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Abstract: To enable high computational loads for low cost underwater drones, a cloud based
architecture is proposed to take advantage of recent development in machine learning and
computer vision. The processing power made available will benefit vehicles with limited onboard
processing capacity. The rapid development of cloud computing services have made servers with
significant computational resources easier to access. In this paper, a communication interface for
cloud based multilayer architecture is proposed to enable real time performance by distributing
the workload to networked processing devices. It adopts a publish-subscribe model for efficient
communication between the layers. The latency and workload distribution are evaluated to assess
the efficiency of the proposed method. An application to semantic segmentation of under-water
scenes is also tested to measure the framework capabilities for real-time operation using more
resource-demanding tools. The conducted experiments resulted in time and performance gains
through offloading the underwater vehicle, and forwarding the computations to the cloud based
layer.
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1. INTRODUCTION

Remotely Operated Vehicles (ROVs) allow simple and
efficient underwater operations and are mainly used for
monitoring, exploration and inspection tasks. To automate
the repetitive sub-tasks in subsea inspections, the need
for autonomy increases. However, it is more expensive
in terms of computing power, and many vehicles can
not afford to handle all the processing tasks onboard in
real time. The dampening of electromagnetic signals in
the ocean requires underwater drones to be tethered to
a surface unit for broad band signal transmission. The
processing power of the surface unit can enable a first
sharing of the workload, however, this does not allow full
exploitation of the technological possibilities and modern
techniques for underwater vehicles, including, methods for
vehicle localization, environment mapping or the use deep
learning tools. To overcome this, it is possible to add
cloud based solutions. Cloud servers provide high storage
capacity and significant computational resources, all with
high-bandwidth connections.

This paper presents a communication interface for cloud
based multilayer architecture. It enables low cost underwa-
ter vehicles with limited computing capacity to have access
⋆ This work was supported by the BugWright2 EU H2020-Project
under the Grant agreement No. 871260.

to more resources in order improve their performance
while in operation. The proposed framework is based on a
publish-subscribe model for connecting sensor data from a
layer to another. Therefore, within each layer it is possible
to select the inputs it should receive and the outputs it will
provide. In this way, only the data necessary for each layer
will be communicated and shared. The number of layers is
adaptable and have bi-directional connections with other
layers following a top-down model of structure of layers.

This publish-subscribe model is beneficial for real-time
robotic applications because they are often event-based.
The traditional approach which has a request-response
model suffers from a higher latency, mainly because of the
polling actions.

2. RELATED WORK

The Internet of Things or IoT, enables the interconnec-
tion of devices through internet or other communications
networks. It facilitates the exchange of data with other
devices or systems inside the network.

In Kamburugamuve et al. (2015), Internet of Things
Cloud is proposed. It is a platform that makes it possible
to connect IoT devices to cloud services for real-time
data processing and control. It is composed of three
main layers which all have their own defined tasks: a
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gateway layer, a publish-subscribe messaging layer and
a cloud-based big data processing layer. Its scalable and
distributed architecture design allows a large number of
robots and devices to connect while maintaining a low-
latency messaging system.

In Jiao et al. (2017), a robotic cloud-based framework for
Visual SLAM (Simultaneous Localization And Mapping)
processing of low-cost agents is developed. It enables
real-time rate even if the band-width is limited. It uses
WebSocket and HTTP as the communication protocols
according to the message size which is in a compressed
JSON format. The system is based on two components,
the robots and a server which internally runs a cloud-
based framework and can concurrently process requests
from multiple robots at the same time.

In the underwater environment, the IoT, sometimes re-
ferred as the Internet of Things Ocean (IoTO) or Inter-
net of Underwater Things (IoUT), is an emerging com-
munication ecosystem to connect underwater agents and
gives rise to the concept of Big Marine Data (BMD)
because of the increasing volume and availability of data
Jahanbakht et al. (2021). It is most of the time used for
marine data management Luo et al. (2018); Albaladejo
et al. (2010) based on networks of interconnected sen-
sors/devices. These IoT solutions find many applications
in marine environment monitoring and protection such as
water quality monitoring or coral reef monitoring Xu et al.
(2019).

An hybrid use of cloud and edge technologies is proposed in
Salhaoui et al. (2020) in order to track the fan mussel pop-
ulation on the seabed in real time. The approach is based
on Deep Learning (DL) techniques for image processing
techniques such as Convolutional Neural Networks (CNN),
which is known to require more computational resources
than traditional methods. The solution takes advantage of
the resources available thanks to the IoT architecture de-
veloped to optimize and improve the vision based method.
To achieve this, an Autonomous Underwater Vessel (AUV)
is connected to a communication bridge at the surface
which is then connected to cloud AI services and a specific
platform for AUV operations. The same sort of structures
also find applications in autonomous surveillance in marine
protected areas Molina Molina et al. (2021).

The proposed framework in this paper enables variable
number of processing layers based on the computational
load, enabling distributed computing to overcome poten-
tial bottle-neck in communication and processing. The
tasks of each layer are user defined, allowing a more
advanced custom design of the architecture and less re-
quirements to make it possible for the framework to be
implemented with a large variety of agents.

3. ARCHITECTURE OVERVIEW

In this section and the followings, all devices/platforms
that implement communication interfaces are referred as
units or layers in the architecture.

3.1 Communication module design

To maximise its adaptability and scalability, the commu-
nication interface is designed to be able to work indepen-
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Fig. 1. Flow chart of the communication module.

dently. Therefore, it allows the users to use it with any
software or robotic platforms such as ROS Quigley et al.
(2009) or DUNE Pinto et al. (2013).

The architecture adopts a publish-subscribe model. To
be able to receive and share data with other units, a
processing unit will interact with a communication module
in order to register and subscribe to data types. For local
units subscribing to a data type, the interface saves the
transmitted information in a set of data types called exter-
nal pool along with the unit ID. The updated information
distribution scheme is then communicated to all agents in
the network. Similarly, when registering a data type, the
local unit will assign information to the new data type,
and the interface saves it in an other set called internal
pool, and updates the other units. In other words, the
external pool contains all the data types a unit produces
and provides, whereas the internal pool contains the types
that are needed for the local processing.

Registrations and subscriptions can be done at any time,
enabling new data types to be created during the op-
eration. When the behavior of the units changes during
the operation, new subscriptions and registrations can be
added to improve the information flow. It enables dynamic
adaptation of the units, data requirements and results.

When the communication module receives data, it checks
the source, the data type and the associated pool. If the
data type is part of the internal pool, the data comes
from the local unit and therefore needs to be published
in order to communicate it to the other units. When the
data comes from another unit, there are two possibilities:
either the type is in the external pool, in which case the
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that are needed for the local processing.

Registrations and subscriptions can be done at any time,
enabling new data types to be created during the op-
eration. When the behavior of the units changes during
the operation, new subscriptions and registrations can be
added to improve the information flow. It enables dynamic
adaptation of the units, data requirements and results.

When the communication module receives data, it checks
the source, the data type and the associated pool. If the
data type is part of the internal pool, the data comes
from the local unit and therefore needs to be published
in order to communicate it to the other units. When the
data comes from another unit, there are two possibilities:
either the type is in the external pool, in which case the

Start Unit

Initialise Modules
Register and
subscribe to
data types

Process data

No

Yes

New data 
received?

Send dataNo YesNew data 
to send?

Fig. 2. Flow chart of an unit that interacts with the
communication interface.

data is transmitted to the local unit, or, if it is not, it is
sent to the next unit, acting like a bridge.

All the above procedures are repeated in a loop according
to the received data until the module is stopped. The
global design of the communication module is summarised
in the flow chart of Figure 1.

A possible interaction between a unit and the commu-
nication module is shown in Figure 2. In this example,
the registration and subscription procedures of data types
are done during the initialisation step. The unit waits to
receive data, processes them, and if there are results to
send, transmits them to the communication module and
starts over.

Making the communication module an independent com-
ponent enables a higher level of abstraction and ensures
reusability. In the example depicted above, the unit only
interacts with abstracted functions which makes it impos-
sible for the unit to impact the logical behavior of the
module.

The proposed method does not have a limit for the number
of layers. However in our application, a minimum of three
is required as there must be one layer for the underwater
drone, one layer in the cloud and one layer to make the
bridge. In Figure 3, the typical architecture, involving
three layers is illustrated. To optimally and fully use all
the layers, they should all process some data to handle a
sub-task in addition to run the communication module. It
enables workload distribution, significantly improving the
global performance, even for large-scale projects.

3.2 Communication protocols

According to the mission of the drone, the data types
and their associated payload of varying sizes will need
to be shared between the units. However, communication
protocols have size limitations. It is possible to divide the

Cloud Unit

Surface Unit

UW Drone Unit

Run programs with low computation
cost

Run programs with higher computation
cost and transfer the data from a unit

to another

Run programs with expensive
computation cost

Fig. 3. Framework architecture involving three units.

messages carrying the data into two categories: small mes-
sages and large messages. For small messages, WebSockets
are used, they are a very good solution for data streaming
in real time as they provide full duplex communication
channels with low latency. However, they are not well
suited to large messages. For larger messages, which cor-
respond to multimedia messages such as, but not limited
to, images and sounds, the Real-Time Streaming Protocol
(RTSP) is used. This protocol is designed to carry real-
time delay-sensitive payloads. It can also stream data from
specific sensors of the underwater drone such as sonars.

4. EXPERIMENTS

4.1 Setup

In this section, a series of experiments are described with
the main focus on the efficiency and latency of the system.
The proposed framework was used in the three-layer
architecture presented in Section 3.1. The Blueye Pioneer
underwater drone 1 served as UW Unit, containing a single
circuit board with a quad core CPU up to 1.2 GHz per core
and 4 GB of memory. For the Surface Unit, a laptop was
used with an Intel Core i7 vPro with base frequency 1.8
GHz per core and 16 GB of memory. Finally for the Cloud
Unit, running on the NTNU IDUN computing cluster
Själander et al. (2019), with an Intel Xeon Processor
with base frequency 2.2 GHz, 128 GB of memory and an
NVIDIA Tesla P100. The underwater drone is tethered
to a router to which the laptop is connected over Wi-Fi
in a local network. The laptop is also connected to the
Internet in order to have access to the cloud server. The
implementation of the RTSP is done using the GStreamer
framework 2 , a pipeline-based multimedia framework that
enables streaming workflows.

For all the experiments, each layer has the same commu-
nication module but the internal software may differ from
one experiment to another.

4.2 Latency Evaluation

To measure the latency of small messages from one unit to
another, the average Round Trip Time (RTT) was calcu-
lated for each message. This was done in three independent
scenarios with message payloads of varying sizes. Each
scenario corresponds to a possible route, i.e. from the UW
Unit to the Surface Unit (1), from the Surface Unit to the
Cloud Unit (2) and from the UW Unit to the Cloud Unit
(3). The results are shown in Figure 4. The tested size

1 Blueye, https://www.blueyerobotics.com/
2 GStreamer, https://gstreamer.freedesktop.org/
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Fig. 4. Round Trip Time of messages of different sizes in
three scenarios. Scenario 1: messages between the UW
Unit and the Surface Unit. Scenario 2: messages be-
tween the Surface Unit and the Cloud Unit. Scenario
3: messages between the UW Unit and the Cloud
Unit.

of the messages goes up to 65 Kb as larger messages are
considered as media messages.

As expected the third scenario takes twice as long on
average as the time of the first and second scenario. It
also means that the time needed for a message to change
network, i.e. from the local network to the cloud network
and vice versa, is extremely low and therefore does not
need to be taken into account. It is also possible to observe
that the latency in scenario two is on average slightly
higher than in scenario one but it is only a matter of tenth
of a millisecond. Globally, the latency evaluation shows
the viability of the WebSockets in this context for small
messages.

The delay for large messages was tested by transmitting
video streams from the underwater unit to the surface unit.
Four video streams were tested with different combinations
of resolution and frame per second (FPS). In Table 1, it is
possible to observe the average measured delay and frame
per second of video streams from a unit to another using
different combinations of resolution and frame per second.

Table 1. Evaluation of communication with
video payload

ID Resolution Video FPS Measured FPS Delay (ms)

1 1280× 480 30.0 29.77 42.2

2 1280× 480 60.0 57.12 45.2

3 2560× 720 30.0 29.64 45.5

4 2560× 720 60.0 56.52 47.3

The Video FPS column corresponds to the video streaming
source FPS, therefore is the expected FPS, whereas the
Measured FPS column corresponds to the FPS at the other
end of the streaming pipeline. To ensure a minimum delay,
some frames might be dropped because of potential latency
in the streaming pipeline on one of the end. To increase the
quality of the stream, it is possible to introduce controlled
latency, however the global delay of the stream will be
increased. In some applications, this does not represent an

Fig. 5. Software setup for a light Visual SLAM to test the
framework. It contains three layers.

issue, or can be easily compensated. This is can be done
by adapting the GStreamer pipeline parameters.

The delay here corresponds to the Glass-to-Glass (G2G)
measurement, which can be referred as the time it takes for
a visible event to go from the glass of a camera to the glass
of a display Bachhuber et al. (2017). The measurements
were done by aiming the camera at a laptop screen setup
to have the same rate as the camera, i.e. 30/60 Hz, which
is displaying the video stream. The measured delays are
all very close to each other, of about 45ms, although
comparing Video 1 and Video 2 allows to spot a difference
of 5.1ms which may have an impact on the application
over time. Overall, the results show the protocol scale well
with the resolution and FPS of the video.

4.3 Efficiency Evaluation

To test how efficient the method is or how it enables
more efficient solutions, a special software setup is im-
plemented to match a possible real-world scenario. The
Figure 5 represents this setup which is distributed over
the three units. It corresponds to a light visual localisation
and mapping framework implemented using the OpenCV
library OpenCV (2015). The control of the drone is based
on PIDs, and two Inertial Measurement Units (IMUs) are
used to compute the attitude of the drone based on the
filter developed in Madgwick (2010) which is then used
to restore the scale of the visual odometry. Each unit has
its own set of tasks so that the workload can be shared.
In this experiment, the video stream has a resolution of
1080 × 720 and 30 FPS and continuously ran for about 6
minutes.

Four independent configurations were designed to test and
assess the efficiency of the proposed architecture:

• Configuration 1: Everything is running in the Under-
water Unit - no communication needed, 0 shared data
types.
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issue, or can be easily compensated. This is can be done
by adapting the GStreamer pipeline parameters.

The delay here corresponds to the Glass-to-Glass (G2G)
measurement, which can be referred as the time it takes for
a visible event to go from the glass of a camera to the glass
of a display Bachhuber et al. (2017). The measurements
were done by aiming the camera at a laptop screen setup
to have the same rate as the camera, i.e. 30/60 Hz, which
is displaying the video stream. The measured delays are
all very close to each other, of about 45ms, although
comparing Video 1 and Video 2 allows to spot a difference
of 5.1ms which may have an impact on the application
over time. Overall, the results show the protocol scale well
with the resolution and FPS of the video.

4.3 Efficiency Evaluation

To test how efficient the method is or how it enables
more efficient solutions, a special software setup is im-
plemented to match a possible real-world scenario. The
Figure 5 represents this setup which is distributed over
the three units. It corresponds to a light visual localisation
and mapping framework implemented using the OpenCV
library OpenCV (2015). The control of the drone is based
on PIDs, and two Inertial Measurement Units (IMUs) are
used to compute the attitude of the drone based on the
filter developed in Madgwick (2010) which is then used
to restore the scale of the visual odometry. Each unit has
its own set of tasks so that the workload can be shared.
In this experiment, the video stream has a resolution of
1080 × 720 and 30 FPS and continuously ran for about 6
minutes.

Four independent configurations were designed to test and
assess the efficiency of the proposed architecture:

• Configuration 1: Everything is running in the Under-
water Unit - no communication needed, 0 shared data
types.

Fig. 6. Set of sample images from SUIM data set Islam et al. (2020), the original images are on the top row and the
corresponding pixel-annotations after the SUIM-NET predictions are on the bottom row.

Fig. 7. Processing time benchmark of the developed frame-
work with a three-layers architecture in four scenarios
displayed as box-and-whisker diagrams.

• Configuration 2: Control processing and data fusion
are done in the Underwater Unit, the rest is done in
the Surface Unit - 3 shared data types.

• Configuration 3: The Underwater Unit does the same
as in configuration 2. Only data pre-processing and
post-processing are done in the Surface Unit, the rest
is done in the Cloud Unit, see Figure 5 - 6 shared
data types.

• Configuration 4: Same as configuration 3, but the
code of the Cloud Unit is optimised to use the avail-
able resources in the cloud infrastructure. Additional
data processing are done for solution optimisation - 6
shared data types.

The results for each configuration is displayed in Figure
7. The time measured corresponds to the time needed
to complete a full loop of the algorithm, including the
data communication. In each case, the box-and-whisker
diagram is calculated from a sample of 3500 loops. It is
clear that the UW Unit alone does not perform well, it can
only complete approximately three loops in one second,
which makes it not suitable for this type of operation.
With the addition of the Surface Unit, the performances
are significantly improved and can allow good real-time
performances. The third scenario performs similarly but
when the resources of the cloud server are used, the
algorithm results are similar but it is considerably faster.
This gives room to add more features or replace some of
the existing features by more computationally expensive
ones in order to improve the results. The fourth scenario
which includes these changes and is still faster than the
other scenarios including better algorithm results.

Fig. 8. Corresponding colors to the categories of objects
classified by SUIM-NET.

4.4 Application to real time semantic segmentation of
underwater scenes

Modern autonomous technologies take advantage of deep
learning techniques at an increasing rate, and it is use-
ful to enable real time implementation of the proposed
framework. For this, SUIM-Net and the associated data
set Islam et al. (2020) were used. It consists of a fully-
convolutional encoder-decoder model trained for semantic
segmentation of underwater images. It allows to detect
five categories of objects: human divers, wrecks and ru-
ins, robots and instruments, reefs and invertebrates, fish
and vertebrates. This deep learning solution was chosen
because, firstly, it requires computational resources that
not all the platforms have, and secondly, because it can
be used in multiple applications in the field of underwater
robotic vision which makes it a tool to improve the per-
formance and autonomy of an underwater vehicle. It can
be integrated into the complete robotic system in order to
solve or contribute to tasks such as visual tracking, scene
understanding and autonomous exploration. These tasks
have to be able to run the model with low-latency. The
lower the latency, the more images will be processed and
therefore more data will be available, enabling potentially
a deeper and more accurate analysis for a given task.

To test the proposed cloud based architecture, the same
three layers were deployed and the sub set of the data set
used for model testing was used to simulate a real-time
feed of images coming from the drone through the surface
unit in order to be inferred by the artificial neural network
located in the cloud unit. For comparison, the model also
ran independently in the surface unit, reducing the global
architecture to a two-layers structure.

Although the execution speed are different according to
the unit, the result for a same given image remains the
same. With the cloud unit, it was possible to run the model
with on average 24.23 frames per second which makes it
possible to run it in real time and use it for visual aid
and/or visual-guided navigation. However, on the surface
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unit, it reached 2.5 frame per second on average which is
about 10 times less than the previous test. This highlight
the use of the previous setup and how important it can
be, especially because drone operators do not often have a
laptop with a graphical card at hand. A sample of images
and their corresponding semantic segmentation predicted
by SUIM-NET is displayed in Figure 6. The color code is
presented in Figure 8.

5. DISCUSSION

The proposed communication interface for a multilayer
structure showed satisfying results for real-time opera-
tions of underwater vehicles. The implementation of the
communication interface makes it easy to use and adapt,
and enables the user to add middleware. It enables quick
deployment of additional layers for independent processing
and further workload sharing.

However, the current implementation only allows a two-
links top-down structure of layers which means that each
layer can only be connected to the previous and next
layers if they exist. It has the benefits of incremental
functionalities, i.e. as the data moves down or top, it
produces new results on top of the previous ones. It also
allows a clear understanding of the structure and the
dependencies of each unit. The main drawback of this type
of structure is that it may introduce additional delays for
each layer. If the ultimate functionality is located in the
last layer, it might take more time, especially if the results
need to be sent back to the first layer. Fortunately, these
delays can be distributed and dispersed according to the
design and locations of the functionalities in the layers.

While this method enables low-latency communications
for messages of variable size, which are important for
real time operations, it involves risks for the multimedia
payloads. Indeed, the protocol used for this type of pay-
load, RTSP, relies on UDP and can lead to packet loss. If
important packets are lost, it may affect significantly the
behaviour of the implemented algorithms.

Although the framework was experimented using a local
computer and with cloud computing, it is possible to imag-
ine alternatives, such as edge computing with different
sensors/agents setups. For example an underwater agent
connected to a buoy which is itself connected to a surface
vessel. Also, despite the fact that the proposed method is
used for underwater applications, it can be used for other
categories of devices/robots such as ground vehicles.

6. CONCLUSION AND FUTURE WORK

In this paper, a communication interface for cloud based
multilayer architecture was developed. It is based on a
publish-subscribe model with a topic system to enable
clear and effective communication between the units. The
access to other units also enables work load distribution ac-
cording to the resources available. With this architecture,
low cost underwater agents with reduced computational
capabilities are able to operate in real-time using advanced
tools which require important resources.

Future work includes study of how this architecture can
scale to cooperative missions involving multiple underwa-

ter drones and how the work load can be further dis-
tributed to reduce the software latency. This corresponds
also to a study of how the layers can be inter-connected,
adopting a more complex distributed structure.
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