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Abstract
Mind wandering is ubiquitous in everyday life and has a pervasive and profound impact on task-related performance. A range 
of psychological processes have been proposed to underlie these performance-related decrements, including failures of execu-
tive control, volatile information processing, and shortcomings in selective attention to critical task-relevant stimuli. Despite 
progress in the development of such theories, existing descriptive analyses have limited capacity to discriminate between 
the theories. We propose a cognitive-model based analysis that simultaneously explains self-reported mind wandering and 
task performance. We quantitatively compare six explanations of poor performance in the presence of mind wandering. The 
competing theories are distinguished by whether there is an impact on executive control and, if so, how executive control acts 
on information processing, and whether there is an impact on volatility of information processing. Across two experiments 
using the sustained attention to response task, we find quantitative evidence that mind wandering is associated with two 
latent factors. Our strongest conclusion is that executive control is impaired: increased mind wandering is associated with 
reduced ability to inhibit habitual response tendencies. Our nuanced conclusion is that executive control deficits manifest in 
reduced ability to selectively attend to the information value of rare but task-critical events.

Keywords  Mind wandering · Executive control · Selective attention · Sustained attention · Decision-making · Self-report · 
Cognitive model

Introduction

Mind wandering is ubiquitous in everyday life. Some 
estimates indicate that it occupies up to 30–50% of our 
waking hours and pervades almost all daily activities 
(e.g., Killingsworth & Gilbert 2010). Unlike many other 
cognitive activities, however, mind wandering can only be 
manipulated indirectly through conditions that are thought 
to make it more or less likely. This places the scientific 
study of mind wandering in a unique and challenging 
position: its occurrence is unpredictable and fleeting, yet 
its consequences can be substantial, such as attention lapses 

during safety critical operations. From lab-based studies, we 
know that prior to self-reported off-task thoughts relative 
to on-task thoughts, people tend to have more variable 
response times (e.g., Bastian & Sackur 2013), greater 
likelihood of missing target stimuli (e.g., Cheyne, Solman, 
Carriere & Smilek 2009) and false alarming to non-target 
stimuli (e.g., McVay & Kane 2012), as well as differential 
neural activation primarily in the default-mode network 
(Christoff, Gordon, Smallwood, Smith & Schooler 2009; 
Mittner et al. 2014; Groot et al. 2021) and the frontoparietal 
control network (Spreng, Stevens, Chamberlain, Gilmore, 
& Schacter 2010).

Of the empirically observed performance decrements 
that accompany mind wandering, the extant literature has 
emphasized a central role for behavioral variability—in par-
ticular, response time (RT) variability—as a robust behav-
ioral marker of mind wandering across different tasks (e.g., 
Boayue et al. 2021; Cheyne, Solman, Carriere & Smilek 
2009; Esterman, Noonan, Rosenberg, & Degutis 2013; 
Mittner et al. 2014). This behavioral observation is typi-
cally assumed to be the outcome of more variable cognitive 
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processing; that is, stimuli are subject to noisier internal 
evaluation processes, which generates greater behavioral 
variability from one event to the next. This is, however, 
a conclusion largely driven through descriptive analyses 
and verbal theorizing. An early exception, McVay & Kane 
(2012), used an evidence accumulation model, the Linear 
Ballistic Accumulator (LBA; Brown & Heathcote 2008), to 
explore cognitive-process explanations of the finding that 
off-task thoughts are related to more skewed response time 
(RT) distributions in the Sustained Attention to Response 
Task (SART; Hawkins, Mittner, Forstmann, & Heathcote 
2019). The SART is a go-nogo decision task with a very low 
proportion of nogo (target) stimuli. In the LBA, a decision is 
made when a linearly accumulating evidence total reaches 
a threshold amount. McVay & Kane (2012) found that trial-
to-trial variability in the accumulation rate, which increases 
RT-distribution variability and skew, was more strongly cor-
related with off-task thoughts than any other LBA parameter, 
supporting the variable-cognitive-processing hypothesis.

The SART is of interest because it highlights the exec-
utive-control processes necessary to overcome the habit of 
responding, which is induced by go trials being more com-
mon than nogo trials. Throughout, our use of executive con-
trol refers to the higher-order cognitive process that monitors 
and intervenes to ensure lower-order response patterns in a 
goal-directed task remain appropriate. Executive resource 
theories (Smallwood & Schooler 2006; Teasdale et al. 1995) 
assume mind wandering redirects a variable amount of the 
finite pool of executive resources to internally focused cog-
nition, reducing performance and increasing variability in 
tasks such as the SART that rely on these resources. Execu-
tive failure theories (McVay & Kane 2010, 2012; Smallwood 
2010) propose that proactive-control processes, which main-
tain focus on goal-directed thoughts and behaviors necessary 
for tasks like the SART, can sometimes fail due to mind 
wandering, causing goal neglect (Duncan, Emslie, Williams, 
Johnson, & Freer 1996) that again decreases performance 
and increases variability in responding. Mittner et al. (2014) 
also used evidence-accumulation modeling to investigate 
mind wandering in the stop-signal task, which like the SART 
requires executive control on rarely occurring trials where a 
signal presented after the choice stimulus requires a choice 
response to be withheld. Like the LBA, their racing-diffu-
sion model assumes a race-to-threshold among evidence-
accumulation processes, but instead of varying trial-to-trial, 
rates vary from moment-to-moment during accumulation. 
They found that the occurrence of off-task thoughts, both as 
measured by self-report and predicted with the aid of physi-
ological measures, were associated with decreased mean 
rates of accumulation and decreased evidence thresholds.

Cognitive-model based analyses are attractive because 
they promise to directly identify the association between 
mind wandering and characteristics of psychological 

processes, something that can be ambiguous when looking 
at behavioral data alone. For example, there is a pervasive 
positive correlation between the mean and variability of RT 
(Wagenmakers & Brown 2007), and both can be simulta-
neously affected by different cognitive-model parameters 
(e.g., increases in both accumulation rate means and vari-
ability lead to greater RT mean and variability). However, 
recent research has revealed problems with applying stand-
ard evidence-accumulation models like the LBA and racing 
diffusion to both the stop-signal task (Matzke, Logan, & 
Heathcote 2020) and the SART (Hawkins, Mittner, Forst-
mann, & Heathcote 2019). Here we use the newly proposed 
Timed Racing Diffusion Model (TRDM), which has been 
shown to provide a sound description of SART performance 
in the presence of mind wandering (see Hawkins & Heath-
cote 2021) to investigate the relationship between process-
ing variability and other aspects of cognitive processing and 
self-reported mind wandering.

The TRDM proposes that decision-making is driven by 
three racing diffusion processes: a traditional evidence pro-
cess consisting of two accumulators that evaluates stimulus 
identity (i.e., go vs. nogo), and a timing accumulator that 
tracks the passage of time throughout a decision. A response 
is withheld if the nogo accumulator wins the race (i.e., a 
nogo stimulus is identified), and otherwise a go response is 
made, either because the go accumulator wins or because the 
timing accumulator wins. The timing accumulator represents 
the amount of time one is willing to commit to collecting 
evidence. In the standard TRDM, if that time is exceeded 
a response is guessed, and given that a go response is most 
often appropriate in the SART we assume that guesses are 
biased toward always making a go response.1 The timing 
component is necessary to account for the unusual form of 
RT distributions that occur in the SART, which cannot be 
accommodated by traditional evidence-accumulation pro-
cesses alone (see also Hawkins et al., 2019). The TRDM 
enables us to examine the relationship between mind wander-
ing and two types of variability in latent processing, in the 
evidence process or in the timing process. Throughout, we 
refer to processing volatility instead of processing variability 
to clearly distinguish between the observed data (behavioral 
variability) and its latent generator (processing variability).2

1  Hawkins & Heathcote (2021) examined both biased and unbiased 
guessing schemes and found only small differences. In the present 
case, if a response was withheld with the same (low) probability as 
a nogo stimulus occurring we would expect little difference in our 
results.
2  Hawkins & Heathcote (2021) showed strong mimicry in the effects 
of moment-to-moment and trial-to-trial evidence rate variability and 
similar performance between diffusion-based and LBA-based ver-
sions of their timing model. Hence, the volatility hypothesis that we 
test could correspond to either moment-to-moment effects, trial-to-
trial effects, or some combination of the two.
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The evidence process of the TRDM allows us to exam-
ine the roles of executive control and selective attention. 
If executive control is important, mind wandering should 
be more closely related to the rates of accumulation for 
rarely occurring nogo stimuli than for the more common 
go stimuli. This is because executive control is reflected in 
the capacity to successfully inhibit the habitual tendency 
to respond to frequently occurring non-target (go) stimuli 
when the rare target (nogo) stimulus appears. Selective 
attention is reflected in the pairing of particular responses 
to particular stimuli. For each type of stimulus—go and 
nogo—there are two evidence rates—one for each type of 
response: either matching rates (i.e., the nogo accumulator 
for nogo stimuli and the go accumulator for go stimuli) or 
mismatching rates (i.e., the go accumulator for nogo stimuli 
and the nogo accumulator for go stimuli). If mind wander-
ing reduces the ability to bring selective attention to bear 
to filter out misleading information, mismatching rates will 
increase. If instead mind wandering reduces the ability of 
selective attention to focus on relevant information, match-
ing rates will decrease. Hence, we compare the association 
of mind wandering to go-stimulus vs. nogo-stimulus rates 
to test the role of executive control, and the association of 
mind wandering to matching vs. mismatching rates to test 
the role of selective attention.

The timing process of the TRDM also affords a novel test 
of the executive control vs. processing volatility accounts. 
The rate at which time is perceived to pass also reflects 
executive control, since control is necessary to maintain a 
well-calibrated sense of time and avoid reverting to habit-
ual actions unless necessitated by a slow choice process. 
In the SART, one must calibrate the speed of their timer to 
the expected time required to process task-relevant stimu-
lus information, where a timer that runs too quickly will 
generate an abundance of premature responses. The timing 
process of the TRDM also permits a final test of processing 
volatility—in this instance, the variability with which time 
is perceived to pass.

To discriminate between the competing theories, we 
simultaneously analyze two streams of data—SART per-
formance and self-reported mind wandering—as observable 
outcomes of an integrated latent cognitive process. We pro-
pose a cognitive model for the two streams of data and struc-
turally bind the parameters of the two models. This approach 
is integrative in the sense that data from the behavioral task 
bear on parameter estimates of the self-report model and 
self-report data bear on parameter estimates of the TRDM, 
via a linking function. The ‘best’ parameter estimates are 
thus those that maximize the joint likelihood of the two 
streams of data. Such ‘joint modeling’ is increasingly com-
mon in the cognitive-neuroscience literature to link behav-
ioral and neural data (Turner, Forstmann, & Steyvers 2019), 
but its application as a means of linking multiple streams 

of behavioral data is much less common in the psychology 
literature (though see Kvam, Romeu, Turner, Vassileva, & 
Busemeyer 2021; Wall et al. 2021). The primary hypothesis 
test comes from the structural link between parameters of 
the TRDM and parameters of the self-report mind wandering 
model. To this end, we perform model comparison to iden-
tify which latent components of processing in the sustained 
attention task are most strongly associated with self-rated 
mind wandering during ongoing task performance.

Method

We develop and evaluate a model that simultaneously gen-
erates predictions for sustained attention data (choices, 
response times) and self-report mind wandering data (Lik-
ert scale ratings) in a single, coherent framework. We first 
describe the design of the experiments we consider followed 
by details of the cognitive models of each of the two types of 
data, and of the function that binds them. Data and analysis 
code are available at https://​osf.​io/​f7vyu.

Data

We re-evaluated performance in the SART. The SART’s 
very low proportion of nogo (target) stimuli induces a pat-
tern of rapid, repetitive responding with key properties 
including very fast responses, unconventionally shaped RT 
distributions, and error responses that are much faster than 
correct responses (Hawkins et al., 2019).

We analyzed two previously published SART data sets. 
We refer to these as Experiments 1 and 2 and present them 
in parallel as they had similar designs. We summarize the 
experimental designs here and refer the reader to the pri-
mary sources for complete task details; Experiment 1 was 
first reported in Hawkins et al. (2019) and Experiment 2 
was first reported in Boayue et al. (2020). Experiment 2 was 
conducted in a brain stimulation context and Experiment 1 
was conducted in a regular lab-based environment, without 
stimulation.

Each SART trial displayed a single digit, sampled from 
the digits 1–9 (Experiment 1) or 0–9 (Experiment 2). Par-
ticipants were instructed to respond (press a button on the 
keyboard; go trials) to all digits (i.e., non-targets) except to 
the target digit 3. When the target stimulus was presented, 
participants were instructed to withhold their response (i.e., 
do nothing; nogo trials). Go and nogo trials were pseudo-
randomly presented subject to the constraint that multiple 
nogo trials did not occur within a small window. In Experi-
ment 1, 19 participants completed 640 go trials and 80 
nogo trials. In Experiment 2, 192 participants completed 
1000 go trials and 24 nogo trials. Experiment 2 data had a 
very small proportion of very slow responses, which were 

https://osf.io/f7vyu
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removed from further analysis; specifically, .24% of trials 
with responses slower than 1.5s, which is exceptionally slow 
in the SART (cf. y-axes in upper row of Fig. 2). No trials 
were removed from Experiment 1 data.

Interspersed throughout the SART, participants were 
occasionally presented with ‘thought probes’. In Experi-
ment 1, thought probes asked “Where was your attention 
during the previous trials?” with responses given on a four-
point Likert scale with labels “on task” (position 1) and 
“off task” (position 4). In Experiment 2, thought probes 
asked “To what extent have you experienced task-unrelated 
thoughts prior to the thought probe?” with responses also 
given on a four-point Likert scale with labels “minimal” 
(position 1) and “maximal” (position 4). Thought probes 
were pseudo-randomly presented subject to the constraint 
that multiple probes did not occur within a small window. 
Participants completed 20 thought probes in Experiment 1 
and 24 thought probes in Experiment 2.

Modeling approach

Self‑report model

We assumed self-report responses to thought probes were 
generated from a Thurstonian ‘strengths’ model, also known 
as ordinal probit regression (for similar approach see Boayue 
et al. 2020). The Thurstonian model assumes the construct 
of interest is normally distributed along a latent continuum; 
in our application, the continuum represents the propensity 
to mind wander—see Fig. 1B. When probed about the focus 
of attention, the latent continuum is separated with k − 1 
thresholds or ‘cut’ points to divide it into k bins for a Likert 
scale with k possible response options. To respond to the 
thought probe, a sample is taken from the latent distribu-
tion and the bin in which the sample falls determines the 
position selected on the Likert scale. Figure 1B illustrates 
an exemplar thought probe trial where the random sample 
from the latent distribution is shown with an X, which leads 
to a response of ‘3’.

Timed racing diffusion model

We assumed choices and RTs in the SART were gener-
ated from the TRDM—see Fig. 1A. Rates for the go and 
nogo accumulator are estimated for both go stimuli ( �go|go 
and �nogo|go , respectively), and nogo stimuli ( �go|nogo and 
�nogo|nogo , respectively). Each evidence accumulator has inde-
pendent moment-to-moment normally distributed variability 
with the same standard deviation �E , which we refer to as 
volatility in processing task-relevant information. Evidence 
is independently accumulated for the go and nogo choices 
to an evidence threshold ( �E ), with the first accumulator to 
cross threshold dictating the decision (go, nogo) and the 

time of the decision (for go responses; nogo responses have 
no observed RT), given the timing process has not already 
crossed its threshold. The evidence process finishing time 
is shifted by �E representing the time required for processes 
outside of evidence accumulation, like encoding the stimulus 
and motor preparation to generate a response.

The TRDM includes a latent process measuring the pas-
sage of time, which acts in a similar manner to the analo-
gous components of processing in the evidence process. The 
speed at which time is perceived to pass is determined by the 
timing rate ( �T ). Timing information accumulates with the 
same form of moment-to-moment variability as the evidence 
process, with standard deviation �T , which we refer to as 
volatility in temporal processing. Accumulation continues 
until it crosses the timing threshold ( �T ), which represents 
the amount of time one is willing to commit to a decision. If 
the timing process crosses threshold before the go or nogo 
evidence accumulators, it halts the evidence process and 
immediately generates a go response. As with the evidence 
process, the timing process is also shifted by �T.

The TRDM as described has 11 parameters, but we 
imposed a number of constraints to simplify the model. We 
did not freely estimate the onset time or the threshold of the 
timing process, instead fixing them to constants ( �T = 0 s, 
�T = 1 ). We also set the mean evidence threshold to a fixed 
value as the scaling parameter ( �E = 1 ). Nogo responses to 
go stimuli were extremely rare, so we assumed �nogo|go = 0 
with no loss of descriptive adequacy. Together, this reduced 
the TRDM to seven parameters to estimate from data for 
each participant.

Structurally binding the TRDM and self‑report model

We structurally bound the latent propensity to mind wan-
der (Thurstonian model) to latent components of process-
ing in the SART (TRDM)—see Fig. 1C. This allowed us 
to test hypotheses about the association between individual 
participant variability in latent components of processing 
and individual participant variability in self-reported mind 
wandering. Our approach was to bind one TRDM parameter 
at a time to the mean of the Thurstonian mind wandering 
continuum, which generated six independent joint models. 
Each of the six joint models linked a different TRDM param-
eter to thought probe responses, so throughout we refer to 
each joint model by the TRDM parameter linked to probe 
responding. We did not explore a joint model that bound the 
non-decision time parameter to the latent mind wandering 
continuum as we could find no reasonable a priori hypoth-
esis for this association.

Three of the joint models investigated the association 
between executive control and mind wandering. The first 
of these bound the propensity to mind wander to the rate 
for correctly identifying target (nogo) stimuli ( �nogo|nogo ). 
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Fig. 1   Schematic overview of the joint modeling framework. See text for details. Available at  https://​tinyu​rl.​com/​2p8u9​87x under CC 
license https://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/

https://tinyurl.com/2p8u987x
https://creativecommons.org/licenses/by/4.0/
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In this model, we expected participants who had greater 
executive control were less likely to mind wander and so 
would overcome the habitual go response and selectively 
attend to rare target stimuli. In a second model, we bound 
mind-wandering propensity to the rate for incorrectly iden-
tifying target (nogo) stimuli as a non-target ( �go|nogo)—the 
mismatching rate. We expected that a larger mismatching 
rate, reflecting an inability to selectively filter out mislead-
ing information, would be associated with greater rates of 
mind wandering. The third model bound the propensity 
to mind wander to the rate of the timing process ( �T ). We 
expected that a larger (more rapid) timing rate reflects a 
poorly calibrated sense of time, making participants likely 
to revert to the habitual action of responding. Thus, we 
expected that greater timing rates would be associated 
with greater rates of mind wandering. The final model 
pertaining to TRDM rates was not related to executive 
control. Rather, it bound mind-wandering propensity to the 
rate to correctly identify non-target (go) stimuli ( �go|go ), 
which tests whether mind wandering impacts the ability 
to selectively attend to commonly occurring task-relevant 
information. We expected greater selective attention to the 
frequently occurring non-target stimuli would be associ-
ated with reduced mind wandering.

The final two joint models investigated the association 
between processing volatility and mind wandering. In 
the fifth model, we bound mind-wandering propensity to 
volatility in processing task-relevant information ( �E ). We 
expected greater volatility in evidence processing would 
be associated with greater rates of mind wandering. In 
the sixth and final model, we bound mind wandering pro-
pensity to volatility in processing time-based information 
( �T ). We expected greater volatility in temporal processing 
would be associated with greater rates of mind wandering.

We independently estimated the six joint models and 
used quantitative model comparison to determine which 
binding most parsimoniously captured trends in both 
streams of data, and therefore which hypothesis about 
the association between a latent component of processing 
and propensity to mind wander was best supported by the 
data. In all cases, we simultaneously estimated partici-
pant and group-level parameters in a hierarchical Bayesian 
framework. This approach is critical to our application: 
individual-participant parameters are essential to explain 
behavioral performance, yet some parameters of the joint 
model are only identifiable at the group level (i.e., when 
constrained to a common value across participants).

We assume presentation of a thought probe on trial j 
prompted participant i to sample a value from a latent nor-
mal distribution with mean �i and standard deviation �i , 
zij ∼ N(�i, �i) . The participant-specific mean of the normal 
distribution was determined by the ith participant’s value 
of the parameter to be linked from the TRDM, which we 

denote �i , and a scaling parameter � that was estimated 
at the group level (hence it has no subscript for partici-
pant) such that �

i
= �

i
⋅ � . We use � as generic shorthand 

to refer to the individual TRDM parameter bound to the 
thought probe response process in each of the six joint 
models. That is, �i = �i,nogo|nogo in the model that tests 
the association between mind wandering and selective 
attention to rare events, �i = �i,go|go in the model testing 
the association between mind wandering and selective 
attention to common events, and so on for the six TRDM 
parameters (models) described earlier. The mapping from 
the sampled value zij to a response on the four-point Likert 
scale on trial j, pij , was determined by the relative position 
of zij between three cut points, �1 , �2 and �3 , which were 
estimated at the group level (so again with no subscript 
for participant):

The Appendix describes all estimation details including dis-
cussion of parameter identification considerations, specifica-
tion of prior distributions, and details of the Markov-chain 
Monte-Carlo (MCMC) sampling algorithm. We quantita-
tively compared models with the Deviance Information Cri-
terion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde 
2002). DIC accounts for model flexibility both in terms of 
the number of estimated parameters (parametric complex-
ity) and the way in which those parameters interact (func-
tional-form complexity). The model with the lowest DIC is 
preferred.

Results

The joint models were developed using Experiment 1 data 
and without access to Experiment 2 data. We therefore treat 
the data from Experiment 2 as a ‘test set’ to evaluate the 
validity of the model. For this reason, and the much larger 
sample size of Experiment 2, we place more confidence in 
the model comparison outcomes of Experiment 2.

Model comparison

Across both experiments, we found strong evidence that 
self-reported mind wandering is most strongly associated 
with the executive control required to overcome habitual 
actions. Table 1 shows the DIC for the six joint models. In 
Experiment 1, according to DIC the best explanation of the 
data was that self-reported mind wandering is associated 
with reduced capacity to selectively filter out misleading 

pij =

⎧
⎪
⎨
⎪
⎩

1 if zij ≤ 𝜆1,

2 if 𝜆1 < zij ≤ 𝜆2,

3 if 𝜆2 < zij ≤ 𝜆3,

4 if zij > 𝜆3.
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information—a larger mismatching rate for non-target (go) 
responses to target (nogo) stimuli; higher �go|nogo generates 
more errors of commission. The second-best explanation of 
Experiment 1 data assumed that mind wandering is associ-
ated with weaker selective attention to rare events—a lower 
matching rate for target responses to target stimuli; higher 
�nogo|nogo generates greater rates of target detection and lower 
rates of errors of commission. The DIC difference between 
the first- and second-placed models was only eight units, 
which is generally not considered strong evidence (Pratte, 
Rouder, & Morey 2010). In contrast, in Experiment 2 there 
was strong evidence for an association between mind wan-
dering and selective attention to rare events ( �nogo|nogo ), 
which had a DIC-difference 145 units better than the sec-
ond most preferred model—selectively filtering misleading 
information ( �go|nogo ). The top two performing models relate 
to processing nogo stimuli, so when considered together they 
provide very clear evidence that executive control is required 
to overcome habitual response tendencies induced by the 
frequent non-target (go) stimuli.

The remaining four models provided a much poorer 
explanation of the data, with DIC differences at least five-
fold worse than the top two-ranked models. This includes 
theories proposed as an explanation of performance in the 
presence of mind wandering; in particular, an association 
with the volatility of processing task-relevant information 
( �E ). This speaks against the oft-stated relationship between 
processing variability and performance in the presence of 
mind wandering. We also observed weaker support for theo-
ries relating mind wandering to selective attention to com-
mon events ( �go|go ), and selective attention to and volatility 
of processing temporal information ( �T , �T).

We conclude there is very strong evidence for an associa-
tion between self-reported mind wandering and the execu-
tive control required to inhibit habitual (go) responses to 
infrequent target stimuli (i.e., strong evidence for the two 
joint models related to evidence rates for nogo stimuli). 
There is also evidence that the aspect of executive control 

most strongly affected is the ability to filter out misleading 
information ( �nogo|nogo).

Descriptive adequacy

Figure 2 shows that an explanation of self-reported mind 
wandering based on executive control and selective atten-
tion to rare events captured all key qualitative and almost 
all quantitative trends in RT, accuracy, and self-report 
thought probe data. That is, the RT, choice proportion and 
thought probe data (dots) fall within the uncertainty region 
of the posterior predictive distribution (bars) for almost all 
summary statistics. RT distributions for the group (upper 
row) were calculated via quantile averaging the individual 
participant observed and posterior predictive data. The 
model captured the key trends in the location and shape of 
the distribution. As expected, the proportion of observed 
responses for targets, which were errors of commission, was 
much lower than the proportion of observed responses for 
non-targets, which were correct identifications—a trend that 
the model replicated. Self-reported task-unrelated thoughts 
demonstrated a ‘bow’ effect in both experiments: relatively 
few reports of completely on- or off-task thoughts, with a 
peak at an intermediate level of task-related thoughts. The 
model very closely captured the quantitative effects in the 
self-report data at the group level, shown in Fig. 2, and for 
individual participants, shown in Fig. 3. This is important to 
demonstrate since this is the novel addition to the quantita-
tive modeling approach in this paper. Taken together, these 
results indicate the DIC-preferred model captured the key 
trends in the RT, choice, and thought probe data in both 
experiments.

Psychological interpretation

There were large individual differences in the proportion of 
commission errors—observed responses to target stimuli. 
For instance, in Experiment 1 the mean proportion of com-
mission errors was .55 with a range across participants of 

Table 1   Model comparison for the six joint models in Experiment 1 and 2

Columns 2 and 3 show DICs zero-referenced to the DIC-preferred model in each experiment such that positive values indicate a poorer explana-
tion of the data. Columns 4 and 5 show the posterior mean and 95% credible interval of the scaling coefficient ( � ) in each experiment

ΔDIC Scaling coefficient ( �)

Hypothesized association with self-reported mind wandering Expt. 1 Expt. 2 Expt. 1 Expt. 2

Executive control & selective attention to rare events ( �
nogo|nogo) 8 0 −.29 ( −.38, −.21) −.41 ( −.46, -.37)

Executive control & failure of selective attention to rare events ( �
go|nogo) 0 145 −.65 ( −.81, −.50) −.62 ( −.69, −.56)

Volatility of task-relevant information processing ( �
E
) 41 712 2.04 (1.57, 2.51) .59 (.44, .75)

Executive control & selective attention to temporal information ( �
T
) 26 758 −.27 ( −.53, −.04) −.35 ( −.42, −.26)

Selective attention to common events ( �
go|go) 30 767 −.64 ( −.82, −.48) −.09 ( −.12, −.06)

Volatility of temporal processing ( �
T
) 33 848 .73 (.39, 1.12) .60 (.45, .77)
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Fig. 2   Descriptive adequacy of the DIC-preferred model of self-
reported mind wandering associated with executive control and 
selective attention to rare events ( �nogo|nogo ) for Experiments 1 and 2. 
Observed data are shown with dots and 95% credible intervals of the 
posterior predictive distribution are shown with lines and bars. The 
upper row shows response times where the y-axes show the 10th , 30th , 
50th (i.e., median), 70th and 90th percentiles of the distribution for tar-
get (incorrect; blue) and non-target (correct; orange) responses. The 

middle row shows the proportion of observed responses for targets 
and non-target stimuli. The lower row shows thought probe responses 
where the x-axes show the four response options of the thought probe 
response scales and the y-axes show the proportion of times each 
probe response was given, on average.  Available at  https://​tinyu​rl.​
com/​chy47​xr8  under CC license  https://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/
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.20 to .95. The TRDM captures these between-person dif-
ferences primarily through selective attention to rare events 
such that greater nogo rates to nogo stimuli generates fewer 
commission errors. In support of this, the DIC-preferred 
model had a reliable negative correlation between the pro-
portion of commission errors observed in data and individ-
ual participant estimates of selective attention to rare events: 
Experiment 1 rs = −.829 , 95% credible interval (CI) [ −.910 , 
−.718 ] and Experiment 2 rs = −.368 , 95% CI [ −.408 , −.328].

In the DIC-preferred model, the component of process-
ing related to selective attention to rare events underlying 
much of the individual differences also scales the mean of 
the latent Thurstonian continuum. The posterior mean of the 
scaling parameter in Experiment 1 was � = −.286 , 95% CI 
[ −.379 , −.200 ] and in Experiment 2 was � = −.412 , 95% 
CI [ −.466 , −.373 ]. This indicates that executive control, 
and in particular selective attention to rare events, are also 
strongly associated with the probability of self-reporting 
task-unrelated thoughts. Indeed, there was a strong nega-
tive correlation between individual participant mean thought 
probe responses and individual participant estimates of 
selective attention to rare events: Experiment 1 rs = −.809 , 
95% CI [ −.906 , −.689 ] and Experiment 2 rs = −.912 , 95% 
CI [ −.929 , −.893].

Discussion

We have shown that a joint quantitative model of sustained 
attention and self-report data provides a fine-grained tool 
to investigate and test hypotheses about latent cognitive 
factors associated with mind wandering during ongoing 
task-focused performance. We successfully explained self-
reported task-unrelated thoughts even though the joint model 
did not include an entirely separate cognitive mechanism to 
quantitatively explain thought probe responses. Rather, the 
joint model leveraged the psychological mechanisms encap-
sulated in a cognitive process model of decision-making 
(TRDM) by structurally ‘adding on’ a response mechanism 
for thought probe responses (Thurstonian response model). 
This finding suggests that the latent components of process-
ing in a cognitive model of decision-making contain infor-
mation about the extent to which a participant is attend-
ing to their ongoing task. This association has often been 
stated in qualitative terms. However, to our knowledge, this 
is the first direct test of a quantitative link between self-
reported task-related attention and components of processing 
in a cognitive model of decision-making. While our mod-
eling approach inherits the downfalls of any correlational 
analysis, our capacity to identify which latent cognitive 
process among a set of candidate latent processes is most 
likely impaired by mind wandering considerably reduces 
the space of possible ‘unknown third variables’ that may 

mediate previously observed empirical associations with 
mind wandering.

Our strongest result is that the propensity to mind wander 
during ongoing performance is negatively associated with 
executive control in the SART. This conclusion is consistent 
with the top-two performing models. These models have 
a primary role for the decision-maker’s ability to inhibit 
the habitual tendency to respond that is induced by the fre-
quent non-target (go) stimuli. We also found support for 
a nuanced result about how executive control acts: when 
people mind wander, we see impairments in the ability to 
selectively attend to the information value of critical rare 
events (i.e., targets). In contrast, we found weaker evidence 
for a theory that associates mind wandering with volatility 
in processing task-relevant information, in both experiments. 
Our findings suggest that the previously reported empirical 
results of increased behavioral variability during episodes of 
mind wandering in the SART may stem from a less effective 
executive system rather than volatile processing. Finally, we 
observed weak evidence for an association between self-
reported mind wandering and selective attention to com-
mon events, or with selective attention to and volatility in 
processing temporal information (cf. Table 1).

Key to interpreting our modeling outcomes is under-
standing that any reasonable psychological process model 
is unlikely to have one-to-one mappings between latent psy-
chological constructs and observed behavior. In this light, 
we must acknowledge that changes in manifest variability 
do not necessarily arise from changes in psychological pro-
cess parameters that only affect latent variability (volatility). 
This is because interactions between the latent psychological 
processes mean that some parameters can simultaneously 
impact manifest central tendency and variability. In a similar 
vein, model parameters that affect response withholding can 
also impact go responding because of interactions in the 
psychological processes (i.e., winning a ‘race’ between go 
and nogo responses).

Our results highlight the strength of quantitative methods 
in elucidating competing psychological theories. We believe 
that our quantitative framework for jointly modeling multi-
ple streams of data—here, sustained attention performance 
and self-reported mind wandering—is a step forward for 
teasing apart the predictions of different theories about 
the impact of mind wandering (see also Hawkins, Mittner, 
Boekel, Heathcote, & Forstmann 2015; Hawkins, Mittner, 
Forstmann & Heathcote 2017).

Limitations

A limitation of our Thurstonian response model is the 
assumption of a latent mind wandering continuum with a 
normally distributed latent state. This assumption is con-
sistent with some theories of mind wandering, such as 
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executive resource theories (e.g., Smallwood & Schooler 
2006), though it may be inconsistent with others. For 
instance, the perceptual decoupling theory proposes that 
goal-directed activity takes place in one of two states: per-
ceptual coupling where attentional resources are directed 
to task-relevant sensory inputs, and perceptual decoupling 
where attentional resources are diverted from sensory inputs 
toward internally-focused cognition (e.g., Smallwood & 
Schooler 2015). While there is evidence the latent state 
may be continuous or categorical (e.g., Zanesco, Denkova, 
Witkin, & Jha 2020), participants may more reliably report 
their internal state using categorical reports compared to 
ordinal responses, such as Likert scales (e.g., Kane, Smeek-
ens, Meier, Welhaf, & Phillips 2021). Nevertheless, even if 
the latent state is discrete, its extent across time and noise in 
self reporting may render our continuous latent representa-
tion a reasonably good approximation. Furthermore, ordinal 
response models have provided an excellent description of 
data reported on ordinal scales, as found here (Figs. 2 and 3) 
and elsewhere (e.g., Boayue et al. 2020). We also note that 
alternative forms of the latent mind wandering state may be 
identifiable given appropriate data (e.g., Hawkins, Mittner, 
Forstmann & Heathcote 2017), and a fruitful direction for 
future research may be to directly compare such alternative 
latent forms.

A second limitation of our modeling approach is the lack 
of temporal dependence in the latent representation of the 
mind wandering state. Empirical results suggest that self-
reported mind wandering shows such temporal dependence 
throughout the course of an experimental session (e.g., 
Boayue et al. 2020; Welhaf et al. 2020; Zanesco et al. 2020; 
Zanesco 2020). The most straightforward way to address this 
problem may be to incorporate statistical time series models, 
such as autoregression or hidden Markov models, into cog-
nitive process models, such as the TRDM (e.g., Gunawan, 
Hawkins, Kohn, Tran, & Brown in press; Kucharskỳ, Tran, 
Veldkamp, Raijmakers, & Visser 2021). However, such an 
approach may not necessarily be the most fruitful to pur-
sue because it would not provide a cognitive explanation 
for changes in the frequency and depth of mind wandering 
with time on task; this would require a deeper psychological 
theory about temporal effects. We note that although we did 
not incorporate temporal dependence into our approach, the 
model still provided an excellent quantitative description 
of the data.

Implications and conclusions

A particular strength of our approach is addressing the 
inability to directly manipulate mind wandering in an 
experimental context. Mind wandering is typically assessed 
as a dependent variable in the context of a primary task 
with thought probes interspersed throughout. Despite 

measurement as a dependent variable, it has become stand-
ard in the mind-wandering literature to treat thought probes 
as an independent variable with performance in the primary 
task analyzed as a function of thought probe responses (e.g., 
Smallwood & Schooler 2006), although there is a more 
recent trend to treat thought-probe responses as outcome 
variables (e.g., Boayue et al. 2021; Filmer, Griffin, & Dux 
2019). With the standard analytic approach, we have learned 
a great deal about mind wandering, including its association 
with greater response variability and errors of commission 
(Cheyne et al., 2009). Nevertheless, an analytic approach 
that switches the role of dependent and independent vari-
ables has at least two shortcomings. First, it violates the 
assumptions of many conventional statistical analyses such 
as ANOVA, which are commonly used to analyze mind wan-
dering-related data, because the data within each cell are 
not randomly distributed; the dependent variables from the 
primary task are conditioned on whether they preceded self-
reported on- or off-task thoughts. This approach also tends 
to produce unbalanced cell sizes because self-reported mind 
wandering is rarely uniformly distributed along the thought 
probe response scale (e.g., Hawkins, Mittner, Forstmann, & 
Heathcote 2019).

Second, the standard analytic approach is theoretically 
unsatisfying because it cannot explain how or why people 
generate their mind wandering self-reports. The cognitive 
psychology literature as a whole is replete with quantitative 
process models that explain behavior in different cognitive 
domains. Yet mind wandering—another cognitive activ-
ity—has a distinct lack of proposed cognitive models. Some 
work has proposed models of mind wandering, most notably 
within the ACT-R framework (e.g., Taatgen et al. 2021; van 
Vugt, van der Velde, & ESM-MERGE Investigators 2018). 
These models are a promising step forward for the literature 
as they simultaneously generate predictions for sustained 
attention and self-report, which will lead to more integrated, 
unified explanations of cognition. However, to date, these 
existing approaches have tended to explain performance 
at the level of group averages rather than individuals, and 
they prioritize explanation of self-reported mind wandering 
at the expense of a descriptively adequate explanation of 
sustained attention. To our knowledge, ours is the first inte-
grated framework that generates descriptively adequate and 
quantitatively precise predictions for performance in a pri-
mary cognitive task and self-reported mind wandering. This 
specification enabled us to test precisely-defined theories 
about the association between self-reported mind wandering 
and task performance in the SART, finding a primary role 
for executive control and selective attention to rare events.

Our findings lend support to a ‘dynamic balance’ theory 
of mind wandering (cf. Mittner, Hawkins, Boekel, & Forst-
mann 2016). At each moment in time, people estimate the 
utility of current actions weighed against their expected 
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reward, and consider: what’s in it for me to engage with the 
task relative to expending cognitive effort elsewhere? Stay-
ing on task for long periods is costly (effortful, boring, etc.) 
and if maintaining task-related focus does not lead to posi-
tive outcomes (tangible rewards, satisfying curiosity, nov-
elty value, etc.) then off-task thoughts and mind wandering 
ought to become more attractive over time. We believe this 
hypothesized utility balancing process is a ‘meta-process’ 
in that it drives attentional and mind wandering processes. 
In this sense, our proposal does not claim that mind wan-
dering causes failures of executive function or that failures 
of executive function cause mind wandering. Rather, the 
utility-monitoring meta-process will upregulate one process 
(attentional or mind wandering) and downregulate the other 
as a function of the momentary expected reward. Similar 
utility-monitoring processes have been proposed in previ-
ous cognitive models of performance under distraction (e.g., 
Gunzelmann, Gross, Gluck, & Dinges 2009). While our 
quantitative approach does not explicitly incorporate such 
a meta-level balancing process, the work we presented here 
could be expanded to do so in future research (cf. Hawkins 
et al., 2017).

Finally, we propose that future research investigates 
whether the same latent cause is associated with mind-
wandering-related performance decrements in other experi-
mental paradigms and contexts—beyond the widely studied 
SART. In particular, we suspect additional study is needed 
to determine the extent to which our findings generalize to 
contexts in which executive control may not be critical to 
ongoing task performance.

Appendix

This Appendix provides additional specification of the joint 
models described in the main text and complete details of 
the hierarchical Bayesian parameter estimation scheme.

Compared to a TRDM for the sustained attention data 
that had seven parameters for each participant, a joint model 
of the sustained attention and self-report data added one 
participant-specific parameter ( �i ) and four group parameters 
that were freely estimated from data but constrained to a 
common value across all participants ( � , �1 , �2 and �3 ). This 
setup ensured that the model was sufficiently constrained 
to be identifiable, which is not the case if �1 , �2 and �3 were 
treated as participant-specific parameters. As described in 
the main text, we specified and independently estimated six 
joint models where each model corresponded to a different 
TRDM parameter bound to the mean of the Thurstonian nor-
mal distribution for thought probe responses (i.e., � cycled 
through �go|go , �go|nogo , �nogo|nogo , �E , �T , �T).

We estimated model parameters in a hierarchical Bayes-
ian framework using differential evolution Markov chain 

Monte Carlo (DE-MCMC) sampling with the default set-
tings unless noted otherwise (Turner, Sederberg, Brown, 
& Steyvers 2013). We took 10,000 posterior samples from 
each of 30 MCMC chains, with a burn-in period of 5000 
samples. During the first 2000 samples of the burn-in period 
we conducted a “migration” update step for participant-level 
parameters with probability .05, which helps to remove 
chains stuck in low likelihood regions of the parameter space 
(for details, see Turner et al., 2013). We thinned to every 
5th iteration for a total of 30,000 samples from the posterior 
distribution of the parameters. Convergence was monitored 
through visual inspection and the multivariate potential scale 
reduction factor ( ̂R ; Brooks & Gelman 1998).

For the TRDM, the seven individual-level parameters 
were log transformed to the real line and sampled hierar-
chically from Normally-distributed hyper distributions. The 
prior distributions for the hyper means (superscript � ) and 
standard deviations (superscript � ) were

where N(a, b) denotes the normal distribution with mean 
a and standard deviation b and Γ(c, d) denotes the Gamma 
distribution with shape c and scale d.

For the Thurstonian model, we estimated four parameters, 
which were held to the same value across all participants. 
For each of the six joint models, the prior distribution for 
the scaling parameter was � ∼ N(0, 1) . We freely estimated 
the lowest cut point on the latent Thurstonian scale as 
�1 ∼ N(0, 1) . To impose monotonicity of the cut points we 
estimated the difference between each successive threshold: 
log(�2 − �1) ∼ N(0, 1) and log(�3 − �2) ∼ N(0, 1).
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