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a b s t r a c t

Since Winter Road Maintenance (WRM) is an important activity in Nordic countries, accurate intelligent
cost-effective WRM can create precise advance plans for developing decision support systems to
improve traffic safety on the roads, while reducing cost and negative environmental impacts. Lack
of comprehensive knowledge and inaccurate WRM information would lead to a certain loss of WRM
budget, safety reduction, and irreparable environmental damage. This study proposes an intelligent
methodology that uses data envelopment analysis and machine learning techniques. In the proposed
methodology, WRM efficiency is calculated by data envelopment analysis for different decision-making
units (roads), and inefficient units need to be considered for further assessments. Therefore, road
surface temperature is predicted by means of machine learning methods, in order to achieve efficient
and effective WRM on the roads during winter in cold regions. In total, four different methods have
been used to predict road surface temperature on an inefficient road. One of these is linear regression,
which is a classical statistical regression technique (ordinary least square regression); the other three
methods are machine-learning techniques, including support vector regression, multilayer perceptron
artificial neural network, and random forest regression. Graphical and numerical results indicate that
support vector regression is the most accurate method.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Motivation

Due to the recent surge in human’s dependency on using car
n daily life, the number of vehicles on the roads has increased,
nd there have been rapid changes in traffic conditions [1]; the
emand to provide drivers with real-time traffic information is
rowing, in order to improve traffic efficiency management and
afety on the roads [2]. Congested roads can reduce transporta-
ion efficiency and cause a detrimental impact on road safety
nd the environment [3]. A reduction in transportation efficiency
an lead to a growth in the number of crashes, especially in
intertime when traffic conditions are challenging. Road collision

s a dangerous problem in societies and can influence communi-
ies and people, resulting in economic losses, health issues, and
atalities [4]. In transportation, the robust and accurate prediction
f traffic parameters (e.g. flow, speed, occupancy, and travel time)
nd non-traffic parameters (e.g. traffic events and weather) can
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950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
lead to efficient traffic management, such as a faster and safer
path for transporting goods and avoiding congestion [5,6]. Severe
weather conditions such as snowstorm reduce transportation
quality, due to low visibility and slippery road surface. One of
the major tasks regarding safe transportation in winter in the
Nordic countries (Denmark, Finland, Iceland, Norway, and Swe-
den) is Winter Road Maintenance (WRM). The need for WRM has
increased rapidly due to the rise in extreme weather conditions.
Slippery road surface can cause severe traffic accidents (especially
for old vehicles). WRM is divided into two categories: (i) reactive
activities are carried out after adverse weather events, while (ii)
proactive activities are carried out before adverse weather con-
ditions occur [7]. There are different WRM techniques, including
anti-icing and de-icing. The former involves using chemicals to
prevent bonds between road surfaces and ice crystals, while using
chemicals to melt the formed ice on road surfaces is known
as de-icing [8]. The chemicals have a negative impact on the
environment and could damage vegetation, animals, and aquatic
species [9]. Salt is the most frequently used material for anti-
icing and de-icing. Reducing the use of salt on road surfaces
could cause a reduction in cost and fewer negative impacts on
the environment. In order to minimize the amount of salt on
the ground during winter, it is necessary to develop a prediction
model for surface temperature, which is able to improve the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ccuracy in grip calculation and consequently result in optimizing
he salt quantity.

.2. Literature review

Prediction is the procedure of projecting future performance
ccording to historical data. Highly accurate prediction can help
n decision-making and planning for the future [10]. There are
wo main types of methods for predicting road surface tempera-
ure: (i) numerical methods and (ii) statistical methods, which are
lassified into traditional and modern methods. In fact, most pre-
iction models for road surface temperature use numerical meth-
ds, which involve a combination of mathematics and physics
o create an equation to estimate the road surface temperature.
hese methods are not based on historical data, and it is hard
o determine the parameters and solve the equations. Statisti-
al methods establish a model according to observed data and
ometimes are not difficult to implement. However, traditional
tatistical techniques are incapable of producing the desired ac-
uracy, due to the low amount of data [11]. This means that
sing a large amount of data in traditional statistical methods
an be helpful for achieving a high degree of accuracy, but,
f course, this is hard and time-consuming. These issues have
een addressed by modern statistical methods named Machine
earning (ML) techniques, and information can be extracted from
istributed sensors to collect big data, which are being used
xtensively in the modern world [12]. Due to their fast speed of
earning, accurate results, easiness to implement and determine
arameters, as well as good performance as regards generaliza-
ion, ML techniques have improved rapidly, in order to handle
rojects involving a large amount of historical data. Diverse ML
echniques have been used in transportation and specifically in
RM for different targets. Ahabchane et al. [13] used Geographic

nformation Systems (GIS) to extract the characteristics of street-
etworks, which were excluded by former prediction models.
his study considered truck telemetry, geomatics, and weather
ata, to build a model to predict the amount of salt and abrasive
n the road segments. Roychowdhury et al. [14] proposed the
wo-stage model to classify road surface conditions by using a
onvolutional neural network to estimate friction by a rule-based
odel. Panahandeh et al. [15] used logistic regression, a Support
ector Machine (SVM), and an Artificial Neural Network (ANN)
or classification to estimate road friction for connected vehicles.
e et al. [16] proposed a methodology which combines sensitivity
nalysis and neural networks to evaluate the impacts of accurate
eather information on WRM cost. Xu et al. [17] introduced an
lgorithm based on static and dynamic prediction, through an
mprovement of a back propagation neural network, to predict
avement temperature.

.3. Contribution

Reviewing previous studies has shown that WRM has been
enerally excluded from using ML regression algorithms to pre-
ict Road Surface Temperature (RST) in winter using RWS and
hree different types of sensors. To address this issue, this paper
ombines a Data Envelopment Analysis (DEA) model and ML
echniques, through following steps:

(i) To measure WRM efficiency for Decision-Making Units
DMUs) or roads by a DEA model. In fact, effective WRM does
ot necessarily mean that WRM is efficient, since it is possible
o be effective but inefficient as a result of an unrealistic WRM
udget [18]. That is why, in order to achieve cost-effective WRM,
t must first be efficient (i.e. using the minimum amount of
esources to maximize the safety on roadways).
2

(ii) To analyze data achieved by optical and road-mounted sen-
sors and use ML regression techniques to predict RST in winter.
RST is a major factor for discovering whether ice has formed on
the ground or not [17]. Inaccurate prediction causes inaccurate
advance planning, which results in less efficient or inefficient
WRM and ultimately can lead to a notable increase in WRM
budgets [7].

1.4. Purpose

In fact, accurate surface temperature prediction for WRM plays
a crucial role in traffic safety, cost and environmental impacts.
If the surface temperature is predicted precisely, it will lead to
optimization of the amount of chemicals which need to be used
on the ground in order to have an acceptable friction between
tires and road surface. Hence, it is important to improve the
prediction of surface temperature in wintertime in cold regions.
Thus, this study introduces the prediction methodology for in-
telligent cost-effective WRM (ICWRM), through the combination
of DEA and ML techniques to improve decision support systems
(DSS) for DMUs (roads), and specifically implements an overview
of data analysis in the early stage of an ML model. ICWRM uses
a large amount of available high-quality real-time data, since
it can develop reliability in WRM DSS in different traffic (flow)
situations. ICWRM can predict the RST for an inefficient WRM,
based on selected features to detect severe surface conditions,
and transmit them to the close stations. It is important to mention
that the DEA stage of this methodology is discussed in detail
in another paper [19]. The ML regression models used in this
paper are support vector regression (SVR), multilayer perceptron
artificial neural networks (MLP-ANN), and random forest (RF).
Furthermore, linear regression (LR) is also used as a classical
statistical regression technique (ordinary least square regression).

1.5. Achievement

The most important achievement in this research study is to
predict RST with high accuracy to improve decision support sys-
tems for decision-making units (roads) in order to reach efficient
and effective WRM.

1.6. Outline of paper

The remainder of this paper is organized as follows. Section 2
introduces problem definition. The DEA model is explained in
Section 3. In Section 4 we give a summary of the LR model.
Section 5 details the ML models. The methodology is formulated
in Section 5. Finally, in Section 6, we present conclusions.

2. Problem definition

Countries with a cold climate face challenges in terms of the
management and prediction of both WRM quality and quan-
tity [20]. For decades, salt has been used for both anti-icing and
de-icing to maintain the roads in the winter season. Salt melts the
ice and snow from the ground and increases the friction between
tires and road surface to improve the surface’s transportation
performance [21]. High surface transportation performance can
support the safety of drivers on the roads, especially in adverse
weather conditions. Although salting improves the safety on the
roads in wintertime, it also has negative impacts on the envi-
ronment. Excess use of salt demands a large budget. In order
to minimize salt expenses, it is important to accurately predict
the RST, since it affects the grip conditions on the road surface
and can determine the optimal salt quantity. RST prediction is
dependent on the presence of historical data for different factors,
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ummarized as weather variables and road surface condition
ariables. Historical data of weather variables can be collected
y Road Weather Stations (RWS) and include air temperature,
recipitation, dew point, humidity, wind speed, wind direction,
isibility, solar radiation, and pressure [13]. Historical data of road
urface condition variables can be collected by different sensors
nd include surface state, level of grip, water/snow/ice layer,
larm status, amount of chemical (used or present) on the road
urface, base temperature, and ground temperature. However,
sing all these variables makes the model complex, and we need
o find the most predictive variables by means of feature selection
ethods.

. Data envelopment analysis

DEA has been widely used in different areas since 1987; it
orks according to linear programming, using multi-inputs and
utputs [22]. DEA is an optimization technique to compute input
eights and output weights in order to measure the efficiencies

or different DMUs. Based on this method, DMUs are divided
nto efficient DMUs and inefficient DMUs [23]. DEA is classified
nto two major types; Charnes, Cooper, and Rhodes presented the
odel named CCR in 1978, and Banker, Charnes, and Cooper pre-
ented the model named BCC in 1984. CCR is based on constant
eturns to scale, whereas BCC works according to variable returns
o scale. As a matter of fact, the feasible zone in the BCC model
s smaller than in the CCR model, due to one more free variable
nd the convexity restrictions, which can influence the efficiency
core and can increase the quantity of efficient DMUs in the BCC
odel [19,24]. If DMUp is efficient in the CCR model, DMUp will
efinitely be efficient in the BCC model. If DMUp is efficient in the
CC model, DMUp can be either efficient or inefficient in the CCR
odel. The mathematical optimization DEA-CCR problem can be
efined as the following procedure [25]:
Consider DMUj (j = 1, 2, . . . , n), where each DMU includes

m diverse inputs ( xij) to generate s outputs (yrj) for DMUij (i =

, 2, . . . ,m). Additionally, ur (r = 1, 2, . . . , s) represents input
eights and vi indicates output weights. xij, yrj, ur and vi must
e greater than zero. A DEA linear optimization problem attempts
o maximize the efficiency score for each DMU subject to some
estrictions. For instance, for DMUp, the original linear divisive
EA-CCR problem to maximize the efficiency score (Zp) can be
ritten as:

ax Zp =

∑s
r=1 uryrp∑m
i=1 vixip

(1)

subject to:∑s
r=1 uryrj∑m
i=1 vixij

≤ 1

r ≥ 0 , vi ≥ 0
= 1, . . . , n r = 1, . . . , s i = 1, . . . ,m

It is also possible to convert it to linear programming as:

Max Zp =

s∑
r=1

uryrp (2)

subject to:
m∑
i=1

vixip = 1

s∑
r=1

uryrj ≤

m∑
i=1

vixij

ur ≥ 0 , vi ≥ 0

j = 1, . . . , n r = 1, . . . , s i = 1, . . . ,m (

3

This model needs to be solved for all DMUs [24], to obtain the
final results which are the maximum possible efficiency score for
each DMU and the numerical value of decision variables (ur and
vi) [19].

4. Linear regression

LR is an ordinary least squares (OLS) regression technique.
In classical statistical regression, OLS regression is a method
for estimating the equation that minimizes the summation of
squared distances between actual values and predicted values
(residuals) [26]. There are some assumptions in OLS regression
that should be met: (i) the avoidance of multicollinearity, which
means that the variable predictors need to be uncorrelated with
each other, (ii) residuals need to be normally distributed, (iii) the
variance of residuals is constant, (iv) residuals must be uncorre-
lated with predictor variables, v) there is no correlation between
residuals (serial correlation), and (vi) regression coefficients need
to be linear [27]. Regression analysis is a method for discovering
the relationship between inputs (independent variables) and out-
put (dependent variable). There are two types of LR: (i) simple
LR and (ii) multiple LR [28,29]. Simple LR has one independent
variable in the model, while multiple LR has two or more inde-
pendent variables. The mathematical theory of LR can be defined
as below:

If y is an output (dependent variable) and xi shows inputs
(independent variables), the simple LR model can be written as
y = b0 + bixi and i = 1, . . . , n, where b0 is an intercept and bi is
a regression coefficient for the variable xi. Furthermore, we want
to calculate the predicted output (̂y), which needs to be obtained
by calculating the estimated intercept (b̂0) and the estimated re-
gression coefficients (b̂i) plus the residuals (εi), i.e. ŷ = b̂0+b̂ixi+εi
hat εi is independently and identically distributed [30]. Usually,
n LR, the estimation of parameters is based on minimizing the
ummation of squared residuals [31].

. Machine learning

An area of computer science, ML is considered a branch of
rtificial intelligence [32]. ML techniques have become one of
he most frequently applied methods in technology, science, and
ommerce [33]. Due to the good performance of ML in various
omains, its use has quickly increased [34]. ML methods can fit a
uitable and flexible model, using the relationship between inputs
nd outputs in order to learn directly from the data [35], and it is
ble to estimate the unspecified dependencies from a dataset in
rder to predict new outputs [36]. Supervised ML methods learn
rom examples, meaning that they use a training set of data with
orresponding targets (labeled data), in order to generalize the
lgorithm and predict outputs for all the possible unforeseen data,
y finding the relationship between input variables (independent
ariables) and target variables (dependent variables) [37]. ML
egression models are classified as supervised learning and work
n a basis of continuous real values that belong to the output
ariable [38].
Data samples play a crucial role in ML techniques. Each sample

s defined by certain features, and each feature includes various
alues. Data quality is dependent on the existence of missing
ata, outliers, noise, and categorical data that have to be treated
ith proper methods [36]. Feature Engineering (FE) and Feature
elections (FS) are the steps that help us to improve the data
uality, which can lead to improving the analysis outputs. FE
s the fundamental step in ML and can help us to improve the
uality of data, so that they are ready to be used in the ML
odel. FE is a process of transforming the available observations
raw data) to create features that are used to describe data for
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prediction algorithm [39]. In fact, FE is a key to improvement
n machine learning, and it demands considerable determined
ffort and time [13,39]. FS can select a relevant subset of variables
predictive features) without any extra transformation according
o the analysis target, in order to build an ML algorithm [40].

Missing data (absence of data) occurs once there is no stored
ata for observation in a sample, and it happens for most of
he datasets. Missing values influence the performance and the
utcome’s accuracy gained by the learning algorithm [41]. They
equire special attention; in some cases, it is possible to remove
r drop these observations.
Categorical variables are the non-quantitative variables that

ontain explanatory characteristics instead of numbers. Categor-
cal variables are classified into two types: (i) ordinal and (ii)
ominal. Ordinal variables are variables that show intrinsic order,
.e. they are meaningful if ordered. For instance, on weekdays,
onday can be considered as 1 (first day of the week) and
unday can be considered as 7 (seventh day of the week). Nom-
nal variables do not have any intrinsic order (arbitrary names)
uch as gender. Categorical variables need to be transformed into
umerical values in order to be understood by ML models [42].
Feature scaling changes the magnitude of the feature values

rom a diverse dynamic range into a particular range [43]. Re-
ression coefficients can be directly affected by feature scaling.
ithout feature scaling, feature values with a small range will be
ominated by feature values with a bigger range.

.1. Support vector regression

SVR was introduced by Vapnik et al. in 1997 [44]. Its main
oncept is in accordance with the computing of linear regres-
ion [45]. SVR is rooted in the support vector machine that works
n the basis of statistical learning theory [46]. SVM has two major
ategories: (i) Support Vector Classification (SVC) and (ii) support
ector regression. SVR has an additional parameter compared
o SVC called ε-tube (precision parameter), which represents
n insensitive zone (radius) all over the regression function, in
rder to evaluate empirical error [45,47,48]. SVR is an effective
nd powerful ML method for solving several problems involved
ith the prediction for real cases [49]. The major advantage of
VR is that, regardless of having complex computations, it is
ot sensitive to the high dimensionality of variable space. In
ddition, SVR does not attempt to minimize the training error;
t tries to minimize the error for generalization, so it is capable
f achieving excellent performance in generalization [45,46]. The
athematical theory of SVR is defined as [47]:
Consider (xi, yi)mi=1 as a dataset, where xi shows input vectors

independent variables), which have n dimensions, yi shows cor-
esponding real values or outputs (dependent variables) and m
shows the number of observations. The goal of regression analysis
is to discover f (x), known as the regression function, which can
predict the outputs as accurately as possible. The SVR formulation
uses f (x) = w.φ (x) +b as a linear estimation function, where
x, w, φ and b are an input vector, weight vector, nonlinear map,
and constant, respectively. As SVR needs to solve a problem
(nonlinear regression), it tries to nonlinearly map the input vector
into a feature space with a high dimension and then correlate it
with the output linearly. The following formula is a cost function
(Lε), which uses the ε-insensitive loss function.

Lε (f (x) , y) =

{
0 if |f (x) − y| < ε

|f (x) − y| − ε otherwise
(3)

w and b can be calculated by minimizing the following function,
named the regularized risk function:

R (c) =
1
2
∥w∥

2
+C

1
m

m∑
Lε (f (x) , y) (4)
i=1

4

here 1
2∥w∥

2 is known as the regularization term, which mea-
sures the function’s flatness. C is a parameter called the reg-
ularization constant, which specifies the trade-off between the
regularization term (flatness of the model) and the empirical
risk [48]. To estimate how much yi − f (xi) deviates from the ε-
insensitive region, two positive variables can be applied as slacks,
presented by ξi and ξ̂i. By using the slacks, Eq. (4) is changed
into the following optimization problem, i.e. Eq. (5), with one
objective and three constraints:

min
1
2
∥w∥

2
+C

m∑
i=1

(ξi+ξ̂i) (5)

ubject to:
(w.φ (xi)) + b − yi≥ − (ε+ξi)

(w.φ (xi)) + b − yi≤ε+ξ̂i

ξi , ξ̂i ≥ 0

It is possible to write the dual form of this mathematical op-
timization problem by using Karush–Kuhn–Tucker (KKT) condi-
tions and Lagrange multipliers:

maxα,α̂W
(
α, α̂

)
= (6)

m∑
i=1

(yi α̂i − αi) − ε

m∑
i=1

( α̂i + αi)

−
1
2

m∑
i=1

m∑
j=1

( α̂i − αi)(α̂i − αj)K (xi, xj)

ubject to:
m∑
i=1

( α̂i − αi) = 0

≤ αi, α̂i = C

where αi and α̂i are Lagrange multipliers, which need to satisfy
iα̂i = 0 condition. Therefore, the general form of the SVR
unction is written as:

(x) =

n∑
i=1

( α̂i − αi) k( xi, x) + b (7)

where K (xi, xj) shows the kernel function and is equal to φ (xi) φ(
xj

)
. Achieving an optimal solution in SVR depends on the type

of kernel function used. Several kernels can be used in SVR, such
as sigmoid, linear, polynomial, and radial basis functions (RBFs).
There are two reasons why RBFs have been the most frequently
used kernel: (i) they have few parameters to be set, and (ii) they
are capable of classifying the datasets with multi-dimensions.
Hence, the RBF kernel is used in this study to achieve an optimal
solution. Eq. (8) shows the RBF function:

K
(
xi, xj

)
= exp

(
−γ

xi, −xj
2

)
(8)

where γ is the parameter of the kernel.

5.2. Random forest

Random forest (RF) is an ensemble learning of decision trees,
and it is one of the most used algorithms in many applications
for both regression and classification [50]. RF combines tree pre-
dictors such that a single tree is dependent on the random vector
values that are sampled independently with a similar distribution
for all the trees in the forest [51]. There are three steps to
constructing the RF: (i) to produce many different subsets by
adopting bagging [52] on the training dataset, (ii) a decision tree
is constructed by using each subset, and each node is split based
on the randomly chosen group of candidates to grow the tree;
(iii) all these trees are integrated [53].
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.3. Multilayer perceptron artificial neural network

An ANN consists of many interconnected processors named
eurons that are similar to biological neurons located in the brain.
hese neurons are connected through numerical weights that can
end signals to each other. These weights indicate how important
ach neuron input is. The learning process in an ANN is based on
ow to adjust these weights repeatedly. These networks collect
he information achieved in the training process and respond to
ew cases in the proper manner. This study uses a typical ANN
odel called an MLP. In this model, the input layer receives input
ignals and sends them to the neurons of the hidden layer. The
idden layer recognizes the features in the input through the
euron’s weights. The output layer builds the pattern for the
utput in the whole network [54].

.4. Cross validation

Cross validation is a statistical technique to assess learning
lgorithms in order to evaluate the correct prediction error for
ndependent observations/dataset (testing set) for generaliza-
ion [55,56].

K-fold cross validation is the most frequently used method for
ross validation. In this method, observations are divided into k
qual subsets (folds), with one subset being kept for validation
nd k − 1 subsets being used for training. This procedure it-

erates k times [13,55]. The training dataset is split k times by
the generator of cross validation. The estimator is trained by
different training sizes, and each training size and validation set
are scored; then, the mean value of the score is calculated based
on k iterations [57].

5.5. Bias variance trade-off and learning curves

Bias variance trade-off is a key part that can help us to under-
stand the performance of the ML model. Discovering the correct
balance between the bias of the model and the variance of the
model, named bias variance trade-off, is a fundamental way to
understand the performance of the model (i.e., the ML model is
neither overfitted nor underfitted) [58].

Bias error is the difference between the predicted output by
the model and the actual value [59]. Bias is high when the learn-
ing algorithm misses the main pattern amongst input variables
and targets. In a high bias situation, the model includes quite
simple assumptions to find the relationship between variables,
and it leads to underfitting [58,59].

A variance error occurs when the model is not able to show
as high a level of performance as it has in training data. A high
variance occurs when the model is trained by lots of redundant
data [59]. In a high variance situation, the model cannot have
satisfactory results on unseen observations, so it suffers from
a loss of generalization, leading to overfitting. Fig. 1 shows a
graphical illustration of bias and variance. As shown, there are
four alternatives regarding bias and variance [58]: (i) low bias
and low variance (ideal option), which shows a consistent and
accurate model; (ii) low bias and high variance, which shows an
inconsistent but moderately accurate model; (iii) high bias and
low variance, which shows a consistent and inaccurate model;
(iv) high bias and high variance, which shows an inconsistent
and inaccurate model. The final error achieved by the ML model
is the summation of three different types of error: (i) bias er-
ror, (ii) variance error, and (iii) irreducible error, which occurs
due to noises and which it is impossible to reduce [59]. The
mathematical definition of this concept is as below [60]:

Consider Y as a target and X as an input (variable). Assume the

elationship between X and Y is Y = f (X) + ϵ, where ϵ shows

5

Fig. 1. Bias and variance schematic illustration [60].

the error term and it has a normal distribution with an expected
value of zero (E (ϵ) = 0) and variance of σ 2 (var (ϵ) = σ 2). The
objective is to estimate f (X) by using the ML model, which is
shown by f̂ (X). So, the square of the expected prediction error
for x is:

Err (x) = E
[
(Y − f̂ (x))

2]
(9)

This error can be broken down into two parts: (i) bias and (ii)
variance (Eq. (10)):

Err (x) = (E
[
f̂ (x)

]
− f (x))

2
+ E

[
f̂ (x) − E[f̂ (x)]

2]
+ σ 2

e (10)

which can be written as Eq. (11):

Err (x) = Bias2 + Variance + Irreducible Error (11)

where the third term shows the irreducible error.
Learning curves have been extensively used in ML. They con-

sist of a training curve and a validation curve, which show the
training error and the validation error, respectively, according
to training size (Fig. 2). The training curve shows the process
of learning based on the training dataset, while the validation
curve shows the process of generalization based on the valida-
tion dataset. Therefore, learning curves can be used to illustrate
the model’s performance which refers to whether the model is
overfitting, underfitting, or a good fit [61].

Fig. 3 graphically illustrates the training error curve and the
testing error curve, based on the complexity of the model. On the
left side of the graph, both the training error and the validation
error are high (high bias area), whereas, on the right side of the
graph, the training error is not high, but the validation error is
high (high variance area). The middle part of the graph is the bias
variance trade-off spot [59].

5.6. Evaluation metrics

The Mean Square Error (MSE) and the Root Mean Square Error
(RMSE) are two standard statistical metrics for evaluating the
model’s performance. One of the most preferred evaluation met-
rics for regression models, the MSE is calculated by the average
of squaring the difference between actual observations and pre-
dicted values. This squared difference penalizes even small errors
that can overestimate how unfit the model is. The MSE is chosen
more than other performance metrics since it is differentiable and
thus able to be better optimized [64]. The RMSE is the square
root of the MSE and shows the sample standard deviation of the
residuals (the difference between original values and predicted
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R

Fig. 2. Learning curve (training error, validation error, and irreducible error)
[62].

Fig. 3. Training error curve and testing error curve based on the complexity of
the model [63].

values). The RMSE is the most widely used evaluation metric be-
cause of squaring the errors before averaging; the RMSE imposes
a relatively heavy penalty on high errors. This indicates that the
RMSE can be more helpful when high errors are not desirable.
Moreover, the unit of the RMSE is the same as the unit of output
and hence it is easier to be interpreted than the MSE [64,65]. Eqs.
(12) and (13) show the mathematical calculation of the MSE and
RMSE [32].

MSE =
1
N

×

N∑
i=1

(yi − f (xi))2 (12)

MSE =
√
MSE =

√ 1
N

×

N∑
i=1

(yi − f (xi))2 (13)

where y are actual values and f (xi) are values predicted by the
model.

The other evaluation metric for the regression model is called
the explained variance score (R2), which shows how much vari-
ance the regression model explains. The best possible R2 score is
1 [66].
6

6. Methodology

This article presents a five-stage framework for intelligent
cost-effective WRM prediction. As shown in Fig. 4, the first stage
is to calculate the efficiency of WRM based on the DEA-CCR
model, which is a topic of another paper [19]. If the DMU is
efficient, there is no need for further evaluation. However, if
the DMU is not efficient, the DMU needs to be considered for
more evaluation. The second stage is to collect the data for
inefficient DMU. Here, the E18 road in Sweden was selected as
an inefficient DMU. In order to enhance the WRM efficiency in
this road, several influential variables were chosen to be observed
every 10 min in February 2019, using three types of sensors and
RWS. The first sensor was mounted in the wheel track named
DRS511 1. The second sensor was mounted in the middle of the
driveway named DRS511 2 and the third sensor was an optical
sensor named DST. Forty-five variables were selected as inputs
for observations (Table 3) to predict the RST on this road. The
observations were analyzed to understand the nature of the data,
which can be helpful for the next stage. In the third stage (FE),
first the dataset was split into main training dataset and testing
dataset. Then, rare label encoding was performed for categorical
observations, and then categorical observations were transformed
into numerical data to be understandable for ML; after that,
all the data were scaled to be in the same range by robust
scaler technique. In the fourth stage (FS), the most predictive
features were selected by four different filter methods. Filter
methods are the procedures for selecting features only based
on feature information. Four filter methods were considered in
this study: (i) constant features, (ii) quasi-constant features, (iii)
correlation, and (iv) statistical measure. In the fifth stage, the
main training dataset was divided into learning (training) and
validation sets, to evaluate the generalization performance of the
learning algorithms (SVR, MLP, LR, and RF), using the learning
curves. The algorithms (SVR, MLP, LR, and RF) learn the patterns
from the main training dataset, then the generalization error
is estimated by the testing set. If the algorithm (SVR, MLP, LR,
and RF) performs well, based on graphical and numerical results,
ICWRM is ready to predict outputs; otherwise, the process needs
to return to the FE stage. This methodology was applied in Python
3 with several libraries, including Numpy [67], Pandas [68], Mat-
plotlib [69], Seaborn [70], Cufflinks [71], and Scikit-learn [72].
The data are from the Swedish Transport Administration’s RWIS
station at Test site E18 [73]. Dataset and all coding stages can be
found on GitHub [74].

6.1. Stage 1- DEA

This study measures the efficiency of salting as a WRM tech-
nique, by using the DEA model in the Arctic region. Each road
was considered as one DMU. Input and output variables were
selected according to the relationship between these variables
and the goal of this study. There were three input variables: WRM
cost, traffic flow and road area. WRM cost was calculated by the
summation of equipment cost, material/salt cost and labor cost.
Traffic flow was computed based on average daily traffic (ADT).
The road area was estimated by the length times the width of
the road (length×width). There were two output variables: envi-
ronmental impacts and the safety level in each road after salting.
The safety level is classified into three classes: high, medium and
low, which are described in Table 1. Environmental impact is
divided into three levels: high, medium and low, as interpreted
in Table 2. Both outputs are qualitative and need to be quantified
in order to be used in the mathematical optimization problem.
This stage is fully discussed in another article with the topic of
non-parametric linear technique for measuring the efficiency of

winter road maintenance in the Arctic area [19].
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Table 1
Description of safety levels.
Safety level Description

High No accidents on the road during a specific
period

Medium Accidents without any severe consequences on
the road during a specific period

Low Accident with casualties and severe injuries on
the road during a specific period

Table 2
Description of different levels of environmental impacts.
Environmental impact Description

High The road is close to vegetation and water
Medium The road is close to either vegetation or water
Low The road is close to neither vegetation nor water

6.2. Stage 2- Data acquisition and data analysis

Several features were determined, which influence RST pre-
iction. Table 3 shows all the variables and their abbreviations
sed in this study. The observations were collected by reading the
ata from RWS and three different types of sensors: (i) mounted
ensor in the wheel track named DRS511 1, (ii) mounted sensor
n the middle of the driveway named DRS511, and 2 (iii) optical
ensor, referred to as DST. Analyzing the observations provided
s with the type of variables (Fig. 5) and their characteristics.

.2.1. Description of features
Surface temperature was measured by three different sensors,

wo mounted in the road and one optical sensor (DST). The obser-
ation extracted by an optical sensor for surface temperature was
elected as an output (Surface_temp). The surface state was also
easured by three sensors (road mounted sensors and optical
ensor); it included dry, moist, wet, slushy, snowy, and icy surface
onditions. Air temperature, dew point temperature, percentage
f humidity, rain state (none, light, medium, snow), rain intensity,
ind speed, wind direction, visibility, present weather (none,
now, rain, dry), precipitation, barometric pressure, rain on/off
nd maximum wind speed were collected by the RWS. The grip,
ater layer, ice layer, and snow layer were measured by the
ptical sensor. Three sensors measured the alarm status, which
ncluded none, frost warning, rain warning, snow warning, and
ce warning. There were two different observations for visibility
tatus and general status: either ok or not ok. Snow height and
ase temperature were measured by the sensor mounted in the
iddle of the driveway. Liquid freezing temperature, ground

emperature, freezing temperature, and water thickness were
easured by two different sensors mounted in the road. The
oncentration, conductivity, and amount of chemicals was mea-
ured by the DRS511 mounted on the road, giving the amount of
alt present on the road in different units: g/l, mS/cm, and g/m2,
espectively. The relay state is configurable rules to control relays,
hich in this case is constant 0. The battery voltage parameter
hows the power of the backup battery.
Each type of variable can be divided into different types.

umerical variables are those whose values are numbers, and
hey are divided into two types: (i) discrete (whole numbers),
uch as the number of students in the classroom, and (ii) contin-
ous variables, including any values in a different range such as
ehicle prices. Categorical variables were previously mentioned
n Section 5. Date/time variables are those which contain time
nd/or date. Mixed variables are those which have both numbers
nd categories. Other variables can be text or images [75]. Table 4
hows different variable types in our case study, which consists of
7

Table 3
Features and their abbreviations.
Features Abbreviation

Surface temperature (◦C)\nDRS511 1 Surface_temp1
Surface temperature (◦C)\nDRS511 2 Surface_temp2
Surface temperature (◦C)\nDSC/DST (output) Surface_temp
Surface state\nDRS511 1 Surface_state1
Surface state\nDRS511 2 Surface_state2
Surface state\nDSC/DST Surface_state
Air temperature (◦C)\nAtmospheric site Air_temp
Dew point temperature (◦C)\nAtmospheric site Dew_point
Level of grip\nDSC/DST Grip
Water layer (mm)\nDSC/DST Water_L
Ice layer (mm)\nDSC/DST Ice_L
Snow layer (water equivalent) (mm)\nDSC/DST Snow_L
Relative humidity (%)\nAtmospheric site Humidity
Rain state\nAtmospheric site Rain_state
Rain intensity (mm/h)\nAtmospheric site Rain_int
Wind speed (m/s)\nAtmospheric site Wind_S
Wind direction (◦)\nAtmospheric site Wind_D
Visibility (m)\nAtmospheric site Visibility
Present weather\nAtmospheric site Present_weather
Precipitation total, past 24 h (mm)\nAtmospheric site Precipitation_24
Alarm status\nDRS511 1 Alarm1
Alarm status\nDRS511 2 Alarm2
Alarm status\nDSC/DST Alarm
Battery voltage (V)\nAtmospheric site Battery_voltage
Concentration (g/l)\nDRS511 1 Concentration1
Concentration (g/l)\nDRS511 2 Concentration2
Conductivity\nDRS511 1 Conductivity1
Conductivity\nDRS511 2 Conductivity2
Visibility sensor status\nAtmospheric site Visibility_status
Amount of chemical (g/m2)\nDRS511 1 Chemical1
Amount of chemical (g/m2)\nDRS511 2 Chemical2
General status\nAtmospheric site General_status
Barometric pressure (hPa)\nAtmospheric site Pressure
Rain on/off\nAtmospheric site Rain_nf
Relay states\nAtmospheric site Relay_state
Snow height (mm)\nDRS511 1 Snow_h
Base temperature (◦C)\nDRS511 1 Base_temp
Liquid freezing temperature (◦C)\nDRS511 1 Lfreezing1
Liquid freezing temperature (◦C)\nDRS511 2 Lfreezing2
Ground temperature (◦C)\nDRS511 1 Ground_temp1
Ground temperature (◦C)\nDRS511 2 Ground_temp2
Freezing temperature (◦C)\nDRS511 1 Freezing_temp1
Freezing temperature (◦C)\nDRS511 2 Freezing_temp2
Max wind speed (m/s)\nAtmospheric site Max_windS
Water thickness (mm)\nDRS511 1 Water_t1
Water thickness (mm)\nDRS511 2 Water_t2

35 numerical variables (4 discrete and 31 continuous), 11 nominal
categorical variables, and one date–time variable.

As previously mentioned, data analysis can also give us infor-
mation about the characteristics of variables, such as data shape,
statistical description of data, detecting the missing values, data
description, distributions of variables (normal or skewed), scale
of different features (magnitude of features), outliers or unusual
values, etc. The data shape for our case study is (3847, 46),
which means that there are 46 variables (45 input variables and
1 output variable) and 3847 observations. The date–time variable
is used as an index in this study. Tables 5 and 6 show a statistical
description of numerical data, excluding missing values.

6.2.2. Removing missing values
The second step is to remove missing values. The first column

in Tables 5 and 6 (‘Count’) demonstrates the number of observa-
tions for different variables. As can be seen, the numbers in this
column are not similar for all features; for some, this number is
less than 3847. The difference between 3847 and that number
shows the number of missing values in the dataset. In our case,
the number of missing values is not high. Therefore, due to the
low number of missing values (maximum is 16 out of 3847),
they have been dropped from the observations. Fig. 6 presents
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Fig. 4. Intelligent cost-effective winter road maintenance (ICWRM) framework.
Table 4
Number of different types of variables in our case study.
Data type Numerical Categorical Date–time Mixed Other

Discrete Continuous Nominal Ordinal Date Time

� � � × � � × ×

Number of variables 4 31 11 _ 1 1 _ _
8
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Fig. 5. Different types of variables.
Table 5
Characteristics of discrete numerical variables.
Discrete numerical variables Count Mean Std Min 25% 50% 75% Max

Wind_D 3831 207.15 83.73 1 151 226 269 360
Visibility 3847 17871.16 4653 370 20000 20000 20000 20000
Relay_states 3845 0 0 0 0 0 0 0
Snow_h 3845 2.56 5.33 0 0 0 2 47
Table 6
Characteristics of continuous numerical variables.
Continuous numerical values Count Mean Std Min 25% 50% 75% Max

Surface_temp1 3845 0.61 4.63 −14.6 −1.5 1.1 3.3 14.2
Surface_temp2 3845 0.67 4.72 −14.5 −1.5 1 3.4 15.2
Surface_temp (output) 3845 0.23 4.27 −14.2 −1.5 0.7 2.7 11.2
Air_temp 3847 0.81 4.98 −20 −0.9 1.9 3.8 10.4
Dew_point 3847 −2.4 4.88 −21.9 −4.2 −0.9 1.2 3.7
Grip 3845 0.75 0.15 0.11 0.78 0.81 0.82 0.82
Water_L 3845 0.081 0.12 0 0 0.05 0.11 1.81
Ice_L 3845 0.019 0.06 0 0 0 0 0.51
Snow_L 3845 0.037 0.15 0 0 0 0 1.04
Humidity 3847 80.54 14.19 39 71 85 91 99
Rain_int 3847 0.045 0.23 0 0 0 0 10
Wind_S 3831 3.62 1.69 0.2 2.4 3.7 4.8 8.5
Precipitation_24 3847 0.45 0.73 0 0 0 0.6 5.8
Battery_voltage 3847 13.83 0.1 13.6 13.8 13.8 13.8 14.2
Concentration1 3845 25.38 77.32 0 0 1.5 7.3 352.7
Concentration2 3845 120.48 153.23 0 0 6.3 321.2 357.6
Conductivity1 3845 1.94 1.76 0 0 1.9 3.5 8.6
Conductivity2 3845 1.39 1.75 0 0 0.3 2.7 9.2
Chemical1 3845 0.24 0.9 0 0 0.1 0.2 16.9
Chemical2 3845 0.38 1.47 0 0 0.1 0.4 30.8
Pressure 3847 1010.87 12.71 981.6 1004.1 1011.3 1018.9 1040.6
Base_temp 3847 −0.04 2.08 −4.6 −1.5 −0.1 1.4 4.6
Lfreezing1 3845 −0.22 0.48 −8.3 −0.3 −0.1 0 0
Lfreezing2 3845 −0.75 1.31 −21.1 −1 −0.4 −0.1 0
Ground_temp1 3845 0.6 3.76 −11.3 −1.2 0.8 3 10.3
Ground_temp2 3845 0.57 3.7 −11.3 −1.2 0.8 2.9 10.2
Freezing_temp1 3845 −0.46 1.52 −21.1 −0.5 −0.1 0 0
Freezing_temp2 3845 −0.93 1.86 −21.1 −1.1 −0.5 −0.1 0
Max_windS 3831 5.78 2.64 0.5 3.7 5.7 7.6 15.4
Water_t1 3845 0.06 0.13 0 0 0.03 0.06 1.88
Water_t2 3845 0.05 0.22 0 0 0 0.01 3.1
histogram and density plots for the variable Surface_temp1. His-
togram and density plots can help us to understand how much
our observations are normally distributed. Furthermore, red sec-
tions in the histogram and density plots demonstrate those parts
removed from the original dataset due to missing values; it is
clear that this does not change the distributions or characteristics
of the data. This procedure is considered for the rest of the
numerical data.

In order to show that removing missing values does not affect
he characteristics of categorical variables (Surface_state1, Sur-
ace_state2, Surface_state, Rain_ state, Present_weather, Alarm1,
larm2, Alarm, Visibility_status, General_status and Rain_state),
e calculated the percentage of various observations in each cat-
gory before and after removing missing values. It is also possible
o plot categorical distributions based on these percentages. Fig. 7
hows that the distribution plots for the surface_state variable
9

remain almost the same, which means that the difference in
percentages before and after deleting missing data is almost zero.
This procedure is the same for other categorical variables.

6.3. Stage 3- Feature engineering

In the FE stage, the first step is to split the dataset into main
training dataset and testing dataset. We decided to select 70%
of the whole data for the main training set and 30% for the
testing set, since the testing set needs to be big enough to lead to
meaningful statistical results, and both main training and testing
sets have the same characteristics. In addition, Surface_temp was
selected as an output and the rest of the variables as the inputs.
Main training and testing data shapes are (2678, 45), (1149,
45) respectively, where 2687 and 1149 illustrate the number of
observations, and 45 is the number of input features.
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Fig. 6. (a) Histogram plot before and after removing missing values for Surface_temp1, (b) Density plot before and after removing missing values for surface_temp1.
Fig. 7. Density plot for Surface_state (a) before dropping missing values, (b) after removing missing values.
Table 7
Frequent and infrequent labels in categorical variables.
Categorical variables Infrequent categories Frequent categories

Surface_state [icy, snowy] [dry, moist, slushy, wet]

6.3.1. Encoding rare labels in categorical variables
The next step is to encode rare labels in categorical variables.

are data points in categorical variables were encoded after split-
ing the dataset into main training dataset and testing dataset
nd it applied in both sets. Rare labels are infrequent (rare)
bservations in the dataset. All categorical variables in our dataset
ncluded a minimum of one category with a tiny proportion (less
han 5%). As an example, Table 7 shows frequent and infrequent
abels for the variable Surface_state. Furthermore, Fig. 8 shows
he frequency of different labels in this categorical variable before
nd after rare label encoding; the red line in the charts helps us
o visualize the rare labels.

.3.2. Transforming categorical values into numerical values
In the next step, categorical variables have been changed into

umerical values to be understandable for the machine learning
lgorithm. Categorical data are transformed into numerical data
fter splitting the dataset into main training dataset and test
ataset and it applied for both datasets. Ordinal or label encoding
s the method used for this transformation. Ordinal encoding
10
arbitrarily assigns an integer to categories in the main training
set and applies those mappings into the testing set. This method
does not add new variables to the dataset [76].

6.3.3. Feature scaling
The last step in this stage is feature scaling for inputs. Training

the ML models by scaled data can lead to the model performing
significantly better than models trained by unscaled data [77].
We have taken the scaler and fit it just to the main train-
ing dataset because in real life we are going to be able to
scale to our current known data and then predicting in the
future. We are not actually going to know the scale of that
data. So, that is why this scale is only being fit on the main
training dataset. After that we transform the main training data
and testing data. Robust scaler is the method used in this re-
search, as it is robust towards outliers. Sometimes, outliers can
have a negative impact on the mean and variance of the sam-
ple. In this situation, the interquartile quantile range (IQR) and
median can result in better outcomes. This scaling method re-
moves the median from the observations and scales the data
between the 25th quantile (1st quantile) and the 75th quan-
tile (3rd quantile) or in the IQR [78]. For each feature, scal-
ing and centering are calculated independently, according to
the computation of the relevant sample’s statistics in the main
training set. As is clear, this step occurs after splitting data
into main training dataset and testing dataset, since scalers re-
quire to learn the IQR and median values of the variables, based
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Fig. 8. Frequency of different labels in Surface_state (a) before rare label encoding, (b) after rare label encoding.
Table 8
Median values of the original observations saved by scaler.
Variable Median Variable Median Variable Median Variable Median Variable Median

Surface_temp1 1.1 Ice_L 0 Precipitation_24 0 Visibility_status 0 L_freezing1 −0.1
Surface_temp2 1 Snow_L 0 Alarm1 2 Chemical1 0.1 L_freezing2 −0.4
Surface_state1 3 Humidity 85 Alarm2 2 Chemical2 0.1 Ground_temp1 0.9
Surface_state2 3 Rain_state 1 Alarm 2 General_status 1 Ground temp2 0.8
Surface_state 2 Rain_int 0 Battery_voltage 13.8 pressure 1011.4 Freezing_temp1 −0.1
Air_temp 2 Wind_S 3.7 Concentration1 1.7 Rain_nf 1 Freezing_temp2 −0.5
Dew_point −0.8 Wind_D 226 Concentration2 8.35 Relay_state 0 Max_windS 5.7
Grip 0.81 Visibility 2×104 Conductivity1 2 Snow_h 0 Water_t1 0.03
Water_L 0.05 Present_weather 1 Conductivity2 0.4 Base_temp 0 Water_t2 0
Table 9
IQR values of the original observations saved by scaler.
Variable IQR Variable IQR Variable IQR Variable IQR Variable IQR

Surface_temp1 4.7 Ice_L 1 Precipitation_24 o.6 Visibility_status 1 L_freezing1 0.3
Surface_temp2 4.8 Snow_L 1 Alarm1 1 Chemical1 0.275 L_freezing2 0.9
Surface_state1 3 Humidity 20 Alarm2 1 Chemical2 0.4 Ground_temp1 4
Surface_state2 3 Rain_state 1 Alarm 1 General_status 1 Ground temp2 4
Surface_state 2 Rain_int 1 Battery_voltage 1 pressure 14.7 Freezing_temp1 0.5
Air_temp 4.6 Wind_S 2.5 Concentration1 7.3 Rain_nf 1 Freezing_temp2 1.1
Dew_point 5.5 Wind_D 119 Concentration2 321.9 Relay_state 1 Max_windS 3.9
Grip 0.04 Visibility 1 Conductivity1 3.5 Snow_h 2 Water_t1 0.06
Water_L 0.11 Present_weather 1 Conductivity2 2.975 Base_temp 2.9 Water_t2 0.01
on the main training set, to store and use them on later data
by means of the transform method [79]. Tables 8 and 9 show
the stored median and IQR values of the original observations,
respectively.

6.4. Stage 4- Feature selection

The features should be selected after the feature scaling (FE
stage), using the main training set to avoid the ML model from
overfitting. Filter methods were applied for FS in this study. Filter
methods remove redundant features independently and quickly,
based on the characteristics of the features in the dataset [80].
Filter methods include constant features, quasi-constant features,
correlation and statistical measures [81].

6.4.1. Removing constant variables
Constant variables show the same value for all the obser-

vations in the dataset. In this paper, constant features were
identified by selecting the variance threshold, using Scikit-learn
in Python. The variance threshold was set to be zero. Visibil-
ity_status and Relay_state are two constant features that were
removed from the dataset.
11
6.4.2. Removing quasi-constant variables
Quasi-constant variables show a similar value for the major-

ity of observations. In this study, quasi-constant features were
identified by selecting a variance threshold equal to 0.01 (0.01
illustrates that proportion of a single observation in one feature
is around 0.99). In this step, Ice_L and General_status are two
quasi-constant features that were removed from the dataset.

6.4.3. Removing high correlated features
Correlation calculates the linear relationship between two or

more variables. Correlated features do not give us any informa-
tion. Therefore, features should be uncorrelated with each other,
but they should correlate with the output [82]. When two fea-
tures have a high correlation with each other, the second feature
is not able to add much information over the first feature, and it
can help us to reduce features. Pearson’s correlation coefficient
has been used in this study. It calculates the strength of linear
relationships among variables. This value varies between −1
(negative linear relationship) and +1 (positive linear relation-
ship). If there is a positive relationship, increasing one variable
causes an increase in another variable. If there is a negative
relationship, an increase in one variable results in a reduction in
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Table 10
Description of Pearson’s correlation coefficient.
Pearson’s correlation coefficient Description

0.0 ≤ r ≤ 0.19 Weak
0.2 ≤ r ≤ 0.39 Mild
0.4 ≤ r ≤ 0.59 Moderate
0.6 ≤ r ≤ 0.79 Moderately strong
0.8 ≤ r ≤ 1.0 Strong

Table 11
Highly correlated feature groups in the first repetition (group 1).
Feature 1 Feature 2 Corr

Ground_temp1 Ground_temp2 0.999
Ground_temp1 Surface_temp1 0.960
Ground_temp1 Surface_temp2 0.949
Ground_temp1 Air_temp 0.936
Ground_temp1 Battery_voltage 0.882
Ground_temp1 Base_temp 0.740
Ground_temp1 Dew_point 0.722
Ground_temp1 Surface_state1 0.601

Table 12
Highly correlated feature groups in the first repetition (group 2).
Feature 1 Feature 2 Corr

Chemical1 Freezing_temp1 0.976
Chemical1 Chemical2 0.926
Chemical1 Freezing_temp2 0.860
Chemical1 Lfreezing1 0.783
Chemical1 Lfreezing2 0.701

Table 13
Highly correlated feature groups in the first repetition (group 3).
Feature 1 Feature 2 Corr

Max_windS Wind_S 0.970

Table 14
Highly correlated feature groups in the first repetition (group 4).
Feature 1 Feature 2 Corr

Alarm2 Alarm1 0.876
Alarm2 Grip 0.619

another variable. If the value is −1 and +1, there is a strong linear
elationship (manner) between two variables and, if this value is
ero, there is no linear relationship between two variables [83].
he general rule (rule of thumb) for interpreting the strength of
inear relationships between variables (absolute value) is based
n Table 10 [84]:
To find the highly correlated features, we decided to follow the

rocedure that can discover the different groups of features [85]
ith a correlation coefficient ≥0.6. This procedure gives us more

nsight into which features we should keep or ignore. This process
epeats until all correlated features (Pearson’s correlation coeffi-
ient ≥0.6) are removed. Removing the features is based on the
ecision maker’s choice (i.e. which feature they decide to keep,
ccording to its importance).
In the first repetition, 11 correlated groups were found out

f 45 total features. The results are shown in Tables 11–21.
e decided to remove Ground_temp1, Chemical1, Max_windS,
larm2, Alarm, Conductivity, Snow_h, Surface_state, Water_t1,
urface_state2, and Present_weather from the main training set
nd testing set.
In the second repetition, six correlated groups were found.

he results are shown in Tables 22–27. We decided to remove
urface_temp1, Chemical2, Lfreezing2, Base_temp, grip, and Con-
uctivity1 from the main training set and testing set.
In the third repetition, three correlated groups were found.

he results are shown in Tables 28–30. We decided to remove
12
Table 15
Highly correlated feature groups in the first repetition (group 5).
Feature 1 Feature 2 Corr

Alarm Grip 0.822
Alarm Snow_L 0.615

Table 16
Highly correlated feature groups in the first repetition (group 6).
Feature 1 Feature 2 Corr

Conductivity2 Conductivity1 0.790

Table 17
Highly correlated feature groups in the first repetition (group 7).
Feature 1 Feature 2 Corr

Snow_h Precipitation_24 0.767
Snow_h Grip 0.618

Table 18
Highly correlated feature groups in the first repetition (group 8).
Feature 1 Feature 2 Corr

Surface_state Conductivity1 0.723
Surface_state Humidity 0.707

Table 19
Highly correlated feature groups in the first repetition (group 9).
Feature 1 Feature 2 corr

Water_t1 Snow_L 0.710
Water_t1 Grip 0.631
Water_t1 Water_t2 0.625

Table 20
Highly correlated feature groups in the first repetition (group 10).
Feature 1 Feature 2 Corr

Surface_state2 Surface_state1 0.667

Table 21
Highly correlated feature groups in the first repetition (group 11).
Feature 1 Feature 2 Corr

Present_weather Rain_state 0.653

Table 22
Highly correlated feature groups in the second repetition (group 1).
Feature 1 Feature 2 Corr

Surface_temp1 Surface_temp2 0.997
Surface_temp1 Ground_temp2 0.956
Surface_temp1 Air_temp 0.943
Surface_temp1 Battery_voltage 0.908
Surface_temp1 Dew_point 0.747
Surface_temp1 Surface_state1 0.608

Surface_temp2, Freezing_temp1, and Snow_L from the main
training set and testing set.

In the fourth repetition, three correlated groups were found.
The results are shown in Tables 31–33. We decided to remove
Battery_voltage, Freezing_temp2, and Ground_temp2 from the
main training set and testing set.

In the last repetition, one correlated group was found. The
results are shown in Table 34. We decided to remove Dew_point
from main training set and testing set

Thus, 17 features were selected after these five iterations.
These features are: Surface_state1, Air_temp, Water_L, Humidity,
Rain_state, Rain_int, Wind_S, Wind_D, Visibility, Precipitation_24,
Alarm1, Concentration1, Concentration2, Pressure, Rain_nf,
Lfreezing1, and Water_t2.
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Table 23
Highly correlated feature groups in the second repetition (group 2).
Feature 1 Feature 2 Corr

Chemical2 Freezing_temp1 0.897
Chemical2 Freezing_temp2 0.883
Chemical2 Lfreezing1 0.627

Table 24
Highly correlated feature groups in the second repetition (group 3).
Feature 1 Feature 2 Corr

Lfreezing2 Freezing_temp2 0.830
Lfreezing2 Lfreezing1 0.804
Lfreezing2 Freezing_temp1 0.750

Table 25
Highly correlated feature groups in the second repetition (group 4).
Feature 1 Feature 2 Corr

Base_temp Ground_temp2 0.744
Base_temp Air_temp 0.602

Table 26
Highly correlated feature groups in the second repetition (group 5).
Feature 1 Feature 2 Corr

Grip Snow_L 0.694
Grip Alarm1 0.638

Table 27
Highly correlated feature groups in the second repetition (group 6).
Feature 1 Feature 2 Corr

Conductivity1 Surface_state1 0.636

Table 28
Highly correlated feature groups in the third repetition (group 1).
Feature 1 Feature 2 Corr

Surface_temp2 Ground_temp2 0.946
Surface_temp2 Air_temp 0.929
Surface_temp2 Battery_voltage 0.901
Surface_temp2 Dew_point 0.726
Surface_temp2 Surface_state1 0.609

Table 29
Highly correlated feature groups in the third repetition (group 2).
Feature 1 Feature 2 Corr

Freezing_temp1 Freezing_temp2 0.892
Freezing_temp1 Lfreezing1 0.840

Table 30
Highly correlated feature groups in the third repetition (group 3).
Feature 1 Feature 2 Corr

Snow_L Alarm1 0.616

6.4.4. Statistical measures
In the next step, a statistical measure, called the univariate

pproach, was used to build a decision tree regression, based
n each variable in the main training set, to predict the output.
his method ranks variables based on the MSE and then selects
he features with the highest ranks. The lower MSE shows the
etter performance of the ML model [85]. MSE values calculated
ased on this method showed 11 features with a high predic-
ive performance. Therefore, six low predictive variables were
emoved in this procedure, including Visibility, Rain_nf, Concen-
ration1, Rain_int, Rain_state, and Water_t2. Consequently, 11
eatures were selected as predictors (Surface_state1, Air_temp,
ater_L, Humidity, Wind_S, Wind_D, Precipitation_24, Alarm1,
13
Table 31
Highly correlated feature groups in the fourth repetition (group 1).
Feature 1 Feature 2 Corr

Battery_voltage Air_temp 0.938
Battery_voltage Ground_temp2 0.876
Battery_voltage Dew_point 0.767

Table 32
Highly correlated feature groups in the fourth repetition (group 2).
Feature 1 Feature 2 Corr

Freezing_temp2 Lfreezing1 0.754

Table 33
Highly correlated feature groups in the fourth repetition (group 3).
Feature 1 Feature 2 Corr

Ground_temp2 Surface_state1 0.602

Table 34
The highly correlated feature group in the fifth repetition.
Feature 1 Feature 2 Corr

Dew_point Air_temp 0.847

Concentration2, Pressure, LFreezing1), ready for use in ML models
to generate predicted values. The number of observations in
the main training dataset and testing dataset is 2678 and 1149,
respectively.

6.5. Stage 5- Cross validation and model evaluation

An attempt has made to build four different ML models (SVR,
MLP, LR, and RF) [74] to predict the surface temperature every
10 min, based on the testing set.

6.5.1. Cross validation
Five-fold (k = 5) cross validation is chosen to validate the ML

models. This method helps us to generate the learning curves.
Plotting the learning curves requires different training sizes. The
lowest number of training sizes is one. The maximum number of
training sizes depends on the ratio of the learning (training) set to
the validation set. The main training dataset have been split into
learning (training) and validation sets with the ratio of 80:20. This
ratio means that 80% of instances are in the learning (training) set
and 20% put aside for the validation set. Therefore, the learning
(training) set has 2142 instances (2678 × 0.80 = 2142) and the
validation set has 536 instances (2678 × 0.20 = 536). That is
why the maximum number of training sizes is 2142. For this case
study, six sizes have been used: [1, 100, 500, 1000, 1500, 2142].

6.5.2. Model evaluation and experimental results
Table 35 depicts the MSE values for learning (training) and

validation sets, which shows by increasing the number of data
points, the MSE value decreases in the validation sets until they
converge to the irreducible errors. The irreducible errors for SVR,
MLP, LR, and RF are approximately 0.406, 0.489, 1.011, and 1.047,
respectively. Moreover, the training speeds of all the models are
fast and they are easy to implement. Therefore, cross validation
provided us with an indication for the performance of the dif-
ferent regression algorithms used in this study. Graphical results
obtained from the applied methods are shown in Figs. 9, 10, and
11. Fig. 9 displays the learning curves for the learning (training)
and validation sets. Fig. 10 shows the scatter plots of true values
over predicted values, while Fig. 11 displays the residual plots,
which mark the difference between the actual observations and
the predicted values. Numerical results obtained from the applied
methods are illustrated in Table 36, which includes the MSE,

2
RMSE, and R for the testing sets.
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Fig. 9. Learning curves achieved from (a) SVR model, (b) MLP model, (c) LR model, (d) RF model.
Table 35
MSE values for learning (training) and validation sets based on diverse training sizes for the SVR, MLP, LR, and RFC models.
Training size Mean learning (training) scores Mean validation scores

SVR MLP LR RF SVR MLP LR RF

1 0.00 0.434 0.00 0.00 24.087 17.462 24.087 24.087
100 2.671 6.711 0.799 0.608 3.826 7.167 1.106 1.406
500 0.650 1.099 0.925 0.802 0.914 1.294 1.032 1.045
1000 0.453 0.707 0.941 0.902 0.542 0.789 1.016 1.060
1500 0.400 0.576 0.960 0.921 0.459 0.625 1.012 1.029
2142 0.373 0.468 0.999 0.982 0.406 0.489 1.011 1.047
Table 36
Evaluation metrics for SVR, MLP, LR, and RF models.

SVR MLP LR RF

Model evaluation MSE: 0.395
RMSE: 0.628
R2: 0.976

MSE: 0.467
RMSE: 0.683
R2: 0.972

MSE: 0.955
RMSE: 0.977
R2: 0.943

MSE: 1.038
RMSE: 1.019
R2: 0.938
6.5.2.1. Learning Curves. Some information can be extracted from
he learning curves (Fig. 9). The gap between the two curves
hows the variance. In the starting point, when the training size is
mall, this gap is wide (high variance) and adding more training
ata is more likely to be helpful. Hence, as the number of training
ata points is increasing, the gap between the two curves is be-
oming narrower. Here, we explain the learning curve for the SVR
odel. As is clear in the plot, the MSE for the training curve is zero
14
once the training size is one. This demonstrates a normal manner
because the model does not face any problem in fitting one data
point as perfectly as possible. However, the value of the MSE for
the validation set in this situation is drastically high (24.087). We
change the y-axis limitation to be between 0 and 5, to see the
graph clearly. In fact, this amount of high error is not strange,
as the model is only trained by one single data point, and it is
unable to generalize precisely for unseen instances. Moreover,
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Fig. 10. Scatter plot achieved from (a) SVR model, (b) MLP model, (c) LR model, (d) RF model.
s the training size reaches 100, the MSE for the training curve
ncreases to approximately 2.671, whereas there is a reduction in
he MSE for the validation set (it decreases to 3.826). Therefore,
he model (here, it is SVR) cannot predict all 100 data points in
he training set accurately. Nevertheless, the model performance
s better for the validation set, due to the growth in the number of
ata points. When the training size increases to 500, the MSE for
he training set decreases to 0.65, while the MSE for the validation
et drops to 0.914. After this trend (1000 and more) two curves
re converged (low bias and low variance). The converged point
hows the irreducible error [62].

.5.2.2. Scatter plots. With the exception of RF, scatter plots for
VR, MLP and LR are straight lines. However, the flawless straight
ine of the scatter plot for the SVR and the MLP models show that
hey are the perfect prediction models.

.5.2.3. Residual plots. Although the residual plots for all the
odels are normally distributed, the SVR and MLP residual plots
how better performance. This means that SVR and MLP are the
orrect selections for our dataset (observed data). If they were
ot normally distributed and there was some strange behavior in
he residual plots, they would not be correct choices, due to the
haracteristics of the dataset.

.5.2.4. Numerical results (MSE, RMSE, and R2). In addition, the
SE values for SVR, MLP, LR and RF are 0.395, 0.467, 0.955, and
.038, respectively, while the RMSE values for SVR, MLP, LR, and
 s

15
Table 37
Estimated coefficients for LR model.
Variable Estimated coefficients (b̂ı)

Surface_state1 0.614
Air_temp 3.637
Water_L −0.145
Humidity −0.088
Wind_S 0.097
Wind_D −0.171
Precipitation_24 0.110
Alarm1 0.382
Concentration2 −0.109
Pressure 0.242
Lfreezing1 0.0258

RF are 0.628, 0.683, 0.977, and 1.019, respectively. Therefore, both
the MSE and RMSE values are the lowest values in the SVR model,
and we can explain around 98% of the variance (R2

= 0.98) based
on the SVR model, while this number is almost 97% for the MLP
model and 94% for both the LR and RF models. Thus, SVR is the
most accurate model and can be selected as the better estimator,
due to good generalization performance. Furthermore, the MLP
model has shown tiny differences in both graphical and numerical
results and has performed much better than LR and RF.

It is good to mention that, in the LR model, the estimated
intercept (b̂0) is 1.301, and the estimated coefficients (b̂ı) are
hown in Table 37.
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Fig. 11. Residual plot achieved from (a) SVR model, (b) MLP model, (c) LR model, (d) RF model.
. Conclusions

This study presents a five-stage framework for intelligent pre-
ictive winter road maintenance, by combining data envelopment
nalysis and machine learning techniques to develop decision
upport systems for decision-making units (roads). In the first
tage, the efficiency of DMUs is measured by the DEA-CCR model
or different units. If the unit is efficient, there is no need for
urther evaluation because it can save time and cost. However,
nefficient units must be taken into consideration for further
ssessment. In the second stage, the related data are collected and
nalyzed to provide us with statistical information for different
ariables. In the third stage (feature engineering), the dataset
s split into main training dataset and testing dataset, and then
are categorical variable labels are encoded; after that, categorical
bservations are quantified for the sake of being readable for
achine learning techniques. Lastly, input observations are scaled

hrough the robust scaler method. In the next stage (feature
election), unrelated features are filtered out to retain relevant
eatures that have a significant impact on the output (road surface
emperature). Finally, in the cross validation and model evalua-
ion stage, validation set scores and learning (training) set scores
re estimated, based on different training sizes and the k-fold
ross validation method. Then the SVR, MLP, LR, and RF models
re trained to see whether the models can generate predicted
oad surface temperature values accurately or not. The graphical
esults achieved by learning curves have shown that the applied
16
models avoid overfitting and underfitting. The scatter plots for
the SVR, MLP and LR models fulfill the requirement of the straight
line. Moreover, the residual plots for the applied models are nor-
mally distributed. Nonetheless, these three graphs show that SVR
and MLP models have the best visual performance. The numerical
outcomes indicate that SVR has achieved the lowest mean square
error and root mean square error values, whereas RF has obtained
the biggest error values. Moreover, the variance explained by SVR
is better than in the other models. However, the difference in
numerical values between SVR and MLP is small. Hence, both SVR
and MLP models have shown good performance, but SVR is more
accurate than MLP, according to the evaluation metrics, and the
irreducible error in the learning curves.

The proposed methodology is not limited to predicting surface
temperature in winter. It can be applied in other prediction appli-
cations. ICWRM is easy to implement, with a fast training process,
and it has high prediction accuracy. It is also possible, to combine
the machine learning techniques with optimization algorithms,
to find the best network parameters (i.e. number of neurons or
hidden layers of MLP), in order to enhance the accuracy of pre-
diction. However, this methodology is highly dependent on the
data quality, the data quantity, and the adjustment of different
parameters in the models. Therefore, massive data is required to
achieve accurate cost-effective WRM. For future work, alternative
methods with lower dependency on data can be found. Moreover,
vehicle routing problem can be formulated to increase the WRM
efficiency in a road, because in different parts of the road, surface



M. Hatamzad, G.C.P. Pinerez and J. Casselgren Knowledge-Based Systems 247 (2022) 108682

a

C

Table 38
List of abbreviations.
Abbreviation Explanation

ADT Average Daily Traffic
ANN Artificial Neural Network
BCC Banker, Charnes, and Cooper
CCR Charnes, Cooper, and Rhodes
Corr Correlation
DEA Data Envelopment Analysis
DMUs Decision Making Units
DSS Decision Support Systems
FE Feature Engineering
FS Feature Selection
GIS Geographic Information Systems
ICWRM Intelligent Cost-effective Winter Road Maintenance
IQR Interquartile Quantile Range
KKT Karush–Kuhn–Tucker
LR Linear Regression
ML Machine Learning
MLP Multilayer Perceptron
MSE Mean Square Error
OLS Ordinary Least Square
RBFs Radial Basis Functions
RF Random Forest
RMSE Root Mean Square Error
RST Road Surface Temperature
RWS Road Weather Stations
SVC Support Vector Classification
SVM Support Vector Machine
SVR Support Vector Regression
WRM Winter Road Maintenance

temperature can change due to different road geometry and
average daily traffic.

List of abbreviations
Table 38 shows all the abbreviations used in this research

rticle.
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