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Abstract 18 

Climate model emulators are widely used to generate temperature projections for climate 19 

scenarios, including in the recent IPCC Sixth Assessment Report. Here we evaluate the 20 

performance of a two-layer energy balance model in emulating historical and future temperature 21 

projections from CMIP6 models. We find that emulation errors can be large (>0.5°C for SSP2-22 

4.5) and differ markedly between climate models, forcing scenarios and time periods. Errors 23 

arise in emulating the near-surface temperature response to both greenhouse gas and aerosol 24 

forcing; in some periods the errors due to these forcings oppose one another, giving the spurious 25 

impression of better emulator performance. Climate feedbacks are assumed constant in the 26 

emulator, introducing time-varying or state dependent feedbacks may reduce prediction errors. 27 

Close emulations can be produced for a given period but, crucially, this does not guarantee 28 

reliable emulations of other scenarios and periods. Therefore, rigorous out-of-sample evaluation 29 

is necessary to characterize emulator performance.  30 

Plain Language Summary 31 

Complex climate models are state-of-the-art tools used to produce projections of future 32 

climate but they are expensive and take a long time to run. Climate model emulators are simple 33 

statistical or physically based models that can aim to reproduce the response of complex climate 34 

models to a prescribed climate change scenario at lower cost and more quickly. In this study, we 35 

use a climate model emulator to reproduce simulations of twentieth and twenty-first century 36 

temperatures for eight complex climate models. We show that close emulations can be produced 37 

for pre-defined climate scenarios and time periods. Close emulations are not guaranteed, 38 

however, when the emulator is used for other climate scenarios or other periods. This is 39 

important because climate model emulators are frequently used to produce projections that are 40 

not available from complex climate models. Evaluation of climate model emulators and 41 

characterization of their uncertainties, therefore, should use data not used in the calibration of the 42 

emulator.  43 
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1 Introduction 44 

Climate model emulators are simplified physical or statistical models that are 45 

computationally efficient. Climate model emulators played a central role in producing future 46 

global near-surface temperature projections for Working Group I (Forster et al., 2021; Lee et al., 47 

2021) and Working Group III (Riahi et al., 2022) of the Sixth Assessment Report of the 48 

Intergovernmental Panel on Climate Change (IPCC AR6). The IPCC AR6 used climate model 49 

emulators to supplement simulations from coupled atmosphere-ocean general circulation models 50 

(AOGCMs) extending available simulations further into the future and projecting future climate 51 

scenarios not available from AOGCMs. It is important, therefore, that the simplifying 52 

assumptions used by emulators are rigorously tested so the robustness of their performance is 53 

understood. 54 

Physically based climate model emulators, such as energy balance models (EBMs), use 55 

bulk physical relationships to emulate the large-scale behavior of Earth’s climate system. For 56 

example, EBMs were used by Colman and Soldatenko (2020) to investigate links between 57 

climate variability and climate sensitivity and, by Modak and Mauritsen (2021) to investigate the 58 

probability of occurrence of the 2000-2012 global warming hiatus. 59 

Two-layer EBMs produce close emulations of idealized abrupt-4xCO2 and 1pctCO2 60 

simulations from AOGCMs (e.g., “EBM-ε” in Geoffroy et al. 2013b; “held-two-layer-uom” in 61 

Nicholls et al., 2020). Differences between emulations and AOGCM projections are generally 62 

greatest at times of pronounced change in the rate of temperature increase. Such changes are 63 

associated with time-varying feedbacks (Senior and Mitchell, 2000; Winton et al., 2010; Armour 64 

et al., 2013; Dong et al., 2020; Dunne et al., 2020; Rugenstein et al., 2020; Dong et al., 2021) 65 

which are caused by evolving spatial pattern effects in surface temperature (Stevens et al., 2016; 66 

Andrews et al., 2015; Rugenstein et al., 2016; Dong et al., 2021) and non-linear state 67 

dependences in climate feedbacks (Good et al., 2015; Rohrschneider et al., 2019; Bloch-Johnson 68 

et al., 2021). EBMs have been enhanced to capture time-varying feedbacks: the Geoffroy et al. 69 

(2013b) EBM includes an efficacy parameter for deep ocean heat uptake and the “held-two-70 

layer-uom” EBM also includes a state dependent feedback parameter (Rohrschneider et al., 71 

2019; Nicholls et al., 2020). These paradigms, however, do not precisely capture the feedback 72 

changes in AOGCMs and contribute to structural error which is irreducible unless the EBM 73 
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structure is enhanced (e.g., extending a two-layer EBM to three or more layers (Cummins et al., 74 

2020)).  75 

Assessments of emulator performance are more trustworthy when projections are 76 

validated using data different from those used to calibrate the emulator parameters (out-of-77 

sample validation). EBM parameters are frequently calibrated using idealized step-forcing 78 

experiments (e.g., abrupt-4xCO2) with the parameters estimated using analytical methods 79 

(Geoffroy et al., 2013a) or statistical methods (e.g., Cummins et al., 2020). The Coupled Model 80 

Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016) historical and future shared 81 

socio-economic pathway (SSP) projections for AOGCMs, therefore, are well suited for assessing 82 

EBM emulator performance. They can be used to produce out-of-sample assessments using 83 

realistic climate scenarios. Although climate model emulators have been evaluated (e.g., 84 

Nicholls et al., 2020; Nicholls et al., 2021), it is not known how well emulators perform for the 85 

latest CMIP6 AOGCMs using realistic, out-of-sample climate projections and latest assessments 86 

of effective radiative forcing (ERF). Furthermore, the contribution of irreducible structural errors 87 

to total prediction error remains poorly understood. 88 

In this study, we evaluate the performance of a two-layer energy balance model (EBM2) 89 

(Held et al., 2010; Geoffroy et al., 2013a, b) for emulating CMIP6 historical and future 90 

temperature trends using different EBM calibrations. We calibrate the EBM2 parameters for 91 

specific periods and ERFs, and evaluate the temperature projections for subsequent periods and 92 

alternative ERF scenarios. EBM2 is compared against an step-response emulator and a three-93 

layer EBM. 94 

2 Methods and data 95 

2.1 Step-response emulator 96 

We use a step-response emulator (Good et al., 2011) to provide a comparator of EBM 97 

emulator performance for temperature projections. The step-response function for each AOGCM 98 

was derived by dividing the projected temperature changes from a single realization of a CMIP6 99 

abrupt-4xCO2 simulation by the radiative forcing for 4xCO2 (Smith et al., 2020). The step-100 

response function was smoothed using cubic splines, and linear regession (years 121-150) was 101 

used for extrapolation beyond the 150 years of the abrupt-4xCO2 simulations. Temperature 102 
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projections from the step-response emulator were produced by convolution of annual changes in 103 

ERF and the step-response functions. 104 

2.2 Two-layer EBM emulator (EBM2) 105 

In EBM2 (Held et al., 2010; Geoffroy et al., 2013a) the upper layer represents the Earth’s 106 

atmosphere, land surface and ocean mixed layer, and the lower layer represents the deep ocean. 107 

The rate of temperature change in each EBM2 layer is determined from: 108 

𝐶1
𝑑𝑇1

𝑑𝑡
= 𝐹 + 𝜆𝑇1 − 𝜀γ(𝑇1 − 𝑇0)                                                                   (1) 109 

𝐶0
𝑑𝑇0

𝑑𝑡
= 𝛾(𝑇1 − 𝑇0)           (2) 110 

Where C represents heat capacity, T temperature, F ERF, λ the climate feedback 111 

parameter and γ the heat transfer coefficient between the upper layer (layer 1) and the lower layer 112 

(layer 0). We follow the formulation of Geoffroy et al. (2013b) which includes an efficacy 113 

parameter for deep ocean heat uptake (ε) to account for the forced pattern effect in surface 114 

temperature (Stevens et al., 2016). As is commonplace (Geoffroy et al., 2013a, b; Gregory et al., 115 

2015; Cummins et al., 2020), the EBM2 parameters were calibrated for each AOGCM using a 116 

single realization of a CMIP6 abrupt-4xCO2 simulation. Radiative forcing for 4xCO2 was taken 117 

from Smith et al. (2020). See Tables S1 and S2 for further details. 118 

2.3 Calibration of EBM2 using linear optimization 119 

As an alternative to calibration using the abrupt-4xCO2 experiment, we use linear 120 

optimization (the L-BFGS-B algorithm in scipy.optimize.minimize v1.6.2) to optimize the λ and 121 

ε parameters by minimizing the root mean square error (RMSE) of the emulated temperatures 122 

compared to the AOGCM over a defined time period (e.g., historical) (Table S3, S4). Lower 123 

bounds of -0.5 W m-2 K-1 and 0.5 were imposed for λ and ε respectively, and upper bounds of -124 

2.0 W m-2 K-1 and 2.0 respectively. These bounds are broadly based on the range of parameter 125 

values from the abrupt-4xCO2 calibration. The temperature projections are less sensitive to 126 

changes in the other EBM2 parameters (i.e., C0, C1, and γ), so these parameters are unchanged 127 

from their abrupt-4xCO2 calibrations. We also applied the linear optimization methodology to 128 

the abrupt-4xCO2 simulations, which produced very similar parameter values to the Geoffroy et 129 

al. (2013b) methodology used in the abrupt-4xCO2 calibration. 130 
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2.4 Three-layer EBM  131 

We use a three-layer EBM (EBM3) (Cummins et al., 2020) as a second comparator for 132 

EBM2 performance. We follow the method of Cummins et al. (2020) to calibrate the EBM3 133 

parameters (including ERF for 4xCO2) using a single realization of a CMIP6 abrupt-4xCO2 134 

simulation. 135 

2.5 Data 136 

We use projections of global annual mean near-surface temperature and radiative fluxes 137 

at the top of atmosphere (TOA) from the CMIP6 archive. We emulate temperatures for eight 138 

AOGCMs selected because data was available for the CMIP6 experiments of interest. For 139 

projections of recent and future climate change, the Historical and SSP experiments were used. 140 

Projections of temperature change attributed to specific sources of ERF are taken from the 141 

Detection and Attribution Model Intercomparison Project (DAMIP) experiments (Gillett et al., 142 

2016). The emulations are driven by time series of total annual ERF; estimates of ERF are taken 143 

from the Radiative Forcing Model Intercomparison Project (RFMIP) experiments (Pincus et al., 144 

2016; Smith et al., 2021). The ERF for GFDL-CM4 was used for GFDL-ESM4 (RFMIP ERF 145 

being unavailable for GFDL-ESM4). Following Forster et al. (2013), unforced drift is removed 146 

from the AOGCM projections using the preindustrial control experiment. 147 

3 Results 148 

3.1 Historical period using the abrupt-4xCO2 calibration 149 

EBM2 captures the increasing temperature trend during the twentieth century and 150 

distinguishes between high and low climate sensitivity AOGCMs (Figure 1). In all EBM2 151 

emulations, a proportion of the RMSE (~ 0.07 K) arises from interannual variations in the 152 

AOGCM ensemble means that is not captured in the emulations (there are up to three members 153 

in each AOGCM historical ensemble). The performance of EBM2, however, varies substantially 154 

between AOGCMs. The emulation errors are not strongly correlated with parameter values 155 

though there is a weak correlation between smaller RMSEs and large relative deep ocean heat 156 

capacity (i.e., Co/C1) (Figure S1). The sensitivity of emulation errors to changes in λ and ε varies 157 

between AOGCMs (Figure S2). There are instances of both large and small RMSE emulations 158 

for both high and low climate sensitivity AOGCMs. For AOGCMs where there are substantial 159 
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differences between the emulations and the AOGCM projections, the differences occur over 160 

different time periods. Differences are large for 1925-1950 (HadGEM3-GC31-LL), for 1950-161 

1975 (NorESM2-LM) and for 2000-2015 (HadGEM3-GC31-LL, IPSL-CM6A-LR, and GFDL-162 

ESM4). For IPSL-CM6A-LR, temperatures are overestimated by the emulators throughout 1915-163 

2014. Close emulation of temperatures in abrupt-4xCO2 does not guarantee close emulation for 164 

the historical period (e.g. GFDL-ESM4, although using ERF from GFDL-CM4 likely introduces 165 

some emulation error for GFDL-ESM4). Similarly, a relatively poor emulation of abrupt-4xCO2 166 

does not prohibit close emulation for the historical period (e.g. CNRM-CM6-1) (Figure S3). 167 

These results are important because they show that there is no a priori way to know if an 168 

AOGCM will be closely emulated. 169 

The step-response emulator produces emulations with RMSEs broadly equivalent to or 170 

less than emulations from EBM2. The treatment of time-varying feedbacks in the step-response 171 

emulator (i.e., implicitly in the step-response function) differs from the treatment in EBM2 (i.e., 172 

based on ε) and may contribute to the good performance of the step-response emulator. 173 

EBM3 performs better than EBM2 for abrupt-4xCO2, which is expected given the 174 

additional timescales resolved by the third layer which facilitates closer emulation of 175 

temperatures during years 10-40 of the abrupt-4xCO2 experiment, a period when the rate of 176 

temperature increase weakens rapidly (Figure S3). However, the improvement of EBM3 over 177 

EBM2 in the abrupt-4xCO2 experiment does not consistently translate to the historical 178 

experiment. Indeed there are three AOGCMs for which EBM2 has smaller RMSEs than EBM3 179 

(HadGEM3-GC31-LL, MIROC6 and IPSL-CM6A-LR). EBM3, similar to EBM2, overestimates 180 

temperatures for 2000-2014 in three of the eight AOGCMs and produces larger RMSEs than the 181 

step-response emulator for some AOGCMs.  182 
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 183 

Figure 1. Global mean temperature anomalies from a 1850-1900 baseline for CMIP6 AOGCMs. 184 

Changes in temperatures are forced by historical forcings during 1850-2014 and are shown for 185 

the period 1915-2014. RMSEs are calculated over 1915-2014. 186 

3.2 Roles of different forcings for near-surface temperature change 187 

We used EBM2 to emulate the responses to historical greenhouse gas (hist-GHG), 188 

anthropogenic aerosol (hist-aer) and natural (hist-nat) forcings only. EBM2 was calibrated using 189 

abrupt-4xCO2 simulations and the AOGCM projections are from DAMIP (Gillett et al., 2016) 190 

(Figure 2). We focus on two AOGCMs with relatively large errors in their emulations for the 191 
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historical period (HadGEM3-GC31-LL and IPSL-CM6A-LR), one AOGCM with relatively 192 

small errors (CanESM5), and one AOGCM whose responses to GHG and aerosol forcings 193 

contrast with the other AOGCMs (NorESM2-LM).  194 

Although EBM2 was calibrated using abrupt-4xCO2, errors predominantly arise from the 195 

emulation of the response to GHG forcing; in part because GHGs have the largest ERF. The 196 

EBM2 emulations overestimate the temperature increase due to GHGs for HadGEM3-GC31-LL 197 

and IPSL-CM6A-LR. 198 

Emulation of the temperature response to aerosol forcing is the largest source of error in 199 

one climate model (NorESM2-LM). For HadGEM3-GC31-LL and IPSL-CM6A-LR, errors 200 

associated with aerosol forcing offset errors associated with GHG forcing. This cancellation of 201 

errors gives a spurious impression of better performance for the historical simulations. As shown 202 

for the combined forcings (Figure 1), the step-response emulator produces closer emulations of 203 

temperature for GHG forcing. For anthropogenic aerosol forcing, the step-response emulator 204 

produces emulations of temperature very similar to EBM2. 205 

Emulation of the temperature response to natural forcings is a small source of error and 206 

the emulations are mostly within the spread of each AOGCM ensemble (Figures 2 and S4). 207 

Although larger ensembles and longer simulations are required to robustly assess the emulated 208 

response to volcanic forcing, thermal inertia of the EBM2 layers and allowance for rapid cloud 209 

adjustments within RFMIP ERFs will likely have contributed to the close emulations for natural 210 

forcings (Held et al., 2010; Gregory et al., 2016).  211 
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 212 

Figure 2. As Figure 1, except that temperature changes are forced by historical greenhouse gas 213 

(top row), anthropogenic aerosol (middle row), and natural (bottom row) forcings from RFMIP. 214 

The AOGCM projections are from DAMIP.  215 
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3.3 Alternative calibration of EBM2 216 

To determine whether temperature emulations from EBM2 for the historical period can 217 

be improved by changes to the fitted parameters alone, we apply optimization (Section 2.3) to 218 

calibrate the λ and ε parameters (Figures 3 and S5).  219 

This improves the emulations for all climate models. The greatest improvement occurs 220 

during 1980-2014 and the emulation of temperature during this period is improved further if the 221 

optimization is amended to minimize the RMSE specifically over this period. The spread in 222 

emulated temperatures about the 1:1 line is mainly driven by the small AOGCM ensemble sizes 223 

and is, therefore, similar for both EBM2 calibrations. Interannual variability is particularly large 224 

for NorESM2-LM and the emulated temperatures have a low correlation with the AOGCM 225 

temperatures for years prior to the 1980s when the climate response to forcing is relatively weak. 226 

The emulations of the net radiation at the TOA (N) (Figure 3) show that close emulations 227 

of near-surface temperature can be produced despite poor emulations of N. There is a large 228 

spread in the emulations of N about the 1:1 line for all climate models. The emulation of N 229 

during the late twentieth/early twenty-first century is poor for HadGEM3-GC31-LL and 230 

emulated N has a weak correlation with its AOGCM for NorESM2-LM. Optimization does not 231 

improve the emulation of N. There are small changes in emulated N for CanESM5 and 232 

NorESM2-LM. The improved temperature emulations from the optimization method for 233 

HadGEM3-GC31-LL come at the expense of poorer emulations of N. This result is important 234 

because it demonstrates that climate model emulators can produce reasonable simulations of 235 

near-surface temperature change, but the evolution of ocean heat uptake and TOA energy 236 

imbalance is incorrect demonstrating limitations to physical interpretation. 237 

We also used optimization to calibrate the λ and ε parameters separately for GHG and 238 

aerosol forcing using the DAMIP experiments. The calibrated parameter values differ for the two 239 

types of forcing (Table S3) and also vary when RMSE is minimized over different periods.  240 
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 241 

Figure 3. Projected changes in global mean temperature (top row) and net radiation at the TOA 242 

(N) (bottom row). Each panel shows changes in the AOGCM (x-axis) against the EBM2 243 

emulation (y-axis). Each point represents an annual mean during 1915-2014. 244 

3.4 Future near-surface temperature projections 245 

We compare temperature emulations for the twenty-first century from EBM2 based on  246 

different methods for calibrating λ and ε (Figure 4). Results are shown for the AOGCMs where 247 

the most complete CMIP6 data are available. Results for other experiments are shown in Figure 248 

S6 and Table S1 describes the calibrations. 249 

The performance of the abrupt-4xCO2 calibration varies greatly between the AOGCMs 250 

(Figures 4a, b) and typically performs worse than the step-response emulator. The emulations of 251 

SSP2-4.5 deteroriate during the twenty-first century. The errors in the emulations are correlated 252 

with the magnitude of the forcing and peak near the end of the twenty-first century for total and 253 

GHG forcing and early in the twenty-first century for aerosol forcing.  254 

Calibration by optimization of the λ and ε parameters over 1850-2100 (Figures 4c, d) 255 

yielded close emulations for all of the AOGCMs and across all experiments. Similarly close 256 

emulations were also achieved by minimizing the RMSE over 2015-2100 (not shown). 257 

Minimizing the RMSE for the later years of the projection, when the temperature anomalies are 258 

largest, is key.  259 
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Emulations of temperature to 2100 based on optimizing the λ and ε parameters using the 260 

1850-2014 period yields close emulations of temperature to 2014 but errors increase after the 261 

calibration period (Figures 4e, f). Extending the calibration period from 1850-2014 to 1850-2040 262 

(not shown) improves the emulation to 2040 but not always after 2040. Importantly, it does not 263 

mitigate the risk of large emulation errors outside the calibration period and its impact varies 264 

greatly between AOGCMs and between different experiments for the same AOGCM. 265 

To investigate the impact of using a calibration from one experiment for a different 266 

experiment, the “Hist-SSP245_1850-2100” calibration (which uses SSP2-4.5 all forcings) was 267 

applied to the GHG only (SSP2-4.5-GHG) and the anthropogenic aerosol only (SSP2-4.5-AER) 268 

experiments from DAMIP (Figures 4g, h). For both SSP2-4.5-GHG and SSP2-4.5-AER, the 269 

error for the “Hist-SSP245_1850-2100” calibration is greater than for the Hist-SSP245-270 

GHG_1850-2100 and Hist-SSP245-AER_1850-2100 calibrations respectively. The impact also 271 

varies between climate models and experiments in terms of the size of the impact and its 272 

temporal behaviour. Similar results were also found for the high mitigation scenario SSP1-1.9 273 

(Figure S7). Bespoke parameter calibrations for different ERF scenarios are necessary, therefore, 274 

to achieve close emulations throughout 1850-2100. This result is important because it 275 

demonstrates that emulator performance can be poor for out-of-sample predictions, yet there is 276 

no clear a priori way to know if this will be the case. This poses a problem since some of the 277 

value of emulators lies in their use for creating out-of-sample scenarios where AOGCM 278 

simulations do not exist and cannot be readily performed. 279 

 The average of the emulations for individual climate models (Figure 4 “Ensemble 280 

mean”) has relatively small RMSEs (except for the SSP2-4.5 1850-2014 calibration in Figure 281 

4e). This is due, in part, to averaging of interannual variability across the ensemble of 282 

emulations. Further, the ensemble mean generally has smaller RMSEs than an emulation in 283 

which the ensemble mean ERF is used to emulate the ensemble temperature projection (Figure 4 284 

“Ensemble emulation”). 285 

Finally, while the optimization method yields unique parameter solutions there is a near 286 

linear trade-off between the λ and ε parameters when minimizing the RMSE (demonstrated for 287 

historical/SSP2-4.5 in Figure S2 and for the first 150 years of abrupt-4xCO2 in Figure S8). In 288 

EBM2, changes in the climate feedback parameter (λ) are compensated for by changes in the 289 

efficacy of deep ocean heat uptake (ε) and the transient temperature response is largely 290 
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unchanged. This shows that optimized values for the λ and ε parameters may not be robust 291 

estimates of climate feedback or the AOGCM pattern effect and the physical interpretation of 292 

parameter value changes when optimizing the calibration is hindered by the linear trade-off 293 

between the λ and ε parameters.  294 

 295 

Figure 4. Differences between EBM2 emulations and AOGCM temperature projections. Rows 296 

show results for four calibrations of EBM2. Row B uses λ and ε parameter values which 297 

minimize the RMSE for temperatures during 1850-2100. Row C uses parameter values which 298 

minimize the RMSE during 1850-2014. Row D shows EBM2 calibrated to minimize the RMSE 299 
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during 1850-2100 for SSP2-4.5 and this calibration is used to emulate SSP2-4.5-GHG and SSP2-300 

4.5-AER. Annual means are smoothed using a 21-year moving average. 301 

4 Discussion and conclusions 302 

Our results show prediction errors in EBM2 for future global temperature projections 303 

vary greatly between AOGCMs, forcings, time periods and methods of emulator calibration.  304 

The EBM2 calibration using the abrupt-4xCO2 experiment does not produce reliable 305 

projections of historical warming for several AOGCMs. Although calibration of the λ and ε 306 

parameters using optimization substantially reduces emulation errors for periods where an 307 

AOGCM simulation is available, optimization of these parameters does not guarantee reliable 308 

out-of-sample projections. Without an AOGCM projection for a given AOGCM and scenario, it 309 

is not knowable if the EBM2 future projection will be reliable. 310 

Close emulation of the historical period is not sufficient to guarantee reliable emulation 311 

of future temperature changes (Figure 4; Nicholls et al., 2021). Opposing errors in the emulation 312 

of GHG and aerosol forcings give a misleading impression of emulator performance. Many 313 

climate model emulators do not reliably emulate AOGCM projections for high emissions 314 

scenarios (Nicholls et al., 2021); our results suggest that strong mitigation scenarios may not be 315 

reliably emulated. 316 

How could the EBM2 emulator be changed to improve the out-of-sample emulations? 317 

First, an efficacy factor could be introduced to account for asymmetry in AOGCM responses to 318 

GHG and aerosol forcings. Second, EBM2 could be developed to incorporate variations in 319 

climate feedbacks and the evolution of AOGCM pattern effects. Late twentieth-century warming 320 

has been suppressed by changes in the observed sea surface temperature (SST) patterns and 321 

associated cloud feedbacks (Andrews et al., 2018; Dong et al., 2021; Fueglistaler and Silvers, 322 

2021). Future warming could be affected by changes in the pattern effect (Zhou et al., 2021). 323 

Climate model simulations show that climate feedbacks weaken through time in response to 324 

step-forcings and changes in feedbacks are associated with changes in SST patterns (e.g., Dong 325 

et al., 2020; Dunne et al., 2020). Incorporating time-varying feedbacks in EBM2, however, 326 

requires further research to distinguish forced changes in feedbacks from unforced climate noise 327 

and to explicitly link global feedback changes to variations in SST patterns (e.g., using SST 328 

anomalies for regions of tropical deep convection (Fueglistaler and Silvers (2021)). 329 
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EBM2 out-of-sample emulations could potentially be improved without changes to the 330 

emulator. First, when available, larger AOGCM ensembles could be used to reduce the 331 

contribution to emulation errors from chance. Second, more physically plausible parameter 332 

tunings could be achieved by using optimization to jointly minimize RMSEs for temperature and 333 

ocean heat flux (Dorheim et al., 2020). Our initial investigations minimizing RMSE for 334 

temperature and N, however, showed that the emulation of historical temperatures was 335 

substantially worse than when minimizing RMSE for temperature alone. 336 

Emulations could also be improved through advances in the separation of forcing and 337 

climate feedbacks in AOGCMs. We used the latest estimates of ERF derived from fixed-SST 338 

simulations but substantial uncertainty in ERF remains (Forster et al., 2016; Dong et al., 2021). 339 

Correcting for land warming in abrupt-4xCO2 fixed-SST experiments increases the ERF 340 

(Andrews et al., 2021) and leads to a weaker temperature response per unit forcing in EBM2. If 341 

the abrupt-4xCO2 ERF without corrections happens to be more underestimated than the 342 

historical ERF, the historical EBM2 responses will be overestimated. Forcing estimates remain 343 

dependent on the method used (Forster et al., 2013; Sherwood et al., 2015; Larson and Portmann, 344 

2016; Fredriksen et al., 2021).  345 

Our findings are relevant to observationally contrained climate model emulators aiming 346 

to simulate real-world changes (e.g., Forster et al., 2021). Emulator structural errors and 347 

uncertainties in inputs (e.g., ERF) are as relevant to real-world emulations as to emulations of 348 

AOGCMs. Indeed, there are additional challenges. There is only one realization of past climate 349 

and future climate is unknown. Observational large ensembles (McKinnon et al., 2017) could be 350 

used to help characterize uncertainty in emulating past climate.   351 
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