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Spatiotemporal dynamics of forest geometrid outbreaks 
Jane U Jepsen1, Ole Petter L Vindstad2 and Rolf A Ims2   

We highlight recent developments and avenues for 
advancement, which can improve insight into the causes of 
changes in the spatiotemporal dynamics of forest Geometridea 
moth species (hereafter ‘geometrids’). Some forest geometrids 
possess fundamental biological traits, which make them 
particularly liable to outbreak range expansions and host shifts 
mitigated by climate change. Indeed, recently observed 
changes in geometrid spatiotemporal dynamics represent both 
new research opportunities and challenges for empirically 
testing drivers of intra- and interspecific spatial synchrony, 
including the role of trophic interactions and biological traits 
(e.g. dispersal ability). We advocate that the emerging field of 
near-term ecological forecasting holds promise for studies of 
the spatiotemporal dynamics of forest geometrids and could be 
tailored to give both accurate predictions at management- 
relevant timescales and new insights into the mechanisms that 
underlie spatiotemporal population dynamics. 
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Introduction 
The eruptive population dynamics of forest Geometridae 
moth species (geometrids) have been a source of fasci-
nation for several centuries. In Fennoscandia, where 
outbreaks by a guild of forest geometrids are a pro-
nounced feature of the alpine and subarctic birch forest, 
the earliest mentioning of mass occurrences and their 
impacts known to us is from 1762. Here, Hermann C. 
Ruge, a Norwegian priest and a dedicated educator, 

described years where the caterpillars were so numerous 
that they would “cover the trees and consume all green 
from them” to the extent where the “birch forests in the 
mountain slopes can be neither valued nor restored” (our 
translation of [1]). 

Indeed, the Fennoscandian birch forest–geometrid 
system (Figure 1) has continued to attract attention, and 
dominates the scientific literature on the spatiotemporal 
dynamics of forest geometrids (see Supplementary 
Material, Query 1). This interest is motivated by the 
urge to understand the drivers of fundamental ecological 
phenomena such as cyclic dynamics and spatial syn-
chrony for insect populations inhabiting a forest eco-
system that stands out as approaching a natural 
monoculture [2], as well as a concern for the funda-
mental services that these forests provide. With recent 
changes in the geographical distribution of the main 
defoliators in the system (see Range expansions and host 
shifts as a game changer), the Fennoscandian case has also 
become an example of how a guild of defoliators can 
cause expanding and large ecosystem impacts by means 
of intensified defoliation of woody vegetation in a 
changing climate. 

The birch forest geometrids in Fennoscandia share 
many ecological traits with outbreaking forest geome-
trids in other ecosystems (Table 1). Indeed, the term the 
‘winter moth syndrome’ [3] has been used to describe 
the group of forest geometrids with a propensity for 
eruptive, often cyclic, population dynamics, noticeably 
in northern environments. They are broadly character-
ized as capital breeders with nonfeeding adults that fly 
either very late or very early in the season (‘autumn’ 
species and ‘spring’ species), frequent occurrence of 
flightless females, overwintering egg stages, often highly 
polyphagous spring-feeding larval stages, and the ability 
for larval dispersal by ballooning. 

In the following, we highlight recent developments and 
avenues for advancement, which we believe will im-
prove insight into the causes of changes in the spatio-
temporal dynamics of forest geometrids. We focus on 
three broad topics: first, how range expansions and 
sudden hosts shifts mitigated by climate change can act 
as a game changer in ecosystems subject to defoliator 
outbreaks. Second, how drivers of spatial synchrony may 
be empirically tested through spatial study designs and 
by adopting a guild approach. Third, why the emerging 
field of near-term ecological forecasting holds promise 
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for studies of the spatiotemporal dynamics of forest 
geometrids. We draw on studies of other taxa and gen-
eral conceptual or methodological advances when they 
hold relevance and promise for studies of forest geo-
metrid spatiotemporal dynamics in the future. 

Range expansions and host shifts as a game 
changer 
Many outbreaking forest geometrids display dietary 
generalism and high mobility through wind-dispersed 
larval stages (Table 1), both of which are traits that 
promote a consumer’s ability for range expansions. Even 
in the absence of female flight (Table 1), this may render 
forest geometrids to effectively colonize new habitats 
when abiotic (e.g. climatic) or biotic (e.g. trophic) con-
straints are relaxed. Indeed, that plasticity in dietary 
niche width is a key to understanding rapid range ex-
pansions in Lepidoptera, is highlighted by several recent 
studies [4–6]. A global review of Lepidoptera [5] showed 
that the well-documented [7,8] latitudinal cline in niche 
width emerges as a consequence of range dynamics, and 
that the position of a population within the species’ 
range is a better predictor of dietary width than latitude 
per se. Recent studies of nongeometrids, Euphydryas 
editha [6] and Pieris mannii [4], support the notion that 
younger populations (i.e. more recently established) 
tend to have a broader niche, and that niche width de-
creases over time after establishment. These studies, 
albeit mostly based on nonpest species, have implica-
tions for both the nature and the rate of ecosystem-level 
changes we may anticipate in the wake of range 

expansions of forest defoliators in general, because they 
suggest that diet diversification at range margins may be 
better viewed as a consequence of range expansions, 
rather than a cause. 

We argue that similar patterns can likely be found in 
range-expanding forest geometrids, known to be dietary 
opportunists, the winter moth being a prime candidate. 
This species has undergone relatively rapid range ex-
pansions at its northernmost distributional border in 
Europe [9], as well as several invasions, followed by 
establishment, in North America [10]. The literature 
holds a vast number of studies of winter moth dietary 
range within single populations, but to our knowledge, 
no attention has been given to latitudinal or other 
broad- scale patterns in dietary width, in light of his-
torical and recent range expansions. At the northern-
most range margin of the species, the Low Arctic tree 
line at ∼ 70°N in NE Norway, range expansions have 
occurred beyond forest habitats into coastal tall shrub 
tundra where outbreaks cause mortality in Salix shrubs  
[11]. While not an entirely unexpected host, given the 
dietary records for the species, this cross-biome expan-
sion of a boreal forest pest into shrub tundra, is never-
theless an unanticipated event, which, depending on 
whether it is only a transient phenomenon, can have 
wide implications for the tall shrub tundra ecosystem. 
Such host shifts may also give important clues to whe-
ther population dynamics patterns (e.g. cyclicity and 
synchrony) are related to plant host traits (e.g. chemistry 
and phenology). 

Figure 1  

Current Opinion in Insect Science

In northern and alpine Fennoscandia, cyclic outbreaks by the geometrids Operophtera brumata ((a), left), Epirrita autumnata ((a), middle), and more 
locally also Agriopis aurantiaria ((a), right) have profound implications for the birch- (Betula pubescens var. pumila) dominated forest ecosystem, as a 
driver of regional- and local-scale tree ((b); [47]) and tundra shrub ((c) Salix sp.; [11]) mortality, vegetation-state transitions in the field layer ((d); 
Empetrum nigrum die-off), changes in nutrient cycling and soil community composition, as well as a provider of resource pulses for insectivores and 
dead wood-associated organisms. Photo: Jon Aars (a), Jakob Iglhaut (b), Jane Uhd Jepsen (c,d).   
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Mechanisms behind population synchrony 
Population synchrony denotes the tendency for local 
populations to exhibit simultaneous fluctuations either 
within the same species regionally (spatial synchrony) or 
between different species locally (interspecific syn-
chrony). The study of population synchrony is a vibrant 
field within forest insect ecology because it helps to 
elucidate mechanisms driving population dynamics, and 
because ecosystem impact of outbreaks becomes en-
hanced with the degree of scale and strength of 

synchrony [12]. Indeed, outbreak cyclicity is a char-
acteristic that is expected to be linked to profound 
spatial synchrony [13], and this conjecture appears to be 
reflected in the presence of synchrony among different 
geometrid species (Table 1). Trophic interactions, dis-
persal, and synchronized weather phenomena are po-
tential drivers of synchrony, but their relative 
importance may be difficult to disentangle, especially 
when they interact [14]. The potential for interaction 
effects between weather phenomena (e.g. winds) and 

Table 1 

Geometrids known to display pronounced population outbreaks in natural forest ecosystems.          

Species subfamily 
common name 

Main host genera Native 
range 

Flightless 
females 

Evidence of 
caterpillar 
ballooning 

Evidence of 
cyclicity 

Evidence of large- 
scale spatial 
synchrony 

Selected 
references  

Epirrita autumnata 
Larentiinae 
autumnal moth 

Betula Eurasia No Yes Yes Yes [16,34] 

Operophtera 
brumata 
Larentiinae 
winter moth 

Betula, Quercus, Salix Eurasia Yes Yes Yes Yes [16] 

Operophtera fagata 
Larentiinae 
northern 
winter moth 

Fagus, Betula Eurasia Yes Yes No? No? [35] 

Bupalus piniaria 
Ennominae 
pine looper 

Pinus, Picea, 
Pseudotsuga, Larix 

Eurasia No No? Yes Yes [36,37] 

Agriopis aurantiaria 
Ennominae 
scarce umber moth 

Betula, Quercus, Salix Eurasia Yes Yes Yes Yes [38] 

Agriopis 
leucophaearia 
Ennominae 
Spring Usher 

Quercus 
Fagus 

Eurasia Yes ? No? No? [39] 

Erannis defoliaria 
Ennominae 
mottled umber moth 

Crataegus, Prunus, 
Salix, Tilia, Quercus 

Eurasia Yes Yes Yes Yes [40] 

Operophtera 
bruceata 
Larentiinae 
Bruce spanworm 

Acer, Fagus, Populus North 
America 

Yes Yes Yes No? [41,42] 

Lambdina fiscellaria 
Ennominae 
Hemlock looper 

Tsuga, Pinus, Picea, 
Abies 

North 
America 

No Yes? Yes Yes [43] 

Alsophila pometaria 
Ennominae 
Fall cankerworm 

Ulmus, Fraxinus, Acer North 
America 

Yes Yes Yes Yes [44] 

Ennomos 
subsignarius 
Ennominae 
Elm spanworm 

Ulmus, Betula, Acer, 
Quercus 

North 
America 

No Yes Yes Yes [45] 

Apocheima 
cinerarius 
Ennominae 
Poplar looper 

Populus, Salix Asia Yes ? No? No? [46] 

Species for which outbreaks are known only from plantations (e.g. [32]) are excluded. Similarly, species with a very localized distribution for 
instance due to island endemism (e.g. [33]) are not considered. Evidence of cyclicity is considered affirmative if regular population cycles have 
been documented in at least part of the species’ distributional range. By large-scale spatial synchrony, we refer to synchronized dynamics on a 
landscape-regional scale (e.g. thousands of km²). Entrances for which uncertain or contrasting evidence was found are marked by a ques-
tion mark.  
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dispersal may be particularly high in geometrids as bal-
looning larvae appear to be prevalent in most species 
(Table 1). Finally, climate change is presently changing 
the synchrony patterns in many species [15]. The ex-
pansion of the outbreak range of O. brumata [11] implies 
that this also regards some geometrids. 

Long-term, spatially distributed population time series are 
required for empirical analyses of population synchrony. 
However, most insight can be obtained from specifically 
targeted survey designs that tactically include spatial fea-
tures acting more or less as barriers to dispersal [16,17]. 
This is because dispersal likely is the only synchronizing 
mechanism that it may be possible to rule out by the 
design of large-scale population surveys. Combining such 
surveys of population density dynamics with sampling that 
allows analyses of population genetic structure may be 
rewarding in highlighting the role of dispersal in shaping 
spatial synchrony patterns [17,18]. However, genetic stu-
dies may not always be informative, especially when there 
is little spatial genetic structure (i.e. [18]), since less dis-
persal may be needed to homogenize genetic structure 
than to synchronize population dynamics. 

Patterns of spatial and interspecific synchrony within 
guilds of folivorous insects can be instructive for eluci-
dating the role of different dispersal abilities, for in-
stance, between geometrids with winged versus wingless 
females [16]. A high degree of interspecific spatial syn-
chrony among species with different life history [19] 
suggests drivers other than dispersal, such as synchro-
nizing effects of trophic interactions (with host plants or 
enemies) and weather phenomena, are more important. 
In case of synchrony between populations exploiting 
different host plants, plant-herbivore interactions are 
likely not a synchronizing mechanism. When trophic 
interactions are involved, lagged synchrony between 
species with in the same guild may occur [19]. 

Weather phenomena are likely the key driver of those 
cases with most large-scale synchrony, such as those of 
cyclically outbreaking birch forest geometrids in 
northern Fennoscandia. Identifying which of the 
weather variables acting on the different life stages (see 
Graphical abstract) that have synchronizing effects re-
quires spatiotemporally matching meteorological and 
population data as well adequate statistical models ap-
plied to those data. In particular, it appears essential to 
apply models that appropriately account for biotic 

processes (e.g. density dependence) to obtain accurate 
estimates of the synchronizing effects of weather vari-
ables [20]. A geography of synchrony approach [21] ap-
pears to be particularly rewarding when applied to 
geometrid populations in geographic regions subjected 
to spatially heterogeneous climate change [15]. 

Near-term forecasting of outbreak dynamics 
Studies of forest pest insects — including geometrids — 
commonly make forecasts about long-term (i.e. decades 
ahead) developments in the spatiotemporal population 
dynamics and ecological impacts of their focal species. 
For instance, [22] predicted the outbreak ranges of O. 
brumata and A. aurantiaria in Fennoscandia 30 years into 
the future based on cold tolerance in the egg stage. Such 
forecasts can highlight possible long-term system tra-
jectories but are also fraught with caveats. The data re-
quired to evaluate the accuracy of decadal-scale forecasts 
only become available in the far future, so that oppor-
tunities for model validation are limited. Further, the 
changes that climate warming may induce in ecological 
dynamics over decadal timescales are potentially so 
complex, transient, and unforeseeable that long-term 
forecasts run the risk of being widely inaccurate. 

Owing to these issues, ecologists have lately been en-
couraged to put more focus on near-term (i.e. a few years 
ahead at most) iterative forecasting (NTIF, Box 1) [23]. 
However, our literature query (Supplementary Material, 
Query 2) suggests that the potential of NTIF remains 
largely untapped for forest insects. We found only four 
papers from the last two years that had attempted to 
forecast insect abundance or infestation risk on short 
timescales (<  10 years), two for mountain pine beetle  
[24,25], one for emerald ash borer [26], and one for 
spruce budworm [27], but none for geometrids. Notably, 
three of these studies used machine learning algorithms, 
which are becoming increasingly popular for complex 
prediction tasks in ecology. 

We propose that the spatiotemporal population dynamics of 
forest geometrids represents a highly suitable case for the 
employment of NTIF. Geometrid outbreaks are frequently 
a subject of concern for both the public and management 
authorities, meaning that forecasts about imminent out-
break dynamics are in high demand. Owing to the long 
tradition for collecting geometrid abundance data in several 
forest systems, the time series that are required to build 
forecasting models are already available. Moreover, new 

Box 1 Near-term iterative forecasting  

NTIF is an emerging paradigm in ecology, where the goal is to make quantitative forecasts with specified uncertainty about the state of ecological 
variables in the near future [28]. Because the accuracy of near-term forecasts can be assessed in the near future, NTIF can give rise to an efficient 
iterative loop of scientific learning, where researchers make forecasts, evaluate them against new data, update models, and forecast again. Near- 
term forecasts can also make ecological science more relevant to adaptive management, where planning and actions are typically concerned with 
future timescales of a day to years, rather than decades (Figure 2).   
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developments in statistical downscaling mean that gridded 
climate data are increasingly available at a spatial resolution 
(tens to a few hundred meters) that is sufficient to capture 
local climatic gradients expected to influence geometrid 
population dynamics. This can compensate for a lack of in 
situ climate data for some of the older geometrid time 
series. The extensive literature on the physiological effects 
of temperature throughout the geometrid life cycle means 
that a priori expectations about population dynamical ef-
fects can be formulated for many climate variables (see 
Graphical abstract). If this leads to a set of candidate climate 
variables that is too large to be practical, machine learning 
algorithms such as boosted regression trees [29] can be used 
to rank the ability of these variables to predict geometrid 
abundance and thereby facilitate the selection of the most 
important climate predictors from the candidate set [27]. 
Depending on prior knowledge about the population dy-
namics of the focal species, forecasting models may initially 
be formulated in an entirely phenomenological manner, or 
incorporate more mechanistic formulations of key popula-
tion dynamical processes. In both cases, the identification of 
climate variables and biotic interactions that improve 

forecast accuracy can pave the way for additional mechan-
istic studies of the spatiotemporal population dynamics, 
thereby hopefully leading to improvements in both ecolo-
gical understanding and forecasting performance. Thus, 
NTIF has the potential to accelerate learning in research on 
the spatiotemporal dynamics of geometrids, while at the 
same time enhancing the societal value of that research by 
providing management-relevant forecasts. 

We advocate that forecasting models are built in a 
Bayesian framework, as this will allow the modeling to 
benefit from recently developed methods that can be 
used to evaluate and rank forecasting models [30]. Fi-
nally, it is worth noting that forecasts can readily be 
derived from successful population dynamical modeling 
frameworks that were not explicitly developed for fore-
casting purposes, for example, eco-evolutionary models, 
which have recently been shown to be capable of ex-
plaining insect population cycles in field data [31]. Thus, 
the analytical tools to implement NTIF for forest geo-
metrids are already available, and the main challenge for 
researchers is arguably to change the focus of their 

Figure 2  
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Conceptual overview of NTIF, as applied to Fennoscandian geometrid larval time series. The input data consists of historical time series of annual 
larval counts and downscaled gridded climate data (temperature and precipitation). Knowledge about physiological effects of climate throughout the 
moth life cycle is used to formulate climatic predictors that are hypothesized to influence moth population dynamics (see Graphical abstract). In the 
modeling phase, multiple statistical approaches might be employed. In the Fennoscandian case, machine learning is employed to identify the 
predictors that are best able to explain residual variation in the larval time series after accounting for density dependence. The best climate predictors 
are then employed in Bayesian time series models, which are used to forecast larval density 1–3 years into the future. Forecasts are evaluated against 
new annual larval counts as they become available, based on Bayesian techniques that allow competing models (different sets of climate predictors) to 
be compared based on forecasting ability. By iterating the forecast-evaluation loop over time, increasing evidence will accumulate for the models that 
produce the best forecasts. New model structures may also be introduced if the evaluation reveals that the forecasts from existing models are not 
acceptably accurate.   
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modeling, so that successful prediction of future data-
points receives more attention. 

Conclusions and perspectives 
While geometrids with more or less regular and syn-
chronized population outbreaks have provided im-
portant insights to forest insect population dynamics, 
recent shifts associated with climate change — espe-
cially in northern Fennoscandia — represent both new 
research opportunities and challenges. Fundamental 
biological traits termed ‘the winter moth syndrome’ such 
as polyphagia and larval ballooning — combined with a 
propensity for population outbreak cyclicity and syn-
chrony — likely make some geometrids particularly li-
able to rapid outbreak range expansions. Recent studies 
demonstrate that such range expansions may involve 
host plant switches. Host plant switches give opportu-
nities for investigating how herbivore-plant interactions 
influence spatiotemporal population dynamics. 
Geometrid range expansions also alter folivore insect 
guild structure, which opens opportunities to study how 
guild structure affects food web interactions, including 
folivore insect impacts on shared host plants. 

As geometrid outbreak range expansions can have pro-
found impacts on the services provided by the affected 
ecosystems, stakeholders may benefit from near-term 
forecasting to guide management. While there are alter-
native modeling approaches to near-term iterative fore-
casting, we advocate that geometrid population models 
should be tailored to give both accurate predictions and 
new insights about the mechanisms that underlie the 
spatiotemporal population dynamics. Finally, as empiri-
cally based models will be no better than the data on 
which they are based, we emphasize the importance of 
obtaining high-quality monitoring data for the dual pur-
pose of prediction and understanding. In the context of 
geometrid population dynamics subjected to the impact of 
climate change, long-term monitoring designs that include 
geographic features forming spatial climate gradients and 
barriers to dispersal will be particularly rewarding. 
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