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Abstract
In this paper we discuss and prove an analogy of the Carleson–Hunt theorem with
respect to Vilenkin systems. In particular, we use the theory of martingales and give
a new and shorter proof of the almost everywhere convergence of Vilenkin–Fourier
series of f ∈ L p(Gm) for p > 1 in case theVilenkin system is bounded.Moreover, we
also prove sharpness by stating an analogy of the Kolmogorov theorem for p = 1 and
construct a function f ∈ L1(Gm) such that the partial sums with respect to Vilenkin
systems diverge everywhere.

Keywords Fourier analysis · Vilenkin system · Vilenkin group · Vilenkin–Fourier
series · Almost everywhere convergence · Carleson–Hunt theorem · Kolmogorov
theorem

Mathematics Subject Classification 42C10 · 42B25

1 Introduction

In 1947 Vilenkin [61–63] investigated a group Gm , which is a direct product of the
additive groups Zmk := {0, 1, . . . ,mk − 1} of integers modulo mk , where m :=
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(m0,m1, . . .) are positive integers not less than 2, and introduced the Vilenkin systems
{ψ j }∞j=0. These systems include as a special case the Walsh system.

The classical theory of Hilbert spaces (for details see e.g the books [58, 60]) says
that if we consider the partial sums Sn f :=∑n−1

k=0 f̂ (k) ψk, with respect to Vilenkin
systems, then

‖Sn f ‖2 ≤ ‖ f ‖2 .

In the same year Schipp [45], Simon [51] and Young [67] (see also the book [49])
generalized this inequality for 1 < p < ∞: there exists an absolute constant cp,
depending only on p, such that

‖Sn f ‖p ≤ cp ‖ f ‖p , when f ∈ L p(Gm).

From this it follows that for every f ∈ L p(Gm) with 1 < p ≤ ∞,

‖Sn f − f ‖p → 0, as n → ∞.

The boundedness does not hold for p = 1, but Watari [64] (see also Gosselin
[23] and Young [67]) proved that there exists an absolute constant c such that, for
n = 1, 2, . . . , the weak type estimate holds:

yμ {|Sn f | > y} ≤ c ‖ f ‖1 , f ∈ L1(Gm), y > 0.

The almost-everywhere convergence of Fourier series for L2 functions was pos-
tulated by Luzin [39] in 1915 and the problem was known as Luzin’s conjecture.
Carleson’s theorem is a fundamental result in mathematical analysis establishing the
pointwise (Lebesgue) almost everywhere convergence of Fourier series of L2 func-
tions, proved by Carleson [10] in 1966. The name is also often used to refer to the
extension of the result by Hunt [26] which was given in 1968 to L p functions for
p ∈ (1,∞) (also known as the Carleson–Hunt theorem).

Carleson’s original proof is exceptionally hard to read, and although several authors
have simplified the arguments there are still no easy proofs of his theorem. Expositions
of the original Carleson’s paper were published by Kahane [28], Mozzochi [40], Jors-
boe and Mejlbro [27] and Arias de Reyna [43]. Moreover, Fefferman [16] published
a new proof of Hunt’s extension, which was done by bounding a maximal operator of
partial sums

S∗ f := sup
n∈N

|Sn f | .

This, in turn, inspired amuch simplified proof of the L2 result byLacey andThiele [35],
explained in more detail in Lacey [33]. The books Fremlin [17] and Grafakos [24] also
give proofs of Carleson’s theorem. An interesting extension of Carleson–Hunt result
much more closer to L1 space then L p for any p > 1 was done by Carleson’s student
Sjölin [56] and later on, by Antonov [2]. Already in 1923, Kolmogorov [31] showed
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that the analogue of Carleson’s result for L1 is false by finding such a function whose
Fourier series diverges almost everywhere (improved slightly in 1926 to diverging
everywhere). This result indeed inspired many authors after Carleson proved positive
results in 1966. In 2000, Kolmogorov’s result was improved by Konyagin [32], by
finding functions with everywhere-divergent Fourier series in a space smaller than L1,
but the candidate for such a space that is consistent with the results of Antonov and
Konyagin is still an open problem.

The famous Carleson theorem was very important and surprising when it was
proved in 1966. Since then this interest has remained and a lot of related research has
been done. In fact, in recent years this interest has even been increased because of the
close connections to e.g. scattering theory [41], ergodic theory [14, 15], the theory of
directional singular integrals in the plane [4, 11, 13, 34] and the theory of operators
with quadratic modulations [36]. We refer to [33] for a more detailed description of
this fact. These connections have been discovered from various new arguments and
results related to Carleson’s theorem, which have been found and discussed in the
literature. We mean that these arguments share some similarities, but each of them has
also a distinct new idea behind, which can be further developed and applied. It is also
interesting to note that, for almost every specific application of Carleson’s theorem in
the aforementioned fields, mainly only one of these new arguments was used.

The analogue of Carleson’s theorem for Walsh system was proved by Billard [5]
for p = 2 and by Sjölin [55] for 1 < p < ∞, while for bounded Vilenkin systems
by Gosselin [23]. Schipp [46, 47, 49] investigated the so called tree martingales,
i.e., martingales with respect to a stochastic basis indexed by a tree, and generalized
the results about maximal function, quadratic variation and martingale transforms to
these martingales (see also [48, 65]). Using these results, he gave a proof of Carleson’s
theorem for Walsh–Fourier series. A similar proof for bounded Vilenkin systems can
be found in Schipp and Weisz [48, 65]. In each proof, they show that the maximal
operator of the partial sums is bounded on L p(Gm), i.e., there exists an absolute
constant cp such that

∥
∥S∗ f

∥
∥
p ≤ cp ‖ f ‖p , as f ∈ L p(Gm), 1 < p < ∞.

Recent proof of almost everywhere convergence of Walsh–Fourier series was given
by Demeter [12] in 2015. By using some methods of martingale Hardy spaces, almost
everywhere convergence of subsequences ofVilenkin–Fourier serieswas considered in
[8]. Antonov [3] proved that for f ∈ L1(log+ L)(log+ log+ log+ L)(Gm) its Walsh–
Fourier series converges a.e. Similar result for the bounded Vilenkin systems was
proved by Oniani [42]. However, there exists a function from L1(log+ log+ L)(Gm)

whose Vilenkin–Fourier series diverges everywhere, where in this result Gm is a
general (not necessary “bounded”) Vilenkin group (see Tarkaev [59]).

Stein [57] constructed an integrable function whose Walsh–Fourier series diverges
almost everywhere. Later Schipp [44, 49] proved that there exists an integrable function
whose Walsh–Fourier series diverges everywhere. Kheladze [29, 30] proved that for
any set of measure zero there exists a function in f ∈ L p(Gm) (1 < p < ∞)

whose Vilenkin–Fourier series diverges on the set, while the result for continuous
or bounded function was proved by Harris [25] or Bitsadze [6]. Moreover, Simon
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[53] constructed an integrable function such that its Vilenkin–Fourier series diverges
everywhere. Bochkarev [9] considered rearrangements of Vilenkin–Fourier series of
bounded type.

It is not known whether Carleson’s theorem holds for unbounded Vilenkin systems.
However, some theorems were proved for unbounded Vilenkin systems by Gát [18–
21], Simon [52, 53] and Tarkaev [59].

In this paper, we use the theory of martingales and give a new an shorter proof
of the almost everywhere convergence of Vilenkin–Fourier series of f ∈ L p(Gm)

for p > 1 in the case the Vilenkin system is bounded. The positive results of this
paper are derived in Sect. 3. In Theorem 2 we prove the boundedness of the maximal
operator on L p (1 < p < ∞) spaces. By using this result, we derive the L p norm
convergence of the partial sums of Vilenkin–Fourier series (Theorem 3) as well as the
analogue of the Carleson–Hunt theorem, i.e., the almost everywhere convergence of
the partial sums of f ∈ L p (Theorem 4), when 1 < p < ∞. The proof is built up
by proving some new lemmas of independent interest. The corresponding sharpness
and almost everywhere divergence are stated and proved in Sect. 4, see Theorems 5
and 6. Especially Theorem 6 is the Kolmogorov type result and also here the proof is
built up by proving some lemmas of independent interest. In order not to disturb our
discussion later, some necessary preliminaries are presented in Sect. 2.

2 Preliminaries

Denote by N+ the set of the positive integers, N := N+ ∪ {0}. Let m := (m0, m1, . . .)

be a sequence of the positive integers not less than 2. Denote by

Zmk := {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk .
Define the group Gm as the complete direct product of the groups Zmi with the

product of the discrete topologies of Zm j ’s. The direct product μ of the measures

μk ({ j}) := 1/mk ( j ∈ Zmk )

is the Haar measure on Gm with μ (Gm) = 1. In this paper we discuss bounded
Vilenkin groups, i.e. the case when supn mn < ∞.

The elements of Gm are represented by sequences

x := (x0, x1, . . . , x j , . . .
)
,
(
x j ∈ Zm j

)
.

It is easy to give a base for the neighborhood of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1},

where x ∈ Gm , n ∈ N. Denote In := In (0) for n ∈ N+, and In := Gm \ In .
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If we define the so-called generalized number system based on m by

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as n = ∑∞
j=0 n j M j , where n j ∈ Zm j

( j ∈ N+) and only a finite number of n j ‘s differ from zero. For two natural numbers
n =∑∞

j=1 n j M j and k =∑∞
j=1 k j M j , we define that

n ⊕ k :=
∞∑

i=0

((
n j + k j

)
(mod mi )

)
Mj , n j , k j ∈ Zm j .

Next, we introduce on Gm an orthonormal system which is called the Vilenkin sys-
tem. First, we define the complex-valued function rk (x) : Gm → C, the generalized
Rademacher functions, by

rk (x) := exp (2π ı xk/mk) ,
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=
∞∏

k=0

rnkk (x) , (n ∈ N) .

Specifically, we call this system the Walsh-Paley system when m ≡ 2. The norms (or
quasi-norms) of the spaces L p(Gm) (0 < p < ∞) is defined by

‖ f ‖p
p :=

∫

Gm

| f |p dμ.

The Vilenkin system is orthonormal and complete in L2 (Gm) (for details see e.g. the
books [1, 49]).

Now, we introduce analogues of the usual definitions in Fourier-analysis. If f ∈
L1 (Gm), we can define the Fourier coefficients, the partial sums of the Fourier series,
the Dirichlet kernels with respect to the Vilenkin system in the usual manner:

f̂ (n) :=
∫

Gm

f ψndμ, (n ∈ N)

Sn f :=
n−1∑

k=0

f̂ (k) ψk and Dn :=
n−1∑

k=0

ψk, (n ∈ N+)
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respectively. Recall that (see e.g. Simon [50, 54] and Golubov et al. [22])

mk−1∑

s=0

rsk (x) =
{
mk, if xk = 0,
0, if xk �= 0.

(1)

and

DMn (x) =
{
Mn, if x ∈ In,
0, if x /∈ In .

(2)

It is known that (for the details see e.g. [1, 7, 37, 38]) there exist absolute constants
C1 and C2 such that

C1n ≤ ∥∥Dqn

∥
∥
1 ≤ C2n, for qn = M2n + M2n−2 + M2 + M0. (3)

A function P is called Vilenkin polynomial if P =∑n
k=0 ckψk . The spectra of the

Vilenkin polynomial P is defined by

sp(P) = {n ∈ N : P̂ (n) �= 0.
}

3 Martingale Inequalities

Wewill also need some martingale inequalities. The σ -algebra generated by the inter-
vals {In (x) : x ∈ Gm} will be denoted by Fn (n ∈ N). If F denotes the set of Haar
measurable subsets of Gm , then obviously Fn ⊂ F. By a Vilenkin interval we mean
one of the form In(x), n ∈ N, x ∈ Gm . The conditional expectation operators
relative to Fn are denoted by En . An integrable sequence f = ( fn)n∈N is said to be a
martingale if fn isFn-measurable for all n ∈ N and En fm = fn in the case n ≤ m. We
can see that if f ∈ L1(Gm), then (En f )n∈N is a martingale. Martingales with respect
to (Fn, n ∈ N) are called Vilenkin martingales. It is easy to show (see e.g. Weisz [65,
p. 11]) that the sequence (Fn, n ∈ N) is regular, i.e.,

fn ≤ R fn−1 (n ∈ N) (4)

for all non-negative Vilenkin martingales ( fn), where R := maxn∈N mn .
Using (2), we can show that En f = SMn f for all f ∈ L p(Gm) with 1 ≤ p ≤ ∞

(see e.g. [65, Sect. 1.2]). By the well known martingale theorems, this implies that

∥
∥SMn f

∥
∥
p ≤ cp ‖ f ‖p , for all f ∈ L p(Gm)when 1 ≤ p < ∞

and

∥
∥SMn f − f

∥
∥
p → 0, as n → ∞ for all f ∈ L p(Gm)when p ≥ 1. (5)
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For a Vilenkin martingale f = ( fn)n∈N, the maximal function is defined by

f ∗ := sup
n∈N

| fn| .

For a martingale f = ( fn)n≥0 let

dn f = fn − fn−1 (n ≥ 0)

denote the martingale differences, where f−1 := 0. The square function and the
conditional square function of f are defined by

S( f ) =
( ∞∑

n=0

|dn f |2
)1/2

, s( f ) =
(

|d0 f |2 +
∞∑

n=0

En|dn+1 f |2
)1/2

.

We have shown the following theorem in [65].

Theorem 1 If 0 < p < ∞, then

∥
∥ f ∗∥∥

p ∼ ‖S( f )‖p ∼ ‖s( f )‖p .

If in addition 1 < p ≤ ∞, then

∥
∥ f ∗∥∥

p ∼ ‖ f ‖p .

We will use the following convexity, concavity theorem proved in [65].

Proposition 1 Let T be a countable index set and (At , t ∈ T) be an arbitrary (not
necessarily monotone) sequence of sub-σ -algebras of F. Suppose that for all h ∈
L p(Gm) and all 1 < p < ∞ Doob’s inequality

∥
∥
∥
∥sup
t∈T

|Eth|
∥
∥
∥
∥
p

≤ Cp‖h‖p

holds where Et denotes the conditional expectation operator relative toAt . If ( ft , t ∈
T) is a sequence of non-negative measurable functions, then for all 1 ≤ p < ∞,

∫

Gm

(
∑

t∈T

Et ft

)p

dμ ≤ Cp

∫

Gm

(
∑

t∈T

ft

)p

dμ

and for all 0 < q ≤ 1,

∫

Gm

(
∑

t∈T

ft

)q

dμ ≤ Cq

∫

Gm

(
∑

t∈T

Et ft

)q

dμ.
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4 A.E. Convergence of Vilenkin–Fourier Series

We introduce some notations. For j, k ∈ N we define the following subsets of N :

I kjMk
:= [ jMk, jMk + Mk) ∩ N

and

I :=
{
I kjMk

: j, k ∈ N

}
.

We introduce also the partial sums taken in these intervals:

sI kjMk
f :=

∑

i∈I kjMk

f̂ (i)ψi .

For simplicity, we suppose that f̂ (0) = 0. The last author has proved in [66] that, for
an arbitrary n ∈ I kjMk

,

sI kjMk
f = ψn Ek

(
f ψn
)
. (6)

For

n =
∞∑

j=0

n j M j (0 ≤ n j < m j ),

we introduce

n(k) :=
∞∑

j=k

n j M j , I kn(k) = [n(k), n(k) + Mk
)

(n ∈ N). (7)

For I = I kn(k), let

T I f := T Ikn(k) f :=
∑

[n(k+1),n(k))⊃J∈I
|J |=Mk

sJ f . (8)

Since I kn(k) = I kñ(k) implies n(k + 1) = ñ(k + 1), the operators T I (I ∈ I) are well
defined. Note that there are nk summands in (8).

Lemma 1 For all n ∈ N, we have

Sn f =
∞∑

k=0

T Ikn(k) f = ψn

∞∑

k=0

nk−1∑

l=0

rnk−l
k Ek

(
dk+1

(
f ψn
)
rnk−l
k

)
,
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where I kn(k) is defined in (7).

Proof We sketch the proof, only. It is proved in [66] that

T Ikn(k) f =
∑

j∈[n(k+1),n(k))

f̂ ( j)ψ j

= ψn

nk−1∑

l=0

rnk−l
k Ek

(
dk+1

(
f ψn
)
rnk−l
k

)
. (9)

Moreover, n is contained in I kn(k) and I kn(k) ⊂ I k+1
n(k+1). Since

[0, n) =
∞⋃

k=0

[
n(k + 1), n(k)

)
,

we get that

Sn f =
∞∑

k=0

T Ikn(k) f .

This finishes the proof of Lemma 1. ��
Lemma 2 For all k, n ∈ N, we have

∣
∣
∣T Ikn(k) f

∣
∣
∣ ≤ REk

(∣
∣
∣sI k+1

n(k+1)
f − sI kn(k)

f
∣
∣
∣
)

,

where R := max(mn, n ∈ N).

Proof Equalities (9) and (6) imply

|T Ikn(k) f | ≤ mkEk
(∣
∣dk+1

(
f ψn
)∣
∣
)

(10)

≤ REk
(∣
∣ψn Ek+1

(
f ψn
)− ψn Ek

(
f ψn
)∣
∣
)

= REk

(∣
∣
∣sI k+1

n(k+1)
f − sI kn(k)

f
∣
∣
∣
)

,

which shows the lemma. ��
Lemma 3 For all n ∈ N,

(
ψnT

I kn(k) f
)

k∈N

is a martingale difference sequence with

respect to (Fk+1)k∈N.

Proof First, ψnT
I kn(k) f is Fk+1 measurable because of (9) and the fact that rk is Fk+1

measurable. Since Ek(r ik) = 0 for i = 1, . . . ,mn − 1, we can see that

Ek

(
ψnT

I kn(k) f
)

= Ek

(nk−1∑

l=0

rnk−l
k Ek

(
dk+1( f ψn)r

nk−l
k

)
)

= 0,
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hence

(nk−1∑

l=0

rnk−l
k Ek

(
dk+1( f ψn)r

nk−l
k

)
)

k∈N

is a martingale difference sequence. ��
Before proving our main theorem, we need some further notations and lemmas. In

what follows, I , J , K denote some elements of I. Let

FK := Fn and EK := En if|K | = Mn .

Assume that ε = (εK , K ∈ I) is a sequence of functions such that εK is FK measur-
able. Set

Tε;I ,J f :=
∑

I⊂K�J

εK T
K f

and

T ∗
ε;I f := sup

I⊂J
|Tε;I ,J f |, T ∗

ε f := sup
I∈I

|T ∗
ε;I f |.

If εK (t) = 1 for all K ∈ I and t ∈ Gm , then we omit the notation ε and we write
simply TI ,J f , T ∗

I f and T ∗ f .
For I ∈ Iwith |I | = Mn , let I+ ∈ I such that I ⊂ I+ and |I+| = Mn+1.Moreover,

let I− ∈ I denote one of the sets I− ⊂ I with |I−| = Mn−1. Note that FI− = Fn−1
and EI− = En−1 are well defined. We introduce the maximal functions

s∗
I f := sup

K⊂I
EK−|sK f |

and

s∗ f := sup
I∈I

s∗
I f .

Since |sI+ f | is FI+ measurable, by the regularity condition (4),

|sI+ f | ≤ REI |sI+ f | ≤ Rs∗
I+ f . (11)

Lemma 4 For any real number x > 0 and K ∈ I, let

εK := χ{t∈Gm :x<s∗
K+ f (t)≤2x}

and

αK := χ{t∈Gm :s∗K f (t)>x,s∗I f (t)≤x,I�K }.
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Then

T ∗
ε f ≤ 2 sup

K∈I
αK T

∗
ε;K f + 4R2xχ{t∈Gm :s∗ f (t)>x}. (12)

Proof Let us fix I � J in I and t in Gm . Set

τK := χ{t∈Gm :s∗K f (t)>x} (K ∈ I).

Therefore εK = τK+εK . Consequently, if the set

{K ∈ I : I ⊂ K � J , τK+(t) = 1}

is empty then Tε;I ,J f (t) = 0 or else let K1 be its minimum element.Moreover, denote
by K0 one of the minimum elements of the set

{K ∈ I : K ⊂ K+
1 , τK (t) = 1}.

This means that if L � K0, then τL(t) = 0. Thus αK0(t) = 1 and

Tε;I ,J f (t) = Tε;K1,J f (t) = εK1T
K1 f (t) + Tε;K+

1 ,J f (t)

= εK1T
K1 f (t) + αK0(t)

(
Tε;K0,J f (t) − Tε;K0,K

+
1
f (t)
)

.

By Lemma 2 and (11),

εK1 |T K1 f | ≤ RεK1EK1

(
|sK+

1
f − sK1 f |

)

≤ 2R2εK1EK1

(
εK1s

∗
K+
1
f
)

≤ 4R2xχ{t∈Gm :s∗ f (t)>x}.

On the other hand,

∣
∣
∣Tε;K0,J f (t) − Tε;K0,K

+
1
f (t)
∣
∣
∣ ≤ 2T ∗

ε;K0
f (t).

Taking the supremum over all I � J , we get (12). ��
Now we introduce the quasi-norm ‖ · ‖p,q (0 < p, q < ∞) by

‖ f ‖p,q := sup
x>0

x

⎛

⎜
⎝

∫

Gm

(
∑

I∈I
αI

)p/q

dμ

⎞

⎟
⎠

1/p

,

where αI is defined in Lemma 4. Observe that αI can be rewritten as

αI := χ{t∈Gm :EI−|sI f (t)|>x,EJ−|sJ f (t)|≤x,J�I }. (13)
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Denote by P p,q the set of functions f ∈ L1 which satisfy ‖ f ‖p,q < ∞. For
q = ∞, define

‖ f ‖p,∞ := sup
x>0

x

⎛

⎜
⎝

∫

Gm

(

sup
I∈I

αI

)p

dμ

⎞

⎟
⎠

1/p

(0 < p < ∞).

It is easy to see that

‖ f ‖p,∞ ≤ ‖ f ‖p,q (0 < q < ∞)

and

‖ f ‖p,∞ = sup
x>0

xμ(s∗ f > x)1/p.

Lemma 5 Let max(1, p) < q < ∞, f ∈ P p,q and x, z > 0. Then

μ

(

sup
I∈I

αI T
∗
ε;I f > zx

)

≤ Cp,q z
−q x−p‖ f ‖p

p,q ,

where αI is defined in Lemma 4.

Proof Equality (9) implies that

ξT K ( f ) = T K ( f ξ)

for any FK measurable function ξ . By Lemma 3, for a suitable n ∈ I ,
(
ψnT

K f
)
I⊂K

is a martingale difference sequence relative to (FK+)I⊂K . We have

T ∗
ε;I f = sup

I⊂J

∣
∣
∣
∣
∣
∣

∑

I⊂K�J

εKψnT
K f

∣
∣
∣
∣
∣
∣
= sup

I⊂J

∣
∣
∣
∣
∣
∣

∑

I⊂K�J

ψnT
K ( f εK )

∣
∣
∣
∣
∣
∣
.

Using Burkholder–Gundy’s inequality (see Theorem 1) together with (10), we obtain

EI
(|T ∗

ε;I f |p0
) ≤ Cp0EI

(
∑

I⊂K

|ψnT
K ( f εK )|2

)p0/2

≤ Cp0EI

(
∑

I⊂K

EK |dK+( f εKψn)|2
)p0/2

,
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where p0 > 1. Applying again Theorem 1, one can establish that

EI
(|T ∗

ε;I f |p0
) ≤ Cp0EI

∣
∣
∣
∣
∣

∑

I⊂K

dK+( f εKψn)

∣
∣
∣
∣
∣

p0

= Cp0EI

∣
∣
∣
∣
∣

∑

I⊂K

εK dK+( f ψn)

∣
∣
∣
∣
∣

p0

.

For fixed I and t ∈ Gm let us denote by K0(t) ∈ I (resp. K1(t) ∈ I) the smallest
(resp. largest) interval K ⊃ I for which εK0(t) = 1 (resp. εK1(t) = 1). Then

ψn(t)
∑

I⊂K

εK (t)dK+( f ψn)(t)

= ψn(t)
∑

K0(t)⊂K⊂K1(t)

εK (t)dK+( f ψn)(t)

= εK1(t)(t)
(
ψn(t)EK1(t)+( f ψn)(t) − ψn(t)EK0(t)( f ψn)(t)

)

= εK1(t)(t)
(
sK1(t)+ f (t) − sK0(t) f (t)

)
.

By (11) and by the definition of εK ,

εK1(t)(t)
∣
∣sK1(t)+ f (t) − sK0(t) f (t)

∣
∣

≤ RεK1(t)(t)
(
s∗
K1(t)+ f (t) + s∗

K0(t) f (t)
)

(14)

≤ 2RεK1(t)(t)s
∗
K1(t)+ f (t) ≤ 4Rx .

Hence

EI
(|T ∗

ε;I f |p0
) ≤ Cp0x

p0 .

By Tsebisev’s inequality and the concavity theorem (see Proposition 1), for p0 ≥
q > 1, one can see that

μ

(

sup
I∈I

αI T
∗
ε;I f > zx

)

≤ (zx)−q
∫

Gm

(

sup
I∈I

αI T
∗
ε;I f
)q

dμ

≤ (zx)−q
∫

Gm

(
∑

I∈I
αI T

∗
ε;I f

p0

)q/p0

dμ

≤ Cp0,q(zx)
−q
∫

Gm

(
∑

I∈I
αI EI

(
T ∗

ε;I f
p0
)
)q/p0

dμ

≤ Cp0,q z
−q
∫

Gm

(
∑

I∈I
αI

)q/p0

dμ.
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Set p0 := q2/p ≥ q > 1 and observe that

μ

(

sup
I∈I

αI T
∗
ε;I f > zx

)

≤ Cp,q z
−q
∫

Gm

(
∑

I∈I
αI

)p/q

dμ

≤ Cp,q z
−q x−p‖ f ‖p

p,q ,

which shows the lemma. ��
Lemma 6 Let max(1, p) < q < ∞ and f ∈ P p,q . Then

sup
y>0

y pμ
(
T ∗ f > (2 + 8R2)y

)
≤ Cp,q‖ f ‖p,q .

Proof First we define a decomposition generated by the sequences εk = (εkK , K ∈ I),
where

εkK := χ{t∈Gm :2k<s∗
K+ f (t)≤2k+1} (k ∈ Z).

Notice that (10) and (14) imply

χ{t∈Gm :s∗ f (t)=0}T K f = χ{t∈Gm :s∗ f (t=0}χ{t∈Gm :s∗
K+ f (t)=0}T K f = 0.

Henceforth

T K f = χ{t∈Gm :s∗ f (t)>0}T K f =
∑

k∈Z

εkK T
K f

and

T ∗ f ≤
∑

k∈Z

T ∗
εk
f .

Let us apply Lemma 4 to εk and x = 2k to write

T ∗
εk
f ≤ 2 sup

K∈I
αk
K T

∗
εk ;K f + 2k+2R2χ{t∈Gm :s∗ f (t)>2k },

where

αk
K := χ{t∈Gm :s∗K f (t)>2k ,s∗I f (t)≤2k ,I�K } (K ∈ I).

Choosing j ∈ Z such that 2 j < y ≤ 2 j+1, we get that

χ{t∈Gm :s∗ f (t)≤y}T ∗ f ≤ 2
∑

k≤ j

sup
K∈I

αk
K T

∗
εk ;K f +

∑

k≤ j

2k+2R2χ{t∈Gm :s∗ f (t)>2k }

≤ 2
∑

k≤ j

sup
K∈I

αk
K T

∗
εk ;K f + 8R2y.
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By Lemma 5, for any k ∈ Z and zk > 0, we have

μ

(

sup
K∈I

αk
K T

∗
εk ;K f > zk2

k
)

≤ Cp,q z
−q
k 2−pk‖ f ‖p

p,q . (15)

Consequently,

y pμ
(
T ∗ f >(2 + 8R2)y

)
≤ y pμ(s∗ f > y)+y pμ

(
T ∗ f > (2 + 8R2)y, s∗ f ≤ y

)

≤ ‖ f ‖p
p,∞ + y pμ

⎛

⎝
∑

k≤ j

sup
K∈I

αk
K T

∗
εk ;K f > y

⎞

⎠

≤ ‖ f ‖p
p,q + y pμ

⎛

⎝
∑

k≤ j

sup
K∈I

αk
K T

∗
εk ;K f > 2 j

⎞

⎠ .

To use (15), observe that cβ

∑
k≤ j 2

β(k− j) = 1 if β > 0 and cβ = 1 − 2−β . Set

2 j cβ2
β(k− j) = cβ2

(β−1)(k− j)2k =: zk2k .

Then for β = (q − p)/(2q), we get

z−q
k 2−pk ≤ Cp,q2

−pj2p( j−k)+q(β−1)( j−k) ≤ Cp,q y
−p2(q−p)(k− j)/2.

Thus, by (15),

μ

⎛

⎝
∑

k≤ j

sup
K∈I

αk
K T

∗
εk ;K f > 2 j

⎞

⎠ ≤
∑

k≤ j

μ

(

sup
K∈I

αk
K T

∗
εk ;K f > zk2

k
)

≤ Cp,q

∑

k≤ j

z−q
k 2−pk‖ f ‖p

p,q

≤ Cp,q y
−p‖ f ‖p

p,q

∑

k≤ j

2(q−p)(k− j)/2

≤ Cp,q y
−p‖ f ‖p

p,q ,

so the lemma is proved. ��
Let � denote the closure of the triangle in R

2 with vertices (0, 0), (1/2, 1/2) and
(1, 0) except the points (x, 1 − x), 1/2 < x ≤ 1.

Lemma 7 Suppose that 1 < p, q < ∞ satisfy (1/p, 1/q) ∈ �. Then, for all f ∈ L p,

‖ f ‖p,q ≤ Cp,q‖ f ‖p.
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Proof For an arbitrary x > 0, let us use the definition of αI given in (13). Then αI is
FI− measurable and, obviously,

αIαJ = 0 if I � J or J � I .

For all I ∈ I, introduce the projections FI := αI sI and observe that sI ◦ sJ = 0 for
every incomparable I and J . Therefore, we get for every g ∈ L1 and I , J ∈ I that

FI (FJ g) = αI sI (sJ (αJ g)) = sI (αIαJ sJ g) = δI ,J FI g,

where δI ,J is the Kronecker symbol. Thus the projections FI are orthogonal and
Bessel’s inequality implies for any g ∈ L2 that

‖(FI g, I ∈ I)‖2L2(l2) =
∑

I∈I
‖FI g‖22 ≤ ‖g‖22.

Let us introduce the operators

GI g := EI−(ηI FI g) (g ∈ L1, I ∈ I),

where (ηI , I ∈ I) is a fixed sequence of functions satisfying ‖ηI‖∞ ≤ 1 for each
I ∈ I. Then

‖(GI g, I ∈ I)‖2L2(l2) ≤
∫

Gm

∑

I∈I
EI−|FI g|2 dμ

=
∫

Gm

∑

I∈I
|FI g|2 dμ ≤ ‖g‖22.

Furthermore, by Doob’s inequality,

‖(GI g, I ∈ I)‖Ls (l∞) ≤
∥
∥
∥
∥sup
I∈I

EI−|g|
∥
∥
∥
∥
s

≤ Cs‖g‖s

for any 1 < s ≤ ∞ and g ∈ Ls . It follows by interpolation that

‖(GI g, t ∈ I)‖L p(lq ) ≤ Cp,q‖g‖p (g ∈ L p)

where 1/p = (1− t)/2+ t/s and 1/q = (1− t)/2 for any 0 ≤ t ≤ 1. Setting g := f
and ηt := sign sI f , we have

⎛

⎜
⎝

∫

Gm

(
∑

I∈I
(αI EI−|sI f |)q

)p/q

dμ

⎞

⎟
⎠

1/p

≤ Cp,q‖ f ‖p.
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Using the fact that

αI EI−|sI f | > xαI ,

we can see that

x

⎛

⎜
⎝

∫

Gm

(
∑

I∈I
αI

)p/q

dμ

⎞

⎟
⎠

1/p

≤ Cp,q‖ f ‖p,

which finishes the proof. ��
Now we are ready to formulate our first main result.

Theorem 2 Let f ∈ L p(Gm), where 1 < p < ∞. Then

∥
∥S∗ f

∥
∥
p ≤ cp ‖ f ‖p ,

where

S∗ f := sup
n∈N

|Sn f | .

Proof It is easy to see that Lemma 1 implies S∗ f ≤ T ∗ f . It follows from Lemmas 6
and 7 that

sup
y>0

y pμ
(
S∗ f > y

) ≤ Cp‖ f ‖p

for 1 < p < ∞. Now the proof of the theorem follows by the Marcinkiewicz inter-
polation theorem. ��

The next norm convergence result in L p spaces for 1 < p < ∞ follow from the
density of the Vilenkin polynomials in L p(Gm) and from Theorem 2.

Theorem 3 Let f ∈ L p(Gm), where 1 < p < ∞. Then

‖Sn f − f ‖p → 0, as n → ∞.

Our announced Carleson–Hunt type theorem reads:

Theorem 4 Let f ∈ L p(Gm), where p > 1. Then

Sn f → f , a.e., as n → ∞.

The proof follows directly by using Theorem 2 and the fact that the Vilinkin poly-
nomials are dense in L p.
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5 Almost Everywhere Divergence of Vilenkin–Fourier Series

A set E ⊂ Gm is called a set of divergence for L p(Gm) if there exists a function
f ∈ L p(Gm) whose Vilenkin–Fourier series diverges on E .

Lemma 8 If E is a set of divergence for L1(Gm), then there is a function f ∈ L1(Gm)

such that S∗ f = ∞ on E .

Proof We claim that given any g ∈ L1(Gm), there is an unboundedmonotone increas-
ing sequence λ = (λ j , j ∈ N

)
of positive real numbers and a function f ∈ L1(Gm)

such that

f̂ ( j) = λ j ĝ( j) ( j ∈ N). (16)

To prove this claim use (5) for p = 1 to choose a strictly increasing sequence of
positive integer n1, n2, . . . such that

‖SMnk
g − g‖1 < M−1

k (k ∈ N+). (17)

Consider the function f defined by

f := g +
∞∑

k=1

(
g − SMnk

g
)

.

By (17), the series converges in the norm of L1(Gm). In particular, f belongs to
L1(Gm) and

f̂ ( j) = ĝ( j) +
∞∑

k=1

∫

Gm

(
g − SMnk

g
)

ψ j dμ

for j ∈ N. Therefore, the claim follows from orthogonality if we set

λ j := 1 +
∑

k∈N+:Mnk≤ j

1 ( j ∈ N).

To prove the theorem, suppose that g ∈ L1(Gm) is a function whose Vilenkin–Fourier
series diverges on E . Use the claim to choose a monotone increasing, unbounded
sequence λ which satisfies (16). By Abel’s transformation,

Sng − Smg =
n−1∑

j=m

(
S j+1 f − S j f

) 1

λ j

= Sn f

λn−1
− Sm f

λm
+

n−1∑

j=m+1

(
1

λ j−1
− 1

λ j

)

S j f
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for any integers n,m ∈ N with n > m. Since λ is increasing, it follows that

|Sng − Smg| ≤ 2

λm
S∗ f (n,m ∈ N, n > m).

Since λ is unbounded, it follows that Sng converge at x when S∗ f (x) is finite. In
particular, (S∗ f )(x) = ∞ for all x ∈ E . ��
Lemma 9 A set E ⊆ Gm is a set of divergence for L1(Gm) if and only if there exist
Vilenkin polynomials P1, P2, . . . such that

∞∑

j=1

‖Pj‖1 < ∞ (18)

and

sup
j∈N+

S∗Pj (x) = ∞ (x ∈ E). (19)

Proof Suppose first that E is a set of divergence for L1(Gm). Let g ∈ L1(Gm) be a
function whose Vilenkin–Fourier series diverges on E . By repeating the proof of
Lemma 8, we can choose an unbounded, monotone increasing positive sequence
(λ j , j ∈ N) and a function f ∈ L1(Gm) such that

Sng − Smg = Sn f

λn−1
− Sm f

λm
+

n−1∑

j=m+1

(
1

λ j−1
− 1

λ j

)

S j f

for all integers n,m ∈ N,m < n.

Let (ω j , j ∈ N) be an unbounded sequence of positive, increasing numbers which
satisfy

∞∑

j=1

(
1

λ j
− 1

λ j+1

)

ω j < ∞.

For example, let

ω j := 1
1√
λ j

+ 1√
λ j+1

.

Indeed, then
∞∑

j=1

(
1

λ j
− 1

λ j+1

)

ω j ≤
∞∑

j=1

(
1
√

λ j
− 1
√

λ j+1

)

= 1√
λ1

.

Fix x ∈ E . If

|S j f (x)| = O(ω j ), as j → ∞,
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then

|Sng(x) − Smg(x)| → 0, as n, m → ∞

and we get that Sng(x) is a convergent series for any x ∈ E, which is contradiction.
Consequently, the inequality

|Sn f (x)| > ωn (20)

holds for infinitely many integers n ∈ N.

Use (5) for p = 1 to choose strictly increasing sequences of positive integers
(n j , j ∈ N) and (α j , j ∈ N) which satisfy n j < α j + 1,

‖ f − SMn j
f ‖1 < M−1

j (21)

and

‖S∗(SMn j
f )‖∞ <

ωα j

2
( j ∈ N). (22)

Consider the functions defined by

Pj := SMα j+1
( f − SMn j

f ) ( j ∈ N+).

Clearly, these functions are Vilenkin polynomials. We will show that they satisfy (18)
and (19). Since ‖SMnh‖1 ≤ ‖h‖1, for n ∈ N and h ∈ L1(Gm), (18) is a direct
consequence of (21). To verify (19), fix x ∈ E and choose an n ∈ N satisfying (20)
which is large enough so that α j < n ≤ α j+1 for some j ∈ N+. Since the definition
of Pj implies

Sn Pj = Sn f − Sn(SMn j
f ),

we have by (20) and (22) that

|(Sn Pj )(x)| ≥ |(Sn f )(x)| − ωα j

2
≥ 1

2
ωα j .

Hence (19) follows from the fact that ωn → ∞ as n → ∞.

Conversely, suppose that

Pj :=
Mα j−1∑

k=0

c( j)
k ψk (α j ∈ N, j ∈ N+)

is a sequence of Vilenkin polynomials which satisfies (18) and (19). Let n1 := α1 and
for j > 1 set n j := 1 + max{n j−1, α j }. Then (n j , j ∈ N) is a strictly increasing
sequence of integers and it is easy to see that
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Mn j+1 ⊕ k1 > Mn j ⊕ k0 (23)

for any choice of integers k0 and k1 which satisfy 0 ≤ k0 ≤ Mα j , 0 ≤ k1 ≤ Mα j+1

and j ∈ N. Let

f :=
∞∑

j=1

ψMn j
Pj

and observe by (18) that f ∈ L1(Gm). It is clear that the series defining f converges in
L1(Gm) norm. Consequently, this series is theVilenkin–Fourier series of f .Moreover,
(23) can be used to see that

SMn j +k f − SMn j
f = ψMn j

Sk Pj

for 0 ≤ k < Mn j+1 − Mn j , j ∈ N+. In particular, (19) implies the Vilenkin–Fourier
series of f diverges at each x ∈ E . ��
Corollary 1 If E1, E2, . . . are sets of divergence for L1(Gm), then

E := ∪∞
n=1En

is also a set of divergence for L1(Gm).

Proof Apply Lemma 9 to choose Vilenkin polynomials P(n)
1 , P(n)

2 , . . . such that

∞∑

j=1

‖P(n)
j ‖1 < ∞

and

sup
j∈N+

(S∗P(n)
j )(x) = ∞ (x ∈ En, n ∈ N+) . (24)

Thus there exist integers α1 < α2 < . . . such that
∞∑

j=αn

∥
∥
∥P

(n)
j

∥
∥
∥
1

<
1

Mn
(n ∈ N+).

Let (Q j , j ∈ N+) be any enumeration of the polynomials
{
P(n)
j : j ≥ αn, n = 1, 2, . . .

}
.

e.g.,

Q1 := P(1)
α1

,

Q2 := P(2)
α2

, Q3 := P(1)
α1+1,

Q4 := P(1)
α1+2, Q5 := P(2)

α2+1, Q6 := P(3)
α3

,
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Q7 := P(4)
α4

, Q8 := P(3)
α3+1, Q9 := P(2)

α2+2, Q10 := P(1)
α1+3

Q11 := P(1)
α1+4, Q12 := P(2)

α2+3, Q13 := P(3)
α3+2, Q14 := P(4)

α4+1 Q15 := P(5)
α5

. . . .

Each Q j is a Vilenkin polynomial and

∞∑

j=1

‖Q j‖1 <

∞∑

n=1

1

Mn
< ∞.

In particular, by Lemma 9 it suffices to show that

sup
j∈N+

(S∗Q j )(x) = ∞, for x ∈ E .

But this follows from the construction and from (24) since every x ∈ E necessarily
belongs to some En . ��
Theorem 5 If 1 ≤ p < ∞ and E ⊆ Gm is a set of Haar measure zero, then E is a set
of divergence for L p(Gm).

Proof We begin with a general remark. If A ⊆ Gm is a finite union of intervals
I1, I2, . . . , In for some n ∈ N+ and if N is any non-negative integer, then there exists
a Vilenkin polynomial P such that, for some i ≥ N ,

P =
Mi−1∑

k=MN

ckψk,

which satisfies

|P(x)| = 1, (x ∈ A) and
∫

Gm

|P|p dμ = μ(A).

Indeed, if i := max{MN , 1/μ(I j ) : 1 ≤ j ≤ n}, then, in view of (2), we find that
P := χ(A)ψi is such a polynomial.

To prove the theorem, suppose E ⊆ Gm satisfiesμ(E) = 0.Cover E with intervals
(Ik, k ∈ N) such that

∞∑

k=0

μ(Ik) < 1

and each x ∈ E belongs to infinitely many of the sets Ik . Set n0 := 0 and choose
integers n0 < n1 < n2 · · · such that

∞∑

k=n j

μ(I j ) < M−1
j ( j ∈ N).
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Apply the general remark above successively to the sets

A j :=
n j+1−1⋃

k=n j

Ik ( j ∈ N)

to generate integers α0 := 0 < α1 < α2 < · · · and Vilenkin polynomials P0, P1, . . .
such that sp(Pj ) ⊂ [Mα j , Mα j+1

) :

Pj =
Mα j+1−1
∑

k=Mα j

ckψk,

‖Pj‖p
p = μ(A j ) ≤ M−1

j (25)

and
∣
∣Pj (x)

∣
∣ = 1 x ∈ A j , for j ∈ N. (26)

Setting

f :=
∞∑

j=1

Pj ,

we observe by (25) that this series converges in L p(Gm) norm. Hence f ∈ L p(Gm)

and this series is the Vilenkin–Fourier series of f . Moreover, since the spectra of the
polynomials Pj are pairwise disjoint, we have

SMα j+1 f − SMα j
f = Pj ( j ∈ N+).

Since every x ∈ E belongs to infinitely many of the sets A j , it follows from (26) that
the Vilenkin–Fourier series of f diverges at every point x ∈ E . ��

This theorem cannot be improved for 1 < p < ∞ and measurable sets with non-
zero measure. Indeed, in this case the Vilenkin–Fourier series of an f ∈ L p(Gm)

converges a.e. (see Theorem 4). However, it can be improved considerably for p = 1.

Theorem 6 There is a function f ∈ L1(Gm) whose Vilenkin–Fourier series diverges
everywhere.

Proof Fix αn ∈ [Mn−1, Mn) , where n ∈ N+ is odd. By using the lower estimate for
the Lebesgue constant in (3), we can conclude that there exists an absolute constant
C > 0, which does not depend on n, such that

∥
∥
∥
∥
∥

αn−1∑

k=0

ψk

∥
∥
∥
∥
∥
1

= ∥∥Dαn

∥
∥
1 > Cn.
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Consider the function

gn(x) =
{

Dαn (x)
|Dαn (x)| , if Dαn (x) �= 0,

0, if Dαn (x) = 0.

It is constant on any set of the form In (x) , x ∈ Gm .Hence gn is a Vilenkin polynomial
of order at most Mn . Moreover, since

ψk(x − t) = ψk(x)ψk(t) = ψk(t), 0 ≤ k < Mn, x ∈ In(0).

we get that

Dαn (x − t) = Dαn (t), x ∈ In(0).

Hence, by the choice of αn ∈ [Mn−1, Mn) we have

(
Sαn gn

)
(x) =

∫

Gm

gn(t)Dαn (x − t) = ∥∥Dαn

∥
∥
1 > Cn, (x ∈ In(0)).

For k =∑n−1
s=0 ksMs, (ks ∈ Zms ), let us define the points x (n)

k ∈ Gm, (0 ≤ k < Mn)

by x (n)
k := (k0, k1, . . . , kn−1, 0, 0, . . .) and set

Qn :=
Mn−1∏

k=0

(

1 − τ
x (n)
k
gn

∑mn+k−1
s=1 rsn+k

mn+k − 1

)

, where τ
x (n)
k
gn(x) = gn(x − x (n)

k ).

By using (1) we find that

∑mn+k−1
s=1 rsn+k(x)

mn+k − 1
=
{
1, if xn+k = 0,

−1
mn+k−1 , if xn+k �= 0 (27)

and

1 −
∑mn+k−1

s=1 rsn+k(x)

mn+k − 1
=
{
0, if xn+k = 0,
1 + 1

mn+k−1 , if xn+k �= 0. (28)

It is easy to show that for any x ∈ Gm there exists x (n)
j := ( j0, j1, . . . , jn−1, 0, 0, . . .)

such that In(x) = In(x
(n)
j ), that is

x0 = j0, x1 = j1, xn−1 = jn−1.
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Consider the j-th term of the expression of Qn and let x ∈ In(x
(n)
j ). Since

τ
x (n)
j
gn(x

(n)
j ) = gn(0) = 1, according to (28) we can conclude that

1 − τ
x (n)
j
gn(x)

∑mn+ j−1
s=1 rsn+ j (x)

mn+ j − 1
= 1 −

∑mn+ j−1
s=1 rsn+ j (x)

mn+ j − 1
= 0 if xn+ j = 0.

Since x ∈ In(x
(n)
j ) for some 0 ≤ k ≤ Mn − 1,

Qn(x) =
Mn−1∏

k=0

(

1 − τ
x (n)
k
gn(x)

∑mn+k−1
s=1 rsn+k(x)

mn+k − 1

)

= 0 if xn+k = 0.

On the other hand, (27) and |τ
x (n)
k
gn(x)| ≤ 1 imply that if xn+k �= 0, we get that

∣
∣
∣
∣
∣
1 − τ

x (n)
k
gn

∑mn+k−1
s=1 rsn+k

mn+k − 1

∣
∣
∣
∣
∣
≤ 1 +

∣
∣
∣
∣
∣
τ
x (n)
k
gn

∑mn+k−1
s=1 rsn+k

mn+k − 1

∣
∣
∣
∣
∣

≤ 1 + 1

mn+k − 1
= mn+k

mn+k − 1
.

It follows that

|Qn(x)| ≤
Mn−1∏

k=0

mn+k

mn+k − 1
, if x ∈ In(x) and xn+k �= 0, for all 0 ≤ k ≤ Mn − 1.

Hence, we can conclude that Qn ∈ L1(Gm). Indeed,

∫

Gm

|Qn|dμ

≤
m0−1∑

x0=0

· · ·
mn−1−1∑

xn−1=0

mn−1∑

xn=0

· · ·
mn+Mn−1−1∑

xn+Mn−1=1

∫

In+Mn (x)

(Mn−1∏

k=0

mn+k

mn+k − 1

)

dμ

=
m0−1∑

x0=0

· · ·
mn−1−1∑

xn−1=0

mn−1∑

xn=0

· · ·
mn+Mn−1−1∑

xn+Mn−1=1

1

Mn+Mn

(Mn−1∏

k=0

mn+k

mn+k − 1

)

= 1

Mn
∏Mn−1

k=0 mn+k

(Mn−1∏

k=0

mn+k

mn+k − 1

)
m0−1∑

x0=0

· · ·
mn−1−1∑

xn−1=0

mn−1∑

xn=0

· · ·
mn+Mn−1−1∑

xn+Mn−1=1

1

= 1

Mn
∏Mn−1

k=0 mn+k

(Mn−1∏

k=0

mn+k

mn+k − 1

)

Mn

Mn−1∏

k=0

(mn+k − 1) = 1.
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Clearly, Qn is a Vilenkin polynomial. Moreover, since the terms of the expanded
product have pairwise disjoint spectra, by expanding the product used to define Qn,

it is easy to see for k = 0, 1, . . . , Mn − 1 that

SMn+k+αn Qn − SMn+k Qn = ±1

mn+k − 1
rn+k Sαn (τx (n)

k
gn),

where + sign is if Mn − 1 is even number and − sign is if Mn − 1 is odd.
Since

∣
∣
(
SMn+k Qn

)
(x)
∣
∣ ≤ ∥∥DMn+k

∥
∥
1 ‖Qn‖1 ≤ 1,

choice of the integers αn therefore, for sufficiently large n imply

∣
∣
(
SMn+k+αn Qn

)
(x)
∣
∣ > Cn − ∣∣(SMn+k Qn

)
(x)
∣
∣ (29)

>
C

2
n, (x ∈ In(x

(n)
k )).

Let n1 < n2 < · · · be positive integers chosen so that

∞∑

j=1

1√
n j

< ∞ and set j := Qn j√
n j

( j ∈ N+).

It is evident that

∞∑

j=1

‖Pj‖1 < ∞.

Moreover, for a fixed x ∈ Gm it is possible to choose integers 0 ≤ k( j) < 2n j such

that x ∈ In j

(
x

(n j )

k( j)

)
( j ∈ N+). Hence, (29) implies

(
S∗Pj

)
(x) ≥ C

2
√
n j

for j ∈ N+ and x ∈ Gm . Consequently, Gm is a set of divergence for L1(Gm) by
Lemma 9. The proof is complete. ��
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