) and the result of Theorem 1.1, we get

(u0 – 1) · ϕ
(u0f0 –

∫
X f dμ

u0 – 1

)
≥ u0ϕ(f0) – ϕ

(∫
X

f dμ

)

≥ u0ϕ(f0) –
∫

Z
ϕ

(∫
X

f (x)α(x, z) dμ(x)
)

dλ(z)

≥ u0ϕ(f0) –
∫

X
(ϕ ◦ f ) dμ, (17)

and the proof is complete. �

By using the previous theorem, it is easy to obtain a continuous refinement of the reverse
Jensen inequality for a strongly convex function.

Theorem 3.3 (Refinement of the reverse Jensen inequality for a strongly convex function)
Let the assumptions of Theorem 1.1 and Theorem 3.2 hold. Then, for the strongly convex

function ϕ, the following holds:

(u0 – 1) · ϕ
(u0f0 –

∫
X f dμ

u0 – 1

)

≥ u0ϕ(f0) –
∫

Z
ϕ

(∫
X

f (x)α(x, z) dμ(x)
)

dλ(z)

– c
(

u0f 2
0 –

∫
Z

(∫
X

f (x)α(x, z) dμ(x)
)2

dλ(z) –
(u0f0 –

∫
X f dμ)2

u0 – 1

)

≥ u0ϕ(f0) –
∫

X
(ϕ ◦ f ) dμ –

c
u0 – 1

∫
X

[
(f – f )2 – u0(f0 – f )2]dμ,

where f =
∫

X f dμ.

Proof By applying the result of Theorem 3.2 for the convex function ϕ – c(·)2, we get the
desired result. �

4 Refinements of some Hermite–Hadamard inequalities for strongly convex
functions

As a first application of Theorem 2.1 we note the following: a particular choice of the
functions w and f gives a continuous refinement of the left-hand side of the well-known
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Hermite–Hadamard inequality. In fact, by putting in (5) X = [a, b], dμ(x) = 1
b–a dx, and

f (x) = x for x ∈ [a, b], we get

ϕ

(
a + b

2

)
≤

∫
Z
ϕ

(
1

b – a

∫ b

a
xα(x, z) dx

)
dλ(z)

– c
∫

Z

(
1

b – a

∫ b

a
xα(x, z) dx –

a + b
2

)2

dλ(z)

≤ 1
b – a

∫ b

a
ϕ(x) dx –

c
12

(b – a)2, (18)

where α satisfies (1) and (2).
The inequality between the first and the third term in chain (18) is already known. It

is the left-hand side of the Hermite–Hadamard inequality for a strongly convex function,
and it is given in [9]. Hence, (18) is a continuous refinement of this result.

A discrete refinement of the left-hand side of the Hermite–Hadamard inequality for a
convex function is given in [17]. Here we give a generalization of it, namely, a discrete re-
finement of the left-hand side of the Hermite–Hadamard inequality for a strongly convex
function. It follows from (12) applied with w(x) = 1 and f (x) = x for x ∈ [a, b]:

ϕ

(
a + b

2

)
≤ 1

b – a

n∑
i=1

(ai – ai–1)ϕ
(

ai + ai–1

2

)

–
c

b – a

n∑
i=1

(ai – ai–1)
(

ai + ai–1

2
–

a + b
2

)2

(19)

≤ 1
b – a

∫ b

a
ϕ(x) dx –

c
12

(b – a)2.

The particular case of (19) for n = 2, a0 = a, a1 = a+b
2 , a2 = b is given in [4].

The refinement of the right-hand side of the Hermite–Hadamard inequality is based
on the Lah–Ribarič inequality, and we cannot directly obtain a continuous refinement.
A discrete refinement of the right-hand side of the Hermite–Hadamard inequality for a
convex function is given in [17]. Here we derive a refinement of the Lah–Ribarič inequality
for a strongly convex function, which follows from the result for a convex function applied
with the convex function ϕ – c(·)2.

Theorem 4.1 Let f , w be integrable functions on [a, b], w ≥ 0, W :=
∫ b

a w(t) dt 
= 0, and
let a0, a1, . . . , an be such that a = a0 < a1 < · · · < an = b and mi ≤ f (t) ≤ Mi for t ∈ [ai–1, ai],
mi 
= Mi, i = 1, 2, . . . , n, and m = min{m1, . . . , mn}, M = min{M1, . . . , Mn}. If ϕ : I → R is a
strongly convex function with modulus c, f ([a, b]) ⊆ I , then

(i)

1
W

∫ b

a
ϕ
(
f (t)

)
w(t) dt –

c
W

∫ b

a
f 2(t)w(t) dt

≤ 1
W

n∑
i=1

wi

[
Mi – f̄i

Mi – mi
ϕ(mi) +

f̄i – mi

Mi – mi
ϕ(Mi)

]
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–
c

W

n∑
i=1

wi
[
f̄i(Mi + mi) – miMi

]

≤ M – f̄
M – m

ϕ(m) +
f̄ – m

M – m
ϕ(M) – c

[
f̄ (M + m) – mM

]
, (20)

where f̄ = 1
W

∫ b
a f (t)w(t) dt, wi =

∫ ai
ai–1

w(t) dt, and f̄i = 1
wi

∫ ai
ai–1

f (t)w(t) dt.
(ii)

1
b – a

∫ b

a
ϕ
(
f (t)

)
dt

≤ 1
b – a

n∑
i=1

(ai – ai–1)
ϕ(ai–1) + ϕ(ai)

2

–
c

b – a

[ n∑
i=1

(ai – ai–1)
a2

i + a2
i–1

2

]
–

c
3
(
a2 + ab + b2)

≤ ϕ(a) + ϕ(b)
2

– c
(b – a)2

6
.

Proof (i) If ϕ is a strongly convex function, then the function ϕ – c(·)2 is convex. Putting
in Theorem 2.3 from paper [17] ϕ – c(·)2 instead of f , after simple calculations, we get the
statement of this theorem.

(ii) This result follows from inequalities (20) using w(t) = 1 and f (t) = t. �

As we can see, the chain of inequalities (20) is a refinement of the right-hand side of the
Hermite–Hadamard inequality for a strongly convex function. If n = 2, a0 = a, a1 = a+b

2 ,
a2 = b, we get the result from [4, Theorem 5].

5 Refinements of the Hölder and Popoviciu inequalities
It is known that the Hölder inequality is a consequence of the Jensen inequality for an
appropriate function ϕ. In the further text we use a version of (3) given for general measure
μ not only for a probability measure. In that case (3) has the following form:

ϕ

(
1

W

∫
X

f (x)w(x) dμ(x)
)

≤
∫

Z
ϕ

(
1

W

∫
X

f (x)α(x, z)w(x) dμ(x)
)

dλ(z)

≤ 1
W

∫
X

(ϕ ◦ f )(x)w(x) dμ, (21)

where ϕ is convex, w : X → [0,∞〉 is a measurable function such that W :=
∫

X w dμ 
= 0
and

∫
X

αw dμ =
∫

X
w dμ for z ∈ Z,

∫
Z
α dλ = 1 for x ∈ X. (22)

If ϕ is concave, then the reversed signs of the inequalities hold in (21).
If r, s > 1 are numbers such that 1

r + 1
s = 1, then (21) for the concave function ϕ(x) =

x1/r with the substitutions w = wgs, f = f rg–s, where α satisfies assumption (22) and
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∫
X wgsα dμ =

∫
X wgs dμ, gives the following continuous refinement of the Hölder inequal-

ity:

‖fg‖1 ≤
∫

Z

∥∥α1/r(·, z)f
∥∥

r · ∥∥α1/s(·, z)g
∥∥

s dλ ≤ ‖f ‖r · ‖g‖s. (23)

As usual, by ‖F‖p we denote ‖F‖p = (
∫

X |F(x)|pw(x) dμ(x))1/p.
Let us write the weighted version of (16).
Let w be a nonnegative measurable function on X, w0 ∈ R be such that 0 <

∫
X w dμ < w0.

Let ϕ be a real convex function on an interval I and f0 ∈ I . Let f be a function on X such
that wf and w(ϕ ◦ f ) are integrable and w0f0–

∫
X wf dμ

w0–
∫

X w dμ
∈ I . If α satisfies (22), then

(w0 – W ) · ϕ
(w0f0 –

∫
X fw dμ

w0 – W

)

≥ w0ϕ(f0) – W
∫

Z
ϕ

(
1

W

∫
X

f (x)α(x, z)w(x) dμ(x)
)

dλ(z)

≥ w0ϕ(f0) –
∫

X
(ϕ ◦ f )w dμ, (24)

where W =
∫

X w dμ.
Putting in (24) the substitutions ϕ(x) = x1/r , w = wgs, f = f rg–s, w0 = w0cs

2, f0 = cr
1c–s

2 , and
if α satisfies assumption (22) and

∫
X wgsα dμ =

∫
X wgs dμ, then we have the following re-

finement of the Popoviciu inequality:

w0c1c2 – ‖fg‖1 ≥ w0c1c2 –
∫

Z

∥∥α1/r(·, z)f
∥∥

r

∥∥α1/s(·, z)g
∥∥

s dλ

≥ (
w0cr

1 – ‖f ‖r
r
)1/r(w0cs

2 – ‖g‖s
s
)1/s, (25)

provided that all integrals exist. We note that both (23) and (25) are stated and proved in
[14]. A particular case of (23) when the continuous refinement collapses to the sum of two
functions u, v, such that u(x) + v(x) = 1 on X = [a, b], was described in [7].

We derive the following refinement of the Hölder and the Popoviciu inequalities.

Theorem 5.1 Let r, s > 1 be numbers such that 1
r + 1

s = 1. Let (X,μ) and (Z,λ) be two mea-
sure spaces,

∫
Z dλ = 1, w : X → [0,∞〉 be a measurable mapping on X such that

∫
X w dμ 
=

0, and α : X × Z → [0,∞〉 be a function which satisfies (2). Let c1, c2, w0 > 0 and f , g : X →
[0,∞〉 be such that w0cr

1 – ‖f ‖r
r > 0 and w0cs

2 – ‖g‖s
s > 0 and

∫
X α(x, z)w(x)gs(x) dμ(x) =∫

X w(x)gs(x) dμ(x), z ∈ Z, hold. Then
(i) The following continuous refinement of the Hölder inequality holds:

‖fg‖1 ≤
(∫

Z
‖fgα‖r

1 dλ

)1/r

≤ ‖f ‖r · ‖g‖s, (26)

provided that all integrals exist.
(ii) The following continuous refinement of the Popoviciu inequality holds:

w0c1c2 – ‖fg‖1 ≥ (
w0cs

2 – ‖g‖s
s
)1/s

(
w0cr

1 –
1

‖g‖r
s

∫
Z

∥∥fgα(·, z)
∥∥r

1 dλ(z)
)1/r



Nikolova et al. Journal of Inequalities and Applications         (2022) 2022:63 Page 12 of 15

≥ (
w0cr

1 – ‖f ‖r
r
)1/r(w0cs

2 – ‖g‖s
s
)1/s, (27)

provided that all integrals exist.

Proof (i) By making the substitutions

ϕ(x) = xr , w = wgs, and f = fg–s/r

in (21) for the convex function ϕ, we get inequality (26).
(ii) After the substitutions

ϕ(x) = xr , w0 = w0cs
2, f0 = c1c–s/r

2 w = wgs, and f = fg–s/r

in (24) for the convex function ϕ, we get inequality (27). The proof is complete. �

Remark 5.2 In paper [7] we find some special cases of the (i) part of the previous theorem
when X = [a, b], dμ = dx, and the continuous refinement becomes just a refinement for
two functions u, v such that u(x) + v(x) = 1 on [a, b].

6 Properties of some related functionals
A well-known idea to put further light to various inequalities is to separately investigate
the properties of the functionals describing the “gaps” in the inequalities. In this section
we give some examples of results of this type.

We fix the following objects: a measure space (X,μ), a probability measure space
(Z,λ), a convex function ϕ : I → R, functions f : X → I , α : X × Z → [0,∞〉 such that∫

Z α(x, z) dλ(z) = 1 (x ∈ X), and a positive number f0. By Kϕ,f ,α we denote the following set
of weights:

Kϕ,f ,α :=
{

w : X → [0,∞〉 : wf , w(ϕ ◦ f ) ∈ L1(μ),
∫

X
αw dμ =

∫
X

w dμ 
= 0
}

.

By Kϕ,f0,f ,α we denote a class of pairs (w0, w):

Kϕ,f0,f ,α :=
{

(w0, w) : w0 ∈ 〈0,∞〉, w : X → [0,∞〉, wf , w(ϕ ◦ f ) ∈ L1(μ),

∫
X

αw dμ =
∫

X
w dμ 
= 0, w0 –

∫
X

w dμ > 0,
w0f0 –

∫
X fw dμ

w0 –
∫

X w dμ
∈ I

}
.

Let us define the functionals LJ , MJ , RJ , KJ :

LJ (w) := W · ϕ
(

1
W

∫
X

fw dμ

)
,

MJ (w) := W ·
∫

Z
ϕ

(
1

W

∫
X

f (x)α(x, z)w(x) dμ(x)
)

dλ(z),

RJ (w) :=
∫

X
(ϕ ◦ f )w dμ,

KJ (w0, w) := (w0 – W ) · ϕ
(w0f0 –

∫
X fw dμ

w0 – W

)
.
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First we state the following complementary information about the “gaps” in inequalities
(21).

Theorem 6.1 The functionals LJ and MJ are subadditive on Kϕ,f ,α i.e.

LJ (p + q) ≤ LJ (p) + LJ (q),

MJ (p + q) ≤ MJ (p) + MJ (q)

for all p, q ∈ Kϕ,f ,α , and the functionals J1 = RJ – LJ and J2 = RJ – MJ are superadditive.
Moreover, if p, q ∈ Kϕ,f ,α satisfy p ≤ q, then

J1(p) ≤ J1(q) and J2(p) ≤ J2(q).

Proof Since ϕ is a convex function, we get

LJ (p + q) = (P + Q)ϕ
(

1
P + Q

∫
X

(p + q)f dμ

)

= (P + Q)ϕ
(

P
P + Q

(
1
P

∫
X

pf dμ

)
+

Q
P + Q

(
1
Q

∫
X

qf dμ

))

≤ (P + Q) ·
[

P
P + Q

ϕ

(
1
P

∫
X

pf dμ

)
+

Q
P + Q

ϕ

(
1
Q

∫
X

qf dμ

)]

= P · ϕ
(

1
P

∫
X

pf dμ

)
+ Q · ϕ

(
1
Q

∫
X

qf dμ

)

= LJ (p) + LJ (q),

where P =
∫

X p dμ and Q =
∫

X q dμ.
Let us denote S(w) := W · ϕ( 1

W
∫

X f (x)α(x, z)w(x) dμ(x)), where W =
∫

X w dμ. Using the
same method as in the first part of the proof, we get that S(p + q) ≤ S(p) + S(q). By inte-
grating the terms in this inequality over Z, we get the subadditivity of MJ .

In literature, the functional J1 is called the Jensen functional, and its superadditivity is
already known. Also, a lot of results connected with J1 are given in [8]. The superadditivity
of J2 follows from the linearity of RJ and the subadditivity of MJ .

By using the results of Sect. 3, we see that the functionals J1 and J2 are nonnegative on
Kϕ,f ,α . If p ≤ q, then from the superadditivity of Ji, i = 1, 2, we get

Ji(q) = Ji
(
p + (q – p)

) ≥ Ji(p) + Ji(q – p) ≥ Ji(p)

i.e. Ji, i = 1, 2, are nondecreasing functionals. The proof is complete. �

Now we define the following functionals, which are connected with the reverse of the
Jensen inequality:

C(w0) := w0ϕ(f0),

P1(w0, w) := C(w0) – RJ (w) – KJ (w0, w),
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P2(w0, w) := C(w0) – LJ (w) – KJ (w0, w),

P3(w0, w) := C(w0) – MJ (w) – KJ (w0, w).

Our corresponding result for the “gaps” in inequality (24) reads as follows.

Theorem 6.2 The functionals P1, P2, P3 are superadditive on Kϕ,f0,f ,α i.e.

Pi(p0 + q0, p + q) ≥ Pi(p0, p) + Pi(q0, q), i = 1, 2, 3,

for all (p0, p), (q0, q) ∈ Kϕ,f0,f ,α . Moreover,

P1 ≤ P3 ≤ P2 ≤ 0. (28)

Proof Putting in the definition of the convex function ϕ

(r + s)ϕ
(

rx + sy
r + s

)
≤ rϕ(x) + sϕ(z)

the following substitutions:

r = p0 – P, s = q0 – Q, where P =
∫

X
p dμ, Q =

∫
X

q dμ

x =
p0f0 –

∫
X pf dμ

p0 – P
, y =

q0g0 –
∫

X qf dμ

q0 – Q
,

we get that

KJ (p0 + q0, p + q)

=
(
(p0 + q0) – (P + Q)

) · ϕ
( (p0f0 + q0g0) –

∫
X(p + q)f dμ

(p0 + q0) – (P + Q)

)

≤ (p0 – P) · ϕ
(p0f0 –

∫
X pf dμ

p0 – P

)
+ (q0 – Q) · ϕ

(q0g0 –
∫

X qf dμ

q0 – Q

)

= KJ (p0, p) + KJ (q0, q).

Hence, the subadditivity of KJ is proved. From this fact and from the linearity of C and RJ ,
the superadditivity of P1 also follows. The other statements are proved in similar ways, so
we omit the details.

The inequalities in (28) follow from the refinements of the Jensen inequality and from
the inequalities in (15). The proof is complete. �
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