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1 Introduction

Climate modelling is a large field of applied mathemat-
ics, and in the current global state it plays a significant
role in the future of the planet. Climate models can be
used to predict how the climate will respond to differ-
ent forcings and help aid in deciding what measures are
needed to be taken to reduce the negative effects of cli-
mate change. There are many different models that are
used to make these analyses but hiding in the depths be-
low all of it is almost always a form of energy balance.
The model analysed in this thesis was originally proposed
by Budyko [1] in 1969, and further investigated by North
[2] in 1975. The objective of this thesis was to investi-
gate what the bistability of Norths model is dependent
upon, by analysing a similar model. The analysis entails
finding stationary solutions using a boundary formula-
tion of the model, computing the bifurcation diagram as
a function of the solar irradiation constant, and assess-
ing their stability using numerical methods. The goal is
not to find a model that more accurately represents the
climate on earth, but rather investigate the behaviour of
the model under different circumstances. In Norths anal-
ysis, a constant heat diffusion coefficient was used on the
entire globe. However, by allowing different regions of
the line to have different heat diffusion coefficients, more
complicated behaviour is allowed to occur. Two cases
were investigated, the first assumes constant heat diffu-
sion on the entire line, which is what North did. This case
gave a bistability with an unstable solution in between,
which is similar to what North found. In the second case
the heat diffusion coefficient was allowed to change on
the line, which lead to much more intricate behaviour. It
gave rise to spontaneous symmetry breaking, a possibil-
ity of having infinitely many solutions for a specific value
of input radiation, and a similar bistability to the case
with constant heat diffusion in certain conditions.

2 Model

The model used in the analysis is similar to that of North,
with the key distinction that it is considered on the un-
bounded real axis, contrary to only on a half sphere. This
means that the variable that described the sine of the
latitude x in Norths model now simply describes the po-
sition in units of earth radii. The energy input on the
line is a function S(x), with a few restrictions. S(x) is
symmetric around x = 0, it has its only local maximum
at x = 0, and it’s integral over the real line is finite. Now
this function determines both the total energy input on
the line, and how it’s distributed on different points on
the line. In the model it is multiplied with the solar ir-
radiation constant Q and a term involving the albedo of
earth, (1− a), determining the rate of radiation absorp-
tion. The solar radiation constant is constant, while the
albedo is allowed to change on the line, modelling how
different surfaces reflect sunlight differently. For exam-
ple, ice and snow reflects radiation differently to water

and land does, this is modelled by

a(T ) =


a0, T < −10◦C, no continent at x

a1, T > −10◦C, no continent at x

a0, T < 0◦C, continent at x

a1, T > 0◦C, continent at x

(1)

With a0 = 0.6 and a1 = 0.38. This function introduces
the concept of continents, which is an extension of the
North model. What continents allow is to change the
melting-point of snow/ice and the heat diffusion coeffi-
cient over different regions of the line. This is to model
the fact that water on land is generally freshwater, which
melts at 0 degrees Celsius, while seawater is a mixture of
salt and water and thus has a much lower freezing point,
here -10 degrees Celsius. And also to model how diffu-
sive heat transport works differently over land than it
does over the sea.

The earth will also radiate energy based on its tem-
perature due to blackbody radiation. This is usually a
highly nonlinear term (T 4), but like Budyko did, this
can be modelled within reasonable errors by the empiri-
cal formula

I = A+BT (2)

Where I is the outgoing radiation due to blackbody ra-
diation, A = 192.2 W

m2 and B = 3.85 W
◦Cm2 . This is a

linearization of how the surface temperature affect the
blackbody radiation of earth. It is important to note
that the radiation is not determined by the temperature
at the surface, but rather the temperature high up in
the atmosphere. This model does assume that there is a
linear dependence between the surface temperature and
the temperature high in the atmosphere that determines
the outgoing radiation. The linearization is in powers of
◦C/273, which makes the error of linearization accept-
able for the temperatures of interest in the model. In
Norths analysis it was found to have an error of less 1%
in the temperatures of interest in the modelling[2]. Com-
bining this with the assumed diffusive heat transport, the
model takes the form of a non-linear partial differential
equation.

C∂tT − ∂xK(x)∂xT +BT = QS(x)(1− a(T ))−A (3)

Where C = 13.2 sW
◦Cm2 , Q has units W

m2 and is left as

variable in the model, and K(x) has units of W
◦C . In

the model, the K(x) parameter has already absorbed the
spatial scaling, leaving the variable x with units of earth
radii. The function is modelled as a step function, having
distinct constant values in regions with a continent and
regions without.

K(x) =

{
Kw, no continent at x

Kl, continent at x
(4)

Where Kw = 0.38W
◦C and Kl = 1.89W

◦C .
The C parameter contains the time-scale of the

model, and its value is chosen such that the variable t
in the model has units of half-years based upon empiri-
cal measurements of how long the climate takes to react
to a perturbation of its stable case[3]. However, it’s value
is not significant in this analysis, as the main goal is to
investigate the bistability of the model, not its real-world
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accuracy. The parameters Kw and Kl are chosen to be
close to what North found in his analysis. The key differ-
ence is that North had a singular heat diffusion coefficient
on the entire globe, while here it is allowed to change.
Kl > Kw means that it is assumed that heat dissipates
more rapidly over continents than it will over the sea.
This assumption might not hold in the real-world, as it
is suspected that the main action causing heat diffusion
over the globe is wind. And wind speeds are generally
higher over areas covered in water or ice than it is over
continental areas where it is usually slowed down by veg-
etation and mountains. The reason it was still decided
to keep Kl higher than Kw was that it highlights incred-
ibly interesting behaviour of the model, and that aligns
much better with the goal of this analysis than attempt-
ing to get an accurate climate model of the earth would.
A more detailed derivation of the model can be found in
appendix A.

The model in question here is a non-linear partial
differential equation, with the exception being the case
where the critical melting temperature is never crossed,
which would make a(T ) = a0. For that special case, it
might be possible to solve analytically. In fact, consider-
ing the case with no continent on the line, the function
K(x) = Kw will also be constant. Thus, simplifying the
model down to

CTt −KwTxx +BT = QS(x)(1− a0)−A (5)

which can be solved analytically using a spectral method.

2.1 Analytical solution to special case

To solve the problem, using the normalized definition of
the continuous Fourier transform (CFT) of a function
f(x),

F (k) =
1√
2π

∫ ∞

−∞
dxf(x)e−ikx (6)

with the corresponding inverse transform

f(x) =
1√
2π

∫ ∞

−∞
dkF (k)eikx (7)

These definitions are according to how they are defined in
Mathematica[4]. Performing this transform on the sim-
plified model in equation (5) gives

CGt + (k2K +B)G = QS∗(1− a0)−
√
2πAδ(k). (8)

Where G denotes the CFT of T , and S∗ the CFT of S,
all with respect to x. This is a first order ODE, and it
has solution

G(k, t) = e−
t(B−k2K)

C

(
c1 −

(a0 − 1)e−
t(B−k2K)

C QS∗(k)

B + k2K
− e

tB
C

√
2πAδ(k)

B

)
(9)

Where c1 can determined by an initial condition on
T (x, 0), which then equates to an initial condition on
G(k, 0). The solution T (x, t) can be computed by do-
ing the inverse CFT of the above expression. Unfortu-
nately, all the interesting behaviour of the model hap-
pens in cases where the thresholds in a(T ) are crossed,
and this special case does not give much insight into that
behaviour. It can however be useful for verifying the
validity of the numerical methods that are used to solve

the model in the next section. This solution assumes that
T (x, t) < −10◦C for all x and t thus making a(T ) = a0,
note that another way to get a similar solution would be
if T (x, t) > −10◦C making a(T ) = a1. However, this will
never have solutions that successfully converge to a sta-
ble state before breaking that very assumption, and this
is due to the restriction put on S(x). The requirement of
having a bounded integral over the real line along with
having S(x) >= 0 implies that it must go to zero at both
ends toward infinity. Thus when |x| >> 0, S(x) ≈ 0.
Which simplifies the model into

−KwTxx +BT = −A (10)

Where Tt = 0 and T (x) is no longer a function of t as it
is a stationary solution. This is a simple linear ODE and
has general solution

T (x) = −A
B

+ c1e
√

b
kx + c2e

−
√

b
kx (11)

If this is on considered on far to the right on the line,
where x >> 0 and thus S(x) ≈ 0, c1 has to be 0 to keep
T (x) a bounded function toward infinity, similarly for c2
on the far left side. Thus making T fulfil the limits

lim
x→±∞

T (x) = −A
B

≈ −49.92◦C (12)

These limits are completely independent upon initial con-
ditions, meaning that the assumption T (x, t) > −10◦C
will be broken before the solution reaches its equilib-
rium state. Nonetheless, with initial conditions T (x, 0) >
−10◦C, the solution will be valid for some short period
before it inevitably breaks.

3 Numerical methods

As mentioned earlier, when the a(T ) function cannot be
simplified to a constant, the model is non-linear and ex-
tremely difficult to solve analytically. However, numer-
ical methods can do this with ease, in this section two
different numerical schemes to solve this model will be
derived. One spectral method, and one finite difference
method.

3.1 Spectral scheme

This section will solve a slightly altered version of the
model

CTt −KwTxx +BT = QS(x)(1− a(T ))−A+ ∂xK̂(x)∂xT (13)

Where K(x) = Kw + K̂(x). To simplify a little bit, the
right hand side of the model is simplified to F (T ), such
that

F (T ) = QS(x)(1− a(T ))−A+ ∂xK̂(x)∂xT (14)

Which gives the altered model for the spectral case

CTt −KwTxx +BT = F (T ) (15)

Now, to set up a spectral scheme for the problem, the
model must be converted to its spectral form. Comput-
ing the CFT of the model in equation (15) gives

CGt + (Kwk
2 +B)G = F {F (T )} (16)
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Where G is the CFT of T , and F{·} denotes the CFT of
its content, all with respect to x. Rearranging a little bit
gives

CGt = F{F (T )} − (Kwk
2 +B)G (17)

This is a prime subject to solve using numerical ODE
solving methods. The problem is that doing so requires
both discretization of the line and reducing the domain
of the solution to a finite segment of the line. This might
make any results in the chosen domain be inaccurate, this
can be investigated by comparing to the analytical solu-
tion in equation (9). Another issue that might occur is
overlooking important behaviour of the model in regions
outside the chosen domain, however choosing the right
domain avoids this problem entirely. Due to the chosen
S(x)-functions made later, a fitting restriction of the in-
finite line is to reduce it to [−L,L] in the spatial domain
and [−K,K] in the spectral domain. Then choosing L
large enough such S(x) is sufficiently small at |x| = L.
This will both ensure that the interesting parts of the so-
lution is contained within the discretized spatial domain,
and make the convergence in the spectral domain better.
The discretization is done using N equidistant samples
in both spatial and spectral domain according to

xi = −L+ i
2L

N
i = 0, 1, 2, . . . , N − 1 (18)

ki = −K + i
2K

N
i = 0, 1, 2, . . . , N − 1 (19)

Where K = πN
2L . This scaling of the spectral do-

main is made such that the discrete Fourier transform
(DFT) using discretized input approximates the CFT
with continuous input[5]. The DFT of a series of samples
{xn} = x0, x1, . . . , xN−1 is {Xj} = X0, X1, . . . , XN−1

and is given by

Xj = c0

N−1∑
n=0

xne
−i2πjn/N (20)

Where c0 is a scaling parameter that changes on con-
vention. Using this, sampling a function f(x) using the
discretization described in equations (18) and (19) an ap-
proximation of the CFT of f(x) is

F (ki) ≈ c∗0Xi (21)

Where F (ki) is the CFT of f(x) evaluated at the point
k = ki, Xi is the i’th sample in the DFT of the discretized
data {xn} = f(x0), f(x1), . . . , f(xN−1), and c

∗
0 is a scal-

ing parameter that changes for different implementations
of the algorithm that computes the DFT. In addition to
this, it is also required to compute the inverse transform
(IDFT) for each step, and thus the need for the inverse
discrete Fourier transform arises. This transform is de-
fined as

xn = c1

N−1∑
j=0

Xje
i2πnj/N (22)

Where c1 is a scaling parameter again, c0 and c1 are al-
ways such that c0 · c1 = 1

N . This gives the backwards
approximation

f(xi) ≈ c∗1xi (23)

The implementation for the DFT and IDFT takes care of
the scaling parameters in the transforms as long as they
uphold the condition

xi = IDFT (DFT (xj))i j = 0, 1, 2, . . . , N − 1 (24)

The implementation used in this thesis upholds this re-
quirement, so the exact values of c∗0 and c∗1 are inconse-
quential. This project uses an implementation of the fast
Fourier transform (FFT) and inverse fast Fourier trans-
form (IFFT) to compute the DFT and IDFT, more pre-
cisely it uses kissfft provided by the Eigen template li-
brary for C++. With all of this in place, it is time to
set up a numerical scheme to compute the time evolution
of the model in equation (17). The scheme chosen is the
Euler method, it is one of the less accurate methods of
solving an ODE numerically, but it has the advantage of
simplicity and computational efficiency. The functions
in the model are discretized according to equations (18)
and (19) and in time according to

tj = j · dt j = 0, 1, 2, . . . (25)

The numerical scheme to solve equation (17) by Euler’s
method looks like

Hj
i = FFT(F{F (T j

k )})i, k = 0, 1, 2, . . . , N − 1

Gj+1
i = Gj

i + dt
1

C

[
Hj

i − (Kwk
2
i +B)Gj

i

]
T j+1
i = IFFT({Gj+1

k })i, k = 0, 1, 2, . . . , N − 1

(26)

Where Gj
i is an approximation of G(ki, tj), Si = S(xi),

and T j
i is an approximation of T (xi, tj) for j > 0.

3.1.1 Numerical scheme

Initialize by choosing a Q, S(x), K(x), and T0(x), then
set T 0

i = T0(xi) and
G0

i = FFT({T 0
k })i, k = 0, 1, 2, . . . , N−1, and Si = S(xi).

Now the for step j in iteration, starting at j=0.

1. Compute the Hj
i terms by using the fast Fourier

transform.

2. Compute the Gj+1
i values using Hj

i and Gj
i .

3. Compute the inverse fast Fourier transform of Gj+1
i

in order to find T j+1
i .

4. Add one to j and repeat step 1-3 for as many steps
as required.

Because of the nature of the FFT algorithm it is also use-
ful to choose N as a power of 2, as this takes full advan-
tage of the optimizations of the algorithm. It is impor-
tant to note that the F{F (T )} function, used in equation
(26), includes some partial differential term, this term is
approximated by

(∂xK̂∂xT )
j
i ≈

1

2
(∂−x K̂∂

+
x T + ∂+x K̂∂

−
x T )

j
i (27)

Where ∂+x and ∂−x denotes a forward and backward dif-
ference respectively. Which expands into

(∂xK̂∂xT )
j
i ≈

1

2dx2
(K̂i(T

j
i+1 − T j

i )− K̂i−1(T
j
i − T j

i−1)+

K̂i+1(T
j
i+1 − T j

i )− K̂i(T
j
i − T j

i−1))
(28)

In addition, the calculation of the partial differential
terms shown here need some special care at the end-
points. The values T ∗

−1, K̂−1, TN and K̂N are required to
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compute the term on the entire discretized line. For the
K-terms, they are found very simply as K can always be
a constant function at the endpoints with right choice of
L. Recall that it was defined as being piecewise constant.
So the K-terms are

K̂−1 = K̂0

K̂N−1 = K̂N

(29)

The case is slightly more complicated for the T -terms,
the way these were found was by approximating them
by assuming that T has a second derivative that is near
constant at the endpoints. This implies that

T−1 − 2T0 + T1

dx2
≈
T0 − 2T1 + T2

dx2
(30)

Which gives the approximation needed.

T−1 ≈ 3T0 − 3T1 + T2 (31)

And likewise for the other endpoint

TN ≈ 3TN−1 − 3TN−2 + TN−3 (32)

3.1.2 Stability

To run this scheme for longer periods of time it obviously
has to be stable. It is known that the Von Neumann sta-
bility requirement for the PDE

Ft = αFxx (33)

is dt ≤ 1
2αdx

2 for the finite difference scheme [6]. The
equation solved in this project is of the same base type,
but it is not solved by using finite differences in this sec-
tion, but rather the spectral version of the problem, al-
though there are some terms that are approximated by
finite differences methods. Thus, the same type of stabil-
ity condition is assumed, dt ≤ Cdx2. From experiments,
this C was found to be approximately 1.45. Leading to
the stability condition for the scheme

dt ≤ 1.45dx2 (34)

A different error comes from the a(T ) and K̂ function,
these functions are piecewise constant, which poses two
problems. Firstly, it’s impossible to discretize a piece-
wise constant function exactly, no matter how small dx
is chosen there will be some error at the points where it’s
discontinuous. Another issue is that the DFT of these
functions is computed to approximate their CFT, and
the CFT converges very slowly to 0 when k increases for
functions with discontinuities. This means that infor-
mation beyond the boundaries, −K and K, of the dis-
cretized domain is lost, which is undesirable. To address
this, it is appropriate to introduce some smoothing to
the a(T ) and K(x) functions to make the spectral do-
main converge to 0 more rapidly. There are many ways
to do this smoothing, for the purposes in this analysis a
convolution with a gaussian function normalized to 1 on
the real line is convenient.

f(x; s) =
1

s
√
π
e−( x

s )
2

(35)

Where s > 0 is a smoothing parameter determining the
degree of smoothing. Lower values correspond to less

smoothing and vice versa. Now, a piecewise constant
function g(x) can be smoothened by convolution with
f(x; s) according to

g∗(x) =

∫ ∞

−∞
f(x− y; s)g(y)dy (36)

where g∗(x) a is a smoothened version of g(x). This
can be hard to do analytically for an arbitrary number
of discontinuities in g(x), so its discrete counterpart is
used instead. This requires a discretization of g(x) and
f(x; s). To let constant regions remain constant without
any increase or decrease in value after the convolution, it
is very important that the integral of f(x; s) over the real
line is 1. The discrete equivalent of this will be having
the sum of the discretized points be 1. Because of the
sharpness of f(x; s) around 0 for small values of s, some
extra care is required when discretizing that function as
the sum of the discretized points must add up to 1. The
discretization of g(x) does not require this extra care.
The discretization is computed by

gi = g(xi)

fj =

∫ (j+ 1
2 )dx

(j− 1
2 )dx

f(y; s)dy, j = −M, . . . ,M
(37)

Where dx = 2L
N andM = ceil( 4sdx ), which is large enough

to make the terms add up to ≈ 1. Note that the sum
won’t be exactly 1, in order to fix this the fj terms are
divided by their sum after the discretization. Finally,
the smoothing is computed using a discrete convolution
of the discretized gi and fj values.

g∗i =

M∑
n=−M

fngi−n (38)

Where g∗i is the discretized approximation of g∗(x). The
main advantage of this method of smoothing is that it
remains the same for any number of discontinuities in
the function g(x), as opposed to smoothing by using for
example a hyperbolic tangent function where the com-
plexity of the smoothing increases with number of dis-
continuities. However, a drawback of the convolution
smoothing method is that the computational complex-
ity is O(M2), which means that more smoothing (higher
s) will be much slower than less smoothing (lower s).
For the purposes in this analysis, s will be chosen to be
small, as the model is parabolic and very forgiving for
these rapidly changing functions.

3.1.3 Verification by artificial source

To verify that the spectral solution is correct an artificial
source can be used along with a choice of K(x). A choice
for this is

T (x, t) = cos (x+ t)

K(x) = Kw

(39)

Using this artificial source, the F (T ) function is calcu-
lated to be

F (T ) = (B +Kw) cos (x+ t)− C sin (x+ t) (40)

Which is enough to initialize the numerical scheme and
run it for as long as desired. The result from running the
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scheme for this artificial source is plotted in figure 1, com-
paring the numerical solution to the analytical artificial
source.

Figure 1: Comparison of analytical and numerical solution.
Simulation ran with 289262 iterations. Using N = 2048,
L = 5.

The plot shows that for the most part, the spectral
scheme does a good job at approximating the solution.
However, near the endpoints of the domain the scheme
starts to deviate from the source. The reason for this
is due to the periodicity that is imposed by the DFT,
errors at the boundary are going to occur if the input
to the transform, F (T ), does not satisfy this boundary
conditions.

F{F (T )}
∣∣∣x=L

x=−L
≈ 0

∂xF{F (T )}
∣∣∣x=L

x=−L
≈ 0

(41)

This artificial source gives an F (T ) that does very clearly
not satisfy these equations, and thus the solution suffer
close to the endpoints. The further away the equations
are from being satisfied, the worse the error at the bound-
aries will get.

Figure 2: Comparison of analytical and numerical solution.
Simulation ran with 200876 iterations. Using N = 2048,
L = 6.

However, it seems that the error imposed at the
boundaries dissipates rather quickly away from the edges,

meaning the numerical scheme might still be useful for
input that doesn’t satisfy the periodicity. To find a sat-
isfactory solution in a certain domain, one might be able
to run the code on a larger domain and discard the values
close to the endpoints. The same scheme was ran using
L = 6 (figure 2), with the endpoints discarded, leaving
the same range of values in as in figure 1. This numerical
solution follows the artificial source very closely, high-
lighting that this is indeed a viable way to bypass the
criteria in equation 41 when using this numerical scheme.

To further establish the method, it was also com-
pared to the analytical solution from equation (9) for
a choice of Q, S(x)and T0(x). Recall the analytical so-
lution found was for the case with no continents, thus
leaving K(x) = Kw. The choice for Q, S(x) and T0(x)
are

Q = 340

S(x) = e−
x2

10

T0(x) = −50

(42)

A run of the numerical scheme using the same method of
discarding values close to the edges gave perfect overlap
with the analytical solution. The results are shown in
figure 3.

Figure 3: Comparison of analytical and numerical solution.
Simulation ran with 200876 iterations of Euler’s method. Us-
ing N = 2048, L = 6.

These simulations have all been computed using a
constant K(x) function, thus making the partial differ-
ential term in F (T ) equal 0. However, it must also be
verified that it works when that is no longer the case.
This is also done by using an artificial source. This time
the choice is

T (x, t) =


−Kw

Kl
(x2 − 25), − 1 < x < 1

1 + 24
Kw

Kl
− x2, x < −1 or x > 1

(43)

and the heat diffusion function

K(x) =

{
Kw, − 1 < x < 1

Kl, otherwise
(44)

Which is the same heat diffusion function that would be
used for a continent being placed at (-1,1). This partic-
ular choice of T (x, t) was chosen for a reason, that rea-
son being that the ratio between the left and right-sided
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limits of the derivative of T (x, t) at the discontinuities of
K(x), (-1 and 1), satisfies the criteria derived in appendix
B. Running the spectral scheme for this choice of T (x, t)
and K(x) gives the result shown in figure 4. Note that in
this simulation a much higher value of N was used. This
is due to the sharp edges of the solution at the edges of
the continent. Earlier the function was smooth every-
where, which allowed for a sparser discretization.

(a) Solution plotted from -5 to 5

(b) Zoomed in closer to C0 and C1

Figure 4: Comparison of analytical and spectral solution to
artificial source. Simulation ran with 803506 iterations of Eu-
ler’s method. Using N = 4096, L = 6, s = 0.005.

As seen in the figure, the spectral scheme does an ex-
cellent job for the case with a discontinuous heat diffusion
function as well. Note that the same procedure of cutting
off the endpoints of the solution was used here as F (T )
will not satisfy the equations (41). Smoothing of the
K∗(x) function was also needed here, it was smoothened
by the gaussian convolution described in equation (38)
with smoothing parameter s = 0.005.

3.2 Finite differences

A second numerical scheme was devised as well, it takes
the form of a finite difference scheme. This scheme solves
the original model described in equation (3) instead of
the spectral version of it like the spectral scheme did.
The discretization of the line will be very similar to the
spectral case, except that there is no need for a spectral

domain, and the endpoint at L is included here. It is
N equidistant points spanning the domain [−L,L], and
time starts at 0 and increases linearly.

xi = −L+ i
2L

N − 1
, i = 0, 1, . . . , N − 1

tj = j · dt, j = 0, 1, 2, . . .

(45)

Using these discretizations and the following approxima-
tions of the derivative terms in the model (104)

(Tt)
j
i =

T j+1
i − T j

i

dt

(∂xK∂xT )
j
i =

1

2
(∂−x K∂

+
x T + ∂+x K∂

−
x T )

j
i

=
1

2dx2
(Ki(T

j
i+1 − T j

i )−Ki−1(T
j
i − T j

i−1)+

Ki+1(T
j
i+1 − T j

i )−Ki(T
j
i − T j

i−1))

= P j
i

(46)

Where Tt(xi, tj) ≈ (Tt)
j
i and T (xi, tj) ≈ T j

i . The equa-
tions show that time derivative is approximated using
a forward difference. The partial differential terms are
computed the same way as they were for the spectral
scheme, except that here the K-function is left as is, it is
not split into Kw + K̂. This scheme will also suffer from
the same end-point problems as the spectral scheme did,
however, they can also be solved the same way, by using
the equations (31 & 32). With this, the finite difference
scheme takes form

T j+1
i =

dt

C

(
QSi(1− a(T j

i ))−BT j
i −A+ P j

i

)
+ T j

i (47)

For i = 0, 1, . . . , N − 1, where Si = S(xi), a(T
j
i ) and Ki

are smoothened by the gaussian smoothing in equation
(38) with smoothing parameter s. The stability crite-
ria for this method is much more forgiving than for the
spectral method, from experiments it was found to be
approximately

dt ≤ 3.48dx2 (48)

Due to this, the finite difference scheme will be used for
most of the subsequent stability analysis as it is both
faster per iteration (mostly due to not needing to com-
pute the FFT and IFFT), in addition to having a looser
time step restriction.

3.2.1 Verification by artificial source

To verify that the scheme works it was evaluated using
the same approach as earlier, an artificial source. The
first choice is

T (x, t) = cos(
xπ

10
) cos(t)

K(x) = Kw

(49)

The simulation result can be seen in figure 5. Which
shows that the finite difference scheme can handle K be-
ing a constant function.
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Figure 5: Comparison of analytical and numerical solution.
Simulation ran with 459770 iterations. Using N = 4001,
L = 5.

However, not much can be said about the case when
K is no longer a constant function, which will happen
when a continent is placed on the line. To test this, the
same artificial source that was used to test the spectral
scheme can be done. Recall

T (x, t) =


−Kw

Kl
(x2 − 25), − 1 < x < 1

1 + 24
Kw

Kl
− x2, x < −1 or x > 1

(50)

and the heat diffusion function

K(x) =

{
Kw, − 1 < x < 1

Kl, x < −1 or x > 1
(51)

Using this, the code was run again.

As seen in figure 6 and 7, the plots look identical to
the simulations ran with the spectral code. Which shows
that both numerical schemes can handle the discontinu-
ity in the K(x) function. This means that further in
this thesis stationary solutions of the model in question
can be tested for stability using two different numerical
schemes.

Figure 6: Comparison of analytical and finite difference so-
lution to artificial source. Simulation ran with 459770 itera-
tions. Using N = 4001, L = 5, s = 0.005.

Figure 7: Figure 6 zoomed in closer to C0 and C1

4 Boundary formulation of sta-
tionary solutions

The next step in the analysis of the model, is to consider
stationary solution. That is when the term ∂tT = 0, this
reduces the model to

− ∂xK∂xT +BT = QS(1− a(T ))−A (52)

Let’s now assume that K is constant and normalize
the model according to the possible constant values of
K, using the temperature scaling T = T ′Ts. Where
−Ts = −10◦C which is the critical sea-ice melting tem-
perature.

−∂xxT ′ + βwT
′ = ηwS(1− a(T ′))− αw

−∂xxT ′ + βlT
′ = ηlS(1− a(T ′))− αl

(53)

Where αw = A
KwTs

, βw = B
Kw

, ηw = Q
KwTs

are the pa-
rameters used for the model in regions with water/ice.
And αl =

A
KlTs

, βl =
B
Kl

, ηl =
Q

KlTs
are the parameters

for regions with land/snow covered continent. Moving
on, the subscript w denotes parameters special to water
regions, and the subscript l denotes parameters special
to land regions.

T ′ is dimensionless, and the a(T ′) function looks
slightly different.

a(T ′) =


a0, T ′ < −1, no continent at x

a1, T ′ > −1, no continent at x

a0, T ′ < 0, continent at x

a1, T ′ > 0, continent at x

(54)

From this point on, the prime is dropped from T ′ for all
boundary formulations of the problem.

4.1 Greens function

This model is piecewise linear, and it can be solved using
a boundary formulation of the problem. With a suit-
able integral identity along with a Greens function for a
differential operator, stationary solutions can be found.
Note: the derivation is done using the general form of
the parameters, without their subscripts. The subscripts
are added back later in the end of the derivation. To be-
gin, define the differential operator for the problem, and
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find an associated integral identity for the operator. The
differential operator in the normalized models (53) is

LU = Uxx + βU (55)

The integral identity can be found by using integration
by parts two times∫ x2

x1

dxϕLψ =

∫ x2

x1

dxϕ(−ψxx + βψ)

= [−ϕψx]
x2
x1

−
∫ x2

x1

dx{−ϕxψx − ϕβψ}

= [ψxψ − ϕψx]
x2
x1

+

∫ x2

x1

dx{−ϕxxψ + ψβϕ}

= [ψxψ − ϕψx]
x2
x1

+

∫ x2

x1

dxψLϕ

(56)

Which describes the integral identity for the operator L∫ x2

x1

dxϕLψ = [ψxψ − ϕψx]
x2
x1

+

∫ x2

x1

dxψLϕ (57)

Next up is finding a Green’s function for the differential
operator, this is done by solving the equation

Lk(x; ξ) = δ(x− ξ) (58)

Where δ(x−ξ) is the Dirac delta function, which has the
following properties

δ(x) = 0, x ̸= 0∫ b

a

dxf(x)δ(x− y) =

{
f(y), if a < y < b

0, otherwise

(59)

This makes the equation easily solvable in the two do-
mains x > ξ and x < ξ because δ(x − ξ) = 0 in those
domains.

k(x; ξ) =

{
c1e

√
βx + c2e

−
√
βx x > ξ

c3e
√
βx + c4e

−
√
βx x < ξ

(60)

This equation has 4 free variables, but it has an issue of
going to infinity as x→ −∞ and x→ ∞, this would pose
a problem later in the boundary formulation, as it con-
tains an integral that goes from −∞ and to ∞. However,
imposing the restriction c1 = c4 = 0 will ensure that the
all the integrals converge with the choices of S(x) used in
the thesis. Furthermore, the discontinuity at x = ξ must
be accounted for, this is done by integrating equation
(58) on both sides around x = ξ.∫ ξ+ϵ

ξ−ϵ

dx{−kxx(x; ξ)+βk(x; ξ)} =

∫ ξ+ϵ

ξ−ϵ

dxδ(x−ξ) (61)

From the properties of the δ-function, the right hand side
of this equation will be equal to 1 for any ϵ > 0. Now let
ϵ → 0 and impose the condition that k(x; ξ) is continu-
ous, then the βk(x; ξ) term must go to 0. Which leads to
the equation

[−kx(x; ξ)]ξ+ϵ
ξ−ϵ = 1 (62)

Which means that a discontinuity lies in the first deriva-
tive of k(x; ξ). The two remaining constants can now be
found by using this and the assumed continuity of k(x; ξ)

kx(ξ
+; ξ)− kx(ξ

−; ξ) = −1

k(ξ+; ξ) = k(ξ−; ξ)
(63)

Where ξ+ and ξ− denotes the limits of x → ξ from the
right and left side respectively. Solving this system gives
a Greens function with no free variables.

k(x; ξ) =

{
1

2
√
β
e
√
β(ξ−x) x > ξ

1
2
√
β
e
√
β(x−ξ) x < ξ

(64)

This function has the very desirable properties

lim
x→±∞

k(x; ξ) = 0

lim
x→±∞

kx(x; ξ) = 0
(65)

This Greens function will be very similar for both regions
with, and without a continent.

kw(x; ξ) =
1

2
√
βw

·

{
e
√
βw(ξ−x), x > ξ

e
√
βw(x−ξ), x < ξ

kl(x; ξ) =
1

2
√
βl

·

{
e
√
βl(ξ−x), x > ξ

e
√
βl(x−ξ), x < ξ

(66)

Where kw will be used in regions without a continent,
and kl will be used where there is one.

4.2 Boundary formulation using Greens
function

Now it’s just a matter of putting this together with the
model in equation (53), the original model has a time
derivative included, but in the boundary formulation only
the stationary solutions are considered, so the Tt term is
0. Using the differential operator defined in (55) it is
possible to rewrite the model.

LT = ηS(1− a(T ))− α (67)

To find stationary solutions, use the integral identity and
the Greens function from equations (57) and (64) respec-
tively. Setting ϕ = T (x) and ψ = k(x; ξ) gives∫ x2

x1

dxTLk =
[
∂xTk − T∂xk

]x2

x1

+

∫ x2

x1

dxkLT (68)

Using equation (58), the left hand side can be simplified
to ∫ x2

x1

dxTLk =

∫ x2

x1

dxTδ(x− ξ)

= T (ξ)

(69)

From the definition of the Dirac delta function. The inte-
gral on the right hand side can also be simplified. Using
equation (67), the integral can be written as∫ x2

x1

dxkLT =

∫ x2

x1

dxk(ηS(1− a(T ))− α) (70)

Which gives the equation that will be used to find all the
stationary solutions of the model.

T (ξ) =
[
∂xTk − T∂xk

]x2

x1

+

∫ x2

x1

dxk(ηS(1− a(T ))− α) (71)

The entire line can now be segmented into regions where
a(T ) in the above equation is constant within the entire
region, and thus can be replaced by either a0 or a1. In
all the cases, the parameters and Greens function are re-
placed with the subscript corresponding to which state
the line in the region is in. There are 4 possible states
the line can be in
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1. Ice (using a0 and kw)

2. Water (using a1 and kw)

3. Snow (using a0 and kl)

4. Land (using a1 and kl)

Three examples of boundary formulations for different
cases shows what this means in practice.

4.2.1 Ice-line without continent

For the case where the entire line is covered in ice
with no continent on the line, the Greens-function will
be kw(x; ξ), and the parameters will be ηw, αw and
a(T ) = a0. This leads to the solution for T

T (ξ) =
[
∂xTkw − T∂xkw

]∞
−∞

+

∫ ∞

−∞
dxkw(ηwS(1− a0)− αw) (72)

In this case it is possible to simplify a lot, using the prop-
erties of the Greens function (65). It can be simplified
to

T (ξ) =

∫ ∞

−∞
dxkw(ηwS(1− a0)− αw) (73)

Where a solution for the entire temperature profile on
the line can be found by choosing a radiation distribution
function S(x) and a solar radiation constant Q. The only
requirement is that they’re chosen such that T (ξ) < −1
on the entire line.

0
x

0
-1
-2
-3
-4

T(
x)

a(T) = a1

a(T) = a0 T

Figure 8: Example of what a solution might look in the only-
ice case

In figure 8 you can see what a solution on this form
might look like. The temperature profile does at no point
cross the a0/a1 threshold, making a(T ) constant on the
entire line. The line is coloured light blue to visualize
that it is entirely covered in ice. Solutions on this form
will be called ”# - Ice” in bifurcation analysis, as the
entire line is covered in ice.

4.2.2 Ice and water-line without continent

Another case is where the temperature T (ξ) exceeds −1
in some region (A0, A1) surrounded by ice-regions on
both sides. Then the line must be segmented into three
regions, (−∞, A0), (A0, A1) and (A1,∞). In the first re-
gion a(T ) = a0, in the second region a(T ) = a1 and in the
third and final region, a(T ) = a0 again. Because there is
no continent, the Greens function and model parameters
with subscript w are used. This gives the three domains

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw)

T2(ξ) =
[
∂xTkw − T∂xkw

]A1

A0

+

∫ A1

A0

dxkw(ηwS(1− a1)− αw)

T3(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw)

(74)

Where T1, T2 and T3 are the temperature profiles in the
first, second and third domain respectively. An issue that
arises here is that the boundary values do not go to zero
for the boundaries A0 and A1. This leaves 4 unknown
quantities Tx(A0), Tx(A1), A0 and A1. However, cer-
tain restrictions are known. Such as, the temperature at
the points A0 and A1 must be -1, because those are the
points where the state of the line transitions from being
covered in ice to being covered in water, which happens
when T (x) = −1. This criterion must be fulfilled in all
the three domains T1, T2 and T3. Giving the system of
equations

lim
ξ→A−

0

T1(ξ) = −1

lim
ξ→A+

0

T2(ξ) = −1

lim
ξ→A−

1

T2(ξ) = −1

lim
ξ→A+

1

T3(ξ) = −1

(75)

Which gives a determined system that can be solved.
Choosing a S(x) and Q will give a solution, assuming
one exists for the choices made of course. The assump-
tion for solutions on this form is that the temperature
profile, T (x), at some points has a region of values higher
than -1, if a solution is found where this is not the case,
that solution is not valid.

A0 A1
x

2
1
0

-1
-2
-3
-4

T(
x)

a(T) = a1

a(T) = a0

T1

T2

T3

Figure 9: Example of what a solution might look like in the
ice-water case

Figure 9 shows an example of what the temperature
profile might look like in the case discussed here. Regions
of the line covered in ice is shown as light blue again,
while regions with melted water is shown in a darker
blue. As you can see the temperature crosses the bound-
ary at -1 for the region between A0 and A1, thus breaking
the temperature profile into three regions. Each region is
denoted with T1, T2 or T3 depending on which equation
determines the temperature profile in the region. Solu-
tions on this form will be called ”# - IceWaterIce” in
bifurcation analysis, as the line, from the left, is first
covered in ice, then transitions to water, then back to
ice.

4.2.3 Ice covered line with continent

The last case to show how the boundary formulations are
made, is the case where the line consists of only ice with
a continent placed on the centre of the line from (−1, 1)
containing only snow. This time it is also necessary to
split the line into three regions, (−∞,−1), (−1, 1) and
(1,∞). Where the first and third region will use the
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model parameters with the subscript w, and the middle
region will use the ones subscripts l. Giving the equations

T1(ξ) =
[
∂xTkw − T∂xkw

]−1

−∞
+

∫ −1

−∞
dxkw(ηwS(1− a0)− αw)

T2(ξ) =
[
∂xTkl − T∂xkl

]1
−1

+

∫ 1

−1

dxkl(ηlS(1− a0)− αl)

T3(ξ) =
[
∂xTkw − T∂xkw

]∞
1

+

∫ ∞

1

dxkw(ηwS(1− a0)− αw)

(76)

There are 4 unknown quantities in these equations,
T (−1), T (1), ∂xT (−1) and ∂xT (1). This time around,
the temperatures at the endpoints of the continent are
unknown, so other restrictions are needed to determine
the system. The first two comes from the continuity of
the temperature profile, and the last two comes from the
particular discontinuity in the derivative of T across the
water-continent edge. Giving

lim
ξ→−1−

T1(ξ) = lim
ξ→−1+

T2(ξ)

lim
ξ→1−

T2(ξ) = lim
ξ→1+

T3(ξ)

lim
ξ→−1−

Kw∂xT1(ξ) = lim
ξ→−1+

Kl∂xT2(ξ)

lim
ξ→1−

Kl∂xT2(ξ) = lim
ξ→1+

Kw∂xT3(ξ)

(77)

A more detailed derivation of the boundary condition for
the derivative terms can be found in appendix B. With
this the system is determined and a solution for the tem-
perature profile may be found by choosing a S(x) and Q,
if one exists. The assumption here is that T1 > −1 and
T3 < −1 in their respective domains, and that T2(ξ) < 0
within its domain. Any solution on this form breaking
these criteria is not a valid solution.

-1 1
x

0
-1
-2
-3
-4
-5

T(
x)

a(T) = a1

a(T) = a0

T1

T2

T3

Figure 10: Example of what a solution might look like in the
ice-snow case wit a continent

In figure 10 you can see an example. Regions of the
line with ice is light blue again, and regions with a snow
covered continent is presented in white. A difference be-
tween this boundary formulation and the previous two
is more clearly displayed here, the change from using
a(T ) = a0 to a(T ) = a1 is no longer a simple constant
threshold. This example has T (ξ) > −1 for a small region
inside (-1, 1), but in this region the threshold is changed,
thus the albedo is a0 on the entire line. You can also
see what the discontinuous derivatives at the endpoints
of the continent look like. Solutions on this form will be
called ”# - IceSnowIce” in bifurcation analysis, as the
line, from the left, is first covered in ice, then snow cov-
ered continent, and last back to ice again. All solutions
will be named according to what state the line is in from
left to right in this fashion.

5 Bifurcation analysis

Now that a method of finding stationary solutions to the
model have been found, it is possible to draw bifurcation
diagrams for the model. All that is required is to choose a
function S(x), and solve the boundary formulations while
letting Q vary. This was done for several different cases,
without a continent, with a symmetrically placed conti-
nent, with a non-symmetrically placed continent, and for
two different choices of S(x). In this project they will
be chosen to have the same shape as probability density
functions. All solutions will also be tested for stability
numerically by adding a small perturbation to each so-
lution and computing the time evolution using the finite
difference scheme with parameters

N = 4001

L = 6

s = 0.001

T0 = T (xi) + ϵ

(78)

and ran until t = 50 (1 596 424 iterations). The time evo-
lutions are then compared to the unperturbed stationary
solution at each point and given an error value by the
sum of their square differences

E =

N−1∑
i=0

dx(T ∗
i − T (xi))

2 (79)

Where T ∗
i is the time evolution from the finite differ-

ence scheme at t = 50, and T (xi) is the discretized sta-
tionary solutions. This stability analysis is done for an
upward perturbation ϵ = 0.01, and a downward pertur-
bation ϵ = −0.01. This analysis has a few drawbacks, it
is unable to completely determine if a solution is stable
or not. Some solutions might go unstable here that in
the analytical case might not really be unstable, and vice
versa, it can however give some insight into the stability
of solutions. In addition, the numerical scheme must be
stopped at some point, which means that solutions that
goes unstable very slowly might be overlooked. Lastly,
the numerical schemes are unable to compute the stabil-
ity on the infinite line, however, the behaviour of the solu-
tions outside the domain (-L,L) is just exponential decay
toward the limiting value −A

B = −49.92, so it is unlikely
that this has a very big impact. It is also important to
note that the boundary formulations and the numerical
schemes use different temperature scalings, this must be
taken into account before running the simulations.

5.1 No continent

Starting with the simplest case, having no continent on
the line. In this case the heat diffusion function is con-
stant, K = kw. So each point x0 of the line can be in only
one of two states, either it is covered in ice a(T (x0)) = a0,
or it is covered in water a(T (x0)) = a1. This is the same
case that was considered by North, except his analysis
was on a half sphere rather than the infinite line.

5.1.1 Laplacian S(x)

With the choice of a Laplacian-type S(x)

S(x) = e−
|x|
2 (= 4Laplace(0, 2)) (80)
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The bifurcation diagram was computed, and it is shown
in figure 11 along with the stability plots.
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Figure 11: Bifurcation diagram for symmetric exponential
S(x) (Using boundary formulations C.1, C.2)

The result is similar to what North found in 1975.
The model has a bistability with an unstable region con-
necting the two stable ones. However, it seems that the
instability is most prominent for the downward perturba-
tion, for the upward perturbation the solution is numer-
ically stable in a larger region and the downward per-
turbation. Another thing to note is that in the down-
ward perturbation, the region where the solutions transi-
tion from being stable to unstable (around Q=440), there
looks to be a smooth transition. This is only due to the
fact the time evolution converges to the stable solution
from ”1 - Ice” for the same Q, and in this area the so-
lutions are very close to each other. In fact, for every
solution marked in red for the downward perturbation,
the time evolution converges to the stable solution in ”1
- Ice”

5.1.2 Gaussian S(x)

With the choice of a Gaussian-type S(x)

S(x) =
4√
10π

e−
x2

10 (= 4N(0, 10)) (81)

The bifurcation diagram in this case, in figure 12 looks
very similar, it has a very similar shape, similar bistabil-
ity, and a similar region of stable and unstable solutions.

The stable region of solutions looks to be almost iden-
tical to the Laplacian case, the most substantial differ-
ence between the two are the values of Q in which the
bistability lies in. For the Laplacian case, the bistabil-
ity lies in the range Q ∈ (370.21, 444.62), but for the
Gaussian case it lies in the range Q ∈ (441.51, 548.68).
The reason for the increase in Q between the two choices
of S(x) is because the Gaussian-type is much ”wider”
than the Laplacian-type, meaning that the radiation in-
put on the line is more evenly spread out. This causes
the Gaussian case to require a higher value of Q than

the Laplacian case does to reach the same temperature
at T (0).
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Figure 12: Bifurcation diagram for gaussian S(x) (Using
boundary formulations C.1, C.2)

An illustration of this is shown in figure 13, the ice
only solution from both cases are plotted. This clearly
illustrates that the solutions from the Gaussian-type
S(x) have its energy more evenly distributed that the
Laplacian-type does. And thus requires a higher value of
Q to reach the same temperatures at the centre of the
continent compared to the Laplacian.
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Figure 13: Temperature profiles for Q=400 for both the
Laplacian and the Gaussian choices of S(x)

The bistability found for these two choices of S(x) are
both very similar to what North found, the case where
the entire line is covered in ice has a unique solution ev-
erywhere a solution exists. While the case where there
are two ice-edges on the line, there is a region with two
solutions, where one of them is unstable.

5.2 Symmetric continent

Up to this point, the results are very much a reiteration
of what North has already found. However, by placing a
continent on the line at (-1, 1), the heat diffusion function
is no longer constant. Making this new and unexplored
territory. The choice of continent placement makes the
heat diffusion function

K(x) =

{
Kl, − 1 < x < 1

Kw, otherwise
(82)
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5.2.1 Laplacian S(x)

The same Laplacian-type S(x) function from the last sec-
tion was used in this case to compute the bifurcation
diagram as well.

S(x) = e−
|x|
2 (= 4Laplace(0, 2)) (83)

This time the diagrams look a bit different, seen in figure
14. There is still a bistability, but the region of instability
now covers three entire family of solutions, not a subset
of one of the families as it were for the cases without a
continent.
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Figure 14: Bifurcation diagram for Laplacian S(x) with a con-
tinent (Using boundary formulations C.3, C.4, C.5, C.6, C.9,
C.10)

In the figure the solution families 4, 5A, and 5B are
all unstable. Important to note that the solutions 5A
and 5B are completely overlapping in the figure, so only
family 5B is visible in the plot. Solutions in the families
5A and 5B are unsymmetrical around 0, but correlate to
each other by T5A(x) = T5B(−x) and vice versa for the
same value of Q. In quantum mechanics this is called a
parity inversion, it is shown in figure 15.
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Figure 15: Solutions 5A and 5B and their inversions plotted
for Q=485.15

These solutions begin at the same point where fam-
ily 6 and 4 start, but follow a path in between the two
families, before it begins to curve downward and transi-
tion to solutions contained in family 4, which then traces

a straight line back to its main path of solutions. This
straight line tracing the path between the main family-
4-path and the end of family 5A and 5B, contain two
different overlapping asymmetrical solutions. These two
solutions are also parity inversion of each other. The two
solutions grow less asymmetrical and increasingly simi-
lar, while still maintaining they parity inversion, as they
get closer to the main family 4 line. Figure 16 shows a
better illustration of what happens.
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Figure 16: Bifurcation diagram from figure 14 zoomed in near
the unsymmetrical solutions

The numerical stability of these solutions also contain
intricate behaviour, it seems that some of the unsymmet-
rical solutions are stable for small perturbations. They
appear to be more able to handle upward perturbations
than they are downward perturbation. Similar to what
was found in the case without a continent where a larger
number of solutions were numerically stable for upward
perturbations. This might be due to the limitations of
the stability test as mentioned earlier. The reason for
these values is because of the limitation on the length of
the simulations. They are ran up to t = 50, this is able
to catch a lot of the unstable solutions, but some of them
go unstable slowly enough to not exceed a total square
error 0.2. A region of the solutions in family 4 has errors
in the range 0.05 to 0.10, between Q ≈ 485 and Q ≈ 500,
for the upward perturbation. These solutions are in the
process of going unstable, but the simulation was stopped
too early to completely catch their instability.

5.2.2 Gaussian S(x)

The Gaussian-type radiation distribution is a bit different
in this case than it was for the case without a continent.
Here the following distribution is used instead.

S(x) =
4√
5π
e−

x2

5 (84)

There is a good reason for this change, recall in the last
section the gaussian-type used had a standard deviation
of 10, while here it is 5, meaning that the distribution is
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more focused around x = 0 here than it previously was.
The bifurcation diagram for this choice of S(x) is shown
in figure 17. Continent is still placed at (-1, 1).
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Figure 17: Bifurcation diagram for Gaussian S(x) with a con-
tinent (Using boundary formulations C.3, C.4, C.5, C.6, C.9,
C.10, C.11, C.12)

This bifurcation diagram has even more unsymmetri-
cal solutions than the Laplacian had, every solution in the
families 5A, 5B, 5C and 5D are unsymmetrical. Families
5A and 5B are completely overlapping and parity inver-
sions of each other, the same goes for 5C and 5D. The
interesting part here is that the unsymmetrical solutions
trace a complete alternative path between family 2 and
4 rather than converging back to family 3 like the Lapla-
cian case did. Family 2 also differs from what was found
in the Laplacian case, here it begins going left before it
curves to the right and continues straight until it meets
families 4, 5A and 5B. Meaning that for some small re-
gion of Q there are two different solutions for family 2.
This is a miniature version of the case without a conti-
nent, where the ice edges can be in two distinct positions
and still be a stationary solution for the same Q. It is
suspected that it is the ”width” of the Gaussian S(x)
allows this to happen, while the Laplacian case is too
”narrow”. The stability of the solutions in this case are
much less complex, the solutions in families 1, 2 and 4
are stable, while the rest are unstable.

Further, by allowing the Gaussian type S(x) to be
even wider, the behaviour mentioned earlier of family 2
should be even more similar to the case without a conti-
nent. Using

S(x) =
4√
6π
e−

x2

6 (85)

And computing the bifurcation diagram in figure 18, the
continent is still placed at (-1, 1). The leftward path of
family 2 before curving right is substantially longer than
it was in the slightly narrower Gaussian. Leading to a
tristability in a small region, this region could be made
larger by shrinking the size of the continent or making
S(x) even wider. However, this is hardly the most note-
worthy difference. That would be the introduction of

families 3A and 3B. These solution families are consid-
erably different from any of the solution families in the
previous bifurcation diagrams.
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Figure 18: Bifurcation diagram for Gaussian S(x) with a con-
tinent (Using boundary formulations C.3, C.4, C.6, C.9, C.10,
C.13)

It’s important to note that the solutions 3A and 3B
are special and contain multiple subfamilies. All sym-
metric boundary formulations with more than 2 snow-
land/land-snow transitions on the continent are con-
tained in these two families (see 2-N boundary formu-
lations in appendix C.13). 3A contain the families that
has land at the centre of the continent, and 3B contain
all families where the centre is covered in snow instead.
Every time the line does a 180 direction change in 3A and
3B corresponds to the solution having an additional two
snow-land transitions. In this bifurcation diagram, only
solutions with up to 40 transitions were computed, but
there seems to be no upper bound to the number of tran-
sitions possible. While computing the solutions, it was
noted that the derivative on all transitions, Tx(Bi) in the
formulations, on the continent get smaller and smaller
with more snow-land transitions on the continent. The
temperature at x = −1, 1 also go closer and closer to 0 as
the number of transitions increases. If this pattern con-
tinues for both the boundary temperature and transition
derivatives, as the number of transitions go to infinity, it
would be possible to find an exact solution to what the
temperature profile would look like in the limiting case.
There is no longer any need to model what happens over
the continent as the temperature would just be 0 across
all of it (because Tx(Bi) → 0 and T (Bi) = 0), the only
regions that need to be modelled, are what happens to
the right and left side of the continent. In addition, be-
cause the solution is symmetric nothing is lost by only
modelling the right side of the continent, and then just
mirroring the result around 0. The equations to model
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this will be

T1(ξ) = 0

T2(ξ) =
[
∂xTkw − T∂xkw

]A0

1
+

∫ A0

1

dxkw(ηwS(1− a1)− αw)

T3(ξ) =
[
∂xTkw − T∂xkw

]∞
A0

+

∫ ∞

A0

dxkw(ηwS(1− a0)− αw)

(86)

Where T1 is the continent from (0, 1), and T2 models (1,
A0) and T3 model (A0, ∞). A0 is the position of the
ice-water transition to the right of the continent. The
unknown quantities here are A0, T

′(A0) and the Q that
supports a solution on this form. In this case there are
more restrictions than there are unknown quantities. The
restrictions are

lim
ξ→1+

T2(ξ) = 0

lim
ξ→1+

T ′
2(ξ) = 0

lim
ξ→A−

0

T2(ξ) = −1

lim
ξ→A+

0

T3(ξ) = −1

(87)

All these equations must be fulfilled in order for the so-
lutions to be valid. This is an over-determined system,
but it does still have a solution, plotted in figure 19. And
it gives Q ≈ 479.633, this matches with what was found
in the bifurcation diagram. From figure 18 it looks as if
the solution families 3A and 3B converge to each other
at around Q ≈ 480, which is consistent with what was
found in the theoretical limiting case. For the stability,
similar to the narrower Gaussian, only solutions in the
families 1 and 4 are stable. Solution 2 has similar stabil-
ity to the ”# IceWaterIce” solutions in the case without
a continent, there are some unstable solutions directly
connected to the first solution family with stable solu-
tions directly above in the diagram. By either making
S(x) wider, or the continent smaller, the similarity could
be more apparent, but this thesis will not do that. The
rest of the families are all unstable, for both negative and
positive perturbations.
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Figure 19: Plot of how the theoretical limiting case would
look

The reason all the solution families 3A and 3B ap-
pear only for this choice of S(x), and none of the earlier
ones, is due to the way solution family 2 break. Fig-
ure 20 shows the different ways solution family 2 breaks
down in the two cases. This family assumes that the en-
tire continent is covered in snow, this assumption breaks
when temperature on the continent passes 0 at any point.
In the Laplacian case, this assumption is broken by the
temperature at the centre of the continent reaching 0.
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Figure 20: How solution family 2 breaks for the Laplacian
(figure 14) and the wide Gaussian (figure 18). Red circles
show where the solution plotted is located in their respective
bifurcation diagrams

While in the Gaussian case it is broken by the con-
tinental edges temperatures reaching 0 instead, which is
what initiates all the solutions in family 3B and con-
versely 3A. Even though the Gaussian S(x) has its max-
imum at x = 0, the continent has a higher heat diffu-
sion parameter than the regions with water on each side.
Causing energy to be transferred away from the continent
at a high enough rate to allow it to build up in the water
on each side of the continent, which in turn warms up
the continental edges, making the edges have the high-
est temperature on the continent (Gaussian in the figure
20). When S(x) is narrower, the higher heat diffusion
parameter of the continent is not enough to make the
edges warmer than the centre (Laplacian in the figure 20),
which is why the families 3A and 3B does not appear in
any of the other bifurcation diagrams. They would also
not exist at all if the heat diffusion parameter was lower
for the continent that it was for the water regions, no
matter how wide S(x) was made.

5.3 Unsymmetrical continent

In all of the previous computations the continent had
been placed down on the centre of the line, such that it
is symmetric around 0 along with S(x). This gave mostly
symmetrical solutions, and all cases had a form of bista-
bility. If the continent was placed asymmetrically, it is
of interest to see what happens with the bistability of
the model. The continent was moved to (−1 + ϵ, 1 + ϵ),
for some choices of ϵ > 0. The choice of radiation dis-
tribution is the same Laplacian-type as in the previous
section.

S(x) = e−
|x|
2 (88)
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Figure 21: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.001 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.9, C.10)

In figure 21 the bifurcation diagram was drawn for
an offset of ϵ = 0.001. This diagram looks very simi-
lar to the one without an offset in figure 14, except that
this time the asymmetric solution family 5A does not
perfectly overlap with 5B. There is also an additional so-
lution family here, 2, that is in between 1 and 3. It covers
such a small region that it is difficult to see in the figure,
but rest assured, it is there. The most interesting thing
that happens here, is that the solution family 5B, along
with a subset of solutions from 4, form a loop of solutions
that are not connected to any of the other solutions in the
diagram. All the earlier bifurcation diagrams had every
solution family have been connected to a ”main path”,
when the continent has been moved, this is no longer the
case.

The numerical stability of the solutions is also very
similar to the case without the offset of the continent,
solution family 1, 2, 3 and 6 seem to be stable, and a
small subset of family 5A and 5B looks to be stable.
But again, this might just be due to the limitation of
the stability test. The bifurcation diagrams for offsets
ϵ = 0.003 (figure 22), ϵ = 0.005 (figure 23), ϵ = 0.010
(figure 24) and ϵ = 0.015 (figure 25) all look very similar.
They show that when ϵ increases, the unconnected solu-
tion loop made up by 4 and 5B stray further and further
away from the fully connected solutions, as well as the
loop shrinks in size. Solution family 2 and 5A also grow
in size making family 4 and 6 stray apart, otherwise not
much happens until the displacement of the continent
reach ϵ = 0.020. This is where the unconnected solution
loop stops existing. Upon closer inspection, it was found
that they disappear when the offset reach ϵ ≈ 0.016037.
The bifurcation in for offsets ϵ = 0.020 and ϵ = 0.030, in
figures 26 and 27 respectively, are almost identical. The
solution families 2 and 5A grow a little in size, further
increasing the distance between family 4 and 6, but the
main shape and numerical stability is largely the same.
When the offset reaches ϵ = 0.040 something new hap-
pens, the introduction of two new boundary formulations,

family 4B and 5C. These increase in size when the offset
is further increased to ϵ = 0.050, and if more bifurcation
diagrams were computed these solutions would start to
replace many of the symmetrically named boundary for-
mulations. The stability here is still similar to the stabil-
ity for the previous offsets. With more offset, family 5A
covers a larger portion of the bifurcation diagram, and it
seems that many of the solutions within that family are
stable for both upward and downward perturbations. It
is difficult to say if these solutions are in fact analytically
stable or not, but if they eventually go unstable they take
a long time to do so.
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Figure 22: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.003 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.9, C.10)
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Figure 23: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.005 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.9, C.10)
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Figure 24: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.010 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.9, C.10)
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Figure 25: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.015 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.9, C.10)
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Figure 26: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.020 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.9)
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Figure 27: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.030 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.9)
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Figure 28: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.040 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.8, C.9, C.11)
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Figure 29: Bifurcation diagram for Laplacian S(x) with a con-
tinent offset by ϵ = 0.050 (Using boundary formulations C.3,
C.7, C.4, C.5, C.6, C.8, C.9, C.11)
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6 Conclusion

For the case without a continent on the line, much of
North’s work was recreated. The bifurcation diagrams
in figure 11 and 12 shows a bistability, with an unstable
solution in between the stable ones. The most notable
difference between the two choices of radiation distribu-
tion functions S(x), were for which values of Q the bista-
bility took place. With the Laplacian case having lower
values of Q than the Gaussian case. In the case where a
continent was placed at the centre of the line, from -1 to
1, much more complicated behaviour was found. There
was still a bistability for the most part, but a different
form of bistability. For the Laplacian radiation distribu-
tion function, in figure 14, the bistability differs from the
one found in the case without a continent in that it is
no longer due to having two distinct position of ice-water
edges for the same Q. Another important distinction is
that unsymmetrical solutions were found. In the case
where the continent was placed on the centre of the line,
the unsymmetrical solutions always came in pairs that
were parity inversion of one another, and they made the
bifurcation diagram connected. When the continent was
moved to the right (figures 21, 22, 23, 24, 25, 26, 27, 28,
29), the resulting bifurcation diagrams became uncon-
nected, where an unconnected loop of solutions (family
5B and a subset of family 4) appeared. This loop was
most prominent when the continent was closest to the
centre, and shrunk in size when it was moved further
and further away before it disappeared at around the
offset = 0.016037. A small subset of the unsymmetri-
cal solutions also seemed to be stable in the numerical
stability test performed on the solutions, leading to a
possible tristability in a small region. For the Gaussian
radiation distribution function for the case with a conti-
nent (figure 17), the unsymmetrical solutions traced the
entire path between solution families 4 and 2 in the bi-
furcation diagram, rather than making a smaller loop as
in the Laplacian case. They were still parity inversion
of each other, but this time around none of the solutions
seemed to be stable. A slightly ”wider” Gaussian (fig-
ure 18) gave the same alternative path between families
4 and 2 with unsymmetrical solutions that were parity
inversion of each other. However, this time the symmet-
rical path between 4 and 2, if there is one, contained an
infinite number of solutions families. The special fami-
lies 3A and 3B, each containing multiple families, seem
to converge toward each other, and a heuristic limiting
case was derived that included a uniform 0-degree tem-
perature across the entire continent. For the wider Gaus-
sian a similar type of bistability as in the case without
a continent was found by looking at families 1 and 2 in
the bifurcation diagram. This bistability was also caused
by having solutions for two different positions of the ice-
water edges for the same Q, exactly as in the case without
a continent. Thus, a tristability for a small region of Q
values exists for this case, this tristability is more cer-
tain than the one for the Laplacian case as it is due to
the same phenomenon that happened in the case with-
out a continent, where the bistability has been proven by
North. This phenomenon can be made more apparent
in the case with a continent by either making the radia-
tion distribution function wider or making the continent

smaller.
Further research on the stability of the solutions is a

logical next step, the stability test provided in this thesis
is not particularly persuasive and computationally inef-
ficient. It is also unknown if the bifurcation diagrams
are complete, the unsymmetrical solutions found in this
thesis were mostly discovered based on a gut feeling that
they would be there, so other solutions families might
be missing from the diagrams. Videos of the evolution
of the solutions in some of the bifurcation diagrams as
well as code for plotting all the bifurcation diagrams and
running the numerical simulations can be found in the
GitHub repository [7].
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A Derivation of the model

To derive the model, lets start with some base quantities and define what they are [8]. First off, energy density e(x, t).
Which is defined at each point x and time t to be

e(x, t)dx Energy at a small segment of length

dx on the line around x
(89)

Next up is the quantity that describes where energy flows q(x, t), the energy flux density. In the 1D domain, this is
just a scalar quantity and not a vector quantity as it’s described as in the 2D case. It’s simply just defined as

q(x, t) (90)

where a positive q would mean energy is flowing to the right, and a negative value means it’s flowing to the left. Lastly,
another scalar quantity h(x, t) that has the interpretation energy source density. This just means how much energy is
absorbed or radiated at point x at time t.

h(x, t)dx Energy is absorbed/radiated by

segment dx of the line around point x
(91)

With these quantities in mind, the domain of interest here is an infinite line. So these quantities will be considered
on the unbounded real axis. Introduce the quantities E(t) and H(t), which describe the total amount of contained
energy and total amount of absorbed or radiated energy respectively on a segment of the line. They are defined as

E(t) =

∫ L1

L0

e(x, t)dx (92)

H(t) =

∫ L1

L0

h(x, t)dx (93)

Now from the previous definitions, it’s apparent that the change in energy must be

d

dt
E(t) = H(t)− [q(x, t)]L1

L0
(94)

Which can rewritten into

∂t

∫ L1

L0

dxe(x, t) =

∫ L1

L0

dxh(x, t)− [q(x, t)]L1

L0

∂t

∫ L1

L0

dxe(x, t) =

∫ L1

L0

dxh(x, t)−
∫ L1

L0

dx∂xq(x, t)∫ L1

L0

dx{∂te(x, t)− h(x, t) + ∂xq(x, t)} = 0

(95)

Because all of the calculations so far hold for any domain on the line, it must also hold that

∂te(x, t) + ∂xq(x, t) = h(x, t) (96)

Which then must also hold on the entire real line. By then assuming that the system is in local thermodynamic
equilibrium, the equation of state of the system takes form

e(x, t) = C(x, t)T (x, t) (97)

where C(x, t) is the heat capacity and T (x, t) is the temperature at point x at time t. Now the energy flux density at
a point x in this situation describes the transport of energy from said point to points infinitesimally close to x. From
thermodynamics it’s always true that energy flows from places of high temperature to places of low temperature, thus
the energy flux density q(x, t) is described as

q(x, t) = −K(x)∂xT (x), K(x) > 0 (98)

where K(x) is the heat conductive parameter, this term usually varies from point to point so it is written here as a
function of x. Next step is to combine the equations (96), (97) and (98) to get the equation

∂t(C(x, t)T (x, t)) = ∂x(K(x, t)∂xT (x, t)) + h(x, t) (99)

where h(x, t) is defined as
h(x, t) = h+(x)(1− a(x, t))− h− (100)
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where h+ is the solar radiation, a(x, t) is the albedo of the surface and h− is the energy returned to space as thermal
radiation. However, it is misleading that the albedo is a function of x and t as it is dependent upon the temperature
at each position. So from here and out it is written as a function of T instead. The next term in the equation is h−,
this is found by using the Stephen-Boltzmann law of black body radiation.

h−(x, t) = σTk(x, t)
4 (101)

Where σ is the Stephen-Boltzmann constant and Tk(x, t), measured in Kelvin, is the thermodynamic temperature.
However this temperature is not the same as the one down on the surface, but rather up in the atmosphere at the
point where it’s ability to scatter infrared radiation is too low. From that point and up radiation will be sent out
of the system, the temperature in the atmosphere is not constant throughout itself, it decreases with height. This
phenomenon is modelled by a linearized function around the temperature T = 0◦C. Note that the temperature is
measure in Celsius here and not Kelvin.

h−(x, t) = A(x, t) +B(x, t)T (x, t) (102)

A and B may vary from region to region and depending on what state the line is at said region, but the model does
not suffer much from assuming they are constant. The incoming radiation-term h+(x, t) is modelled by

h(x)+ = QS(x) (103)

where Q is the solar constant and S(x) is the radiation distribution function, which is a function determining how
incoming solar radiation is distributed on the line. All of this combined gives the model used in this analysis.

C∂tT − ∂xK∂xT = QS(1− a(T ))−BT −A (104)

Where the function T is measured in Celsius, note that the terms Tt and Txx doesn’t care about whether the model is
in Celsius or Kelvin because they only care about temperature differences and not absolute temperature. And given
that the BT term comes from a linearization using T measured in Celsius, it is most convenient to continue using
Celsius as the unit of temperature.

B Boundary condition on continental edges

When computing the stationary solutions on the line containing a continent, a special type of boundary condition was
used to determine the system. This boundary condition was on the derivatives of the temperature profile on each side
of the continental edges, and the way it is found is by considering the first equation in (95).

∂t

∫ x1

x0

dxe(x, t) =

∫ x1

x0

dxh(x, t)− [q(x, t)]
x1

x0
(105)

This equation hold for any domain of the line, which means that it must also hold across the continental edges. The
condition needed can be obtained from using this if it is considered around one of the continental edges. Say an edge
is at the point x = a, then consider the equation on the domain a − ϵ to a + ϵ. Note that this is considered only for
stationary solutions, thus none of the terms are functions of t anymore.

∂t

∫ a+ϵ

a−ϵ

dxe(x) =

∫ a+ϵ

a+ϵ

dxh(x)− [q(x)]
a+ϵ
a+ϵ (106)

The time derivative of a function of only x will be 0, putting the right hand side of the equation to 0. Next up is
taking the limit as ϵ→ 0

0 = lim
ϵ→0

∫ a+ϵ

a+ϵ

dxh(x, t)− q(a+ ϵ, t) + q(a− ϵ, t) (107)

The h(x, t) function is piecewise smooth, which will make the integral go to 0 when ϵ → 0. Thus leaving only the
q-term, rewriting the equation to right and left-sided limits gives

lim
x→a−

q(x, t) = lim
x→a+

q(x, t) (108)

Now using equation (98) the special boundary condition for continental edges is obtained.

lim
x→a−

K(x)Tx(x) = lim
x→a+

K(x)Tx(x) (109)

K(x) only has two values in the application here, so this condition can take only two forms

lim
x→a−

KwTx(x) = lim
x→a+

KlTx(x) (110)

for the case the continent on the right side of a, and

lim
x→a−

KlTx(x) = lim
x→a+

KwTx(x) (111)

for when the continent is on the left side.
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C List of boundary formulations

What follows is a list of all boundary formulations used in computing the different bifurcation diagrams. They are
listed with the all the unknown quantities as well as the system of equations that is used to solve for the unknowns.

C.1 Ice

The simplest case, where the entire line is covered in ice. This is already covered in the main thesis, but it is here as
well to make the list complete.

T (ξ) =

∫ ∞

−∞
dxkw(ηwS(1− a0)− αw)

There are no unknown quantities here, a choice of Q and S(x) gives the entire temperature profile. An example of a
solution on this form is plotted in figure 30.

0
x

0
-1
-2
-3
-4

T(
x)

a(T) = a1

a(T) = a0 T

Figure 30: Example of solution ”Ice”

C.2 IceWaterIce

This is the only other boundary formulation found in the case with no continent on the line. This solution is split into
three regions.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]A1

A0

+

∫ A1

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < A1

T3(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw), A1 < ξ <∞

These equation has four unknown quantities.

Tx(A0), Tx(A1), A0, A1.

And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1,

lim
ξ→A+

0

T2(ξ) = −1,

lim
ξ→A−

1

T2(ξ) = −1,

lim
ξ→A+

1

T3(ξ) = −1,

An example of a solution on this form is plotted in figure 31.
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Figure 31: Example of solution ”IceWaterIce”

C.3 IceSnowIce

The simplest boundary formulation for the case with a continent placed at (L0, L1). Consist of three regions, all with
albedo a0. However, the heat diffusion parameter, and thus the Greens function, differs between the regions covered
in ice and the regions covered in snow.

T1(ξ) =
[
∂xTkw − T∂xkw

]L0

−∞
+

∫ L0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < L0

T2(ξ) =
[
∂xTkl − T∂xkl

]L1

L0

+

∫ L1

L0

dxkl(ηlS(1− a0)− αl), L0 < ξ < L1

T3(ξ) =
[
∂xTkw − T∂xkw

]∞
L1

+

∫ ∞

L1

dxkw(ηwS(1− a0)− αw), L1 < ξ <∞

These include the unknown quantities.
T (L0), Tx(L0), T (L1), Tx(L1).

And the system of equations to solve for the quantities.

lim
ξ→L−

0

T1(ξ) = lim
ξ→L+

0

T2(ξ),

lim
ξ→L−

1

T2(ξ) = lim
ξ→L+

1

T3(ξ),

lim
ξ→L−

0

Kw∂xT1(ξ) = lim
ξ→L+

0

Kl∂xT2(ξ),

lim
ξ→L−

1

Kl∂xT2(ξ) = lim
ξ→L+

1

Kw∂xT3(ξ).

An example of a solution on this form is plotted in figure 32.
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0
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-3
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T(
x)

a(T) = a1

a(T) = a0

T1

T2

T3

Figure 32: Example of solution ”IceSnowIce”

C.4 IceWaterSnowWaterIce

This boundary formulation is fr the case with a continent placed at (L0, L1). The formulations are split into five
regions, where some of the ice on each side of the continent has surpassed the critical temperature and melted into
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water.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

T3(ξ) =
[
∂xTkl − T∂xkl

]L1

L0

+

∫ L1

L0

dxkl(ηlS(1− a0)− αl), L0 < ξ < L1

T4(ξ) =
[
∂xTkw − T∂xkw

]A1

L1

+

∫ A1

L1

dxkw(ηwS(1− a1)− αw), L1 < ξ < A1

T5(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw), A1 < ξ <∞

These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), T (L1), Tx(L1), Tx(A1), A0, A1.

And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1

lim
ξ→A+

0

T2(ξ) = −1

lim
ξ→A−

1

T4(ξ) = −1

lim
ξ→A+

1

T5(ξ) = −1

lim
ξ→L−

0

T2(ξ) = lim
ξ→L+

0

T3(ξ),

lim
ξ→L−

1

T3(ξ) = lim
ξ→L+

1

T4(ξ),

lim
ξ→L−

0

Kw∂xT2(ξ) = lim
ξ→L+

0

Kl∂xT3(ξ),

lim
ξ→L−

1

Kl∂xT3(ξ) = lim
ξ→L+

1

Kw∂xT4(ξ).

This system is very difficult to solve analytically, so a numeric root finding algorithm was used instead. An example
of a solution on this form is plotted in figure 33
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Figure 33: Example of solution ”IceWaterSnowWaterIce”

C.5 IceWaterSnowLandSnowWaterIce

This boundary formulation is a special case of the 2N-boundary formulation that comes last. It is also the longest
one that is formulated explicitly. It consists of seven regions, where the critical temperature is crossed both on the
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continent and on both sides as well.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

T3(ξ) =
[
∂xTkl − T∂xkl

]B0

L0

+

∫ B0

L0

dxkl(ηlS(1− a0)− αl), L0 < ξ < B0

T4(ξ) =
[
∂xTkl − T∂xkl

]B1

B0

+

∫ B1

B0

dxkl(ηlS(1− a1)− αl), B0 < ξ < B1

T5(ξ) =
[
∂xTkl − T∂xkl

]L1

B1

+

∫ L1

B1

dxkl(ηlS(1− a0)− αl), B1 < ξ < L1

T6(ξ) =
[
∂xTkw − T∂xkw

]A1

L1

+

∫ A1

L1

dxkw(ηwS(1− a1)− αw), L1 < ξ < A1

T7(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw), A1 < ξ <∞

These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), Tx(B0), Tx(B1), T (L1), Tx(L1), Tx(A1), A0, A1, B0, B1.

And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1,

lim
ξ→A+

0

T2(ξ) = −1,

lim
ξ→A−

1

T6(ξ) = −1,

lim
ξ→A+

1

T7(ξ) = −1,

lim
ξ→B−

0

T3(ξ) = 0,

lim
ξ→B+

0

T4(ξ) = 0,

lim
ξ→B−

1

T4(ξ) = 0,

lim
ξ→B+

1

T5(ξ) = 0,

lim
ξ→L−

0

T2(ξ) = lim
ξ→L+

0

T3(ξ),

lim
ξ→L−

1

T5(ξ) = lim
ξ→L+

1

T6(ξ),

lim
ξ→L−

0

Kw∂xT2(ξ) = lim
ξ→L+

0

Kl∂xT3(ξ),

lim
ξ→L−

1

Kl∂xT5(ξ) = lim
ξ→L+

1

Kw∂xT6(ξ).

There are also solved by using a numerical root finding algorithm. An example of a solution on this form is plotted in
figure 34.
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Figure 34: Example of solution ”IceWaterSnowLandSnowWaterIce”
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C.6 IceWaterLandWaterIce

This boundary formulation is used when all the snow on the continent has melted. It is the only one has solutions for an
arbitrarily high value of Q, apart from the IceWaterIce formulation in the case without a continent. The formulation
is almost identical to the IceWaterSnowWaterIce boundary solution, the only difference being in T3, where a0 has been
replaced with a1.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

T3(ξ) =
[
∂xTkl − T∂xkl

]L1

L0

+

∫ L1

L0

dxkl(ηlS(1− a1)− αl), L0 < ξ < L1

T4(ξ) =
[
∂xTkw − T∂xkw

]A1

L1

+

∫ A1

L1

dxkw(ηwS(1− a1)− αw), L1 < ξ < A1

T5(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw), A1 < ξ <∞

These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), T (L1), Tx(L1), Tx(A1), A0, A1.

And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1

lim
ξ→A+

0

T2(ξ) = −1

lim
ξ→A−

1

T4(ξ) = −1

lim
ξ→A+

1

T5(ξ) = −1

lim
ξ→L−

0

T2(ξ) = lim
ξ→L+

0

T3(ξ),

lim
ξ→L−

1

T3(ξ) = lim
ξ→L+

1

T4(ξ),

lim
ξ→L−

0

Kw∂xT2(ξ) = lim
ξ→L+

0

Kl∂xT3(ξ),

lim
ξ→L−

1

Kl∂xT3(ξ) = lim
ξ→L+

1

Kw∂xT4(ξ).

This system is also solved for by using a numerical root finding algorithm. An example of a solution on this form is
plotted in figure 35.
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Figure 35: Example of solution ”IceWaterLandWaterIce”

C.7 IceWaterSnowIce

This is the first boundary formulation that assumes a unsymmetrical solution. It assumes that ice has melted on only
one side of the continent. In this thesis the continent is placed at (−1 + ϵ, 1 + ϵ), where ϵ ≤ 0. Thus having the left
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side of the continent being the one that is melted makes sense.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

T3(ξ) =
[
∂xTkl − T∂xkl

]L1

L0

+

∫ L1

L0

dxkl(ηlS(1− a0)− αl), L0 < ξ < L1

T4(ξ) =
[
∂xTkw − T∂xkw

]∞
L1

+

∫ ∞

L1

dxkw(ηwS(1− a0)− αw), L1 < ξ <∞

These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), T (L1), Tx(L1), A0.

And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1

lim
ξ→A+

0

T2(ξ) = −1

lim
ξ→L−

0

T2(ξ) = lim
ξ→L+

0

T3(ξ),

lim
ξ→L−

1

T3(ξ) = lim
ξ→L+

1

T4(ξ),

lim
ξ→L−

0

Kw∂xT2(ξ) = lim
ξ→L+

0

Kl∂xT3(ξ),

lim
ξ→L−

1

Kl∂xT3(ξ) = lim
ξ→L+

1

Kw∂xT4(ξ).

Like before, this system is solved by using a numerical root finding algorithm. And an example of a solution on this
form is plotted in figure 36.
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Figure 36: Example of solution ”IceWaterSnowIce”

C.8 IceWaterSnowLandSnowIce

A more complicated boundary formulation that assumes unsymmetrical solutions. This is mostly the same as the
previous one, except that a region of the continent has melted as well.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

T3(ξ) =
[
∂xTkl − T∂xkl

]B0

L0

+

∫ B0

L0

dxkl(ηlS(1− a0)− αl), L0 < ξ < B0

T4(ξ) =
[
∂xTkl − T∂xkl

]B1

B0

+

∫ B1

B0

dxkl(ηlS(1− a1)− αl), B0 < ξ < B1

T5(ξ) =
[
∂xTkl − T∂xkl

]L1

B1

+

∫ L1

B1

dxkl(ηlS(1− a0)− αl), B1 < ξ < L1

T6(ξ) =
[
∂xTkw − T∂xkw

]∞
L1

+

∫ ∞

L1

dxkw(ηwS(1− a0)− αw), L1 < ξ <∞
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These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), Tx(B0), Tx(B1), T (L1), Tx(L1), A0, B0, B1.

And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1

lim
ξ→A+

0

T2(ξ) = −1

lim
ξ→B−

0

T3(ξ) = 0

lim
ξ→B+

0

T4(ξ) = 0

lim
ξ→B−

1

T4(ξ) = 0

lim
ξ→B+

1

T5(ξ) = 0

lim
ξ→L−

0

T2(ξ) = lim
ξ→L+

0

T3(ξ),

lim
ξ→L−

1

T5(ξ) = lim
ξ→L+

1

T6(ξ),

lim
ξ→L−

0

Kw∂xT2(ξ) = lim
ξ→L+

0

Kl∂xT3(ξ),

lim
ξ→L−

1

Kl∂xT5(ξ) = lim
ξ→L+

1

Kw∂xT6(ξ).

Like before, this system is solved by using a numerical root finding algorithm. And an example of a solution on this
form is plotted in figure 38.
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Figure 37: Example of solution ”IceWaterSnowLandSnowIce”

C.9 IceWaterLandSnowWaterIce

This is the first boundary formulation where the assumed asymmetry lies on the continent, here the left part of the
continent has melted, while the right part of the continent is covered in snow.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

T3(ξ) =
[
∂xTkl − T∂xkl

]B0

L0

+

∫ B0

L0

dxkl(ηlS(1− a1)− αl), L0 < ξ < B0

T4(ξ) =
[
∂xTkl − T∂xkl

]L1

B0

+

∫ L1

B0

dxkl(ηlS(1− a0)− αl), B0 < ξ < L1

T5(ξ) =
[
∂xTkw − T∂xkw

]A1

L1

+

∫ A1

L1

dxkw(ηwS(1− a1)− αw), L1 < ξ < A1

T6(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw), A1 < ξ <∞

These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), Tx(B0), T (L1), Tx(L1), Tx(A1), A0, A1, B0.
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And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1

lim
ξ→A+

0

T2(ξ) = −1

lim
ξ→B−

0

T3(ξ) = 0

lim
ξ→B+

0

T4(ξ) = 0

lim
ξ→A−

1

T5(ξ) = −1

lim
ξ→A+

1

T6(ξ) = −1

lim
ξ→L−

0

T2(ξ) = lim
ξ→L+

0

T3(ξ),

lim
ξ→L−

1

T4(ξ) = lim
ξ→L+

1

T5(ξ),

lim
ξ→L−

0

Kw∂xT2(ξ) = lim
ξ→L+

0

Kl∂xT3(ξ),

lim
ξ→L−

1

Kl∂xT4(ξ) = lim
ξ→L+

1

Kw∂xT5(ξ).

Like before, this system is solved by using a numerical root finding algorithm. And an example of a solution on this
form is plotted in figure 37.
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Figure 38: Example of solution ”IceWaterLandSnowWaterIce”

C.10 IceWaterSnowLandWaterIce

This boundary formulation is just a mirror of the previous one. The only difference is that the a0 and a1 are swapped
between T3 and T4. Otherwise everything is the same.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

T3(ξ) =
[
∂xTkl − T∂xkl

]B0

L0

+

∫ B0

L0

dxkl(ηlS(1− a0)− αl), L0 < ξ < B0

T4(ξ) =
[
∂xTkl − T∂xkl

]L1

B0

+

∫ L1

B0

dxkl(ηlS(1− a1)− αl), B0 < ξ < L1

T5(ξ) =
[
∂xTkw − T∂xkw

]A1

L1

+

∫ A1

L1

dxkw(ηwS(1− a1)− αw), L1 < ξ < A1

T6(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw), A1 < ξ <∞

These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), Tx(B0), T (L1), Tx(L1), Tx(A1), A0, A1, B0.
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And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1

lim
ξ→A+

0

T2(ξ) = −1

lim
ξ→B−

0

T3(ξ) = 0

lim
ξ→B+

0

T4(ξ) = 0

lim
ξ→A−

1

T5(ξ) = −1

lim
ξ→A+

1

T6(ξ) = −1

lim
ξ→L−

0

T2(ξ) = lim
ξ→L+

0

T3(ξ),

lim
ξ→L−

1

T4(ξ) = lim
ξ→L+

1

T5(ξ),

lim
ξ→L−

0

Kw∂xT2(ξ) = lim
ξ→L+

0

Kl∂xT3(ξ),

lim
ξ→L−

1

Kl∂xT4(ξ) = lim
ξ→L+

1

Kw∂xT5(ξ).

Like before, this system is solved by using a numerical root finding algorithm. And an example of a solution on this
form is plotted in figure 39.
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Figure 39: Example of solution ”IceWaterSnowLandWaterIce”

C.11 IceWaterLandSnowIce

This boundary formulation is also similar to the previous one, except this one is missing water of the right side of the
continent.

T1(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T2(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

T3(ξ) =
[
∂xTkl − T∂xkl

]B0

L0

+

∫ B0

L0

dxkl(ηlS(1− a0)− αl), L0 < ξ < B0

T4(ξ) =
[
∂xTkl − T∂xkl

]L1

B0

+

∫ L1

B0

dxkl(ηlS(1− a1)− αl), B0 < ξ < L1

T5(ξ) =
[
∂xTkw − T∂xkw

]∞
L0

+

∫ ∞

L0

dxkw(ηwS(1− a0)− αw), L1 < ξ <∞

These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), Tx(B0), T (L1), Tx(L1), A0, B0.
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And the system of equations to solve for the quantities.

lim
ξ→A−

0

T1(ξ) = −1

lim
ξ→A+

0

T2(ξ) = −1

lim
ξ→B−

0

T3(ξ) = 0

lim
ξ→B+

0

T4(ξ) = 0

lim
ξ→L−

0

T2(ξ) = lim
ξ→L+

0

T3(ξ),

lim
ξ→L−

1

T4(ξ) = lim
ξ→L+

1

T5(ξ),

lim
ξ→L−

0

Kw∂xT2(ξ) = lim
ξ→L+

0

Kl∂xT3(ξ),

lim
ξ→L−

1

Kl∂xT4(ξ) = lim
ξ→L+

1

Kw∂xT5(ξ).

Like before, this system is solved by using a numerical root finding algorithm. And an example of a solution on this
form is plotted in figure 40.
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Figure 40: Example of solution ”IceWaterLandSnowIce”

C.12 IceSnowLandWaterIce

This is a mirror of the previous boundary formulation. The water is now on the right side of the continent, and the
left part of the continent is melted instead of the right.

T1(ξ) =
[
∂xTkw − T∂xkw

]L0

−∞
+

∫ L0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < L0

T2(ξ) =
[
∂xTkl − T∂xkl

]B0

L0

+

∫ B0

L0

dxkl(ηlS(1− a1)− αl), L0 < ξ < B0

T3(ξ) =
[
∂xTkl − T∂xkl

]L1

B0

+

∫ L1

B0

dxkl(ηlS(1− a0)− αl), B0 < ξ < L1

T4(ξ) =
[
∂xTkw − T∂xkw

]A1

L1

+

∫ A1

L1

dxkw(ηwS(1− a1)− αw), L1 < ξ < A1

T5(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw), A1 < ξ <∞

These include the unknown quantities.

Tx(A0), T (L0), Tx(L0), Tx(B0), T (L1), Tx(L1), A1, B0.
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And the system of equations to solve for the quantities.

lim
ξ→B−

0

T2(ξ) = 0

lim
ξ→B+

0

T3(ξ) = 0

lim
ξ→A−

1

T4(ξ) = −1

lim
ξ→A+

1

T5(ξ) = −1

lim
ξ→L−

0

T1(ξ) = lim
ξ→L+

0

T2(ξ),

lim
ξ→L−

1

T3(ξ) = lim
ξ→L+

1

T4(ξ),

lim
ξ→L−

0

Kw∂xT1(ξ) = lim
ξ→L+

0

Kl∂xT2(ξ),

lim
ξ→L−

1

Kl∂xT3(ξ) = lim
ξ→L+

1

Kw∂xT4(ξ).

Like before, this system is solved by using a numerical root finding algorithm. And an example of a solution on this
form is plotted in figure 41.
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Figure 41: Example of solution ”IceSnowLandWaterIce”

C.13 General 2N-boundary formulation

The last boundary formulation that is used in the computation of the bifurcation diagrams is the 2N-boundary
formulation. This is a general, symmetrical boundary formulation for an arbitrary number of snow-land transitions
on the continent. Doing this generally is especially useful in computing the bifurcation diagram in the gaussian case
depicted in figure 18. To do this, the first step is to separate the boundary formulations for the regions with water
from the region with a continent. On the left side of the continent the equations that model the temperature are

T−2(ξ) =
[
∂xTkw − T∂xkw

]A0

−∞
+

∫ A0

−∞
dxkw(ηwS(1− a0)− αw), −∞ < ξ < A0

T−1(ξ) =
[
∂xTkw − T∂xkw

]L0

A0

+

∫ L0

A0

dxkw(ηwS(1− a1)− αw), A0 < ξ < L0

And on the right side of the continent

T1(ξ) =
[
∂xTkw − T∂xkw

]A1

L1

+

∫ A1

L1

dxkw(ηwS(1− a1)− αw), L1 < ξ < A1

T2(ξ) =
[
∂xTkw − T∂xkw

]∞
A1

+

∫ ∞

A1

dxkw(ηwS(1− a0)− αw), A1 < ξ <∞

These are constant no matter how many snow-edges are on the continent. These equations include the eight unknown
quantities

Tx(A0), T (L0), Tx(L0), T (L1), Tx(L1), Tx(A1), A0, A1.
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Furthermore, by introducing 2N snow-edges on the continent, 2N+1 equations are needed to model the entire domain,
Gi(ξ), i = −N, . . . ,−1, 0, 1, . . . , N . These are constructed as follows

G0(ξ) =
[
∂xTkl − T∂xkl

]B1

B−1

+

∫ B1

B−1

dxkl(ηlS(1− ac(l))− αl), B−1 < ξ < B1

GN (ξ) =
[
∂xTkl − T∂xkl

]L1

BN

+

∫ L1

BN

dxkl(ηlS(1− ac(N+l))− αl), BN < ξ < L1

G−N (ξ) =
[
∂xTkl − T∂xkl

]B−N

L0

+

∫ B−N

L0

dxkl(ηlS(1− ac(N+l))− αl), L0 < ξ < B−N

c(x) =

{
0, x is even

1, x is odd

For the static cases, the ones that exist for all N > 0. And the rest are

Gi(ξ) =
[
∂xTkl − T∂xkl

]Bi+1

Bi

+

∫ Bi+1

Bi

dxkl(ηlS(1− ac(i+l))− αl), Bi < ξ < Bi+1

G−i(ξ) =
[
∂xTkl − T∂xkl

]B−i

B−i−1

+

∫ B−i

B−i−1

dxkl(ηlS(1− ac(i+l))− αl), B−i−1 < ξ < B−i

i = 1, 2, . . . , N − 1,

Thus if l = 0, the centre of the continent is covered in snow, and if l = 1 the centre is land. These new equations
introduce 4N new unknown quantities

Bi, B−i, Tx(Bi), Tx(B−i), i = 1, 2, . . . , N.

Which means that the total number of unknown quantities in these equations is 4N+8. The static system of equation,
the ones that exist for any N > 0 are as follows

lim
ξ→A−

0

T−2(ξ) = −1

lim
ξ→A+

0

T−1(ξ) = −1

lim
ξ→A−

1

T1(ξ) = −1

lim
ξ→A+

1

T2(ξ) = −1

lim
ξ→L−

0

T−2(ξ) = lim
ξ→L+

0

G−N (ξ),

lim
ξ→L−

1

GN (ξ) = lim
ξ→L+

1

T1(ξ),

lim
ξ→L−

0

Kw∂xT−2(ξ) = lim
ξ→L+

0

Kl∂xG−N (ξ),

lim
ξ→L−

1

Kl∂xGN (ξ) = lim
ξ→L+

1

Kw∂xT1(ξ).

With the rest of the equations being

lim
ξ→B−

i

Gi−1(ξ) = 0

lim
ξ→B+

i

Gi(ξ) = 0

lim
ξ→B−

−i

G−i(ξ) = 0

lim
ξ→B+

−i

G−i+1(ξ) = 0

i = 1, 2, . . . , N

This gives a total of 4N +8 unknown quantities as well as 4N +8 equations to solve for them. This system was solved
by using a numerical root finding algorithm. An example of a solution on this form is give in figure 41
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