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Abstract
In recent years, Deep learning (DL) networks have shown considerable im-
provements and have become a preferred methodology in many different
applications. These networks have outperformed other classical techniques,
particularly in large data settings. In Earth observation from the satellite field,
for example, DL algorithms have demonstrated the ability to learn complicated
nonlinear relationships in input data accurately. Thus, it contributed to ad-
vancement in this field. However, the training process of these networks has
heavy computational overheads. The reason is two-fold: The sizable complexity
of these networks and the high number of training samples needed to learn all
parameters comprising these architectures. Although the quantity of training
data enhances the accuracy of the trained models in general, the computa-
tional cost may restrict the amount of analysis that can be done. This issue
is particularly critical in satellite remote sensing, where a myriad of satellites
generate an enormous amount of data daily, and acquiring in-situ ground truth
for building a large training dataset is a fundamental prerequisite.

This dissertation considers various aspects of deep learning based sea ice
monitoring from SAR data. In this application, labeling data is very costly and
time-consuming. Also, in some cases, it is not even achievable due to challenges
in establishing the required domain knowledge, specifically when it comes to
monitoring Arctic Sea ice with Synthetic Aperture Radar (SAR), which is the
application domain of this thesis. Because the Arctic is remote, has long dark
seasons, and has a very dynamic weather system, the collection of reliable in-
situ data is very demanding. In addition to the challenges of interpreting SAR
data of sea ice, this issue makes SAR-based sea ice analysis with DL networks
a complicated process.

We propose novel DL methods to cope with the problems of scarce training
data and address the computational cost of the training process. We analyze DL
network capabilities based on self-designed architectures and learn strategies,
such as transfer learning for sea ice classification. We also address the scarcity
of training data by proposing a novel deep semi-supervised learning method
based on SAR data for incorporating unlabeled data information into the
training process. Finally, a new distributed DL method that can be used in a
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semi-supervised manner is proposed to address the computational complexity
of deep neural network training.
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1
Introduction
In the last decade, Deep Neural Networks (dnns) have shown remarkable
performance in tackling various challenging machine learning problems [1].
Practically, a dnn may have hundreds of layers and millions of parameters.
It has been demonstrated that deep neural networks outperform alternative
methods, especially in big data problems [1]. Despite this, training a deep
network architecture is a computationally expensive task. The reason for this
costly computation is the high amount of data points to be handled and the
complexity of the network structures [2]. In general, a larger training data set
will improve the accuracy of the trained models. However, the computing cost
of the training data may limit the amount of analysis that can be performed
[3].

dnns have been employed to address many Remote Sensing (rs) and Earth
Observation (eo) challenges, and they have shown great success in solving a
variety of satellite-based rs image analysis tasks, including land cover classi-
fication, object detection, and change detection [4]. Satellite images, which
constitute a significant data source for Earth observation, allow us to measure
and observe intricate features on the surface of the Earth. The amount of
satellite images is rapidly increasing as a result of the development in space-
borne Earth observation technologies [5]. It is no accident that this field is now
referred to as big data. The National Aeronautics and Space Administration
(nasa)’s Landsat [6], and European Space Agency (esa)’s Copernicus [7],
respectively, offer high revisiting frequency data and data with large spectral-
spatial coverage, allowing for near-real-time worldwide surveillance of the

1



2 chapter 1 introduction

Earth surface. Indeed, Copernicus is presently the world’s biggest single eo
program, with its fleet of Sentinel spacecraft.

To conduct large-scale, high-frequency monitoring of the Earth using deep
learning architectures, we need scalable computing to train the models using
a substantial quantity of labeled data [8]. However, these massive amounts of
training data do not always exist, which is the case for the application focused
in this thesis. In this dissertation, we consider various aspects of the deep
learning-based analysis of Arctic Sea ice from satellite-based synthetic aperture
radar (SAR) data. This application is challenging. The Arctic is remote, has
long dark seasons and a very dynamic weather system, and the collection of
reliable in-situ data is very demanding. In addition, SAR images of sea ice
are inherently difficult to interpret and require extensive time and resources.
Scarce training data is exacerbated when the trained model is to examine the
dynamic sea ice in an Arctic-wide setting, dealing with a variety of seasonal
and meteorological circumstances.

This thesis investigates three main topics in deep learning–based sea ice
monitoring from SAR (Figure 1.1): deep learning architecture design, semi-
supervised learning to cope with the training data, distributed systems, and
high-performance computing.

• Deep learning architectures design: Deep neural networks are a holis-
tic learning architecture for feature extraction and classification. We
consider how different deep learning architectures cope with the sea ice
classification task.

• Semi-supervised learning:We investigate several methods of label prop-
agation and advance deep semi-supervised learning approaches to ad-
dress the scarce training data problem in sea ice classification.

• Scalable computing: Distributed deep learning is considered to address
computation complexity along with specific challenges when deep neural
networks are trained on big Earth observation data.

In the analysis, we specifically consider the challenges associated with the
properties of sar data like scattering ambiguities, type-dependent incidence
angle slopes, and the annoying additive noise pattern of Sentinel-1 SAR data,
which are the principal data used in this study.
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Figure 1.1: Dissertation Research areas.

This section briefly discusses the benefits of deep learning and its advantage for
big data analysis, particularly for Earth observation applications. We describe
the distributed deep learning setup and explain how this provides a scalable
computing framework for deep learning analysis. Then, some major Earth ob-
servation applications are briefly listed to contextualize our chosen application.
We explain our primary application, namely sea ice analysis from SAR, and
add some perspectives on how the results may be exploited in operational sea
ice charting. Finally, the thesis’s objectives and structure are outlined.

1.1 Deep Learning

Deep learning models as feature learning hierarchies extract multiple layers
of non-linear features and feed them to a classifier that integrates all the
features to produce predictions. Hierarchically,dl algorithms directly learn the
representative and discriminative features from the data. It is different from
manual feature learning, which performs manual selection and extraction of
features for each task. Features are automatically learned in a deep learning
method to optimize the model’s performance [9].

Thanks to dl theory [9], unsupervised feature learning from immense raw-
image data sets has become conceivable. This unsupervised feature learning
provides an alternative technique that autonomously learns practical features
from the training set [10]. More specifically, when a large amount of data is
available, it has been shown that deep neural networks perform better than
other learning approaches [3], as we see in Figure 1.2.
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Figure 1.2: Deep learning performs better in comparison of other methods when
available data is increased [3].

For example, Convolutional Neural Network (Convolutional Neural Network
(cnn)) [9] is a well-known deep learning model that has been used to solve
several computer vision tasks. A cnn employs convolutional layers to ex-
tract valuable information from the inputs. These convolutional layers contain
learned parameters, allowing the filters to automatically extract the most valu-
able information for the task [9]. More details ondl andcnns will be discussed
in Chapter 3. Figure 1.3 shows a traffic sign image filtered by four convolutional
kernels, which create four feature maps; These feature maps are sub-sampled
by max pooling. The next layer applies ten convolutional kernels to these sub-
sampled images. The final layer is a fc layers where all generated features are
combined and used in the classifier.

1.1.1 Deep Learning for Earth Observation

dl has been utilized in Remote Sensing (rs) and Earth Observation (eo) for
tasks ranging from image preprocessing, pixel-based classification, patch-based
classification, and target recognition to high-level semantic feature extraction
and rs scene interpretation [11]. In fact, deep learning is a novel and fasci-
nating method that potentially can be the next step in the evolution of Earth
observation and remote sensing image processing [11].

Extracting useful information from diverse forms of remote sensing data, and
coping with ever-increasing data types and volumes, is a significant problem in
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Figure 1.3: Example of learned features in each layer for a object detection task (from
Yann LeCun, 2015).

Earth observation analysis [11]. Traditional techniques use feature engineering
from rs images to build extracted and selected features to feed to different
classification/regression models. Handcrafted features are shown to be suc-
cessful in representing several spectral, textural, and geometrical properties
of images [12, 13]. However, because these features cannot readily reflect the
complexities of the actual data statistics, they cannot attain an ideal balance
between discriminability and resilience. The dilemma is exacerbated when
dealing with a large amount of remote sensing image data since imaging
conditions fluctuate rapidly and may change dramatically in a short period
[11].

1.1.2 Deep Learning Architectures Design

Different deep learning network architectures specially have been proposed for
addressing computer vision issues. [14]. In computer vision, dl architectures
have been made to work best for specific object detection and recognition by
optimizing number layers, number filters, and many network hyperparameters.
Optimizing the best architecture for new tasks, like rs and eo problems, is
challenging. This issue is even more significant for more specific uses, such as
SAR-based monitoring of sea ice in the Arctic.

When looking into dnn architectures, we can usually consider two main ways
to deal with this problem. The first approach is to analyze the problem by
making a model of a custom or ad hoc architecture. An ad hoc architecture
is interesting because it is very flexible. However, it usually needs to have a
lot of hyper-parameters optimized. The second approach relies on the use
of an existing architecture that can either be fine-tuned by already trained
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parameters or trained from scratch. This approach reduces the time needed for
the design of the deep learning architecture. For instance, we have employed
this strategy in Chapter 6.

1.1.3 Scarce Training Data

Deep neural networks have been employed in many rs and eo data analysis
challenges and showed the promising results [15]. They are well-known for their
high efficiency and test-time performance. The disadvantage is that a significant
number of training samples must be available to train the models. Also, these
samples are in most cases labeled by humans. This issue is more serious in
the case of the rs and eo domains since acquiring in-situ ground truth are
very expensive, time-demanding, and often impossible. This issue becomes
more significant in Arctic applications, where the volume of validated labeled
data is typically low. The remoteness, long dark seasons, and exceedingly
variable weather conditions make it difficult to acquire ground truth in these
areas.

The scarcity of training data is well-known in the machine learning and deep
learning domains and is recognized as a significant issue in big data applica-
tions [16]. New advanced approaches in deep semi-supervised learning, deep
unsupervised learning, and deep self-supervised learning have been proposed
to overcome this issue [17, 16]. More details on semi-supervised learning, one
of our focus areas, will be discussed in Chapter 3.

1.1.4 Computational Complexity

In dl, increasing the quantity of training datasets often improves model per-
formance (e.g., classification accuracy) [18, 19]. Nonetheless, as data amount
and model complexity rise, the training process of dl is computationally costly
and time-consuming. For instance, training a state-of-the-art ResNet-50 [20]
model (in 90 epochs) on the ImageNet dataset [21] using the most recent
Nvidia Tesla V100 GPU takes around two days [22]. In general, one must tweak
the hyperparameters for certain task, which takes a great deal of effort and is
necessary to get acceptable performance.

Figure 1.4 quantifies the computing requirements of frequently used deep
learning models [23]. As shown in the graph, the highest performing trained
architectures are those with very high computational complexity (such as
NASNet-A-Large), which are located at the far right of the graph. In addition
to this, it should be noted that they are not the ones with the most model
complexity (as is evidenced by the size of the bubble). Due to the high compu-



1.2 distributed deep learning for big data analysis 7

Figure 1.4: Computational complexity. The Top-1 accuracy versus the floating-point
operations (FLOPs) needed for a single forward pass. The size of each ball
depends model complexity [23].

tational cost of iterative dl training across a large quantity of data, substantial
computer resources are required. As a result, single machines are not always
capable of performing this job in the time provided.

1.2 Distributed Deep Learning for Big Data
Analysis

The ascent in popularity of dnns is closely tied to the amount of accessible
processing power, which has made it possible to harness the fruits of the
intrinsic parallelism of these networks [24]. Deep learning’s computational
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Figure 1.5: Parallel Architectures in Deep Learning using different hardware accelera-
tion and single or multi nodes systems [24].

intensity and memory requirements rise in direct proportion to the size of the
available datasets and the level of dnns complexity. Training a dnn to an
accuracy that is competitive in today’s market is almost impossible without a
high-performance computer cluster [25, 24]. Different components of training
and inference (evaluation) of dnns are adjusted to boost concurrency to use
such systems.

In modern computer architectures, parallelism can be found both internally
on the chip in the form of pipelining and out-of-order execution, as well
as in the form of multi-core or multi-socket systems. Multi-core computers
may be designed with either multiple processes, which use distinct memory
domains, or multiple threads, which use sharedmemory domains. Alternatively,
a combination of the two is also possible. The primary distinction between
these two lies in the fact that multi-process parallel programming requires
the programmer to think about the distribution of the data as a first-class
concern, whereas multi-threaded programming only requires the programmer
to focus about the parallelism and allows the hardware system to handle the
data shuffling (typically through hardware cache-coherence protocols).

The process of training large-scale models requires a significant amount of
computational resources. Therefore, single machines are not always capable
of completing this work within the allotted amount of time. The computation
might be split up and carried out simultaneously on several different computers
all linked together through a network. Distributed deep learning by leveraging
the computational resources of multiple devices (e.g., multiple GPUs) [24] is
used to accelerate the training process of dnns when working with a large
amount of data.

Figure 1.5 provides a summary of the machine architectures that have been
employed in technical literature. There is a discernible shift toward GPUs,
which are the focus of the majority of articles starting from 2013. Despite
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this, even the most accelerated nodes are not enough to handle the massive
computational demand. Figure 1.5 illustrates how the multi-node parallelism in
those activities is rapidly expanding. Different approaches have been proposed
to train deep learning models on multi-GPUs in distributed environments. More
details on different approaches will be discussed in Chapter 4.

1.2.1 Communication Overhead

Latency, bandwidth, and message rate are the three most significant metrics
for the interconnection network [24]. There are many performance measures
available across the various network technologies. InfiniBand, for instance,
provides much shorter latencies and more message rates than current Ethernet,
even though both provide enormous capacity [26]. Interconnection networks
designed specifically for high-performance computing may yield better results
in all three performance criteria. However, communication via a network is
often slower than the communication that occurs inside a single computer. In
distributed deep learning, regardless of networking technology, the communi-
cation overhead directly affects the capability of distributed training [24]. This
effect is because a large number of model parameters (full or partial) should
be sent over the network in each training iteration. This issue will be discussed
in more detail in Chapter 4.

1.2.2 Earth Observation as a Big Data Problem

International space agencies, like ESA and NASA, adhere to an open data policy
and make available an enormous amount of multi-sensor data for free daily.
Because of the rapid technological advancement that has been incorporated
into Remote Sensing (rs) optical and microwave sensor technologies [5], the
systems have made significant strides forward in the last several decades. In
this sense, it is not a coincidence that remote sensing data are now being
described using the big data terminology, which includes characteristics such
as volume, velocity, variety, veracity, and value [27, 8].

Copernicus is the European Union’s program [7] for Environmental monitoring.
It is made up of a collection of systems that receive data from satellites and in-
situ sensors, process and interprets this data, and then offer users accurate and
up-to-date information on a variety of environmental and security concerns.
The Sentinel satellites, in orbit for the particular purposes of the Copernicus
program, and other contributing satellite missions run by national or interna-
tional organizations, support Copernicus with data. Access to Sentinel data is
governed by EU legislation and is complete, open, and unrestricted. Copernicus
information is made accessible to consumers via Copernicus services covering
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six theme areas: land, marine, atmosphere, climate, emergency, and security.
The Copernicus program is a vanguard of the Big Data paradigm resulting
from the data and information processed and distributed. It also gives rise to
the so-called five V’s paradigm, briefly discussed below [5]:

• Volume: The European Space Agency’s (ESA) Sentinel product repository
has published over 5 million products to date, It has over 100000 users
who have downloaded more than 50 PB of data since the system’s incep-
tion. As additional Sentinel satellites are being launched, this volume
will grow in the coming years.

• Velocity: The Copernicus data must be sent and processed quickly to
provide 24/7 services to users that want immediate information. By
the end of 2016, six TB of data had been generated, with 100 TB of
data being broadcasted daily from the Sentinel product repository. As
additional Sentinel satellites are being launched, these rates will rise in
the following years.

• Variety: The Sentinel satellites have various types of sensors (e.g., radars,
optical instruments), offering data products at multiple processing lev-
els (from raw data to advanced products). Furthermore, in addition to
satellite data (e.g., public government data), datasets utilized for geospa-
tial applications might include aerial images, in-situ data, and other
collateral information. To extract information and knowledge eo actors
process this data. The information data is similarly sizable and faces
the same Big Data issues mentioned above. For example, 1PB of Sentinel
data may consist of around 750000 datasets which, when processed, can
yield approximately 450TB of information and knowledge contents (e.g.,
classifications of items observed).

• Veracity: Reliable information is required for decision-making in opera-
tions. As a result, verifying data quality is critical for the entire informa-
tion extraction chain.

• Value: The extraction of information from Copernicus data directly im-
proves Europe’s economy. Several economic assessments have found that
the Copernicus initiative can substantially influence job generation, inno-
vation, and growth. According to the Copernicus Market Report 2016, the
overall investment in Copernicus will reach EUR 7.4 billion between 2008
and 2020, with a collective commercial benefit of roughly EUR 13.5 billion
created during the same period; it also will provide 28.030 employment
years in the eo industry.

For these reasons, eo problems represent a good platform to design, develop
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Figure 1.6: Five characteristics of a big data problem [28].

and test distributed deep learning architectures. Indeed, it is possible to expect
that distributed deep learning frameworks can provide a remarkable added
value to the implementation of eo analysis pipeline, so to substantially sup-
port the understanding of human-environment interactions by retrieving solid
information from EO data analysis.

1.3 Earth Observation

The science of remote sensing (rs) is the ability to obtain information without
physically touching an object or surface. In this process, the reflected or emitted
radiation of the remote object or surface is observed and measured. Based on
these measurements, the object and materials are identified and categorized by
class or type, essence, and spatial characteristics. The Earth’s physical, chemical,
and biological systems can be measured and mapped from various remote
sensing platforms, including satellites and aircraft, This technology is known
as Earth Observation (eo) [29]. Plenty of phenomena, such as climate change,
disasters, disease outbreaks, ship navigation, and fire and smoke observation,
can be studied using Earth observation data [30]. The amount of eo data is
steadily increasing due to the rapid development of this technology and the
continuous launch of more satellites, this is one of the main reasons for which
the eo domain has become a significant big data application area. [31].

The developments in the eo domain are now driven by various application
areas and environmental and climate problems threatening our planet such
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as:

• Mapping land cover and land use: Land-use and land cover (lulc)
map help assess climate change effects on hydrology, biodiversity, carbon
dynamics, population, migration, and urbanization. This lulcmaps can
effectively be used for mobilizing decision-makers, industry, farmers, and
the general public toward more sustainable use of resources [32, 33].

• Carbon biomass assessment: Forest biomass is a key in estimating car-
bon sequestration. the Forests sequester carbon in part by accumulating
biomass since approximately half of the forests’ dry biomass is carbon
[34]. In carbon biomass assessment, Landsat Imagery, Shuttle Radar
Topography Mission (srt) and International Space Station SERVIR En-
vironmental Research and Visualization System (iserv) are examples
of remote sensing platforms which provide principal images of the Earth
[35].

• Agriculture and food security: In developing countries with subsistence
farming, food security significantly impacts agriculture. Defined by the
World Health Organization (WHO) is, food security characterized by
three factors; (1) access to sufficient resources for obtaining a nutritious
diet, (2) knowledge of primary nutrition, and (3) adequate water and
sanitation. Satellite remote sensing is a prominent tool for acquiring food
security [36].

• Disaster management: Global climate change severely impacts the
already marginalized areas of the Earth, which are more susceptible
to unpredictable weather patterns, floods, droughts, and rising sea levels.
There is a need for chief short, medium, and long-term mitigation and
warning strategies at national and regional levels to prepare for disasters
like landslides, floods, and earthquakes. Satellite remote sensing is an
important tool in establishing this preparedness [37].

• Polar monitoring: Despite its remoteness, the Arctic is home to 4 million
people and has an economy exceeding 230 billion US$ (World Economic
Forum, 2014). eo has a critical role to play in securing sustainable
development in the Arctic [38]. Furthermore, this region directly impacts
climate change and human life on the whole planet Earth. In the Arctic,
satellite data are used to generate information about sea ice conditions
and weather, which is of paramount importance for Arctic peoples,
science, the commercial sector, and decision-making, marine navigation,
safety, and climate change research [5].
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1.3.1 Thesis Application: Sea Ice Analysis

The specific application studied in this thesis is sea ice classification. Sea ice is a
critical environmental component of the Earth’s climate system [39] and consid-
erably impacts polar ecosystems. The Arctic has witnessed substantial climate
change in the last decades, affecting its ecosystem, ecology, and meteorology.
The changes are stronger in the Arctic than in any other place. These changes
have been dubbed the Arctic augmentation, causing highly changeable Arctic
weather and sea ice conditions. These harsh conditions pose challenges and
hazards to high north maritime operations connected to resource extraction,
fishing, and tourism [40, 41]. As a result, reliable and continuous monitoring
of sea ice behavior, thickness, and ice type distribution are critical for effective
and reliable human activities, along with for understanding changes over ex-
tended time frames [42, 43]. Therefore sea ice monitoring is a prominent eo
application from a scientific and societal point of view.

Every year,many polar nations conduct scientific cruises to the Arctic to perform
sea ice observations and surveys. Regular ice watch inspections from vessels
[44, 45] are the most common and fundamental in-situ measurements. In-situ
investigations on the ice include ice thickness and roughness measurements,
temperature and salinity profiles, and the thickness and characteristics of
snow cover on sea ice [46]. For validation of satellite rs products, airborne
ice thickness measurements using electromagnetic em induction devices are
frequently used and referred to as in-situ data [47].

1.3.2 Synthetic Aperture Radar (SAR)

There are two primary forms of remote sensing sensors, active and passive.
They are distinguished by generating the signals’ sources used to examine an
object. Active remote sensing systems generate their own illumination, whereas
passive systems rely on reflected or backscattered radiation generated by other
sources, like the sun. The electromagnetic radiation most commonly used for
remote sensing differs in wavelengths, is classified as short (visible, nir, and
mir) and long (visible,nir,mir andmicrowave). In the high north,microwave
sensors are particularly prominent, because they are generally independent of
weather and light conditions [48].

Synthetic Aperture Radars (sars) are active imaging remote sensing sensors,
commonly employed in Arctic monitoring. They are particularly useful for
monitoring sea ice. It can obtain high spatial resolution by using the coherent
character of the transmitted radar pulse by combining radar technology and
advanced signal processing [49]. SAR imaging is not affected by sunlight or
cloud cover. The difference between sar and optical images is illustrated in



14 chapter 1 introduction

Figure 1.7.

Sea ice classification using sar images is affected by several challenges that
influence the performance of any machine learning system. These include
incidence angle dependencies, seasonal changes, ambiguous radar scattering,
and system noise. The sar challenges will be discussed in more detail in
chapter 2.

Figure 1.7: sar vs Optical Earth observation. Left is a Sentinel-1 sar scene and right
is a optical image by Sentinel-2 from same location with small time gap
[50].

1.3.3 Classification Problems

Focusing on the operational needs of stakeholders, communities and authorities
in the Arctic ecosystem, rs research on sea ice monitoring has addressed two
classification problems:

• Classification of sea ice as opposed to water: High-resolution ice masks
can provide detailed information about the location of the ice edge and
leads, and can be utilized to build large-scale ice concentration maps.

• Multi-class ice type classification: This entails the more general classi-
fication problem of constructing ice maps of multiple classes, including
first and multi-year ice, thin ice, deformed ice, ridges, and leads.

The primary emphasis of this thesis is on the binary classification of sea ice
versus water. However, the assumptions made in the suggested approaches
are such that the algorithms described in this thesis may also be extended to
multi-class ice type classification.
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1.3.4 Exploitation: Operational Ice Charting

National sea ice services are responsible for producing operational sea ice
charts, which are often updated daily. The ice charts offer information on the
concentration of some ice categories and ice margins based on a range of satel-
lite data, principally from sars, passive microwave, and optical sensors. Visual
observations and meteorological weather forecasts supplement the satellite
data. Thermal infrared imaging satellite data are used to create contours of
the sea surface temperatures. [51]. Currently, none of the ice services have
reported deploying automated categorization methods on a year-round basis.
All algorithms still require some level of human intervention. The criteria for
ice chart generation vary greatly based on the end-user and their demands.
There are both operational and scientific end-users. Scientific end-users employ
ice charts for academic research, such as in climate, biology, or data assimila-
tion in numerical models, On the other hand, operational end-users demand
timely ice supporting their activities. Mariners, for example, require data to
support navigation and safety in ice-covered waterways. In this respect, precise
and consistently accurate information regarding the location of the ice edge,
leads and ridges, areas of (thin) first-year ice, and areas of multi-year ice is
critical. Mariners also demand short-term projections of the development of
ice conditions in the region where they are or are headed. [52].

Current ice charts for European seas are provided after 1500 UTC on weekdays
(Monday-Friday), and for the Antarctic on Mondays (October-April). [51]. An
example of an ice chart for January 14th, 2022 is provided in Figure 1.8.
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Figure 1.8: Example of an ice chart produced by the Ice Service of the Norwegian
Meteorological Institute (nis). The polygons depict different ice concen-
tration zones. The ice charts also depict the ice edge to indicate open
water which is important for ship navigation. Detailed information can be
found in [51].

1.4 Objectives of this Thesis

Sea ice is a dynamic and complicated target surface, making it difficult to de-
velop a reliable algorithm for autonomous classification based on SAR images.
Heavy speckle noise, incidence angle impact, range-dependent noise pattern,
and sensitivity of SAR signals to the sea surface all contribute to the diffi-
culty of sea ice analysis [53]. Robust ice charting and ice edge identification
become increasingly difficult as a result of the intricate interaction between
SAR signals, the imaging geometry, and underlying physical processes [54]. To
accomplish automated sea ice analysis, rather than using feature engineering
or hand-crafted features (i.e. features that have been designed to highlight
specific properties of the surface), this project will use deep neural network
architectures as a feature learning scheme to achieve more robust features and
better classification.

In this regard, the objectives of this thesis can be summarized as follows:

Main objective: The main objective of this thesis is to investigate the capa-
bilities of deep neural networks and propose new methods to improve sea ice
analysis by considering the scarce labeled data and computation complexity
issues.
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• Objective 1: Investigating the capabilities of deep neural networks based
on self-designed and previously proposed famous architectures consider-
ing networks depth, different inputs, and learning strategies (Paper 1).
This investigation includes identifying specific issues and requirements
related to sea ice analysis, which will subsequently be addressed by
semi-supervised learning and scalable computing.

• Objective 2: Investigating different semi-supervised methods to address
scarce training data considering the specific requirements of sea ice
analysis by deep neural networks. We propose a new architecture for
semi-supervised sea ice classification in Paper 2.

• Objective 3: Investigating distributed deep learning in relation to sea ice
analysis. We propose a new distributed deep learning method to address
the computational complexity of deep neural networks’ training for the
sea ice analysis application (Paper 3).

The thesis considers deep neural networks as a holistic learning architecture
for feature extraction and classification problems. It proposes new methods in
deep supervised (Paper 1, Chapter 6) and semi-supervised (Paper 2, Chapter
7) learning to improve the accuracy and generalization of sea ice analyses.
Moreover, to mitigate the computational complexity of training deep learning
architectures, the thesis proposes a new distributed deep learning method for
sea ice analysis (Paper 3, Chapter 8).

1.4.1 Thesis Outline

The three journal articles, which form the core of this thesis, are discussed
in detail in chapters 6, 7, and 8. In these three studies, supervised and semi-
supervised learning for sar-based sea ice classification are discussed, and a
novel distributed deep learning algorithm is suggested. Chapter 2 provides
essential background material, covering the basic principles in Synthetic Aper-
ture Radar (sar) image formation, emphasizing sea ice categorization, to
provide the necessary context. Chapter 3 discusses several learning techniques,
including supervised and semi-supervised deep learning. The core idea and
techniques of distributed deep learning are covered in detail in Chapter 4. Chap-
ter 5 provides a summary of the scientific papers. Finally, Chapter 9 summarizes
the findings and discusses possible future studies.





2
Synthetic Aperture Radar
Imagery for Sea Ice
Classification
Synthetic Aperture Radar images are the primary data source for operational
ice services [55], and the scientific study is presented in this dissertation. An
imaging Synthetic Aperture Radar, abbreviated as sar, is a radar that can be
operated from the ground, aircraft (airborne) or satellites (spaceborne) that
can provide two-dimensional images of the Earth’s surface [56]. This chapter
discusses the fundamental concepts of spaceborne sar, emphasizing on its use
for the rs of sea ice in polar regions.

Generally speaking, radar (radio detection and ranging) systems are designed
on the principle of echolocation. An antenna sends an Electromagnetic (em)
signal and analyses the bounces returned from a given target. Assuming that
the signal’s speed is known, the distance between the antenna and the target
may be estimated by multiplying the signal’s travel time by speed [29].

The Earth is now orbited by several sar instruments, each operating at a differ-
ent frequency range, with various polarization channels, and divergent spatial
resolution. They provide a critical contribution to observations of distant and
inaccessible locations, such as the high northern latitudes. The measurements
are independent of sunlight or any other naturally released radiation since the
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sar is an active system that generates its own signals [57]. Furthermore, the
usual sar wavelengths penetrate clouds with little or no loss of energy [58]. As
a result, sar sensors may capture pictures continually, regardless of whether
or not there is sunshine or good weather. This matter is particularly paramount
in the Arctic, where there is prolonged darkness throughout the polar night
and generally approximately 70-80 percent of cloud cover throughout the year
[59]. Because of its capacity to capture images throughout the day and in all
weather conditions, sar has become the chief data source for sea ice charting in
operational ice services across the globe [60]. On the other hand, sar images
are significantly different from optical images and may be difficult to decipher
and comprehend.

The geometry of a side-looking imaging radar system is sketched in Fig-
ure 2.1.

Figure 2.1: A geometric model for a sar system.

The main concepts of sar imaging are defined below: Swath: The swath
width is the coverage of the image in range direction, which is the direction
perpendicular to the flight direction. The along-track direction is often referred
to as the azimuth direction (Figure 2.1). Slant range: Slant range is the length
between the antenna and grounds of a pixel. Ground range: The ground range
is the distance between the ground track and the ground pixel (Figure 2.1).
Incidence Angle (IA): The incidence angle is the angle formed between the
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incident sar beam and the axis normal to the geodetic ground surface of the
area where the beam is incident.

2.1 Spaceborne SAR System Properties

sar systems can image the Earth’s surface from space with a high spatial
resolution. They are furthermore characterized by properties like frequency,
polarimetric capabilities, and the temporal resolution given by the revisit time
period of the satellite platform. The following are the definition of these
characteristics:

Spatial Resolution: Spatial resolution is a prominent metric for measuring
image quality because it indicates the distance between two objects on the
ground which can be separated in a sar image. sar spatial resolution is
characterized in the azimuth and range directions separately. Range refers
to the across-track direction, perpendicular to the satellite’s flight direction,
while azimuth refers to the along-track dimension, parallel to the satellite’s
flight direction. In a real aperture radar, the range resolution is dependent on
the length of the pulse. Two distinct targets on the surface will be resolved if
their separation is greater than half the pulse length. Most sar systems use
a linear frequency modulated pulsed waveform, called a chirp, and achieve,
after compression, a range resolution that is inversely proportional to the chirp
bandwidth, i.e., 𝛿𝑟 =

𝑐0
2𝐵𝑟

, where 𝛿𝑟 is the range resolution, 𝑐0 is the velocity
of light, and 𝐵𝑟 is the chirp bandwidth.

In a realistic real aperture radar, the azimuth resolution is determined by the
angular width of the radiated microwave beam, and the slant range distance
[61]. This beam width is a measure of the width of the illumination pattern.
As the radar’s distance to the surface increases, the azimuth resolution gets
worse. A sar exploits the relative movement of the antenna compared to the
imaged surface, which in essence generates a linear frequency modulation
in the azimuth direction. This feature is exploited to improve the resolution
dramatically.

In fact, after compression, the azimuth resolution becomes 𝛿𝑎 =
𝐿𝑎
2 , where 𝛿𝑎

is the azimuth resolution, and 𝐿𝑎 is the antenna length in the azimuth direction.
The motion of the platform is used to synthesize a long antenna in order to
get a high azimuth resolution [61]. Hence, the name synthetic aperture radar,
and we note that both the range and the azimuth resolutions are independent
of the range to the target.

Frequency: Most spaceborne sar systems operate at wavelengths between 0.5
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and 75 cm [62]. Using this spectral range has the primary advantage of allowing
the atmosphere to be virtually transparent. The atmosphere is transparent for
wavelengths in microwave bands. The backscattered radiation is generally
dependent on the surface roughness at the scale of the radar wavelength. The
wavelength selection should therefore be made to match the size of surface
features on the targeted object. Furthermore, longer wavelengths can penetrate
through the snow cover and the ice, resulting in a higher contribution of volume
scattering. The most commonly used frequency bands for spaceborne sar
observations of sea ice are L-band, C-band, and X-band [63].

Polarimetry: An EM wave is made up of an electric and magnetic field. These
fields are orthogonal to each other and the propagation direction of the wave.
The direction of the electric field characterizes the signal’s polarization, and it
may be expressed in terms of two orthogonal basis vectors [64]. em waves are
polarized, with linear or circular polarization in particular cases [57]. Most sar
satellites use linear polarization on both the transmission and reception. The
polarization direction in the plane of wave propagation is either horizontal (H)
or vertical (V). An individual sar channel might also be defined by a two-letter
combination, with the first letter indicating the polarization of the sent signal
and the second letter indicating the polarization of the received signal. The HV
channel, for example, sends in horizontal polarization and receives in vertical
polarization.

Temporal Resolution: When building a time series of satellite images, the
revisit cycle determines the temporal resolution. The revisit cycle equals the
time it takes between two observations of the same object on the Planet’s sur-
face. These observations may occur at different orbits of the sar. The revisit
cycle should not be confused with the repetition cycle, which is defined as the
duration between two passes of a satellite along the same orbit, according
to [65]. While the repetition cycle is solely determined by the satellite orbit
configuration, the revisit duration is determined by the target location and
swath width. The majority of sar sensors in space are borne by polar orbit-
ing spacecraft. The orbit track spacing for these satellites is closer at higher
latitudes, resulting in a much higher revisit rate in Polar regions.

Data Acquisition Modes: The majority of spaceborne sar sensors can operate
in a variety of acquisition modes. The geographic coverage, resolution, and
polarimetric capability all change across these modes. For example, the sar
instrument onboard Sentinel-1 may operate in: Stripmap (sm), Interferometric
Wide Swath (iw), ExtraWide Swath (ew) andWave (wv). The best acquisition
mode and image product for a certain application must be selected based on
its individual aims and needs, along with the overall availability of data. The
Stripmap (sm) and ScanSAR modes are the most used acquisition modes. The
antenna footprint is fixed to one swath in SM mode, and a continuous strip on
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the Earth’s surface is scanned. By directing the antenna to various elevation
angles and merging numerous subswaths, the Scan SAR mode obtains more
sizable spatial coverage. This increased geographical coverage comes at the
expense of reduced spatial resolution.

2.2 Sentinel-1

There are several spaceborne platforms operated by different countries for sea
ice monitoring and analysis. They include satellites like, Radarsat-2 (Canada),
TerraSAR-X/TanDEM-X (Germany),HJ-1C (China),ALOS-2 (Japan) andSentinel-
1A/1B (Europe/ESA). These sensors take images at different frequencies and
polarization constellations.

The Sentinel-1 C-band sar instrument supports operation in single polarization
(HH or VV) and dual polarization (HH+HV or VV+VH) modes, implemented
through one transmit chain (switchable to H or V) and two parallel receive
chains for H and V polarisation. SM, IW, and EW products are available in
single (HH or VV) or dual polarization (HH+HV or VV+VH). WV is single
polarisation only (HH or VV). The primary conflict-free modes are IW, with
VV+VH polarization over land, and WV, with VV polarization, over the open
ocean. Having the Interferometric Wide swath mode as the chief operational
mode satisfies most current service requirements, avoids conflicts, preserves
revisit performance, simplifies mission planning, decreases operational costs,
and builds a consistent long-term archive [56]. Figure 2.2 shows Sentinel-1
acquisition modes.
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Figure 2.2: Illustration of Sentinel-1 acquisition modes [66].

Generally, The Sentinel EW mode is utilized for wide-area coastal monitoring,
such as ship traffic, oil spill, and sea-ice monitoring, among others [65, 67].
Strictly speaking, smmode is only utilized on tiny islands and upon request for
special occasions like disaster relief. At least some operational sea ice charting
criteria can be met by the EM mode’s extended coverage at a resolution for
various applications [56]. Sentinel-1 em mode data have been used as the
primary source in Paper 1 and Paper 2 of this dissertation to develop deep
learning models for sea ice classification.

Sentinel-1 has a temporal revisit period of twelve days and completes 175 orbits
every cycle, giving it a spatial resolution of twelve days. Because Sentinel-1a and
Sentinel-1b circle in the same orbit plane with a 180◦ orbital phase difference,
the effective repetition constellation cycle is decreased to six days instead of
the previous twelve.

2.3 Sea Ice Classes in SAR Images

Sea ice surfaces may be classified into different ice types. Distinct user commu-
nities use different ice class definitions. The most used categorization criteria
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Table 2.1: Different water and ice classes.

wmo code Classes
02 Open Water/ Leads with Water
01–02 Brash/Pancake Ice
83 Young Ice (YI)
86–89 Level first-year ice FYI
95 Old/deformed Ice

are based on the ice thickness, where ice type is associated with a defined
thickness range. In general, ice thickness is related to the ice age. Therefore,
these criteria may be regarded as age-based [68]. A term used to describe the
distinct thickness/age-based classes of sea ice is the sea ice stage of develop-
ment (sod). [69] describes a categorization method that has been accepted
by the World Meteorological Organization (wmo) and is frequently used in
operational ice charts. Figure 2.3 shows various types of ice.

In this dissertation, we use a dataset with five classes based on the wmo
definition. The Table 2.1 shows these classes and their respective codes.

Figure 2.3: Ice types in optical observation.

Ice types appear very differently in sar compared to optical images. Their
signatures in sar depend on the backscatter of the radar signal at the ice and
water surfaces and the signal’s penetration into the ice. Figure 2.4 displays
an optical image from the same region as a sar image, acquired with a short
time interval between the two images. To take both HV and HH polarization
channels into account, they are displayed as the red and green channels,
respectively, while the blue channel is zero.
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Figure 2.4: Sentinel-1 HH+HV SAR image, (a), versus Sea Ice in optical image, (b).

2.4 Challenges

Sea ice classification has a variety of challenges that might impact the perfor-
mance of any machine learning classification system. Several particular issues
associated with this dissertation are addressed in this section.

Incidence angle dependency: In the case of spaceborne sar systems, the ia
can span a wide range from the side-looking aspect of imaging geometry, where
the local ia changes dramatically from the near to the far range views. While this
significantly impacts the resulting image intensity values, it also represents an
important physical phenomenon related to radar scattering,which is influenced
by the physical properties of the sea ice surface and volume. The IA gradient
is dependent on the ice type. It is also very different for a sea ice surface and
open water

Seasonal changes: Seasonality significantly influences the dielectric charac-
teristics of ice and snow covers, and also, as a result, the intensities of the
backscattered signals. During the winter, the surface scattering from young
ice and the volume scattering from the bubble structure in the top layer of
multi-year ice strongly contribute to backscattered signals [70]. Melting alters
the physical qualities and dielectric properties of sea ice and snow, resulting in
a drastic reduction in the radar signal from a particular ice type consequence
of increased humidity. Hence, it becomes increasingly difficult to distinguish
between different ice forms in the summer, as seen in Figure 2.5. This figure
shows two Sentinel-1 sar images from the fast ice region off the east coast of
Greenland before (on the left), and after (on the right) melting starts.

Ambiguous scattering: The roughness and dielectric characteristics of the
target surfaces are responsible for the backscattering seen from sea ice and
water surfaces. In the ocean, small-scale roughness (on the order of the radar
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Figure 2.5: The difference between Sentinel-1 IW-mode photos (HH polarisation) for
a) pre-melt sea ice (17 April 2018) and b) full-melt sea ice (17 April 2018)
is shown in the figure (16 June 2018). Due to the fact that this is a region
of fast ice, Belgica Bank off the coast of north-east Greenland, the sea ice
and icebergs are identical in both photographs (courtesy of Nick Hughes,
the Norwegian Meteorological Institute).

signal’s wavelength size) is the dominant source of scattering, and they are
modified by the larger waves that go through the water. As a result, excessive
wind and turbulence will produce high backscatter, with texture linked with
random directions of the wind turbulence. The scattering process is more
complicated for sea ice. Level or deformed ice surfaces, dry or wet, snow-
covered or bare, are all possible conditions on an ice surface. There are also
incidence angle dependencies, which depend on ice type, to consider. All these
phenomena combine to make the sar returns confusing, to the point that
many diverse ice types may provide almost identical signal characteristics.
Even distinguishing between open ocean and sea ice may be problematic. This
problem is depicted in Figure 2.6.

Noise characteristics of Sentinel-1: Internal noise on Sentinel-1 has an im-
pact on the performance of sar systems. A structured but class-independent
intensity noise signal is introduced throughout the images as a result of this,
which is particularly noticeable in the lower intensity HV and VH channels. As
a function of range (and hence IA), this noise floor is often more prominent
with the five sub-swath assemblies of Terrain Observation with Progressive
Scans sar Sentinel-1 EW imagery. The varying noise floor often has undesired
classification effects comparable, but distinct, from the IA dependence. It has
proven difficult to efficiently filter out this noise component, in part because
the spatial correlation properties of the noise are very similar to the spatial
correlation properties of speckle, which is a well-known phenomenon associ-



28
chapter 2 synthetic aperture radar imagery for sea ice

classif ication

Figure 2.6: Two HH-polarization sentinel-1 sar from the marginal ice zone.

Figure 2.7: An example of a noise HV sar image, with corresponding noise floor
profile on the right.

ated with coherent radar imaging and has been studied extensively. Figure 2.7
shows an example of a noise pattern in a Sentinel-1 EW-mode HV sar scene
(on the left), and the associated noise floor profile (on the right).

Ground truth labeling: Acquiring in-situ ground truth for Sea Ice classification
is very costly, time-consuming, and in certain cases, not even practicable. There
are many reasons for this, including the difficulties of acquiring ground truth in
this particular region of the Earth, which has extended dark seasons and very
variable weather conditions. Even though numerous sensors are often utilized
to label the data, manual labeling suffers from the above issues. Manual
labeling is restricted in diversity since humans can only assess a small number
of locations, resulting in tiny and unbalanced training datasets. It is important
to note that this is due to the nature of the application and that even with great
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efforts, we will only have a limited quantity of labeled data compared with
the volume and diversity of data available in the Arctic. Thus, it is a critical
problem that should be considered, particularly in deep learning training. The
issue of scarce training data is well-known in the machine learning and deep
learning domains. It has resulted in significant hurdles in the field of big data
applications. For this reason, new advanced approaches in deep learning, such
as deep semi-supervised learning, deep unsupervised learning, and deep self-
supervised learning, have been developed to solve this problem at hand.

Lack of automatic learning methods: The majority of Sea ice classification
techniques rely on traditional and statistical approaches, while deep learning
models and architectures for sea ice classification are still not very mature,
especially for operational use. When a deep learning model is trained on sea
ice records, it may uncover a slew of previously undisclosed difficulties and
confederations. This issue is much more crucial when the question of the
explainability of deep learning is still being debated. Thus, describing deep
learning models’ behaviors based on newly found physical features might be
challenging.





3
Deep Neural Networks
Learning Approaches

Deep Learning (dl) is a machine learning technique that creates artificial
neural networks designed to imitate the structure and function of the human
brain. Deep Learning is a technique used to train computers to recognize
patterns in data. Deep learning, also known as deep structured learning or
hierarchical learning, is a type of nonlinear processing that, in practice, employs
a large number of hidden layers - typically more than 6, but often much higher
- to extract features from data and transform the data into different levels of
abstraction or representations [71].

This concept is motivated by the fact that the mammalian brain is structured
in a deep architecture, with each input percept encoded at numerous layers
of abstraction, particularly in the monkey visual system reference [72]. DL
researchers have built unique deep architectures as an alternative to shallow
architectures, inspired by the architectural depth of the human brain. Tradi-
tionally, machine learning needs human feature extraction from training data
by a subject matter expert. However, as shown in Figure 3.2, a deep learning
framework automatically learns relevant features from training data such as
images, text, patterns, and digital signals.

The optimization techniques for training deep models differ numerously from
typical optimization strategies. Typically, machine learning operates directly. In
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Figure 3.1: Deep Learning is a machine learning technique [9].

the majority of machine learning cases, we are interested in some performance
measure P that is defined relative to the test set and may be intractable. As
a result, we optimize P indirectly. We lower a different cost function 𝐽 (\ ) to
improve P. This contrasts with pure optimization, in which reducing J is a
self-contained objective. Additionally, optimization techniques for deep model
training often incorporate some specialization in the form of machine learning
objective functions. Typically, the cost function is expressed as a weighted
average across the training set, as follows:

𝐽 (\ ) = E(𝑥,𝑦)∼𝑃𝑑𝑎𝑡𝑎𝐿(𝑓 (𝑥, \ ), 𝑦) (3.1)

where 𝐿 is the per-example loss function, 𝑓 (𝑥, \ ) is the predicted output when
the input is 𝑥 , and 𝑃𝑑𝑎𝑡𝑎 is the empirical distribution. In the supervised learning
case,y is the target output.
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Figure 3.2: Deep Learning vs Traditional machine learning.

3.1 Learning Approaches

The learning techniques used in deep learning methodologies are generally
classified as follows: 1) Supervised Learning, 2) Semi-supervised Learning (ab-
breviated as ssl), and 3) Unsupervised Learning. Supervised learning creates
a knowledge base from previously identified patterns, which aids in the classi-
fication of new patterns. The primary objective of this learning is to translate
the input characteristics into a class output. The result of this learning is
the construction of a model from input patterns. The model may be used to
categorize previously unknown occurrences accurately. In general, it may be
expressed as a function f(x) with patterns as input and a class 𝑦 as output. The
effectiveness of deep learning and cnns is often contingent on the availability
of a vast amount of labeled data, where millions of photos are tagged to train
deep neural networks [14, 20] to allow these models to perform on par with
or even better than humans.

While visual data are abundant, data that has been accurately annotated by
humans is very sparse. Not only obtaining vast volumes of annotated training
data for each job is difficult and perhaps expensive, but also it proves to be
mistake-prone. This problem is even more essential in the case of remote sens-
ing and Earth observation, since acquiring in-situ ground truth is prohibitively
costly, time demanding, and in some cases impossible. This problem will be
far more severe when it comes to Arctic data analysis [73]. While the amount
of labeled data would be incredibly tiny, the amount of unlabeled data may
be enormous. The distribution of such unlabeled data contains critical infor-
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mation constructing resilient representations that are generalizable to novel
learning tasks. depending on the number of labeled instances used to train
models, Unlabeled data may be used in an unsupervised or semi-supervised
way. Unlabeled data may also help models bridge the domain divide between
multiple tasks, resulting in a plethora of unsupervised and semi-supervised
techniques [16]. These techniques are shown in Figure 3.3.

Figure 3.3: Basic example of binary classification considering supervised, unsuper-
vised, and semi-supervised learning. We have two classes, blue circles,
and red triangles. Unlabeled data belonging to each class are shown in
black circles and triangles. (a) refers to supervised learning in which all
training samples are labeled. (b) is unsupervised learning in the absence
of labeled training data. (c) is semi-supervised learning, in which some
training samples contain labels and some do not [74].

On the other hand, unsupervised learning does not need a predefined output
value. Rather than that, one attempts to deduce some underlying structure
from the inputs. Unsupervised approaches aim to develop representations that
are sufficiently generalizable to be used for various future learning challenges.
For example, in unsupervised clustering, the objective is to infer a mapping
from provided inputs (e.g., vectors of real numbers) to groups in such a way
that comparable inputs are mapped to the same group [75].

Semi-supervised learning seeks to bridge the divide between these two ob-
jectives [76, 77]. While attempting to solve a classification issue, extra data
points with unknown labels may be introduced to help the classification process.
On the other hand, for clustering algorithms, the learning process may profit
from the fact that some data points belong to the same class. Semi-supervised
classification techniques are especially useful when labeled data is in little
supply [75]. The majority of semi-supervised learning research is focused on
classification.



3.2 convolutional neural networks 35

3.2 Convolutional Neural Networks

As the most representative supervised DL model, the Convolutional Neural
Networks (Convolutional Neural Network (cnn)s) [78] have outperformed
most algorithms in visual recognition. The deep structure of cnns allows
the model to learn highly abstract feature detectors and to map the input
features into representations that can boost the performance of the subsequent
classifiers.

The cnn is a trainable multilayer architecture made from many feature-
extraction stages that may be trained. Usually, each level is made from three
layers, as follows: a convolutional layer, a nonlinearity layer, and a pooling
layer. When designing the architecture of a cnn, it is crucial to consider how
the two-dimensional structure of the input picture will be used. A cnn is
composed of the feature extraction process including one or more conventional
layers, followed by fc layers that serve as the classifier. Figure 3.4 is a diagram
that depicts the overall architecture of a cnn .

Figure 3.4: A general cnn architecture for image analysis, here for character recog-
nition [78].

The convolutional layer receives as input a three-dimensional array of 𝑟 two-
dimensional feature maps of size 𝑚 × 𝑛. Additionally, a three-dimensional
array 𝑚 × 𝑛 × 𝑘 is produced, consisting of 𝑘 feature maps of size 𝑚 × 𝑛.
The convolutional layer has 𝑘 trainable filters of size 𝑙 × 𝑙 × 𝑞, collectively
referred to as the filter bank 𝑊 , which links the input and output feature
maps. The convolutional layer generates the output feature maps seen in
Equation 3.2.

𝑧𝑠 =

𝑞∑︁
𝑖=1

𝑊 𝑠
𝑖 ∗ 𝑥𝑖 + 𝑏𝑠 (3.2)

where 𝑥𝑖 represents each input feature map, * represents a two-dimensional dis-
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crete convolution operator, and b represents a trainable bias parameter.

This layer is just a pointwise nonlinearity function applied to each component
in a feature map in a conventional cnn. The nonlinearity layer determines the
output feature map 𝑎𝑠 = 𝑔(𝑧𝑠), where g(.) is often selected to be a rectified
linear unit (𝑅𝑒𝐿𝑈 )𝑔(𝑥) =𝑚𝑎𝑥 (0, 𝑥). This function is often referred to as the
activation function. However, for the last layer of completely linked layers, the
SoftMax function is utilized to get the probability distribution.

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧𝑠) = 𝑒𝑥𝑝 (𝑧𝑠)∑
𝑗 𝑒𝑥𝑝 (𝑧 𝑗 )

(3.3)

The pooling layer is composed of a grid of pooling units spaced s pixels apart,
each of which summarizes a small spatial area of size 𝑝 ∗ 𝑝 centered on the
pooling unit’s position.

Following numerous feature extraction steps and using a Fully Connected (fc)
layers as a classifier, the complete network is trained using backpropagation
of a supervised loss function such as the traditional least-squares output as
Equation 3.3.

𝐽 (\ ) =
∑︁

(∥ 𝑓 (𝑥, \ ) − 𝑦∥2) (3.4)

where f denotes the network output after the operation of the SoftMax function
to the trainable parameter\ . The output vector y is a 1-of-K vector. The objective
is to minimize J(\) as a function of \ . The stochastic gradient descent with
backpropagation [79] algorithm is investigated for this optimization.

Gradient-based optimization methods are the most often utilized in dl to
solve the above optimization issue. Due to the computational difficulty of
second-order gradient descent techniques, first-order gradient descentmethods,
particularly Stochastic Gradient Descent (sgd) with mini-batch and variations,
are often employed in dl.

Generally, the iterative process consists of the following steps: 1) It takes a
mini-batch of data and samples it. 2) It conducts feed-forward calculations to
determine the objective function’s loss value (Equation 3.4). 3) It uses backward
propagation to determine the gradients relative to the model parameters. 4)
Finally, it does a model parameter update. It takes time to train a deep model,
much more so for big models or datasets. It is becoming more popular to
use distributed training approaches to expedite the training process by using
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several processors [25].

3.3 Semi-Supervised Learning

Several semi-supervised classification techniques have been proposed through-
out the last two decades. These approaches vary in their underlying semi-
supervised learning assumptions, their treatment of unlabeled data, and their
relationship to supervised algorithms. The primary differences between ssl
techniques are due to the various assumptions they make. The underlying
marginal data distribution p(x) over the input space must include information
about the posterior distribution p(y|x). This is a crucial condition for semi-
supervised learning. If this is the case, unlabeled data may be used to elicit
information about p(x), and hence about p(y|x). If, on the other hand, this
requirement is not satisfied and p(x) includes no information about p(y|x),
it is intrinsically impossible to enhance the accuracy of predictions using the
extra unlabelled data [77].

Fortunately, the previously indicated criteria seem to be fulfilled in many real-
world learning situations, as seen by the effectual application of semi-supervised
learning approaches in practice. However, the interaction between p(x) and
p(y|x) is not necessarily the same. As a result, semi-supervised learning as-
sumptions such as smoothness, low-density assumption, and manifold have
emerged, which codify the forms of predicted interaction [76].

It is assumed that the associated labels 𝑦 and 𝑦 should be the same for two
input points 𝑥, 𝑥

′ ∈ 𝑋 that, according to the smoothness assumption, are
near to each other in the input/feature space. This assumption is also often
employed in supervised learning, but it has an additional advantage in the semi-
supervised context: the smoothness assumption may be applied transitively to
unlabeled data, which is practical in many situations. Consider the following
scenario: there is a labelled data point 𝑥1 ∈ 𝑋𝐿, and two unlabeled data points
𝑥2, 𝑥3 ∈ 𝑋𝑈 , and 𝑥1 is near to 𝑥2 and 𝑥2 is close to 𝑥3, but 𝑥1 is not close to
𝑥3. If the smoothness condition is met, we may still expect 𝑥3 to have the same
label as 𝑥1, since closeness (and hence the label) is transitively transmitted via
𝑥2.

The low-density assumption states that the decision border of a classifier should,
wherever possible, travel through low-density areas in the input or feature space
of the classification problem. In other words, the decision border should not
travel through densely populated neighborhoods. The assumption is specified
over the actual distribution of the input data, which is represented by the
function 𝑝 (𝑥). When just a small number of samples from this distribution are
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considered, it simply indicates that the decision boundary should be located in
an area where only a small number of data points are seen. Consequently, the
low-density assumption is closely connected to the smoothness assumption; in
fact, it may be thought of as the smoothness assumption’s equivalent for the
data distribution underpinning the assumption of smoothness.

When dealing with machine learning situations in which the data may be rep-
resented in Euclidean space, the observed data points in the high-dimensional
input space 𝑅𝑑 are often clustered in lower-dimensional substructures of the
input space 𝑅𝑑 . Manifolds are topological spaces that are locally Euclidean. For
example, if we examine a 3-dimensional input space in which all points are
located on the surface of a sphere, then the data may be said to be located
on a 2-dimensional manifold in which the points are located. Semi-supervised
learning is based on the manifold assumption, which asserts that (a) the in-
put/feature space consists of numerous lower-dimensional manifolds on which
all data points sit and (b) data points lying on the same manifold are assigned
the same label. If we can figure out which manifolds exist and which data
points are located on which manifold, we may infer class assignments for unla-
beled data points from the class assignments of labeled data points located on
the same manifold. This is very useful when dealing with large datasets.

Various deep semi-supervised learning methods have been proposed consid-
ering these assumptions and advanced deep learning approaches. These ap-
proaches are shown in Figure 3.5.
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Figure 3.5: An overview of the landscape of semi-supervised methods [16].

3.3.1 Semi-supervised GANs

Generative Adversarial Networks gans have been used multifariously to ad-
dress different problems. For semi-supervised learning, they have represented
two distinct approaches to the use of gans in semi-supervised learning. One
suggests training a K+1 classifier using K predefined labels and a false class
to represent generated samples. It investigates the distribution of unlabeled
instances by classifying them into the first K real classes [80]. The second
paradigm interprets the generator of a learned GANs model as the (local)
parameterization of the data manifold. This parameterization allows for the
description of label invariance along the manifold’s tangents. This is strongly
connected to the Laplace-Beltrami operator [81], which is only approximated
in conventional graph-based semi-supervised models by the graph Laplacian
[16].

3.3.2 Auto-Encoders

These approaches expand the unsupervised Variational Autoencoders (vae)
to two types of semi-supervised models, which are described in more detail
below. The first latent-feature discriminative model (M1), [82], is a basic model
to understand. A classifier is trained to predict the label of sample x on top of
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the latent representation z of a sample x created by a vae model. While the
vae is trained on both the labeled and unlabeled portions of a training set, the
classifier is only trained on the labeled portions of a training set. The second
generative semi-supervised model (M2), [82], is more difficult to understand
and implement. An additional class variable y, which is latent for unlabeled x
but visible for labeled x, is used to construct sample x. This class variable y is
generated in addition to the latent representation z. In addition to the M1 and
M2 models and the hybrid model, attempts have been made in the literature
to include supervision information in vae ([83]).

3.3.3 Disentangling Representations

Through the development of an inverse graphical representation of the visual
model, these approaches construct the semi-supervised model based on the
vae model. In the first method, it is intended to learn a collection of "graphics
codes," which are used to manipulate and render pictures similar to that of
graphics software [84]. Images are represented as disentangled representations
of graphics codes in this context. The second technique [85], proposes an
extended form of semi-supervised vaes to separate interpretable variables
from latent representations, similar to the previous approach.

3.3.4 Teacher-Student Models

The idea behind teacher-student models for semi-supervised learning is to
obtain a single or an ensemble of teachers, and use the predictions on unlabeled
examples as targets to supervise the training of a student model. Consistency
between the teacher and the student is maximized to improve the student’s
performance and stability in classifying unlabeled samples. Various ways of
training the teacher and maximizing the consistency between the teacher and
the student lead to a variety of semi-supervised models of this category. Several
famous approaches can be categorized in this group, such as mean teacher
[86] and Noisy teacher [87, 88].

Obtaining a single or an ensemble of instructors and using their predictions on
unlabeled instances as objectives to oversee the training of a student model is
the concept underlying teacher-student models for semi-supervised learning.
Maximizing consistency between the teacher and the student is crucial to in-
crease the student’s performance and stability while categorizing unlabeled
samples. Diverse approaches to training the instructor and optimizing consis-
tency between the teacher and the student result in an array of semi-supervised
models. In this category, there are numerous well-known techniques, such as
the mean teacher [86] and the Noisy teacher [87, 88].
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3.3.5 Self-training

These methods are based on Consistency regularization by considering noisy
data (usually data augmentation) by leveraging the idea that a classifier should
output the same class distribution for an unlabeled example even after it has
been changed by adding some noise (augmentation). These approaches can be
considered as a single teacher-student model in which the model is trained by
itself. Therefore, these methods can also be considered the Teacher-Student
models. Several famous approaches can be categorized in this group, such as
MixMatch [89], FixMatch [90] and [91].

3.3.6 Deep Transductive Learning

In transductive learning, label inference that is limited to a certain set of
unlabeled examples is crucial. This act may be accomplished, for example, by
combining classification loss on labeled data with unsupervised aims on all data,
the latter of which serves as a regularizer. In the deep learning field, [73] first
employs efficient transductive label propagation [92] to infer pseudo-labels for
unlabeled data that are then utilized to train the classifier. Label propagation
is a graph-based technique, and in this study, the graph is generated using the
classification network’s embeddings. As a result, this procedure consists of two
phases. The network is first trained using labeled and pseudo-labeled data.
The second phase constructs the closest neighbor graph using the embeddings
of the network trained in the previous step.

3.4 Thesis Approach: DL and Sea Ice
Classification

In order to employ dl for sea ice classification, two main challenges, including
network architecture and scarce training data, are considered.

Network Architectures: Network architecture is an important factor in
extracting meaningful features for any application. Hyperparameters such as
the number of layers, the number of kernels, the size of kernels and etc. are
significantly important to designing a network architecture. However, it is
interesting to employ the proposed architectures for other applications and
fine-tune them for sea ice applications. Customizing a proposed network for
sea ice application could be a shortcut approach. To encounter this issue, we
consider the following questions:
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• What is the proper network architecture in terms of number layers,
number kernels and etc. to be used for sea ice classification?

• Is it beneficial to use existing well-known architectures for sea ice classi-
fication?

• Which type of proposed architectures are more suitable for this applica-
tion?

These questions were significantly important since dl networks are not very
mature, and there are few works in technical literature. Therefore, these issues
were targeted in the first publication. we proposed the following contribution
to address these questions:

• A dataset for deep learning analysis is published.

• Different approaches in deep learning, including ad hoc architecture
design, transfer learning, and re-training from scratch, have been studied.

• A self-design ad hoc architecture is designed and trained for sea ice
classification.

• Different proposed architectures including MobileNetV2 [93], RestNet50
[20], and DenseNet121 [94] are trained for sea ice classification.

• Considering transfer learning and re-training from scratch, especially the
VGG-16 model [95] is trained for sea ice classification.

• Effects of max-pooling layers in the VGG-16 architecture are studied, and
a modified VGG-16 model is proposed.

• Scarce training data issue is highlighted through the reported experi-
ments.

• Data augmentation technique is used, and it is highlighted that this
technique is led to some uncertainty on preserving the physical properties
of signals.

• Based on our finding using self-design ad hoc architecture and proposed
architectures, a specific 13-layer is considered for further analysis.

Scarce training data: To encounter this issue, we consider the following
questions:
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• What is the efficient approach to increasing the number of samples in
the training data set?

• How advanced approaches can be used to address this issue for sea ice
classification?

• Which approach is more appropriate to preserve physical properties?

Scarce training data is an important obstacle toward employing dl models for
sea ice classification. To address this issue,wemight consider human labeling or
an algorithm that can use the advantage of labeled and unlabeled data:

• Increasing the dataset: Adding more training data depends on visual
manual annotation,which is very time-consuming. Moreover, considering
the ambiguity of image, even with the help of optical images, it is not
always visually possible to label data.

• Semi-supervised learning: Semi-supervised learning seeks to bridge
between labeled and unlabeled data to improve classification accuracy.
In this method, the semi-supervised algorithm itself tries to include
information from unlabeled data without human interference.

To address the scarce training data issue, a new semi-supervised approach is
proposed in the second publication:

• A teacher-student learning based on label propagation for deep semi-
supervised learning is proposed.

• The method is based on the feature space of the trained cnn.

• the method is not dependent on heavy augmentation technique that is
not desired in this application.

• A limited number of labeled samples starting from 15 samples and unla-
beled samples are considered to efficiently train the models.

• Our method reduced the dependence on labeled samples, which is very
time-consuming and costly to collect for sea ice analysis.

• We have also shown that by adding more unlabeled samples, the perfor-
mance of the inference results has improved.

Since unlabeled data is available more than labeled data, the size of training
data can be increased easily. Regarding the computational intensity of deep
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learning, the training time can be significantly increased in this situation. It
leads to a consequential problem for hyperparameter optimization. This issue
is considered in the third publication.



4
Distributed Deep learning
for Scalable Computing

Deep Neural Networks dnns are rapidly taking over various aspects of our daily
lives and apply for many different applications. In particular, the disruptive
trend toward big data has led to an explosion in the size and availability of
training datasets for machine learning tasks. Training such models on large
datasets to convergence can easily take weeks or even months on a single GPU
[20, 95]. However,dnns rise into prominence is tightly coupled to the available
computational power. Often, A single machine can’t finish a training task in
the desired time frame [96].

An effective remedy to this problem is to utilize multiple GPUs to speed up
training. Scale-up approaches rely on tight hardware integration to improve
the data throughput. These solutions are effective but costly. Furthermore,
technological and economic constraints impose tight limitations on scaling
up [97]. In contrast, distributed deep learning (ddl) aims at scaling out to
train large models using the combined resources of clusters of independent
machines [97].

ddl can be studied from various perspectives, including the type of paral-
lelism, type of concurrency, type of aggregation, and type of communication.
In this section, different proposed methods are discussed based on different
views.

45
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4.1 Type of Parallelism

In general, distributed deep learning can be divided into two main approaches:
model parallelism and data parallelism.

4.1.1 Model parallelism

Model parallelism distributes model parameters to several computational work-
ers [98]. Each computer worker is in charge of distinct model parameters or
layers. Because various neurons in the deep model are highly dependent on
one another, each worker should share its output results with the other work-
ers before proceeding with the calculation of the next layer. One prominent
advantage of model parallelism is that training large models becomes viable
since each worker may only keep a subset of the model, resulting in a reduced
memory need.

However, the model parallelism approaches have numerous significant flaws,
including unbalanced parameter sizes and significant computing reliance in
different levels of the deep model [98]. It isn’t easy, if not NP-complete [99],
to divide the learning model into appropriate sections and allocate them to
distinct compute nodes. Furthermore, an intricate technique must be designed
to ensure the durability of model parallelism, which is challenging owing to
computational reliance. Because of these difficulties, using model parallelism
to expedite training is not straightforward [100].

This approach can conserve memory (since the complete network is not stored
in one place) but incurs additional communication after every layer [24]. Model
partitioning can be conducted by applying splits between neural network layers
(=vertical split) or by splitting the layers (=horizontal split), as depicted in
Figure 4.1.
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Figure 4.1: Model parallelism. It can achieve through vertical or horizontal splits [97].

4.1.2 Data Parallelism

The other prominent form of distributed training is data parallelism [101, 102,
103, 104], which is seen in Figure 4.2. In this case, the model parameters are
duplicated to all computer workstations, resulting in a faster training time.
Each computing worker analyses separate mini-batches of data in a single
iteration to calculate the local gradient changes, which are then exchanged
with the other workers before updating the model parameters to the latest
values.

Figure 4.2: Data parallelism [25].
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4.2 Type of Aggregation

From an aggregation view, we can have two different architectures, centralized
and decentralized approaches.

In a centralized approach, one or several central servers, often called parameter
server, is responsible for updating a specific model parameter [103]. Parameter
servers depend on the gradients computed by cluster nodes that perform back-
propagation (workers). Figure 4.1 Illustrates the data flow during training in
such a system. Centralized optimization allows the expensive task of computing
per-parameter gradients to be distributed across the cluster machines. It also
elegantly handles updating the model by pooling all communication at the
parameter server. Thereby, per-parameter gradients for large amounts of train-
ing, samples can be computed quickly. For large clusters, this frequent need
for communication focused on the same network endpoints can quickly be-
come a bottleneck [105, 106]. Therefore, most centralized-optimization-based
ddl implement communication patterns where the parameter server role is
distributed [97].

Figure 4.3: Centralized approach.

On the other hand, the decentralized approach treats its workers as a swarm,
in which each worker independently probes the loss function to find gradient
descent trajectories to minima that have good generalization properties [107].
The famous approach in decentralized approaches are collective algorithms
like Allreduce, and Ring-Allreduce [108].
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4.2.1 Allreduce Algorithm

To describe Allreduce, we consider P as the total number of the processes,
and each process is uniquely identified as a number between 1 and P. We
consider each process has an array of values (network parameters) that should
be aggregated with other arrays on other processes. In this case, each process
divides its own array into P subarrays, which we refer to as “chunks.” Let
chunk[p] be the p-th chunk. These processes communicate in a ring mode, as
in Figure 4.4. Each process sends chunk[p] to the next process while simulta-
neously receiving chunk[p-1] from the previous. Then, process p performs the
aggregation operation to the received chunk[p-1] and its own chunk[p-1] and
sends the aggregated chunk to the next process p+1. In other words, every
chunk travels all around the ring and accumulates a chunk in each process.
After visiting all processes once, it becomes a portion of the final result array,
and the last-visited process holds the chunk. Finally, all processes can obtain
the complete array by sharing the distributed partial results. This process is
achieved by circulating step again without aggregation operations, i.e., merely
overwriting the received chunk to the corresponding local chunk in each pro-
cess. The AllReduce operation completes when all processes obtain all portions
of the final array [109, 110].

The aggregation operations of SUM, MAX, and MIN are frequently used. In
distributed deep learning, the SUM operation is used to compute the mean
of gradients. By repeating the receive-aggregate-send steps P-1 times, each
process obtains a different portion of the resulting array.

Figure 4.4: Illustration of Ring Allreduce.
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4.3 Type of Concurrency

4.3.1 Concurrency in Network

In this category, we compute the output of the layers or the whole network
in a concurrent mode for the forward evaluation and backpropagation phases.
For example, model parallelism divides the work according to the neurons in
each layer. Different parts of the dnns are computed on distinct processors
in various machines [24, 111]. With data parallelism, several replicas of a
neural network model are created during training, each on a different worker
(processor). For example, the replicas of the model are synchronized (i.e.,
either average gradients or parameters) at every step by communicating either
with a centralized parameter server [103, 112] or decentralized using Allreduce
[113, 106, 109].

4.3.2 Concurrency in Training

In this category, concurrency is used in the training stage. Multiple instances
of training processes run independently on different machines. In this sense
distributed training of ensembles is an entirely parallel process, requiring
no communication between the workers [114]. Ensemble learning requires
more memory and computational power in the training and inference phases.
Therefore, knowledge distillation has been used in a two-step training to
transfer knowledge of an ensemble with several networks to a single network
[115, 116, 117].

To handle the problem of two-step training, Zhang et al. [118] investigated
how an ensemble of students can learn collaboratively and teach each other
throughout the training process. Kim et el. [119] introduced a fusion learning
method that trains a robust classifier by integrating feature maps. Park et el.
[120] used a feature-level ensemble for knowledge distillation by transferring
the ensemble knowledge between multiple teacher networks. Although these
methods can be trained in parallel, their main problem is accuracy, where the
number of epochs is not taken into account. Codistillation [121] takes advantage
of ensemble and mutual learning to speed up the training. Codistillation uses
a distillation-like loss that penalizes predictions made by one model on a batch
of training samples for deviating from the predictions made by other models
on the same batch.
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4.4 Type of Communication

4.4.1 Synchronous

From the communication perspective,ddl can also be divided into synchronous
and asynchronous [24] methods. In synchronous systems, all computations hap-
pen simultaneously. A global synchronization barrier prevents workers from
progressing until all workers are in the same position. By avoiding deviations
in progression between workers, synchronous systems can achieve efficient
collaborative training at the expense of potentially underutilizing resources.
In synchronize approach, the replicas synchronize (i.e., average either gradi-
ents or parameters) at every step by communicating either with a centralized
parameter server [103] or using all reduce [113]

4.4.2 Asynchronous

Using asynchronous systems takes a more relaxed approach to organizing
collaboration and avoids delaying the execution of one worker for another.
However, asynchronous systems favor a higher utilization of hardware and
regard deviations between workers as manageable side effects that can, in
certain circumstances, even prove helpful. On the other hand, by relaxing the
synchronization restriction and creating inconsistent models, training workers
can update gradients asynchronously [122]. The Figure 5.3 depicts synchronous
and asynchronous approaches in centralized data parallelism distributed deep
learning.
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Figure 4.5: synchronous and asynchronous in centralized data parallelism distributed
deep learning.

4.5 Communication Compression

Regarding what to communicate, the exchanged gradients or models may
be compressed by quantization or sparsification before transmission over net-
work connections to minimize communication traffic while maintaining model
convergence.

4.5.1 Quantization

Quantization is a kind of compression technique that utilizes fewer bits to rep-
resent data previously encoded in 32 bits on each dimension of the transmitted
gradient. As a result, the gradients utilized to improve the models are imprecise
after the quantized transmission. Quantization of transmitted gradients is di-
rectly related to low-precision deep learning. Deep learning with low precision
evolved in an environment where the CPU and GPU need faster calculation
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and less memory to train dnns. Quantized communication is feasible if the low
accuracy of gradients is sufficient to ensure training convergence. Numerous
studies have previously addressed the convergence of deep learning under
low-precision gradients [123, 124, 125, 126, 127, 125].

4.5.2 Sparsification

Sparsification techniques seek to minimize the number of items conveyed
during each repetition. The essential concept of sparsification is that during
Stochastic Gradient Descent (sgd) updates, only "significant" gradients are
necessary to update the model parameter and ensure training convergence
[128]. As seen in Fig. 6, a considerable part of the gradient vector’s coordinates
are wiped out, eliminating the need to transmit zero-valued components. Gra-
dient sparsification is a more severe compression method than quantization
for reducing communication traffic [129, 130, 128, 131].

4.6 Communication Overhead Issue

To end this section, we present an example to show the main challenge in
distributed deep learning. Most DL models contain a large number of param-
eters to capture the complex features of the input data and their impact on
the prediction results. In the parameter server approach, each worker needs to
push the gradient of every parameter and pull every updated parameter from
others through a parameter server. As a result, distributed training entails a
substantial amount of data exchange between workers and servers.

For example, Table 4.1 shows an experiment using one parameter server and
three workers on 1 PS – 3 workers P3.2xlarge Instance Amazon EC2 – Tesla
V100 with 10Gb Bandwidth for 100 Iteration [132]. An estimation of the commu-
nication time and training time in each iteration is shown considering different
network architectures. As we can see, most of the time spends on transferring
the models between machines. In fact, different approaches in distributed deep
learning try to address communication overhead from different aspects.

4.7 Thesis Approach: Distributed Deep Learning

Expanding the deep learning techniques to process big data can significantly
improve the overall performance. However, time constraints to training deep
learning architectures are one serious obstacle to training a complex dlmodel.
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Table 4.1: Communication time versus training time in the parameter server [132].

Model # Param. Data Size (MB) Training Time Comm. Time
AlexNet [14] 61.1M 488 x 4 1.99s 1.56s
VGG-16 [95] 138M 1104 x 4 4.93s 3.53s
VGG-19 [95] 143M 1104 x 4 5.15s 3.66s

ResNet-152 [133] 60.2 M 481.6 x 4 1.86s 1.54s

It is more significantly important when we have a large amount of training data
along with complex dl architectures, especially in semi-supervised learning
where we can increase unlabeled data to be involved in the training process
easier. Table 4.2 shows the training time considering various semi-supervised
methods and our proposed method in paper 2. Although our training dataset
is not so sizable, we can observe high training time.

It is important to consider which distributed learning method is more suitable
for our proposed supervised and semi-supervised (proposed semi-supervised
method is based on extracted feature space of the model) methods. Paper 3
specifically considered the scalability issue and proposed a new method for
distributed deep learning.

Our method is a new distributed learning approach based on knowledge distil-
lation. Our method is interesting because:

• Considering the feature space of distributed models, it is related to our
proposed method in supervised and semi-supervised, and we can apply
this method to extend them to distributed training.

• Our method provides more parallelism while reducing the communica-
tion cost.

• It can be used on commodity hardware in contrast to other approaches
that need high-speed and low latency networks.

Table 4.2: Training time for different methods using 60 labeled data and 10000 unla-
beled data on the UiT training dataset [134] on a single GPU (Quadro RTX
5000 16GB).

Methods # Batch Size. Training time
LP-DeepSSL(WideResNet) [73] 100 2h

LP-DeepSSL [73] 100 3h
TSLP-SSL [135] 100 6h

MixMatch (WideResNet) [89] 100 10h
SGANs [80] 64(best) 1h



5
Overview of Publications
In this chapter, we present a summary of three publications and other contri-
butions.

5.1 Paper Summaries

5.1.1 Paper 1

Salman Khaleghian,Habib Ullah, Thomas Kræmer,NickHughes, Torbjørn Eltoft,
Andrea Marinoni, “Sea Ice Classification of SAR Imagery Based on Convo-
lution Neural Networks”, Remote Sensing, 2021, 13(9).

In the first paper, different training approaches in deep learning have been
studied and a modified version of famous architecture called VGG-16 has been
proposed. Most State-of-the-art methods are largely based on traditional statis-
tical and machine learning methods. dl architectures for sea ice classification
are in an early stage of development. In this sense, most works use basic
simple shallow architecture and trivial learning methods. In this paper, the
most recent deep architecture networks, and a self-design ad hoc architecture,
have been studied. These methods are depicted in Figure 5.1. We consider two
main approaches the first consists of modeling a custom or ad hoc architecture
to analyze the problem. An ad hoc architecture is interesting as it offers high
flexibility, but it generally requires the optimization of many hyper-parameters.

55
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In the second approach, where a given existing DL architecture is used in a new
application domain, the existing architecture can either be fine-tuned based on
already pre-trained parameters or trained from scratch. This approach signifi-
cantly reduces the time to design the deep learning architecture. We explore
the VGG-16 model [95], well-known network architecture developed for image
recognition at the University of Oxford and has achieved high performance in
many applications. Different training approaches, including transfer learning
and re-training from scratch along with data augmentation, are discussed. We
also studied the effects of max-pooling layers in the VGG-16 architecture and
proposed a modified VGG-16 model for sea ice classification. We also compared
it with three other reference models to show the stability and robustness of
our modified VGG-16 model for sea ice classification. These reference models
are MobileNetV2 [93], RestNet50 [20], and DenseNet121 [94].

Figure 5.1: Paper 1 considered deep learning approaches.

We tested and assessed the results both qualitatively and quantitatively. The
results showed that these complex architectures (such as those based on the
VGG network) typically obtain promising classification results. Moreover, based
on the evaluation of data augmentation, even if the quantitative performance
improvement was only minor, the data extension technique seemingly can
prevent over-fitting caused by a scarce training dataset. We also assessed the
robustness of the trained CNN models when applied to SAR scenes collected
at different spatial locations and times. We also found that the additive system
noise in the SAR imagery is challenging in obtaining refined sea ice maps.
Both the computational requirements and the additive system noise are crucial
issues for the operational use of SAR data for sea ice classification. This work
highlights the scarcity issue in sea ice classification and shows the significance
of involving more training data. This finding was a base for our second paper
on semi-supervised learning.



5.1 paper summaries 57

5.1.2 Paper 2

S. Khaleghian, H. Ullah, T. Kræmer, T. Eltoft, and A. Marinoni, "Deep Semi-
supervised Teacher–Student Model Based on Label Propagation for Sea
Ice Classification" in IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, vol. 14, pp. 10761-10772, 2021, doi: 10.1109/JS-
TARS.2021.3119485.

Semi-Supervised Learning (SLL) [16] is employed, to extract accurate infor-
mation from large-scale datasets, when a limited amount of labeled data are
available. These methods aim to combine labeled data with unlabeled records.
In the past few years, semi-supervised models have presented performance
improvement in various fields of remote sensing research. To address the scarce
train data in sea ice classification, we propose a teacher–student-based label
propagation deep semi-supervised learning (TSLP-SSL) method. The overall
architecture is illustrated in Figure 5.2. Our architecture consists of two models:
a teacher and a student model. The teacher model is trained in a two-step pro-
cedure. Initially, we trained the teacher model in a supervised fashion utilizing
only the labeled data. We then feed both the labeled and unlabeled samples to
the trained teacher model and consider the feature space embedding to engen-
der pseudo-labels for the unlabeled data through a label propagation procedure
[136, 92, 73]. In the next step, the original and the pseudo-labels are used to
train the student model, which is subsequently used during the inference stage.
Hence, our proposed method effectively exploits a relatively large amount of
unlabeled data to improve the final classification performance.

Figure 5.2: Overall architecture of proposed method in paper 2.

To show our proposed method’s capabilities, we considered a limited number of
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labeled samples starting from 15 samples and unlabeled samples to efficiently
train the models. In fact, our proposed method was characterized by the
ability to learn practical information from both labeled and unlabeled data.
Our method reduced the dependence on labeled samples, which is very time-
consuming and costly to collect for sea ice analysis. Therefore, this property of
our method makes it a good fit for the community of sea ice analysis, where
limited labeled data are available.

We have also shown that by adding more unlabeled samples, the performance
of the inference results has improved our method can be extended to other
problem areas considering the semi-supervised aspect, where a limited number
of labeled samples are available. Since unlabeled data is available more than
labeled data, the size of training data can be increased easily. Regarding the
computational intensity of deep learning, the training time can be significantly
increased in this situation. It leads to a consequential problem for hyperparam-
eter optimization. In this regard, the first and second papers show the need
for scalable computing, especially when unlabeled data is available. Therefore,
the third paper addresses this issue to reduce the training time when a large
amount of labeled and unlabeled data is available.

5.1.3 Paper 3

S. Khaleghian, H. Ullah, E. B. Johnsen, A. Andersen and A. Marinoni, "AFSD:
Adaptive Feature Space Distillation for Distributed Deep Learning," in IEEE Ac-
cess, vol. 10, pp. 84569-84578, 2022, doi: 10.1109/ACCESS.2022.3197646.

Deep Neural Networks (dnns) training is very computationally intensive. A sin-
gle machine often can’t finish finishing a training task in the desired time frame.
It is more significantly important when we have a large amount of training data
along with complex dl architectures, especially in semi-supervised learning
where we can increase unlabeled data to be involved in the training process
easier. In fact, expanding the deep learning techniques to process big data
can significantly improve the overall performance. However, time constraints
to training deep learning architectures are one serious obstacle to training a
complex dl model.

Through the Ph.D. project, different methods have been investigated. Paper
3 specifically considered the scalability issue and proposed a new method for
distributed deep learning.

Our method is based on knowledge distillation. This method is interesting
because: 1) it is related to our proposed method in supervised and semi-
supervised, and we can apply this method to extend to distributed training. 2)
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this method provides more parallelism while reducing the communication cost.
And 3) it can be used on commodity hardware in contrast to other approaches
that need high-speed and low latency networks.

Figure 5.3: Overall architecture of proposed method in paper 3.

In contrast to the two-step distillation, our method trains n copies of a model in
parallel and starts distillation early in the training process. We proposed a new
loss function using an additional distillation term based on extracted features
by the models. Our proposed method can tolerate longer update interval rates.
We rarely update the models but still, we achieve the same accuracy with
fewer epochs. In our method, distilling the knowledge between the models
less frequently provides flexibility to the models in terms of learning diverse
variations in the data. The overall architecture of this method is shown in
Figure 5.3.

The proposed method mainly targets distributed deep supervised learning.
However, a possible extension of the semi-supervised version has been described
in future works.

5.2 Other Contributions

Dataset: A dataset for sea ice classification based on deep learning methods
was published during the PhD Project.

S. Khaleghian, J. P. Lohse, and T. Kræmer, “Synthetic-aperture radar (SAR)
based ice types/ice edge dataset for deep learning analysis,” 2020. [Online].
Available: https://doi.org/10.18710/QAYI4O.

Conference Papers:

S. Khaleghian, T. Kræmer, A. Everett, Å. Kiærbech, N. Hughes, T. Eltoft, A. Mari-



60 chapter 5 overview of publications

noni, “Synthetic aperture radar data analysis by deep learning for automatic
sea ice classification”, EUSAR, Leipzig, Germany, June 2021.

H. Ullah, S. Khaleghian, T. Kromer, T. Eltoft and A. Marinoni, "A Noise-Aware
Deep LearningModel for Sea Ice Classification Based on Sentinel-1 Sar Imagery,"
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
2021, pp. 816-819, doi: 10.1109/IGARSS47720.2021.9553971.

A. Marinoni, G. C. Iannelli, S. Khaleghian and P. Gamba, "On the Optimal
Design of Convolutional Neural Networks for Earth Observation Data Analysis
by Maximization of Information Extraction," IGARSS 2020 - 2020 IEEE Interna-
tional Geoscience and Remote Sensing Symposium, 2020, pp. 3505-3508, doi:
10.1109/IGARSS39084.2020.9323521.

Manolis Koubarakis, George Stamoulis, Dimitris Bilidas, Theofilos Ioannidis,
George Mandilaras, Despina-Athanasia Pantazi, George Papadakis, Vladimir
Vlassov, Amir H. Payberah, Tianze Wang, Sina Sheikholeslami, Desta Haile-
selassie Hagos, Lorenzo Bruzzone, Claudia Paris, Giulio Weikmann, Daniele
Marinelli,Torbjørn Eltoft,AndreaMarinoni,Thomas Kræmer,Salman Khaleghian,
Habib Ullah, Antonis Troumpoukis, Nefeli Prokopaki Kostopoulou, Stasinos
Konstantopoulos, Vangelis Karkaletsis, Jim Dowling, Theofilos Kakantousis, Mi-
hai Datcu, Wei Yao, Corneliu Octavian Dumitru, Florian Appel, Silke Migdall,
Markus Muerth, Heike Bach, Nick Hughes, Alistair Everett, Ashild Kiærbech,
Joakim Lillehaug Pedersen, David Arthurs, Andrew Fleming, Andreas Czifer-
szky.” Artificial Intelligence and Big Data Technologies for Copernicus Data:
The ExtremeEarth Project.” Conference on Big Data from Space (BiDS21) 2021.
Virtual event, 18-20 May 2021.

Journal papers:

Desta Haileselassie Hagos, Theofilos Kakantousis, Vladimir Vlassov, Sina Sheik-
holeslami, Tianze Wang, Jim Dowling, Claudia Paris, Daniele Marinelli, Giulio
Weikmann, Lorenzo Bruzzone, Salman Khaleghian, Thomas Kræmer, Torb-
jørn Eltoft, Andrea Marinoni, Despina-Athanasia Pantazi, George Stamoulis,
Dimitris Bilidas,George Papadakis,GeorgeMandilaras,Manolis Koubarakis, An-
tonis Troumpoukis, Stasinos Konstantopoulos, Markus Muerth, Florian Appel,
Andrew Fleming, and Andreas Cziferszky. "ExtremeEarth Meets Satellite Data
From Space." IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2021

Presentations:

Salman Khaleghian, Thomas Kræmer, Alistair Everett, Åshild Kiærbech, Nick
Hughes, Torbjørn Eltoft, Andrea Marinoni. Deep learning for enhanced sea
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ice understanding. Arctic Frontiers 2020, Tromsø, Norway, January 26 - 30,
2020

Salman Khaleghian, Habib Ullah, Thomas Kræmer, Torbjørn Eltoft, Andrea
Marinoni, "A deep semi-supervised learning method based on transductive
label propagation for sea/ice classification", NORA Conference 2021, Bergen,
Norway.

This work is funded in part by Centre for Integrated Remote Sensing and
Forecasting for Arctic Operations (CIRFA) and the Research Council of Norway
(RCN Grant no. 237906), the European Union’s Horizon 2020 research and
innovation programme ExtremeEarth project, grant agreement no. 825258
(http://Earthanalytics.eu/) and by the Fram Center under the Automised Large-
scale Sea Ice Mapping (ALSIM) "Polhavet" flagship project. In this regards,most
of the findings has been presented in the project meetings.
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Abstract: We explore new and existing convolutional neural network (CNN) architectures for sea
ice classification using Sentinel-1 (S1) synthetic aperture radar (SAR) data by investigating two
key challenges: binary sea ice versus open-water classification, and a multi-class sea ice type
classification. The analysis of sea ice in SAR images is challenging because of the thermal noise effects
and ambiguities in the radar backscatter for certain conditions that include the reflection of complex
information from sea ice surfaces. We use manually annotated SAR images containing various
sea ice types to construct a dataset for our Deep Learning (DL) analysis. To avoid contamination
between classes we use a combination of near-simultaneous SAR images from S1 and fine resolution
cloud-free optical data from Sentinel-2 (S2). For the classification, we use data augmentation to
adjust for the imbalance of sea ice type classes in the training data. The SAR images are divided
into small patches which are processed one at a time. We demonstrate that the combination of
data augmentation and training of a proposed modified Visual Geometric Group 16-layer (VGG-16)
network, trained from scratch, significantly improves the classification performance, compared to the
original VGG-16 model and an ad hoc CNN model. The experimental results show both qualitatively
and quantitatively that our models produce accurate classification results.

Keywords: convolutional neural network; ice edge detection; polar region; Sentinel-1; sea ice
classification; synthetic aperture radar

1. Introduction

Sea ice is a key environmental factor [1] that significantly affects polar ecosystems.
Over the past decade, the Arctic has experienced dramatic climate change that affects its
environment, ecology, and meteorology. The trends are more pronounced than in other
regions, and this has been called the Arctic amplification [2] resulting in increasingly
variable Arctic weather and sea ice conditions. These are already more extreme than
at lower latitudes, and present challenges and threats to maritime operations related to
resource exploitation, fisheries, and tourism in the northern areas [3,4]. Therefore, reliable
and continuous monitoring of sea ice dynamics, coverage, and the distribution of ice types
is important for safe and efficient operations, in addition to supporting detection of how the
conditions are changing over longer timescales [5,6]. For example, Ren et al. [7] classified
sea ice and open water from synthetic aperture radar (SAR) images using the U-Net model,
and integrated a dual-attention mechanism into the original U-Net to improve the feature
representations. Han et al. [8] introduced a method for sea ice image classification based
on feature extraction and a feature-level fusion of heterogeneous data from SAR and
optical images. Song et al. [9] proposed a method based on the combination of spatial and
temporal features, derived from residual convolutional neural networks (ResNet) and long
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short-term memory (LSTM) networks that allowed the extraction of spatial feature vectors
for a time series of sea-ice samples using a trained ResNet network. Then, using the feature
vectors as inputs, the LSTM network further learnt the temporal variation of the set of
sea-ice samples. Subsequently, they fed the high-level features into a Softmax classifier to
output the most recent ice type.

For sea ice data analysis, SAR imaging plays a key role as the images acquired by air
and satellite-borne platforms provide information that is not restricted by environmental
factors and, importantly for Arctic monitoring, can continue to be collected during all
weather conditions and through the polar night [10].

Recently, Deep Learning (DL) based methods have shown promising results in
many application areas, including computer vision [11], information theory [12], and
natural language processing [13]. These have been shown to have excellent generalization
capabilities, particularly when properly trained on large datasets. These developments
have therefore led to a belief that deep neural networks (DNNs) could lead to a significant
improvement of automatic sea ice classification, considering the specific challenges related
to this task. However, no applications based on this approach have yet made it into
operational use.

In our paper, we explore the performance and efficiency of some DL-based methods
for sea ice classification from SAR imagery. DNNs are trainable multi-layer architectures
composed of multiple feature-extraction stages, succeeded by a fully connected classification
module. DNNs may consist of hundreds of layers, and their architecture can be feed-
forward or recurrent, having different types of layers and activation functions, and the
training can be achieved through many different optimization strategies. A DNN can
be built from different combinations of fully connected, convolutional, maxpooling (sub-
sampling), or recurrent layers. Due to their deep nature, they are often trained on large
datasets, and in general are able to achieve low generalization errors.

A convolutional neural network (CNN) [14,15] is a feed-forward network consisting
of only convolutional layers, pooling layers, and fully connected layers. A CNN [16] is
the type of DNN which is most commonly applied to analyzing visual imagery. In the
convolutional layers, a CNN extracts features from the image in a hierarchical way by using
multiple filters. Each filter consists of a set of weight parameters, which are iteratively
adjusted and optimised using an optimization algorithm. These filters are applied to an
input image to create a feature map that summarizes the presence of detected features
in the input. The CNN learns the filter coefficients during training in the context of the
specific problem, and uses pooling layers to sub-sample the output in such a way that the
most prominent pixels are propagated to the next layer, dropping the rest. Here it provides
a fixed sized output matrix, which is translation and rotation invariant.

Sea ice classification based on SAR imagery is a very challenging task because, in
addition to the sea ice characteristics, the radar signals are sensitive to imaging geometry,
speckle noise [17], and the blurring of edges and strong anisotropies that may be produced
by the SAR imaging process based on the backscattering of signals. In the literature,
different methods [18–21] for sea ice classification based on SAR imagery have been
presented and typically consider traditional machine learning and probabilistic approaches
based on shallow learning strategies. Generally, shallow learning relies on handcrafted
features like intensities, polarization ratios, and texture features, which may not encode
well the large variations that sea ice may display. Therefore, their generalization capabilities
are limited.

To address these challenges, we explore deep learning networks for sea ice classification.
Inspired by the success of DNNs in general, and CNNs in particular in many applications,
we consider two main approaches when exploring DL networks. The first consists of
modeling a custom or ad hoc architecture to analyze the problem. An ad hoc architecture is
interesting as it offers high flexibility, but it generally requires optimization of many hyper-
parameters. In the second approach, where a given existing DL architecture is used in a
new application domain, the existing architecture can either be fine-tuned based on already
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pre-trained parameters, or trained from scratch. This approach significantly reduces the
time to design the deep learning architecture. We explore the VGG-16 model [14], which
is a well-known network architecture developed for image recognition at University of
Oxford, and has achieved high performances in many applications. This architecture is
the core in other architectures like the Fully Convolutional Networks (FCN) [22]. Different
training approaches including transfer learning and re-training from scratch are discussed
in Section 3.1. We also studied effects of maxpooling layers in the VGG-16 architecture and
propose a modified VGG-16 model for sea ice classification. The main contributions of this
paper are:

1. We present a deep learning based models for sea ice classification based on SAR
imagery. One of the major attractions of these models is their capability to model sea
ice and water distinctively in SAR images representing different geographic locations
and timing.

2. We extensively evaluate the models on our collected dataset and compare it to both a
baseline method and a reference method. Our results show that our explored model
outperforms these methods.

3. We categorize state-of-the-art methods and present a comprehensive literature review
in this area in the next section.

The rest of the paper is organized as follows. In Section 2, related work is presented.
Section 3 reports our proposed deep models and training strategies. Section 4 presents the
experimental results on multiple SAR scenes. Finally, Section 5 outlines the conclusion and
final remarks.

2. Related Work

Sea ice type classification is a major research field in the exploitation of SAR images
and has been the subject of research for more than 30 years [23]. The literature on this topic
is quite extensive, and here we highlight only a few of the more recent studies.

In general, sea ice classification methods fall into three categories: probabilistic/
statistical methods, classical machine learning methods, and deep learning based methods.

In the first category, Moen et al. [24] investigated a Bayesian classification algorithm
based on statistical and polarimetric properties for automatic segmentation of SAR sea
ice scenes into a specified number of ice classes. Fors et al. [25] investigated the ability of
various statistical and polarimetric SAR features to discriminate between sea ice types and
their temporal consistency within a similar Bayesian framework, finding that the relative
kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation
angle are temporally consistent, while the co-polarisation ratio and the co-polarisation
correlation magnitude are temporally inconsistent. Yu et al. [26] presented a sea ice
classification framework based on a projection matrix, which preserves spatial localities of
multi-source images features from SAR and multi-spectral images. By applying a Laplacian
eigen-decomposition to the feature similarity matrix, they obtained a set of fusion vectors
that preserved the local similarities. The classification was then obtained in a sliding
ensemble strategy, which enhances both the feature similarity and spatial locality. In a
recent paper, Cristea et al. [27] proposed to integrate the target-specific incidence-angle-
dependent intensity decay rates into a non-stationary statistical model. The decay of the
intensities of co-polarized SAR signals with incidence angle is dependent on the nature of
the targets, and this decay impacts the segmentation result when applied to wide-swath
images. By integrating the decay into the Bayesian segmentation process, this deteriorating
effect is alleviated and cleaner segmentation results are obtained.

In the second category of classical machine learning, Orlando et al. [28] used a multi-
layer perceptron classifier to perform multi-class classification considering first-year ice,
multi-year ice, icebergs, and the shadows cast by icebergs. Alhumaidi et al. [29] trained a
neural network classifier using polarization features alone, and polarization features plus
multi-azimuth “look” Ku-band backscatter for sea ice edge classification. Their method
demonstrated a slight advantage in combining polarization and multi-azimuth ‘look’
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over using only co-polarized backscatter. Bogdanov et al. [30] also used a multi-layer
perceptron classifier for sea ice classification in the winter season, based on a multi-sensor
data fusion using coincident data from both the ERS-2 and RADARSAT-1 SAR satellites,
low-resolution television camera images, and image texture features. They assessed the
performance of their method with different combinations of input features and concluded
that a substantial improvement can be gained by fusing the three different types of data.
Leigh et al. [31] proposed a support vector machine (SVM) based ice-water discrimination
algorithm considering dual polarization images produced by RADARSAT-2, and extracting
texture features from the gray-level co-occurrence matrix (GLCM), in addition to backscatter
features. Lit et al. [32] introduced a sea ice classification method based on the extraction of
local binary patterns, and subsequently used a bagging principal component analysis (PCA)
to generate hashing codes of the extracted features. Finally, these hashing codes were fed
into an extreme learning machine for classification. Park et al. [33] extracted texture features
from SAR images and trained a random forest classifier for sea ice classification. Their
method classifies a SAR scene into three generalized cover types, including ice-free water,
integrated first-year ice, and old ice. Zhang et al. [34] introduced a conditional random
fields classifier for sea ice classification for Sentinel-1 (S1) data that has been applied to
SAR scenes from the melt season in the Fram Strait region in the Arctic, and is based on the
modeling of backscatter from ice and water to overcome the effects of speckle noise and
wind roughened open water.

In the third category, we present DL-based methods for sea ice classification. These
methods have been widely used in analyzing Earth observation (EO) data, but the literature
is very limited when it comes to the analysis of sea ice data. Previous work can be
categorized into two main approaches, namely ad hoc architectures and well-established,
existing architectures. For ad hoc architectures, one can, for example, freely determine
hyperparameters, including the number of layers, the number of nodes in a particular
layer, and the training technique. Many researchers have created ad hoc architectures for
handling specific problems [35–39]. Some of the popular existing architectures are the
AlexNet [40], the VGG net [14], and the GoogLeNet [41]. There are three sub-approaches on
how to train the network when considering the use of existing architectures: (1) re-training
the architecture from scratch, (2) using transfer learning and fine-tuning the architecture
based on problem specific training data, or (3) applying feature extractors. In the case of re-
training from scratch on a new training dataset, the weights of the architecture are randomly
initialized. In the case of transfer learning, pre-trained weights are copied and fine-tuned
with the new data. All weights may be adjusted, or only some of the network’s layers are
re-trained and fine-tuned with new training data [42]. For example, Castelluccio et al. [43]
fine-tuned two existing architectures to perform semantic classification of remote sensing
data, namely the CaffeNet and the GoogLeNet, and showed significant performance
improvements. Wang et al. [38,39] used deep ad hoc CNNs for ice concentration estimation.
Kruk et al. [44] used DenseNet [45] for finding ice concentration and ice types considering
dual-polarization RADARSAT-2 SAR imagery by fusing the HH and HV polarizations for
the input samples. Han et al. [46] introduced a hyperspectral sea ice image classification
method based on spectral-spatial-joint features with deep learning. Initially, they extracted
sea ice texture information from the GLCM and then a three-dimensional deep network to
extract deep spectral-spatial features of sea ice for classification. Gao et al. [47] proposed a
deep fusion network for sea ice change detection based on SAR images. They exploited
the complementary information among low, mid, and high-level feature representations,
and for optimizing the network’s parameters, they used a fine-tuning strategy. Petrou and
Tian [48] used a DL approach [49] to predict sea ice motion for several days in the future,
given only a series of past motion observations. Their method is based on an encoder-
decoder network and to calculate motion vectors, they used sea ice drift derived from daily
optical images covering the entire Arctic. Their model learnt long-time dependencies within
the motion time series and captured spatial correlations among neighboring motion vectors.
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3. Method

Our work falls in the third category, namely DL-based methods, and is inspired by the
success of the versatile CNNs in many different applications [14]. We perform both binary
and multi-class classifications. In binary classification, we categorize different types of sea
ice into one class and water into another class. In multi-class classification, we consider
four different ice types that correspond to the World Meteorological Organization (WMO)
ice types classification [50]. To model the effects of incidence angle, we create a patch-based
training dataset which includes incidence angle as a separate image channel. We explore
three different CNN models for sea ice classification, including an ad hoc CNN architecture
designed from scratch, a VGG-16 model [14], considering both transfer learning and re-
training from scratch, and a modified version of the VGG-16 model. The ad hoc architecture
is a new CNN, where we explore different numbers of convolutional and maxpooling
layers to examine the impact on their classification performance. We also studied effects of
maxpooling layers in the VGG-16 architecture and propose a modified VGG-16 model for
sea ice classification.

When it comes to the training of the CNN architectures, it is worth noticing that there
is no pre-prepared, publicly available sea ice classification datasets. Therefore, in our work,
we train and test all the architectures considering a sea ice dataset that we have carefully
generated ourselves from a combination of overlapping SAR and optical satellite images,
supported by expert evaluations from sea ice analysts. Our dataset consists of 31 SAR
images from north of the Svalbard archipelago collected between March and September
during 2015–2018. In order to reduce the effect of overfitting of the models during the
training process due to scarce training data, we use an augmentation technique to extend
the training set.

3.1. CNN Models for Classification

The ad hoc CNN model we investigate consists of three convolution layers along with
an equal number of maxpooling layers. For these layers, the number of kernels/filters are
32, 64, and 64, respectively. Our model also consists of three fully connected layers with
1024, 512, and 2 nodes, respectively. We also use dropout, a regularization technique to
avoid overfitting, where we set the dropout probability equal to 0.5. The specification of
the ad hoc model is depicted in Figure 1.

Figure 1. Ad hoc CNN. Our proposed CNN architecture consists of three convolution layers and
three fully connected layers. At the input, there are training images. We extract patches from these
images and feed them to the network during the training process.

We also explore the VGG-16 model [14] for sea ice classification. The architecture
of this model is depicted in Figure 2. The fully connected layers are the same for both
architectures, but the convolution layers are different, and hence the extracted output
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features from the convolution layers are not the same. In both architectures, the rectified
linear unit (ReLU) activation functions [51] have been used in all layers, except for the last
layer, where the SoftMax function [52] is used. We use the cross-entropy loss function and
Adam optimizer [53] in the training process. The batch size, which refers t o the number of
training examples utilized in one iteration, was set to 50 patches.

In case of the VGG-16 network, we adopt both training from scratch using our sea
ice training dataset and a transfer learning strategy. Training from scratch provides
insight on the impact of a deeper network in relation to the sea ice classification task.
In this case, we adjust all the weights during the training process, starting from a random
initialization. For transfer learning, we readjust the weights during training, following the
setup obtained for a specific application. We tested each network model with different
sizes of the input patches.

Furthermore, we use an augmentation technique to extend our labelled dataset.
Here it is supposed to consolidate the architectures both in the feature extraction and
the classification stages. In data augmentation, the training data is processed using
multiple patch-wise operators and transformations. We used the augmentation strategy
of Buslaev et al. [54]. According to the strategy, we perform horizontal flip, rotation with
90 degrees, blurring, and random changes to both brightness and contrast. The data
augmentation technique aims to improving the robustness of both architectures by focusing
on the structure of the classes, and should help both architectures to be independent of
changes in brightness and contrast.

Figure 2. VGG-16 CNN. The architecture of this network consists of several convolution layers and
three fully connected (FC) layers. The FC layers are represented by dense layers. At the input, there
are training images. We extract patches from these images and feed them to the network during the
training process.

3.2. Modified CNN Model for Classification

We also propose a modified VGG-16 model [14] for sea ice classification. In general,
convolutional neural networks introduce equivariance to translation. It means that if
an object moves along the height or width axis of an image, the activation translated
to the output will be the same. However, this is not true for rotations and changes in
the illumination. It can be described intuitively by thinking about a filter that picks up
horizontal edges. This filter can find all the horizontal edges in the image, but it cannot
detect vertical edges. To this end, a maxpooling layer adds translational invariance [55]. If
we consider a pooling layer with a window size of 2 × 2 and a stride equal to 2, it does not
matter in which of the four locations the big activation is, the output of the pooling layer
will be the same. However, this is not always desired. For example, translation invariance
is not desired for face-recognition where the exact distances between eyes and the nose are
crucial. In this case, you would not want to reduce the use of pooling.
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In sea ice classification, we are not looking for a specific object, and the texture of the
classes is important. The use of many maxpooling layers severely affects the networks
ability to encode texture characteristics. In a large network, a maxpooling layer shrinks the
image size and saves computation. On the other hand, this process limits the minimum
input patch size which can be used. For example, the smallest input image that can be used
in VGG-16 is 32 × 32. If smaller patches are fed to the network, there will be no output
image after the convolution and maxpooling layers to feed to the fully connected layers.
We investigate the effect on sea ice classification of removing the last maxpooling layer in the
VGG-16 architecture. By reducing the maxpooling layers, we suppress the the translational
invariance property of the VGG-16 network, and simultaneously reduce the minimum
input size that is allowed to be used.

4. Experimental Results
4.1. Dataset

To test the deep CNN models for sea ice classification, we created an annotated
dataset building on the work of Lohse et al. [56]. This is based on 31 Sentinel-1A Extended
Wide (EW) Level-1 Ground Range Detected (GRD) scenes, with a spatial resolution of
40 m × 40 m, that were acquired north of the Svalbard archipelago in winter months
between September and March during the period 2015–2018. Four sample images from
our dataset are shown in Figure 3. Our dataset can be accessed from the provided
link https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/QAYI4O (accessed
on 1 March 2021). The images were pre-processed by applying a thermal noise removal
algorithm in the European Space Agency (ESA) Sentinel Application Platform (SNAP)
software [57], calibrated using the σ0 look-up table, and multi-looked using a 3 × 3
boxcar filter. After conversion to dB scale, the images were clipped and scaled linearly
in the range [0, 1], considering the dual-polarization intensity channels individually, and
including a third input-channel representing the incident angle. The range for the co-
polarization (HH) is −30 to 0 dB, for the cross-polarization (HV) it is −35 to −5 dB, and
for the incidence angle 19 to 46 degrees. A set of polygons representing homogeneous
sea ice types was subsequently manually annotated with labels for those types, taking
into account additional information from co-located and nearly temporally coincident
optical image data from Sentinel-2. Patches were then extracted from these polygons for
5 different classes representing: Water (including ice-free water (windy), ice-free water
(calm), and open water in leads), Brash/Pancake Ice, Young Ice, Level First-Year Ice, and
Deformed Ice (including both first-year and multi-year ice). The stride between patches
was 10 pixels. In Table 1, we provide the code values for the ice types related to the stage
of development (ice age), as defined by the SIGRID-3 vector archive format for sea ice
georeferenced information and data ([58]), the class names, and the number of samples
for each class for a patch size of 32 × 32. It is worth noticing that we have an imbalanced
dataset, where the number of samples for each class has considerable variation. This is a
result of the effort we made to accurately annotate the polygons, and hence the number of
polygons was small and not representing all classes equally.

For binary Water/Ice classification, we grouped the samples into two classes, namely
Water and Ice. Our motivation for performing binary classification is to investigate if deep
models can distinguish between sea ice and water, which would subsequently allow for
quantitative sea ice concentration mapping. The number of samples of water and ice for
different patch sizes are shown in Table 2, and there is not a class imbalance problem in
this case. For all the tests, 80 percent of the dataset was used for training and 20 percent
for validation.
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Figure 3. Sample images. Four different input SAR images are presented in both the rows from our
collected dataset. The light vertical lines in all the images represent SAR additive noise.

Table 1. Number of samples for different classes namely open water/leads with water, brash/pancake
ice, young ice (YI), level first year ice (FYI), and old/deformed ice.

Codes Classes 32 × 32

02 Open Water/Leads with Water 9318
01–02 Brash/Pancake Ice 159

83 Young Ice (YI) 202
86–89 Level First-Year Ice (FYI) 213

95 Old/Deformed Ice 9137

Table 2. Number of samples for sea/ice classification in different patch sizes. For example, the total
number of patches are 19,029 in case of patch size equal to 32 × 32.

Patch Size Total Ice Sea

10 × 10 22,999 12,723 10,276
20 × 20 21,020 11,301 9719
32 × 32 19,029 9711 9318
36 × 36 18,469 9255 9214
46 × 46 17,237 8255 8982

We would like to mention that in the inference experiment, we used completely
different images. These were another 4 scenes from north of Svalbard, and 8 scenes from
Danmarkshavn, East Greenland that were each collected during separate months in 2018.

4.2. Model Accuracies
4.2.1. Patch Channels and Sizes

In the first study case, we report the validation accuracy by considering three different
channel compositions. We calculate the validation accuracy for a patch by checking if the
predicted class is the same as the true class, and by comparing the index of the highest
scoring class in the predicted vector with the index of the actual class in the ground
truth vector. It is interesting to use the HH polarization alone since it generally has a
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stronger signal and is less affected by additive noise. However, the HV polarization is
more sensitive to ice types during freezing conditions and provides information about the
different classes [56]. Furthermore, it is well-known that the radar backscatter from sea ice
is dependent on the incidence angle, with lower incidence angles appearing brighter [56]. In
order to study the importance of this effect for different classes, we included the incidence
angle as a separate input channel. Hence, we consider three alternatives. First, we extracted
one-channel patches using only the HH polarization. Secondly, we extracted two-channel
patches, with both the HH and HV polarizations as inputs. Finally, we extracted three-
channel patches by considering the HH and HV channels, plus the incidence angle. The
results for these channel compositions are summarized in Table 3 for the ad hoc CNN,
using a patch size of 32 × 32. As can be seen, the composition of the input patches affects
performance of the model, with a large improvement due to adding the HV channel to the
HH, and another small improvement by adding the incidence angle. The improvement of
adding the incidence angle is surprisingly small. However, based on the validation results
for the ad hoc CNN, we will use all three channels in our next experiments.

Table 3. Validation accuracy of ad hoc CNN for different Patch compositions including HH, HH-HV,
and HH-HV-incidence angle. The patch size is equal to 32 × 32 with spatial resolution 1440 m2.

HH HH, HV HH, HV, Incidence Angle

Validation Accuracy 88.4% 98.2% 98.4%

Next, we studied the effect of using different patch sizes for the three-channel case.
We consider the ad hoc architecture and input patch sizes of 10 × 10, 20 × 20, 32 × 32,
36 × 36 and 46 × 46, respectively. The validation results in Table 4 show that the accuracy
improves with the increase in the patch size. However, this improvement comes at the
cost of a lower spatial resolution as larger patches cover wider areas of the surface. Note
that for S1 EW GRD images each pixel covers 40× 40 meters on the Earth surface and,
for example, a patch size equal to 46 × 46 covers a 1840 × 1840 square meters area. This
patch will be classified as water if the majority of the pixels represent water and would be
a problem at ice edges as classification based on larger patches would lead to coarser or
non-smooth edges. Hence, there is a trade-off between accuracy and resolution. We used
smaller patch sizes in our other experiments.

Table 4. Validation accuracy using ad hoc CNN with different patch sizes including 10 × 10, 20 × 20,
32 × 32, 36 × 36, and 46 × 46.

10 × 10 20 × 20 32 × 32 36 × 36 46 × 46

Validation Accuracy 95.54% 97.49 % 98.53 % 98.75 % 99.09%
Spatial Resolution (meter) 400 800 1280 1440 1840

4.2.2. Different Training Strategies

In this section, we study the performance of the VGG-16 architecture for sea ice
classification from SAR images under different training strategies. These strategies include:
(a) training the network by transfer learning, where the pre-trained network is trained
on the ImageNet dataset, (b) training the network from scratch, (c) training the network
from scratch, with an augmented dataset, (d) training the modified VGG-16 network from
scratch considering the augmented dataset with a patch sizes equal to 32 × 32, and (e)
similar to (d) with a patch size of 20 × 20. Transfer learning and data augmentation are
well-known learning strategies that have been successfully applied in computer vision
applications. The image formation process for SAR images is fundamentally different from
optical images, and our objective here is to understand if these techniques are also suitable
for the sea ice classification task using SAR data. For training our model, we consider the
learning rate equal to 0.001 and batch size equal to 20.
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The number of convolutional layers of the VGG-16 network is different from the ad
hoc network. Therefore, the extracted features are different in these architectures, and
presumably also their classification performances. We present the classification results
related to the VGG-16 network with different training approaches in Table 5. As can be seen,
when the network is trained by transfer learning, the validation accuracy is equal to 97.9%,
whereas when the same network is trained from scratch, the accuracy is 99.5%. Figure 4
shows the training and validation losses for these two cases, transfer learning in the left
panel and ’from scratch’ learning in right, respectively. We note that the validation losses
in both panels show increasing trends after the point where the training losses indicate
conversion, meaning these networks suffer from overfitting.

Figure 4. Validation and training losses. Considering the VGG-16 network trained with transfer learning (left), the
validation loss is increasing and the training loss is decreasing. Considering the VGG-16 network trained from scratch
(right), the Validation loss is increasing and the training loss is decreasing. Therefore, both the networks are facing the
problem of overfitting.

Table 5. The comparison of the validation accuracy of different models: VGG-16 transfer learning,
VGG-16 trained from scratch, VGG-16 trained from scratch with augmentation, VGG-16 modified
with augmentation considering two different pixel resolutions.

Training Strategies Validation Resolution Resolution
Accuracy in Pixels in Meters

VGG-16 transfer learning 97.9 32 × 32 1280
VGG-16 trained from scratch 99.5% 32 × 32 1280

VGG-16 trained from scratch with augmentation 99.79% 32 × 32 1280
VGG-16 Modified + augmentation 99.89% 32 × 32 1280
VGG-16 Modified + augmentation 99.30% 20 × 20 800

The issue of overfitting is often related to sparse training data, and can be remedied by
extending the training set using data augmentation. We demonstrate this for the strategy
of training the network from scratch, since as shown in Table 5 it has the best performance.
We train the VGG-16 network from scratch with the augmented data according to the
augmentation strategy described above. Figure 5 presents the corresponding training and
validation loss curves, and, as can be noted, both the validation and training losses are
decreasing, hence, showing better generalization capabilities. Table 5 shows that data
augmentation also improves the classification results. In fact, we achieve a validation
accuracy equal to 99.79%, which is remarkably good.

We also report the validation accuracies of the modified VGG-16 network trained from
scratch using the augmented dataset considering two different patch sizes, namely 32 × 32
and 20 × 20. We remind the reader that this architecture is designed to have a reduced
number of maxpooling layers, and hence would allow for better texture preservation
and smaller input patch sizes. Table 5 also displays the validation accuracies for these
models, and as can be noted, the modified VGG-16 networks achieves very high validation
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accuracies. We also perform a comparison with three other reference models to show
the stability and robustness of our modified VGG-16 model for sea ice classification.
These reference models are MobileNetV2 [59], RestNet50 [60], and DenseNet121 [45].
The performance of our model in comparison with these reference models is presented in
Figure 6 in the form of validation accuracy over time. As can be seen, our model presents
higher and consistent validation accuracy.

Based on these experimental analyses, we observe that the modified VGG-16 network
trained from scratch with the augmented data provides the highest accuracies. This leads
us to conclude that in the case of sea ice classification from SAR data, training the network
from scratch with an augmented dataset enables better adjustment and learning of the
sea ice characteristics. Transfer learning, with pre-training on ImageNet data, which is
fundamentally different from SAR data, does not allow the same adaptation to the data.
Moreover, by reducing the number of maxpooling layers, the network better preserves the
structure of the data and shows improved performance.

Figure 5. Validation and training losses. Considering the VGG-16 network trained from scratch
with the augmented data, both the validation and training losses are decreasing showing the better
generalization capability of the network.

Figure 6. Validation accuracy. We present the performance of our model in comparison with
MobileNetV2 [59], RestNet50 [60], DenseNet121 [45] in the form of validation accuracy. As can be
seen, our model shows higher and consistent validation accuracy over time.
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4.3. Inference Results

In order to assess the robustness of the proposed approaches, we investigated the
classification results for four new SAR scenes from north of Svalbard, i.e., scenes that are
not part of the training data, by presenting the results as qualitative ice versus water maps.
To this aim, we set up the inference experiment in a patch-wise manner, where the images
are partitioned into non-overlapping patches, and the classification is performed on the
entire patches.

Figure 7 shows the four input images from north of Svalbard in the first row. In the
same figure, the patch-wise results of the ad hoc CNN are presented in the second row, the
results of the VGG-16 model trained with transfer learning are presented in the third row,
the results of the VGG-16 model retrained from scratch without the augmented data are
presented in the fourth row, the results of the VGG-16 model retrained from scratch with
the augmented data are presented in the fifth row, and the results of the modified VGG-16
model trained from scratch with augmented data are presented in the sixth row. Areas
consisting of water are annotated in blue and areas consisting of sea ice are annotating
in white. For better visualization, we applied a land mask to detect land areas, and the
black regions in the images represent land areas. We zoom in on parts of some images to
highlight specific details. The classification results obtained with ad hoc CNN (second row)
are not satisfactory. The classified images are severely affected by the banding additive
noise pattern, as can be clearly seen in columns two and three. The VGG-16 trained with
transfer learning (third row) does not classify sea ice areas properly. In fact, open water
and newly formed sea ice often have lower radar backscatter values in HV than in HH
channels.These cross-polarization values are closer to the noise floor and therefore often
have a lower signal-to-noise ratio producing artifacts due to different noise patterns. It
can lead to problems during the interpretation of sea ice maps because the added intensity
corrupts the true back scattered signal of the sea ice region.

In Figure 7, The VGG-16 retrained from scratch without using the augmented data
(fourth row) is better than ad hoc CNN and VGG-16 trained with transfer learning.
However, there are still some misclassifications, as can be seen in the first column. The
second last row presents the results obtained with the VGG-16 model retrained from scratch
with the augmented data. The last row presents the results obtained with the modified
VGG-16 retrained from scratch with the augmented data. For the modified VGG-16 model,
we reduced the number of maxpooling layers. In this case, the noise seems to be quite
well handled, as can be seen in the second column of the last row. However, there is still
some noise effects in the third column. Hence, it is worth noticing how the results are
affected by the additive noise, which can be seen in the original images (row one) as distinct
bands marking the different sub-swaths, and in particular the case when the ad hoc CNN
and VGG-16 with transfer learning are considered. Nevertheless, the results obtained by
using VGG-16 trained from scratch appear to be more robust against the noise. From this
experimental analysis, we conclude that the patch-wise classification results seem to be
better when the training data obtained from data augmentation is used to train the VGG-16
model from scratch. The improvement is evident in the last row of Figure 7.

To further show the generalization performance of the CNN models for ice versus water
classification, we also tested the models on images acquired from a different Arctic region, the
area offshore of Danmarkshavn, East Greenland (76°46′ N, 18°40′ W). Here the Norwegian
Meteorological Institute provided vector polygon data representing manually interpreted
sea ice areas for the SAR data [61], which consisted of eight images, corresponding to eight
different months of the year. These including both the freezing and melting seasons, and
were then analyzed with the trained architectures. Figure 8 displays the classification results
corresponding to the modified VGG network, trained from scratch with data augmentation,
using patch sizes of 32 × 32 and 20 × 20.
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Figure 7. Patch-wise results considering patch size equal to 32 × 32. The first row presents the original images in two-bands.
The second row presents results using ad hoc CNN, the third row presents results using VGG-16 with transfer learning.
The fourth row presents results using VGG-16 trained from scratch without augmentation. The fifth row presents results
obtained using VGG-16 trained from scratch with augmentation. The sixth row presents the results of modified VGG-16
trained from scratch considering patch size equal to 20 × 20. Ice is annotated in white and water is annotated in blue. The
land mask is annotated in black.

As can be seen, the overall performance is good. It is also noticed that the results
obtained with patch size equal to 32 × 32 are better than the results obtained with patch
size equal to 20 × 20. The larger patch-size seems to be less affected by the noise and
therefore we conclude that a patch size equal to 32 × 32 is a better choice for Sentinel-1
SAR images corrupted by additive noise. Overall, our experimental analysis shows that the
VGG-16, when trained from scratch with augmented data, presents very good classification
results when trained in a supervised fashion.
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Figure 8. Patch-wise inference results of VGG-16 trained from scratch with 32 × 32 and 20 × 20 patches. The network is
trained on north of Svalbard images and tested on the new region, Danmarkshavn, East Greenland. Different images in
freezing and melting seasons are shown.

To better characterize the quality of the sea ice classification, it is important to
distinguish between ice edges and water. Therefore, we also present the performance of
our proposed method considering the ice edges of 16 January 2018 as depicted in Figure 9.
For this purpose, we overlay the ice polygons (Norwegian Meteorological Institute [61])
from the Danmarkshavn region over the geo-referenced classified image from our method.
Overestimation means predicting a larger sea ice area than the manually labelled cover
area. Underestimation means predicting a smaller sea ice area than the manually labelled
cover area. As can be seen, our proposed method performs effectively to separate ice
edges from the water, although there remains some minor overestimation of the sea ice
extent in some areas which is preferable to underestimating. However misclassification still
occurs in interior areas of the ice pack where there is low backscatter from both cross- and
co-polarization such as for areas of level, undeformed landfast ice close to the Greenland
coast. An assessment of the accuracy of the ice edge, based on the Integrated Ice Edge Error
(IIEE) metric [62], was performed on this example against a selection of other data sources.
In Table 6 it can be seen that the contribution to the error from classifying ice as water
(under-representing the ice) is consistent with all the products (4646 to 6632 km2) that are
compared, as these have fairly good agreement on the presence of landfast ice. There is also
a similar level of error against products with accurate ice edges (1522 to 3766 km2) such as
the manually analyzed polygons introduced earlier [61], the Norwegian Ice Chart from the
Norwegian Meteorological Institute (https://cryo.met.no/en/latest-ice-charts, accessed
on 1 March 2021) which is the routine operational analysis produced by an ice analyst,
and the sea ice concentration (SIC) produced by the University of Bremen from Advanced
Microwave Scanning Radiometer 2 (AMSR2) data [63]. Products based on low resolution
passive microwave radiometry, for example the EUMETSAT Satellite Application Facility
on Ocean and Sea Ice (OSI SAF) SIC that uses Special Sensor Microwave Imager/Sounder
(SSMIS) [64], are less capable of resolving the ice edge, and here there is a far greater
contribution to the IIEE (10,797 km2) because the SAR classification correctly identifies
sea ice.
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Table 6. Area differences and IIEE scores for the 16 January 2018 VGG-16 results, (Figure 9) against
4 different sea ice data products: manual analysis [61], Norwegian Ice Chart, OSI SAF SIC [64], and
University of Bremen AMSR2 SIC [63].

Products Overestimation km2 Underestimation km2 IIEE km2

Manual Analysis [61] 3766 4646 8412
Norwegian Ice Chart 1522 6632 8155

OSI SAF SIC [64] 10,797 5482 16,279
Bremen AMSR2 SIC [63] 2637 5966 8604

Figure 9. Ice edges. We overlay the manually analyzed polygons from the Danmarkshavn region over the classified images
from our method to show the effectiveness of our proposed method considering ice edges. The polygons highlighted in the
light red color represent the manual analysis, the light grey color represents ice, the dark grey color represent water, and the
white color represents overestimated ice from our method.

We have also extended our experimental analysis to multi-class sea ice type classifica-
tion considering five images from the Danmarkshavn region. The results are depicted in
Figure 10. In this classification experiment, we used the modified VGG-16 model trained
from scratch with the dataset from north of Svalbard as shown Table 1.

We would like to emphasize that our dataset is scarce and unbalanced, with an unequal
number samples from the ice types. This is affecting the classification performance, and
the results presented in Figure 10 are slightly biased toward ice types where we have
more samples than others. The effect of the imbalance data can be seen in Figure 10,
where brash/pancake ice is detected in the right-hand side of the right-most image, which
apparently is a dense ice area. In general, brash/pancake ice is located at the edges towards
open water. Despite this problem, the results indicate that the VGG-16 trained from scratch
shows promising performance in distinguishing different ice types as well as binary ice
versus water classification.
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Figure 10. Multi-class ice types classification using 32 × 32 patches using the network trained from
scratch by considering multi-class ice types in Table 1 from north of Svalbard and tested on the
Danmarkshavn region.

We also present the inference result obtained considering only the HH channel. In
Figure 11, the left column shows the input SAR image and the right column shows the
inference results. As can be seen, the inference result lacks coherency to distinguish sea ice
from water. Therefore, both the HV channel and incident angle contribute to the process of
properly training the model.

Figure 11. The input HH SAR image is shown on the left side and the inference result considering only the HH channel is
shown on the right side. The color of the input image is different from the ones reported earlier because in this case we have
only HH channel. As can be seen, the result lacks coherency to distinguish sea ice from water.

5. Conclusions

In this work, we explored the potential of different CNN models for sea ice classification.
We tested and assessed the results both qualitatively and quantitatively. The results showed
that these complex architectures (such as those based on the VGG network) typically obtain
promising classification results. Moreover, we evaluated the value of data augmentation,
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and found that even if the quantitative performance improvement was only minor, the data
extension technique seemingly can prevent over-fitting caused by a scarce training dataset.
We also assessed the robustness of the trained CNN models when applied to SAR scenes
collected at different spatial locations and times. Even though our analysis is limited to
only a few scenes, our findings are positive and show that the models have good potential.
The computational processing to obtain the inference result for a single high resolution
SAR image requires a few minutes on a typical desktop computer. We also found that the
additive system noise in the SAR imagery is a challenging problem to obtaining refined
sea ice maps. Both the computational requirements and the additive system noise are
important issues for the operational use of SAR data for sea ice classification.

We also trained our models to perform multi-class classification. In this preliminary
study, we had a scarce and unbalanced dataset, which obviously affected the output, but
the analysis still showed promise. This motivates us to carry out our research in this
direction. In our investigation we performed patch-wise classification which degrades the
spatial resolution. Future work will address a pixel-wise setup. However, the pixel-wise
set-up will be driven by more computational overhead. Therefore, our future work will
also focus on transforming the current architecture to process the input data quickly. For
this purpose, we will replace the fully connected layers by convolution layers based on
the work of Sermanet et al. [65]. To reduce the impact of noise on sea ice classification, we
would include the nominal noise profiles as a feature directly into the model. Finally, we
emphasize that the scarcity of reliable and balanced sea ice training and validation datasets
is a severe problem for these complex CNN architectures and needs full attention from the
sea ice community. In future work, we will develop semi-supervised learning methods to
partly remedy this issue.
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SAR Synthetic aperture radar
LSTM Long short term memory
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PCA Principal component analysis
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S1 Sentinel-1
HH Horizontal-horizontal polarization
RLU Rectified linear unit
ResNet Residual convolutional neural network
DL Deep learning
CNN Convolutional neural network
SVM Support vector machine
GLCM Gray-level co-occurrence matrix
EO Earth observation
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ESA European Space Agency
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on Label Propagation for Sea Ice Classification
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and Andrea Marinoni , Senior Member, IEEE

Abstract—In this article, we propose a novelteacher–student-
based label propagation deep semisupervised learning (TSLP-SSL)
method for sea ice classification based on Sentinel-1 synthetic
aperture radar data. For sea ice classification, labeling the data
precisely is very time consuming and requires expert knowledge.
Our method efficiently learns sea ice characteristics from a lim-
ited number of labeled samples and a relatively large number
of unlabeled samples. Therefore, our method addresses the key
challenge of using a limited number of precisely labeled samples
to achieve generalization capability by discovering the underlying
sea ice characteristics also from unlabeled data. We perform ex-
perimental analysis considering a standard dataset consisting of
properly labeled sea ice data spanning over different time slots of
the year. Both qualitative and quantitative results obtained on this
dataset show that our proposed TSLP-SSL method outperforms
deep supervised and semisupervised reference methods.

Index Terms—Deep learning, earth observation, scarce training
data, sea ice classification, semisupervised learning (SSL).

I. INTRODUCTION

ARCTIC sea ice keeps the northern polar regions cool
and thereby helps to moderate the global climate. It is a

key component of the Arctic environment [1] that substantially
affects the polar physical environment and its ecosystems. The
Arctic has faced severe environmental impacts over the past
few decades. These changes have transformed its environment,
ecology, and meteorology and caused unsteady variations in the
weather and sea ice conditions, which pose new challenges to
maritime industries, including but not limited to aquaculture,
natural energy resources, and travel exploration operating in
the high north areas [2], [3]. Therefore, proper monitoring
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of the sea ice conditions and how it changes with time is
important [4], [5].

For high-resolution sea ice analysis, researchers and ice cen-
ters around the world are using synthetic aperture radar (SAR)
data [6], [7]. These data are not restricted by weather conditions
and polar darkness [8]. An important part of sea ice analysis
includes sea ice classification. Sea ice classification based on
SAR data [9] is carried out by classical statistical classifica-
tion methods, traditional machine learning (TML) methods,
and deep-learning-based methods (DLMs). Statistical and TML
methods rely on handcrafted features, which may not properly
encapsulate the challenging sea ice characteristics [10]. There-
fore, their generalization capabilities and their abilities to find
efficient features that can be considered to various geographic
areas and time frames are limited [10]. DLMs, when prop-
erly trained on large training datasets, have shown excellent
generalization capabilities in many research fields, including
several remote sensing applications such as food security moni-
toring [11], hybrid data-driven Earth observation modeling [12],
and flood mapping from high-resolution optical data [13]. We
consider these achievements in the aforementioned fields and
believe that deep neural networks (DNNs) may also show per-
formance improvement in automatic sea ice classification [14],
[15]. However, scarce training data is the most challenging issue
in sea ice data analysis. This problem is particularly challenging
in the Arctic, where gathering of precise true observations is
expensive, time driven, and sometimes not feasible [16]. For
sea ice classification, archived ice charts are available rendering
huge labeled data. Nonetheless, these charts are very coarsely
labeled and do not have the quality and details needed to train a
DLM effectively [17].

To extract accurate information from large-scale datasets,
when limited amount of labeled data are available, semisu-
pervised learning (SSL) has been introduced in the technical
literature [18]. These methods aim to combine labeled data with
unlabeled records. In the past few years, semisupervised models
have presented performance improvement in various fields of re-
mote sensing research, such as despeckling of SAR images [19],
change detection in heterogeneous remote sensing images [20],
and hyperspectral image classification [21]. Considering these
successes, we anticipate that deep SSL methodologies could
also be favorable in sea ice classification and potentially lead to
significant improvements by overcoming the specific challenge
of few labeled samples. In fact, a deep SSL technique is halfway

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. TSLP-SSL method. We have two models, namely, teacher and student models. The teacher model is trained on labeled data during the first stage, and
then, both models are trained on labeled and unlabeled data during the second stage of the training.

between supervised and unsupervised learning. This technique
exploits multiple layers to progressively extract higher level
features from the raw input data considering both labeled and
unlabeled data.

We propose a teacher–student-based label propagation deep
semisupervised learning (TSLP-SSL) method. Our architecture
consists of two models, namely, a teacher model and a student
model. The teacher model is trained in a two-step procedure.
Initially, we trained the teacher model in a supervised fashion
utilizing only the labeled data. We then feed both the labeled
and unlabeled samples to the trained teacher model and consider
the feature space embedding to engender pseudo-labels for the
unlabeled data through a label propagation procedure [22]–[24].
The original and the pseudo-labels are in the next step used to
train the student model, which is subsequently used during the
inference stage. The purpose of using the student model is to
avoid the problem of the teacher model being biased toward
the labeled data, which is like in case of a small training set.
Our proposed method, hence, effectively exploits a relatively
large amount of unlabeled data to improve the final classification
performance. The training methodology is depicted in Fig. 1 and
is more thoroughly described in Section III. The summary of our
contributions is as follows.

1) We propose a novel TSLP-SSL method. One of the major
attractions of our proposed method is its capability to deal
with a small number of labeled samples. This is a favorable
property in the case of sea ice classification using SAR
data, where the availability of a large amount of reliable
labeled data is scarce.

2) We consider sea ice datasets to train and analyze the
generalization capabilities of our proposed method. We
compare our method with a supervised method and three

state-of-the-art semisupervised methods. Our results show
that our proposed method performs better than all the
reference methods, especially in cases with a small number
of labeled samples.

3) Additionally, we present a comprehensive literature re-
view covering both the probabilistic learning method and
the DLM.

The rest of this article is organized as follows. Related work
is described in Section II. We present our proposed deep models
and training approaches in Section III. Section IV depicts the
experimental analysis considering a set of SAR images. Finally,
Section V concludes this article and presents future work.

II. RELATED WORKS

In general, sea ice classification can be divided into two
major classes: TML/probabilistic methods and DLMs [25]. The
approaches in the latter class fall into two subclasses, namely,
supervised deep learning and semisupervised deep learning
methods. The literature is very limited in the case of semisuper-
vised DLMs since methods in this subcategory are quite recent
and still under development.

A. Probabilistic Methods for Sea Ice Classification

The literature on TML/probabilistic methods is very rich, and
we will restrict ourselves to only including a few recent publica-
tions. Statistical algorithms often combine probabilistic models
and classical classification methods with texture or polarimetric
features to perform sea-ice-type maps. An extensive survey is
given in [26].

Some specific studies in this category are highlighted be-
low. Examples of machine learning algorithms include the use
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of standard multilayer perceptrons, as in [14], support vector
machines, as in [7], or decision tree methods [15], as in [15].
Statistical and shallow machine learning methods often rely on
having extracted the input features in a preoperation prior to the
classification. Karvonen [27] and Dinessen [28] used probabilis-
tic and statistical features for estimating sea ice concentration
from SAR imagery. Johansson et al. [29] used statistical entropy
and horizontal–vertical (HV) polarization computations to iso-
late sea ice from open water and thicker sea ice. Furthermore,
Fors et al. [30] investigated the potential of C- and X-band
multipolarization SAR features for sea ice segmentation during
late summer. Dabboor et al. [31] analyzed a set of compact
polarimetric parameters for classifying newly formed ice and
multiyear ice. Hong and Yang [32] used the statistical coefficient,
incidence angle, environment temperature, and speed of wind to
improve the sea ice and water classification. Johansson et al. [33]
used a statistical mixture model to isolate open water from sea
ice. Their method is based on the semiautomatic segmentation
technique. They applied the algorithm to explore the sea ice
characteristics in Svalbard. Aldenhoff et al. [34] demonstrated
that C-band SAR can reliably generate the layout of the ice
boundary, whereas the L-band shows effectiveness considering
thin ice and water regions.

B. DLMs for Sea Ice Classification

Deep-learning-based approaches have been widely exploited
for addressing the challenge of sea ice classification. Malmgren-
Hansen et al. [17] applied a convolutional neural network
(CNN) model to predict Arctic sea ice by fusing data from
two different satellites. They found that the CNNs are showing
good performance for multisensor data integration. It is worth
noting that they used archived ice chart data for both training
and validation. However, these data are coarsely labeled, hence
leading to undesired effects in the training of the CNN model.
Wang et al. [10], [35], [36] exploited CNNs for ice concentration
estimation. Tom et al. [37] proposed an ice monitoring model
based on Sentinel-1 data with a deep learning approach. Boulze
et al. [38] introduced a CNN for detecting different kinds of
sea ice [39] using SAR data. They trained the CNN considering
the archived ice chart data. They performed comparison with a
random forest classifier using texture features.

SSL methods are proposed for classification when only
scarce training data or a limited number of training samples
are available. The idea of SSL relies on the assumption that
unlabeled samples provide essential information and clues on
how the data are distributed. Therefore, a DLM can be trained
by considering this distribution. In this sense, different ap-
proaches such as teacher–student models [40], graph-based
methods [41], pseudo-labeling [42], consistency regulariza-
tion [43], and generative models (i.e., generative adversarial
networks—GANs) [44] have been introduced. Shin [40] pro-
posed a multiteacher single-student method to solve the visual
attribute prediction problem. His method learnt task-specific
domain experts called teacher networks and a student network by
forcing a model to imitate the distributions learned by domain
experts. Xie et al. [45] proposed a noisy student method for

generating pseudo-labels to train a model in an iterative way.
The output of the trained model based on the labeled sam-
ples is exploited to produce pseudo-labels for the unlabeled
samples, which are subsequently used to train another model.
They used the teacher–student model to train a larger student
model by incorporating noise, considering data augmentation
(DA), dropout, and stochastic depth. Tarvainen and Valpola [46]
proposed a mean teacher method that averages model weights
instead of label predictions. Their method improves test accu-
racy and enables training with fewer labeled samples. Salimans
et al. [47] trained the semisupervised generative adversarial
network (semi-GAN) as a generative model. Kingma et al. [48]
exploited a variational autoencoder in the form of a semisu-
pervised model. In their method, a classifier is trained on top
a latent representation to predict the labels. Iscen et al. [24]
proposed a transductive label propagation model for deep SSL.
This model is trained in an iterative two-step procedure. In the
first phase, a CNN is trained using the labeled part of the dataset
in a supervised manner. In the second phase, based on a manifold
assumption in the feature space of the CNN, pseudo-labels are
produced for the unlabeled data through a label propagation
procedure using a nearest neighbor graph. The pseudo-labels
are considered to extend the set of labeled samples in the second
stage to train the CNN model. Berthelot et al. [49] used an
augmentation technique to introduce an SSL approach. They
assumed that the distribution of a classifier should remain the
same considering unlabeled data. They used average prediction
to produce pseudo-labels for the unlabeled samples.

C. SSL Methods for Sea Ice Classification

The aforesaid cases show that the development of SSL meth-
ods is a hot topic in the data analysis community. However,
it is also true that the application of SSL architectures to sea
ice classification is very limited. For example, Han et al. [50]
investigated an approach for sea ice classification based on active
learning (AL) and SSL. They acquired the most informative
data examples considering AL. They exploited these informative
examples in training the SSL method. Staccone [51] introduced
an SSL approach based on GANs for sea ice classification. In
this work, both labeled and unlabeled data were considered to
achieve more accurate results by exploiting the knowledge from
both data sources. Li et al. [52] presented an SSL method for
ice and water classification based on self-training. Their method
combined a contextual model and the self-training approach into
a unified framework.

Our proposed method falls into the subcategory of SSL meth-
ods. We propose a teacher–student model considering the feature
space using the label propagation method, which is summarized
in the following section.

III. TEACHER–STUDENT-BASED LABEL PROPAGATION

METHOD

As mentioned above, labeled sea ice samples are difficult to
acquire, making the training of sea ice classification architec-
tures a difficult task. Therefore, we explore a novel TSLP-SSL
method for this application. We adequately utilize a limited
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number of labeled samples and a comparatively much large
number of unlabeled samples to train a deep CNN architecture
for extracting sea ice information. Our proposed TSLP-SSL
method consists of a teacher model and a student model, which
are cooperatively trained in an iterative way during two training
stages. Our method is different from the teacher–student models
presented in [45] and [46] in two major aspects. First, in our case,
features generated by the trained teacher model are extracted
before the final classification layer and used in the label propaga-
tion process to produce pseudo-labels for the unlabeled samples
using a k-nearest neighbor approach. Hence, label propagation
is performed in feature space, and not in output label space.
Second, the pseudo-labels from the teacher model are exploited,
together with the original labels, to train the student model in
order to find an optimal decision boundary during a second
iterative training stage. Our proposed method is also different
from the deep SSL model in [24] in the way it aims to avoid
the model to be biased toward the labeled data. In fact, the
method in [24] is based on a single model, which is trained
on only the labeled data, making it susceptible to be biased
toward these data samples. The biasing problem may be even
more significant in the sea ice classification task, considering
the small amount of labeled data and noting the fact that texture
features are important for discriminating between different ice
types.

In our proposed method, both models are represented by a
CNN constructed of a 13-layer architecture [24]. During the
first training stage, the teacher model is trained on the labeled
data only. During the second stage, the teacher model gener-
ates pseudo-labels for the unlabeled data. These pseudo-labels,
combined with the labeled samples, are used to train the student
model. The motivation for considering an additional student
model is to handle the problem of the teacher model being biased
toward the labeled data, as discussed above [53]. To further
elaborate on this issue, the teacher model formulates a decision
boundary considering a small set of labeled data. However,
this decision boundary may not be the best boundary when
also considering the unlabeled data during the second stage,
especially if the teacher model gets overfitted to the labeled data
because of the limited number of samples [54]. The idea is that
the student model should discover a more appropriate decision
boundary, as illustrated in Fig. 2. Fig. 2 displays a simplified
case, in which the triangles represent samples from one arbitrary
class and the circles show samples from another class. Hence,
the red and blue symbols represent labeled data from the two
classes, respectively, and the black symbols represent unlabeled
data from both classes. Since the teacher model is trained using
labeled data only, the decision boundary shown as a blue solid
line in Fig. 2 could be a solution. A better decision boundary
is discovered by repeatedly training the student model from
scratch with both pseudo-labeled and labeled data. In this way,
the student model would end up with the decision boundary
defined by the green-dashed line, which properly separates both
the labeled and unlabeled data from both the two classes. It is
worth noting that this example shows the advantage of using
label propagation based on nearest neighbors instead of using
the network output as pseudo-labels.

Fig. 2. Complexity of tuning the teacher decision boundary to also take into
account the unlabeled data. We show two-class labeled data with red triangles
and blue circles. The black markers represent the unlabeled data.

During the second stage of our training, the teacher model
generates predictions for the entire dataset. The feature space
embedding is subsequently used to construct a nearest neigh-
bor graph and an adjacency matrix, from which we assign
pseudo-labels to the unlabeled samples in a transductive label
propagation procedure [24].

A. Formulation for the Learning Process

To clearly provide the details of the process of label prop-
agation for our teacher model, we present the affiliated nota-
tions in this section. In this, we will largely follow the outline
in [24]. We consider a set of n samples denoted by X :=
(x1, . . ., xs, xs+1, . . ., xn) with xi ∈ X , where s samples xi for
i ∈ S := {1, . . ., s}, represented by XS , are labeled according
to YS := (y1, . . ., ys). Each element in YS is yi ∈ G, where
G := {1, . . ., g} is a discrete label set of g classes. The rest of the
e := n− s samples xi for i ∈ E := {s+ 1, . . ., n}, represented
by XE , are unlabeled. We consider all samples in X and labels
in YS to train the CNN to assign class labels to the previously
unseen samples. The CNN takes an input sample xi from X
and builds a vector of class probabilities fΛ(xi), fΛ : X → Rg,
where Λ represents the hyperparameters of our deep model.
In this process, the feature extraction stage is represented by
the function ΩΛ : X → Rd, which maps the input data to a d-
dimensional feature vector, where the ith sample is represented
by di := ΩΛ(xi). In the next stage, a vector of class probabilities
is built by the softmax on top of the fully connected layer
considering ΩΛ. The prediction of the CNN for the ith sample
is the class of the highest probability, i.e.,

ŷi = argmaxjfΛ(xi)j (1)

where j is the jth dimension of the vector. In supervised learning,
the loss function in (2) is minimized to train the CNN

ξsup(XS , YS ; Λ) =
s∑

i=1

εsup(fΛ(xi), yi). (2)
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Equation (2) applies only to the labeled samples, i.e., xi ∈
XS . In fact, (2) shows one term of the loss function in SSL.
In classification problems, the cross-entropy loss function is
generally used for εsup, which for a given sample xi is defined
as

εsup(fΛ(xi), yi) = −
g∑

k=1

y′k log (fΛ(xi))k (3)

where y′k is the kth component of the one-hot encoding of
yi ∈ G. Pseudo-labeling finds a pseudo-label ŷi for each sample
xi for i ∈ E. The pseudo-labels for unlabeled samples in XE

are represented by ŶE = {ŷs+1, . . ., ŷn}, and they form an
additional loss term formulated as

ξpseu(XE , ŶE ; Λ) =
n∑

i=s+1

εpseu(fΛ(xi), ŷi). (4)

B. Pseudo-Label Generation and Learning Process

In our method, the CNN is represented by the param-
eters Λ, and we formulate the descriptor set as D :=
(d1, . . ., ds, ds+1, . . ., dn), where di := ΩΛ(xi). We build a
sparse affinity matrix Δ ∈ Rn×n, where its elements are rep-
resented by

νij =

{
[dTi , dj ]

γ
+, if i �= j ∧ di ∈ Nk(dj)
0, otherwise

(5)

where Nk represents the set of k-nearest neighbors in X ,
and γ is a hyperparameter. It is worth noticing that building
the sparse affinity matrix is computationally efficient even if we
have a very large number of samples. We then build a symmet-
ric adjacency matrix Θ = Δ+ΔT such that Θ ∈ Rn×n. The
diagonal of the matrix Θ consists of zeroes. The rest of the
elements of Θ are nonnegative pairwise similarities between di
and dj for i = 1, 2, . . . , n and j = 1, 2, . . . , n. We formulate the
symmetrically normalized counterpart of Θ as

Ξ = Γ− 1
2ΘΓ− 1

2 (6)

where Γ = (Θ1n) is the degree matrix and 1n is an n-
dimensional vector with all elements set to 1. We formulate a
label matrix Y of size n× g consisting of the elements

Yij =

{
1, if i ∈ S ∧ yi = j
0, otherwise

. (7)

The rows of the matrix Y represent one-hot encoded labels
for the labeled samples. Subsequently, the diffusion amounts to
formulating an n× g matrix ψ such that

ψ = (I − αΞ)−1Y (8)

where α ∈ [0, 1) is a parameter. The elements of ψ are repre-
sented by δij . In fact, calculating matrix ψ, according to (8), is
impractical for large n because the inverse matrix (I − αΞ)−1

is not sparse. Therefore, we use the conjugate gradient method
to solve the linear system

(I − αΞ)ψ = Y. (9)

Equation (9) is fast and valid since the matrix (I − αΞ) is pos-
itive definite. We find the pseudo-labels ŶE = {ŷs+1, . . ., ŷn}

for unlabeled samples as

ŷi = argmaxjδij (10)

where δij is the (i, j)th element of matrix ψ. It is worth noting
that finding pseudo-labels from matrix ψ in this way has some
unwanted causes. For example, we assign pseudo-labels to all
unlabeled samples; however, we are clearly not confident about
the same certainty for all generated pseudo-labels. Moreover,
pseudo-labels may not represent the same number of samples
for each class, which will affect the performance of the learning
process. To handle the former problem, we affiliate a weight
representing the certainty of the prediction to each pseudo-label.
For this purpose, we consider the entropy Υ to compute the
level of uncertainty and provide a weight ωi to sample xi
formulated as

ωi = 1− Υ(δ̂i)

log(g)
(11)

where Υ : Rg → R is the entropy function, and the weight ωi

is normalized in [0, 1] because log(g) is the maximum possi-
ble entropy in Rg [when all datapoints are equally distributed
to the clusters, the maximum entropy for g classes is H =
−∑g

c=1 1/glog(1/g) = log(g)]. δ̂i is a g-dimensional vector of
the ith rowwise normalized counterpart of δi with components
formulated as

δ̂ij =
δij∑
k δik

. (12)

To cope with the issue of the situation when we have different
number of samples for each class, we provide weight υj to class
j that is inversely related to class size, formulated as

υj = (|Sj |+ |Ej |)−1 (13)

where |Sj | is the number of labeled samples and |Ej | is the
number of pseudo-labeled samples in class j. To this end, we
formulated per-sample and per-class weights. We relate the
weighted loss to the labeled and pseudo-labeled samples as
follows:

ξw(X,YS , ŶE ; Λ) =
s∑

i=1

υyi
εsup(fΛ(xi), yi)

+

n∑

i=s+1

ωiυŷi
εpseu(fΛ(xi), ŷi). (14)

In fact, (14) is the sum of weighted versions of ξsup and ξpseu

in (2) and (4), respectively. Iscen et al. [24] used one CNN
model to produce the pseudo-labels and then used these labels
to train the same model. On the contrary of this approach, we
are using two CNN models in the form of a teacher model and a
student model. The teacher model generates the pseudo-labels,
which are combined with the labeled samples to train the student
model. Therefore, the trained student model is not biased toward
the labeled data. To this end, the student and teacher models are
trained in parallel, according to (14), in which ŷi in the student
model comes from the teacher model.

In summary, considering the nearest neighbor graph defini-
tion in the form of affinity matrix, label propagation, sample
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TABLE I
DIFFERENT WATER AND ICE CLASSES

and class weights, and label and pseudo-label loss terms, our
semisupervised method follows a repetitive procedure. Initially,
we randomly initialize all the parameters. We then train the
teacher model using the s labeled samples in XS , considering
the supervised loss term. We use the trained teacher model to
extract descriptors D for the complete training set X . We then
find the k-nearest neighbors of all samples to build the adjacency
matrix Θ and carry out label propagation by computing (9). We
then assign pseudo-labels to the unlabeled samples in XE by
considering (10). Subsequently, we train both the teacher and
student models for one epoch on the complete training set X
using the weighted loss function in (14). This process is repeated
for T ′ epochs.

IV. EXPERIMENTAL ANALYSIS

A. SAR-Based Sea Ice Dataset

We have trained our proposed method considering 31
Sentinel-1 images. The images are acquired from the North of
Svalbard with 40 m × 40 m pixel resolution. They are prepro-
cessed using the ESA SNAP software by applying thermal noise
removal, calibration using the σ0 lookup table, and multilooking
using a 3 × 3 boxcar filter. After converting the intensity images
to dB values, they are clipped and scaled linearly in the range
[0, 1] considering individual channels. The range in dB for
horizontal–horizontal (HH) polarization and HV polarization
are [min: −30, max: 0] and [min: −35, max: −5], respectively.

To create a suitable dataset for sea ice classification, we used
labeled polygons generated from 31 Sentinel-1 EW scenes from
the North of Svalbard. These polygons were carefully labeled
manually according to coregistered optical images with as small
as possible time gaps. We used these images for training our
proposed method. More details can be found in [39]. The dataset
consists of five classes, as shown in Table I.

Nonetheless, to perform sea ice classification and create a
proper dataset [55] for deep learning, we extracted patches
with size equal to 32 × 32 pixels, corresponding to a spatial
resolution of 1280 m2, from inside the polygons, with a stride
of 10 pixels. This dataset can be accessed from the link [55].
It is worth mentioning that we analyzed the effect of different
patch sizes in a previous work [9]. We found that the validation
results got better by increasing the patch size. However, this
improvement comes at the cost of a lower spatial resolution as
larger patches cover wider areas of the surface. For instance,
a larger patch will be classified as water if the majority of the
pixels represent water. This would become a significant issue at
ice edges as classification based on larger patches would lead
to coarser or nonsmooth edges. Therefore, there is a tradeoff

between accuracy and resolution. To compensate for this, in
our proposed work, we consider a patch size equal to 32 × 32
pixels. We extracted two channel patches consisting of HH
and HV intensities. It is also worth mentioning that we also
analyzed the effect of different channel composition (HH, HV,
and incidence angle) in our previous work [9]. We found that
adding the HV channel to the HH gives large improvement.
However, the improvement resulting from also adding the in-
cidence angle is quite small. In the current work, we do not
include the incidence angle as this also enables more proper
comparison with other SSL methods [48], [49]. These reference
SSL methods largely apply different DA techniques, and the
inclusion of the incidence angle is not feasible because of the
DA techniques. Therefore, the patches in our work consist of
only HH and HV intensities to maintain consistency. In Table I,
we provide ice type codes, following the definitions of the World
Meteorological Organization [56] and a brief description of each
class. We consider binary sea ice classification. The first class,
namely, the water class, consists of open water and leads with
water, and the various ice types are grouped together as the ice
class. The total number of patches for water is 9317, and for
ice, it is 5433. We provided the dataset online [55]. For now, we
are interested in analyzing the performance of DNNs for binary
classification. Our consideration based on our experience with
sea ice classification is that if DNNs can perform well in the
binary classification case, they may also classify multiple sea
ice types properly.

For validation, we consider some other Sentinel-1 scenes
provided by the Norwegian Meteorological Institute [57] from
the Danmarkshavn area on the Northeastern coast of Greenland
and extract 1516 water patches and 1324 ice patches, mostly
from challenging areas. In the first experiment, we consider
the training dataset from the North of Svalbard and split it into
labeled XS and unlabeled XE samples. In the next experiment,
to show the capability of the proposed method in classifying real
unlabeled data, we consider 5000 random patches picked from
the Norwegian Meteorological Institute dataset as the unlabeled
dataset XE and use all samples in the training set as the labeled
dataset XS . We insert a different number of labeled datasets
for each class, i.e., 15, 30, 60, 100, 500, and 1000. For the
inference results, we apply SAR images from the Norwegian
Meteorological Institute dataset [57], which were collected in
2018.

B. Our Model Configurations

We exploit the same network models for the teacher and
student models. Similar to [24], we use the network architecture
defined in [46] and shown in Table II. We trained the teacher
model for 100 epochs in the first training step. In the second
step, we trained the teacher model for 200 epochs based on
the label propagation to produce pseudo-labels. These labels
are then exploited to train the student model concurrently. The
learning rate for the teacher model is 0.0008 for the first step
and 0.0001 for the second step. The learning rate for the student
model during the second step is 0.002. For DA, we used only
rotation in both steps to keep the same physical meaning of all
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TABLE II
BASE CNN ARCHITECTURE

TABLE III
VALIDATION ACCURACY FOR DIFFERENT AMOUNT OF LABELED DATA AND

UNLABELED DATA FROM THE TRAINING DATASET

the channels of the SAR data and considered the same values for
the hyperparameters as used in the previous studies [24], [58]
in all experiments. We run the experiments on a single NVIDIA
Quadro RTX 5000 with 16-GB memory. The code is available.1

C. Results and Discussion

We trained our models with a distinct number of labeled data
to assess the performance of our proposed method in comparison
with four reference methods. For this purpose, we consider both
a supervised CNN model and three semisupervised methods,
namely, semi-GANs [47], MixMatch [49], and label propaga-
tion model (LP-SSL) [24]. In the supervised CNN model, we
consider the same CNN architecture that we use for both our
teacher and student models. We present the validation results in
Table III in terms of accuracy for both our proposed TSLP-SSL
method and the reference methods. In the first experiment, we
use our training data and split it into labeled, i.e., XS , YS , and
unlabeled datasets, (XE . For the validation, we use the validation
data that were mentioned previously (see Section IV-A). As can
be seen in Table III, our proposed method outperforms the fully
supervised CNN architecture considering 15, 30, 40, 60, and
100 labeled samples. Similarly, our method also outperforms the
semisupervised methods semi-GANs [47], MixMatch [49], and
LP-SSL [24] considering different number of labeled datasets
except in case of 500 labeled samples. For comprehensive
analysis, we also consider other performance metrics, namely,
average precision, average recall, and average F1-score, for both
the classes: water and ice. We present the results in Table IV. As

1https://github.com/sakh251/TSLP-SSL

can be seen, we also outperform in most cases considering both
the supervised and semisupervised methods. In fact, our method
learns more information from the unlabeled data, especially
when a very limited number of samples are available. In fact,
the student model in our approach has the potential to remedy
the problem of overfitting of the teacher model when only few
samples are available, and it presents comparable validation
accuracy when considering 500 and 1000 labeled datasets.
However, when the number of labeled datasets increases, the
amount of information extracted from the unlabeled data does
not significantly improve the results. It is worth noticing that the
good samples of the labeled data can significantly impact the
results in the second step. This can be seen when comparing the
results of using 15 and 30 labeled samples in Tables III and IV.

In fact, our proposed method can learn from the unlabeled
data and, thus, improves its performance. It even achieves better
validation accuracy than the supervised and LP-SSL models
considering 15, 30, 40, 60, and 100 labeled samples. In order to
explain the behavior of our method considering 500 and 1000
labeled samples, we compute the accuracy of the pseudo-labels
from the teacher model during the second step of the training
process. This can be done since the ground-truth labels of
the unlabeled data can be extracted from the training dataset.
We consider the comparison of our proposed method with the
fully supervised CNN architecture. When both the methods are
trained on 500 and 1000 labeled datasets, the accuracy on the
pseudo-labels reaches more than 99%, but at the same time, the
validation accuracy does not increase, as shown in Table III.
This means that there is no more information in the unlabeled
data to further improve the validation accuracy considering this
particular dataset. We investigate this by training the supervised
model with all the data in the training dataset, and it reached a
validation accuracy of 91.57%.

We also investigated the inference results on a single-image
SAR scene from Danmarkshavn considering 30, 60, and 100
labeled datasets in our proposed TSLP-SSL model. The results
of this experiment are reported in Fig. 3, where the first row
shows results using the supervised model and the second row
shows results using our proposed method. Blue color indicates
the water and white color indicates the ice class. As can be seen,
our method presents improvement compared to the supervised
model, especially in the noisy areas.

D. Feature Separability of Our Proposed Method

Furthermore, we illustrate the capability of the label propaga-
tion step that we use to generate the pseudo-labels for training
the student model. In fact, label propagation is characterized by
consolidated feature separability, which helps generate mean-
ingful pseudo-labels for training the student model. To explain
this visually, we extract the feature vector output from the last
convolution layer. The dimension of the feature vectors is 128.
We transform the feature vectors into three components based
on the principal component analysis (PCA), considering both
labeled and unlabeled data, to visually understand the feature
space. These components are shown in Fig. 4. Fig. 4(a) and (c)
shows the feature space when training the teacher model in the
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TABLE IV
AVERAGE OF PRECISION, RECALL, AND F1-SCORE FOR DIFFERENT AMOUNT OF LABELED DATA AND UNLABELED DATA FROM THE TRAINING DATASET

Fig. 3. Inference results. We present qualitative results of a single input image. The first row depicts the results considering supervised deep learning, and the
second row depicts the results using our proposed TSLP-SSL model.

Fig. 4. Three PCA components’ visualization of extracted features (flattened vector after convolution layers with 128 values) from labeled and unlabeled data.
The yellow color represents water and the purple color represents ice. (a) and (c) show the supervised feature space from first step with 60 and 1000 labeled data,
respectively. (b) and (d) show the best feature space of second step with 60 and 1000 labeled data, respectively.
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Fig. 5. Inference results. The first column shows input images, the second column shows the results obtained with supervised deep learning, and the third row
shows results obtained with our TSLP-SSL model, which is trained by also taking into account unlabeled data from other images.

first step considering 60 and 1000 labeled samples, respectively.
Fig. 4(b) and (d) shows the feature space representation after
label propagation is applied in the second step. The yellow
circles represent water and the purple circles represent the ice
class. As can be seen, label propagation leads to more separable
classes in the feature space, especially when 1000 labeled sam-
ples are considered. Therefore, through label propagation, the
unlabeled data help to build a more class-separable feature space
and generate more meaningful and informative pseudo-labels to
train the student model.

E. Extended Unlabeled Data

To elaborate a bit more on the capability of our proposed
method, we conduct another experiment. We evaluate the vali-
dation accuracy of the proposed method by considering 1000
data samples from the training dataset as labeled data (i.e.,
considering it as an element of XS) and adding unlabeled data

TABLE V
VALIDATION ACCURACY, AVERAGE PRECISION, AVERAGE RECALL, AND

AVERAGE F1-SCORE CONSIDERING ADDITIONAL REAL UNLABELED DATA

not contained in the training dataset. For this purpose, we extract
5000 random patches from the Danmarkshavn data and add to
the training process in the second stepXE . We present the perfor-
mance of all the methods in Table V in terms of accuracy, average
precision, average recall, and average F1-scores. As can be
seen, our method performs better than the fully supervised CNN
method and three semisupervised methods: semi-GANs [47],
MixMatch [49], and LP-SSL [24]. These results demonstrate
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that our proposed method can extract and use relevant infor-
mation from real unlabeled data and learn new information
from unseen and unlabeled data. This is a useful and powerful
capability that can be beneficial in sea ice classification, where
the amount of available training data is limited.

We also present inference results using four different images
from the Danmarkshavn data considering the student model
trained on 1000 labeled datasets and extended with unlabeled
data. In Fig. 5, the left column depicts the original SAR images,
the middle column presents the inference results obtained with
the supervised learning model, and the last column shows the
results obtained with our proposed TSLP-SSL method. Water
is highlighted in blue color and ice is highlighted in white
color. These inference results again show the capability of our
proposed semisupervised method in using the information of
unlabeled data.

V. CONCLUSION

In this article, we proposed a teacher–student-based label
propagation method for sea ice classification. The teacher model
and the student model were trained in an iterative way during
the training stage. The teacher model produced features that
were extracted before the final classification layer. These fea-
tures were used during the label propagation process. Consid-
ering the unlabeled data, the labels were propagated to produce
pseudo-labels. Subsequently, the pseudo-labels from the teacher
models were fed to the student model during the training to find
an unbiased decision boundary. Our method outperformed the
supervised CNN and the semisupervised LP-SSL models. We
presented both qualitative and quantitative results for our pro-
posed method and the reference methods. Our proposed method
outperformed both the reference methods. Our proposed method
considered a very limited number of labeled samples starting
from 15 samples and unlabeled samples to train the models
efficiently. In fact, our proposed method was characterized by
the ability to learn useful information from both labeled and
unlabeled data. Our method reduced the dependence on labeled
samples, which is very time consuming and costly to collect
for sea ice analysis. Therefore, this property of our method
makes it a good fit for the community of sea ice analysis,
where limited labeled data are available. We have also shown
that by adding more unlabeled samples, the performance of the
inference results has improved. Considering the semisupervised
aspect, our method can be extended to other problem areas,
where a very limited number of labeled samples are available
since we coped with the biasing and dependence issues related
to the labeled samples.

The dataset we collected consists of different ice types.
However, the number of samples for each ice type is limited.
Considering the promising performance of our proposed method
for binary sea ice classification, in our future work, we would
adopt and extend our method to ice type classification.
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ABSTRACT We propose a novel and adaptive feature space distillation method (AFSD) to reduce the
communication overhead among distributed computers. The proposed method improves the Codistillation
process by supporting longer update interval rates. AFSD performs knowledge distillates across the models
infrequently and provides flexibility to the models in terms of exploring diverse variations in the training
process. We perform knowledge distillation in terms of sharing the feature space instead of output only.
Therefore, we also propose a new loss function for the Codistillation technique in AFSD. Using the feature
space leads to more efficient knowledge transfer between models with a longer update interval rates. In our
method, the models can achieve the same accuracy as Allreduce and Codistillation with fewer epochs.

INDEX TERMS Distributed deep learning, convolutional neural networks, knowledge distillation, codistil-
lation.

I. INTRODUCTION
To efficiently process big data, new deep learning based
systems have been proposed. These systems significantly
improve the overall performance when considering the big
data. Furthermore, these systems scale up the training and
inference process of deep learning techniques. To address the
need for computational resources, the training process could
be distributed across multiple computers connected by a net-
work [1], [2]. Distributed deep learning is the most widely
used approach to speed up the neural network training by
leveraging the computational resources of multiple devices
(e.g., multiple GPUs) [1]. These devices are used to accelerate
training by distributing data (data-parallel) across the devices.
Each device holds a copy of the model being trained, and the
copies are kept synchronized throughout the training process.
In one step of a typical implementation, every device com-
putes a gradient using different data samples. The gradients

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

are then averaged across all devices (e.g., via an Allreduce
operation). Subsequently, each device locally performs an
optimization step using the average gradient [1], [3], [4]. The
model parameters on every device are initialized to the same
value to keep them synchronized. Increasing the number of
devices brings more computational power. However, it also
brings a significant communication overhead to synchronize
the model parameters across all devices at every step [5], [6].

In the literature, different methods are introduced to reduce
the communication overhead. For example, quantizing or
compressing gradients before synchronizing them [7], syn-
chronizing periodically rather than on every update [8], and
only synchronizing among subsets of devices [9]. These
methods reduce the communication overhead per update but
they also impact the quality of a model or training time.
In this regards, one-step Codistillation [10] method is pro-
posed based on online distillation. The distillation process
involves training a single model to match the ensemble output
rather than the real data labels [11]. Codistillation makes use
of distillation in an online manner to accelerate training by
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transferring the improved performance of the ensemble to
each model [12]. In the codistillation technique, the update
interval for synchronizing the stored models is important,
because it can affect the communication overhead between
the machines. However, by having a longer update inter-
val, the efficiency of knowledge distillation is crucial for
knowledge sharing between models. Otherwise, the train-
ing time would increase which is against the essence of the
Codistillation process.

In this paper, we propose adaptive feature space distilla-
tion (AFSD). In our proposed method, the models perform
knowledge distillation by sharing features instead of output
as in regular Codistillation [10]. We achieve this by means
of a new loss function for the Codistillation technique, char-
acterized by reduced communication overhead. Our method
can achieve the same accuracywith longer update intervals by
considering fewer epochs. Our method performs knowledge
distillation across the models infrequently, which provides
flexibility to themodels in terms of learning diverse variations
in the data. In short, the main contribution of this paper are:
• A novel and adaptive feature space distillation method
characterized by reduced communication overhead.

• A new loss function for knowledge distillation which
shares features instead of output in the Codistillation
technique.

• We outperform the state-of-the-art methods, Allreduce
andCodistillation, by getting the same performancewith
fewer epochs.

The paper is organized as follows: related work is
discussed in Section II and background material in
Section III. We present the AFSD method in Section IV.
Section V validates the proposed method experimentally.
Section VI discuss the conclusions and future work.

II. RELATED WORK
We can categorize distributed deep learning techniques from
two perspectives [1], namely concurrency in networks and
concurrency in training. The first category can be further
divided into the two sub-categories: model parallelism and
data parallelism.

A. CONCURRENCY IN NETWORKS
In this category, we compute the output of the layers or the
whole network in concurrent mode for the forward evalua-
tion and backpropagation phases. Model parallelism divides
the work according to the neurons in each layer. Different
parts of the Deep Neural Network (DNN) are computed on
different processors in different machines [1]. For example,
Huang et al. [13] proposed an approach for training huge
DNNs that can not be stored in one GPU. With data paral-
lelism, several replicas of a neural network model are created
during training, each on a different worker (processor). The
workers process different mini-batches locally at each step
using an optimizer. For example, the replicas of the model
are synchronized (i.e., either by average gradients or parame-
ters) at every step by communicating either with a centralized

parameter server [14], [15] or decentralized using Allre-
duce [16], [17], [18]. By relaxing the synchronization restric-
tions and creating an inconsistent model, training workers can
read parameters and update gradients asynchronously [19].
Data communication in distributed deep learning can be
reduced using methods such as quantization [20], [21], [22]
or sparsification [23], [24], [25], [26], [27].

B. CONCURRENCY IN TRAINING
In this category, concurrency is used in the training stage.
Multiple instances of training processes run independently
on different machines. Concurrency is also used for ensem-
ble learning. Distributed training of ensembles is a com-
pletely parallel process, requiring no communication between
the workers [28]. Ensemble learning requires more mem-
ory and computational power in the training and inference
phases. Therefore, knowledge distillation has been used in
a two-step training to transfer knowledge of an ensemble
with several networks to a single network [12], [29], [30].
To handle the problem of two-step training, Zhang et al. [31]
investigated how an ensemble of students can learn collab-
oratively and teach each other throughout the training pro-
cess. Kim et al. [32] introduced a fusion learning method
that trains a robust classifier by integrating feature maps.
Park and Kwak [33] used feature-level ensembles for knowl-
edge distillation by transferring the ensemble knowledge
between multiple teacher networks. Although these meth-
ods can be trained in parallel, their main problem is accu-
racy when the number of epochs is not taken into account.
Codistillation [10] taken advantage of ensemble learning and
mutual learning to speed up the training. Codistillation uses
a distillation-like loss that penalizes predictions made by one
model on a batch of training samples for deviating from the
predictions made by other models on the same batch.

Our proposed method falls in the category concurrency in
training. It includes distilled knowledge between models by
directly tuning their feature space.

III. BACKGROUND
Distributed ensemble learning (DEL) addresses the problem
of communication overhead by training multiple instances
of models (weights) independently on the same dataset. The
overall prediction is the average of the predictions of all the
models. DEL requires no communication between the com-
puters [1]. However, ensemble learning increases the cost
during the validation stage since the predictions from mul-
tiple machines are averaged. Ensemble learning also causes
latency [1]. The distillation approach [12] addresses this
problem by a two-step processes. In the first step, ensem-
ble learning is performed over several machines, so-called
teachers. In the second step, a student model is trained to
mimic the teacher models. The student model is then used
during the test stage. It reduces the cost of ensemble learn-
ing by adding another phase to the training process. Using
more machines, distillation increases the training time and
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FIGURE 1. Architecture of our proposed method. The checkpoints of the models are stored on a shared storage or a prediction server after the specific
interval (N). Each model is forced to produce the same feature space as the others models for the same inputs batch.

complexity in return for a quality improvement close to a
larger teacher ensemble model [10].

However, the ensemble method with distillation remains
time consuming. In contrast, one-step Codistillation [10] is
based on online distillation and trains N copies of a model
in parallel. It starts distillation early in the training pro-
cess. In the Codistillation technique, the length of the update
interval can affect the communication overhead among the
machines. For example, the longer the update interval,
the lower is the communication overhead. In the ideal
case, the communication among different models should be
reduced with longer update intervals. Moreover, the update
interval affects the diversity between the trained models. The
distillation process in Codistillation reduces diversity by forc-
ing themodels to predict the same outputs for the same inputs.

IV. AFSD: ADAPTIVE FEATURE SPACE DISTILLATION
AFSD, the method proposed in this paper, exploits the feature
space of each model to explore more variations in the training
data instead of using the outputs of the networks to share
knowledge between the models. In fact, we tune the mod-
els to generate similar feature spaces for transferring knowl-
edge between the models. We consider feature spaces to be
similar when the distance between extracted features is the
same for the same inputs using different models. To perform
knowledge distillation more efficiently with fewer epochs,
we manipulate and tune the feature space by considering a
distillation term. Our method is based on the Codistillation
technique [10] to share knowledge between models rather
than synchronizingmodels to have the sameweights.We train
n copies of a model in parallel and start distillation early in the
training process by adding a new distillation loss term to the
loss function. In fact, we have a set of students who simulta-
neously learn during the training process to handle the classi-
fication together (Figure 1). Each model saves the checkpoint
of its weights on a shared storage after each update interval,
so each model considers the other models as teachers in a
distillation-like setup. However, each model uses the stale

version of stored models on shared storage (or a prediction
server) and performs additional forward passes with the same
input batch.

A. FORMULATION OF THE LEARNING PROCESS
We consider an input batch X = {x1, . . . xn} where xk is an
input sample and n is the size of the input batch and labels
Y = {y1, y2, . . . , yn} according to the input batch X . The
output of model i is defined by fθ i(xk ) where xk ∈ X and θi is
the parameter of model i. The extracted features from model
i are represented by Fθ i(xk ) = aik where aik are extracted
features by considering the xk sample by the model i. The
number of models is represented by m.

We propose a loss function including a distillation penalty
to force the models to produce the same feature space
(extracted features before fully connected layers (FC)). For
this purpose, the penalty term forces models to have the
same distance between extracted features when considering
the same inputs. In other words, if the distance between two
features for two samples is shorter or longer using one model,
the distance between the features for the same two samples
extracted from the other models should be similar. For this
purpose, we formulate a n × n distance matrix representing
the distance between an individual feature and all other fea-
tures. We formulate the distance matrix Ei of the model i as

Ei =


D(ai1, ai1) D(ai1, ai2) . . . D(ai1, ain)
D(ai2, ai1) D(ai2, ai2) . . . D(ai2, ain)

. . . . . . . . . . . .

D(ain, ai1) D(ain, ai2) . . . D(ain, ain)


(1)

where aik and aij are extracted features consider-
ing samples xk and xj using model i. Let D be
the distance metric and n the input batch size.
We formulate the loss function for the model i as
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FIGURE 2. Comparison between earliest epoch number that achieves the same accuracy as Allreduce considering Codistillation and our
proposed method.

follows:

loss = L(Y , fθ i(X ))+ α
1

m− 1

∑
g(Ei,Ej)

i 6= j and j ∈ 1, 2, 3, . . .m (2)

g(Ei,Ej) =
1
n
eT |Ei − Ej|e (3)

where m is the number of models on different
machines, X is the input batch, Y is the input labels,
α is the penalty coefficient and L represents the loss
between prediction and the labels. The function g
indicates the average distance between elements of
Ei and Ej considering batch size n, where e is the
column vector whose entries are all 1’s and T is
the transpose operator. The first term is the cross
entropy loss and the second term is the distillation
loss. Based on this loss function, we show our pro-
posed method in Algorithm 1.

Algorithm 1 AFSD Algorithm
1: Initialization of network parameters (θi, i ∈ 1, 2, 3,
. . . ,m)

2: Initialization of learning rate µ and penalty coefficients
α for each model

3: Repeat for the number of epochs:
4: Do in parallel for i ∈ 1, 2, 3, . . . ,m :
5: Get next batch (X,Y) by size n
6: Update θ :
θk+1i = θki + µ∇θ i(L(Y , f

k
θ i(X )) + α

1
m−1

∑
g(Ei,Ej))

i 6= j and j ∈ 1,2,3, . . .m

V. EXPERIMENTAL ANALYSIS
In our experiments, wewant to evaluate ourmethod
and show that it can address the aforementioned
problems. The evaluation is done in terms of four
research questions (RQs). RQ1: How does AFSD
cope with the impact of the update interval with-
out affecting the performance? RQ2: Does AFSD
achieve the same performance with fewer epochs
considering a longer update interval? RQ3: How
does the new distillation loss term based on the fea-
ture space affect the training process and the out-
puts of the models? RQ4: How does AFSD work
when different network architectures are trained?
We address these research questions in the subsec-
tions V-A, V-B, V-C, respectively.
Experimental Setup and Design: In our experi-

ments, we use the standard CIFAR10 dataset [34].
For comparison, we consider the Allreduce [16]
and the Codistillation [10] techniques. We con-
sider the Allreduce technique as a baseline for
comparison. For the Allreduce technique, we used
hyperparameters and the gradual warmup strategy
for changing the learning rate [16]. For evaluating
our model, we also consider different architectures,
namely ResNet20, ResNet32, and VGG16. In case
of ResNet20, we trained the network using the
Allreduce technique and we achieved a top-1 vali-
dation accuracy of 91.71% after 114 epochs. In the
Allreduce technique, the input batch is divided

84572 VOLUME 10, 2022



S. Khaleghian et al.: AFSD: Adaptive Feature Space Distillation for Distributed Deep Learning

TABLE 1. Validation accuracy and earliest epoch that achieves the same accuracy as Allreduce considering Codistillation [10] and AFSD with update
interval between 40 and 3500.

TABLE 2. Validation accuracy and earliest epoch that achieves the same accuracy as Allreduce considering Codistillation [10] and AFSD with update
interval between 4000 and 15000.

between different GPUs. However, we use the same
batch input for training the models based on AFSD.
Therefore, we feed the data twice as compared to
the Allreduce technique and we expect that AFSD
driven by linear scalability should achieve the same
accuracywith half the number of epochs.We set the
batch size such that each GPU receives 128 sam-
ples in each batch in all three methods.
In our experiments, we use two servers with

three Nvidia GPUs namely Quadro RTX 5000 with
16GB memory on each. The servers are connected
through a point-to-point 10Gb network. We use
NFS shared storage to save and restore models
checkpoints.

A. UPDATE INTERVAL (RQ1 AND RQ2)

We compare our proposed method with the
Codistillation method [10] considering different
update intervals.We consider update intervals from
50 steps to 15000 steps. To show the capability
of our proposed method, we compare the epoch
number on which each method achieves the desired
accuracy based on the Allreduce method. The com-
parison between the Codistillation method and our
proposed method is shown in Figure 2. Table 1
shows validation accuracy and earliest epoch that
achieves the same accuracy as Allreduce consider-
ing Codistillation [10] andAFSDwith update inter-
val 40 to 3500 and Table 2 shows same validation
accuracy for update interval from 4000 to 15000.
In this experiment, we record the epoch number
when a specific method reaches the same accu-
racy as Allreduce. It can be seen, when the update
interval is longer, our method achieves the desired

accuracy with much fewer epochs. Additionally,
our proposed method is driven by linear scalability
and tolerates longer update intervals considering
12000 steps. In fact, when using 9000 steps as the
update interval, we update the saved checkpoint
after 23 epochs (the batch size is 128, and we have
50000 samples in the training dataset). This shows
that our method can achieve the same accuracy and
scalability with very little communication over-
head. However, when we update the models more
often with shorter update intervals, we reduce the
diversity of the models. When we use more power-
ful distillation, information sharing does not have
the intended benefits. The comparison between
Allreduce, Codistillation, and our proposedmethod
using ResNet20 [36] is shown in Figure 3. We con-
sider update intervals equal to 5000 and 9000 steps.
We use the early stopping strategy when Codistil-
lation and AFSD achieve 91.71% or more accu-
racy. We reduce the learning rate on epochs 45 and
55 with a factor 0.1 when Codistillation and AFSD
are used. We also consider the first four epochs
as the warm-up epochs applicable to the update
interval. Otherwise, we let the networks continue
the training independently, based on the specified
update intervals. As we can see in Figure3, our
method can achieve the same accuracy with fewer
epochs compared to Allreduce and Codistillation.
Since we are using much longer update intervals,
the networks are trained more independently in a
different direction. Therefore, we can see a rise in
training loss when we transfer knowledge based on
distillation loss terms. However, the loss reduces
through the training process.
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FIGURE 3. Validation accuracy and training loss using Codistillation [10], our proposed method, and Allreduce [35]. We use the early stopping
strategy when the Codistillation achieves the same accuracy of Allreduce considering 9000 steps (a, b) and 5000 steps (c, d) update intervals.

FIGURE 4. Distillation losses based on the outputs and features considering Codistillation and our proposed method. We do not include
distillation loss based on the outputs in our method, but we measure it to compare with the Codistillation approach.

B. DISTILLATION LOSS (RQ3)

The loss function is based on two terms: cross-
entropy loss and distillation loss. The Codistilla-
tion technique uses distillation loss based on the
output of the networks. In contrast, our method
encodes distillation loss based on the feature space.
Wewant to illustrate the difference between the two

loss terms by showing how these behave during the
training process for AFSD. Figure4 shows the dis-
tillation loss considering the Codistillation method
andAFSD. It should be noted, in ourmethod, we do
not use output-based distillation, but we measure
it during the training. As we can see, in Figures4
(a) and4 (c), distillation based on outputs fluctuates
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and even increases with AFSD. The networks are
robust for classifying the extracted features even
with different outputs since we just force them to
generate the same features. This is because the
neural network models can represent the same
function in different ways with different parameter
values [37]. However, Figures4 (b) and4 (d) show
that the loss between extracted features is reduced
through the training, and we can transfer knowl-
edge between the models. Even small changes in
the features can lead to more effective distillation,
and the networks can achieve the same accuracy
with fewer epochs.

C. NETWORK ARCHITECTURES (RQ4)

In order to evaluate the generalization capability
of AFSD regardless of the use of a specific net-
work architecture, we consider other architectures
in this section. Figure5 shows the validation accu-
racy of the ResNet32 network using Codistil-
lation and AFSD for update intervals equal to
5000 and 9000 steps. For this experiment, we con-
sider 92.41% as the top-1 accuracy of Allreduce.
The Allreduce operation achieves this accuracy
after 123 epochs. We use the learning rate schedule
for this network to reduce the learning rate by a fac-
tor of 0.1 on the epoch number equal to 50 and 60.
As we can see, our method achieves this accuracy
with fewer epochs compared to the Codistillation
method.
We also explore the VGG-16 [38] model and

a 13-layer CNN [39] architecture to consider
architectures not belonging to the ResNet fami-
lies. However, considering both Codistillation and
AFSD, using these architectures, we would not
get the same accuracy with fewer epochs then
needed for the Allreduce technique. Therefore it
seems these methods can bemore effective with the
ResNet family of architectures.

D. THREATS TO VALIDITY

In our experiments, we used three GPUs on each
server. In each server we considered the Allreduce
algorithm to train a model in a synchronized man-
ner on these three GPUs. Increasing the number
of GPUs on each server could affect the results
since it would increase the number of epochs to
get the appropriate accuracy. Since this would be

FIGURE 5. Validation accuracy of the ResNet32 network using
Codistillation and our proposed method for the update intervals equal to
5000 and 9000.

same for both Codistillation and AFSD, we con-
sider them significant parameters. Experiments
with more GPUs on each server in a two-way setup
can be considered.
We considered the ResNet20, ResNet30, VGG16

and a 13-layer CNN [39] architectures in our
experiments. Deeper architectures with more
parameters could exhibit different behaviors.
Deeper architectures usually learn features at var-
ious levels of abstractions. Therefore, considering
only high-level features at the end of the network
would not be sufficient to share knowledge.We can
also observe this issue when a pure convolution
network like VGG16 is used. Hence deeper archi-
tectures with more parameters and more inter-
mediate features can be considered for future
experiments.
We consider random initialization as a diversity

enforcement regularization. However, it can violate
a specific situation when the initialized weights or
training directions are aligned together. Hence we
assume that this diversity can be accomplished by
weight randomization.

VI. CONCLUSION
In this paper, we propose AFSD, a new method
for large scale distributed deep learning. The main
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novelty of AFSD is knowledge sharing based on
the feature space of parallel models in the Codis-
tillation setup. Our method supports much longer
update intervals using a new knowledge distillation
loss function. By prolonging the update interval,
the models become more diverse and contribute
more to the training process. Additionally, the
communication overhead is significantly reduced.
We show that with only two updates through the
training process, the models can achieve linear
scalability using the feature space for sharing the
information.
In future work, we will consider our approach of

feature space sharing for scalable semi-supervised
learning. It has been shown that generating
pseudo-labels for unlabeled data using fea-
ture spaces increases the performance of deep
semi-supervised learning [40], [41]. An extension
of our method to semi-supervised learning, could
be useful to address the issue of scarce training
data, which is critical in many areas where a small
number of labeled data and a large amount of unla-
beled data are available.
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9
Conclusions and Future
Works

We explored the potential of different cnn models for sea ice classification.
The results showed that cnn architectures (such as those based on the VGG
network) typically obtain promising classification results. We assessed the
robustness of the trained cnn models when applied to sar scenes collected at
different spatial locations and times our findings were positive and show that
the models have good potential. However, we found that the additive system
noise in the sar imagery is a challenging problem in obtaining refined sea ice
maps. Additionally, we emphasized that the scarcity of reliable and balanced
sea ice training and validation datasets is a severe problem for training deep
neural network architectures.

We proposed a semi-supervised method that considered very limited labeled
samples and relatively large unlabeled samples to train the models to address
the scarce training data issue. In fact, our method in semi-supervised learning
is characterized by the ability to learn practical information from labeled and
unlabeled data. Ourmethod reduced the dependency on labeled samples which
is very time-consuming and costly to collect for sea ice analysis. However, as
mentioned before, Deep Neural Networks training is computationally intensive,
especially in semi-supervised learning where we can increase unlabeled data
to involve in the training process easier. Additionally, we found selecting the
labeled and unlabeled data can significantly affect the performance of the
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112 chapter 9 conclusions and future works

models. Specifically, unlabeled and labeled data should come from the same
classes and the same distribution. Otherwise, the methods could not be able to
extract useful information from unlabeled data to improve the model.

We proposed a new method for large-scale distributed deep learning analysis
to address computation complexity. Our method is a novel approach for knowl-
edge sharing based on the feature space of parallel models. In our method, the
communication overhead is significantly reduced and we showed that with only
a few communications through the training process, the models can achieve lin-
ear scalability. We considered our proposed distributed deep learning method
in a supervised manner. However, this method can be used to extend our
semi-supervised method for large-scale semi-supervised analysis.

9.1 Future works

In our methods, we considered patch-wise classification which degrades the
spatial resolution. To cope with this issue one direction could be considering
a pixel-wise set-up. However, the pixel-wise set-up will be driven by more
computational overhead. Therefore, transforming the current architecture to
process the input data quickly in a pixel-wise setup is necessary. For this
purpose, one direction can be accomplished by replacing the fc layers with
convolution layers based on the work of Sermanet et al. [137].

We considered a supervised version of our proposed ddl. In future work,
our adaptive feature space distillation can be used with the junction of label
propagation [135, 73] idea for scalable semi-supervised learning. The feature
space from different models based on unlabeled data can bring more informa-
tion.
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