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Abstract

The goal of marine seismic exploration is to obtain an image of the subsurface. Thus, an
air gun is used as an impulsive source to generate pressure waves that travel down into
the subsurface, where they are reflected. Some of the reflected energy is recorded by a
long seismic streamer towed behind a vessel, together with unwanted noise and among
others, weather and flow related noise. More precisely, streamers are subjected to forces
from the vessel, from steering birds and from the motion of the sea. Minimizing the
effects of unwanted noise is one of the main challenges faced by seismic data processors.
In addition, because geophysicists try to handle more and more complex subsurface
structures, it has become necessary to come up with more elaborate signal enhancement
techniques.

The derivation of signal enhancement algorithms usually requires statistical assump-
tions about the noise to be attenuated. For this reason, we start with a statistical analy-
sis of seismic background noise realized with recent marine streamers. State of the art
techniques such as the Thomson’s multitaper estimator for spectral analysis and Parzen
amplitude estimator for density estimation are used. Thereafter, we propose different
signal enhancement methods. We first focus on single-azimuth stacking methodolo-
gies and propose novel stacking schemes, using either the concept of weighted sum
or a novel approach by means of Kalman filter. We then address the problem of ran-
dom noise attenuation and present an innovative application of sparse code shrinkage
and independent component analysis. Finally, we consider the attenuation of flow-
generated nonstationary coherent noise and seismic interferences noise. We suggest a
multiple-input adaptive noise canceller that utilizes a normalized least mean squares
algorithm with a variable normalized step size that is derived as a function of instanta-
neous frequency.

All the novel methods presented in this thesis have been tested on synthetic and
real marine data, and compared against standard existing signal enhancement meth-
ods. Thus, we show that the enhanced stacking method yields superior results com-
pared to conventional stacking, and in particular, it exhibits cleaner and better defined
reflected events as well as a larger number of reflections in deep waters. A comparison
with more advanced stacking methods is also discussed. Furthermore, we demonstrate
that sparse code shrinkage is an efficient random noise attenuation method that targets
the noise components to shrink them while preserving the signals. By its capacity to
enhance signals in both shallow and deep waters, the normal inverse Gaussian density
appears to be the best choice of density, but the sparse density, the mixture of general-
ized Gaussian density and non-parametric Gaussian kernel estimate have proven to be
acceptable choices as well. In addition, the comparison with local singular value decom-
position and f-x deconvolution shows that sparse code shrinkage is a valuable method
for removing background noise and estimating signals in both shallow and deep wa-
ters. Finally, the multiple-input adaptive noise canceller using a normalized least mean
squares algorithm with a variable normalized step size attenuates the coherent noise
successfully, when used either by itself or in combination with a time-frequency median
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filter, depending on the noise repartition and its spectral characterization. The compar-
ison with a time-frequency median filter and a high-pass Butterworth filter shows that
it yields significantly improved results. Furthermore, we show that the multiple-input
adaptive noise canceller can find some applications for seismic interferences attenua-
tion, after manipulation of the input data set. Its efficiency remains however limited at
this stage of development.
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Preface

This thesis contains seven chapters. Chapter 1 gives an history and the general concepts
of seismic acquisition, a brief review of a few existing and comparative noise attenuation
methods, as well as a description of my own contribution. Chapters 2, 3, 5 and 6 contain
original work that has been published or submitted in various journals and conferences,
while chapter 4 presents a brief review of principal component analysis and a related
noise attenuation method, the singular value decomposition. Finally, chapter 7 is a
summary of the thesis with some suggestions to future work.

Chapter 1: Introduction

This chapter presents a history of seismic acquisition, as well as the general concepts
and a brief review of a few existing and comparative noise attenuation methods. In
addition, a description of the work presented in this thesis is provided.

Chapter 2: Seismic noise analysis

In this chapter, we define several statistical tools and use them for a statistical analysis
of pure seismic noise. Furthermore, we propose an automatic clustering of the noise
level using an existing method, but that provides an original quality estimation tool for
geophysicists. Part of this work has been presented in the conference paper

• C. Sanchis and A. Hanssen, "Statistical analysis of noise in towed streamer arrays",
Proceedings 16th European Signal Processing Conference, Lausanne, Switzerland, Au-
gust 25-29, 2008.

Chapter 3: A novel enhanced local correlation stacking method

In this chapter, we present novel stacking schemes and compare them to the conven-
tional technique. This chapter contains the journal paper

• C. Sanchis and A. Hanssen, "Enhanced local correlation stacking method", sub-
mitted to Geophysics in February 2010.
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Chapter 4: Principal components analysis, brief review

This chapter is a brief review of principal components analysis and a related concept,
the singular value decomposition. Because principal components analysis is used in
chapter 5, we think it is necessary to remind the reader about this concept. In addition,
the related concept of singular value decomposition, used in this thesis as comparative
method of noise attenuation, is described as well.

Chapter 5: Sparse code shrinkage for signal enhancement
of seismic data

This chapter presents an innovative application of sparse code shrinkage and indepen-
dent component analysis for signal to noise ratio enhancement of seismic signals, as
well as an investigation of different parametric and a non-parametric density model.
This chapter contains the conference and journal papers

• C. Sanchis and A. Hanssen, "Attenuation of seismic noise by sparse code shrink-
age", Proceedings 72nd European Association of Geoscientists & Engineers Conference,
Barcelona, Spain, June 14-17, 2010.

• C. Sanchis and A. Hanssen, "Sparse code shrinkage for signal enhancement of
seismic data", submitted to Geophysics in May 2010.

Chapter 6: Multiple-input adaptive noise canceller to at-
tenuate non-stationary coherent noise

This chapter presents an application of the multiple-input adaptive noise canceller to
the attenuation of flow-generated non-stationary coherent noise and seismic interfer-
ences noise. This filter uses a normalized least mean squares algorithm with a variable
normalized step size that has been derived to filter the seismic data efficiently. The work
presented in this chapter will shortly be submitted.

Chapter 7: Conclusions and suggestions for future work

This chapter contains a short summary of this monograph, along with some suggestions
to future work.
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H Hilbert transform
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Qv,i Kalman filter observation noise covariance matrix of the ith trace
Q(f) Total spectral window

viii
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x̃(t) Hilbert transform of x(t)
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X(f) Fourier transform of x(t)
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Chapter 1

Introduction

1.1 Seismic acquisition: history and motivations

The goal of marine seismic exploration is to obtain an image of the subsurface. Seismic
acquisition is the artificial generation and recording of seismic data. For that purpose,
a seismic source, typically a compressed air gun for marine surveys and a dynamite
explosion or a vibrator unit for land surveys, is used as an impulsive source to gener-
ate pressure waves that travel down into the Earth passing through Earth layers with
different seismic responses and filtering effects. Some energy returns to the surface due
to refraction or reflections, to be recorded as seismic data. The reflected seismic en-
ergy is recorded by receivers, which record the seismic signals as electronic waveforms.
Hydrophones are one type of receiver, used to measure changes in pressure as sound
travels through water. They are usually towed a few meters underwater inside stream-
ers that are typically 3 to 10 km long. Hydrophones can also be suspended vertically or
laid on the sea floor. Different types and configurations of receivers are used depending
on local environmental conditions and the underground geological features that are to
be imaged. The layout of the receivers is also designed to minimize the effect of noise
that can otherwise mask the seismic signal. So long as appropriate receiver configura-
tions are used, special computer processing techniques can be applied to the recorded
data to remove unwanted noise and enhance the seismic signal. In this thesis, all the
real seismic data are acquired by underwater, horizontal streamers towed behind a seis-
mic vessel, as shown in Figure 1.1. A more detailed description of a seismic streamer
used for data acquisition is given in section 2.1.

Reflections and refractions of seismic waves at geologic interfaces within the Earth
were first observed on recordings of earthquake-generated seismic waves. The basic
model of the Earth’s deep interior is based on observations of earthquake-generated
seismic waves transmitted through the Earth’s interior (e.g., the Mohorovicic discon-
tinuity). The use of human-generated seismic waves to map in detail the geology of
the upper few kilometers of the Earth’s crust followed shortly after and has developed
mainly due to commercial enterprise, particularly the petroleum industry. The Cana-
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Chapter 1. Introduction

dian inventor Reginald Fessenden was the first to conceive of using reflected seismic
waves to infer geology. He filed patents on the method in 1917 while working on meth-
ods of detecting submarines during World War I. Due to the war, he was unable to
follow up on the idea. However, John Clarence Karcher discovered seismic reflections
independently while working for the United States Bureau of Standards (now the Na-
tional Institute of Standards and Technology) on methods of sound ranging to detect ar-
tillery. In discussion with colleagues, the idea developed that these reflections could aid
in exploration for petroleum. With several others, many affiliated with the University
of Oklahoma, Karcher helped to form the Geological Engineering Company, incorpo-
rated in Oklahoma in April, 1920. The first field tests were conducted near Oklahoma
City, Oklahoma in 1921. The company soon folded due to a drop in the price of oil.
In 1925, oil prices had rebounded, and Karcher helped to form Geophysical Research
Corporation (GRC) as part of the oil company Amerada. In 1930, Karcher left GRC and
helped to found Geophysical Service Incorporated (GSI). GSI was one of the most suc-
cessful seismic contracting companies for over 50 years and was the parent of an even
more successful company, Texas Instruments. Early GSI employeee Henry Salvatori left
that company in 1933 to found another major seismic contractor, Western Geophysical.
As of 2005, after several mergers and acquisitions, the heritages of GSI and Western
Geophysical still exist, along with several pioneering European companies. Many other
companies using reflection seismology in hydrocarbon exploration, hydrology, engi-
neering studies, and other applications have been formed since the method was first
invented, and Fugro is one of them. Reflection seismology has also found applications
in non-commercial research by academic and government scientists around the world.

For seismic data, noise sources can be separated into two categories. The first cate-
gory of noise comes from experimental errors. These errors comprise any unexpected
perturbation of the recording environment during data acquisition. An hydrophone
can have malfunctions or the recording systems can have glitches creating erratic noise
in the seismic record. Wind motion or cable vibrations can generate random noise.
Outside factors, such as mammal activity, nearby seismic vessels and drilling rigs for
marine acquisition might also contaminate seismic records. These noise sources create
more coherent energy on the data and can be misinterpreted as true signal.

The second category of noise comes from modeling uncertainties (Tarantola, 1987).
In seismic, modeling uncertainties occur when the physical description and the param-
eterization of the Earth is incomplete. This incomplete description is motivated by the
inherent complexity of wavefield propagation in the subsurface. Therefore, the complex
seismic signal is often separated into different propagation modes that are then easier
to understand and use. The downside of this approach is that most of the recorded sig-
nal is consequently obliterated. For instance, multiple reflections are a main source of
coherent energy in the seismic record that also need to be separated from the primaries
(i.e., reflections with one bounce in the subsurface) before migration. Whereas experi-
mental errors rarely bring any useful information, recent advances are slowly pushing
the limits of modeling uncertainties by incorporating and saving as much signal as pos-
sible within the processing workflow.
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Definitions and general concepts used in geophysics

Figure 1.1: Acquisition process of seismic data.

1.2 Definitions and general concepts used in geophysics

This section gives the definitions of general concepts used in seismic processing.

• Common mid point (CMP) gather: Recorded data are sorted into gather where all
traces have a common midpoint, i.e., the position on the surface mid-way between
the source and the receiver. If the reflector is sub-horizontal and the medium is
isotropic, then the CMP will be situated directly perpendicular above the common
depth point (CDP) on the reflector. An example is shown in Figure 1.2 (b).

• Flow-generated noise: Noise resulting from the interaction between the streamer
and the surrounding flow, i.e., Swell noise, turbulence-induced noise.

• Migration: Process by which geophysical events (reflected events) are geometri-
cally re-located in either space or time to the location where the event occurred in
the subsurface rather than the location that it was recorded at the surface, thereby
creating an accurate image of the subsurface. This process is necessary to over-
come the limitations of geophysical methods imposed by areas of complex geol-
ogy, such as: faults, salt bodies, folding, etc. The end result is that the migrated
image typically resolves these areas of complex geology much better than non-
migrated images.

• Multiple reflection: Wave reflections with at least one downward reflection. Mul-
tiples travel at lower average velocities than primaries, and therefore, multiples
with greater NMO are misaligned contrary to primaries.

• Normal moveout (NMO): The increase in reflection time due to an increase in dis-
tance from source to receiver for a horizontal reflecting interface in a homogeneous
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Chapter 1. Introduction

medium of constant velocity. Thus, if T0 and Tx denote the two-way reflection time
for a zero offset trace and a trace of offset distance x respectively, and if c denotes
the compressional wave velocity of the medium, then the NMO time increment
∆TNMO(x) is

∆TNMO(x) = Tx − T0 = T0(

√
1 +

x2

(cT0)2
− 1) (1.1)

The normal moveout correction consists of the subtraction of the time increment
∆TNMO(x) from each record time Tx.

• Primary reflection: Wave reflection with only one upward reflection in the subsur-
face.

• Seismic interferences: Waves generated by other seismic vessel operating in the
same area.

• Shot gather: Recorded data are sorted in such a way that all traces have the same
source position. An example is shown in Figure 1.2 (a).

• Stacking: In a conventional sense, stacking consists of the simple sum of CDP
traces to produce a single composited trace. This method increases reflection
signal-to-noise ratios by a factor approaching

√
M , where M is the "fold" or num-

ber of CDP traces summed.

(a) (b)

Figure 1.2: (a) An example of a shot gather. (b) An example of a CMP gather: In case of
a horizontal reflector, the common mid point on the surface coincides with the common
depth point on the reflector in the subsurface.

1.3 Discussion about existing noise-attenuation methods

Throughout this thesis, we propose novel and enhanced noise attenuation methods,
and compare them with existing ones. Thus, we dedicate Chapter 4 to a brief review
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of principal components analysis and singular value decomposition. Principal compo-
nents analysis is used in sparse code shrinkage for dimensions reduction and for this
reason, we want to make sure that the concept is known from the readers. A partic-
ular case, the singular value decomposition, is a coherency-based technique of signal
enhancement that is well known from the seismic community, and briefly described as
well in Chapter 4.

In addition, we will refer to the time-frequency median filter described by Elboth
et al. (2010). This filter uses a sliding window that scans the input gather both in space
and time. Within this window, a spectral estimate of all traces is achieved and the am-
plitude estimates at each frequency are compared with the amplitude of a presumed
good trace within the chosen window. This technique is mostly used for random noise
attenuation, and it is used as comparative method in Chapter 6.

Predicted deconvolution, also known as f-x deconvolution or f-x prediction, is one
of the most common techniques in seismic to attenuate noise. It finds some applica-
tions when random noise is present or when coherent noise can be viewed in a random
domain. It is based on a quite simple idea: linear or quasi-linear events in the time-
space domain manifest themselves as a superposition of harmonics in frequency-space
(f-x) domain, and can then be modeled optimally by an autoregressive moving average
model. Because instabilities may occur, a long autoregressive process is usually used.
Thereafter, the signal at each frequency is modeled by an autoregressive model and re-
solved by a least squares prediction filter. Thus, it is predicted by the nearby traces and
noise is the unpredicted factor. Finally, the filtered signal is transformed back to the
time-space domain. A more exhaustive description and history is given by Ulrych and
Sacchi (2005). However, in this thesis, we use the f-x deconvolution code contained in
the seismic data processing package SeismicLab and developed by Sacchi and Signal
Analysis and Imaging Group (2008) as comparative method in Chapter 5.

Finally, it is a common practice in seismic processing to remove any low-frequency
components, generally considered as noise, by means of a high-pass filter with cutoff
frequency between [2, 5] Hz. We will use such tool, more specifically a second order
high-pass Butterworth filter, in Chapter 6 as comparative method for low-frequency
noise attenuation. The Butterworth filter is a well known type of filter designed to have
a frequency response which is as flat as possible in the passband and rolls off towards
zero in the stopband (Bianchi and Sorrentino, 2007). The characteristics of the used filter,
i.e., the cutoff frequency, the system function and the magnitude response are given in
Chapter 6.

1.4 Present work and contributions

This thesis concentrates on statistical modeling and analysis of background noise, and
on development of signal enhancement algorithms that are able to tackle random or
coherent noise. Thus, we start in Chapter 2 with the statistical analysis of seismic
noise. Noise characterization has been performed in the past, with focus either on
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Chapter 1. Introduction

low-frequencies, on hydrophone streamer noise or on ocean noise. More recent marine
streamers are now used in seismic acquisition, and it is therefore pertinent to extend the
previous results with noise characterization completed from modern equipments. Thus,
the analysis reveals that the seismic noise is almost symmetric and slightly platykurtic,
and that it yields a composite power-law. These results will be used at a latter stage in
this thesis. Furthermore, the inhomogeneity of seismic noise along a streamer is em-
phasized, and in that purpose, an automatic clustering of the noise level is proposed
as an original quality estimation tool for geophysicists. Chapter 3 focuses on single-
azimuth stacking methodologies, as popular signal to noise ratio enhancement tech-
niques among the seismic industry. We propose novel stacking schemes, using either
a weighted sum or a Kalman filter, and compare them to the conventional stacking
technique. We dedicate then the Chapter 5 to an innovative application of sparse code
shrinkage and independent component analysis for signal to noise ratio enhancement
of seismic signals. Here, we propose a method to obtain the "noise-free" realization
of the data that allows the derivation of fitted shrinkages, and we investigate differ-
ent parametric and a non-parametric density models in order to determine the model
that suits the best the seismic data. Eventually, Chapter 6 presents an application of
the multiple-input adaptive noise canceller to the attenuation of flow-generated non-
stationary coherent noise and seismic interferences noise. This filter uses a normalized
least mean squares algorithm with a variable normalized step size. The determination
of the variable step size parameter is not an easy task and classical methods fail because
they cannot adapt to the characteristics of the seismic noise. Here, we propose to de-
rive this parameter as a function of instantaneous frequency for each seismic trace and
we show that it makes the multiple-input adaptive noise canceller be a credible alter-
native for the attenuation of flow-generated non-stationary coherent noise and possibly
seismic interferences noise.

This thesis provides the necessary mathematical background and the theory behind
each proposed method, as well as their strengths and weaknesses. It also contains many
examples of applications, based on both synthetic and real marine data sets.

Finally, the experimental part of this thesis consists in a week offshore, spent on
seismic vessel to manipulate standard seismic acquisition equipments and collect my
own data. This experience has been really instructive and fruitful, and provided me a
better understanding of the possible noise sources.
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Chapter 2

Seismic noise analysis

2.1 Background information and test data description

Statistical characterization of seismic noise has been performed in the past, with focus
either on low frequencies or on hydrophone streamer noise (Schoenberger and Mifsud,
1974). Statistical properties of ocean noise have been studied as well, (Brockett et al.,
1987) and (Pflug et al., 1997). More recent marine streamers are now used in seismic
acquisition. It is therefore pertinent to extend the previous results with noise charac-
terization completed from modern equipments. Results could be used for future work
on noise reduction. In this chapter, we consider typical pure-noise recordings and we
perform a statistical analysis of these data set. Thus, we start with a spectral analysis
using Thomson’s multitaper estimator that yields the derivation of a composite power-
law. We then use a clustering method that reveals the inhomogeneity of the noise along
a streamer. Finally, we estimate the distribution of noise amplitudes using a Parzen
kernel estimator, and use the third and fourth order central moments, respectively the
skewness and the kurtosis, to characterize the amplitude distribution.

Figure 2.1: Streamer layout.

Data consists in passive hydrophones recordings, i.e., in the absence of impulsive
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Chapter 2. Seismic noise analysis

sources. It has been acquired during a Fugro campaign in the Mediterranean sea. The
vessel’s speed was 5 knots and weather conditions were relatively good with 1 to 1.5
meters waves. Nominal streamer depth is 8 meters. The noise data set was obtained
using a Sentinel R© solid streamer which consists in a large number of hydrophones,
grouped in sub-sections of 12.5 meters long. Within each of 12.5 meters subsections,
inputs from hydrophones are summed and a trace representing recorded signal is pro-
duced and referred to as a channel. As illustrated in Figure 2.1, the seismic streamer is
divided into 54 so-called active sections. Each active section is 150 meters long and con-
tains 12 groups of hydrophones, providing 12 channels with noise records. Altogether,
the streamer has 648 channels. There are two possible locations where extra units with
depth keeping and ranging functionalities can be attached, at∼ 25 meters from the head
and ∼ 25 meter from the tail of each active section. Whether they cause extra noise, has
to be determined.

Noise pressure values are recorded every 2 milliseconds and for a duration of 6 sec-
onds, simultaneously by the 648 channels. They are gathered as one noise recording.
Such a recording process is repeated 10 times at approximatively 6 seconds interval, so
that a total of 10 noise recordings are available for the analysis.

2.2 Multitaper Spectral Analysis

It is well known that the standard periodogram estimator of the power spectral den-
sity is statistically inconsistent (Percival and Walden, 1993). The shortcomings of the
periodogram may be mitigated by tapering in time to reduce spectral leakage, and by
smoothing in frequency or time to reduce the estimator variance. The state of the art
tapering technique is David J. Thomson’s multitaper estimator. This estimator reduces
spectral leakage subject to certain optimality criteria, while simultaneously reducing
variance through an averaging procedure over an orthonormal set of tapers. A time-
frequency resolution bandwidth parameter must be chosen by the user. In practice, the
analysis of seismic records is not very sensitive to the actual choice of the bandwidth
parameter, as long as an adequate compromise between smoothing and frequency res-
olution is identified. We regard the multitaper estimator to be the natural choice for our
kind of data, and several examples of multitaper estimates will be shown in this chapter.

2.2.1 Brief Outline of Multitaper Method

As the multitaper method may not be well known among seismic data analysts, we will
now briefly outline the estimator before actually applying it to streamer data.

The multitaper (MT) technique proposed by Thomson (1982), follows ideas from
Slepian (1978). This method combines the use of optimal data tapers, with averaging
over a set of power spectral estimates.
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Discrete Prolate Spheroidal Sequences

Thomson (1982) proposed to apply some stringent optimality criteria when selecting
data tapers. He suggested to consider tapers that maximizes the "spectral concentra-
tion", or the energy contained in the mainlobe relative to the total energy of the taper.
One therefore seeks the taper v[n] with a discrete Fourier transform V (f), that maxi-
mizes the window energy ratio

λ =

fB∫
−fB
|V (f)|2 df

1/2∫
−1/2

|V (f)|2 df
(2.1)

where fB is the wanted resolution half-bandwidth (a design parameter) of the taper.
An ideal taper would therefore have λ ' 1 and fB as small as possible (but note that
fB > 1/N ).

Expressing V (f) by its discrete Fourier transform, V (f) =
∑N−1

n=0 v[n] exp(−j2πfn)
and maximizing the above functional with respect to v[n], Slepian (1978) showed that
the optimal taper v = [v[0], v[1], . . . , v[N − 1]]T obeys the eigenvalue equation

Bv = λv (2.2)

where the matrix B has elements [B]nm = sin[2πfB(n − m)]/[π(n − m)], for n,m =
0, 1, . . . , N−1. Note that equation 2.2 is anN -dimensional eigenvector/eigenvalue prob-
lem, thus givingN eigenvector/eigenvalue pairs, (vk, λk), where k = 0, 1, . . . , N−1. The
interpretation is thus that we obtain a sequence of orthogonal tapers (eigenvectors), vk,
each with a corresponding spectral concentration measure λk. The first taper v0 has a
spectral concentration λ0. Then, v1 maximizes the ratio in equation 2.1 subject to being
orthogonal to v0, and with λ1 < λ0. Continuing, we can thus form up to N orthogonal
tapers v0,v1, . . . ,vN−1, with 0 < λN−1 < λN−2 < · · · < λ0 < 1. Only tapers with λk ' 1
can be applied, since λk � 1 implies a large undesirable leakage.

It is usually safe to apply tapers up to order k = 2NfB − 1 (Percival and Walden,
1993). It is customary to standardize the tapers such that they are orthonormal, vTk vk′ =
δk,k′ , where δk,k′ is the Kronecker delta. The solutions vk are referred to as "Discrete
Prolate Spheroidal Sequences" (DPSS) (Slepian, 1978). These optimal tapers are not ex-
pressible in closed form. The eigenvalue equation 2.2 must therefore be regarded as the
defining equation for these tapers. Recent versions of the Matlab R© Signal Processing
Toolbox include efficient solvers for the DPSS problem.
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Chapter 2. Seismic noise analysis

Basic Multitaper Spectral Estimators

The simplest definition of an MT estimate is simply the arithmetic average of K tapered
"eigenspectra"

ŜMT (f) =
1

K

K−1∑
k=0

Ŝ
(k)
MT (f) (2.3)

where the "eigenspectrum" of order k is defined by

Ŝ
(k)
MT (f) =

∣∣∣∣∣
N−1∑
n=0

vk[n]x[n] exp(−j2πfn)

∣∣∣∣∣
2

(2.4)

where vk[n] denotes the elements of DPSS-taper of order k. Also data adaptive averag-
ing schemes exist, see Thomson (1982) and Percival and Walden (1993). The adaptive
averaging is necessary in several applications, and will be employed also in this chapter.

The averaging of tapered spectral estimates, in equation 2.3, leads to a decrease of
the variance relative to any individual spectral estimates. Asymptotically, one can show
that Thomson (1982)

var{ŜMT (f)} ' (1/K)S2(f), (2.5)

where S(f) is the true power spectrum.
The expectation of the MT estimator is

E{ŜMT (f)} =

∫ 1/2

−1/2

Q(f − f ′)S(f ′)df ′, (2.6)

where the so-called total spectral window is given by

Q(f) =
1

K

K−1∑
k=0

Qk(f), (2.7)

and the spectral window of order k is given by

Qk(f) =

∣∣∣∣∣
N−1∑
n=0

vk[n] exp(−j2πfn)

∣∣∣∣∣
2

. (2.8)

Note that Bronez (1992) compared the leakage, variance and frequency resolution for
the DPSS MT method with that of a standard weighted overlapped segment averaging
(WOSA). He found that the MT method always performed better than the WOSA for
each of the measures, when the other two measures were required to be equal for both
estimation methods.
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Figure 2.2: Power spectrum estimates: (a) Overlay of the 648 power spectrum estimates
and (b) averaged power spectrum estimate with linear fit of the (0, 12] and [50, 150] Hz
intervals (red lines).

2.2.2 Application: Spectral analysis of real seismic noise recordings

The multitaper estimator is used to produce the spectrum estimate of the pure-noise
recordings described in section 2.1, i.e., 6 seconds signals recorded simultaneously by
648 channels. Parameters for computation of the estimator are chosen to be: fast Fourier
transform of length N = 1024 samples, time-bandwidth product Nf0 = 4 and Thomson
adaptive weighting as averaging scheme (sampling frequency Fs is 500 Hz). The power
spectrum is estimated for each channel, which means that a total of 648 spectrum esti-
mates are produced. Figure 2.2 (a) shows the overlay of the 648 estimated power spectra
plotted on the [0, Fs/2] interval. It appears that the difference in noise level is significant
and can reach 50 dB re(W/Hz) at 1m. However, all power spectrum curves have the
same basic shape. In order to obtain a better overview of the particular shape of this
curve, the averaged estimate is computed and shown in Figure 2.2 (b). We are now able
to identify three distinct regions in the averaged noise spectrum:

- Low frequency region: [0, 12) Hz, with a magnitude attenuation of 125 dB, which
contains most of the noise.

- Intermediate frequency region: [12, 190) Hz, which is pretty flat and has a magni-
tude attenuation of 49 dB.

- High frequency region: [190, 250] Hz, where we can observe the effects of the a
hardware lowpass filter, with cut-off frequency at 200 Hz and attenuation of 370
dB/oct.

Where [a, b) = {x ∈ R|a ≤ x < b}.
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Chapter 2. Seismic noise analysis

Because seismic data of interest are normally within the [0, 150] Hz interval, we
choose to determine power-laws on the (0, 12] Hz and the [50, 150] Hz intervals. Power-
laws are of the type S(f) ∼ fn. Generalizing slightly, we aim to perform a piecewise fit
of our spectrum to the spectral shape S(f) = 10n2fn1 , which is equivalent to

log10(S(f)) = n1 log10(f) + n2

where n1 and n2 are coefficients to be determined. Here, n1 is the spectral decay coeffi-
cient of interest, while n2 is a scaling parameter of little interest in the present chapter.
The parameter n1 can be estimated by plotting the region of interest on log-log scale,
and using basic linear fitting tools to measure the slope. With such a procedure, we get
the following estimates, drawn in Figure 2.2 (b) by the red curves:

- For the first region, (0, 12] Hz:
n1 = −4.15 (2.9)

- For the second region, restricted to [50, 150] Hz:

n1 = −3.24 (2.10)

Such spectral analysis has been repeated with other noise recordings, from the same
seismic campaign and from other seismic campaigns. Similar characterization of the
seismic noise has been repeatedly observed.

2.3 Clustering of power spectrum

The spectrum analysis performed in the previous section yielded a relatively wide en-
velope of the power spectrum estimates. They indeed differ with their location along
the streamer. In order to visualize how the noise level is distributed along a streamer,
we propose to cluster the power spectrum estimates using the average linkage cluster
method. In this section, we first review this method and then apply it to the power spec-
trum estimates of section 2.2.2. Note that a more exhaustive review of cluster analysis
is given by Romesburg (2004).

2.3.1 Average linkage cluster methodology

The first step consists of finding the similarity or dissimilarity between every pair of
observations contained in the data set. To do so, we use the Euclidean distance as a
measure of similarity between observations. Let us consider a m-by-n data matrix Z:

Z =


z1

z2
...

zm

 (2.11)
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Clustering of power spectrum

where zj = [xj,1xj,2 . . . xj,n] represents in the present case the jth power spectrum esti-
mate of dimension n. The Euclidean distance between the jth and kth power spectrum
estimates is defined as

dj,k =
√

(zj − zk)(zj − zk)T . (2.12)

The Euclidian distance between every pair of observations is calculated, and the
result of this computation stored in a matrix commonly known as the distance or dis-
similarity matrix where the element (j, k) corresponds to the distance between jth and
kth observation in the original data set.

The second step consists of grouping the observations into a binary, hierarchical
cluster tree. We consider here an agglomerative algorithm that takes the distance infor-
mation generated at the first step and link pairs of observations that have the closest
proximity into binary clusters, i.e, clusters made up of two observations. Then, these
newly formed clusters are linked to each other and to other observations to create bigger
clusters, using average distances dj,k to determine the cluster order, until all the obser-
vations in the original data set are linked together in a hierarchical tree. The average
distance dj,k is defined as 1

njnk

∑nj
n=1

∑nk
q=1 djp,kq, where nj and nk denote the number of

observations in cluster j and k respectively, and jp and kq denote respectively the nth

observation in cluster j and the qth observation in cluster k. This method is also referred
to as average linkage clustering or UPGMA. The hierarchical cluster tree is stored into
a linkage information matrix, where each row identifies a link between observations
or formed clusters. More precisely, the first two columns denote the observations that
have been linked, while the third column contains the average distance between these
observations dj,k. Index values from 1 to m denote the m observations of the original
data set. When two observations are grouped into a new cluster, it is assigned an index
value starting from the value m+1, and increasing each time a new cluster is formed.

Finally, at the third step we determine where to cut the hierarchical tree into clus-
ters. Many different ways to divide the data, natural or arbitrary, are possible. Here,
we choose to create a constant number of clusters. The power spectrum estimates are
time-dependent and their values might change with time. However, what we wish to
emphasize is the relative difference between the power spectrum estimates, and not
their values in itself. If we use an arbitrary threshold to cut the hierarchical tree, we ob-
tain a set of clusters that would not always be able to emphasize the relative difference
between the power spectrum estimates because of their time-dependence. Choosing to
create a constant number of clusters will hopefully emphasize this desired feature.
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Figure 2.3: Example with 5 observations.

Example Let us consider a data set made of 5 observations of 2 dimensions each,
shown in Figure 2.3 and stored in the 5-by-2 matrix Z

Z =


1 2

2.5 4.5
2 2
4 1.5
4 2.5

 . (2.13)

The distance matrix is then given by:

D =


0 2.92 1.00 3.04 3.04

2.92 0 2.55 3.35 2.50
1.00 2.55 0 2.06 2.06
3.04 3.35 2.06 0 1.00
3.04 2.50 2.06 1.00 0

 . (2.14)

The hierarchical cluster tree is given into a linkage information matrix T. Here,
the first row shows that observations 4 and 5, which have the closest proximity, i.e.,
d4,5 = d4,5 = 1, are grouped first, followed by observations 1 and 3 with d1,3 = d1,3 = 1.
The third row indicates that the next cluster is formed by observations 6 and 7, where
observation 6 and 7 are the newly formed binary cluster created by the grouping of
observations 4 and 5, and observations 1 and 3 respectively. The average distance be-
tween these two newly formed clusters is d6,7 = 2.55. Finally, the last row shows that
observations 8, the newly formed cluster made up of objects 6 and 7, and 2 are grouped
together with an average distance d2,8 = 2.83. A graphical illustration of the way the
observations are grouped into a hierarchy of clusters is shown in Figure 2.4.
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Figure 2.4: Hierarchy of clusters.

T =


4 5 1.00
1 3 1.00
6 7 2.55
2 8 2.83

 . (2.15)

In this example, we wish to create 2 clusters. For that purpose, we find the smallest
distance at which the cut through the hierarchical tree leaves 2 clusters, namely 2.55.
Thus, the first cluster contains the observations 1, 3, 4, and 5, and the second one con-
tains the observation 2.

2.3.2 Application: Cluster of real pure-noise recordings

Let us consider two sets of pure noise recordings using two different types of streamer:
a solid cable (Sentinel R© solid) for the first data set and a fluid-filled cable (Sentinel R©
ALS fluid) for the second data set. The first data set is the one described in section 2.1.

Let us first apply the average linkage cluster method to the first data set. For each of
the 10 records, we cluster a set of 648 power spectrum estimates within the frequency
interval [0, 50] Hz. The number of clusters to be created is set to 4. We present the results
into a cluster matrix, shown in Figure 2.5 (a), that shows the repartition of the different
clusters with respect to the trace and record numbers. Each color refers to one of the four
clusters. Figure 2.5 (b) shows the power spectrum estimates displayed in their cluster
color for the record number 7. The yellow cluster identifies a single trace with a much
higher noise level, through all records. We can suspect that this channel is definitively
not working as it should. The pink cluster clearly emphasizes that the trace 283 has

15



Chapter 2. Seismic noise analysis

a noise level higher than most of the other traces through all records, meaning that
this trace does not work properly neither. This cluster also includes a couple of other
traces recorded by the first three records. The blue cluster, that includes the majority
of the estimates, identifies the estimates with the lowest noise level within [0, 50] Hz.
These estimates are typical estimates of background noise. Finally, the black cluster is
made of traces whose power spectrum estimates are within the range of well-behaving
channels, but in the upper part, i.e., with a noise level higher than typical background
noise, especially within [5, 25] Hz. The matrix of clusters in Figure 2.5 (a) exhibits some
vertical, periodic black lines that correspond to the same (black) cluster. These lines are
often two traces wide and are repeated every 24 traces, starting from traces 10-11 and
up to traces 634-635. These locations match exactly with the location of the streamer
birds, hanged between two consecutive channels, e.g., between channels 10 and 11. In
a similar manner, we observe vertical lines every 72 channels, starting from traces 2-3
and up to traces 578-579, in addition to a line at trace 15 for most of the records. Once
again, these locations match exactly with the location where acoustic units are hanged
to the streamer.

Therefore, the cluster matrix is a powerful and convenient tool to emphasize the
noise repartition along the streamer. In our present example, the cluster matrix readily
shows that the channels 197 and 283 are not working properly and that units hanged
to the streamer generate additional noise that is recorded by the nearby channels in
the frequency range [5, 25] Hz. We have repeated the clustering application, setting the
number of clusters to be created to 5 or 6. As a consequence, the blue cluster repre-
senting the background noise, is divided into subclusters without revealing any specific
feature.

Let us then apply the average linkage cluster method to a second data set recorded
by hydrophones laid along a fluid-filled cable. This set of data consists of 10 pure-noise
recordings recorded consecutively under fairly acceptable weather conditions with 2
meters waves. Each recording contains data recorded simultaneously by 6 parallel
streamers of 720 channels each. This means that we need to cluster 720 power spec-
trum estimates, restricted to the [0, 50] Hz frequency range, for each streamer and each
recording, which represents a total of 60 pure-noise records. The number of clusters to
be created is still set to 4.

The cluster matrix is shown in Figure 2.6 (a) where data records number in y-ordinate
are sorted by streamer, i.e., records 1 to 10 are recorded by the first streamer, records 11
to 20 are recorded by the second streamer, and so on. Figure 2.6 (b) shows the power
spectrum estimates displayed in their cluster color for the record number 1. Here, the
cluster matrix clearly reveals features that are similar to the one observed in the first
example, with a blue cluster containing the background noise and periodic vertical
black lines that match exactly with the location of the birds and the acoustic units along
the streamer: Birds are hanged every 24 channels along the streamer, from traces 36-
37 to traces 708-709, while the acoustic units are hanged every 240 channels along the
streamer, at channel locations 239-240, 479-480 and 719-720. In addition, two other iden-
tified clusters represented in yellow and red, show that the noise level recorded by the
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(b) Clustered power spectrum estimates.

Figure 2.5: Clustering of 10 pure noise records.

first 25 channels is much higher than for any other channel, and that the noise level is
progressively decreasing to reach its background level from channel 85. A higher noise
level may also be recorded by the last 100 channels, especially for streamers 1 to 3.

Thus, through this second example, the cluster matrix appears to be a very useful
tool to emphasize the noise repartition along the streamer and the detection of defective
channels. These two examples emphasize that units hanged to the streamer generate
additional noise recorded by the nearby channels. Furthermore, the clustering pattern
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is usually consistent from streamer to streamer and from record to record, meaning that
it is valid at least during a short time window of few minutes and for all streamers.
Finally, we observe a major difference between these two examples. When using fluid-
filled cables, the hydrophones located at the head and at the tail of the streamers are in
a much noisier environment than the ones located in the middle part. This is not the
case when using solid cables.
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(b) Clustered power spectrum estimates.

Figure 2.6: Clustering of 60 pure noise records.
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2.4 Parzen Amplitude Estimates

The statistical distribution of the noise amplitude fluctuations, i.e., the probability den-
sity function (pdf) of the measured signal amplitudes, is an important tool for charac-
terization of the data.

The histogram is the simplest and most widely used estimator of the pdf. Despite its
widespread use, the histogram has several fundamental drawbacks. Basically, the his-
togram amounts to counting the number of amplitude levels that falls within a specified
bin x0 + mh ≤ x < x0 + (m + 1)h, where x0 is a chosen origin, h is a chosen bin width,
and m is an integer. The histogram estimator is therefore a discontinuous and quan-
tized piecewise constant function. Moreover, the histogram is sensitive to the choice of
origin. The histogram estimator is particularly problematic when analyzing short data
segments.

To overcome the many non-desirable properties of the histogram, we have chosen
to estimate the probability density function by means of the so-called Parzen kernel es-
timator. The kernel estimator of density has good statistical properties, and it is well
suited for the analysis of short data segments. Basically, the kernel estimator is con-
structed by placing a smooth and symmetric normalized function (a "kernel") with its
origin at each data point. By summing this collection of normalized functions, we obtain
a smooth and statistically consistent estimate of the probability density.

In general, the kernel estimator of the pdf at amplitude x, given N data samples
x0, x1, . . . , xN−1, can be written as (Silverman, 1986; Wand and Jones, 1995)

f̂(x) =
1

N

N−1∑
n=0

Kh (x− xn) . (2.16)

Here, Kh(ξ) ≡ (1/h)K(ξ/h), where K(ξ) is the so-called smoothing kernel, and h is a
scaling parameter that controls the degree of smoothing.

For equation 2.16 to be a valid estimator, one must require that K(ξ) ≥ 0, ∀ξ, and∫∞
−∞K(ξ)
dξ = 1. In addition, it is reasonable to restrict K(ξ) to the class of symmetric kernels,
K(−ξ) = K(ξ). In practice, the resulting estimator is not very sensitive to the detailed
shape of the kernel K(ξ). The estimate however depends strongly on the value of the
parameter h.

A good standard choice of the smoothing kernel is the Gaussian K(ξ) = (1/
√

2π)
exp(−ξ2/2). The choice of the smoothing parameter h is non-trivial, and several tech-
niques exist for estimating a value of h that obeys some optimality criterion. In our
study, we have chosen the value of h by minimizing the integrated mean-squared error
with referral to a standard family of distributions, i.e., the Gaussian distribution.

It is straightforward to show that the expected value of the basic kernel estimator in
equation 2.16 can be written as (Silverman, 1986; Wand and Jones, 1995)

E
{
f̂(x)

}
= Kh(x) ∗ f(x), (2.17)
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where ∗ denotes the convolution operator, and f(x) is the true amplitude probability
density function (pdf). Thus, we may interpret the pdf estimator in equation 2.16 as
a smoothed version of the true (but unknown) underlying pdf. As a consequence, the
kernel estimate of the pdf does not exhibit the unphysical discontinuities present in the
naive histogram based pdf estimator.

The bias of the estimator can readily be approximated by

b
{
f̂(x)

}
≡ E

{
f̂(x)

}
− f(x) ≈ σ2

K

2
h2f ′′(x), (2.18)

where σ2
K ≡

∫∞
−∞ ξ

2K(ξ)dξ. Assuming that the data are statistically independent, a
useful approximation for the estimator variance is given by Silverman (1986),

var
{
f̂(x)

}
≈ EK
Nh

f(x), (2.19)

where EK ≡
∫∞
−∞K

2(ξ)dξ is the energy of the kernel.
A standard criterion for choosing h, is to seek the value that minimizes the integrated

mean-square-error (IMSE) defined as

IMSE
{
f̂(x)

}
=

∫ ∞
−∞

[
var

{
f̂(x)

}
+ b2

{
f̂(x)

}]
dx. (2.20)

Inserting equations 2.18 and 2.19 into equation 2.20, and assuming that the true density
f(x) is Gaussian with variance σ2, one readily obtains that the IMSE-optimal value of h
is given by

h∗ =

[
8π1/2EK
3σ4

KN

]1/5

σ. (2.21)

If the smoothing kernel K(ξ) is Gaussian, it is easy to show that we obtain
h∗ = (4/3)1/5N−1/5σ.

2.4.1 Moments of the Amplitude Probability

Since the full pdf contains statistical information at a detailed level, it is often convenient
to consider higher order moments of the data. The coefficient of skewness (or simply
the skewness) is the dimensionless third order central moment defined by Γ3 = µ3/µ

3/2
2 .

The kurtosis (or coefficient of excess) is the dimensionless fourth order central moment
defined by Γ4 = µ4/µ

2
2− 3. Here, the central moment of order n for a stochastic variable

X is defined by µn = E {[X − E {X}]n}. Symmetric densities have Γ3 = 0, while den-
sities skew to the right (left) have Γ3 > 0 (Γ3 < 0). The kurtosis is a flatness measure
relative to the Gaussian. If Γ4 < 0, the density is termed platykurtic, and the density is
flatter than the Gaussian close to the maximum.
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Figure 2.7: A few noise records with respect to time.

2.4.2 Application: Amplitude Probability Density Estimates

Focus on a single data record

Consider the data set described in Section 2.1. Figure 2.7 shows a few time series from
channels located far apart along the cable, more precisely, channels 1, 10, 100, 200, 300,
400, 500, 600 and 640, which span over 8.1 kilometers in this case. The x-axis repre-
sents the time in seconds, while the y-axis represents the noise pressure in millibar. We
observe that the very first ones (channels 1 and 10) and the last one (channel 640) are
corrupted with low amplitude noise. However, all the time series present the same slow
up and down fluctuations, whose amplitude can reach significant values.

To go further into the characterization of the noise amplitude, let us now use the
Parzen kernel estimator to estimate its statistical distribution. The smoothing kernel
is chosen to be the Gaussian function K(ξ) = (1/

√
2π) exp(−ξ2/2) and the smoothing

parameter is chosen as h = 0.102, as described in Section 2.4.
We can now estimate the distribution of the noise with respect to time. Since noise

measurements are available for 3000 time samples, then 3000 probability density func-
tions are estimated based on data recorded by 648 channels. The overlay of the 3000
probability density estimates is shown in Figure 2.8 (a). If we look at distribution es-
timates one after the other, we observe that they change very progressively over time.
So, even if differences among noise distributions are not negligible, they remain reason-
able, and considering the averaged probability density function in order to characterize
seismic noise distribution is acceptable. Figure 2.8 (b) shows the averaged probability
density function together with fitted Gaussian and t-distributions. The averaged pdf is
slightly skewed to the right and none of the two standard distributions can fit with this
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Figure 2.8: Probability density functions: (a) Overlay of the 3000 pdf estimates, (b) Av-
eraged pdf estimate (solid thick) shown together with Gaussian fit (solid, red) and t-
distribution fit (dashed line).

skewness.

Extension to 10 data records

The previous estimation of the noise amplitude distribution is repeated with data recorded
under the same conditions few seconds or minutes later. The smoothing parameters re-
main unchanged. Averaged pdfs resulting from estimations for each data record are
plotted in Figure 2.9. All pdf curves have a similar shape, but they differ in the maxi-
mum amplitude and in their flatness.

Skewness and kurtosis coefficients, third and fourth order central moments respec-
tively, describe the distortion of pdfs relatively to the normal distribution. They are
calculated as described in Section 2.4.1 for each noise record and the results are shown
in Table 2.1. Distribution resulting from the 1st record presents the biggest right-skewed
value, as observed in Figure 2.8 (b). Distributions resulting from the 2nd, 5th and 10th

records present negative kurtosis numbers whereas the ones resulting from the 6th and
8th records present small, positive kurtosis numbers. In Figure 2.9, they are respectively
the flattest and more peaked curves of the graph. All skewness numbers fall into the
[−0.05, 0.14] interval, which indicates that distributions are almost symmetric. Kurto-
sis numbers fall into the [−0.44, 0.15] interval, which means that some distributions are
slightly flatter than the normal distribution. The coefficient values confirm the impres-
sion given by the figures, and therefore, they allow us to conclude that distributions of
these seismic noise records are almost symmetric and slightly platykurtic.
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Figure 2.9: Overlay plot of the mean pdf of 10 noise recordings.

X Rec 1 Rec 2 Rec 3 Rec 4 Rec 5 Rec 6 Rec 7 Rec 8 Rec 9 Rec 10
Γ3 0.14 -0.04 0.13 -0.05 0.11 -0.05 0.00 -0.02 0.08 0.11
Γ4 -0.02 -0.12 -0.03 0.03 -0.20 0.11 -0.01 0.15 -0.10 -0.44

Table 2.1: Estimated skewness and kurtosis coefficients for 10 noise records.

2.5 Summary

We first analyzed some pure noise recordings using solid streamers. The multitaper
power spectral estimate of the noise processes yields a composite power law spectrum.
The Parzen kernel estimation and higher-order moment analysis of the noise ampli-
tudes, shows that the noise is slightly platykurtic and almost symmetric.

We then applied the average linkage cluster method to pure noise recordings using
either solid or fluid-filled streamers. These examples have revealed that units hanged
to the streamer generate additional noise recorded by the nearby channels. They also
have shown that when using fluid-filled cables the hydrophones located at the head and
at the tail of the streamers are in a much noisier environment than the ones located in
the middle part, while such tendency is not observed when using solid cables. Further-
more, it appeared that the cluster matrix was a very useful tool to emphasize the noise
repartition along the streamer and the detection of defective channels.

Finally, because the noise characteristics are changing slowly and they are rather con-
sistent between streamers, then they can be considered as homogeneous and stationary
during at least a short time window of a few minutes.
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Chapter 3

A novel enhanced stacking method

3.1 Introduction

Enhancement of signals embedded in background noise is an important task in seismic
data processing. By improving the quality of the seismic images, the results of subse-
quent processing or interpretation are much easier. The quality of the seismic image can
be improved by means of different methods, and stacking is one of them.

Conventional stacking is performed by averaging a set of normal moveout (NMO)
corrected or migrated traces from different shot records with a common reflection point,
usually the common mid-point (CMP), that contributes equally to the stacked trace.
Thus, let us denote by X = [x1, ..., xM ] an input gather that consists in M traces of N
samples xk, k = 1, ..,M . If fd(t) is the fold of the input gather at a given traveltime t
(fd(t) ≤ M ), then the stacked trace x̄ = [x̄(1), ..., x̄(N)]T resulting from that input gather
X is obtained from

x̄(t) =
1

fd(t)

fd(t)∑
i=1

xi(t), t = 1, ..., N. (3.1)

In that way, the noise is attenuated and the quality of the stacked trace has been
improved. This method is however optimal in the sense that the signal-to-noise ratio
(S/N) is maximized only if all traces have identical amplitudes, identical S/N and are
coincident (or correlated), and if the noise is stationary and statistically independent
of the noise of any other trace and of the signal (Mayne, 1962; Neelamani et al., 2006;
Robinson, 1970).

A NMO-corrected or migrated seismic record usually contains signal components
that are not properly aligned and noise components that are correlated or not necessar-
ily normally distributed. In order to improve the stacking technique, lots of solutions
based on weighted stacking have been proposed where the weights are derived accord-
ing to different optimality criteria. If we denote by wi(t) the normalized weight associ-
ated to the ith trace at a given traveltime t, then the weighted stacked trace x̄ is given
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by

x̄(t) =

fd(t)∑
i=1

wi(t)xi(t), t = 1, ..., N. (3.2)

One of the most direct approaches has been presented by Robinson (1970). He sug-
gested a statistical approach where optimal weights are derived from estimated signal
to noise ratio for each trace. The estimation technique has to be robust for the stacked
data to be significantly improved, which is not the case with the technique proposed
by Robinson. According to him, the method does not produce any significant improve-
ment on real data.

In order to better reflect any local dependency, some time-dependent weights deriva-
tion methods have been proposed. Pruett (1982) used weights that are inversely func-
tion of the distance between each trace amplitude and a reference trace, and also func-
tion of the amplitudes variance at a given traveltime. Watt and Bednar (1983) and Hal-
dorsen and Farmer (1989) proposed a trimmed mean stack where extreme trace ampli-
tudes are not included in the averaging process. Grion and Mazzotti (1998) presented
two weighting schemes based either on the local S/N estimation using singular value
decomposition eigenvalues, or the local coherency. Trickett (2007) used a maximum-
likelihood estimation stacking where the stacked value is function of the estimated
probability distribution of the noise. When the noise is erratic, this method yields a
much cleaner stack, but when the noise is Gaussian, this method is identical to the con-
ventional stack. More recently, Rashed (2008) has developed smart stacking that com-
putes the alpha-trimmed mean of amplitudes and evaluates weights as a function of the
inverse distance between amplitude and alpha-trimmed mean, for each traveltime sam-
ple of the CMP. This method does not perform very well as soon as seismic reflections
are not perfectly aligned. Liu et al. (2009) proposed that weights represent a measure
of the local correlation between each trace of the CMP and a conventional stacking ref-
erence trace. The idea is very appealing because it overcomes many problems such as
signal misalignment. The quality of the final stacked data is however dependent on
the quality of the reference trace. In addition, this method has the major drawback of
not preserving physically meaningful amplitudes because of the weight normalization.
Finally, Bayless and Brigham (1970) and Crump (1974) introduced the use of discrete
Kalman filters for seismic data processing with application to the deconvolution prob-
lem. However, no application to stacking have been published so far.

In this chapter, we propose a new method that improves Liu’s method by introduc-
ing two other possible reference traces and by developing a consistent way of normaliz-
ing the weights. We derive traveltime-dependent weights that are measures of the local
correlation between traces of the CMP and a preprocessed reference trace. Weights are
then normalized to yield meaningful amplitudes and eventually weighted traces are
stacked. Three possible reference traces are investigated and tested: (1) stacked trace
resulting from conventional stacking, (2) stacked trace using S/N-estimation, and (3)
stacked trace output by Kalman filters. We begin, in Section 3.2, with the presentation
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and derivation of three possible so-called reference trace methods. We show that they
are self-content and they can be used as independent stacking methods. They can, in
addition, be used for the calculation of local-correlation weights and the derivation of en
enhanced weighted stacking method, as in Section 3.3. Finally, the different presented
stacking methods are tested on both synthetic and real marine seismic data in Section
4.4. We show that this new stacking method is very robust, it significantly improves the
final stacked section and it can reveal signal components that would not be discernible
with conventional stacking.

3.2 Reference traces

In this section, we present three different stacking methods, that are candidates for
the reference stack required for the derivation of the enhanced local correlation stack-
ing method. Two of them are well-known methods, conventional and S/N-estimation
based stacking, while the third one, that uses a Kalman filter, is fairly new.

3.2.1 Conventional stacking

In conventional stacking, all the traces contribute equally to the stacked trace. If we
denote by fd(t) the fold of the stack at a given traveltime t (fd(t) ≤M ), then the stacked
trace ȳ = [ȳ(1), ..., ȳ(t), ..., ȳ(N)]T is obtained from

ȳ(t) =
1

fd(t)

fd(t)∑
i=1

xi(t), t = 1, ..., N. (3.3)

3.2.2 Signal-to-noise ratio estimation

The signal-to-noise ratio of the traces contained in a CMP gather often differs from each
other since it usually decreases with increased offset distance. Therefore, we can im-
prove the quality of the stacked trace by using some S/N information and more pre-
cisely, by using a weighted average where each weight is directly proportional to the
signal-to-noise ratio of each individual trace. For that purpose, we need to estimate the
values of the noise variance and the signal norm for each trace. Rietsch (1980) estimates
S/N by comparing pairs of traces. It is a good technique but it requires lot of computer
operations. The leave-me-out (LMO) method (Neelamani et al., 2006) is only reliable
when signals are aligned with constant amplitude. Here, S/N estimation is only part of
a preprocessing step to derive a reference trace and therefore, the accuracy of the S/N
estimates is not as crucial as in the aforementioned methods. For this reason, we choose
to derive rather good estimates of the noise variance and the signal norm, but which are
reasonable from a computational point of view.
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We achieve the noise variance estimation by providing a reference trace x̄ processed,
e.g., according to conventional stacking. For each trace xi of the CMP gather, we calcu-
late a scaling factor defined as ηi = max(|xi|)

max(|x̄|) that specifically scales the reference trace for
the input trace. By subtracting it from the input trace, we get a rough estimate of the
noise vector. Then, we select a traveltime interval where the data fold is maximum (i.e.,
nonzero data are recorded for all traces), and compute the variance of the noise series
over the selected traveltime interval as

σ2
i = E[|xi − ηix̄|2]− (E[xi − ηix̄])2 ∀i = 1, . . . ,M. (3.4)

This way of estimating the noise variance is quite robust if the traveltime interval where
data are recorded for all nonzero traces is long enough, which is usually the case. The
leave-me-out method (Neelamani et al., 2006) has been tested as well with a simulation
on synthetic data, but because of some signals were not perfectly aligned across the
traces, it yielded poor estimates.

To estimate the signal power we calculate the autocorrelation of each trace at zero
lag and use the noise variance estimates. We adopt the following trace model

xi = ais + νi ∀i = 1, . . . ,M, (3.5)

where ai is the signal amplitude of the ith trace, s is the signal vector and νi is the
corrupting noise vector of the ith trace. Assuming that the noise is zero-mean and un-
correlated with the signal component, then the autocorrelation of the ith trace at zero
lag is given by

ri = E{|xi|2} = a2
i |s|2 + σ2

i (3.6)

and therefore, an estimate of the signal power is obtained by

ρ2
s,i = ri − σ2

i . (3.7)

S/N-estimation weights are then defined as

ωi =
ρ2
s,i

σ2
i

(3.8)

and the S/N-estimation based stacked trace ȳ is obtained from

ȳ(t) =
1∑fd(t)

i=1 ωi

fd(t)∑
i=1

ωixi(t), t = 1, ..., N. (3.9)

Note that ωi must not be mixed up with wi defined in equation 3.2.

28



Reference traces

3.2.3 Stacking using Kalman filter

The Kalman filter is a very powerful recursive estimation algorithm adapted to nonsta-
tionary processes. The idea is to consider values of each trace at a given traveltime t as a
dataset, and use the Kalman filter to extract the signal value s(t) hidden in that dataset
at that given traveltime. However, for the Kalman filter to be implemented, we need to
determine the noise variance and the amplitude decay of each trace.

Let us consider the trace model given in equation 3.5 and let us assume that signal
and noise are uncorrelated and that noise sequences are mutually uncorrelated. In order
to determine the amplitude factor ai, we calculate the autocorrelation of each trace at
zero lag. According to the previous assumptions, it yields

ri = E{xixi} = a2
i rs + σ2

i ∀i = 1, . . . ,M, (3.10)

where rs is the autocorrelation of the signal s and σ2
i is the noise variance. Let us use the

noise variance estimates σ̂2
i described in the Section 3.2.2. These estimated values are

reasonably accurate but they are usually scaled by an unknown multiplicative factor.

Therefore, we need to rescale the noise variances so that σ2
i ≡

σ̂2
i

max(σ̂2
i /ri)

. Thus, if we

arbitrarily set a1 = 1, then rs = r1 − σ2
1 in equation 3.10 and the amplitude factors

ai, i = 1, ...,M are defined by

ai =

√
ri − σ2

i

r1 − σ2
1

∀i = 1, . . . ,M. (3.11)

In order to determine the seismic signal s(t) at a given traveltime, we assume it to be
constant through all traces. In that way, the ith trace consists in a seismic signal scaled
in amplitude, aisi(t), and corrupted by noise νi ∼ N (0, σ2

i ). I.e., we use the following
model at any traveltime t:

State equation: si(t) = si−1(t) (3.12)
Observation equation: xi(t) = aisi(t) + νi(t) (3.13)

Observation noise covariance matrix: Qν,i = σ2
i . (3.14)

The equations of the Kalman filter are as follows (Hayes, 1996):

Initialization:

s1(t) = x1(t) (3.15)
P1(t) = [x1(t)− y(t)]2, (3.16)
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Iterative computation: For i = 2, . . . ,M , compute the following iterations

ŝi|i−1(t) = si−1(t) (3.17)
Pi|i−1(t) = Pi−1(t) (3.18)
ki = Pi|i−1(t)ai[a

2
iPi|i−1(t) +Qν,i]

−1 (3.19)
ŝi(t) = ŝi|i−1(t) + ki[xi(t)− aiŝi|i−1(t)] (3.20)
Pi(t) = [1− kiai]Pi|i−1(t). (3.21)

Note that the Kalman filter needs quite a few iterations to converge, so in practice, if the
data fold at a given travel time is too small (typically less than 6), then we use the value
of the reference trace ȳ at that traveltime in the output trace.

3.3 Enhanced local correlation stacking method

3.3.1 Unscaled local correlation

Let us denote by X a NMO-corrected CMP gather that consists in M traces of N sam-
ples and by xi the ith trace of that gather. In addition, denote by ȳ a reference trace that
has to be correlated with xi. This reference trace can be any of the ones presented in
the previous section. Given two vectors xi and ȳ, a possible measurement of local sim-
ilarity between two signals is the sliding-window unscaled local correlation coefficient,
defined as

γi(t) =

t+Lw/2∑
k=t−Lw/2

xi(k)ȳ(k), (3.22)

where Lw is the window length.
In the particular cases where t < Lw

2
and t > N+ Lw

2
whereN is the length of shot record,

a few signals components xi(k) and ȳ(k) remain undefined. We overcome this problem
by replicating the defined signals contained in the window.

If a trace is locally very similar to the reference trace, the local correlation coefficient
is high and should therefore be given a larger weight. On the contrary, a trace that lo-
cally differs significantly from the reference trace does not have a positive contribution
to the stacked trace and must therefore be discriminated. In that case, the local corre-
lation coefficient is small and so should the weight. Therefore, coherent signals yield
larger correlation value compared to incoherent noise. In addition, we use an unscaled
coefficient so that it exhibits both the correlation and the signals amplitudes. Given
that amplitudes of seismic reflectors are usually larger than noise, then the choice of
unscaled coefficient allows detection of signals that are not perfectly aligned.

3.3.2 Weight determination

Once a reference trace ȳ has been estimated and the local correlation coefficients γi(t)
are calculated, we are ready for the determination of the weights. As expected, we no-
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tice that coherent signals yield large correlation values compared to incoherent noise.
It is actually these relative differences among correlation values that we want to pre-
serve when deriving weights. Thus, we have set up a simple and robust algorithm
that detects traveltime occurrences TG = {τ1, . . . , τNG} where the sum of local correla-
tion coefficients

∑M
i=1 γi(t) has local maxima, so that our weight normalization scheme

eventually satisfies { ∑fd(t)
i=1 wi(t) = 1 if t ∈ TG,∑fd(t)
i=1 wi(t) < 1 otherwise.

(3.23)

Detection of large amount of coherent signals

In case of coherent signals, correlation values γi(t) will be large for several traces at a
given traveltime t. Therefore, in order to detect the traveltime occurrences of coherent
signals, we first calculate the sum of correlation values over channels, and then use an
iterative algorithm that separates coherent from incoherent values:

- Calculate Σγ(t) =
∑M

i=1 γi(t). Note that Σγ(t) is also the Radon transform (Hel-
gason, 1999) when projected to the traveltime axis. Coherent signals yield local
maxima in the Σγ(t) series.

- Perform the iterative computational procedure that detects local maxima:

1. Initialization: Set ε0 = 0 and find τ1 = arg maxt Σγ(t) and the interval I =
{τ1 −N1, . . . , t0, . . . , τ1 +N2} containing τ1 and where (N1, N2) are defined so
that: Σγ(τ1 −N1) > Σγ(t) and Σγ(τ1 +N2) > Σγ(t), ∀t /∈ I . I.e., once the time
occurrence τ1 of the maximum is identified, adjacent time values are added
to form an ensemble until the next local maximum value is found.

2. Calculate the mean and standard deviation of Σγ for samples that do not be-
long to I , i.e.,m = E{Σγ(t)} and σ =

√
E{(Σγ(t)−m)2}, ∀t /∈ I , respectively.

3. Calculate the threshold value ε = m + δσ, where typical value of δ is about 3
– 3.5.

4. Update values of interval I so that I = {t,Σγ(t) > ε}.
5. If |ε − ε0| < αε0, stop iterations. Else, ε0 = ε and go back to step 2. Here, a

typical value of α is about 0.01 – 0.1;

- Now, I contains traveltime values ofNG local maxima of Σγ(t), denoted by τ1, . . . ,
τNG , and their neighborhood. Use I to identify τ1, . . . , τNG , and then grid the whole
traveltime span so that each subset Gi, i = 1, . . . , NG contains a single local maxi-
mum at time τi.

In the case where the threshold value ε is small, it may happen that several local maxima
of very different amplitudes end up in the same subset, typically in the first or second
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subset. If so, one can choose to systematically re-apply this procedure to these subsets,
constrained such that several local maxima should be detected in each of them.

An illustration of this iterative procedure is shown in Figure 3.1. This example is
applied to real marine data and uses the parameter value α = 0.05 and δ = 2.5. In both
panels of the figure we show Σγ as a function of traveltime where the red-colored parts
of the curves correspond to the traveltime values that belongs to the ensemble I : (a) At
the initialization step, (b) At the end of the iterative process, with subsets G1, . . . , G16

delimited by vertical dotted lines.
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Figure 3.1: Determination of the ensemble I (made of traveltimes that belong to the red
part) and traveltime subsets Gi.

Weight calculation

We apply the following normalization equation to the local correlation coefficients.
For all i = 1, ...,M, and for each subset Gk, k = 1, . . . , NG,

wi(t) =
γi(t)

maxtεGk Σγ(t)
, ∀t ∈ Gk. (3.24)

As a result, the amplitude of coherent signals is preserved while the amplitude of inco-
herent signals is attenuated.

Norm smoothing/equalization

Because the detection process of coherent signal may not lead to a homogeneous stacked
image, it may be necessary to smooth locally the norm of the stacked traces. We use a
nonlinear smoothing filter that bridges small gaps in norm content and reduces sharp
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transitions in signal amplitude among stacked traces (Gonzalez and Woods, 2008). The
smoothing filter is described as follows:

- Span the post-stack seismic section with a sliding time window. Our window con-
tains 40 time samples for each of the CMP stacked traces and the overlap between
windows is set to 33 %.

- Calculate the norm of each trace segment:

ej = ||x̄Sj || for j = 1, . . . ,MC , (3.25)

where MC indicates the number of CMP stacked traces and superscript S stands
for the current window.

- Smooth the norm curve: For each of the norm values, get a median value by ap-
plying a one-dimension median filter of order L, calculate the standard deviation
σj,S of a dataset containing L norm values and centered around that norm value,
remove the norm value if it does not fall into the interval median value ±σj,S

3
, and

proceed to a linear interpolation of the norm vector to replace the removed values.
Thus, we obtain a smoothed norm value denoted by ej .

- Rescale the norm of each individual trace segment:

x̄Sj =
ej
ej

x̄Sj . (3.26)

An example of the repartition of the norm content along the CMP stacked traces
before (blue curve) and after (red curve) smoothing is shown in Figure 3.2. Here, the
parameter L is set to 65 samples. We readily observe that sharp transitions in signal am-
plitude have disappeared after smoothing. Application to the output of our enhanced
local correlation stacking method using the S/N-estimation as reference trace is shown
in Figure 3.3. The white stripes caused by smaller norm in Figure (a) have been filled in
to become almost invisible in (b).

3.3.3 Summary

The presented stacking method is summed up and generalized to the jth CMP gather as
follows:

- Estimate a reference trace ȳj using either conventional stacking, S/N estimation
based stacking or Kalman based stacking.

- Calculate the local correlation coefficients γi,j(t), i = 1, ...M .

- Run the iterative coherent signal detection procedure.
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Figure 3.2: Example of smoothing: Before smoothing (blue curve) and after smoothing
(red curve).

- Calculate the weights wi,j(t).

- Calculate the final stacked trace x̄j from the jth CMP gather, according to x̄j(t) =∑fd(t)
i=1 wi,j(t)xi,j(t).

- Apply local smoothing if necessary.

3.4 Applications

In this section, we test and compare the different presented stacking methods on both
synthetic and real marine seismic data. The different methodologies presented in the
previous sections are summed up in Table 3.1. The purpose is to explicitly define the
labeling of the different methodologies for future reference.

3.4.1 Application on synthetic data

Let us consider two synthetic data sets shown in Figure 3.4 (a) and Figure 3.5 (a), respec-
tively, that consist of M = 20 traces and N = 885 samples, with four NMO-corrected
reflections that results from the convolution of a Ricker wavelet with a reflection se-
quence of decreasing amplitude and corrupted by different types of noise. The Ricker
wavelet is also known in the literature as the Mexican hat wavelet and it is defined by

ψ(t) = 1√
2πβ3 (1− t2

β2 )e
− t2

2β2 with parameter β2 = 0.14 in this example (Chui, 1992).
In Figure 3.4, the corrupting noise is zero-mean white Gaussian noise, where the

noise variance is 0.04 for the first trace and 0.01 for the other ones. The maximum and
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Figure 3.3: Application of smoothing on the output of enhanced stacking using S/N-
estimation reference trace.

minimum spike amplitudes is 3.41 and 1.42 for the first trace and 0.73 and 0.31 for the
20th trace. In Figure 3.5, the additive noise is correlated along traces and contaminated
by randomly distributed noisy spikes. The correlated noise is generated by filtering
white Gaussian noise with an autoregressive process of order 1 having a system func-
tion H(z) = 1

1−0.7z−1 . The randomly distributed noisy spikes are obtained from the con-
volution of the Ricker wavelet described earlier with a normally distributed white noise
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Methods Description Fig. Fig. Fig. Fig.
1 & 2 6 7 8

Conventional ȳ(t) = 1
fd(t)

∑fd(t)
i=1 xi(t) B A a

stacking Sum of traces, where all traces are treated equally.
S/N-estimation ȳ(t) =

∑fd(t)
i=1

ωi∑fd(t)

i=1 ωi
xi(t) C B b

stacking Weighted sum of traces, where each trace is
attributed a weight ωi proportional to its S/N ratio.

Kalman ȳ(t) = limi→fd(t) ŝi(t) D C c
stacking Successive trace values are used to convergence

to the stacked value.

Enhanced x̄(t) =
∑fd(t)

i=1 wi(t)xi(t) E, F D, E a,b,c
stacking with

wi(t) =
∑t+Lw/2
k=t−Lw/2

xi(k)ȳ(k)

maxtεGk ΣG(t)
,∀t ∈ Gk.

Weighted sum of traces, where each weight results
from the local correlation between each trace and

a reference trace ȳ(t).

Table 3.1: Summary of the different methodologies.

sequence∼ N (0, 1), whose amplitude is normalized and where any amplitude less than
0.49 is set to zero. Because of its complexity, this noise is much more challenging to han-
dle. In addition, the third reflection on the first three traces has a small amplitude (i.e.,
the same as trace 12), and the fourth reflection on the first three traces has a much larger
amplitude than all the other traces. The maximum and minimum spike amplitudes is
3.41 and 0.66 for the first trace and 0.73 and 0.12 for the 20th trace.

For both Figure 3.4 (a) and Figure 3.5 (a), the second reflection has been NMO under-
corrected on purpose so that it is not perfectly aligned. The delay between the first and
the last trace is 53 samples. The third reflection is recorded by traces 1 to 12 only. The
length of the sliding-window parameter Lw is set to 20 samples, i.e., 20 ms, and the
weight normalization parameters α and δ are set to 0.01 and 3.5 respectively. Figure 3.4
(b) and Figure 3.5 (b) show the first input trace without additive noise (A), the refer-
ence traces resulting from S/N-estimation (C) and Kalman filter (D), the stacked traces
resulting from conventional stacking (B), our enhanced stacking method using output
S/N-estimation reference (E) and our enhanced stacking method using output Kalman
reference (F), and for comparison, manually scaled Liu stacking method without regu-
larization (Liu et al., 2009) with threshold value 0.7 (G), LMO-based weighted stacking
(Neelamani et al., 2006) (H) and smart stacking (Rashed, 2008) with parameters α = 0.2
and s = 1 (I), for the first and second synthetic data sets respectively. Note that the
manual scaling of Liu’s stacked trace is realized by matching the maximum amplitude
of the stacked trace with the maximum amplitude of the first synthetic input trace. In
Table 3.2, we give the signal-to-noise ratio in dB for the first and second synthetic data
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sets according to the following definition:

S/N = 10 log

∑N
t=1 x

2
0(t)∑N

t=1[x0(t)− x̄(t)]2
(3.27)

where x0 is the first input trace without additive noise, x̄ is the stacked trace and N
the number of samples contained in x0 and x̄. Because the signal amplitudes decay
with offset and because signals are not necessarily recorded by all traces, we prefer to
compare the stacked traces with the first trace without additive noise.

Our first comment is how poor the conventional, LMO-based and smart stacking
perform as soon as the seismic events are not perfectly aligned, as in the case of the
second reflection. The resulting signal is barely visible while the amplitude is almost
conserved with other methods. If a signal is recorded by a couple of traces only, as in
the case of the third reflection, then conventional, LMO-based and smart stacking aver-
age out signals and output a reflection of smaller amplitude. Finally, the first and fourth
reflections show that even if all reflections are perfectly aligned, the stacked amplitudes
of these three methods are underestimated. Both reference traces (C and D) are noisier
than the other traces and especially the one resulting from conventional stacking. On
the other hand, they have larger reflection amplitudes than conventional stacking which
explains their high S/N, 9.35 dB and 9.62 dB respectively, compared to 4.31 dB for con-
ventional stacking in the case of additive Gaussian noise. Hence, S/N-estimation and
in particular Kalman reference traces are the best candidates for the enhanced stacking
method.

The comparison of the enhanced stacking traces (E and F) with their respective refer-
ence trace (C and D) reveals one important feature: Although keeping in mind that the
noise level is higher, we notice that whatever the type of additive noise, the amplitude
of the reference traces for the first, third and fourth reflections are larger or equal, i.e.,
for perfectly aligned signals that are recorded by all channels or by a significant number
of channels (third reflection). However, as soon as the reflection recorded by the traces
is not perfectly aligned, as in the case of the second reflection, the amplitude for the
reference traces is clearly attenuated, while it is preserved, although slightly distorted,
for the enhanced stacking traces. Note that the second reflection of enhanced stacking
traces can be larger than the noise-free trace (A), this is caused by negative weights. We
also notice that the reflection amplitudes obtained with the Kalman filter (D) are larger
than the ones obtained with S/N-estimation (C). With the S/N-estimation method, most
of the weights are given to the first few traces because each S/N estimate is calculated
for an entire trace. Since the first few traces are usually the ones with the highest am-
plitudes, they yield the largest S/N estimates. Therefore, it is mostly the amplitudes of
these first few traces that are considered while averaging. On the contrary, the Kalman
filter takes into account all the traces scaled by an amplitude factor, meaning that a
much larger number of traces are effectually involved in the stacking process. Thus, for
synthetic data corrupted by Gaussian noise, the S/N is greater for the reference traces
(9.35 dB and 9.62 dB) than for the traces resulting from enhanced stacking (8.29 dB and
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8.31 dB), but they however remain much larger than for conventional stacking (4.31 dB),
LMO-based stacking (3.31 dB) and smart stacking (3.35 dB). Note the particular case of
manually-scaled Liu stacking method without regularization. The S/N reaches 9.47 dB
only after we have performed the arbitrary manual scaling. Therefore, this S/N value
does not have any meaning here. In addition, enhanced stacking is the only method that
conserves the amplitude of reflections that are not perfectly aligned from trace to trace.
Finally, Liu’s method stacks reasonably well those reflections that are aligned, but not
the ones that are slightly delayed relative to each other. In addition, the stacked trace
has to be scaled manually to recover real amplitudes, which is a major drawback.

Increasing the complexity of additive noise degrades the quality of all the estimated
stacked traces. The most common changes, visible in Figure 3.5, consist of signal dis-
tortion, enhancement of noisy spikes, and an increased noise level. This degradation is
also remarkable by looking at the S/N of the stacked trace, shown in Table 3.2, where all
methods except LMO-based stacking are more or less affected. There are several reasons
for this degradation. First, we notice in Figure 3.5 (b) that all the stacked traces contain
a larger amount of noise, except S/N-estimation and Kalman enhanced stacked traces
(E and F) and Liu’s stacked trace (G) that manage indeed to keep a very low noise level.
The signal amplitudes of conventional stacking (B), LMO-based stacking (H) and smart
stacking (I) methods are about the same as for additive Gaussian noise and are not re-
ally affected by the noise complexity. On the opposite side, S/N-estimation and Kalman
reference traces (C and D), and Kalman enhanced stacked trace (F) exhibit smaller am-
plitudes, especially at the second reflection, although keeping larger amplitudes than
the other methods. The amplitudes of Kalman reference trace and enhanced stacked
trace (D and F) have been significantly attenuated in comparison with additive Gaus-
sian noise, and they are obviously much more affected than S/N-estimation by complex
noise. A reason is that the Kalman filter is derived under the assumption of Gaussian
observation noise, and therefore, the use of correlated noise deteriorates the signal esti-
mate. In the third and fourth reflections, the traces containing the largest signals differ.
However, the reflection amplitudes of the Kalman reference trace are still slightly larger
than for S/N-estimation. Liu’s stacked trace, manually scaled, is affected by signal dis-
tortion when the complexity of the noise increases. In addition, it exhibits a signal
amplitude that is abnormally large at the second reflection. We notice, however, that
a signal distortion is also clearly visible on the fourth reflection affecting all the tested
methods. Finally, only the S/N-estimation enhanced stacked trace (E) looks unaffected
by the change of additive noise. Therefore, enhanced stacking is a robust method that
ensures the enhancement of seismic signals whatever the type of additive noise.

We obtain the best combination by using the S/N-estimation reference trace. When
we combine the enhanced stacking with the Kalman reference trace, we obtain very
good signal estimates as long as the additive noise is Gaussian, but we observe some
amplitude attenuation when the additive noise is more complex. S/N-estimation and
Kalman reference traces have also proven to be effective, but are much more sensitive
to the complexity of additive noise than enhanced stacking. They might then be subject
to signal distortion, increase of noise level and signal amplitude attenuation. However,
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they yield an acceptable estimate of the stacked trace. Liu’s stacking method with-
out regularization does not handle the reflections misalignment as well as enhanced
stacking, enhances some noisy spikes, and is also affected when the complexity of the
noise increases. Finally, conventional stacking, LMO-based stacking and smart stacking
cannot handle situations where the seismic reflections are not properly aligned, their
stacked reflections have lower amplitudes than the other methods. They are neverthe-
less not so much affected by the complexity of the additive noise.

Conventional S/N-estimation Kalman Scaled LMO Smart
ref. stacked ref. stacked ref. stacked Liu stacking stacking

Synthetic 4.31 7.91 9.35 8.29 9.62 8.31 9.47 3.31 3.35data set 1
Synthetic 4.08 7.76 6.20 7.93 5.97 6.71 7.44 3.57 3.04data set 2

Table 3.2: S/N (dB) of the stacked traces.

3.4.2 Application on real data

Stacking applied to a single CMP gather

Let us first consider the case of a single CMP gather that contains up to 51 traces si-
multaneously, shown in Figure 3.6. Time-frequency denoising (Elboth et al., 2010) and
normal move-out correction have been applied to this data set. Since data gathers still
contain lots of multiples, the shallow waters part of the records have been removed by
muting. The sliding-window length Lw is set to 20 samples, i.e. 80 ms, and the weight
normalization parameters are chosen to be α = 0.01 and δ = 3.5, respectively.

Figure 3.7 shows a zoom of the CMP gather in the traveltime range 3.52 – 4.80 sec-
onds (a) and a zoom in the same time range (b) of the reference traces resulting from
S/N-estimation (blue curve) and Kalman filter (red curve), and the stacked trace ob-
tained from conventional stacking (green curve). Clearly, the conventional stacking
trace hardly exhibits any structure and the signal amplitude is rather low. On the con-
trary, Kalman and S/N-estimation reference traces yield greater signal amplitudes, but
they differ from each other. The Kalman reference trace is able to emphasize any co-
herent signal recorded by any traces that are not necessarily the ones with small offsets
(i.e., it does not emphasize any specific part of the signal). Let us for instance look at
traveltime 3.59 s, where a relatively big almost coherent upward spike (shaded in black)
is recorded by the 4th to 7th traces. For the first three traces, signal values are much
smaller at that traveltime sample. However, in Figure 3.7 (b) we see that a significant
spike is found by the Kalman filter, and a much smaller spike is identified by the S/N-
estimation reference trace. Similar observations can be made between 4.28 s and 4.32 s,
and around 4.72 s. This can be explained by the fact that the Kalman filter takes into
account all the traces scaled by an amplitude factor to converge to the stacked trace,
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Figure 3.4: (a) Synthetic NMO corrected data set corrupted by white Gaussian noise
and (b) Stacked traces: A) First input trace without additive noise, B) Conventional
stacking, C) S/N-estimation reference trace, D) Kalman reference trace, E) Enhanced
stacking using S/N-estimation reference, F) Enhanced stacking using Kalman reference,
G) Rescaled Liu stacking, H) LMO-based stacking and I) Smart stacking.

meaning that any signal recorded for a larger offset is considered as well. On the con-
trary, the S/N-estimation method puts most of its weights in the first few traces, and
does not give much credit to signals recorded for larger offsets.

Let us now have a look at shallow water, in the traveltime range 1.04 – 1.72 sec-

40



Applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19

T
im

e 
(s

)

Trace

(a)

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A B C D E F G H I

T
im

e 
(s

)

Stacked trace

(b)

Figure 3.5: (a) Synthetic NMO corrected data set corrupted by correlated spiky noise
and (b) Stacked traces: A) First input trace without additive noise, B) Conventional
stacking, C) S/N-estimation reference trace, D) Kalman reference trace, E) Enhanced
stacking using S/N-estimation reference, F) Enhanced stacking using Kalman reference,
G) Rescaled Liu stacking, H) LMO-based stacking and I) Smart stacking.

onds, as illustrated in Figure 3.8. The S/N-estimation reference method puts most of its
weights on the first two traces (for instance, weights of the first two traces at traveltime
1.04 s and 1.72 s represent respectively 51 % and 38 % of all weights) and therefore, co-
herent signals recorded by these first two traces are emphasized. In the top figure, we
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Figure 3.6: 51 fold marine seismic CMP gather.

can observe a few signal events that have a significant amplitude at the first two or three
traces, such as at traveltime 1.31 s or 1.37 s. We also notice that most of the signal events
are not aligned past the first three traces. If we look at the stacked traces at these travel-
time occurrences, we notice S/N-estimation reference trace exhibits a larger amplitude
than the Kalman reference trace which suffers from the misalignment across the traces.

Let us now compare our enhanced stacking method (using S/N-estimation and
Kalman reference traces) with conventional stacking, Liu’s method without regulariza-
tion (Liu et al., 2009) using a threshold value of 0.7, and smart stacking (Rashed, 2008)
with parameters α = 0.2 and s = 1. In Figure 3.9, we show the reference traces resulting
from S/N-estimation (B) and Kalman filter (C), the stacked traces resulting from con-
ventional stacking (A), enhanced stacking method using output S/N-estimation refer-
ence (D) and enhanced stacking method using output Kalman reference (E), manually-
scaled Liu stacking method without regularization (F) and smart stacking (G). Because
of sharp thresholding, the stacked trace obtained with Liu’s method removes too much
information and looks relatively chaotic (F). In addition, it does not locate coherent sig-
nals as accurately as the other methods do. Smart stacking (G) seems to average out
most of the coherent signals after traveltime 1.2 s and conventional stacking (A) after
traveltime 2 s. Stacked traces resulting from enhanced stacking (D and E) contain less
noise than in their respective reference traces (B and C) while exhibiting as much co-
herent signals. Thus, enhanced stacking is successful in enhancing coherent signals and
attenuating random noise. Most of the coherent signals are visible in both (D) and (E),
but they differ in a few cases such as at traveltime 1.2 s, 2.8 s and 3.6 s. Actually, en-
hanced stacking reflects the differences that were already visible on the reference traces
(B and C).
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(b) Comparison of Kalman based and S/N estimation based ref-
erence traces with conventional stacking.

Figure 3.7: Zoom in the traveltime range 3.53 – 4.80 s.

Stacking applied to a 2D line

We apply enhanced stacking with its three possible reference traces (conventional stack-
ing, S/N-estimation reference and Kalman filter) to a set of 1001 prestack migrated
gathers of marine seismic sub-salt data (fold is 162), after time-frequency denoising (El-
both et al., 2010) and normal move-out correction. The migration process has been
achieved by a 2D Kirchhoff prestack time algorithm (Bancroft et al., 1998; Schneider,
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(b) Comparison of Kalman based and S/N estimation based ref-
erence traces with conventional stacking.

Figure 3.8: Zoom in the traveltime range 1.04 – 1.72 s.

1978). The length of the sliding-window parameter Lw is set to 20 samples, i.e., 80 ms,
and the weight normalization parameters are chosen to be α = 0.05 and δ = 2.5. Fig-
ure 3.10 shows the stack sections made of reference traces: conventional stacking (a),
S/N-estimation method (b) and Kalman filter (c) that uses the conventional reference
trace to estimate the noise variance that is a necessary model parameter. Compared
to conventional stacking section (a), the section (b) and in a major importance section
(c), enhance signal reflections, especially for distances below 2 km and beyond 10 km,
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Figure 3.9: Stacked trace: A) Conventional stacking, B) S/N-estimation reference trace,
C) Kalman reference trace, D) Enhanced stacking using S/N-estimation reference, E) En-
hanced stacking using Kalman reference, F) Rescaled Liu stacking and G) Smart stack-
ing.

and for shallow water. They also enhance deeper events and emphasize the edges of
the sub-salt structure. The S/N-estimation section (b) reveals some continuous events
in deep water, beyond 4.5 s. The Kalman filter stacked section (c), however, clearly
achieves more contrast than the other two, but also emphasizes the artefact caused by
the migration process in the sub-salt structure. In order to avoid these shortcomings,
more advanced migration processes would be more helpful.

These three reference methods are used in the enhanced local correlation stacking
and the outputs are shown in Figure 3.11. Note that we use the norm equalization to
remove some artefacts caused by the weight normalization process. Here, we show
that enhanced stacking tries to emphasize events that have been detected by the refer-
ence method. Thus, when using conventional stacking and S/N estimation as reference
methods, enhanced stacking emphasizes the strongest reflections, especially in shallow
water, along the sub-salt structure edges, and for deeper reflections at near and far off-
sets. The artefact caused by the migration process under the sub-salt structure is never-
theless emphasized as well (Figures a and b). However, we observe the opposite effect
when using the Kalman filter as reference method (c). Enhanced stacking attenuates the
lowest amplitudes that consist mostly of noise and undesirable artefact, but including
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however small amplitude events in the time interval 1 – 3 s. As a consequence, we ob-
tain a better image where the reflected events of large amplitudes appear clearer, but
where a few events of smaller amplitudes are attenuated. The comparison of the three
enhanced stacked sections shows that it is the one using S/N estimation as reference
method (b) that clearest exhibits the reflected events, especially in deep waters and in
the distance interval 4 – 10 km. The edges of the sub-salt structure are clearer and even
a few continuous events are visible beyond 4.5 s under the sub-salt structure. Finally,
by comparing the enhanced stacked section using S/N estimation as reference method
with the Kalman reference section, we observe that they both present advantages and
drawbacks. Clearly, the Kalman reference method reveals a much larger number of re-
flections, but it emphasizes noise and migration artefacts as well. On the other hand, the
enhanced stacked section using S/N estimation as reference method does not empha-
size as many reflections, but it shows a few reflected events under the sub-salt structure,
and the noise level contained in the seismic image has been attenuated. We think that
the combination of the presented methods with other pre-stack data enhancement filters
and other stacking approaches may attenuate some of these shortcomings. A discussion
of alternate methodologies is however outside the scope of the present discussion.

In order to quantify the improvement, we select four regions of the stacked section
image and calculate the standard deviation of the signal amplitude histogram of these
regions. The first region contains shallow water reflections from 0 to 1 s in time and
from 4 to 9 km in distance, the second region contains deeper water reflections from 2
to 4 s in time and from 0 to 2.5 km in distance, the third region contains deep water
reflections below the salt structure from 5 to 6 s in time and from 5 to 8 km in distance,
and the fourth region contains the right hand side edge of the salt structure from 1.5 to
3 s in time and from 8 to 10 km in distance.

Let z be a random variable denoting the signal amplitude and let f(zi), i = 0, . . . , LI−
1 be the corresponding normalized histogram, where LI is the number of distinct signal
amplitude levels. Then, the standard deviation of the signal amplitude histogram is
given by:

σ =

√√√√LI−1∑
i=0

(zi −m)2f(zi) (3.28)

where m is the average signal amplitude m =
∑LI−1

i=0 zif(zi) (Gonzalez and Woods,
2008). In Table 3.3, we give the relative standard deviation, defined as the ratio of stan-
dard deviation calculated for any method divided by the standard deviation of con-
ventional stacking. As observed, the enhanced stacking methods emphasize the largest
reflections the most (region 1). The enhanced stacking method using S/N estimation
as reference method achieves a contrast as good as the Kalman reference method un-
der the salt structure. Else, these numbers confirm that conventional stacking yields
the smallest variability in intensity, i.e., the smallest contrast, while Kalman reference
method achieves the largest variability.
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Reference section Enhanced stacking section
Conventional S/N-estimation Kalman Conventional S/N-estimation Kalman

Region 1 1.00 0.95 2.72 3.58 3.39 3.59
Region 2 1.00 1.84 4.18 1.95 2.44 2.08
Region 3 1.00 1.19 4.89 3.61 4.80 4.42
Region 4 1.00 2.21 4.70 1.87 2.80 1.91

Table 3.3: Relative standard deviation of three selected regions contained in the stacked
sections.

Computational cost

Let us now consider the computational cost for each method. Table 3.4 gives the rela-
tive CPU time for each method. Here, the CPU time is calculated per trace to be stacked,
each trace containing 2500 time samples. As expected, conventional stacking that only
consists of adding traces together is much faster to compute than all the other methods.
But, what is interesting here is the comparison of S/N estimation and Kalman methods.
The processing of a Kalman reference trace takes a factor of 36.5 longer than a S/N es-
timation reference trace and a factor of 1.7 longer time than the enhanced stacked trace
using S/N estimation as reference trace. A factor of 1.7 becomes significant when pro-
cessing huge volume of data. Therefore, another advantage of the enhanced stacked
section using S/N estimation as reference method is that it is less computationally de-
manding than the Kalman reference trace.

Reference section Enhanced stacking section
Conventional S/N-estimation Kalman Conventional S/N-estimation Kalman

CPU time 0.14 0.74 27.0 15.1 15.9 41.9
per trace

(ms)

Table 3.4: CPU time per trace to be stacked in milliseconds.

Homogeneity of the seismic image

The stacking methods presented here do not manipulate the trace amplitudes in it-
self that are left untouched. It is actually the averaging process that yields enhanced,
meaningful amplitudes. Therefore, whatever the method we use, the signal amplitudes
are consistent from CMP to CMP as long as the method parameters are close to opti-
mal. Our experience showed us that these parameters may only be non-optimal for
a few stacked traces where the signal amplitudes are either under-estimated or over-
estimated. To overcome this problem, we apply the norm smoothing systematically.
Thus, the lateral homogeneity of the three enhanced stacked sections in Figure 3.11 is
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satisfactory. In addition, we underlined that the presented methods are capable of re-
vealing seismic events, both in shallow and deep water, and that this is achieved in a
natural manner without any manipulation of amplitudes. Using automatic gain control
(AGC) for instance, would not lead to consistent amplitudes, it would not necessarily
be able to reveal as many events, and finally, it would even emphasize the migration
artefact in the sub-salt structure, which is definitively not desirable.

Choice of parameters

Finally, because only three parameters (Lw, α and δ) with a limited number of meaning-
ful values are involved in the enhanced stacking method, the effort to choose these pa-
rameters is relatively small. The parameter that depend strongest on the data is δ. If we
consider the nicest and the most problematic stacked traces, then a few trial-and-errors
on these two stacked traces are usually enough to find the set of optimal parameters.

3.5 Summary

We have proposed and demonstrated a novel stacking method that utilizes local corre-
lation and a new weight normalization scheme. The basis of the method is to apply local
correlation between each individual trace and a chosen reference trace, as a measure of
weight that is then fed into a weighted stacking. Three different reference traces have
been proposed, and the corresponding outputs of the stacking method were compared
on synthetic and real data.

As shown, the use of S/N-estimation reference trace and even more significantly, the
use of Kalman reference trace yielded consistently superior results compared to equal
weight stacking. In particular, the superior reference traces exhibited cleaner and better
defined reflected events, as well as the ability to see a larger number of reflections in
deep waters. We documented that the use of an S/N-estimation reference trace has
the ability to enhance coherent signals recorded by short offset traces, while a Kalman
reference trace has the ability to emphasize any coherent signal recorded by any traces.
For this reason, misalignment does not degrade S/N-estimation reference trace as much
as Kalman reference trace.

Furthermore, the enhanced stacking method applied together with norm smoothing
yielded superior results compared to equal weight stacking, norm smoothing ensuring
a satisfactory homogeneous seismic image. We showed that the best combination is
obtained when using S/N estimation as reference method. It exhibits more reflected
events, and in our present example, it exhibits a few continuous reflected events un-
der the sub-salt structure. However, we showed that enhanced stacking emphasizes
the strongest reflections while discriminating weaker ones, which deteriorates the lon-
gitudinal homogeneity of the seismic image. Thus, the use of Kalman filter reference
method should be preferred to enhanced stacking using S/N estimation as reference
method, since it achieves a better overall seismic image contrast and reveals many more,
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cleaner and better defined reflected events. However, this result is obtained at the cost
of a higher noise level and a larger processing time. Therefore, choosing between one of
these two methods is a trade-off between more revealed information and cleaner seis-
mic image. Finally, we think that the presented methods may be combined with other
pre-stack data enhancement filters and other stacking approaches, and therefore, con-
tribute to the development of seismic imaging improvement techniques.

We suggest that future versions of the proposed stacking method should explore
the use of mutual information as a generalized statistical measure of signal correlation.
Another possible improvement consists of deriving S/N estimates locally instead of
globally to improve the S/N-estimation method. Equivalently, deriving trace amplitude
locally instead of globally should improve the Kalman filter method.
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(c) Kalman method.

Figure 3.10: Stack sections made of reference traces.
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(c) Kalman method.

Figure 3.11: Enhanced local-correlation stacking sections using the following reference
traces. 51
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Chapter 4

Principal components analysis, brief
review

4.1 Introduction

This chapter describes a well known eigenvector-based multivariate analysis technique,
the decomposition into principal components, with a particular focus on the singular
value decomposition (SVD). Although we will be mainly concerned by its application
to seismic processing, this technique has a wide range of applicability such as dimension
reduction, patterns recognition and image processing.

The earliest descriptions of the technique which is now known as principal compo-
nents analysis (PCA) appear to have been given by Pearson (1901) and Hotelling (1933).
The two papers adopted different approaches. Pearson (1901) was concerned with find-
ing lines and planes which best fitted a set of points inN -dimensional space, and the ge-
ometric optimization problems which he considered lead also to principal components.
On the other hand, Hotelling (1933) focused on the standard algebraic derivation, where
his "components" are chosen to maximize their successive contributions to the total of
the variances of the original variables. Some other important references within the sub-
ject are given by Anderson (1963), that discussed the asymptotic sampling distributions
of the coefficients and variances of the sample principal components. Rao (1964) gave a
large number of new ideas concerning the uses, interpretations and extensions of PCA,
while Gower (1966) discussed some links between PCA and various other statistical
techniques, and also provided a number of geometric insights. Finally, Jeffers (1967)
emphasized the practical side of PCA by discussing two case studies.

In the perspective of enhancing the signal contained in seismic images, decompo-
sition into principal components is a well known technique that tries to maximize the
information content of recorded data. First publications that have investigated the ap-
plications of particular linear transformation, such as the Karhunen-Loève (KL) trans-
formation, were published in the seventies. In particular, a paper from Ready and Wintz
(1973) dealing with information extraction and S/N improvement in multispectral im-
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agery. The first publication that introduced and applied these transformations to seismic
data was the paper by Hemon and Mace (1978). Freire and Ulrych (1988) applied the
KL transformation in a different manner which is in fact the singular value decomposi-
tion to the processing of vertical seismic profiling data. SVD has been since applied to
various other problems such as residual statics corrections (Ulrych et al., 1988) and seis-
mic signal enhancement (Bekara and Van der Baan, 2007; Vrabie et al., 2004). A review
of the applications of principal components analysis to seismic processing is given in
Ulrych and Sacchi (2005).

4.2 Definition and properties

The central idea of principal component analysis (PCA) is to reduce the dimensionality
of a data set which consists of a large number of interrelated variables, while retaining
as much as possible of the variation present in the data set. Reducing the complexity of
a data set reveals the sometimes hidden, simplified structure that often underlies it, and
is therefore, a powerful tool for analyzing data. The principal components are given by
an orthogonal linear transformation of a set of variables, such that in the new coordi-
nate system, the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on the
second coordinate, and so on (Jolliffe, 2002).

Suppose that we have M independent observations with zero empirical mean of
a N -element random vector x, denoted by x1, . . . , xM , stored columnwise in a N ×
M data matrix X. By empirical mean, we meant that the mean of each element of
x has been subtracted to be zero, i.e., the (i, j)th element of X is adjusted such that
xi,j ← xi,j − 1

M

∑M
j=1 xi,j . Let us consider the sample covariance matrix of X defined

as 1
M−1

XXH . Note that the eigenvectors of 1
M−1

XXH and XXH are identical, and the
eigenvalues of 1

M−1
XXH are simply 1

M−1
times the eigenvalues of XXH . Because of

these relationships, it is convenient to work in terms of eigenvectors and eigenvalues
of XXH , instead of 1

M−1
XXH . The eigenvectors and eigenvalues of XXH are obtained

from (XXH)P = PΛ, where P = [p1,p2, . . . ,pN ] contains the N eigenvectors of XXH ,
and Λ = diag(λ1, λ2, . . . , λN) is a diagonal matrix containing the N eigenvalues of XXH .
Thus, the PCA transformation of X is given by

Y = PHX. (4.1)

Note that P is an orthonormal matrix, containing the principal components of X. Thus,
the first principal component corresponds to the eigenvector with the largest eigen-
value, the second principal component corresponds to the eigenvector with the second
largest eigenvalue, and so on.

In addition, the following interpretation follows:
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- The PCA transformation is equivalent to the Karhunen-Loève transformation since
the sample covariance matrix of Y is diagonal and made of the eigenvalues of the
sample covariance matrix of X:

1

M − 1
YYH =

1

M − 1
PHXXHP (4.2)

=
1

M − 1
PHPΛ (4.3)

=
1

M − 1
Λ. (4.4)

- PCA projects the data along the directions where the data varies the most.

- These directions are determined by the eigenvectors of XXH corresponding to the
largest eigenvalues.

- The magnitude of the eigenvalues corresponds to the variance of the data along
the eigenvector directions.

To illustrate the determination of the principal components, let us consider the sim-
ple case where N = 2. The advantage of N = 2 is, of course, that the data can be plotted
in two dimensions. Figure 4.1 shows a set of 10 two-dimensional observations plotted
by a blue cross, and its two principal component vectors scaled by the square root of
their respective eigenvalues. It is clear that there is a greater variation in the direction of
p1 than in either of the original variables, but very little variation in the direction of p2.

0 1 2 3
0

1

2

3

1
p2

p

λ
2

λ
1

Figure 4.1: Example of principle components when N = 2.

Application to seismic data: When applied to a NMO-corrected seismic data set, the
search of principal components with largest variance and presumably highest S/N, is
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expected to yield the direction of laterally coherent signals. Therefore, any spread devi-
ating from coherent signals direction must be noise. Thus, reducing the dimensions of
this data set by choosing the principal components with largest variance should lead to
a seismic data set attenuated in noise, and therefore with a higher S/N.

4.3 Singular value decomposition

This section describes the singular value decomposition (SVD) which is relevant to PCA
in several aspects. The importance of the SVD for PCA is twofold. First, it provides a
computationally efficient method of finding the principal components, since it gives us
the eigenvectors and the square roots of the eigenvalues of XXH , and hence the principal
components and their variances. Secondly, the SVD provides additional insight into
what a PCA actually does, and gives useful means, both graphical and algebraic, of
representing the results of a PCA. More details about SVD are given in Golub and van
Loan (1996) and Jolliffe (2002).

4.3.1 Theorem

Any real N ×M matrix X with rank r made of M observations of N elements can be
written as

X = UΣVH (4.5)

where

U is an N ×N unitary matrix, i.e., UHU = IN ,

V is an M ×M unitary matrix, i.e., VHV = IM ,

Σ is an N × M diagonal matrix with diagonal elements 〈Σ〉ii = ςi > 0, i =
1, 2, . . . , r. The numbers ςi are known as the singular values of X and are usually
arranged in decreasing order as ς1 > ς2 > . . . > ςr > 0.

The proof of this theorem is given by Manolakis et al. (2005).

4.3.2 Properties

1. The diagonal matrix Σ is made of a square block of r singular values (r ≤M ) and
blocks of zeros. Therefore, in the product X = UΣVH , the last N − r columns of U
and M − r columns of V are superfluous because they interact only with blocks of
zeros in Σ. This leads to the following thin SVD representation of X

X = UrΣrVH
r , (4.6)

where
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Ur = [u1,u2, . . . ,ur], uk ∈ RN×1, consists in the first r columns of U and
contains the left singular vectors of X,

Vr = [v1,v2, . . . ,vr], vk ∈ RM×1, consists in the first r columns of V and
contains the right singular vectors of X,

Σr = diag(ς1, ς2, . . . , ςr) is a diagonal matrix containing the r singular values.

2. The SVD of the data matrix X can be expressed as the sum of cross products
weighted by the singular values

X =
r∑

k=1

ςkukvHk . (4.7)

3. The cross product
Ek = ukvHk , k = 1, . . . , r, (4.8)

is the kth eigenimage of the matrix X. The r eigenimages form an orthonormal
basis for the representation of the matrix X.

4. The product XXH may be considered as a weighted estimate of the correlation
matrix at lag zero of the matrix X. Therefore, using the eigenimages associated to
the highest singular values is equivalent to look for correlated structure into the
matrix X.

5. Correspondance between SVD and PCA:

The vectors v1,v2, . . . ,vM are eigenvectors of XHX.

The vectors u1,u2, . . . ,uN are eigenvectors of XXH and equal to p1,p2, . . . ,pN .

The squares of the singular values ς2
1 , ς

2
2 , . . . , ς

2
r of X are the first r nonzero

eigenvalues of XHX and XXH , that are

λi(XHX) = λi(XXH) = ς2
i (X). (4.9)

6. In Freire and Ulrych (1988), the authors decompose the data matrix X in three
orthogonal subspaces

X = XLP + XBP + XHP . (4.10)

The low-pass subspace XLP associated to the highest p singular values, con-
tains source waves with a higher degree of sensor to sensor correlation.

The band-pass subspace XBP associated to the next q singular values, is com-
posed of events with a little degree of sensor to sensor correlation.

The high-pass subspace XHP associated to the last r − p − q singular values,
is the noise subspace.
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The purpose of this kind of decomposition is to isolate only the highest sensor to
sensor correlated waves in the low-pass subspace XLP . This is possible if there is
a large gap between the first p singular values and the others. Mari et al. (1999)
shows that p = 1 for a perfect wave alignment and p = 2 for a non-perfect wave
alignment.

4.4 Application to image processing and seismic data

4.4.1 Theoretical aspects

Let us now consider the application of SVD to image processing. In this instance, the
situation encountered is essentially different. From a stochastic point of view, we now
have one realization, X, of a two dimensional random process. PCA and SVD of X will
be the same only if we assume the separability of the covariance matrix into a product
of the covariance matrices of the rows and columns of the image, and if these covari-
ance estimates are computed from the single realization which is our image (Gerbrands,
1981). It is clear that in this case, the use of stochastic terminology like PCA is not ap-
propriate. On the other hand, eigenimage decomposition, which depends on a deter-
ministic decomposition using the SVD is perfectly descriptive.

Seismic data that consists of M traces of N samples each can be represented by a
N × M matrix X. In this case, the columns of Ur form an orthonormal basis to rep-
resent space and uk is called "propagation vector". Similarly, the columns of Vr form
an orthonormal basis to represent time and vk is called "normalized wavelet" (Vrabie
et al., 2004). When considering NMO corrected data, laterally coherent events create
a linear dependence among the traces. Thus, the data shows a pretty high degree of
trace-to-trace correlation and therefore, only a few eigenimages associated to the high-
est singular values are necessary to get a good estimate X̂. Typically, only the highest p
singular values are necessary to estimate X, and therefore, X̂ = XLP .

Note that Vrabie et al. (2004) proposed a modified SVD that combines SVD with
independent component analysis (ICA) to avoid some artefacts caused by the orthogo-
nality criterion imposed to the propagation vectors. In the specific case of seismic data,
the best results in terms of signal enhancement are obtained when SVD is applied to
NMO corrected data. The number of singular values necessary to describe the subspace
containing aligned events is usually chosen to be equal to one and in that case, SVD-ICA
is strictly equivalent to SVD.

4.4.2 Application to synthetic and real data

Let us apply the SVD locally to a synthetic data set similar to the first set described
in Chapter 3, Section 3.4.1, which consists of four NMO-corrected reflections recorded
by M = 20 traces of N = 885 samples each. In its local form, SVD is applied to a
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small data window, extracted from the input data set by a sliding window that scans
the input gather in space and time. If the sliding windows overlap, then we take the
result to be the mean of all estimated traces. Local SVD, contrary to global SVD (i.e.,
applied to the entire input gather at once), can cope with short and quickly varying
events, and therefore, yields a better signal estimation (Bekara and Van der Baan, 2007).
In the following application, the sliding window consists of 10 traces and 50 samples
per trace, and has 50% overlap both along time and traces between adjacent windows.
We fix the number p of singular values to be used for the reconstruction of the estimated
data set to 1 or 2. In addition, we use the mean-square error (MSE), defined as

MSE =
1

MN
||X̂− X0||F , (4.11)

to quantify the quality of the estimated data set. The MSE of input gather is 11.4× 10−3.
Figure 4.2 shows the output gather obtained after application of SVD locally, when

using p = 1 singular value (a) and p = 2 singular values (b). Figure 4.3 shows the esti-
mation error, i.e., the difference between output X̂ and noise-free X0 gathers after appli-
cation of SVD locally for p = 1 singular value (a) and p = 2 singular values (b). When
only one singular value is used, local SVD partly fails to retrieve the second reflection
that is under NMO corrected. It also fails to retrieve completely the other reflections, as
observed in Figure 4.3 (a), but attenuates random noise pretty well as long as its vari-
ance is about the same. Using instead the first two singular values to reconstruct the
estimated data set, yields a much better reflections retrieval but at the cost of higher
random noise, as in Figure 4.2 (b) and 4.3 (b). The MSE of output gathers is 4.50× 10−3

for both p = 1 and p = 2, and are therefore significantly reduced. The choice of p is
however a trade-off between reflections retrieval and random noise attenuation.
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(b) p = 2 singular values.

Figure 4.2: Signal enhancement of a stacked section using local SVD: Output gather for
(a) p = 1 and (b) p = 2.
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(b) p = 2 singular values.

Figure 4.3: Signal enhancement of a stacked section using local SVD: Difference between
output and noise-free gathers for (a) p = 1 and (b) p = 2.

An application of local SVD on real data is shown in Chapter 5, Section 5.5.2. In
this case, four singular values are used to reconstruct a stacked section. The result is
compared with other noise attenuation methods that are f-x deconvolution and sparse
code shrinkage. Let us consider the same data set and compare the outputs for p = 2 and
p = 4 singular values, shown respectively in Figure 4.4 (a) and (b). Their residual plots,
i.e., the difference between output and input plots, are shown in Figure 4.5. These two
examples clearly illustrate the trade-off between reflections retrieval and random noise
attenuation: when p = 2, the denoising ability is obvious but lots of seismic reflections
are attenuated, especially in shallow waters. Therefore, one would prefer to increase
the number of singular values to limit the signal leakage even if the noise attenuation
ability decreases. Thus, in this example, using p = 4 singular values is necessary to
ensure a good signal recovery.

4.5 Summary

In this chapter, we presented a multivariate analysis technique as a method to extract
coherent events from a seismic data set. Thus, we begun with the description of prin-
cipal component analysis and explained in what way it was related to singular value
decomposition. SVD is found to be more computationally efficient to find the princi-
pal components, and provides also some additional insights, especially graphical and
algebraic. These methods find the directions of greater variation in the data, and by
restricting the dimensions of the data to those directions, we should be able to extract
seismic coherent events. However, we showed through different examples on both syn-
thetic and real data, that more than two singular values are usually necessary to prevent
lots of seismic reflections from being attenuated, allowing more noise to be included in
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Figure 4.4: Signal enhancement of a stacked section using local SVD: Results for (a)
p = 2 and (b) p = 4.

the reconstructed image. Thus, we demonstrated the noise attenuation ability of this
method as well as its limitations.
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Figure 4.5: Signal enhancement of a stacked section using local SVD: Residual plots for
(a) p = 2 and (b) p = 4.
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Chapter 5

Sparse code shrinkage for signal
enhancement of seismic data

5.1 Introduction

Denoising seismic signals buried in noise is one of the main issues in seismic. Some
of the most popular methods used for that purpose are f-x predictive deconvolution
(Canales, 1984), median filtering (Bednar, 1983), and decomposition into principal com-
ponents whose one main application is the local singular value decomposition (An-
drews and Patterson, 1976; Ulrych et al., 1988). In this chapter, we suggest a new ap-
proach by using sparse code shrinkage and we propose a method to obtain the neces-
sary "noise-free" realization of the data. Sparse code shrinkage consists in applying a
soft thresholding or shrinkage to the sparse representation of the data. The noise-free
realization, that is in fact noise-attenuated and that aims at having the same statisti-
cal properties as the seismic signal, allows us to derive shrinkage functions based on a
density model and the statistical properties of the noise-free sparse code. Small ampli-
tudes are thought to originate from zero-valued components influenced by noise and
are therefore suppressed, while large amplitudes are preserved (Hyvärinen et al., 1999).

Sparse coding is a method that is commonly used for noise reduction in image pro-
cessing (Hyvärinen et al., 1999; Jenssen et al., 2001) and that has recently found some ap-
plications in seismic for random noise attenuation and multiple removal (Kaplan et al.,
2009). Kaplan et al. (2009), however, did not provide any noise-free realization of the
data and they used instead a unique shrinkage function with arbitrary parameters to
threshold the sparse representation of the data. Sparse code shrinkage is closely related
to the method of wavelet shrinkage, but has the important benefit over wavelet meth-
ods that both the features and the shrinkage parameters are estimated directly from the
data. The wavelet representation, on the other hand, relies heavily on certain mathe-
matical properties that may be only weakly relate to the properties of the data (Donoho
et al., 1995).

Sparse coding (Barlow, 1994; Olshausen and Field, 1996) is a method that finds a rep-
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resentation of data in a way that in this representation, each of the components is only
rarely significantly active at the same time. Equivalently, this means that each com-
ponent has a sparse distribution. A zero-mean random variable is called sparse when
its distribution has a peak at zero and heavy tails. For all practical purposes, sparsity
is equivalent to super-Gaussianity (Hyvärinen and Oja, 1997) or leptokurtosis (positive
kurtosis) (Kendall and Stuart, 1958). Sparse coding is an adaptive method, meaning that
the transform matrix is estimated for a given class of data so that the transformed com-
ponents are as sparse as possible. Such a representation is closely related to independent
component analysis (ICA). It has been proven that the estimation of an ICA data model
can be reduced to the search for uncorrelated directions in which the components are
as non-Gaussian as possible (Comon, 1994). If the independent components are sparse,
this amounts to the search for uncorrelated directions that have as sparse distributions
as possible. Thus, the estimation of ICA model for sparse data is roughly equivalent to
sparse coding if the components are constrained to be uncorrelated (Hyvärinen et al.,
1999). Therefore, we will in this chapter use the constrained ICA model as a represen-
tation for sparsely coded data. ICA has already found some successful applications in
geophysics. Vrabie et al. (2004) combined ICA with SVD in order to relax the orthogo-
nality constraint of the propagation vectors, and thus he obtained a better separation of
the source waves in the signal subspace. Lu (2006) presented an adaptive multiple sub-
traction algorithm based on ICA, where the problem of adaptive multiple subtraction
was expressed as a blind source separation problem with two mixtures (the seismic data
and the predicted multiples) of two or more sources (primaries and multiples). Finally,
Van der Baan (2006) used ICA to achieve PP/PS wavefield separation by exploiting
statistical differences between P and S waves.

A seismic data set consists of a collection of seismic traces that have a very high de-
gree of correlation when seismic events are aligned. Its transformation into an ICA rep-
resentation yields some components that partially contain some seismic signals and oth-
ers that consist mostly of noise. Therefore, we can expect super-Gaussian densities, i.e.,
densities with positive normalized kurtosis, for the components that partially contain
some seismic signals, while the others should follow a Gaussian distribution (Sanchis
and Hanssen, 2008). This difference in probability density function is a very important
feature since it also constitutes the basics for a signal detector. In addition, knowledge of
the a posteriori probability density makes it possible to design a shrinkage function and
therefore, a maximum a posteriori (MAP) estimator for the seismic signal. However, the
user has to provide a density model that suits the ICA-transformed data and that will be
fed into the maximum a posteriori estimator. Thus, we begin in Section 5.2 with a brief
review of the theory of the MAP estimator for any model of ICA-transformed data. In
Section 5.3, we will present two alternatives to provide a density model. The first solu-
tion consists of fitting the ICA-transformed data with three possible parametric models:
Laplace and mildly sparse densities (Hyvärinen et al., 1999), normal inverse Gaussian
density (NIG) (Jenssen et al., 2001; Øigård et al., 2005) and mixture of generalized Gaus-
sian densities (MGG) (Mohamed and Jaïdane-Saïdane, 2009). In the second solution,
we consider a non-parametric density model that is estimated directly from the data by

64



Maximum a posteriori estimation of sparse coded signal

mean of a Gaussian kernel estimator. Finally, in Section 5.5, we test the performance
of sparse code shrinkage on both synthetic and real marine seismic data, together with
two others denoising methods that are f-x deconvolution and local SVD.

5.2 Maximum a posteriori estimation of sparse coded sig-
nal

5.2.1 ICA representation

The independent component analysis is a statistical and computational technique used
to reveal hidden factors that underlie sets of random variables, measurements, or sig-
nals. ICA is based on the assumption that data signals are linear mixtures of some
unknown variables, while the mixing system is also unknown. The unknown vari-
ables are assumed non-Gaussian and mutually independent, and they are called the
independent components of the observed data. These independent components, also
called sources, can be found by ICA. In other words, ICA finds a transformation of sig-
nal mixtures that produces independent signals sources, on the assumption that each
of the independent signal sources is generated by a different physical process. Let us
consider n independent random variables denoted by s1, . . . , sn and m observations or
linear mixtures x1, . . . , xm of these n independent variables so that:

xj = aj1s1 + aj2s2 + . . .+ ajnsn, for j = 1, . . . ,m. (5.1)

We denote the set of observations by x = (x1, . . . , xm)T , the set of sources by s =
(s1, . . . , sn)T and the matrix with elements aij by A. Then, the transformation from s
to x defines the mixing matrix A such that:

x = As. (5.2)

The problem consists in recovering the source vector s from the observations vector x,
by searching for an (n x m) unmixing matrix W that makes the components of s as sparse
as possible:

s = Wx. (5.3)

When estimating the unmixing matrix W, we use the FastICA algorithm developed by
Hyvärinen and Oja (1997) with the hyperbolic tangent nonlinearity and the symmetric
decorrelation approach. The ICA representation is then obtained by multiplying the
unmixing matrix W with the input signals.

Sparse coding is closely related to independent component analysis, as the transform
makes the components of s as non-Gaussian and jointly statistically independent as
possible. Thus, the estimation of the ICA data model can be reduced to the search
for uncorrelated directions in which the components are as non-Gaussian as possible
(Comon, 1994). If the independent components are sparse, this amounts to the search
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for uncorrelated directions that have as sparse distributions as possible. We consider
here that supergaussianity is sufficient to provide sparse coding when data are assumed
to be generated by a noisy ICA model. This is not exactly true, as supergaussianity is
necessary but not sufficient to enforce sparsity, but it has been admitted in a variety of
simulations and applications (Kreutz-Delgado et al., 1999). Thus, if the components are
constrained to be uncorrelated, the estimation of ICA model for sparse data is roughly
equivalent to sparse coding (Hyvärinen et al., 1999).

When observing noisy data, sparse coding separates the statistics of the noise free
signal from the noise in the transform domain. In the case of a signal x corrupted by
white Gaussian noise n of zero mean and variance σ2, then the ICA transformation
yields

y = W(x + n) = s + v (5.4)

where s is maximally sparse and v is the ICA transform of the noise. To ensure the
noise components to be Gaussian and uncorrelated, W needs to be orthogonal. This
can be achieved by applying W ← W(WTW)−1/2 (Hyvärinen et al., 1999). However,
one could also consider the case where W has fewer rows than columns, FastICA for
example supports such estimation. Then, one estimates a representation, consisting of
the rows of W, which is such that the rows of W are orthogonal to each other. The
orthogonalization step is then achieved by W← (WWT )−1/2W.

5.2.2 Maximum likelihood estimator

In this subsection, we consider only scalar random variables, but the results can be gen-
eralized for n-dimensional random vectors (Hyvärinen et al., 1999). The multivariate
case seems however to be of little importance in practice because sparse components
are considered separately. Let us consider the scalar model

x = s+ ν (5.5)

where s and ν are two independent random variables that denote respectively the non-
Gaussian sparse component and the Gaussian noise of zero mean and variance σ2. The
probability density function of ν is denoted by fν(x).The maximum a posteriori likeli-
hood estimator ŝ of s is the value of s that maximizes f(s|x), the conditional density
of the observation s given x, also called the posterior probability of s. Thus, the MAP
estimate of s is given by

∂

∂s
ln f(ŝ|x) = 0. (5.6)

According to the Bayes rule for densities, the conditional density of the observation s
given x is expressed as

f(s|x) =
f(x|s)f(s)

f(x)
. (5.7)

Maximizing the posterior probability of s is equivalent to maximizing the product
f(x|s)f(s) since f(x) is independent of the parameter s. Furthermore (proof given in
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Appendix),
f(x|s) = fν(x− s). (5.8)

Therefore, the MAP estimate ŝ is obtained by inserting the product f(x|s)f(s) and the
form of conditional density of x given s, equation 5.8, into the maximum likelihood
equation 5.6:

∂

∂s
[ln fν(x− ŝ) + ln f(ŝ)] = 0. (5.9)

Let us denote the negative log-density of s by i(s) = − ln f(s) and the score function of
s by i′(s) = ∂

∂s
i(s) (i is assumed to be strictly convex and differentiable). Then, equation

5.9 becomes
ŝ− x
σ2

+ i′(ŝ) = 0. (5.10)

The MAP estimate ŝ is a solution of equation 5.10, i.e., a function of the observed signal
x exists so that ŝ = g(x). This function g is the shrinkage function that discriminates
the noise and enhances the sparse component into the noisy observation x. For certain
densities, equation 5.10 cannot be solved in closed form, but it is always possible to use
the first-order approximation i′(ŝ) ' i′(x) in equation 5.10, to obtain the MAP estimator

ŝ = x− σ2i′(x). (5.11)

However, i′ is often discontinuous or it can even be singular at 0 which implies that the
first-order approximation is quite inaccurate near 0. To overcome this problem of "over-
shrinkage", as described by Efron and Morris (1975), we use the following modification
(Hyvärinen et al., 1999):

ŝ = sgn(x) max(0, |x| − σ2|i′(x)|). (5.12)

Thus, equation 5.12 is an approximation of the maximum likelihood (ML) estimator of
a non-Gaussian random variable corrupted by Gaussian noise. Hyvärinen et al. (1999)
showed that the ML estimator has very good denoising capability and it can lead to
significant improvement for non-Gaussian (e.g., sparse) variables. Thus, the more non-
Gaussian the variable s is, the better Gaussian noise is reduced. However, if s is Gaus-
sian, then allowing nonlinearity in the estimation does not improve the performance
and the ML estimator is then equal to the best linear estimator in the mean-square
sense.

5.3 Shrinkage functions

To use the estimator defined by equation 5.11 in practice, the densities of the si need
to be modeled with a parametrization that is rich enough. In this section, we propose
different parametrizations that we think could describe the densities encountered in
seismic. We first present sparse densities that are able to model different degrees of
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super-Gaussianity and different scales, i.e., variances. Sparse densities are commonly
used with sparse code shrinkage. We continue with the normal inverse Gaussian den-
sity. This density has a flexible parametrization that makes it possible to model a wider
variety of distributions than sparse densities. Indeed, the normal inverse Gaussian den-
sity models a large variety of unimodal shapes with various decay rates of the tail and
skewness properties. Finally, we think that multi-modal densities should be investi-
gated as well. The mixture of Generalized Gaussian densities can fit super-Gaussian
densities and is therefore an appropriate density model candidate for seismic compo-
nents. In addition, we test a non-parametric model that does not require us to make
any assumption about the parametric family and therefore, that allows various shapes
of densities. Thus, we use a Gaussian kernel estimator to estimate the density f(s).

5.3.1 Sparse densities

Two density models are suggested to suit super-Gaussian densities with the Laplace
distribution as the limit between both models. The first density model is suitable for
super-Gaussian densities that are not sparser than the Laplace distribution. Its proba-
bility density function is given by

f(s) = C exp(−as2/2− b|s|), (5.13)

where a,b > 0 are parameters to be estimated and C is an irrelevant scaling factor. To
estimate the parameters a and b, Hyvärinen et al. (1999) assumes that the score function,
i.e., the derivative of the negative log-density of s, i′(s) = as+ sgn(s)b is a linear combi-
nation of two functions where one of them is linear. Thus, after some tedious algebraic
manipulations, Hyvärinen et al. (1999) obtains

b =
2fs(0)E{s2} − E{|s|}
E{s2} − E{|s|}2

, (5.14)

a =
1

E{s2}
[1− bE{|s|}], (5.15)

where E{} denotes the expected value but can be replaced here by sample average,
whereas fs(0) is the value of the density function of s at zero,and can be estimated, for
example, by using a Gaussian kernel estimator (Silverman, 1986) at 0. Let σ2 be the noise
variance, then the corresponding shrinkage function g for this model is given by

g(x) =
1

1 + aσ2
sgn(x) max(0, |x| − bσ2). (5.16)

The second density model is suitable for super-Gaussian densities that are sparser
than the Laplace distribution. Its probability density function is given by

f(s) =
1

2d

(α + 2)[α(α + 1)/2]α/2+1

[
√
α(α + 1/2) + |s/d|]α+3

(5.17)
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where d is a scale parameter and α a sparsity parameter. Using the same assumption as
in the first density model, Hyvärinen et al. (1999) obtains

d =
√
E{s2}, (5.18)

α =
2− k +

√
k(k + 4)

2k − 1
with k = d2fs(0)2. (5.19)

Let again σ2 be the noise variance, if we set a =
√
α(α + 1)/2 and Q = (|x| + ad)2 −

4σ2(α + 3), then we shrink using:

g(x) =

{
sgn(x) max

(
0, |x|−ad

2
+ 1

2

√
Q
)

if Q ≥ 0,

0 if Q < 0.
(5.20)

The choice of first or second models can be made by calculating the moments of the
distributions, i.e., if √

E{s2}fs(0) <
1√
2
, (5.21)

then the first model should be used. Otherwise, use the second model (Hyvärinen et al.,
1999).

In order to give some insight as to what the specific density functions imply, we show
in Figure 5.1 (a) three sparse density functions: mildly sparse, Laplace and strongly
sparse, together with the Gaussian distribution for comparison. All the densities were
normalized to unit variance. We show in Figure 5.1 (b) the shrinkage functions associ-
ated with the three sparse distributions, together with the line y = x for comparison. In
this plot, the noise variance σ2 was fixed to 0.3. Small amplitudes are considered to orig-
inate from zero-valued components influenced by noise and are therefore suppressed,
while large amplitudes are preserved. In addition, the shrinkage functions reduce the
absolute value of its argument by a certain amount which depends on the noise vari-
ance σ2. Finally, the sharper the distribution is, the more likely small values are to be
pure noise.

5.3.2 The normal inverse Gaussian density (NIG)

Another possible model for sparsely coded data is the NIG density. The NIG is suitable
for modeling heavy-tailed random process (Hanssen and Øigård, 2001a). In addition,
it is characterized by a set of four parameters that makes it to be very flexible. NIG has
recently found many applications in electrical engineering and in particular, it was used
as wavelet coefficients of synthetic aperture radar images (Solbø and Eltoft, 2004).
The NIG density is a variance-mean mixture of a Gaussian density with an inverse
Gaussian. Its probability density function is given by

f(s) =
αδ

π

exp [p(s)]

q(s)
K1[αq(s)] (5.22)

where
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Figure 5.1: Example of super-Gaussian densities (a) and their associated shrinkage func-
tion (b). For comparison, the Gaussian distribution is drawn in dot line in (a), and the
line y = x is drawn in dot line in (b). The sharper the distribution is, the more likely are
small values to be pure noise and set to zero.

K1(s) is the modified Bessel function of the second kind with index 1,

p(s) = δ
√
α2 − β2 + β(s− µ),

q(s) =
√

(s− µ)2 + δ2, 0 ≤ |β| < α, δ > 0 and −∞ < µ <∞.

The NIG density is completely defined by a set of four parameters α, β, δ, µ and is very
suitable for unimodal, positive kurtosis data. Here, α controls the steepness of den-
sity, β controls the skewness, δ is a scale parameter, while µ is the mean value of sam-
ples s. There are two ways of deriving the parameter values: direct calculation and
expectation-maximization (EM) algorithm. A direct calculation is presented by Hanssen
and Øigård (2001b). They derive a cumulant based estimator of the NIG parameters,
where a cumulant of order n for the random variable s is defined as

κ(n) = (−j)nd
nΨs(ω)

dωn
|ω = 0 where Ψs(ω) = lnE(ejωs). (5.23)

The cumulants are easily computed thanks to their relationship with moments. If we
define the moment of order n about the origo of the random variable s by m(n)

s = E{sn},
then the cumulants of order 1 to 4 are obtained from:

κ(1) = m(1)
s (5.24)

κ(2) = m(2)
s − (m(1)

s )2 (5.25)
κ(3) = m(3)

s − 3m(1)
s m(2)

s + 2(m(1)
s )3 (5.26)

κ(4) = m(4)
s − 3(m(2)

s )2 − 4m(1)
s m(3)

s + 12(m(1)
s )2m(2)

s − 6(m(1)
s )4. (5.27)
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Thus, first, we form the estimates κ(1), κ(2), κ(3) and κ(4) of the four lowest order cumu-
lants from data samples. Thereafter, the third and fourth order standardized moments,
namely the skewness and the kurtosis, are estimated by

γ̂3 =
κ(3)

[κ(2)]
3/2

and γ̂4 =
κ(4)

[κ(2)]
2 . (5.28)

In addition, we form two auxiliary variables as

ξ = 3

(
γ̂4 −

4

3
γ̂2

3

)−1

and ρ =
γ̂3

3

√
ξ. (5.29)

Finally, Hanssen and Øigård (2001b) show that the four parameters can be estimated by

δ̂ =
√
κ(2)ξ(1− ρ2) (5.30)

α̂ =
ξ

δ̂
√

(1− ρ2)
(5.31)

β̂ = α̂ρ (5.32)

µ̂ = κ(1) − ρ
√
κ(2)ξ. (5.33)

This estimation technique yields statistically consistent estimators. However, it is im-
portant that data sets are large enough in order to get a fairly accurate estimation of
the parameters. Alternatively, Øigård et al. (2005) proposes a simple EM algorithm for
the estimation of the parameters of the multivariate NIG distribution. The heavy-tailed
multivariate normal inverse Gaussian (MNIG) distribution is a variance-mean mixture
of a multivariate Gaussian with a univariate inverse Gaussian distribution. The con-
ventional way of estimating the MNIG parameters has been the maximum likelihood
estimation method, but because of the complexity of the likelihood function, parameter
estimation by direct maximization is exceedingly difficult. To overcome this problem,
Øigård et al. (2005) proposed a fast and accurate multivariate expectation-maximization
(EM) algorithm for maximum likelihood estimation of the scalar, vector, and matrix pa-
rameters of the MNIG distribution. Thus, restricting this EM algorithm to the univariate
case provides us the NIG distribution parameters. We will prioritize the EM algorithm
in our implementation of the sparse code shrinkage code. However, if it does not con-
verge within a reasonable number of iterations, then we use the cumulant based param-
eter estimation technique described above.
The score function of the NIG density is given by

i′(s) =
α(s− µ)

q(s)

(
K0[αq(s)]

K1[αq(s)]
+

2

αq(s)

)
− β (5.34)

whereK0 is the modified Bessel function of the second kind with index 0. The maximum
a posteriori probability estimate is obtained by inserting the score function in equation
5.34 into the MAP estimate in equation 5.12.
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5.3.3 Mixture of Generalized Gaussian densities (MGG)

When examining the distribution of some of the sparse components, we notice that
some of them look bivariate because it contains both noise (that is usually normally
distributed) and signals (that has a different mean and statistical properties). For these
reasons, we believe that a multi-modal density model should be tested. The density
function of a mixture of Q generalized Gaussian distributions is given by:

fθ(s) =

Q∑
k=1

αkfk(s|θk) where fk(s|θk) =
γkck

Γ(1/ck)
e−γ

ck
k |s−µk|

ck . (5.35)

Here,

γk = 1
σk

Γ(3/ck)1/2

Γ(1/ck)
is a scale parameter,

Γ represents the Gamma function,

θk = (αk, µk, σk, ck), k = 1, . . . , Q,

αk is the kth mixture weight that satisfies αk ≥ 0 and
∑Q

k=1 αk = 1,

µk is the kth mean,

σk is the kth standard deviation,

ck is the kth shape parameter that can characterize a large class of distribution
including super-Gaussian distribution.

We use an expectation-maximization (EM) algorithm that has been reformulated in the
case of MGG model (Mohamed and Jaïdane-Saïdane, 2009) for the estimation of coeffi-
cients and the distribution’s parameters. The score function of the MGG density is given
by

i′(s) = −
∑Q

k=1 αkf
′
k(s|θk)∑Q

k=1 αkfk(s|θk)
with f ′k(s|θk) = −γckk ck |s− µk|

ck−1fk(s|θk) (5.36)

and the maximum a posteriori probability estimate is obtained by inserting the score
function in equation 5.36 into the MAP estimate in equation 5.12.

5.3.4 Gaussian kernel density estimator

We motivate the investigation of a non-parametric density by the desire to test the case
where no prior assumption about the parametric family are made. The final results
will then be compared with the parametric models. The histogram is the simplest and
most widely used estimator of densities. Despite its widespread use, the histogram has
several fundamental drawbacks. In particular, it yields a discontinuous function and
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it is sensitive to the choice of origin (Silverman, 1986). To overcome these many non-
desirable properties, we have chosen to estimate the density by means of the so-called
Parzen kernel estimator. The kernel estimator of density has good statistical properties,
and it is well suited for the analysis of short data segments. Basically, the kernel estima-
tor is constructed by placing a smooth and symmetric normalized function (a "kernel")
with its origin at each data point. By summing this collection of normalized functions,
we obtain a smooth and statistically consistent estimate of the density. A more exhaus-
tive description of the kernel estimator and its statistical properties is given in Section
2.4.

The kernel estimator of the pdf at amplitude s, givenN data samples s0, s1, . . . , sN−1,
can be written as (Silverman, 1986; Wand and Jones, 1995)

f̂(s) =
1

N

N−1∑
n=0

Kh (s− sn) . (5.37)

Here, Kh(ξ) ≡ (1/h)K(ξ/h), where K(ξ) is the so-called smoothing kernel and h is
a scaling parameter that controls the degree of smoothing. For this application, we
choose the Gaussian smoothing kernel K(ξ) = (1/

√
2π) exp(−ξ2/2) and the value of h is

obtained by minimizing the integrated mean-squared error with referral to the Gaussian
distribution.

The score function of the density estimate when using a Gaussian kernel is given by

i′(s) = − f̂
′(s)

f̂(s)
with f̂ ′(s) = − 1

N

N−1∑
n=0

(s− sn)

h2
Kh (s− sn) (5.38)

and the maximum a posteriori probability estimate is obtained by inserting the score
function in equation 5.38 into the MAP estimate in equation 5.12.

5.4 Sparse code shrinkage algorithm

5.4.1 Noise-free realization of the data

We need a realization of noise-free data to get an accurate estimation of the density
model parameters. In seismic, such a realization is impossible to obtain. The under-
water environment is naturally noisy and in addition, measurements always generate
extra noise. To overcome this problem, we seek a noise-reduced realization of data that
has the same statistical properties as the seismic signals. We can naturally assume that
the better this estimation is, the more accurate the parameters estimates are. However,
accuracy of model parameters is not a critical criterion in sparse code shrinkage. We use
a novel stacking method with signal-to-noise ratio based reference trace (C. Sanchis and
A. Hanssen, 2010, Enhanced stacking method based on local correlation: Geophysics,
Submitted), applied locally. This method consists of a time-dependent weighted aver-
age that utilizes local correlation between each individual trace and a chosen reference
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trace as a measure of weight. Here, the reference trace results from weighted stack-
ing, where the weights are proportional to the estimated S/N of each individual trace.
This method, which enhances the coherent signals and attenuates the random ones,
preserves the statistical properties of the seismic signals. In addition, it presents several
other advantages: It is easy to implement, it is not computationally demanding, and it
has proven to estimate events that are not completely flat quite well. The entire seismic
section is scanned by a sliding window that typically consists of 3 normal move-out
(NMO) corrected traces and 50 time samples, with possible overlap between windows.
The stacking method is applied to the traces contained in each window to produce one
averaged trace. If the sliding windows overlap, then we take the result to be the mean
of all averaged traces. By decreasing the window size and overlap percentage, we re-
duce the averaged volume of data to be averaged and therefore, increase the variance.
On the other hand, we increase the resolution in the sense that it better reflects the local
situations. Thus, there is a trade-off between resolution and variance. Our experience
showed us that the resolution achieved by averaging 3 trace segments was sufficient
and the noise variance acceptable in order to obtain a good noise-free realization. In
addition, there is another reason to choose a small number of windowed traces, that is
the necessity to obtain a noise-free realization that has about the same dimensions as
the section to be denoised. Because of the averaging, we have available fewer averaged
traces than the input seismic section. It is however reasonable to assume that the miss-
ing traces have the same statistical properties as the last averaged one. In addition, note
that the same noise-free realization can be used for denoising of any CMP gather as long
as the geology remains unchanged.

5.4.2 Estimation of noise variance

An estimation of noise variance is required for the estimation of the density parameters.
We suggest two ways of estimating it. First, we consider the difference between input
data and "noise-free" data to be a rough estimate of the noise, we calculate an unbiased
estimation of the standard deviation and we correct this number by a factor 2

3
known

from experience for "noise-free" generated by our local stacking method. This correction
is required since it still contains noise. Another alternative consists in taking the median
absolute deviation of the yj corresponding to the sparsest noise free component sj , and
dividing it by 0.6745 (Donoho et al., 1995).

5.4.3 Algorithm

The estimation of the ICA transform matrix W requires a large numberN of realizations
of "noise-free" random data vectors. To aid in this estimation, we define a small win-
dow that slides over the whole "noise-free" gather with possible overlap. A row-by-row
scanning of each window transforms a two-dimensional signal into a one-dimensional
(m × 1) column vector xi. Thus, we reorganize the "noise-free" gather into a set of N
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vectors in Xnf = [x1, ..., xN ]. These vectors are used to determine the ICA transform
matrix W by means of any ICA algorithm that is then orthogonalized. The (m × 1)
sparse vectors in S = [s1, ..., sN ] result from the ICA transformation of vectors in X such
that S = WXnf . The first element of each vector si, i = 1, ..., N is a realization of the
first sparse component, the second element of each vector is a realization of the second
sparse component, and so on. Each sparse component is then fed into a density param-
eter estimator which defines a shrinkage function that is fitted to the noise-free sparse
component. Once all the shrinkage functions have been determined, we transform each
noisy data vector x+n into its sparse representation y. Denoising of each component
of y is then achieved by applying the shrinkage function that is associated to the same
noise-free sparse component. The sparse code shrinkage algorithm is summarized as
follows:

1. Generate a "noise-free" realization of the data by applying the enhanced stacking
method locally to NMO corrected data, and reorganize the estimated "noise-free"
gather into a set of vectors Xnf = [x1, ..., xN ].

2. Apply any ICA algorithm to Xnf to determine the transformation matrix W so that
if S = WXnf , then S defines a set of independent components.

3. Orthogonalize the ICA transformation matrix W to ensure that noise components
are Gaussian and uncorrelated.

4. For each sparse component sj, j = 1, ...,m from S = WXnf , choose a density model
and estimate its parameters and the associated shrinkage function gj .

5. Reorganize the noisy seismic section into a set of noisy vectors and apply the
sparse transformation to every noisy vector x+n :

y = W(x+n). (5.39)

6. For each component y, apply the shrinkage function gj to yj to obtain ŝj = gj(yj), j =
1, ...,m .

7. Invert the sparse transformation to obtain a denoised estimate of x:

x̂ = WT ŝ. (5.40)

8. Reshape the set of denoised vectors [x̂1, ..., x̂N ] back to two-dimensional seismic
section.

Note that the entire input data set is normalized to zero-mean and unit variance so that
the method is not affected by the global statistics of the data. Therefore, we provide the
normalized noise variance as input parameter. In addition, each noisy data vector x+n
is again normalized to zero-mean and unit variance in order to compensate for possible
non-stationarity of the data.
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5.5 Applications

In this section, we test sparse code shrinkage with the different density models pre-
sented earlier, together with another possibility, that is the choice of the mildly sparse
density model with fixed parameters a = b = 0.5. This application of sparse code shrink-
age was used by Kaplan et al. (2009) while no "noise-free" realization was available. In
our real data examples, we will compare sparse code shrinkage to two other common
denoising methods that are f-x deconvolution and local SVD. The Matlab code for f-x
deconvolution comes from the seismic data processing package SeismicLab (Sacchi and
Signal Analysis and Imaging Group, 2008). In order to obtain the "noise-free" realiza-
tion, we use the enhanced stacking method applied locally with a sliding window that
contains 3 traces and 50 time samples, with 50 % overlap along time between windows.

5.5.1 Test on synthetic data

We first examine the performance of sparse code shrinkage for different density mod-
els with a synthetic example shown in Figure 5.2 (a). It is composed of 20 traces and
885 samples, with four NMO-corrected reflections that result from the convolution of a
Ricker wavelet with a reflection sequence of decreasing amplitude and corrupted by dif-
ferent types of noise. The Ricker wavelet is also known in the literature as the Mexican

hat wavelet and it is defined by ψ(t) = 1√
2πβ3 (1 − t2

β2 )e
− t2

2β2 with parameter β2 = 0.14 in
this chapter (Chui, 1992). The true signal without additive noise is shown in Figure 5.2
(b). The corrupting noise is zero-mean white Gaussian noise, where the noise variance
is 0.04 for the first trace and 0.01 for the other ones. The maximum and minimum spike
amplitudes are 3.41 and 1.42 for the first trace respectively, and 0.73 and 0.31 for trace
20 respectively. In addition, the second reflection has been NMO under-corrected on
purpose so that it is slightly hyperbolic, with a delay between the first and the last trace
equal to 43 ms. The goal here is to investigate the consequences of this inaccuracy on
the final estimate. Finally, the third reflection is recorded by traces 1 to 12 only.

We extract data windows that contain 3 traces and 64 time samples (here 64 ms),
and has 80 % overlap both along time and traces, to reorganize the seismic section into
192 × 1 vectors. The reason why we choose so few traces is to better estimate short
and quickly varying events, and in particular, hyperbolic events. Several authors have
applied ICA to image data, and found that one component represents the local mean. It
was noted in Hyvärinen et al. (1999) that this component actually does not belong to a
sparse density, and that it has a large variance associated with it. Therefore, we ignore
this component by subtracting the local mean from each 192× 1 data vector used in the
experiment and drop one dimension by principal component analysis (PCA), before
proceeding. Thus, the dataset consists of vectors of dimension 191 × 1. In this manner,
we had 1980 realizations of "noise-free" data Xnf to be used in estimating the transform
matrix W and the densities of the transformed components, and in calculating shrinkage
functions. The estimated normalized noise variance is set to σ̂2

N = 0.7. To quantify the
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estimation error, we calculate the mean square error, defined as E[(X̂ − X0)2], where X̂
and X0 denote the estimated data set and the true noise-free data set respectively, given
in Table 5.1.

The "noise-free" realization Xnf used to estimate the transform matrix W and the
fitted shrinkage functions are shown in Figure 5.3 (a), and the estimation error, i.e.,
the difference between estimated and noiseless section, is shown in Figure 5.3 (b). As
expected, local stacking allows the detection of events that are not perfectly flat, and
yields a realization that is noise attenuated and whose signals are distorted and atten-
uated. This realization achieves a rather poor signal reconstruction, but because of its
denoising ability, it is a rather good candidate for the "noise-free" realization.

Application of sparse code shrinkage to the synthetic section and using different
density models yields the following results: the estimated sections and the estimation
error when using parametric models of densities are shown in Figure 5.3 (c) and (d) for
sparse density, in Figure 5.3 (e) and (f) for NIG density, and in Figure 5.4 (a) and (b) for
MGG density. When assessing the reconstructed section, we observe that these paramet-
ric models perform similarly. The estimation of events is reasonably good, even if we ob-
serve little signal leakage for the first event and for the slightly hyperbolic event. These
two events actually are the ones that are the most distorted in the "noise-free" realiza-
tion. Corrupting noise is significantly attenuated, even for the first trace. Thus, the MSE
obtained with these three densities are almost equal (between 39× 10−4 and 42× 10−4),
and significantly reduced compared to the input section (120× 10−4). Figure 5.4 (c) and
(d) shows the estimated section and estimation error for the non-parametric Gaussian
kernel density estimate. There are very few differences with parametric densities: the
first and second reflections are slightly more accurately estimated than with the para-
metric methods, but the corrupting noise is less attenuated. Thus, the MSE is a little
larger than for the parametric models: 51 × 10−4 against 39 × 10−4. Finally, whatever
the choice of density, it is important to notice that the quality of the reconstructed sig-
nals achieved by sparse code shrinkage is much more accurate than in the "noise-free"
realization.

Let us now imagine that we do not have access to any "noise-free" realization. We
have therefore no other choice that using an arbitrary density model with fixed pa-
rameters, e.g., the mildly sparse density with non-fitted parameters a = b = 0.5. The
estimated section and the estimation error are shown in Figure 5.4 (e) and (f). The events
are recovered although distorted and attenuated, but the additive noise is hardly atten-
uated. Because the shrinkage functions are not specifically fitted to the data, we need
to choose a unique set of parameters (a, b) that allows the event reconstruction. Thus,
small parameter values preserve the events, but limit the shrinkage ability of the noisy
sparse components. The MSE is twice that of other density models.

Let us now find out in what extend the accuracy of the "noise-free" realization in-
fluences the quality of the final estimate. We still use the enhanced stacking method
applied locally to obtain another "noise-free" realization, but with the less favorable
window parameters: 2 traces of 50 time samples (here 50 ms), with 20 % overlap along
time between windows, and we add to the resulting section some zero-mean white
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Gaussian noise of variance 2.5 × 10−3. This new "noise-free" realization is shown in
Figure 5.5 (a). Compared to the first "noise-free" realization shown in Figure 5.3 (a),
the estimated signals are more attenuated and distorted, especially for the first and sec-
ond reflections, and the noise level is larger. The MSE of this section is increased by 41
% to reach 99 × 10−4. We apply sparse code shrinkage with the sparse density to this
second "noise-free" realization and show the estimated data set in Figure 5.5 (b). The
noise attenuation is as good as in Figure 5.3 (a), but the reconstructed signals for the
first and second reflections is slightly deteriorated, exactly as in the "noise-free" realiza-
tion. Thus, the MSE is hardly larger and equal to 45× 10−4 against 39× 10−4 for the first
"noise-free" realization. Finally, we obtain similar results when using the other density
models. Thus, the accuracy of the "noise-free" realization allows some flexibility. But
the most important requirement to yield reconstructed signals of good quality, is that
events are contained in the realization, and possibly as little distorted as possible.

We show through this synthetic example that the noise attenuation ability of sparse
code shrinkage is promising as long as the shrinkage functions are specifically fitted to
the data. In addition, the choice of parametric or non-parametric models is not deci-
sive since they yield very small differences. The parametric models yield slightly better
noise attenuation, while the non-parametric model yields slightly more accurate signal
estimates. Finally, the quality of events contained in the "noise-free" realization influ-
ences the quality of reconstructed signals in the final estimate, but sparse code shrinkage
achieves a much more accurate signal reconstruction than the "noise-free" realization.
Finally, sparse code shrinkage remains relatively insensitive to a larger amount of noise
in the "noise-free" realization, and handles relatively well slightly hyperbolic events.
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Figure 5.2: Signal enhancement of synthetic section: (a) noisy data and (b) true noise
free data.
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MSE (x10−4)
Synthetic input data 119

"Noise-free" realization 70
Sparse 39
NIG 42

MGG 42
Gaussian kernel estimate 51

Mildly sparse with a = b = 0.5 84

Table 5.1: Mean square error of inputs and estimated outputs using different density
models. Sparse, NIG and MGG densities achieve the lowest MSE.

5.5.2 Test on real data

We consider here a NMO-corrected CMP gather of marine seismic data from the North
sea contaminated by random noise and multiples, shown in Figure 5.6 (a). The area that
is the most contaminated by high amplitude multiples has been muted away, but some
multiples can still be observed at small offsets. We apply on this section sparse code
shrinkage with the presented density models, as well as two other noise attenuation
methods: local singular value decomposition (SVD) described by Bekara and Van der
Baan (2007) and f-x deconvolution described by Canales (1984). The NMO correction
is necessary to obtain the "noise-free" realization shown in Figure 5.6 (b), and for ap-
plication of local SVD. For sparse code shrinkage and local SVD, the sliding-window
contains 10 traces and 32 time samples, with a percentage overlap of 50 % overlap both
in time and offset. The normalized noise variance used in sparse code shrinkage is
estimated to 0.6. Like for synthetic examples, the local mean is subtracted from each
data vector and its dimension is reduced by PCA. f-x deconvolution is applied to the
frequency range [1, 120] Hz and uses an autoregressive filter of order 20 as well as a
pre-whitening factor µ = 0.01. For local SVD, dip steering is applied prior to SVD and
eventually, the first four eigenimages are kept for the reconstruction of the window. Fig-
ure 5.6 (b) and (c) shows the "noise-free" realization and its residual plot respectively.
Coherent signals at small and far offsets and some multiples (within [0, 2.5] s) are partly
estimated, but lots of signals have been attenuated within the [0, 2.5] s interval and at far
offsets. Thus, the signal reconstruction is relatively limited. Figure 5.7 shows the results
after signal enhancement using sparse code shrinkage, and Figure 5.9 (a) and (c), the re-
sults after signal enhancement using f-x deconvolution and local SVD respectively. The
residual plots for sparse code shrinkage are shown in Figure 5.8, and for f-x deconvo-
lution and local SVD in Figure 5.9 (b) and (d) respectively. For sparse code shrinkage,
we obtain results similar to the synthetic data example, with however small differences
between the parametric models. The sparse density (Figure 5.7 (a)) and Gaussian ker-
nel density (Figure 5.7 (d)) perform about the same for both the signal estimation and
noise attenuation. The MGG density (Figure 5.7 (c)) and even more, the NIG density
(Figure 5.7 (b)) are a little more efficient for noise attenuation, but they attenuate some
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very small parts of multiples (Figure 5.8 (b) and (c), around 1 s).
Obviously, MGG and even more, NIG densities set the sparse components of small

amplitude to zero more often than the sparse density does. This means that fitting the
seismic sparse components to MGG and even more, to NIG density models, yields dis-
tributions that are more super-Gaussian than the ones fitted to the sparse distribution.
Thus, as long as the slight attenuation of multiples stays within an acceptable limit, we
suggest to choose the density model that yields the best signal enhancement, i.e., the
NIG density, even though MGG and sparse densities would be an acceptable choice as
well. Again, we notice that sparse code shrinkage applied with shrinkage functions that
are not specifically fitted to the data (Figure 5.7 (e) and Figure 5.8 (e)) cannot target the
sparse noise components only, and therefore, affects both noise and coherent events in
a same manner. Finally, f-x deconvolution is very efficient in noise suppression and in
estimating the flat events at short offsets (Figure 5.9 (a)), but it also attenuates a non-
negligible part of the multiples (Figure 5.9 (b), within the [0, 2] s interval). Local SVD
performs about the same as sparse code shrinkage with sparse density in term of noise
suppression, but it attenuates a few events in the shallow waters, short offset area (Fig-
ure 5.9 (d)). The noise suppression along the muted area is rather poor, but this can be
partly avoided by applying SVD before muting the data.

In Figure 5.10 (a), we consider finally a stacked section. Here, sparse code shrinkage
is tested with only two density models: the sparse density that is the most commonly
used one and the NIG density that has given among the best results so far. Sparse code
shrinkage is compared with local SVD and f-x deconvolution. Sparse code shrinkage
extracts data windows of 6 traces and 90 time samples with an overlap of 60 %, and
the normalized noise variance is 0.1. SVD is applied locally using a sliding window
that consists of 10 traces and 32 time samples with an overlap of 50 %. Within each
window, dip steering is applied prior to SVD and the first four eigenimages are kept
for the reconstruction of the window. f-x deconvolution uses an autoregressive filter of
order 20, a pre-whitening factor µ = 0.01, and it is applied to the frequency range [1, 120]
Hz. Figure 5.10 (b) to (e) shows the results after signal enhancement using sparse code
shrinkage with sparse and NIG densities (b and c), f-x deconvolution (d) and local SVD
(e). The residual plots for these different techniques are shown in Figure 5.11.

We obtain results that are similar to the previous examples. The NIG density yields
slightly harsher shrinkage than the sparse density. It attenuates the strongest reflections
a little more (Figure 5.11 (b) around 1 s), but also attenuates more noise. Thus, thin
structures are enhanced around 1.5 s for small CMPs, between 2.5 and 3 s, and around
5 s, and the reflections in shallow waters are estimated with a better resolution. Both
NIG and sparse densities however tend to erroneously estimate some noiselike signal
in the muted area from 0.2 s to 0.5 s. The comparison with f-x deconvolution and local
SVD shows that all these methods have good background noise attenuation ability. f-x
deconvolution exhibits more continuous reflections, e.g. between 1 and 2 s, because of
better interpolation capabilities, and it enhances signals in shallow waters (time < 2
s) with the same resolution as sparse code shrinkage with NIG density. However, it
affects more the strongest reflections that are partly attenuated (Figure 5.11 (c)), it fails
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to reveal thin structures between 2 to 5 s, and it erroneously estimates some noiselike
signal in a muted area (time < 0.5 s) in a more important manner than sparse code
shrinkage (Figure 5.11 (c)). Local SVD also slightly attenuates the strongest reflections
as well, but in a minor importance. Increasing the number of eigenimages to reconstruct
this section would deteriorate its noise attenuation ability. Some strong structures are
blurred in shallow waters, as well as thinner ones between 2.5 and 3 s, and around 5
s. However, the thin structures between 3.5 and 4.5 s are enhanced. Therefore, in this
example, sparse code shrinkage using NIG density offers the best compromise between
noise attenuation and signal enhancement.

5.6 Discussion

5.6.1 Parameter settings

The transformation of seismic data into sparse code requires them to be reorganized
into a set of realizations, where each realization consists of a reorganized data set ex-
tracted from a sliding window. Thus, we discuss in this paragraph how the choice of
the sliding window parameters affects the performance of sparse code shrinkage. The
best resolution is achieved with a small number of traces, but this is usually obtained
at the cost of a less effective noise reduction and longer processing time because of the
larger number of realizations N to be treated. The window length, i.e., number of sam-
ples, is less crucial. We obtain a better resolution and events continuity with a large
number, i.e., when the length of each realization is long enough. However, a too large
number is not necessary since it is reduced by PCA. Finally, the overlap percentage in-
fluences the number of realizationsN , as well as the averaging of the overlapping areas.
Again, we obtain a better resolution with a larger number of realizations N , but at the
cost of longer processing time. Thus, a median overlap percentage, around 50 - 60 % is
a good compromise.

The noise variance parameter should be estimated from data, but the user is however
free to adjust this parameter. Increasing the noise variance influences both the range of
values set to zero and the slope of the shrinkage function. Thus, the larger the noise
variance parameter is, the larger is the range of values that are considered to be noise
and therefore set to zero, and the more severe the components attenuation is.

5.6.2 Possible improvements of sparse code shrinkage

We suggested one method to obtain a "noise-free" realization of the seismic section,
but others may be suitable as well. Thus, the signal reconstruction achieved by sparse
code shrinkage may be improved by improving the quality of signals contained in that
realization. In addition, some other super-Gaussian density models can be investigated.
In particular, the generalized Laplacian density and the mixture of two normal inverse
Gaussian might be suitable to describe the seismic components.
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5.7 Summary

This chapter contains a review of sparse coding as a method to remove random noise
in seismic data. Sparse coding has been derived for three possible parametric models
of density: sparse, normal inverse Gaussian and mixture of generalized Gaussian den-
sities, and for a novel non-parametric Gaussian kernel density estimate. Sparse cod-
ing requires a "noise-free" realization to provide data-driven shrinkage functions. We
showed indeed that non-fitted shrinkages could not simultaneously reconstruct signals
and attenuate the noise efficiently. By applying an enhanced stacking method locally,
we proposed a realization that is good enough for the derivation of fitted shrinkages.

Sparse code shrinkage has proven to be an efficient method that targets the noise
components to shrink them while preserving the signals. By its capacity to enhance
signals in both shallow and deep waters, the NIG density appears to be the best choice
of density. However, sparse, MGG and non-parametric estimate densities have proven
to be acceptable choices as well. The flexible parametrization of the NIG density allows
it to model a larger number of unimodal densities, and therefore, suits seismic data very
well. In addition, the level of attenuation of the sparse coded data can be easily adjusted
by the user through the noise variance parameter.

In the presented examples, sparse code shrinkage, local SVD and f-x deconvolu-
tion have shown to be effective methods for removing background noise. However,
f-x deconvolution appeared to be the one that affects certain high amplitude signals
the most (although within an acceptable limit), but achieves however a good resolu-
tion in shallow waters. Local SVD slightly blurred the signals in shallow waters, but
was better than f-x deconvolution at enhancing signals in deeper waters. Finally, sparse
code shrinkage estimated signals in both shallow and deep waters pretty accurately.
Like local SVD, sparse code shrinkage requires NMO-corrected data but it can however
handle some slightly hyperbolic events. In addition, f-x deconvolution and of minor
importance, sparse code shrinkage, map energy to muted areas where none existed be-
fore. Finally, sparse code shrinkage requires more computational load than local SVD
and f-x deconvolution, mostly because of the determination of the ICA transformation
matrix. Therefore, based on the analysis and examples presented in this chapter, we
recommend sparse code shrinkage as a valuable alternative method for the denoising
of seismic data.
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Figure 5.3: Estimation of "noise-free" realization for sparse code shrinkage: (a) results
and (b) estimation error. Sparse code shrinkage applied to a synthetic section and using
different density models: sparse density: (c) section estimate and (d) estimation error,
and NIG density: (e) section estimate and (f) estimation error.
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Figure 5.4: Sparse code shrinkage applied to a synthetic section and using different den-
sity models. MGG density: (a) section estimate and (b) estimation error, non-parametric
Gaussian kernel estimated density: (c) section estimate and (d) estimation error, and
mildly sparse density with fixed parameters a = b = 0.5: (e) section estimate and (f)
estimation error.
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Figure 5.5: Influence of the quality of the "noise-free" realization: (a) second "noise-free"
realization and (b) section estimate after sparse code shrinkage with sparse density.
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Figure 5.6: Signal enhancement of unstacked data. (a) NMO-corrected CMP gather, and
the "noise-free" realization used in sparse code shrinkage: (b) estimated section and (c)
residual plot. In the "noise-free" realization, coherent signals and multiples are only
partly estimated.
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Figure 5.7: Signal enhancement of unstacked data using sparse code shrinkage with
different density models: (a) sparse density, (b) NIG density, (c) MGG density, (d) Gaus-
sian kernel estimator, and (e) mildly sparse density with fixed parameters a = b = 0.5.
Use of fitted shrinkages is necessary for sparse code shrinkage to successfully enhance
signals.
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Figure 5.8: Residual plots for the sparse code shrinkage using the different density mod-
els: (a) sparse density, (b) NIG density, (c) MGG density, (d) Gaussian kernel estimator,
and (e) mildly sparse density with fixed parameters a = b = 0.5.
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Figure 5.9: Other signal enhancement techniques, results and residual plots. f-x decon-
volution : (a) estimated section and (b) residual plot. Local SVD: (c) estimated section
and (d) residual plot.
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Figure 5.10: Signal enhancement of stacked data. (a) A stacked section. Results using
different techniques: (b) sparse code shrinkage using sparse density, (c) sparse code
shrinkage using NIG density, (d) f-x deconvolution, and (e) local SVD.
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Figure 5.11: Residual plots for the different techniques. (a) Sparse code shrinkage with
sparse density, (b) sparse code shrinkage with NIG density, (c) f-x deconvolution, and
(d) local SVD.
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Chapter 6

Multiple-input adaptive noise canceller
to attenuate non-stationary coherent
noise

6.1 Introduction

Attenuation of coherent noise is a major concern in seismic. Typically, weather gener-
ated noise and more specifically swell noise, usually characterized by low frequency
and high amplitude, is considered as coherent in seismic (D’Agosto et al., 2003). Noise
generated by surface waves is generally attenuated by high-pass and band-pass filters,
while swell noise can be attenuated by time-frequency median filtering (Bekara et al.,
2008; Elboth et al., 2010). Time-frequency median filtering compares the signal ampli-
tudes in the frequency domain and assumes any amplitude beyond a given threshold to
be noisy. This method is however very dependent on the noise repartition in the input
gather and on the chosen threshold, especially if it is chosen arbitrarily. Finally, another
conventional way of attenuating the coherent high-amplitude noises is to apply a F-K
filter to the data within a given range. The drawback with this algorithm is that this
filter is deterministic, which introduces some limitations when signal and noise have
overlaps in the F-K domain. The multichannel approach has been described by Özbek
(2000). He proposed a multichannel time-adaptive interference canceller where the nor-
mal equation is resolved by means of a principal components decomposition. Wang
et al. (2008) implemented a multichannel Wiener filter in the frequency domain. By us-
ing a non-adaptive resolution method, this algorithm cannot easily adapt to the changes
in statistics and the noise attenuation may be limited.

In this chapter, we consider a multiple-input adaptive noise canceller as a solution
to remove non-stationary coherent noise. This filter uses multiple noise sequences to
provide an estimate of the noise contained in the primary channel, and then subtracts
it to obtain an estimate of the primary channel whose coherent noise component has
been attenuated. There is a variety of different algorithms for the design and imple-
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