

Faculty of Health Science, Department of Medical Biology; Molecular Pharmacology and Toxicology Research Group

Inhibition of bacterial and human zinc-metalloproteases

A putative strategy in the treatment of bacterial infections

Bibek Chaulagain Master's thesis in Biomedicine [MBI-3911] November 2021

Table of Contents

Acknowledgements5
Abstract
Abbreviations7
1 Introduction9
1.1 History of antibiotics
1.2 Antibiotic resistance
1.3 Pseudomonas aeruginosa10
1.4 Virulence factors as targets for development of new antibacterial drugs11
1.5 Proteases
1.5.1 Matrix metalloproteases
1.5.1.1 Matrix Metalloprotease-14(MMP-14)14
1.5.1.1 Matrix Metalloprotease-14(MMP-14)
1.5.2 Bacterial Matalloproteases16
1.5.2 Bacterial Matalloproteases
1.5.2 Bacterial Matalloproteases. 16 1.5.2.1 Pseudolysin(PLN). 16 1.5.2.2 Thermolysin(TLN). 17
1.5.2 Bacterial Matalloproteases. 16 1.5.2.1 Pseudolysin(PLN). 16 1.5.2.2 Thermolysin(TLN). 17 1.5.2.3 Aureolysin(ALN). 18
1.5.2 Bacterial Matalloproteases161.5.2.1 Pseudolysin(PLN)161.5.2.2 Thermolysin(TLN)171.5.2.3 Aureolysin(ALN)181.5.3 Similarities between bacterial metalloproteases19
1.5.2 Bacterial Matalloproteases161.5.2.1 Pseudolysin(PLN)161.5.2.2 Thermolysin(TLN)171.5.2.3 Aureolysin(ALN)181.5.3 Similarities between bacterial metalloproteases191.6 Molecular modeling20

1.7.1 Enzyme inhibition
1.7.2 IC ₅₀ value and K _m value23
1.8 Aims of the study25
2 Materials and methods27
2.1 Materials27
2.1.1 List of the chemicals and equipment used in the experiment
2.1.2 General information about the chemicals and compounds27
2.2 Methods35
2.2.1 Preparation of Assay buffer
2.2.2 Preparation of compounds
2.2.3 Assay method
2.2.3.1 Settings of the Perkin Elmer LS50 spectrophotometer40
2.2.3.2 Settings of clarostar40
2.3 Molecular modeling41
2.3.1 Docking and MMGBSA calculation41
2.3.2 Ligand preparation41
2.3.3 Protein preparation and grid map generation41
2.3.4 Docking

Results	43
3.1 Calculating inhibition activity of the compounds for zinc metallop	roteases43
3.2 Molecular Modeling	52
3.2.1 Molecular interactions between TLN and ligands	52
3.2.2 Molecular interactions between PLN and ligands	
3.2.3 Molecular interactions between ALN and ligands	61
3.2.4 Molecular interactions between MMP-14 and ligands	66
3.3 MMGBSA calculation	71
4 Discussion	73
4.1 Structural differences in active site of zinc metalloproteases	73
4.2 Dual role of MMPs	73
4.3 Interactions of ligands with Zinc Metalloproteases	74
4.4 Challenges in developing inhibitors for zinc metalloproteases	76
4.5 Possible solutions to overcome the challenges	77
5 Conclusion	79
6 Future prospective	79
7 References	81
8 Appendix	

Acknowledgements

The present research work was performed as a part of the Master's degree in Biomedicine (MBI-3911) at the Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, under the supervision of the Research group of Molecular Pharmacology and Toxicology. I am very grateful to my two supervisors during this thesis, Professor Ingebrigt Sylte and Professor Emeritus Jan-Olof Winberg, for the help in the laboratory work, and also in writing the thesis. They introduced me in the world of molecular modelling and enzyme kinetics as a young master student and helped me to explore my knowledge within this field. Similarly, I would also like to thank Fatema Rahman and Imin Wushur as they helped me a lot in the laboratory and molecular modelling. Likewise, I would also like to thank all the members of the Research group of Molecular Pharmacology and Toxicology for their support for providing me a good atmosphere to work and support in my work by sharing your ideas in this field.

Finally, I would like to thank all my family members and parents for their love and support throughout the period.

Thank you.

Abstract

Antibiotic resistance is one of the major challenges in the present era and it is drastically increasing with the increase in time because of the overuse and misuse of antibiotics. Therefore, there is a demand of new antibiotics with new modes of action or other innovative strategies to overcome bacterial infections as soon as possible. The zinc metalloproteases Themolysin (TLN), Pseudolysin (PLN) and Aureolysin (ALN) are important bacterial virulence factors and the inhibition of these bacterial virulence factors is believed to be a new treatment option of bacterial infections. However, in order to have a therapeutic value, inhibitors of these enzymes should not interfere strongly with the activity of human zinc metalloproteases.

In the present thesis, 26 compounds were tested for the inhibition of TLN, PLN, ALN and the human matrix metalloproteases-14(MMP-14). The compounds were selected from a previous virtual screening project at the research group. The inhibition of the compounds was tested by measuring the enzyme activity of PLN, TLN ALN and MMP-14 after exposure of the test compounds. The time resolved fluorescence by the use of fluorogenic substrates was used to measure the enzyme activity. The results showed that some of the compounds inhibited the enzyme activity by 30%-40% and they were not considered as slow binders as there was no significant change in activity with respect to the time. Compounds with highest rate of inhibition in enzyme assays were selected and proceed for molecular modeling studies by docking and MMGBSA calculations. The best compounds were compared with a known strong inhibitor of the zinc- metalloproteases in the molecular modeling part.

ABBREVIATIONS

[E]	Concentration of enzyme
[I]	Concentration of inhibitor
[S]	Concentration of substrate
μl	Microliter
μM	Micromolar
2D	Two- dimensional
3D	Three-dimensional
ALN	Aureolysin
ChEMBL	A manually curated database of bioactive molecules having drug like features
DMSO	Dimethyl sulfoxide
IC ₅₀	The concentration of a compound that results in 50% inhibition of an enzymes
	reaction velocity against a substrate
Km	reaction velocity against a substrate Michaelis-Menten constant: the concentration of substrate which gives an enzymatic reaction rate equal to the half of the maximum rate of enzymatic reaction ($V_m/2$)
	Michaelis-Menten constant: the concentration of substrate which gives an enzymaticreaction rate equal to the half of the maximum rate of enzymatic
kDa	Michaelis-Menten constant: the concentration of substrate which gives an enzymatic reaction rate equal to the half of the maximum rate of enzymatic reaction $(\rm V_m/2)$
K _m kDa MEROPS MMP	Michaelis-Menten constant: the concentration of substrate which gives an enzymatic reaction rate equal to the half of the maximum rate of enzymatic reaction ($V_m/2$) Kilo-Dalton

TLN	Thermolysin
V ₀	Velocity of an enzymatic reaction without the inhibitor
Vi	Velocity of an enzymatic reaction containing the inhibitor
V_{m}	Maximum rate of enzymatic reaction
VLS	Virtual ligand screening
WHO	World health Organization

1 Introduction

1.1 History of antibiotics

From the discovery of penicillin to the present modern era, antibiotics can be taken as one of the boons in the field of medicine. As antibiotics have played a vital role in control and eradication of the infectious diseases, which in turn is very important for the existence of the humankind (1). Before the invention and production of antibiotics, the mortality rate was very high due to lack of effective treatment (medications) and control of diseases. Then soon after the invention of the microscope in the 17th century and other technologies, scientists became interested in the causes, routes, infection steps and control of diseases caused by the microbes, which accelerated the invention of the new medications leading to the discovery of the antibiotics (2).

11Antibiotics are the biomolecules produced by microorganisms or synthesized in laboratory which inhibits the growth of or has capacity to kill the micro-organisms (3). Besides the use in human and veterinary medicine, antibiotics are used in different nonmedical fields like in fisheries, aquaculture, food preservatives, paint industry, alcohol industry and lots of other domestic uses like in field of agriculture (3). Due to the extensive use of antibiotics in different fields along with the medical field, different bacteria have developed a resistance against the treatment which is termed as antibiotic resistance. When any bacteria is exposed to antibiotic the resistance is developed by bacteria due to new spontaneous mutation(s) during the antibiotic treatment and the mutation(s) are transferred to other bacteria in the form of resistance gene with the help of genetic elements like plasmids (3, 4).

Although antibiotics are considered to be one of the most significant invention in the field of modern medicine, research have shown that some antibiotics like tetracycline were present in skeletal samples of Egyptian people from the late roman period (5) and in samples from human skeleton from Sudanese Nubia from 650-550 CE (6). Artemisinin was discovered as a drug to treat malaria infection in the 1970s, and has been used in treatment of many illness by Chinese herbalists for thousands of years (7). This showed that antibiotics and anti-parasitic drugs have been used since ancient times, only the form was different (8).

1.2 Antibiotic resistance

The main reason of antibiotic resistance can be considered a result of irrational use and the increasing use in medicine. The antibiotic resistance is leading to global threats as many of the bacteria are becoming resistant to the antibiotics so that it is difficult to treat the infection with the same antibiotics as before or with the same dose as before (9). Antibiotic resistance is found to be more common in the countries where there is high use of antibiotics (8). At the European continent, the use of antibiotics was found to be higher in southern parts than in the northern parts. In the years from 2012-2016 the use of antibiotics was found to be in a declining phase in Finland, Norway and Sweden, while an increasing trend was observed in Greece and Spain (9). The same trend of decreased use of antibiotics continued in Norway, Sweden and Denmark during 2016-2019 and the increasing trend continued in the Greece and Spain (10).

The World Health Organization (WHO) with a collaboration with the division of infectious diseases at the university of Tubingen, Germany divided the pathogens according to the necessity of new antibiotics as with critical, high or medium priority. The pathogens were divided into these three categories based on their deadliness, resistance to known antibiotics, transmission frequency, medium of transmission and their treatment options remaining till date. The critical group included bacteria with multiple drug resistance (resistance produced by any pathogen for more than one drug) that are in high threat in the hospitals leading to the use of critical care devices like ventilators. These bacteria include *Acinebacter, pseudomonas aeruginosa* (*P.aeruginosa*), and *Enterobacteriaceae* respectively. *P. aeruginosa* was classified as the second most critical bacteria for which new antibiotics are urgently needed. It is a demand of quickly obtaining new antibiotics with new modes of action or other innovative strategies to overcome these bacterial infections. The second and third category consisted of bacteria like *salmonella, streptococcus* like bacteria which are less dangerous and are single drug resistant (10).

1.3 Pseudomonas aeruginosa

P. aeruginosa is a gram-negative opportunistic bacterium first reported in humans in 1862 and is responsible for many kinds of diseases, including 10-15% of hospital acquired infections

(11). In addition to this, *P. aeruginosa* is also responsible for chronic lung infection in cystic fibrosis patients, bacteremia in severe burn cases and acute ulcerative keratitis (which is a major cause of mortality). And almost all kinds of P. aeruginosa infections are found to be associated with an immune-comprised host defense (12), like urinary tract infection and other infections (eyes, skin, soft tissues) (13). Present antibiotics are occasionally successful against P. aeruginosa infections because P. aeruginosa possesses both intrinsic and acquirable resistance mechanisms (14). Another reason for putative complications is that the bacteria forms biofilm which blocks the access of antibiotics to the bacteria and antibiotics gets trapped inside the biofilm (15). *P. aeruginosa* can survive in highly diversified conditions as it consists of highly variable metabolic versatility from soil to a living host. When a mixture of unfavored carbon is provided to *P. aeruginosa*, the carbon metabolism is regulated by catabolite repression control mechanism. This mechanism accelerates the catabolism of substrates like short chain fatty acids, amino acids and polyamines (16, 17). This helps P. aeruginosa to survive in anaerobic respiration with minimum utilization of energy (12). Other striking features of *P. aeruginosa* is its ability to grow up to 42°C temperature (12, 13) and survival in poor nutrition and hostile condition (16).

The genome of *P. aeruginosa* consists of a two compartment system (core genome and accessory genome) which encodes the outer membrane proteins which are involved in adhesion, motility, export of virulence factor and sensing to the environment. The genome has 5570 open reading frames (ORFs) and a genome size of 6.3Mbp (14). The core genome is highly conserved and covers about 90% of the total genome (18). The accessory genome are found to make a cluster in a certain loci and are named as "regions of genomic plasticity" which help in niche based adaptation (19).

1.4 Virulence factors as targets for development of new antibacterial drugs

In bacteria, proteases play a vital role in nutrition, growth and invasion into host that leads to the death of millions of people in the world (20, 21). In addition, several proteases are known to be bacterial virulence factors. Bacterial virulence factors are molecules synthesized by the bacteria which increases the capacity of bacteria to infect or damage a host tissue. They are known to facilitate bacterial colonization by inducing damage to a host tissue and actively

weakening the host immune response. Inhibition of bacterial virulence factor instead of targeting the bacterial growth is considered as a new alternative strategy in the development of antibiotics (22-24). Such compounds are found to have little effect on evolutional pressure for the development of antibiotic resistance, and little impact in normal flora of the human body. They may be used alone, or as an adjuvant to existing treatment. Many proteases are found to be bacterial virulence factors and are interesting antibacterial drug targets. However, there are no compounds which so far have been approved as antibiotics that target bacterial virulence (24). Virulence factor is a character of any microorganism which help them to replicate and disseminate within the host by overcoming the host defense mechanism (25) like urease in *cryptococcus neoformans*.

However, in order to have therapeutic potential the inhibitors should only inhibit the bacterial proteases and not interfere strongly with the function of human proteases. It has been estimated that there are more than 60000 different proteases (26).

1.5 Proteases

Proteases or peptidases are enzymes that have the capacity to catalyze the reaction and break down proteins into amino acids or small polypeptides and form new protein products. Proteases also help in the regulation of protein function (27). The process of protein break down is done by cleaving peptide bonds of proteins by hydrolysis (28). Proteases are broadly classified into two classes; exo-peptidases and endo-peptidases on basis of their hydrolysis of the proteins. Exopeptidases are proteases which cleave peptides at N-terminus or C-terminus releasing single amino acids, while endopeptidases cleave within the peptide chain. Figure 1 is a schematic illustration of a protein/peptide binding to the active site of an endo-peptidase. The MEROPS database classify the proteases (on the basis of the active site residues taking part in a catalytic reaction) into eight classes including; aspartic (A), cysteine (C), glutamic (G), metallo (M), serine (S), threonine (T), aspargine (N) and mixed (M) (29). In humans, the proteases are involved in different physiological process of our body like in glaucoma (metalloproteases are expressed) (30), cell signaling, hemostasis, blood coagulation, wound repair (31), reproduction and angiogenesis (32). Any kind of dysregulation of the proteases may lead to different

diseases (33). There are approximately 570 proteases in humans, out of which 190 are metalloproteases (34).

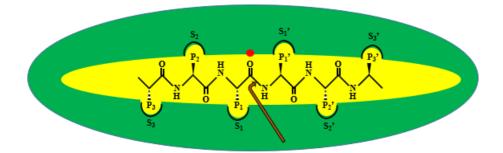
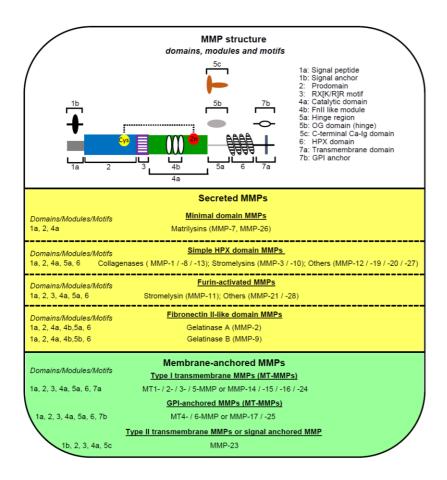



Figure 1: Schematic illustration of the binding of a peptide substrate to the active site cleft in a protease.

The active site cleft with its sub-sites (yellow) is designated as S (S_1 , S_2 etc) and the side-chains in the peptide substrate that interact with these sub-sites are designated P (P_1 , P_2 etc). The unprimed sites are to the N-terminal and the primed sites are to the C-terminal side of the scissile bond (red arrow). Red dot represents the catalytic residue (zinc in most metalloproteases).

1.5.1 Matrix metalloproteases (MMPs)

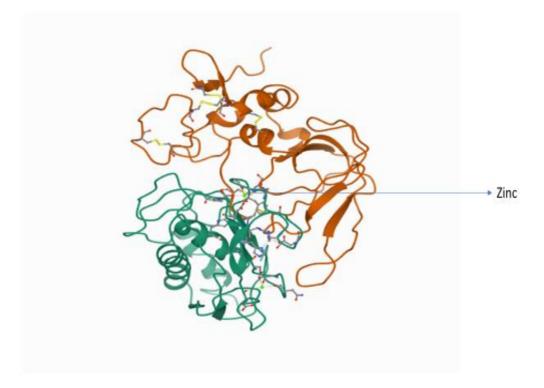
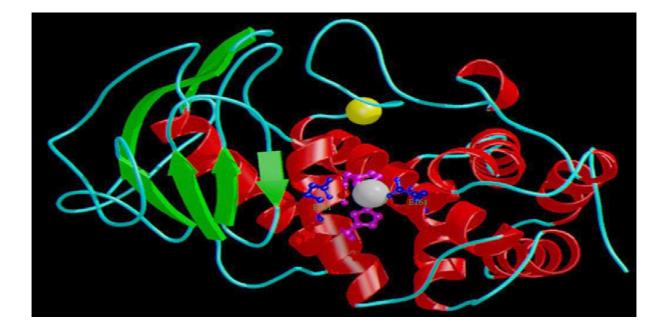

Matrix Metalloproteases (MMPs) is a sub-family of calcium dependent metalloproteases containing a catalytic zinc ion and a structural zinc ion. The subfamily consists of both secreted and membrane associated proteases and belong to the M10 family of proteases (21). MMPs are built up of different domains, modules and motifs (Figure 2). The main characteristics of this family is that it consists of the HEXXHXXGXXH zinc binding motif and has a met-turn formed by a conserved methionine C-terminal to the zinc binding motif (35). The fourth ligand in the inactive pro-form is the cysteine of the PRCGXPD motif of the pre-domain, while a water molecule is the fourth ligand in the activated form. In humans, 23 different MMPs are found (22, 36). MMPs are endopeptidases which play vital roles in the degradation of the extracellular matrix and basement membrane. The activity of MMPs is found to be increased in different human cancer forms.

Fig. 2: Structure of secreted and membrane-anchored MMPs (The figure is adopted from Extracellular human and bacterial metalloproteases – challenges in design of specific metalloprotease inhibitors. Fatema Raman, Imin Wushur, Ingebrigt Sylte and Jan-Olof Winberg, Tidsskrift for Norsk-biokjemisk selskap, in press.)

1.5.1.1 Matrix metalloprotease-14 (MMP-14)

MMP-14 is a membrane bound collagenase which is an important protein in cancer invasion and metastasis, and collagenolysis is vitally dependent on MMP-14 (37). MMP-14 targets a wide range of extracellular matrix (ECM) proteins. Re-modeling of ECM proteins plays a significant role in skeletal muscle injury and cellular regeneration. The regulation of cellular regeneration and skeletal muscle injury is activated by MMP-14. MMP-14 helps in the activation of cytokines, chemokines and growth factors (38). MMP-9 is a secretory type metalloprotease (gelatinase B), whereas MMP-14 is a membrane type-1 metalloprotease (MT1-MMP) consisting of a transmembrane domain having the catalytic site located outside the cell, i.e. into the extracellular environment (21). All MMPs are comprised of different structural domains including an N-terminal pro-domain followed by a catalytic domain, hinge region and C-terminal hemopexin domain (Figure 2). In MMP-14, the C-terminal hemopexin domain is followed by a transmembrane domain and the catalytic domain in MMP-9 consists of a unique module of three fibronectin-II like repeats (33). The structure of MMP-14 in complex with the tissue inhibitor 2 of matrix metalloproteases (TIMP-2) is shown in Figure 3. MMP-9 is activated by different naturally occurring proteases such as trypsin, MMP-2, MMP-3 or by organomercurial compounds like HgCl₂. MMP-9 can also be activated by different bacterial metalloproteases like PLN and TLN. Likewise, MMP-14, the other membrane type MMPs (MT-MMPs) as well as some of the secreted MMPs are activated in the cell by the serine protease furin, which cleaves a basic RX[K/R]R motif located in the C-terminal part of the prodomain in these MMPs (see figure 2) (33).


Figure 3: 3D structure of the catalytic domain of MMP-14, in which MMP-14 is bound to the Tissue Inhibitor of Metalloprotease-2 (TIMP-2) (PDB ID: 1BQQ). TIMP-2 (orange) is bound to the catalytic zinc (indicated by blue arrow) in MMP-14 (represented in green color).

1.5.2 Bacterial metalloproteases

Bacterial proteases are found in all eight classes of proteases. Most of the metalloproteases are zinc metalloproteases (39). According to the presence of sequences around the HEXXH motif bacterial zinc metalloproteases are classified into five distinct families; thermolysin, astacin, serratia, matrixin and reprolysin metalloproteases (40). The zinc metalloprotease family contains a large family called the thermolysin family or the M4 family, which falls under the MA clan of metalloproteases. The M4 family contains bacterial enzymes including PLN (LasB) from *P. aeruginosa*, TLN from *Bacillus thermoproteolyticus* and ALN from *staphylococcus aureus* and all belong the subclan MA(E) (41, 42). TLN is used by the industry in the synthesis of aspartame (artificial sweetener) (43, 44).

1.5.2.1 Pseudolysin

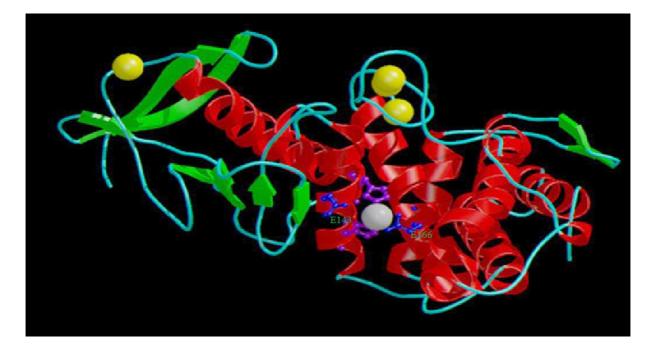

PLN (LasB) (Figure 4) is the most important secreted bacterial virulence factor of *P. aeruginosa* (45) and has a capacity to digest denaturated proteins like fibrin, casein and hemoglobin. In addition to this, in *P. aeruginosa* infection it can decrease proteins of significant biological roles like elastin, laminin, cytokines, fibrinogen, coagulation factor XII. PLN is secreted by type II secretion pathway which is signal sequence dependent and involves a two-step secretion from the inner to the outer membrane. Secretion of PLN can be minimized by increasing the concentration of glucose while iron, ammonium sulfate and some antibiotics also have ability to decrease its production (46).

Figure 4: 3D Structure of PLN (resolution 1.5Å) of *P. aeruginosa* obtained by X-ray diffraction studies (figure adopted from the MEROPS database). The catalytic zinc is light grey in color and calcium in yellow color in CPK sphere. The ligands of zinc are shown in ball and stick representation. His-140 and His-144 are shown as purple color and Glu-164 is shown in blue. The catalytic Glu-141 is shown in blue.

1.5.2.2 Thermolysin

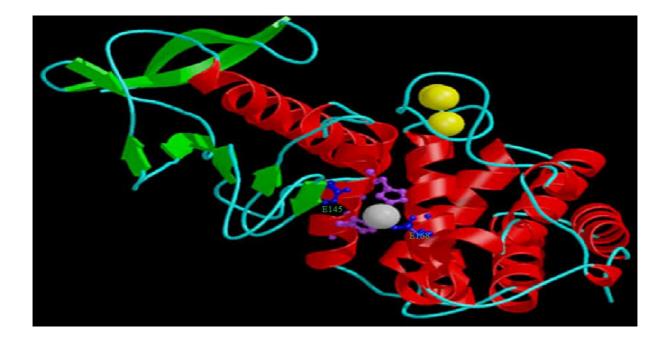

The structure of TLN is shown in Figure 5. TLN is also a member of M4 family of metalloproteases and can be seen in bacteria and fungus which is being biologically active at a pH of 7. TLN binds the catalytic zinc by a tetrahedrally co-ordination of by three amino acids (two histidines and a glutamic acid) and a water molecule(47). TLN cleaves at the N-terminal side of bulky amino acids like Leu, Phe and Val and other amino acids like Met, His, Tyr, Ser as these amino acids interacts at sub-site (S₁') in the enzyme (see figure 1) (48). PLN and griselysin also favor binding of hydrophobic residues to their S₁' sub-sites, although they have a larger preference for aromatic residues than TLN (49, 50).

Figure 5: 3D Structure of Thermolysin from MEROPS database obtained by X-ray diffraction method. The catalytic zinc is represented as light grey in color and structural calcium in yellow in color. The ligands of zinc (His-142, His-146 and Glu-166) and catalytic Glu-143 are shown in ball and stick representation. The histidines in purple and the glutamic acids in blue color, respectively.

1.5.2.3 Aureolysin

Aureolysin (ALN) is a single chain protein having a molecular weight of 28 kDa. The structure of ALN is shown in Figure 5. For the catalytic activity, zinc is required, but it can also be replaced with cobalt (giving a protease which is more active than native enzyme). The richest source of aureolysin is strain V8 which is found in staphylococcus aureus (involved in cleavage of peptide bonds from COOH side) (51).

Figure 6: 3D structure of Aureolysin from MEROPS database obtained by X-ray diffraction method. The catalytic zinc is represented as light grey in color and structural calcium as yellow in color. The ligands of zinc (His-144, His-148 and Glu-168) and the catalytic glutamic acid (Glu-145) are shown in ball and stick representation. The histidines in purple and the glutamic acids in blue color, respectively.

1.5.3 Similarities between the bacterial proteases

There are a lot of similarities and differences between these three bacterial proteases if we look at the 3D-structures between them. One of the major structural difference is that PLN consists of a structural calcium and TLN have three of them. Likewise, another difference is that PLN has more space for binding to a substrate as compared to TLN. Even though, PLN is not more recognized as TLN, it has some difference in the size of S_1 ' pocket leading to the difference in substrate specificity and has larger substrate binding cleft then in TLN. (41, 52, 53). PLN has a bigger sized binding pocket then TLN (54). ALN also have similar structure as compared to the TLN but it shows a closed active site cleft confirmed when viewed without any inhibitor (55).

1.6 Molecular modeling

Molecular modeling is a collection of computational techniques used to study the molecular structure and behavior of biological molecules. The methods are used to stimulate, predict and analyze the properties and behavior of molecules in an atomic level. This has become one of the major applied strategy in the field of computational chemistry, drug design, computational biology and materials science (56).

1.6.1 Molecular Docking

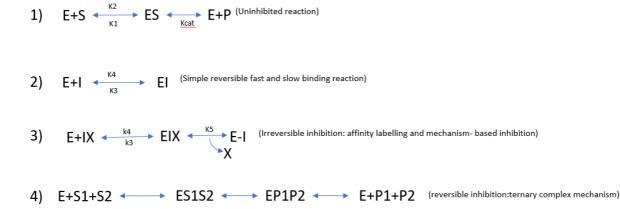
Molecular docking is an application of molecular modeling which deals with the prediction of binding modes and affinities of proteins or enzymes with small molecules (ligands) by proving a search algorithm and numerical score (scoring function) (57). Molecular docking is one of the most commonly used technique in drug design as it has the ability to anticipate the binding conformation of ligands to its binding site with the strength expressed in a numerical value on the basis of different favorable intramolecular interactions like hydrophobic interactions, hydrogen bonds and ligand interactions (58). Molecular docking can be viewed as a "lock-andkey" model in which protein is referred as a "lock" and ligand as "key" as which they fit only in their orientation. But this concept has been replaced by another analogy "hand-in- globe" as in the docking process both the ligand and protein can be made flexible. In an induced fit docking process, the ligand and protein change their confirmation and maintain their optimum fit but in the XP docking the ligand change its conformation and the target is rigid (59). The main purpose of molecular docking is to predict ligand-receptor complexes using computational methods. This can be performed by two connecting steps which involves the attachment of the conformations of ligands into the active site of the protein and ranking those conformations using a scoring function. In ideal condition, sampling algorithms meets the experimental binding mode and scoring function ranks the highest among all the conformations (60). In addition to the use in drug discovery by identifying new target compounds to a particular protein, molecular docking can be used in in-silico as well as other experimental techniques like a combination of docking and other computational techniques with some experimental data can be used in study of drug metabolism by grab some important information from cytochromeP450 (61). Similarly, this technique was also used to find inhibitors for the enzyme (DNA gyrase) by de-novo design of the same enzyme (62).

Major obstacles in docking studies are the receptor flexibility and movement of secondary elements of receptors, ligands and catalysts. Although, some methods can overcome this by introducing structural flexibility, but with the global flexibility there is a requirement of an effective way to obtain and selection of reliable protein structures for which can fit in protein embedment. Another limitation of this method is high computational cost in CPU hours (60).

1.6.2 MMGBSA calculation

In a molecular docking, scoring function is used for the evaluation of the docking results but these functions usually simplify the calculations with many approximations because of the speed of the work (screening of one million compounds in 90 minutes using 15 thousand CPUs) (63). So, the docking program leaves behind the accuracy by focusing on the speed of the work. Although in most of the cases docking programs are used for the ligand binding interactions there is no availability of an ideal scoring function for all types of proteins and biomolecules. So, by using an imprecise scoring function, most of the times it fails to give the correct estimation of binding energies as compared to the experimental value. In such case, for the confirmation of the accurate binding free energies rescoring steps are performed (64, 65). Therefore, in such case MMGBSA method is used for the rescoring as it has fastest force field method for free energy binding method in comparison to the other force field methods like thermodynamic integration (66, 67). So, MMGBSA is the most widely used method in the free energy calculation and gives more accurate and reliable results then traditional molecular docking (68-70).

1.7 Enzyme kinetics


Enzymes are the biological molecules capable of altering the chemical reactions occurring in living organisms. If any of the enzymes are dysregulated or failed to work, it may lead to the dysfunction of any system or even to the death of an organism. Likewise, most toxins and

venoms from different bacteria and animals consists of enzymes (71). So, lots of the pharmaceutical companies are developing and testing the compounds for the inhibition of the target enzymes of the pathogenic organisms. For this process we need to know every possible information of the enzyme like its substrate specificity, whether it is single or multi-substrate enzyme, K_m and k_{cat} values of substrates, catalytic residues in the active side of the enzyme. What assay should be used, is it a cell based or an in-vitro assay (72-74).

1.7.1 Enzyme inhibition

The rate of an enzymatic reaction can be altered by the presence of any kind of compounds (moderators). There can be three scenarios in such case: the rate of reaction can be either increased or decreased or no change. If the rate reaction is increased, it is called enzyme activation and if it is decreased it is known as enzyme inhibition and those compounds are termed as inhibitors. The inhibitors are widely used in the field of human and veterinary medicine as well as in the production of pesticides and pharmaceutical agents (75).

The inhibitor can bind both reversible and irreversible to the active site of an enzyme. In ideal conditions, the irreversible reaction is usually slow and reversible reaction is fast when we compare with the turn- over rate of enzymes (Figure 7). But there are also reversible inhibitors that have a slow binding to the enzyme. The relationship between the dissociation constant of the enzyme inhibitor complex (K_i) and total concentration of the enzyme (E_t) determines whether the reversible inhibitor binds tightly to the enzyme or not. If the ratio of (E_t/K_i) is 0.01 or less then the analysis of the inhibition activity is done on the basis of Michaelis-Menten equation or if the ratio is more than 0.01 the Michaelis-Menten is not valid as the concentration of the free inhibitor in the solution is not the same as total concentration of the inhibitor (76, 77). In the case of reversible inhibition, reversible inhibitors are used for the detection of enzyme reaction mechanism, i.e. if there is a binding order of substrates to an enzyme with two or more substrates and if so, which is the binding order. Figure **7** shows a two substrate reaction (S1 and S2) binding to the active side of the enzyme and the forming a ternary enzyme-substrate (ES1S2) complex and after the catalysis they form a ternary enzyme product complex(EP1P2) and finally from which the product P1and P2 leave the enzyme (78).

Figure 7: Representation of time dependent inhibition reaction:(1) Turn-over of the enzyme without the inhibitor. (2) Maintenance of equilibrium in simple reversible inhibition. K3 and K4 are low in a fast reaction and high in the case of slow reaction. (3) Irreversible inhibition of enzyme due to formation of covalent bond between enzyme and a reactive group of the inhibitor, which inactivates the enzyme and form a covalent adduct E-I. (4) tertiary complex mechanism in which two substrates S1 and S2 bind on active site and form enzyme substrate complex (ES1S2) and enzyme product complex (EP1P2) by catalysis and finally alt products P1 and P2 leaving the enzyme.

1.7.2 IC₅₀ value and K_m value

The half minimal inhibitory concentration (IC₅₀) is the minimum amount of inhibitor required to decrease the reaction velocity of the enzyme by its half (50%). It is usually expressed in the form of dose response curve (79). A dose response curve is a curve which represents the change in function of any exogenous substance with the change of concentration of the substance(80). The relation between the concentration of inhibitor on reaction velocity (v) in relation with IC₅₀ value is shown in equation (1); where v_i and v_0 are the reaction velocity with and without inhibitor, respectively.

$$v_i/v_0 = 1 / (1 + ([I])/IC_{50}))$$
 (1)

The IC₅₀ value is not an actual dissociation constant because it strongly depends on the concentration of the substrate for both single and multi-substrate reactions. The higher the IC₅₀ value, the weaker the inhibitor binds to the enzyme (78, 81).

To determine a dose response curve, it is crucial to use a concentration of substrate which is equal or below the K_m value if the inhibitor competes with the substrate to bind at the active site of the enzyme. For competitive inhibition, the relation between IC₅₀ value and K_i value can be expressed as in the equation 2; where K_m is the Michael-Menten constant and K_i is the dissociation constant of the enzyme-inhibitor complex and [S] is the substrate concentration (74, 82).

$$IC_{50} = K_i (1 + [S]/K_m))$$
 (2)

The K_m value (Michael-Menten constant) is the substrate concentration in which the reaction rate (v) is half of the maximum of the rate of the reaction (V_{max}). K_m value is the measurement of the apparent affinity of the enzyme for the substrate; low K_m value indicates that the enzyme is functioning more efficiently at lower substrate concentration and vice-versa. The Michael-Menten equation is expressed in the equation (3); where [S] is the substrate concentration, K_m is the Michael-Menten constant, V_{max} is the maximum rate of reaction and v is the reaction velocity(83, 84).

$$v = V_{max}[S]/(K_m+[S])$$
 _____(3)

1.8 Aims of the study

The main aim of the thesis is to test different compounds which could possibly be inhibitors of the zinc metalloproteases (PLN, TLN, ALN) which are the virulence factors of *P. aeruginosa*. In addition, the compounds were tested for their inhibition of MMP-14 to check whether they would inhibit human proteases or not. If the compounds were found to inhibit the metalloproteases by more than 50%, they should be further studied to determine IC_{50} and K_i values. In this thesis 26 compounds (table 1) were selected from VLS and tested against PLN, TLN, ALN and MMP-14. The main objective is to discover compounds which can strongly bind to the bacterial metalloproteases without any or limited effect on the human metalloproteases. Another objective was to learn methods that are applicable in preclinical drug discovery.

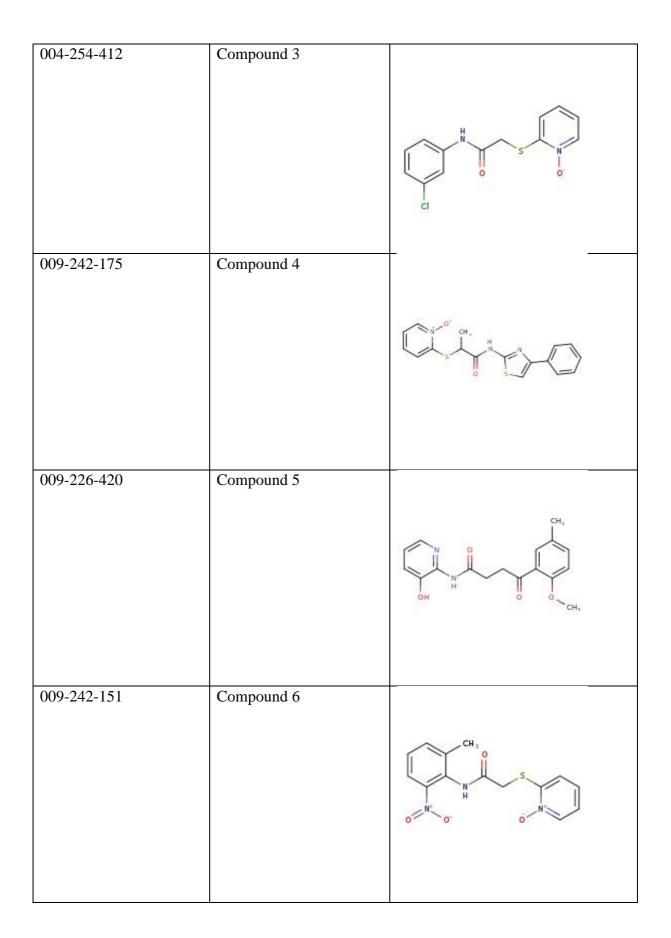
2 Materials and Methods

2.1 Materials

2.1.1 List of the chemicals and equipment used in the experiment:

- 1. DMSO
- 2. ES001
- 3. ES005
- 4. PLN
- 5. TLN
- 6. ALN
- 7. MMP-14
- 8. ES001 and ES005
- 9. Hepes
- 10. CaCl₂•2H₂o
- 11. Brij-35
- 12. Milli-Q water
- 13. Laboratory weight balance
- 14. Cuvettes
- 15. pH-Meter
- 16. 96-well plates
- 17. Aluminum foils
- 18. Micropipettes(0-1000µl), multichannel pipettes(0-200µl)
- 19. Volumetric flasks
- 20. Eppendorf tubes
- 21. Perkin Elmer LS50 Spectrofluorimeter
- 22. Clariostar microplate reader
- 23. Computer with software (Schrodinger, Graph pad prism-6, Microsoft office)

2.1.2 General information about the chemicals and compounds


DMSO (Dimethylsulfoxide) was ordered from Merck(Darmstsdt, Germany). Hepes was from Sigma (St Louis,USA). MMP-14, Thermolysin and Pseudolysin was purchased from Calbiochem (San Diego, USA). Aureolysin was supplied by Bio-Centrum limited (Krakow, Poland). Similarly, McaPLGL(Dpa)AR-NH2 (ES001) and McaRPPGFSAFK(Dnp)-OH (ES005) were imported R&D Systems (Minneapolis, MN, USA). All the assays were performed by using a CLARIOstar microplate reader exported from CLARIOstar® BMG LABTECH, Germany.

All 26 compounds (table 1) used for testing as inhibitors of PLN, TLN, ALN and MMP-14 were first selected from molecular modelling (VLS) study and ordered from Molport, Riga, Latvia.{sales@molport.com}

In addition, the compound "Galardin" (figure 8) was used as a control in the molecular modelling studies. Galardin is a known inhibitor of zinc metalloproteases (35).

Table 1. The 26 compounds tested in the present study. Their Molport ID, compound ID in the present work and two-dimensional structure are indicated in the table.

Molport ID	Compound ID	Structure
027-694-799	Compound 1	H,C
009-222-606	Compound 2	

004-254-706	Compound 7	HN O O NO
030-017-687	Compound 8	
004-259-596	Compound 9	
009-073-866	Compound 10	

027-942-684	Compound 11	
028-759-255	Compound 12	
004-254-409	Compound 13	
019-665-318	Compound 14	

004-254-754	Compound 15	
009-346-000	Compound 16	
010-176-168	Compound 17	
004-276-484	Compound 18	NH NH H,C

004-270-223	Compound 19	
042-117-341	Compound 20	
027-675-266	Compound 21	
029-939-652	Compound 22	

004-254-606	Compound 23	
009-337-761	Compound 24	S S S S S S S S S S S S S S S S S S S
020-103-247	Compound 25	
002-462-292	Compound 26	

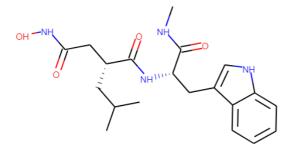


Figure 8: 2D Structure of galardin exported from ChEMBL.

2.2 Methods

2.2.1 Preparation of assay buffer (0.1 M Hepes, 10 mM CaCl₂, 0.005% Brij-35, pH 7.5)

One hundred ml of assay buffer was prepared as follows: 50 ml of Milli-Q water was added to 2.38 g Hepes (MW=238.3 g / mole) and 0.147 g CaCl₂x2H₂O (MW=147.02 g / mole). To this solution, 16.7 μ l of 30% Brij-35 was added and the pH was adjusted to 7.5 by titration with 10 M NaOH in Milli-Q water. Thereafter, Milli-Q water was added to give a final volume of 100 ml, the pH checked and if necessary further adjusted with 10 M NaOH to give a pH of 7.5. The buffer is stored at 4 °C.

2.2.2 Preparation of compounds

All the compounds from Molport were in powder form. These compounds were dissolved in 100% DMSO to give a stock solutions with a concentration of either 10 mM or 20 mM as described in table 2. The volume of DMSO added were based on the following formula:

Volume of DMSO to be added = (quantity of substance available*purity)/ molecular weight of compound

In most of the cases a stock solution of 10 mM was prepared but in some of the cases a stock solution of 20 mM was prepared because the volume of the glass bottle with a compound received from Molport was too small for the DMSO volume to give a concentration of 10mM.

Table 2. Volume of 100% DMSO added to the powder compounds to give the desired concentration of the compounds. All the information about the purity, molecular weight and quantity was taken from the molport.

Compound		Molecular	Purity	Volume of	Volume of
name	Quantity(mg)	Weight(g/mole)		DMSO (ml)	DMSO (ml)
				to give	to give
				10mM	20mM
027-694-799	20	329.37	≥90	5.465	2.732
009-222-606	20	346.4	≥90	5.196	2.599
	•				2.0.72
004-254-412	20	294.75	≥90	6.106	3.053
009-242-175	20	357.45	≥90	5.035	2.517
009 212 170		001110		21022	21011
009-226-420	20	314.341	≥90	5.726	2.863
009-242-151	20	319.34	≥90	5.636	2.818
004 254 706	20	220.22	>00	5 4 4 0	2 724
004-254-706	20	330.32	≥90	5.449	2.724
030-017-687	20	244.254	≥90	7.369	3.684
004-259-596	20	310.37	≥90	5.780	2.900

009-073-866	20	332.37	≥90	5.415	2.707
027-942-684	20	339.351	≥90	5.3042	2.652
028-759-255	4.7	333.36	≥90	1.268	0.634
004-254-409	20	294.75	≥90	6.106	3.053
019-665-318	18.1	358.401	≥90	4.545	2.272
004-254-754	20	302.39	≥90	5.952	2.97
009-346-000	20	367.79	≥90	4.894	2.447
010-176-168	20	275.264	≥90	6.539	3.269
004-276-484	20	291.33	≥90	6.178	3.089
004-270-223	20	316.34	≥90	5.690	2.845
042-117-341	10	345.443	≥90	2.605	1.302
027-675-266	20	314.4	≥90	5.725	2.862
029-939-652	20	297.358	≥90	6.053	3.026
004-254-606	20	288.37	≥90	6.241	3.120
009-337-761	20	310.39	≥90	5.800	2.900
020-103-247	20	340.383	≥90	5.288	2.644
002-462-292	100	359.425	≥95	26.431	13.215

2.2.3 Assay method

In the reaction velocity assays, we tested the inhibitory activity of compounds using a concentration of 100 μ M and 1.0% DMSO. The compounds were first diluted to 1 mM in assay buffer, which results in a DMSO concentration of 10%. A brief description of how this new stock solution was prepared is that compounds was dissolved at a concentration of 20 mM in 100% DMSO (first stock). So, to make our desired concentration of the compound, 50 μ l of the solution was taken from the stock and it was mixed with 50 μ l of 100% DMSO (second stock). And in the second step, 900 μ l of HEPES buffer was added to the second stock. This resulted in a 10 times dilution of both compound and DMSO (third stock). This third stock was stored safe at 4°C and used in the assay in 96 well plates.

Each day it was necessary to determine how much the stock solution of the proteases should be diluted in order to obtain an optimal concentration for the inhibitory assays and its controls. These assays were performed with a Perkin Elmer LS50 Spectrofluorimeter (λ_{ex} =320 nm, λ_{em} =405 nm, slit width=10 nm) and the reactions were followed for 1 min (10 data points per second) at 37 °C. The assay (total volume of 100 µl) consisted of assay buffer, 4 µM substrate (ES001 for MMP-14 and ES005 for TLN, PLN and ALN) and various concentrations of enzyme.

After many variable concentrations of enzymes, one fixed concentration was selected which was used in the Clariostar plate reader where the reaction velocity was followed for 30 minutes at $37 \,^{\circ}$ C.

We don't know if some of these compounds are inhibitors of the proteases and if so, are they fast or slow binders, weak or strong binders. Therefore, the proteases were preincubated with and without the compounds for various time points (0, 15 and 30 min) at room temperature before the reaction velocity was determined. In the experiments with no preincubation (0 min), the enzymatic reaction was started by adding the enzyme to the mixture of either buffer, substrate and inhibitor or to buffer and substrate (control). In the experiments with 15 and 30 min preincubation, the enzymatic reaction was started by adding the substrate.

For each assay, four parallels were performed. Table 3 shows the amount of buffer, substrate, compound and enzyme used in each assay.

Table 3: Reaction mixtures for control and inhibitory assays. Shown is the amount of assay buffer, DMSO, compound/inhibitor (I), substrate (ES001/ES005) and enzyme in each well of a 96 well plate. Following approximate concentrations of the proteases was used per assay: TLN (0.1 nM), PLN (0.5 nM), ALN (1.4 nM) and MMP-14 (1.0 nM) Each experiment were performed with four parallels.

	Control			With Inhibitor (100 µM)		M)		
Assay Buffer (µl)	70	70	70	70	70	70	70	70
10% DMSO (μl) In assay buffer	10	10	10	10	0	0	0	0
1 mM [I] containing 10% DMSO in assay buffer (μl)	0	0	0	0	10	10	10	10
Enzyme (µl)	10	10	10	10	10	10	10	10
40 µM of either ES005 or ES001 (µl)	10	10	10	10	10	10	10	10
Total assay volume (µl)	100	100	100	100	100	100	100	100

2.2.3.1 Settings of the Perkin Elmer LS50 spectrophotometer:

The assay was performed using a time driven application.

The excitation wavelength was fixed to 320 nm and emission wavelength was fixed to 405 nm. The excitation and emission slit was adjusted to 10 nm. The temperature was set to 37°C using a water-bath and a thermostatic cuvette holder.

2.2.3.2 Settings of the clariostar:

The fluorescence intensity was measured with a plate mode of slow kinetics. The excitation and emission wavelength was fixed to 320 and 405 nm, with slit widths of 10 nm. The focal height was 5 mm and one monochromator was used for the measurement. In the general settings menu, flying mode was selected with only one kinetic window, the number of cycles was 225 for 30 minutes of the reading and cycle time was 8 sec. The temperature was fixed to 37°C. The gain was adjusted to 2000. The reading direction was bidirectional, horizontal left-right from top to bottom. The concentration and substrate for each enzyme is described in table 4.

Table 4: Assay concentration of substrate and total assay volume in the Clariostar microplate

 reader using 96 well plates.

Enzyme	Assay volume	Inhibitor concentration	Substrate	Substrate concentration
TLN	100 µl	100 µM	ES005	4 µM
PLN	100 µl	100 µM	ES005	4 µM
ALN	100 µl	100 µM	ES005	4 µM
MMP-14	100 µl	100 μΜ	ES001	4 µM

2.3 Molecular modeling

For all molecular modeling, the Schrödinger software was used. The Glide program was used for docking of the compounds (*Glide Schrödinger Release 2020-2*; Schrödinger, LLC: New York, NY, USA, 2020)

2.3.1 Docking and MMGBSA calculation

For the docking and MMGBSA calculation compound 5, 10, 17 and galardin were selected. After generation of different enantiomers, altogether 14 molecules were docked. Galardin was taken as a control as a known high affinity inhibitor of zinc metalloproteases. The computational experiment was performed by using maestro 2020 software.

2.3.2 Ligand preparation

The structure of the selected compounds was drawn by using a 2D sketcher as implemented in Maestro Schrodinger software. The lig-prep program was used to convert the drawn 2D structure into 3D structure which can be further used for computational studies. For this process the pH was set to 7 with a putative deviation of ± 1 . The carboxylic acids were deproteinated, the tertiary amino acids were made positively charged, and phosphonates were partially deproteinated in the process and all other default setting of maestro was used.

2.3.3 Protein preparation and grid map generation

The protein was prepared using the protein preparation wizard from Maestro. Altogether four proteins (TLN, PLN, ALN, MMP-14) were prepared. At first, the enzymes were exported in the working space from PDB with their respective PDB codes as shown in table 5. Then missing hydrogen bonds were added, polar hydrogen bonds were optimized and crystallographic water molecules beyond 5Å from hetero group were deleted. Then, minimization process was performed to avoid unwanted contacts. To generate the grid map for docking, the zinc atom of

the catalytic site was selected as centroid, and a grid map was generated including residues within 20 \AA^3 of the zinc atom.

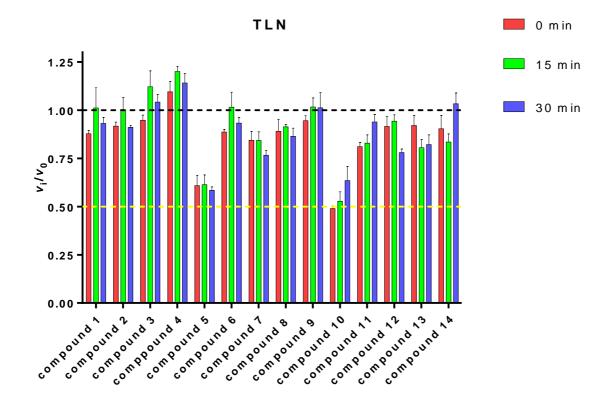
Enzymes	PDB code
TLN	5dpe
PLN	1u4g
ALN	1bqb
MMP-14	1bqq

Table 5: The PDB codes of the structures used for docking.

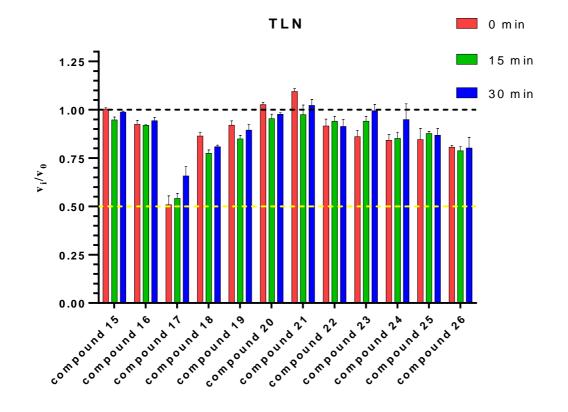
2.3.4 Docking

For all ligands, ligand docking with a SP (standard precision) was performed. The ligand sampling was made flexible. The number of poses per ligand was set to 5 for performing post docking minimization. Docking was performed one ligand at a time.

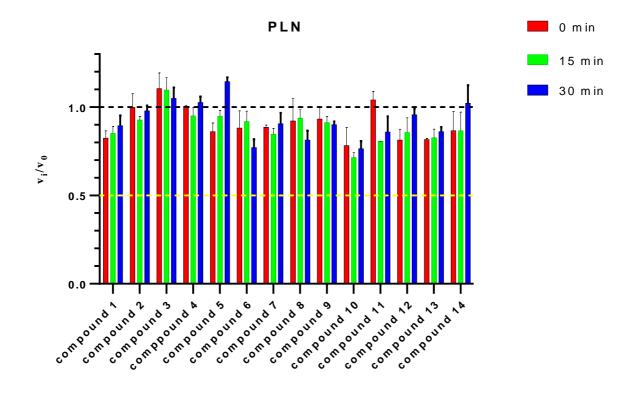
2.3.5 MMGBSA calculation

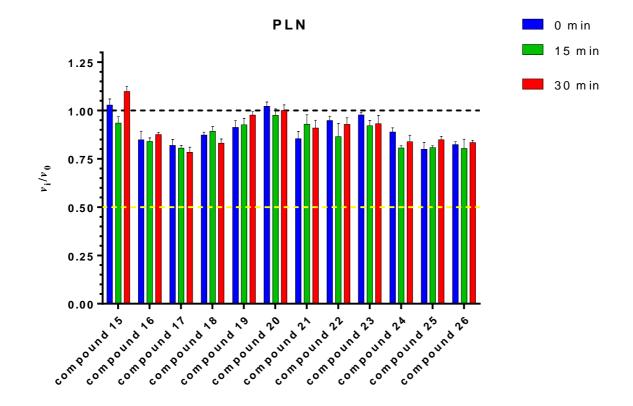

Prime MMGBSA was performed. All amino acids within 5Å of the ligand was included in a conformational sampling by using an energy minimization sampling approach. All other default settings were followed to perform the MMGBSA calculation.

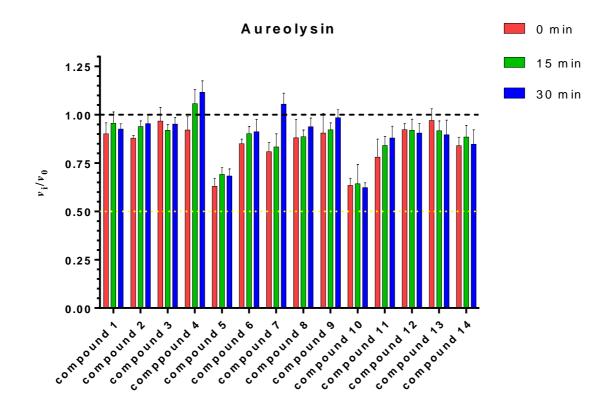
3 Results

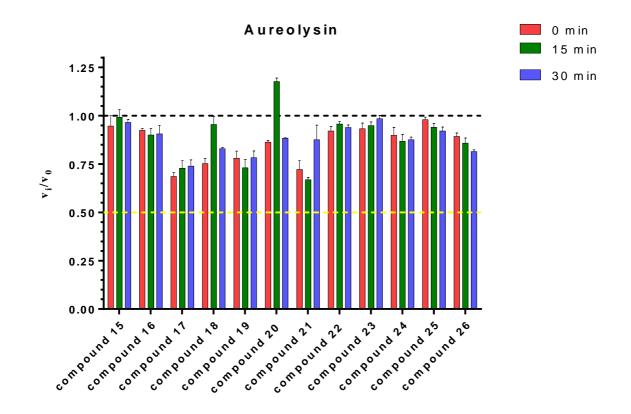

3.1 Calculating inhibition activity of the compounds for zinc metalloproteases

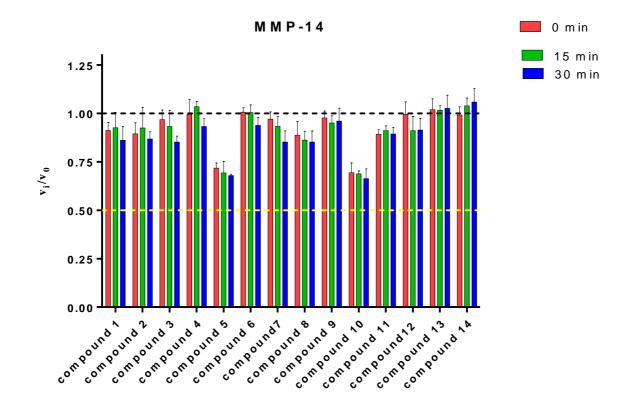
In this study molecular modeling and enzyme kinetics were used to calculate the inhibition activity of the enzymes (PLA, TLN, ALN and MMP-14) with respect to the 26 compounds shown in table 1. Figures 8-15 show that none of the compounds reduced the activity by more than 50%, and the inhibition did not increase with the increase in preincubation time (0-30 min) of enzyme and compound. This was the case for all enzymes (PLN, TLN, ALN, MMP-14). Therefore, none of the compounds could be considered as slow binders. The calculations are shown in appendix 1-4 for TLN, PLN, ALN and MMP-14, respectively.


For TLN compound 5, 10 and 17 were found to inhibit the activity with approximately 40%, and compounds 4, 9, 15, 20, 21 and 22 showed only a negligible inhibition, so they are considered as weak binders of TLN (figures 8 and 9). In the case of PLN some compounds (3, 15, 20 and 23) did not show any inhibition at all or a negligible inhibition (<5%). Compound 17 gave the strongest inhibition (approximately 20%). So, compound 17 was selected for MMGBSA calculation with PLN (figures 10 and 11). Compounds 5, 10 and 17 inhibited the activity of ALN with approximately 30% which was the highest inhibition of ALN, so they were selected for MMGBSA calculation (figures 12 and 13). The highest inhibition activity of MMP-14 was with the compounds 5, 10 and 17, that all reduced the activity by approximately 30%, and they were selected for the MMGBSA calculations. The compounds 4, 13, 14, 25 and 26 showed very low inhibit the MMP-14 activity (figures14 and 15).


Figure 8: Inhibitory effects of TLN activity of compounds 1-14 from Table1 using a fixed concentration of 100 μ M at different preincubation time intervals (0, 15 and 30 minutes). The inhibition experiments were performed by using a fixed concentration of substrate ES005 (4 μ M) and Hepes buffer pH 7.5 as described in Materials and Methods. None of the compounds were found to inhibit the TLN activity by more than 50%. Compounds 5 and 10 were selected for docking and MMGBSA calculation as these compounds were found to inhibit the TLN activity approximately 40%. The yellow horizontal line represents the 50% inhibition and black horizontal line represents no inhibition at all.


Figure 9: Inhibitory effects of TLN activity of compounds 15-26 from Table1 using a fixed concentration of 100 μ M at different preincubation time intervals (0, 15 and 30 minutes). The inhibition experiments were performed by using a fixed concentration of substrate ES005 (4 μ M) and Hepes buffer pH 7.5 as described in Materials and Methods. None of the compounds were found to inhibit the TLN activity by more than 50%. Compound 17 was selected for docking and MMGBSA calculation as this compound was found to inhibit the TLN activity approximately 40%. The yellow horizontal line represents the 50% inhibition and black horizontal line represents no inhibition at all.


Figure 10: Inhibitory effects of PLN activity of compounds 1-14 from Table1 using a fixed concentration of 100 μ M at different preincubation time intervals (0, 15 and 30 minutes). The inhibition experiments were performed by using a fixed concentration of substrate ES005 (4 μ M) and Hepes buffer pH 7.5 as described in Materials and Methods. None of the compounds were found to inhibit the PLN activity by more than 50%. Non compounds were selected for docking and MMGBSA calculation as none of the compounds were found t significantly inhibit the PLN activity. The yellow horizontal line represents the 50% inhibition and black horizontal line represents no inhibition at all.


Figure 11: Inhibitory effects of PLN activity of compounds 15-26 from Table1 using a fixed concentration of 100 μ M at different preincubation time intervals (0, 15 and 30 minutes). The inhibition experiments were performed by using a fixed concentration of substrate ES005 (4 μ M) and Hepes buffer pH 7.5 as described in Materials and Methods. None of the compounds were found to inhibit the PLN activity by more than 50%. Compound 17 was selected for docking and MMGBSA calculation as this compound was found to inhibit the PLN activity approximately 25%. The yellow horizontal line represents the 50% inhibition and black horizontal line represents no inhibition at all.

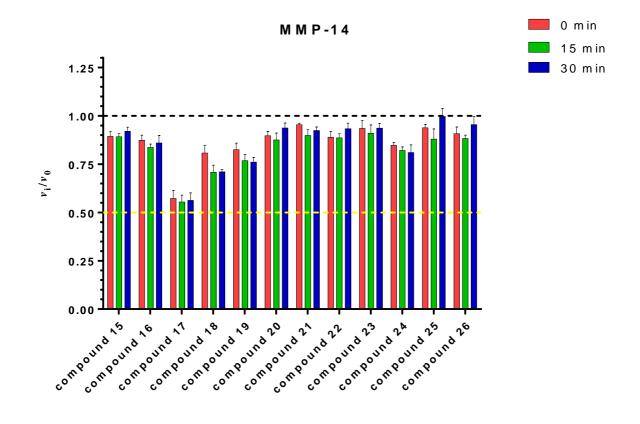

Figure 12: Inhibitory effects of ALN activity of compounds 1-14 from Table1 using a fixed concentration of 100 μ M at different preincubation time intervals (0, 15 and 30 minutes). The inhibition experiments were performed by using a fixed concentration of substrate ES005 (4 μ M) and Hepes buffer pH 7.5 as described in Materials and Methods. None of the compounds were found to inhibit the ALN activity by more than 50%. Compounds 5 and 10 were selected for docking and MMGBSA calculation as this compound was found to inhibit the ALN activity approximately 40%. The yellow horizontal line represents the 50% inhibition and black horizontal line represents no inhibition at all.

Figure 13: Inhibitory effects of ALN activity of compounds 15-26 from Table1 using a fixed concentration of 100 μ M at different time intervals (0, 15 and 30 minutes). The inhibition experiments were performed by using a fixed concentration of substrate ES005 (4 μ M) and Hepes buffer pH 7.5 as described in Materials and Methods. None of the compounds were found to inhibit the ALN activity by more than 50%. Compound 17 was selected for docking and MMGBSA calculation as this compound was found to inhibit the ALN activity approximately 40%. The yellow horizontal line represents the 50% inhibition and black horizontal line represents no inhibition at all.

Figure 14: Inhibitory effects of MMP-14 activity of compounds 1-14 from Table1 using a fixed concentration of 100 μ M at different preincubation time intervals (0, 15 and 30 minutes). The inhibition experiments were performed by using a fixed concentration of substrate ES001 (4 μ M) and Hepes buffer pH 7.5 as described in Materials and Methods. None of the compounds were found to inhibit the MMP-14 activity by more than 50%. Compound 5 and 10 was selected for docking and MMGBSA calculation as this compound was found to inhibit the MMP-14 activity approximately 30%. The yellow horizontal line represents the 50% inhibition and black horizontal line represents no inhibition at all.

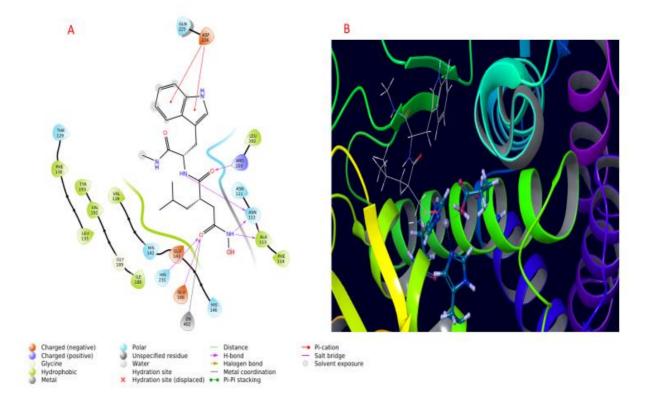
Figure 15: Inhibitory effects of MMP-14 activity of compounds 15-26 from Table1 using a fixed concentration of 100 μ M at different preincubation time intervals (0, 15 and 30 minutes). The inhibition experiments were performed by using a fixed concentration of substrate ES005 (4 μ M) and Hepes buffer pH 7.5 as described in Materials and Methods. None of the compounds were found to inhibit the MMP-14 activity by more than 50%. Compound 17 was selected for docking and MMGBSA calculation as this compound was found to inhibit the MMP-14 activity approximately 30%. The yellow horizontal line represents the 50% inhibition and black horizontal line represents no inhibition at all.

3.2 Molecular Modeling

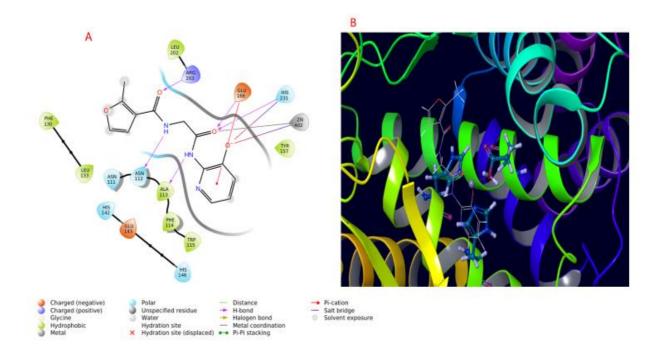
After the selection of compounds based on the wet lab experiments, compounds were taken for the MMGBSA calculation. The selected compounds were compound 5, 10 and 17 for the enzymes TLN, ALN and MMP-14, while only compound 17 was selected for the PLN. In addition to this, one compound (galardin) was taken as a control. Galardin is a known high affinity inhibitor of the zinc metalloproteases (85). Then these compounds were docked with their respective enzymes and MMGBSA calculation was performed which is shown from figure 17-25 and table 10.

After the MMGBSA calculation the 3D interactions of the enzymes with ligands were observed in the workspace. This was done to compare the molecular interactions of different enzymes with the ligands. Tables 6-9 show that the ligands interacted differently with the enzymes. Different amino acids were involved in ligand binding in the enzymes.

3.2.1 Molecular interactions between TLN and ligands

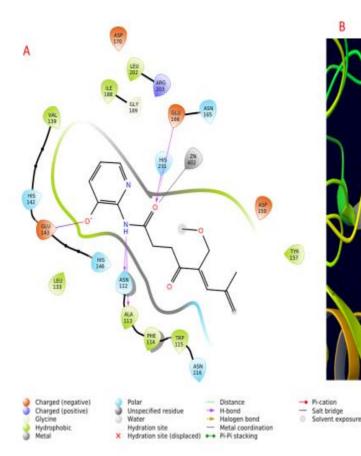

For docking and MMGBSA calculation of TLN, compounds 5, 10, and 17 were selected and their binding mode compared with that of the known inhibitor galardin. Amino acids of TLN directly involved in ligand binding to the docked compounds are shown in table 6. When TLN was docked with galardin, Glu-166 was forming a hydrogen bond with the oxygen atom of galardin, and His-231 was forming a hydrogen bond with same oxygen atom of galardin. The catalytic zinc atom was forming a metal coordination with an oxygen atom of galardin separated by a distance of 2.10Å (table 6) making strong interactions. In addition, Asn-112 formed hydrogen bonds with two NH groups of galardin, Ala-113 formed a hydrogen bond with one NH group. Asp-226 was forming Pi-cation interactions with the 5-membered ring structure of galardin (figure 16). The MMGBSA score for TLN with galardin was -15.87 kcal/mol (table 10).

When TLN was docked with compound 17, the zinc atom was forming a coordination with two different oxygen atoms (a distance of 2.38Å to the closest oxygen atom, table 6) of the


compound, while His-231 was forming a hydrogen bond with one of the oxygen atoms and Pi cationic interactions with the six membered ring structure of the compound. Arg-203, Asn-112, Ala-113 were also forming hydrogen bonds with oxygens and NH groups of the compound (figure 17). The obtained MMGBSA score was -6.4 kcal/mol (table 10).

Similarly, a MMGBSA score of -8.4 kcal/mol was obtained when compound 10 was docked with TLN (table 10). The zinc atom was forming a coordination with an oxygen atom of the compound at a distance of 2.13Å (table 6). His-231 and Glu-166 were both forming hydrogen bonds with the zinc coordinating oxygen atom. Arg-203 interacted directly with two oxygen atoms of compound 10. Glu-166 and His-146 were both forming stacking interactions with a six membered ring structure of the compound. Ala-113 was also forming a hydrogen bond with the NH group of the compound (table 10 and figure 18).

Likewise, docking of compound 5 with TLN gave a MMGBSA score of -6.11 kcal/mol (table 10). The zinc atom (separated by nearest oxygen atom by 2.16Å) and Glu-166 both interacted with the same oxygen atom of the compound (figure 19). Asn-112 and Ala-113 were forming a hydrogen bond with the same NH group of the compound. Glu-143 was also forming a salt bridge with a negatively charged oxygen atom of the compound (figure 19).


Figure 16: The TLN-galardin complex after MMGBSA calculations. Figure (A): ligand interaction diagram of TLN with galardin. All the interactions of galardin with the TLN are indicated by different colors of the arrows at the bottom of the diagram. Figure (B): 3D representation of the interaction of TLN with galardin. Zinc is displayed in dark grey color. The side chains of the most important amino acids for ligand binding are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: white.

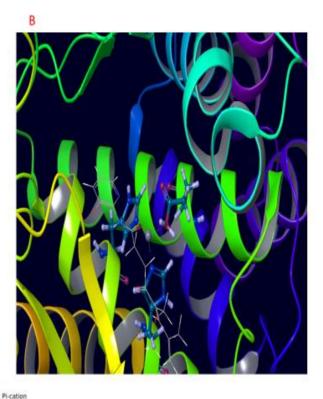


Figure 17: The TLN-compound 17 complex after MMGBSA calculation. Figure (A): ligand interaction diagram of TLN with compound 17. All interactions of the compound with the PLN are indicated by different colors of the arrows at the bottom of the diagram. Figure (B): 3D representation of the interaction of TLN with compound 17. Zinc is displayed in dark grey color. The side chains of the most important amino acids for the binding of the ligand are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

Figure 18: The TLN-compound 10 complex after MMGBSA calculations. Figure (A): ligand interaction diagram of TLN with compound 10. All interactions of the compound with the PLN are indicated by different colors of the arrows at the bottom of the diagram. Figure (B): 3D representation of the interaction of TLN with compound 10. Zinc is displayed in dark grey color. The side chains of the most important amino acids for the binding of the ligand are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

Figure 19: The TLN-compound 5 complex after MMGBSA calculations. Figure (A): 2D ligand interaction diagram of TLN with compound 5. All interactions of the compound with the PLN are indicated by different colors of the arrows at the bottom of the diagram. Figure (B): 3D representation of the interaction of TLN with compound 5. Zinc is displayed in dark grey color. The side chains of the most important amino acids for the binding of the ligand are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

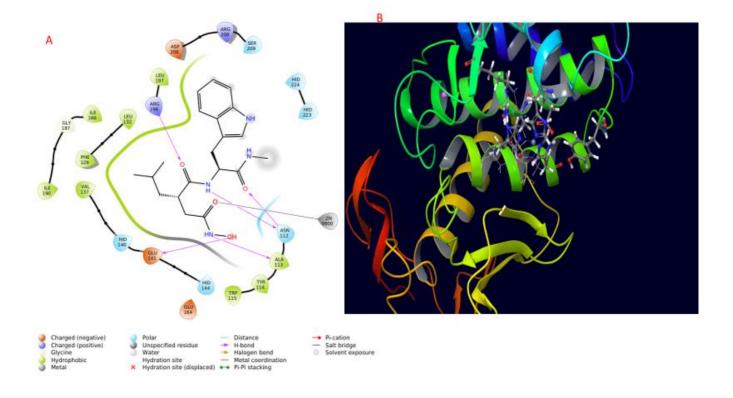
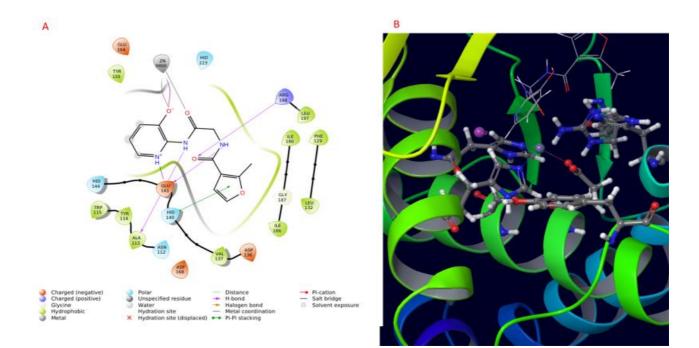

Ligands	Amino acids in TLN	Atomic distance between catalytic zinc and closest oxygen atom (Å)
Galardin	Glu-166, His-231, Ala-113, Asn-112, Arg-203, Asp-226	2.10
Compound 17	Glu-166, Asn-112, His-231, Arg-203, Ala-113	2.14
Compound 10	Glu-116, Ala-113, Arg-203, His-231, His-146	2.15
Compound 5	Glu-166, Asn-112, Ala-113, Glu-143	2.14

Table 6: Amino acids of TLN directly involved in ligand interactions.


3.2.2 Molecular interactions between PLN and ligands

For docking and MMGBSA calculation of PLN, only compound 17 was selected, and the binding modes was compared with the binding mode of the known inhibitor galardin. When PLN was docked with galardin, Glu-141 was forming a hydrogen bond with the OH group of galardin, and Arg-198 was forming a hydrogen bond with an oxygen atom of galardin. The catalytic zinc atom was forming a metal coordination with an oxygen of galardin. In addition, Asn-112 formed hydrogen bonds with two oxygen atoms in galardin, while Ala-111 formed a hydrogen bond with an NH group of galardin (figure 20). When PLN is docked with compound 17, Arg-198 was forming a hydrogen bond with an oxygen in compound 17, Glu-141 and Ala-113 were forming hydrogen bonds with NH groups, and the catalytic zinc was coordinated with two oxygen atoms of compound 17. Hid-140 was forming pi-pi stacking with the five membered ring system of the compound (figure 21).

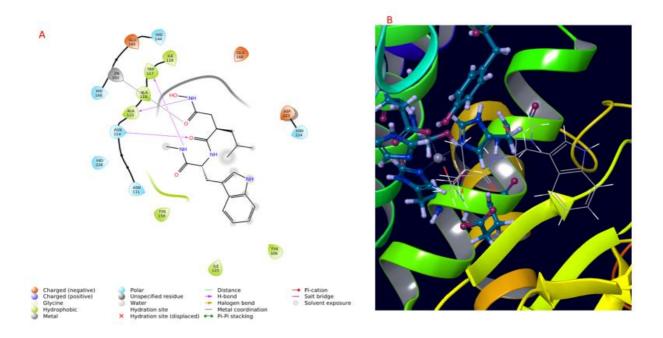
The detail description is shown in the table 7 and figure 20-21.

Figure 20: The PLN-galardin complex after MMGBSA calculations. Figure (A): 2D ligand interaction diagram of the interaction of PLN with galardin. All interactions of galardin with the PLN are indicated by different colors of the arrows at the bottom of the diagram. Figure (B): 3D representation of the interaction of PLN with galardin. Zinc is displayed in dark grey color. The side chains of the most important amino acids for the binding of the ligand are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

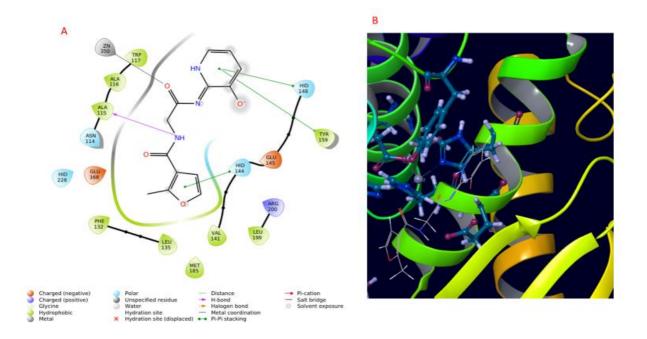
Figure 21: The PLN-compound 17 complex after MMGBSA calculations. Figure (A): 2D ligand interaction diagram of PLN with compound 17. All interactions of compound 17 with the PLN are indicated by different colors of the arrows at the bottom of the diagram. Figure (B): 3D representation of the interaction of PLN with compound 17. Zinc is displayed in dark grey color. The side chain of the important amino acids for the binding of the ligand are displayed with the following color coding of the atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

Ligands	Amino acids in PLN	Atomic distance between catalytic zinc and closest oxygen atom (Å)
Galardin	Glu-141, Arg-198, Asn-112, Ala-113	2.09
Compound 17	Ala-113, Glu-141, Hid-140, Arg-198	2.16

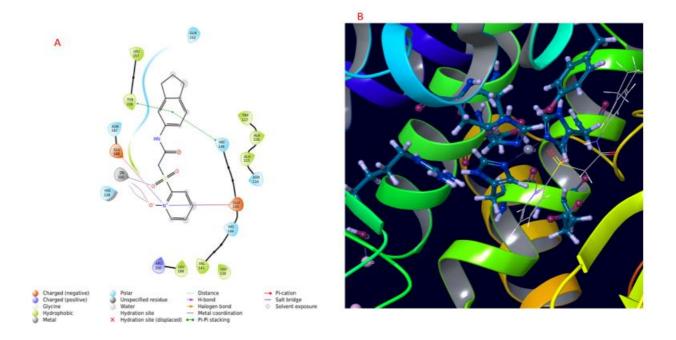
Table 7: Amino	acids of PLN	directly	involved in	ligand binding.


3.2.3 Molecular interactions between ALN and ligands

For docking and MMGBSA calculations of ALN, compounds 5, 10, 17 were selected, and compared with the binding mode of the known inhibitor galardin. When ALN was docked with galardin, the amino acids Ala-115 and Trp-117 were forming hydrogen bonds with NH-groups of galardin, while Asn-114 was forming a hydrogen bond with an oxygen of the compound (figure 22). The zinc atom was forming a metal coordination with an oxygen of the galardin at an atomic distance of 2.15Å. The MMGBSA score was -24 kcal/mol (table 10).


When ALN was docked with compound 17, the amino acid Ala-115, was forming a hydrogen bond with a NH group of the compound (figure 23). Hid-144, Hid-148 and Tyr-159 were forming a Pi-Pi stacking interactions with the two ring systems of the compound. The catalytic zinc atom was forming a strong metal coordination with an oxygen atom of the compound separated by a distance of 2.18Å (Table 8, figure 23). The MMGBSA score of the ALN-compound 17 complex was -9.19 kcal/mol (table 10).

The docking mode of compound 10 with ALN is shown in figure 24. The amino acids Glu-145 and Glu-168 were forming salt bridges with the N^+ of the compound, and Hid-148 and Tyr-159 were forming Pi-Pi stacking within the benzene ring of the compound. The catalytic zinc atom was forming a strong metal coordination with two oxygen atoms of the compound separated by a distance of 2.24Å (table 8). The MMGBSA score was -2.83 kcal/mol (table 10).


The binding mode of compound 5 after MMGBSA calculations is shown in figure 25. The amino acids Arg-200 was forming a hydrogen bond with an oxygen atom of the compound. Tyr-159 and Hid-148 were forming the Pi-Pi stacking with the benzene ring of the compound. The catalytic zinc atom was forming coordination with two oxygen atoms at a distance of 2.18 Å to the closest oxygen atom (table 8). The MMGBSA score was 0.98 kcal/mol (table 10). The detail description is shown in the table 8 and figure 22-25.

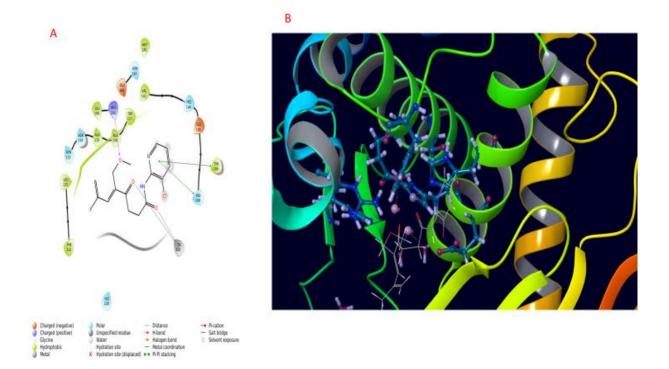
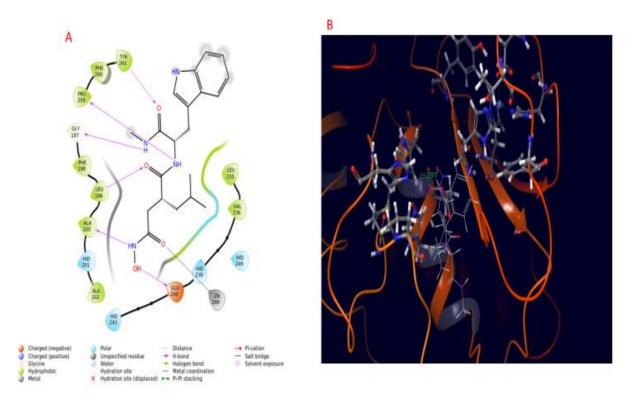

Figure 22: The ALN-galardin complex after MMGBSA calculations. Figure (A): 2D ligand interaction diagram of the interaction of ALN with galardin. All types of interactions of galardin with ALN are indicated by different colors of the arrows shown at the bottom of the diagram. Figure (B): 3D representation of the interaction of ALN with galardin. Zinc is displayed in dark grey color. The side chains of the most important amino acids for ligand binding are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

Figure 23: The ALN-compound 17 complex after MMGBSA calculations. Figure (A): 2D ligand interaction diagram of ALN with compound 17. All interactions of compound 17 with the PLN are indicated by different colors of the arrows shown at the bottom of the diagram. Figure (B): 3D representation of the interaction of ALN with compound 17. Zinc is displayed in dark grey color. Side chains of the important amino acids for ligand binding are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

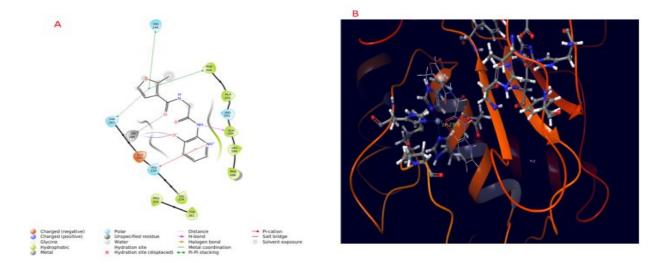
Figure 24: The ALN-compound 10 complex after MMGBSA calculations. Figure (A): 2D ligand interaction diagram of the interaction of ALN with compound 10. All interactions of compound 10 with ALN are indicated by the arrows as shown at the bottom of the diagram. Figure (B): 3D representation of the interaction of ALN with compound 10. Zinc is displayed in dark grey color. The side chains of the most important amino acids for the binding compound 10 are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

Figure 25: The ALN-compound 5 complex after MMGBSA calculations. Figure (A): 2D ligand interaction diagram of ALN with compound 5. All the interactions of compound 5 with ALN are indicated by different colors of the arrows as shown at the bottom of the diagram. Figure (B): 3D representation of the interaction of ALN with compound 5. Zinc is displayed in dark grey color. The side chain of the most important amino acids for the binding of compound 5 are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

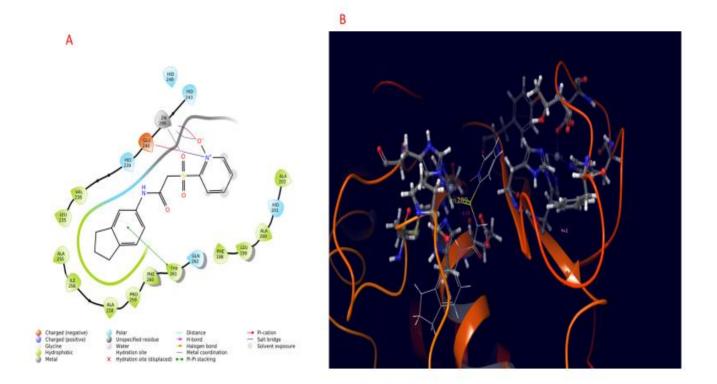
Ligands	Amino acids in ALN	Atomic distance between catalytic zinc and closest oxygen atom (Å)
Galardin	Asn-114, Ala-115, Trp-117	2.15
Compound 17	Hid-144, Hid-148, Ala-115, Tyr-159	2.18
Compound 10	Hid-148, Glu-145, Glu-145, Tyr-159	2.24
Compound 5	Hid-148, Tyr-159, Arg-200	2.18

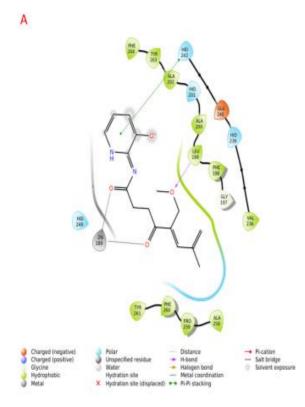

Table 8: Amino acids in ALN directly involved in ligand binding.

3.2.4 Molecular interactions between MMP-14 and ligands


For the docking and MMGBSA calculations of MMP-14, compounds 5, 10, 17 were selected and compared with the binding mode of galardin. The most important amino acids for ligand binding to MMP-14 are indicated in table 9. When MMP-14 was docked with galardin (figure 26) the amino acids, Tyr-261 and Leu-199 were forming hydrogen bonds with the two different oxygen atoms of the compound. Gly-197, Ala-200 and Pro-259 were forming a hydrogen bond with different NH groups the compound. Similarly, Glu-240 was also forming a hydrogen bond with OH group the compound. The zinc atom was forming coordination with an oxygen atom of galardin. The MMGBSA score was -31.3 kcal/mol indicating a very strong binding (table 10).

The binding mode of compound 17 after MGBSA calculation is shown in figure 27. The amino acids Ala-200 was forming hydrogen bond with a NH group of the compound. Hid-239 was forming a Pi-cationic interaction with NH group of the compound. Hid-249, Phe-204 and Hid-243 were forming a Pi-Pi stacking within the five membered ring structure of the compound. The zinc atom was forming a coordination with an oxygen atom at a distance of 2.14 Å. The MMGBSA score was -1.4 kcal/mol (table 10). The binding mode of compound 10 after MMGBSA calculations is shown in figure 28. The amino acids Glu-240 formed a salt bridge with nitrogen atom of the six membered ring structure of the compound. Tyr-267 was forming a Pi-Pi stacking with the six membered ring structure of the compound.


coordinating with an oxygen atom, at a distance of 2.14Å (table 9). The MMGBSA score was -9.12 kcal/mol (table 10). The binding mode of compound 5 after MMGBSA calculations is shown in figure 29. The amino acids Leu-199 was forming a hydrogen bond with an oxygen atom within the compound. Hid-243 was forming a Pi-Pi stacking with the six membered ring structure of the compound. Zinc atom was forming metal coordination with two different oxygen atoms of the compound separated by a distanced of 2.16 Å. The MMGBSA score was -2.5 kcal/mol. The detail description is shown in the table 9 and figure 26-29.


Figure 26: The MMP-14-galardin complex after MMGBSA calculation. Figure (A): 2D ligand interaction diagram of MMP-14 with galardin. All interactions of galardin with MMP-14 are indicated by the arrows shown at the bottom of the diagram. Figure (B): 3D representation of the interaction of MMP-14 with galardin. Zinc is displayed in dark grey color. The side chain of the most important amino acids for the binding of galardin are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

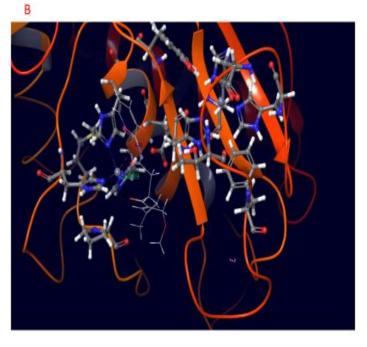


Figure 27: The MMP-14 compound 17 complex after MMGBSA calculation. Figure (A): 2D ligand interaction diagram of MMP-14 with compound 17. All interactions of the compound with MMP-14 are indicated by arrows shown at the bottom of the diagram. Figure (B): 3D representation of the interactions of MMP-14 with compound 17. Zinc is displayed in dark grey color. The side chains of the most important amino acids for ligand binding are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

Figure 28: The complex of MMP-14 with compound 14 after MMGBSA calculation. Figure (A): 2D ligand interaction diagram of MMP-14 with compound 10. All interactions of the compound with the MMP-14 are indicated the arrows shown at the bottom of the diagram. Figure (B): 3D representation of the interactions of MMP-14 with compound 10. Zinc is displayed in dark grey color. The most important side chains for binding of the ligand are displayed with the following color coding of the atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: blue, carbon: white.

Figure 29: The MMP-14 - compound 5 complex after MMGBSA calculation. Figure (A): 2D ligand interaction diagram of MMP-14 with compound 5. All interactions of the compound with MMP-14 are indicated by the arrows shown at the bottom of the diagram. Figure (B): 3D representation of the interactions of MMP-14 with compound 5. Zinc is displayed in dark grey color. The most important side chains for ligand binding are displayed with the following color coding of atoms: oxygen: red, nitrogen: blue, hydrogen: grey, carbon: white and color coding of the ligand atoms: oxygen: red, nitrogen: white.

Ligands	Amino acids in MMP-14	Atomic distance between catalytic zinc and closest oxygen atom (Å)
Galardin	Tyr-261, Pro-259, Gly-197, Leu-199, Ala-200, Glu-240	2.13
Compound 17	Hid-249, Phe-204, Hid-243 Hid-239, Ala-200	214
Compound 10	Glu-240, Tyr-261	2.14
Compound 5	Hid-243, Leu-199	2.15

Table 9: Amino acids directly involved in ligand binding to MMP-14.

3.3 MMGBSA calculation

After the 3D analysis of the docking and MMGBSA, MMGBSA score was also our point of interest. A large negative value indicates that the compound has strong affinity for the enzyme. The values were obtained from the Schrodinger software after the analysis on the basis of the settings and conditions for docking and MMGBSA, as described in the methods section. After the analysis, galardin which is a known high affinity inhibitor of zinc metalloproteases was found to have the most negative value of all selected compounds. Galardin had a MMGBSA score of -16.12 kcal/mol for PLN, -15.87 kcal/mol for TLN, -24.00 kcal/mol for ALN and - 31.38 kcal/mol for MMP-14. For PLN, the MMGBSA value of compound 17 was -3.45 kcal/mol. For the enzyme ALN, an MMGBSA value of 0.98 kcal/mol was obtained for compound 5, -2.83 kcal/mol for compound 10 and -9.19 kcal/mol for compound 17. For MMP-14, an MMGBSA value of -1.4 kcal/mol was obtained for compound 5, -9.42 kcal/mol for compound 10 and -2.5 kcal/mol for compound 17. The obtained result is shown in table 10.

Table 10: Obtained MMGBSA values (kcal/mol) of selected compounds from figure 7-14(compound 5, 10, 17 and galardin) with PLN, ALN, TLN and MMP-14.

Compound	PLN	TLN	ALN	MMP-14
Galardin	-16.12	-15.87	-24	-31.38
Compound 5	NC*	-6.11	0.98	-1.4
Compound 10	NC^*	-6.4	-2.83	-9.42
Compound 17	-3.45	-8.4	-9.19	-2.5

*NC- not calculated.

4 Discussion

4.1 Structural differences in active site of zinc metalloproteases

In the case of bacterial zinc metalloproteases, the active site cleft of different enzymes has structural similarities with human zinc metalloproteases. Therefore, a major challenge for developing drugs targeting bacterial zinc metalloproteases is to identify compounds that only inhibit bacterial zinc metalloproteases without inhibiting human metalloproteases. Binding to human zinc metalloproteases may give off-target effects and putative drug side effects. If we look at the S1' sub-pocket of the human and bacterial zinc metalloproteases studied in the present project, it can be seen they favor both small and large hydrophobic substrate side chains at P1' position of the substrate (figure 1). One of the differences identified between the M4 family and the MMPs is a conserved arginine residue (corresponding to Arg-198 in PLN, Arg-203 in PLN and Arg-200 in ALN) situated at the edge of S1' sub-pocket in the M4 enzymes, which is absent in MMPs. Many enzyme kinetic and molecular modeling studies indicate that arginine may be an essential amino acid for high affinity binding to of inhibitors for M4 enzymes (86). In the present study docking and MMGBSA calculations indicated that this arginine is important for binding of galardine to PLN and TLN, but not for ALN. This is in agreement with previous studies indicating that galardine is a stronger inhibitor of PLN and TLN than of ALN (85). However, some of the low affinity compounds in the present study interacted with the arginine as well.

4.2 Dual role of MMPs

The role of the MMPs in different pathological conditions as well as in the physiological functions of our body is also one of the important elements that may hinder in the development of drugs against the bacterial virulence factors studied in the present thesis. MMPs are involved in different physiological processes (reproduction, immune response) in our body, and are expressed in different pathological conditions (viral infections, cancer) (87). Since the role of the MMPs in the pathological conditions were discovered before their role in the physiological process, around half a century ago different pharmacological companies started to develop the specific inhibitors by inhibiting the activity of MMPs by focusing on specific diseases. But the

majority of the inhibitors were not approved as drugs because of side effects. There may be many reasons for their disapproval including lack of selectivity. Another reason may be the dual role of the MMPs in different pathological conditions, where one or many MMPs can increase a disease or protect against a disease. This dual role is mainly due to availability of many substrate attachment sites on the enzyme, in which one substrate can help in progression and other substrate leading to the protection of the disease in different stages of disease (33, 88, 89).

4.3 Interactions of ligands with zinc metalloproteases

In the present study we have tested 26 compounds obtained by a previous VLS campaign in the research group, using PLN as the target (unpublished). In the VLS campaign, the compounds were selected according to a relatively high docking score compared with known PLN inhibitors, and that they had a binding mode resembling known PLN inhibitors. In the present thesis, the compounds were tested for their inhibition of PLN, TLN, ALN and MMP-14 using enzyme inhibition studies and molecular modeling. The results of the inhibition kinetics experiments showed that none of the compounds inhibited the enzyme activity of the zine metalloproteases with more than 50%. Compounds 5, 10 and 17 (table 1) were found to inhibit the activity of TLN, ALN and MMP-14 by only 30% while only compound 5 was able to reduce activity of PLN by 40%. The VLS approach was based on a combined ligand based and structure-based approach. In the ligand-based approach pharmacophore models were generated based on 97 known PLN inhibitors from the literature. The dataset of known inhibitors contained structurally quite divergent molecules with a large range of affinities, ranging from 41 nM of phosphoramidone (PDB id: 3DBK) into the mM range. A better approach might have been to focus on the known compounds with highest affinity. However, such an approach would most probably result in hits with large structural similarities with well-known strong affinity inhbitors, but any new structural scaffolds for binding would not be obtained (90).

Compounds 5,10,17 in addition to high affinity binder galardin (were docked into TLN, PLN, ALN and MMP-14 and MMGBSA calculations were performed in order to study the differences in binding modes between the high affinity compounds and the low affinity inhibitors (compound 5,10 and 17). To become a strong reversible inhibitor and PLN and TLN

amino acids corresponding to Arg198, Glu141 and Asn112 in PLN are presumed to interact with the ligand (90). The molecular docking studies and MMGBSA calculations suggested that galardin binds stronger to PLN and TLN than to ALN which is confirmed by previous experimental studies(85).

The docking of TLN with galardin showed that galardin fits nicely into the binding pocket (figure 16). The important amino acids involved in the interaction with the ligand were Glu-166, His-231, Ala-113, Asn-112, Arg-203 and Asp-226 in addition to zinc, and this interaction gave a MMGBSA score of -15.87 kcal/mol (figure 16 and table 10). When these interactions were compared with those of compound 17, the interaction of His-231, which forms a strong hydrogen bond with galardin and Asp-226 which stabilize a ring system of galardin (figure 16) are lacking for compound 17, which may explain the lower MMGBSA score (-8.4 kcal/mol) and affinity of compound 17 than of galardin (figure 17 and table 10). Similarly, if we look at the interaction of compound 10 with TLN the important amino acid Asn-112 for high affinity binding was lacking as compared to galardin which was forming a double hydrogen bond with two NH group of the ligand. So, the lack of this interaction of compound 10 may explain the lower MMGBSA score (figure 18 and table 10) and the lower affinity relative to galardin. Likewise, compound 5 lacks interactions with Arg-203 and His-231 in TLN, which were forming strong interactions with galardin.

Docking and MMGBSA calculation of PLN with galardin indicated that galardin fits into the binding pocket of PLN. The amino acids Arg-198, Glu-141, Ala-113 and Asn-112 were found to be the important amino acids involved in different molecular interactions contributing to a strong binding (figure 20). The molecular binding of PLN with compound 17 indicated several interactions, but only the interaction with Glu-141 was common with that of galardin, and all other interactions were different, which may explain the lower affinity and MMGBSA score (-3.45 kcal/mol) of compound 17 (figure 21 and tables 7, 10).

The binding mode of galardin against ALN was found to be similar to that of PLN but the interaction was found to be weaker than for PLN (table 10). Amino acids directly involved in the hydrogen bonding with galardin were Asn-114, Trp-117 and Ala-115 contributing to strong interactions. But due to the absence of the interactions of amino acids corresponding Glu-141 and Arg-198 in PLN (table 8) the interactions are somehow weaker than in PLN (figure 22). If

we look at the binding modes of compound 5, 10 and 17 also only one hydrogen bond with a single amino acid (Ala-115) while other main interactions were by Pi-Pi stacking with Tyr-159 and Hid-148, which might contribute to the much lower affinity than for galardin (figure 23). However, the docking also indicated that compound 10 formed salt bridges with Glu-145 and Glu-268 that should contribute to strong binding. It is therefore hard to explain the low affinity of compound 10 based on the docking mode (figure 24). In the case of compound 5 there was only one amino acid (Arg-200) involved in the formation of hydrogen bond with the compound, while other amino acids (Hid-148 and Tyr-159) were connected by Pi-Pi stacking that may altogether give quite low binding affinity for ALN (figure 25 and table 8).

When galardin was docked with MMP-14 it was found to fit properly into the binding pocket with a high MMGBSA score of -31.38 kcal/mol. The important amino acids involved in the interaction (hydrogen bonds) were Tyr-261, Pro-259, Gly-197, Leu-199, Ala-200 and Glu-240 (figure 26 and table 9). In the case of docking of compound 17 with MMP-14 only Ala-200 of those amino acids was found to be involved with galardin was interacting directly with compound 17, which may explain the weak inhibition and the low MMGBSA score of -2.5 kcal/mol (figure 27 and tables 9, 10). Similarly, in the case of docking of compound 10 with MMP-14 only amino acid Glu-240 was involved in Pi-cationic interaction with the ligand, and Tyr-261 was forming a Pi-Pi interactions with the ligand giving a MMGBSA score of -9.42 kcal/mol, which is quite weak compared with galardin (figure 28, tables 9, 10). For compound 5, while other interactions seen for galardin were absent, which may explain the low MMGBSA score of -1.4 kcal/mol and the low inhibition compared to galardin (figure 29, tables 9, 10).

4.4 Challenges in developing inhibitors for zinc metalloproteases

The results from MMGBSA showed that there was a variation of results in the score for different enzymes. In-spite of having the highest inhibition in the wet lab, some compounds showed a low MMGBSA score. There might be many reasons for this. The most probable reasons could be that the inhibitors (compounds) could not fit on the active site of the enzyme. Some of the compounds which were chosen from VLS were not available from Molport exactly in the same structure/enantiomer as suggested by VLS as proper inhibitors. Some of the

compounds that were chosen for experimental testing therefore had small structural deviations from the molecule suggested by the VLS study as proper inhibitor. Another reason that may influence the result of the inhibition kinetics experiment was putative human errors. In almost every step like dilution, pipetting and mixing the manual process is done by using pipettes by hand which may vary the result. There is also a chance of cross contamination between the reagents which also may give wrong results (91). The use of multi- channel pipette, uncalibrated pipette and variable volume pipette may also vary the result (92, 93).

There might be several other reasons for finding the specific inhibitors for human and bacterial metalloproteases because of unique features in each of the proteases. So, to find the specific inhibitors we have to overcome the different challenges in the design of the inhibitors. The reasons for the variance of the result might be due to difference in the specificity of the substrate between the metalloproteases in which some are found to be overlapping and some to be totally different. If we look at the history of the nomenclature of the MMPs, they were first named according to their main substrate (collagenase, gelatinase) but later they were named matrix metalloproteases after the discovery of cleaving of extracellular matrix proteins by them. The number tag is given following the timeline of discovery (94). In the broad sense it can be viewed that MMPs have overlapping substrate specificity but if we view the detail structure of cleft of the active site, it can be seen similar but not exactly the same (95).

4.5 Possible solutions to overcome the challenges

To overcome these challenges and reduce the possibility for human errors, there should be novel strategies with the advancement in the working techniques by minimizing the use of primitive methods and increasing the use of automation techniques (96). Another approach may be to target the exosites (site outside the cleft of active site which helps in substrate binding and orientation), which would help to control the in-vivo selectivity of MMPs (97, 98). It has been found that each MMPs have their own inhibitory sites (hotspots) which can also be a site for selective inhibition. Designing the inhibitors targeting such hotspots help in rigidification of flexibility of the cavities (protein surface) lead to the development of selective inhibitors for MMPs (99, 100). Similarly, formation of antibody based inhibitors which target the catalytic zinc complex is also a technique that may help to increase the therapeutic potential and to

minimize the risk factors in the designing of new inhibitors for MMPs (101). Likewise, macromolecular inhibition of the MMPs by utilizing the pro-domain also help in development of selective and potent inhibitors of MMPs (102).

Although the above techniques for the designing of the inhibitors are selective but those selected inhibitors might have other disadvantages like newly designed inhibitors might not be tissue specific and they might affect in pathological pathways during homeostasis. So, for the further improvement the technique can be combined with protein engineering and directed evolution technique. This technique is proved to be widely used in study of enzyme substrate specificity, protein evolution and protein-protein interaction because of its reliability and specificity (103-105). For enhancing the specificity and ability of the inhibitors, engineering and targeting the Tissue Inhibitors of Metalloproteases (TIMPs) is also one of the techniques used in designing various inhibitors with unique specificity and reducing the side effects in different members of MMPs (106, 107). Since the most commonly used strategy for development of potent inhibitors for zinc metalloproteases depends on the core zinc atom and peptide and nonpeptidic scaffold for additional interactions for the increasement of selectivity and potency, this technique mostly fails in the development of potent inhibitors for zinc metalloproteases as zinc metalloproteases consists of highly conserved domains. Another strategy to enhance the selectivity and potency of the zinc metalloproteases can be variation of zinc binding groups which decrease the chance of missing the target due to interplay between enthalpy and entropy for same scaffold. So, variation of zinc binding sites is also one of the preferable techniques for development of effective inhibitors(108).

5. Conclusion

The present project is focused on the identification of compounds that can be developed into putative drugs by the use of molecular modeling and enzyme kinetics studies. None of the compounds were identified as putative drug candidates for the MMPs and the M4 family. We found at most only 40% of inhibition by compound 17 against PLN. The inhibition activities of the compounds 5, 10 and17 for TLN, ALN and MMP-14 were around 30%. Most of the tested compounds did not inhibit the enzymes at all. So, compounds 5, 10, and 17 were considered as weak inhibitors, not good enough for being taken for the further steps to calculate IC₅₀ value and K_i values. There are many challenges in designing of compounds as possible drugs that do not hamper any other physiological function. The dual role of MMPs in pathological and physiological conditions is one of the major obstacles as they can act as drug and anti-drug targets. In the case of developing an inhibitor for a bacterial zinc metalloprotease a major challenge is to design a compound that should only strongly bind to the bacterial enzymes and not interfere in any physiological function of the human (should not bind on the active site of the human zinc metalloproteases).

6. Future prospective

In the coming future this project can be continued with different prospects. Since the compounds identified as weak inhibitors in this project are not structurally similar to known inhibitors in the literature, we can search for different structural analogs of the most promising low affinity inhibitors (for example compound 17, 10 or 5) in order to obtain compounds with stronger inhibition of the zinc metalloproteases. This can be done by using different databases (like Molport, ChEMBL and zinc databases of known drugs) which may provide putative structural analogs of the compounds, which then can be tested in lab, and by using molecular modeling. Likewise, another possibility can be use of structure- based drug design for structural modification of the most promising compounds in the binding site after docking, and then obtain the new molecule by synthesis before testing in assays. Another prospective can be testing of present compounds and compounds obtained from searching analogs and structural based drug design with additional human and bacterial metalloproteases.

References

1. Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134.

2. Mohr KI. History of Antibiotics Research. In: Stadler M, Dersch P, editors. How to Overcome the Antibiotic Crisis : Facts, Challenges, Technologies and Future Perspectives. Cham: Springer International Publishing; 2016. p. 237-72.

3. Meek RW, Vyas H, Piddock LJV. Nonmedical Uses of Antibiotics: Time to Restrict Their Use? PLOS Biology. 2015;13(10):e1002266.

4. Uddin TM, Chakraborty AJ, Khusro A, Zidan BMRM, Mitra S, Emran TB, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health. 2021.

5. Cook M, Molto E, Anderson C. Fluorochrome labelling in Roman period skeletons from Dakhleh Oasis, Egypt. Am J Phys Anthropol. 1989;80(2):137-43.

6. Bassett EJ, Keith MS, Armelagos GJ, Martin DL, Villanueva AR. Tetracyclinelabeled human bone from ancient Sudanese Nubia (A.D. 350). Science. 1980;209(4464):1532-4.

7. Cui L, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther. 2009;7(8):999-1013.

8. Aminov R. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future. Frontiers in Microbiology. 2010;1(134).

9. Machowska A, Stålsby Lundborg C. Drivers of Irrational Use of Antibiotics in Europe. Int J Environ Res Public Health. 2018;16(1):27.

10. Organization WH. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017.

11. Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections Caused by Pseudomonas aeruginosa. Reviews of Infectious Diseases. 1983;5(2):279-313.

12. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist1*Address for correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA. Microbes and Infection. 2000;2(9):1051-60.

13. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159-73.

14. Codagnone M, Cianci E, Lamolinara A, Mari VC, Nespoli A, Isopi E, et al. Resolvin D1 enhances the resolution of lung inflammation caused by long-term Pseudomonas aeruginosa infection. Mucosal Immunol. 2018;11(1):35-49.

15. Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2010;74(4):621-41.

16. Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environmental Microbiology. 2010;12(6):1734-47.

17. Suh SJ, Runyen-Janecky LJ, Maleniak TC, Hager P, MacGregor CH, Zielinski-Mozny NA, et al. Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Microbiology (Reading). 2002;148(Pt 5):1561-9.

18. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, et al. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2003;100(14):8484-9.

19. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33(2):376-93.

20. Ballok AE, O'Toole GA. Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. Journal of bacteriology. 2013;195(18):4013-9.

21. Maeda H. Role of microbial proteases in pathogenesis. Microbiol Immunol. 1996;40(10):685-99.

22. Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 2017;16(7):457-71.

23. Munguia J, Nizet V. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs. Trends Pharmacol Sci. 2017;38(5):473-88.

24. Hauser AR, Mecsas J, Moir DT. Beyond Antibiotics: New Therapeutic Approaches for Bacterial Infections. Clin Infect Dis. 2016;63(1):89-95.

25. Cross AS. What is a virulence factor? Critical Care. 2008;12(6):196.

26. Rahman F, Nguyen T-M, Adekoya O, Campestre C, Tortorella P, Sylte I, et al. Inhibition of bacterial and human zinc-metalloproteases by bisphosphonate- and catecholcontaining compounds. Journal of Enzyme Inhibition and Medicinal Chemistry. 2021;36:819-30.

27. López-Otín C, Bond JS. Proteases: multifunctional enzymes in life and disease. The Journal of biological chemistry. 2008;283(45):30433-7.

28. King JV, Liang WG, Scherpelz KP, Schilling AB, Meredith SC, Tang WJ. Molecular basis of substrate recognition and degradation by human presequence protease. Structure. 2014;22(7):996-1007.

29. Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research. 2018;46(D1):D624-D32.

30. De Groef L, Van Hove I, Dekeyster E, Stalmans I, Moons L. MMPs in the neuroretina and optic nerve: modulators of glaucoma pathogenesis and repair? Invest Ophthalmol Vis Sci. 2014;55(3):1953-64.

31. Wolberg AS, Mast AE. Tissue factor and factor VIIa--hemostasis and beyond. Thromb Res. 2012;129 Suppl 2(Suppl 2):S1-4.

32. Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015;16(6):345-59.

33. Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. Febs j. 2011;278(1):28-45.

34. Overall CM, Blobel CP. In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol. 2007;8(3):245-57.

35. Bode W, Gomis-Rüth FX, Stöckler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Metturn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett. 1993;331(1-2):134-40.

36. Rahman F, Nguyen T-M, Adekoya OA, Campestre C, Tortorella P, Sylte I, et al. Inhibition of bacterial and human zinc-metalloproteases by bisphosphonate- and catechol-

containing compounds. Journal of Enzyme Inhibition and Medicinal Chemistry. 2021;36(1):819-30.

37. Sabeh F, Li X-Y, Saunders TL, Rowe RG, Weiss SJ. Secreted Versus Membraneanchored Collagenases: RELATIVE ROLES IN FIBROBLAST-DEPENDENT COLLAGENOLYSIS AND INVASION*. Journal of Biological Chemistry.

2009;284(34):23001-11.

38. Snyman C, Niesler CU. MMP-14 in skeletal muscle repair. J Muscle Res Cell Motil. 2015;36(3):215-25.

39. Häse CC, Finkelstein RA. Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev. 1993;57(4):823-37.

40. Hooper NM. Families of zinc metalloproteases. FEBS Lett. 1994;354(1):1-6.

41. Adekoya OA, Sylte I. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Des. 2009;73(1):7-16.

42. Gomis-Rüth FX, Botelho TO, Bode W. A standard orientation for metallopeptidases. Biochim Biophys Acta. 2012;1824(1):157-63.

43. Wang Y, Liu B-X, Cheng J-H, Su H-N, Sun H-M, Li C-Y, et al. Characterization of a New M4 Metalloprotease With Collagen-Swelling Ability From Marine Vibrio pomeroyi Strain 12613. Frontiers in Microbiology. 2020;11(1868).

44. Ooshima H, Mori H, Harano Y. Synthesis of aspartame precursor by solid thermolysin in organic solvent. Biotechnology Letters. 1985;7(11):789-92.

45. Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. International Journal of Molecular Sciences. 2021;22(6):3128.

46. Kessle E, Ohman DE. 102 - Pseudolysin. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of Proteolytic Enzymes (Second Edition). London: Academic Press; 2004. p. 401-9.

47. Yeats C, Rawlings ND, Bateman A. The PepSY domain: a regulator of peptidase activity in the microbial environment? Trends Biochem Sci. 2004;29(4):169-72.

48. Adekoya OA, Sylte I. The Thermolysin Family (M4) of Enzymes: Therapeutic and Biotechnological Potential. Chemical Biology & Drug Design. 2009;73(1):7-16.

49. Heinrikson RL. Applications of thermolysin in protein structural analysis. Methods Enzymol. 1977;47:175-89.

50. Ligné T, Pauthe E, Monti JP, Gacel G, Larreta-Garde V. Additional data about thermolysin specificity in buffer- and glycerol-containing media. Biochim Biophys Acta. 1997;1337(1):143-8.

51. Potempa J, Travis J. 96 - Aureolysin. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of Proteolytic Enzymes (Second Edition). London: Academic Press; 2004. p. 389-93.

52. Galloway DR. Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol Microbiol. 1991;5(10):2315-21.

53. Thayer MM, Flaherty KM, McKay DB. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J Biol Chem. 1991;266(5):2864-71.

54. Matthews BW. Structural basis of the action of thermolysin and related zinc peptidases. Accounts of Chemical research. 1988;21(9):333-40.

55. Banbula A, Potempa J, Travis J, Fernandez-Catalén C, Mann K, Huber R, et al. Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 å resolution. Structure. 1998;6(9):1185-93.

56. Calabrese B. Cloud-Based Molecular Modeling Systems. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C, editors. Encyclopedia of Bioinformatics and Computational Biology. Oxford: Academic Press; 2019. p. 261-4.

57. Silakari O, Singh PK. Chapter 6 - Molecular docking analysis: Basic technique to predict drug-receptor interactions. In: Silakari O, Singh PK, editors. Concepts and Experimental Protocols of Modelling and Informatics in Drug Design: Academic Press; 2021. p. 131-55.

58. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935-49.

59. Wei BQ, Weaver LH, Ferrari AM, Matthews BW, Shoichet BK. Testing a flexiblereceptor docking algorithm in a model binding site. J Mol Biol. 2004;337(5):1161-82.

60. Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57.

61. Venhorst J, ter Laak AM, Commandeur JN, Funae Y, Hiroi T, Vermeulen NP. Homology modeling of rat and human cytochrome P450 2D (CYP2D) isoforms and computational rationalization of experimental ligand-binding specificities. J Med Chem. 2003;46(1):74-86.

62. Boehm HJ, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, et al. Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem. 2000;43(14):2664-74.

63. Zhang X, Wong SE, Lightstone FC. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines. J Comput Chem. 2013;34(11):915-27.

64. Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem. 2011;32(4):742-55.

65. Rastelli G, Del Rio A, Degliesposti G, Sgobba M. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem. 2010;31(4):797-810.

66. Hou T, Wang J, Li Y, Wang W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem. 2011;32(5):866-77.

67. Beveridge DL, DiCapua FM. Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem. 1989;18:431-92.

68. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem. 2012;55(14):6582-94.

69. Zhang X, Perez-Sanchez H, Lightstone FC. A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin. Curr Top Med Chem. 2017;17(14):1631-9.

70. Zhang X, Wong SE, Lightstone FC. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. J Chem Inf Model. 2014;54(1):324-37.

71. Eble JA. Matrix biology meets toxinology. Matrix Biol. 2010;29(4):239-47.

72. Cleland WW. The kinetics of enzyme-catalyzed reactions with two or more substrates or products: I. Nomenclature and rate equations. Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects. 1963;67:104-37.

73. Henderson PJ. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J. 1972;127(2):321-33.

74. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(23):3099-108.

75. Saboury AA. Enzyme inhibition and activation: A general theory. Journal of the Iranian Chemical Society. 2009;6(2):219-29.

76. Williams JW, Morrison JF. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 1979;63:437-67.

77. Cha S. Tight-binding inhibitors-I. Kinetic behavior. Biochem Pharmacol. 1975;24(23):2177-85.

78. Cleland WW. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963;67:104-37.

79. Krippendorff B-F, Neuhaus R, Lienau P, Reichel A, Huisinga W. Mechanism-Based Inhibition: Deriving KI and kinact Directly from Time-Dependent IC50 Values. Journal of Biomolecular Screening. 2009;14(8):913-23.

80. DeLean A, Munson PJ, Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. American Journal of Physiology-Endocrinology and Metabolism. 1978;235(2):E97.

81. Morrison JF. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta. 1969;185(2):269-86.

82. Kinetics of Two-Substrate Enzymatic Reactions. Kinetics of Enzyme Action2011. p. 141-68.

83. Cornish-Bowden A. One hundred years of Michaelis–Menten kinetics. Perspectives in Science. 2015;4:3-9.

84. Atkins GL, Nimmo IA. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation. Biochem J. 1973;135(4):779-84.

85. Sylte I, Dawadi R, Malla N, von Hofsten S, Nguyen T-M, Solli AI, et al. The selectivity of galardin and an azasugar-based hydroxamate compound for human matrix metalloproteases and bacterial metalloproteases. PLoS One. 2018;13(8):e0200237.

86. Sjøli S, Nuti E, Camodeca C, Bilto I, Rossello A, Winberg JO, et al. Synthesis, experimental evaluation and molecular modelling of hydroxamate derivatives as zinc metalloproteinase inhibitors. Eur J Med Chem. 2016;108:141-53.

87. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1-73.

88. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013;34(4):2041-51.

89. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387-92.

90. Leiris S, Davies DT, Sprynski N, Castandet J, Beyria L, Bodnarchuk MS, et al. Virtual Screening Approach to Identifying a Novel and Tractable Series of Pseudomonas aeruginosa Elastase Inhibitors. ACS Medicinal Chemistry Letters. 2021;12(2):217-27.

91. Henke HA, Eppendorf A. Five Challenges in Plate Assays that Can Be Mastered by the Right Choice of Pipetting Tool.

92. Khastsaev BD. Single channel and multichannel adjustable micropipettes. Biomedical Engineering. 1993;27(5):285-91.

93. Ewald K, Eppendorf A. Impact of pipetting techniques on precision and accuracy. Eppendorf Userguide. 2015(20):1-4.

94. Nagase H, Barrett AJ, Woessner JF, Jr. Nomenclature and glossary of the matrix metalloproteinases. Matrix Suppl. 1992;1:421-4.

95. Clark IM, Cawston TE. Fragments of human fibroblast collagenase. Purification and characterization. Biochem J. 1989;263(1):201-6.

96. Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors — Novel strategies bring new prospects. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2017;1864(11, Part A):1927-39.

97. Sela-Passwell N, Rosenblum G, Shoham T, Sagi I. Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition? Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2010;1803(1):29-38.

98. Bhowmick M, Stawikowska R, Tokmina-Roszyk D, Fields GB. Matrix metalloproteinase inhibition by heterotrimeric triple-helical peptide transition state analogs. Chembiochem: a European journal of chemical biology. 2015;16(7):1084.

99. Laskowski RA, Gerick F, Thornton JM. The structural basis of allosteric regulation in proteins. FEBS letters. 2009;583(11):1692-8.

100. Udi Y, Fragai M, Grossman M, Mitternacht S, Arad-Yellin R, Calderone V, et al. Unraveling hidden regulatory sites in structurally homologous metalloproteases. Journal of molecular biology. 2013;425(13):2330-46.

101. Sela-Passwell N, Kikkeri R, Dym O, Rozenberg H, Margalit R, Arad-Yellin R, et al. Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. Nature medicine. 2012;18(1):143-7.

102. Moss ML, Bomar M, Liu Q, Sage H, Dempsey P, Lenhart PM, et al. The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. Journal of Biological Chemistry. 2007;282(49):35712-21.

103. Levin M, Amar D, Aharoni A. Employing directed evolution for the functional analysis of multi-specific proteins. Bioorganic & medicinal chemistry. 2013;21(12):3511-6.
104. Rabinovich E, Heyne M, Bakhman A, Kosloff M, Shifman JM, Papo N. Identifying residues that determine SCF molecular-level interactions through a combination of experimental and in silico analyses. Journal of molecular biology. 2017;429(1):97-114.

105. Amar D, Berger I, Amara N, Tafa G, Meijler MM, Aharoni A. The transition of human estrogen sulfotransferase from generalist to specialist using directed enzyme evolution. Journal of molecular biology. 2012;416(1):21-32.

106. Mehner C, Batra J, Robinson J, Radisky DC, Radisky ES. Engineering TIMP-1 for selective MMP inhibition and future use as a protein therapeutic. AACR; 2013.

107. Mohan V, Talmi-Frank D, Arkadash V, Papo N, Sagi I. Matrix metalloproteinase protein inhibitors: highlighting a new beginning for metalloproteinases in medicine. Metalloproteinases in medicine. 2016;3:31-47.

108. Rouanet-Mehouas C, Czarny B, Beau F, Cassar-Lajeunesse E, Stura EA, Dive V, et al. Zinc–Metalloproteinase Inhibitors: Evaluation of the Complex Role Played by the Zinc-Binding Group on Potency and Selectivity. Journal of Medicinal Chemistry. 2017;60(1):403-14.

Appendix

1. Calculation of inhibition activity of the compounds (table 1) against TLN

compo	ound 1								compo	ound 2							
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
12.79	10.88	0.850665	11.82	10.8	0.913706	11.75	10.26	0.873191	12.79	11.68	0.913213	11.82	11.3	0.956007	11.75	10.64	0.905532
12.41	11.06	0.891217	10.93	11.6	1.061299	12.52	11.68	0.932907	12.41	10.68	0.860596	10.93	11.19	1.023788	12.52	11.23	0.896965
12.18	10.33	0.848112	9.57	12.23	1.277952	12.23	12.4	1.0139	12.18	11.46	0.940887	9.57	11.14	1.164054	12.23	11.36	0.928863
11.33	10.42	0.919682	12.59	10	0.794281	12.79	11.6	0.906959	11.33	10.81	0.954104	12.59	10.91	0.866561	12.79		
mean		0.877419			1.011809			0.931739	mean		0.9172			1.002602			0.910453
SD		0.029796			0.180433			0.051946	SD		0.035857			0.108621			0.01348
compo	ound 3																
0 min			15 min			30min			compo	ound 4							
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	<mark>0 min</mark>			15 min			30min		
12.79	11.9	0.930414	11.82	11.27	0.953469	11.75	11.94	1.01617	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
12.41	11.28	0.908944	10.93	13.39	1.225069	12.52	11.82	0.944089	12.79	12.18	0.952306	11.82	14.35	1.214044	11.75	14.4	1.225532
12.18	11.28	0.926108	9.57	12.41	1.296761	12.23	13.31	1.088307	12.41	13.76	1.108783	10.93	13.51	1.236048	12.52	14.26	1.138978
11.33	11.63	1.026478	12.59	12.7	1.008737	12.79	14.3	1.118061	12.18	13.41	1.100985	9.57	11.78	1.23093	12.23	14.66	1.198692
									11.33	13.78	1.21624	12.59	14.13	1.122319	12.79	12.79	1
mean		0.947986			1.121009			1.041657									
SD		0.046024			0.14352			0.067422	mean		1.094579			1.200835			1.1408
									SD		0.093922			0.046057			0.087119

compo	ound 5																
0 min			15 min			30min			comp	ound 6							
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	<mark>0 min</mark>			15 min			30min		
12.79	6.81	0.532447	11.82	6.58	0.556684	11.75	6.96	0.59234	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
12.41	7.18	0.578566	10.93	5.8	0.53065	12.52	6.82	0.544728	12.79	11.46	0.896013	11.82	11.65	0.985618	11.75	11.89	1.011915
12.18	6.82	0.559934	9.57	7.23	0.755486	12.23	7	0.572363	12.41	10.69	0.861402	10.93	10.28	0.940531	12.52	10.93	0.873003
11.33	8.64	0.762577	12.59	7.69	0.610802	12.79	8.03	0.627834	12.18	10.64	0.873563	9.57	11.89	1.242424	12.23	11.43	0.934587
									11.33	10.4	0.917917	12.59	11.25	0.893566	12.79	11.68	0.913213
mean		0.608381			0.613405			0.584317									
SD		0.090524			0.086976			0.030283	mean		0.887224			1.015535			0.93318
									SD		0.021637			0.134978			0.05055
compo	ound 7								comp	ound 8							
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
12.79	11.26	0.880375	11.82	9.58	0.810491	11.75	8.64	0.735319	8.44	6	0.7109	7.71	7.19	0.932555	9.06	6.78	0.748344
12.41	9.35	0.753425	10.93	8.76	0.801464	12.52	9.38	0.749201	8.04	8.03	0.998756	8.24	7.73	0.938107	7.53	7.12	0.945551
12.18	10.93	0.897373	9.57	9.35	0.977011	12.23	9.96	0.814391	8.09	7.3	0.902349	9.32	8.34	0.89485	7.71	6.72	0.871595
11.33			12.59	9.86	0.783161	12.79			7.51	7.12	0.948069		7.31	0.887136		6.89	0.893645
mean		0.843724			0.843032			0.766304	mean		0.890019			0.913162			0.864784
SD		0.064227			0.077977			0.034472	SD		0.108891			0.022422			0.072389

compo	ound 9								comp	ound 1	0						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
8.44	8.16	0.966825	7.71	7.96	1.032425	9.06	7.79	0.859823	12.52	5.74	0.458466	11.99	6.48	0.54045	12.86	6.54	0.508554
8.04	7.28	0.905473	8.24	9.33	1.132282	7.53	9.21	1.223108	13.59	6.64	0.488595	12.6	7.62	0.604762	12.44	9.49	0.762862
8.09		0.899876	9.32	8.41	0.902361	7.71	7.21	0.935149	12.92	6.36	0.49226	13.57	5.96	0.439204	12.98	8.23	0.634052
7.51		1.008653		8.23	0.998786		7.76	1.030544	12.6	6.56	0.520635	12.18					
mean		0.945207			1.016463			1.012156	mean		0.489989			0.528139			0.635156
SD		0.045073			0.082159			0.135991	SD		0.022022			0.068147			0.103824
comp	ound 1	1							comp	ound 1	า						
		T								ound 1	Z						
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
8.44	7.3	0.864929	7.71	7.53	0.913835	9.06	7.61	0.839956	8.44	7.35	0.870853	7.71	7.08	0.918288	9.06	7.01	0.773731
8.04	6.46	0.803483	8.24	6.17	0.800259	7.53	7.69	1.021248	8.04	8.54	1.062189	8.24	8.31	1.008495	7.53	6.01	0.798141
8.09	6.13	0.757726	9.32	7.21	0.773605	7.71	7.46	0.967575	8.09	6.62	0.818294	9.32	6.96	0.902724	7.71	5.66	0.734112
7.51		0.816245					6.99	0.928287	7.51	6.85	0.912117					7.4	0.816777
mean		0.810596			0.829233			0.939266	mean		0.915863			0.943169			0.78069
SD		3.792881			3.667555			#DIV/0!	SD		0.090789			0.046628			0.030922

compo	ound 1	3							com	ро	ound 1	4						
0 min			15 min			30min			<mark>0 min</mark>				15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	withou	tΙv	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
8.44	8.43	0.998815	7.71	6.64	0.861219	9.06	6.6	0.728477	8	.44	7.29	0.863744	7.71	7.27	0.942931	9.06	6.93	0.920319
8.04	7.76	0.965174	8.24	6.85	0.831311	7.53	6.3	0.836653	8	.04	8.76	1.089552	8.24	6.47	0.785194	7.53	8.26	1.096946
8.09	6.21	0.767614	9.32	6.73	0.722103	7.71	6.94	0.90013	8	.09	6.13	0.757726	9.32	7.01	0.752146	7.71	8.34	1.081712
7.51	7.15	0.952064							7	.51	6.79	0.904128		7.07	0.85801			
mean		0.920917			0.804878			0.821753	mean			0.903787			0.83457			1.032992
SD		0.090137			0.059791			0.070865	SD			0.11984			0.073354			0.079914
compo	ound 1	5							com	ро	ound 1	6						
0 min			15 min			30min			<mark>0 min</mark>				15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	withou	tΙv	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
17.45	17.42	0.998281	18.23	16.9	0.927043	17.19	16.8	0.977312	17	.45	16.34	0.93639	18.23	16.89	0.926495	17.19	16.08	0.935428
17.12	17.43	1.018107	18	17.59	0.977222	17.67	17.4	0.98472	17	.12	16	0.934579	18	16.55	0.919444	17.67	17.54	0.992643
17.13	17.31	1.010508	18.06	16.91	0.936323	18.06	18.09	1.001661	17	.13	14.82	0.865149	18.06	16.54	0.915836	18.06	16.53	0.915282
17.57		0.985202	18			17.66	17.44	0.987542	17	.57	16.84	0.958452	18	16.44	0.913333	17.66	16.42	0.929785
mean		1.003025			0.946863			0.987809	mean			0.923642			0.918777			0.943284
SD		0.012486			0.021799			0.008827	SD			0.035055			0.004957			0.029429

comp	ound 1	7							com	ooun	nd 18	8						
0 min			15 min			30min			<mark>0 min</mark>				15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without	I with	1	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
12.52	6.7	0.535144	11.99	5.64	0.470392	12.86	7.42	0.576983	17.4	15 :	15.97	0.915186	18.23	14.13	0.775096	17.19	13.95	0.811518
13.59	5.2	0.382634	12.6	7.3	0.579365	12.44	9.9	0.79582	17.1	.2	14.95	0.873248	18	14.78	0.821111	17.67	14.51	0.821166
12.92	7.8	0.603715	13.57	7.82	0.576271	12.98	8.35	0.643297	17.1	.3	14.14	0.825452	18.06	13.36	0.739756	18.06	14.26	0.78959
12.6	6.45	0.511905	12.18	6.55	0.537767		7.62	0.61254	17.5	57 :	14.79	0.841776	18	13.72	0.762222	17.66		
mean		0.508349			0.540949			0.65716	mean			0.863916			0.774546			0.807425
SD		0.080046			0.043909			0.083424	SD			0.034225			0.02971			0.013212
compo	ound 1	9							com	ooun	nd 20)						
0 min			15 min			30min			0 min				15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without	I with	1	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
17.45	15.83	0.907163	18.23	15.54	0.852441	17.19	15.93	0.926702	17.4	15 :	17.73	1.016046	18.23	17.63	0.967087	17.19	16.84	0.979639
17.12	14.8	0.864486	18	15.82	0.878889	17.67	14.94	0.845501	17.1	12 :	17.99	1.050818	18	16.86	0.936667	17.67	17.18	0.972269
17.13	16.47	0.961471	18.06	14.72	0.815061	18.06	15.19	0.841085	17.1	.3 :	17.12	0.999416	18.06	18.23	1.009413	18.06	17.27	0.956257
17.57	16.64	0.947069	18			17.66	17.04	0.964892	17.5	57 :	18.28	1.04041	18	16.23	0.901667	17.66	17.58	0.99547
mean		0.920047			0.848797			0.894545	mean			1.026672			0.953708			0.975909
SD		0.037746			0.026185			0.053024	SD			0.020171			0.039626			0.014107

compo	ound 2	1							comp	bound 2	22						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without	l with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
17.45	19.81	1.135244	18.23	19.71	1.081185	17.19	18.39	1.069808	12.5	2 11.	0.934505	11.99	11.76	0.980817	12.86	10.78	0.838258
17.12	18.22	1.064252	18	17.69	0.982778	17.67	18.22	1.031126	13.5	9 11.0	0.811626	12.6	11.57	0.918254	12.44	11.77	0.946141
17.13	18.56	1.083479	18.06	15.22	0.842746	18.06	17.44	0.96567	12.9	2 12.10	5 0.941176	13.57	11.96	0.881356	12.98	12.4	0.955316
17.57	19.22	1.09391	18	17.86	0.992222	17.66			12.	6 12.2	0.975397	12.18		0.981938			
mean		1.094221			0.974733			1.022201	mean		0.915676			0.940591			0.913239
SD		0.025964			0.085327			0.04298	SD		0.062044			0.042824			0.053151
comp	ound 2	3							comr	ound 2	24						
0 min			15 min			30min			0 min			15 min			30min		
	with I	VI/V0		with I			with I	VI/V0	without	with I	VI/V0		with I	VI/V0		with I	VI/V0
12.52	11.35	0.90655	11.99	11.4	0.950792	12.86	12.46	0.968896	12.5	2 10.6	0.850639	11.99	9.72	0.810676	12.86	11.68	0.908243
13.59	10.61	0.780721	12.6	12.42	0.985714	12.44	13.25	1.065113	13.5	9 12.2	3 0.903606	12.6	11.92	0.946032	12.44	10.35	0.831994
12.92	11.92	0.922601	13.57	11.84	0.872513	12.98	11.896	0.916487	12.9	2 9.8	0.760836	13.57	11.3	0.832719	12.98	14.35	1.105547
12.6	10.47	0.830952	12.18	11.6	0.952381		12.77	1.026527	12.	6 10.74	0.852381	12.18	9.96	0.817734			
									mean		0.841865			0.85179			0.948594
mean		0.860206			0.94035			0.994256	SD		0.051394			0.05499			0.115265
SD		0.057477			0.041574			0.056465									

compo	ound 2	5							com	pound	26						
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without	I with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/VO
12.52	10.4	0.830671	11.99	10.76	0.897415	12.86	10.71	0.832815	12.	52 10.3	4 0.825879	11.99	10.2	0.850709	12.86	9.57	0.744
13.59	9.8	0.721118	12.6	10.84	0.860317	12.44	10.34	0.83119	13.	59 10.8	1 0.795438	12.6	9.65	0.765873	12.44	11.99	0.963
12.92	12.85	0.994582	13.57	11.85	0.87325	12.98	10.87	0.837442	12.	92 10.2	9 0.79644	13.57	10.44	0.769344	12.98	9.66	0.744
12.6	10.55	0.837302	12.18				12.08	0.971061	12	.6		12.18	9.28	0.761905		9.81	0.755
mean		0.845918			0.876994			0.868127									
SD		0.097446			0.015374			0.059473	mean		0.805919			0.786958			0.801
									SD		0.01412			0.036901			0.093

2.Calculation of inhibition activity of the compounds (table 1) against PLN

compound 1									comp	ound 3							
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
44.1)		55.58	44.58	0.802087	48.44	47.57	0.98204	35.7	45.8	1.191467	42.79	47.36	1.106801	64.69	63.3	0.97851
57.4	44.85	0.780815	48.19	43.34	0.899357	49.56	42.97	0.86703	37.28	41.29	1.107564	40.46	41.41	1.02348	58.21	63.15	1.08486
50.	41.8	0.832669	47.46	40.55	0.854404	49.16	42.65	0.867575	38.44	39.05	1.015869	38.71	44.95	1.161199	52.03		
50.1	43.13	0.860363		40.21	0.84724	52.56	45.39	0.863584							47.16		1.08486
mean		0.824616			0.850772			0.895057	mean		1.104967			1.09716			1.04941
SD		0.032971			0.034483			0.050243	SD		0.071711			0.056635			0.05013
compound 2									comp	ound 4							
0 min			15 min			30min			0 min			15 min			30min		
without I	with I		without I	with I	VI/V0												
33.6	32.33	0.959917	36.51	32.99	0.903588	34.96	35	1.001144	48			44.34			46	48.08	1.045217
33.1	30.38	0.916994	34.64	32.55	0.939665	34.69	32.78	0.944941	47.85	47.95	1.00209	50.59	49.02	0.968966	46.59	48.29	1.036489
31.7	32.33	1.019231	31.97	29.95	0.936816	33.55	33.21	0.989866	45.96	46.39	1.009356	50.94	50.12	0.983903	44.12	43.05	0.975748
	36.33	1.096589							45.99	46.09	1.002174	53.57	48.04	0.896771	44.83	46.88	1.045728
mean		0.998183			0.92669			0.97865	mean		1.00454			0.94988			1.02579
SD		0.067422			0.016377			0.024277	SD		0.003406			0.038046			0.029127

compound 5									compo	ound 7							
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
27.4	3 22.69	0.825691	34.28	33.12	0.966161	33.12	38.67	1.167572	42.67	37.23	0.87251	44.55	36.78	0.825589	44.74	38.68	0.864551
3	1 27.76	0.895484	36.16	32.89	0.909569	32.89	37.69	1.145941	42.63	38.1	0.893737	46.41	38.44	0.82827	45.16	39.32	0.870682
				28.56	0.833139	28.56			41.71	37.23	0.892592	43.17	38.21	0.885105	45.65	40.68	0.891128
				33.69	0.931692	33.69		1.11873	42.49			4426			43.39	43.21	0.995852
mean		0.860588			0.91014			1.144081	mean		0.886279			0.846321			0.905553
SD		0.034896			0.048817			0.019983	SD		0.009748			0.027446			0.053054
compound 6									compo	ound 8							
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
42.3	5 42.04	0.992446	44.03	38.34	0.87077	41.44	32.83	0.79223	40.43	36.76	0.909226	42.45	35.12	0.900744	43.2	36.39	0.842361
49.0	1 39.46	0.805142	44.27	44.15	0.997289	35.2	28.29	0.803693	41.97	34.62	0.824875	37.93	38.16	1.006064	41	35.77	0.872439
39.7	7 37.14	0.93387	39.57	36.69	0.927218	38.65	27.7	0.716688	31.43	34.8	1.107222	38.99	36.35	0.93229	44.13	33.5	0.759121
47.9	38.06	0.79424	35.35	31.04	0.878076				35.47	30.04	0.846913	39.72	36.18	0.910876		33.75	0.78125
mean		0.881424			0.918338			0.77087	mean		0.922059			0.937494			0.813793
SD		0.084404			0.050487			0.038597	SD		0.11129			0.041195			0.045562

compound	9								CO	mpc	ound 1	1						
0 min			15 min			30min			<mark>0 mi</mark>	in			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	with	nout I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
42.	67 40.72	0.9543	44.55	39.33	0.882828	44.74	39.27	0.877738		36.94	37.18	1.006497	37			39.66	37.22	0.938477
42.	63 39.12	0.917664	46.41	41.18	0.887309	45.16	41.62	0.921612		37.16	37.82	1.017761	36.37	37.68			30.25	0.762733
41.	71 42.72	1.024215	43.17	41.48	0.960852	45.65	40.86	0.895071		28.18			45.5	36.65	0.805495	37.68	32.96	0.874735
42.	49 38.84	0.914097	44.26	40.56	0.916403	43.39	39.33	0.90643			30.88	1.095813		36.69	0.806374			
mean		0.952569			0.911848			0.900213	mea	an		1.040024			0.805934			0.858648
SD		0.044257			0.031091			0.016032	SD			0.039716			0.00044			0.072643
compound	10								CO	mpc	ound 12	2						
0 min			15 min			30min			<mark>0 mi</mark>	in			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	with	nout I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
42.	67 28.69	0.672369	44.55	32.5	0.729517	44.74	33.25	0.743183		35.13	26.2	0.745801	32.17	32.26		31.33	30.39	0.969997
42.	63 27.17	0.637345	46.41	31.24	0.673131	45.16	34.05	0.753986		24.64			30.93	23.6	0.763013	30	29.47	0.982333
41.	71 34.11	0.817789	43.17	31.59	0.731758	45.65	33.45	0.732749		31.37	26.71	0.85145	31.05	28.7	0.924316	31.31	28.75	0.918237
42.	49 34.12	0.803012	44.26	32.02	0.723452	43.39	35.91	0.82761			26.44	0.842843		27.35	0.880837			
mean		0.732629			0.714465			0.764382	mea	an		0.813365			0.856055			0.956856
SD		0.078925			0.024057			0.037269	SD			0.047904			0.068143			0.027768

compound	13								compo	ound 1	5						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
53.	11 43.16	0.812653	55.54	48.33	0.870184	48.72	41.03	0.842159	33.12	39.49	1.096031	35.23	30.07	0.853534	33.23	36.15	1.087872
35.	53		55.46	46.26	0.834115	47.17	41.47	0.87916	32.33	33.79	1.045159	31.25	30.16	0.96512	30.16	33.01	1.094496
55.	52 45.22	0.813017	55.49	42.94	0.773833	39.97	42.24		36.03	30.59	0.94618	33.01	33.16	1.004544	30.07	31.25	1.039242
	45.8	0.823445								33.18	1.026291	36.15		0.917289		35.231	1.171633
mean		0.816372			0.826044			0.86066									
SD		0.005004			0.039747			0.018501	MEAN		1.028415			0.935122			1.098311
									SD		0.053897			0.056334			0.047405
compound	14								comp	ound 1	6						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
38.	13 29.12	0.763703	36.8	36.37	0.988315	33.65	31.35	0.931649	42.67	38.35	0.898758	44.55	37.13	0.833446	44.74	38.67	0.864327
33.	44 32.72	0.978469	32.84	26.36	0.80268	32.25	32.33	1.002481	42.63	31.14	0.730471	46.41	39.17	0.843999	45.16	40.36	0.893711
26.	05 27.6	5	34.48	27.81	0.806555	29	32.81	1.131379	41.71	38.84	0.931192	43.17	38.24	0.8858	45.65	39.07	0.85586
	28.67	0.857356							42.49	35.37	0.832431	44.26	35.27	0.796882	43.39	38.56	0.888684
MEAN		0.866509			0.86585			1.021836	mean		0.848213			0.840032			0.875646
SD		0.087916			0.086611			0.08268	SD		0.076734			0.031685			0.015937

compoun	d 17									comp	ound 1	.9						
0 min				15 min			30min			0 min			15 min			30min		
without I	with I	١	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
	35.89 28	.15	0.784341	34.88	27	0.774083	35.65	25.9	0.726508	35.8	9 33.35	0.929228	34.88	33.21	0.952122	35.65	34.35	0.963534
	34.53 31	.33	0.907327	35.88	29.15	0.81243	35.5	27.73	0.781127	34.5	3 34.54	1.00029	35.88	29.74	0.828874	35.5	33.84	0.953239
	35.08 28	.59	0.814994	33.72	26.77	0.793891	35.04	29.94	0.854452	35.0	8 29.54	0.842075	33.72	33.04	0.979834	35.04	35.4	1.010274
	34.39 26	.46	0.76941	33.56	28.15	0.838796	39.65	30.7	0.774275	34.3	30.24	0.879325	33.56	31.61	0.941895			
mean			0.819018			0.8048			0.78409	mean		0.91273			0.925681			0.975683
SD			0.053568			0.023857			0.045748	SD		0.05926			0.057589			0.024818
compoun	d 18									comp	ound 2	0						
0 min				15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	۱	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
	35.89 29	.87	0.832265	34.88	30.13	0.863819	35.65	30.67	0.860309	35.8	9 36.12	1.006408	34.88	32.79	0.94008	35.65	36.18	1.014867
	34.53 31	.17	0.902693	35.88	30.12	0.839465	35.5	29.95	0.843662	34.5	36.89	1.068346	35.88	32.25	0.898829	35.5	36.27	1.02169
	35.08	31	0.883694	33.72	31.09	0.922005	35.04	29.86	0.852169	35.0	33.92	0.966933	33.72	35.08	1.040332	35.04	36.69	1.047089
	34.39 29	.96	0.871183	33.56	31.68	0.943981	39.65	30.35	0.765448	34.3	9 35.94	1.045071	33.56	34.24	1.020262	39.65	36.34	0.91652
mean			0.872459			0.892317			0.830397	mean		1.02169			0.974876			1.000041
SD			0.025776			0.042297			0.037958	SD		0.038586			0.057746			0.049694

compo	und 21	1								compo	ound 2	3						
0 min				15 min			30min			0 min			15 min			30min		
without I		with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
	35.89	30.88	0.860407	34.88	32.55	0.9332	35.65	30.49	0.855259	35.89	34.43	0.95932	34.88	32.93	0.944094	35.65	31.41	0.881066
	34.53	32.22	0.933102	35.88	29.07	0.810201	35.5	31.42	0.88507	34.53	34.06	0.986389	35.88	30.25	0.843088	35.5	31.82	0.896338
	35.08	26.34	0.750855	33.72	31.28	0.927639	35.04	34.62	0.988014	35.08	33.25	0.947834	33.72	30.92	0.916963	35.04	35.63	1.016838
	34.39	29.96	0.871183	33.56	35.1	1.045888	39.65			34.39	34.84	1.013085	33.56	32.81	0.977652			
mean			0.853887			0.929232			0.909448	mean		0.976657			0.920449			0.931414
SD			0.065636			0.08336			0.056872	SD		0.025264			0.049568			0.060725
compo	und 22	2								compo	ound 2	4						
0 min				15 min			30min			<mark>0 min</mark>			15 min			30min		
without I		with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
	35.89	33.99	0.94706	34.88	30.63	0.878154	35.65	33.07	0.92763	42.67	36.8	0.862433	44.55	35.53	0.797531	44.74	36.2	0.809119
	34.53	34.91	1.011005	35.88	32.02	0.892419	35.5	35.28	0.993803	42.63	36.02	0.844945	46.41	37.78	0.814049	45.16	35.73	0.791187
	35.08	31.94	0.91049	33.72	33.93	1.006228	35.04	33.48	0.955479	41.71	39.36	0.943659	43.17	35.93	0.832291	45.65	37.16	0.81402
	34.39	31.78	0.924106	33.56	22.91	0.682658	39.65	33.12	0.835309	42.49	38.32	0.901859	44.26	34.51	0.779711	43.39	40.73	0.938696
mean			0.948165			0.864865			0.928055	mean		0.888224			0.805895			0.838255
SD			0.038563			0.116317			0.058474	SD		0.03807			0.019486			0.058609

compour	nd 25									со	mpc	ound 2	6						
0 min				15 min			30min			<mark>0 mi</mark>	in			15 min			30min		
without I		with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	with	iout l	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
	42.67	30.68	0.719006	44.55	36.67	0.82312	44.74	40.21	0.898748		42.67	35.42	0.830091	44.55	31.61	0.70954	44.74	37.5	0.838176
	42.63	33.2	0.778794	46.41	36.66	0.789916	45.16	37.81	0.837245		42.63	34.86	0.817734	46.41	38.55	0.83064	45.16	38.46	0.851639
	41.71	33.89	0.812515	43.17	35	0.810748	45.65	37.22	0.815334		41.71	35.78	0.857828	43.17	37.55	0.869817	45.65	37.06	0.811829
	42.49	37.77	0.888915	44.26			43.39	36.51	0.841438		42.49	33.53	0.789127	44.26			43.39		
mean			0.799808			0.807928			0.848191	mea	in		0.823695			0.803332			0.833881
SD			0.061384			0.013701			0.030826	SD			0.02468			0.068223			0.016533

3. Calculation of inhibition activity of the compounds (table 1) against ALN

compo	ound 1								comp	ound 3							
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
18.88	15.45	0.818326	18.86	16.73	0.887063	17.06	15.24	0.893318	18.88	17.01	0.900953	18.86	17.57	0.931601	17.06	16.31	0.956038
18.18	17.07	0.938944	18.43	17.36	0.941942	16.77	15.84	0.944544	18.18	17.4	0.957096	18.43	16.68	0.905046	16.77	15.32	0.913536
18.66	17.48	0.936763	18.3	17.64	0.963934	18.11	16.52	0.912203	18.66	17.6	0.943194	18.3	16.2	0.885246	18.11	17.04	0.940917
17.47	15.9	0.910132	16.79	17.28	1.029184	17.45	16.6	0.951289	17.47	18.65	1.067544	16.79	16	0.952948	17.45	17.36	0.994842
mean		0.901041			0.955531			0.925339	mean		0.967197			0.91871			0.951333
SD		0.049084			0.050912			0.023665	SD		0.061514			0.025715			0.029378
compo	ound 2								comp	ound 4							
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
18.88	16.66	0.882415	18.86	16.95	0.898727	17.06	17.25	1.011137	18.88	17.98	0.952331	18.86	19.09	1.012195	17.06	19	1.113716
18.18	15.65	0.860836	18.43	17.81	0.966359	16.77	15.06	0.898032	18.18	17.6	0.968097	18.43	18.09	0.981552	16.77	19.72	1.175909
18.66	16.64	0.891747	18.3	17.41	0.951366	18.11	16.93	0.934843	18.66	15.73	0.84298	18.3	19.92	1.088525	18.11	19.15	1.057427
17.47	15.36	0.879222	16.79	15.74	0.937463	17.45		0.970201	17.47			16.79	19.23	1.145325	17.45		
mean		0.878555			0.938479			0.953553	mean		0.921136			1.056899			1.115684
SD		0.011218			0.025123			0.04191	SD		0.055638			0.044979			0.04839

compo	bund 5								compo	ound 7							
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
18.88	10.71	0.567267	18.86	12.48	0.661718	17.06	12.09	0.708675	18.88	15.43	0.817267	18.86	14.53	0.770414	17.06	18.08	1.059789
18.18	12.03	0.661716	18.43	12.37	0.671188	16.77	11.02	0.657126	18.18	14.147	0.778163	18.43	14.44	0.783505	16.77	18.59	1.108527
18.66	11.9	0.637728	18.3	12.62	0.689617	18.11	11.7	0.646052	18.66	14.3	0.766345	18.3	16.7	0.912568	18.11	18	0.993926
17.47	11.36	0.650258	16.79	12.44	0.740917	17.45	12.56	0.719771	17.47	15.21	0.870635	16.79	14.54	0.865992	17.45		
mean		0.629242			0.69086			0.682906	mean		0.808103			0.83312			1.054081
SD		0.036773			0.030592			0.031804	SD		0.040726			0.058708			0.04696
compo	ound 6								compo	ound 8							
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
18.88	16.06	0.850636	18.86	16.33	0.865854	17.06	15.89	0.931419	14.39	14.25	0.990271	15.13	13.1	0.865829	15.1	14.42	0.954967
18.18	15.33	0.843234	18.43	16.2	0.879002	16.77	15	0.894454	14.96	12.2	0.815508	15.19	13.04	0.85846	14.95	14.51	0.970569
18.66	15.35	0.822615	18.3	17.35	0.948087	18.11	15.1	0.833793	14.57	12.16	0.834592	15.42	13.64	0.884565	15.65	13.85	0.884984
17.47	15.39	0.880939	16.79	15.35	0.914235	17.45	17.23	0.987393	14.97			14.17	13.26	0.93578	15.24		
mean		0.849356			0.901794			0.911765	mean		0.880124			0.869618			0.93684
SD		0.020926			0.032051			0.055868	SD		0.078275			0.010989			0.037217

comp	ound 9								comp	ound 1	1						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
14.39	13.85	0.962474	15.13	13.98	0.923992	15.1	14.03	0.929139	14.39	10.88	0.756081	15.13	13.72	0.906808	15.1	13.88	0.919205
14.96	13.37	0.893717	15.19	13.24	0.871626	14.95	15.3	1.023411	14.96	12.67	0.846925	15.19	12.68	0.83476	14.95	13.6	0.909699
14.57	14.5	0.995196	15.42	14.32	0.928664	15.65	15.34	0.980192	14.57	12.52	0.8593	15.42	12.65	0.820363	15.65	12.67	0.809585
14.97	11.5	0.768203	14.17	13.61	0.96048	15.24	15.31	1.004593	14.97	9.86	0.658651	14.17	11.34	0.800282	15.24		
mean		0.904897			0.921191			0.984334									
SD		0.087005			0.031875			0.035359	mean		0.780239			0.840553			0.879496
									SD		0.080723			0.040164			0.049587
comp	ound 1	0															
0 min			15 min			30min			comp	ound 1	2						
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	<mark>0 min</mark>			15 min			30min		
14.39	8.85	0.61501	15.13	9.15	0.604759	15.1	9.09	0.601987	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
14.96	9.12	0.609626	15.19	7.93	0.522054	14.95	9.33	0.62408	14.39	13.36	0.928423	15.13	13.36	0.883014	15.1	13.82	0.915232
14.57	9.87	0.677419	15.42	10.72	0.695201	15.65	10.29	0.657508	14.96	14.42	0.963904	15.19	13.8	0.908492	14.95	13.97	0.934448
14.97			14.17	10.6	0.748059	15.24	9.24	0.606299	14.57	13.18	0.904598	15.42	13.58	0.880674	15.65	13.03	0.832588
									14.97	13.37	0.89312	14.17	14.22	1.003529	15.24	14.28	0.937008
mean		0.634018			0.642518			0.622469									
SD		0.030768			0.086388			0.021859	mean		0.922511			0.918927			0.904819
									SD		0.027079			0.050048			0.042543

comp	ound 1	3							comp	ound	15						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
14.39	14.9	1.035441	15.13	13.73	0.907469	15.1	12.05	0.798013	40.2	3 40.2	7 1.000994	43.45	38.93	0.895972	41.6	39.83	0.957452
14.96	15.06	1.006684	15.19	14.85	0.977617	14.95	13.41	0.89699	43.6	5 43.6	3 0.999313	41.31	42.66	1.03268	40.26	37.95	0.942623
14.57	13.36	0.916953	15.42	13.15	0.852789	15.65	14.2	0.907348	43.	36.7	3 0.838584	40.82	41.07	1.077953	38.5	38.3	0.994805
14.97	13.81	0.922512	14.17	13.15	0.928017	15.24	14.98	0.98294	42.	7		38.1	39.17	0.959579			
									mean		0.946297			1.002202			0.96496
mean		0.970398			0.916473			0.896323	SD		0.076167			0.077356			0.021955
SD		0.051713			0.044745			0.065744									
compo	ound 1	4							comp	<mark>ound</mark>	16						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
14.39	12.8	0.889507	15.13	12.95	0.855915	15.1	12.37	0.819205	40.2	3 37.5	7 0.93388	43.45	36.96	0.850633	41.6	34.31	0.82476
14.57	11.99	0.822924	15.19	12.44	0.81896	14.95	11.55	0.772575	43.6	5 40.8	3 0.935181	41.31	36.58	0.8855	40.26	36.82	0.914555
14.97	12.08	0.806947	15.42	13.96	0.905318	15.65	13.31	0.850479	43.	39.5	7 0.903425	40.82	39.34	0.963743	38.5	37.69	0.978961
			14.17	13.56	0.956951	15.24	14.44	0.947507	42.	7		38.1					
mean		0.839793	14.9775	13.2275	0.884286	15.235	12.9175	0.847442	mean		0.924162			0.899959			0.906092
SD		0.035753	0.478611	0.579714	0.051949	0.260624	1.077251	0.064079	SD		0.014673			0.047295			0.063236

comp	ound 1	7							comp	ound 1	9						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
40.23	29.36	0.729804	43.45	28.06	0.6458	41.6	29.15	0.700721	40.23	33.84	0.841163	43.45	29.24	0.672957	41.6	36.75	0.883413
43.66	27.77	0.636051	41.31	28.79	0.696926	40.26	28.69	0.712618	43.66	29.59	0.677737	41.31	29.13	0.705156	40.26	30.65	0.761302
43.8	30.49	0.696119	40.82	29.83	0.730769	38.5	30.92	0.803117	43.8	33.95	0.775114	40.82	33.19	0.813082	38.5	27.65	0.718182
42.7	29.06	0.680562	38.1	31.84	0.835696				42.7	35.2	0.824356	38.1				30.9	0.767511
mean		0.685634			0.727298			0.738819	mean		0.779593			0.730398			0.782602
SD		0.033709			0.06951			0.045724	SD		0.063619			0.059925			0.061226
comp	ound 1	8							comp	ound 2	0						
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
40.23	31.62	0.785981	43.45	40.42	0.930265	41.6	34.14	0.820673	40.23	35.34	0.878449	43.45	49.78	1.145685	41.6	36.65	0.88101
43.66	34.26	0.7847	41.31	42.66	1.03268	40.26	33.85	0.840785	43.66	36.95	0.846312	41.31	49.84	1.206488	40.26	35.68	0.886239
43.8	29.54	0.674429	40.82	36.81	0.901764	38.5	31.8	0.825974	43.8	37.83	0.863699	40.82	48.12	1.178834	38.5		
42.7	32.7	0.765808	38.1						42.7	1		38.1					
mean		0.752729			0.954903			0.829144	mean		0.86282			1.177002			0.883625
SD		0.045907			0.056214			0.008511	SD		0.013134			0.024856			0.002615

compo	ound 2	1							compo	ound 2	3						
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
40.23	32.69	0.812578	43.45	28	0.644419	41.6	31.23	0.750721	45.52	44.76	0.983304	46.9	46.29	0.986994	50.18	47.65	0.949582
43.66	29.38	0.672927	41.31	26.98	0.653111	40.26	34.7	0.861898	46.16	44.73	0.969021	48.27	44.84	0.928941	47.75	47.69	0.998743
43.8	29.74	0.678995	40.82	28.33	0.694023	38.5	39	1.012987	46.97	43.53	0.926762	48.7	45.34	0.931006	48.84	49.05	1.0043
42.7			38.1	26.01	0.682677				44.9	38.16	0.849889						
mean		0.7215			0.663851			0.875202	mean		0.932244			0.94898			0.984208
SD		0.064449			0.020427			0.107482	SD		0.051894			0.026893			0.02459
compo	ound 2	2							compo	ound 2	4						
0 min			15 min			30min			0 min			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
45.52	40.09	0.880712	46.9	45.46	0.969296	50.18	45.36	0.903946	45.52	38.41	0.843805	46.9	39.23	0.836461	50.18	45.31	0.902949
46.16	44.13	0.956023	48.27	44.89	0.929977	47.75	46.02	0.96377	46.16	38.01	0.82344	48.27	38.01	0.787446	47.75	41.36	0.866178
46.97	45.27	0.963807	48.7	47.39	0.973101	48.84	45.78	0.937346	46.97	43.67	0.929742	48.7	45.25	0.929158	48.84	41.85	0.85688
44.9	39.66	0.883296					46.42	0.95045	44.9	44.8	0.997773		44.8	0.919918			
mean		0.920959			0.957458			0.938878	mean		0.89869			0.868246			0.875336
SD		0.039063			0.019494			0.022227	SD		0.069743			0.05899			0.019891

comp	ound 2	5							comp	ound 2	6						
0 min			15 min			30min			<mark>0 min</mark>			15 min			30min		
without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0	without I	with I	VI/V0
45.52	44.05	0.967707	46.9	45.59	0.972068	50.18	43.72	0.871263	45.52	42.56	0.934974	46.9	40.54	0.864392	50.18	41.21	0.821244
46.16	45.62	0.988302	48.27	43.12	0.893308	47.75	44.29	0.927539	46.16	39.54	0.856586	48.27	43.45	0.900145	47.75	39.41	0.82534
46.97	44.65	0.950607	48.7	44.69	0.917659	48.84	44.63	0.9138	46.97	40.67	0.865872	48.7	39.45	0.810062	48.84	38.93	0.797093
44.9	45.37	1.010468		47.54	0.976181		47.4	0.970516	44.9	40.97	0.912472						
mean		0.979271			0.939804			0.92078	mean		0.892476			0.8582			0.814559
SD		0.022417			0.035414			0.035426	SD		0.032411			0.037036			0.012463

4. Calculation of inhibition activity of the compounds (table 1) against MMP-14

	compo	und 1									compo	und 3							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0 v	i	vi/v0
	17.33	16.47	0.950375	16.47	16.8	1.020036	20.58	16.33	0.793489		17.33	17.91	1.033468	16.47	17.25	1.047359	20.58	17.39	0.844995
	17.1	16.01	0.936257	18.08	15	0.829646	19.64	17.44	0.887984		17.1	16.71	0.977193	18.08	15.34	0.848451	19.64	15.95	0.812118
	17.22	15.54	0.902439	17.41	16.54	0.950029	18.92	17.98	0.950317		17.22	15.95	0.926249	17.41	16.12	0.925905	18.92	16.43	0.868393
	16.71	14.31	0.856373		16.35	0.904314	20.15	16.39	0.8134		16.71	15.62	0.93477		16.41	0.907633	20.15	17.78	0.882382
mean			0.911361			0.926006			0.861297	mean			0.96792			0.932337			0.851972
SD			0.036212			0.069236			0.062307	SD			0.042479			0.072316			0.026606
	compo	und 2																	
	0 min			15min			30min				compo	und 4							
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		0 min			15min			30min		
	17.33	16.39	0.945759	16.47	17.26	1.047966	20.58	17.28	0.83965		v0	vi	vi/v0	v0	vi	vi/v0	v0 v	i	vi/v0
	17.1	15.46	0.904094	18.08	15.64	0.865044	19.64	16.59	0.844705		17.33	16.53	0.953837	16.47	17.67	1.07286	20.58	18.63	0.905248
	17.22	14.35	0.833333	17.41	15	0.861574	18.92	16.43	0.868393		17.1	16.34	0.955556	18.08	18.3	1.012168	19.64	18.89	0.961813
	16.71						20.15	18.54	0.920099		17.22	16.56	0.961672	17.41	17.74	1.018955	18.92	16.83	0.889535
											16.71	18.59	1.112507		18.71	1.034845	20.15	19.57	0.971216
mean			0.894395			0.924861			0.850916										
SD			0.046407			0.08706			0.012529	mean			0.995893			1.034707			0.931953
										SD			0.06739			0.023515			0.035163

	compo	und 5									compo	ound 7							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	17.33	12.87	0.742643	16.47	12.8	0.777171	20.58	13.92	0.676385		17.33	16.82	0.970571	16.47	16.23	0.985428	20.58	16.64	0.808552
	17.1	11.66	0.681871	18.08	11.54	0.638274	19.64	13.25	0.674644		17.1	15.95	0.932749	18.08	15.73	0.870022	19.64	16.28	0.82892
	17.22	12.35	0.717189	17.41	11.95	0.686387	18.92	12.76	0.674419		17.22	17.57	1.020325	17.41	15.95	0.91614	18.92	17.37	0.91807
	16.71	12.19	0.729503		12.1	0.669248	20.15	13.9	0.689826		16.71	16	0.95751		16.71	0.959793	20.15		
ean			0.717802			0.69277			0.678818				0.970289			0.932846			0.8518
)			0.022613			0.05169			0.006401	mean			0.031923			0.043923			0.047562
										SD									
	compo	und 6									compo	ound 8							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	17.33	17.09	0.986151	16.47	17.02	1.033394	20.58	18.18	0.883382		22.4	19.61	0.875446	22.62	19.26	0.851459	24.95	19.8	0.79358
	17.1	17.61	1.029825	18.08	17.08	0.94469	19.64	18.55	0.944501		22.9	18.92	0.826201	21.81	20.26	0.928932	24.61	20.34	0.826493
	17.22	17.3	1.004646	17.41	17.61	1.011488	18.92	17.85	0.943446		20.37	18.88	0.926853	23.06	19.43	0.842585	23.4	21.65	0.925214
	16.71				17.85	1.025273	20.15		0.980444		22.44	19.27	0.858734	22.57	18.6	0.824103	25.26	21.84	0.864608
ean			1.006874			0.996524			0.923776	mean			0.871809			0.861769			0.85247
)			0.017899			0.034964			0.034844	SD			0.03638			0.040012			0.04894

	compo	und 9									compo	und 11							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.4	22.35	0.997768	22.62	21.65	0.957118	24.95	23.12	0.926653		22.4	20.69	0.923661	22.62	21.07	0.931477	24.95	21.42	0.858517
	22.9	22.82	0.996507	21.81	20.23	0.927556	24.61	22.58	0.917513		22.9	20.07	0.876419	21.81	20.04	0.918845	24.61	21.48	0.872816
	20.37	20.15	0.9892	23.06	21.12	0.915872	23.4	24.28	1.037607		20.37	18.28	0.897398	23.06	20.16	0.874241	23.4	21.92	0.936752
	22.44	20.72	0.923351	22.57	22.58	1.000443	25.26				22.44	19.61	0.873886	22.57	20.7	0.917147	25.26	22.87	0.905384
mean			0.976706			0.950247			0.960591	mean			0.892841			0.910427			0.893367
SD			0.030978			0.032647			0.054586	SD			0.019997			0.021613			0.030264
	compo	und 10									compo	und 12							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.4	15.36	0.685714	22.62	15.82	0.699381	24.95	15.96	0.639679		22.4	21.28	0.95	22.62	21.44	0.947834	24.95	22.13	0.886974
	22.9	14.37	0.627511	21.81	15.21	0.697387	24.61	15.47	0.628606		22.9	22.53	0.983843	21.81	21.68	0.994039	24.61	21.8	0.885819
	20.37	14.73	0.723122	23.06	15.38	0.666956	23.4	16.87	0.72094		20.37	22.17	1.088365	23.06	20.09	0.871206	23.4	20.61	0.880769
	22.44	16.6	0.73975	22.57	15.54	0.688525	25.26				22.44	19.6	0.962199		18.13	0.83127	25.26	25.36	1.003959
mean			0.694024			0.688062			0.663075	mean			0.996102			0.911087			0.884521
SD			0.043101			0.012853			0.041166	SD			0.05463			0.063625			0.051771

	compo	und 13									compo	und 15							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.4	22.77	1.016518	22.62	23	1.016799	24.95				22.2	20.23	0.911261	23.96	21.04	0.87813	23.8	22.12	0.929412
	22.9	22.75	0.99345	21.81	22.16	1.016048	24.61	23.41	0.951239		22.05	19.33	0.876644	25.57	20.97	0.888559	24.62	23.1	0.938262
	20.37	22.36	1.097693	23.06	24.1	1.0451	23.4	24.3	1.038462		21.62	19.83	0.917206	23.9	21.73	0.909205	24.63	22.76	0.924076
	22.44	21.75	0.969251		21.55	0.988079	25.26	27.46	1.087094		23.16	20.1	0.867876	23.6			25.12	22.34	0.889331
mean			1.019228			1.016506			1.025598	mean			0.893247			0.891965			0.92027
SD			0.048286			0.020162			0.056203	SD			0.021319			0.012913			0.018567
	compo	und 14									compo	und 16							
	<mark>0 min</mark>			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.4	22.3	0.995536	22.62	23.54	1.040672	24.95				22.2	19.7	0.887387	23.96	20.22	0.843907	23.8	21.3	0.894958
	22.9	22	0.960699	21.81	23.89	1.095369	24.61	24.08	0.978464		22.05	19.49	0.8839	25.57	20.77	0.81228	24.62	20.78	0.844029
	20.37	19.56	0.960236	23.06	23.38	1.013877	23.4	25.74	1.1		21.62	19.23	0.889454	23.9	20.32	0.850209	24.63	19.97	0.8108
	22.44	23.57	1.050357		23.17	1.00477	25.26	27.71	1.096991		23.16	18.4	0.834467	23.6	19.85	0.841102	25.12	22.29	0.887341
mean			0.991707			1.038672			1.058485	mean			0.873802			0.836874			0.859282
SD			0.036764			0.035294			0.056597	SD			0.022797			0.014578			0.034071

	compo	und 17									compo	und 19							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.2	13.58	0.611712	23.96	13.28	0.554257	23.8	14	0.588235		22.2	18.68	0.841441	23.96	17.96	0.749583	23.8	18.75	0.787815
	22.05	13.37	0.606349	25.57	12.86	0.502933	24.62	12.74	0.517465		22.05	18.43	0.835828	25.57	18.75	0.733281	24.62	18.34	0.744923
	21.62	11.51	0.532377	23.9	13.72	0.574059	24.63	14.3	0.580593		21.62	18.34	0.848289	23.9	18.96	0.793305	24.63	18.45	0.749086
	23.16	12.47	0.538428	23.6	13.79	0.584322	25.12				23.16	17.96	0.775475	23.6	18.79	0.796186	25.12		
mean			0.572217			0.553893			0.562098	mean			0.825258			0.768089			0.760608
SD			0.036925			0.031343			0.031714	SD			0.029079			0.027292			0.019313
	compo	und 18									compo	und 20							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.2	18.74	0.844144	23.96	16.39	0.684057	23.8	17.09	0.718067		22.2	19.7	0.887387	23.96	19.96	0.833055	23.8	21.51	0.903782
	22.05	16.85	0.764172	25.57	17.13	0.669926	24.62	17.09	0.694151		22.05	19.45	0.882086	25.57	20.66	0.864435	24.62	23.16	0.940699
	21.62	17.62	0.814986	23.9	17.41	0.728452	24.63	17.68	0.717824		21.62	20.12	0.93062	23.9	21.16	0.885356	24.63	23.79	0.965895
	23.16			23.6	17.67	0.748729	25.12				23.16	20.52	0.88601	23.6	21.65	0.917373	25.12	23.57	0.938296
mean			0.807768			0.694145			0.710014	mean			0.896526			0.875055			0.937168
SD			0.033045			0.024935			0.011217	SD			0.01978			0.030715			0.0221

	compo	und 21									compo	und 23							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.2	21.3	0.959459	23.96	21.04	0.87813	23.8	22.43	0.942437		22.55	21.09	0.935255	23.7	21.73	0.916878	25.23	22.88	0.906857
	22.05	20.83	0.944671	25.57	20.71	0.866527	24.62	22.33	0.906986		21.55	21.38	0.992111	24.28	21.7	0.89374	24.33	22.7	0.933005
	21.62	20.71	0.957909	23.9	22.07	0.923431	24.63	22.74	0.923264		23.19	21.03	0.906856	24.86	21.51	0.865245	23.76	23	0.968013
	23.16			23.6	21.81	0.924153						20.43	0.905987	24.42	23.57	0.965192	24.69	23.12	0.936412
mean			0.954013			0.889363			0.924229		mean		0.935052			0.910264			0.936072
SD			0.006636			0.024551			0.014489		SD		0.034984			0.036608			0.021699
	compo	und 22									compo	und 24							
	0 min			15min			30min				0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0		v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.55	19.83	0.879379	23.7	21	0.886076	25.23	22.09	0.907933		22.55	19.27	0.854545	23.7	19.91	0.840084	25.23	20.53	0.813714
	21.55	20.83	0.923725	24.28	21.72	0.894563	24.33	22.57	0.927661		21.55	18.19	0.844084	24.28	20.21	0.832372	24.33	18.72	0.76942
	23.19	20.06	0.865028	24.86	22.56	0.907482	23.76	23.81	0.964358		23.19	19.15	0.825787	24.86	19.96	0.802896	23.76	18.92	0.796296
				24.42	20.9	0.855856	24.69					19.47	0.863415	24.42	19.76	0.809173	24.69	21.76	0.862465
mean			0.889377			0.89604			0.933317	mean			0.846958			0.821131			0.810474
SD			0.024984			0.008801			0.02338	SD			0.014008			0.015501			0.033912

	compound 25											compo	und 26							
	0 min			15min			30min					0 min			15min			30min		
	v0	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0			vO	vi	vi/v0	v0	vi	vi/v0	v0	vi	vi/v0
	22.55	21.38	0.948115	23.7	19.81	0.835865	25.23	23.74	0.940943			22.55	20.87	0.925499	23.7	21.03	0.887342	25.23	23.15	0.917558
	21.55	22.03	0.949978	24.28	20.4	0.840198	24.33	23.98	0.985614			21.55	20.15	0.935035	24.28	21.97	0.90486	24.33	22.58	0.928072
	23.19	21.15	0.912031	24.86	22.21	0.893403	23.76	24.27	1.021465			23.19	19.85	0.855972	24.86	21.52	0.865648	23.76	22.88	0.962963
		21.23	0.941463	24.42	23.15	0.947993	24.69	25.61	1.037262				20.57	0.912195	24.42	21.34	0.873874	24.69	24.91	1.00891
mean			0.937897			0.879365			0.996321	m	ean			0.907175			0.882931			0.954376
SD			0.015265			0.045643			0.037046	SD				0.030655			0.014842			0.03569

