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Abstract: Structured illumination microscopy suffers from the need of sophisticated instru-
mentation and precise calibration. This makes structured illumination microscopes costly and
skill-dependent. We present a novel approach to realize super-resolution structured illumination
microscopy using an alignment non-critical illumination system and a reconstruction algorithm
that does not need illumination information. The optical system is designed to encode higher
order frequency components of the specimen by projecting PSF-modulated binary patterns
for illuminating the sample plane, which do not have clean Fourier peaks conventionally used
in structured illumination microscopy. These patterns fold high frequency content of sample
into the measurements in an obfuscated manner, which are de-obfuscated using multiple signal
classification algorithm. This algorithm eliminates the need of clean peaks in illumination and
the knowledge of illumination patterns, which makes instrumentation simple and flexible for use
with a variety of microscope objective lenses. We present a variety of experimental results on
beads and cell samples to demonstrate resolution enhancement by a factor of 2.6 to 3.4 times,
which is better than the enhancement supported by the conventional linear structure illumination
microscopy where the same objective lens is used for structured illumination as well as collection
of light. We show that the same system can be used in SIM configuration with different collection
objective lenses without any careful re-calibration or realignment, thereby supporting a range of
resolutions with the same system.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The past few decades have witnessed widespread application of fluorescence microscopy in
biology by providing the unique ability of intrinsic selectivity, chemical specificity and signal
to background ratio. In the recent times, technical advancement in fluorescence microscopy
are primarily focused on simultaneous imaging of different cellular/sub-cellular components,
three dimensional imaging of thick samples such as organoids, and improving spatial resolution
of imaging [1–3]. In particular, several methods have been proposed in the past to break the
classical resolution limit. These methods can be broadly categorized into the following groups:
a) stimulated emission and depletion (STED) [4,5], b) single molecule localization (SML) i.e.,
rely on the fact localization precision [6–9], c) intensity fluctuations based optical nanoscopy
(IFON) [10–14], and d) structured illumination microscopy (SIM) [15–18]. STED, SML and
IFON all rely on photokinetics of fluorophores, i.e. the variation in the photon emission statistics
either naturally (IFON), or using long-lived dark states (IFON, SLM), or trigger of different
photophysical behaviour in presence of specific laser lights of high intensity (STED, SML).
Consequently, strict control, special dyes and/or special imaging protocols are needed for these
techniques. This restricts versatility of the methods. Furthermore, the temporal throughput of
SML and IFON is quite low due to the need of adjusting the acquisition rate and the number
of frames to the photokinetics. Temporal throughput of STED is limited due to point scanning
based illumination and acquisition. These restrictions are absent in SIM, making it more versatile
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and preferred in wide scenarios, despite lower factor of resolution enhancement than the other
techniques.

Super resolved imaging in SIM is achieved by illuminating the sample by structured patterns
and computationally combining the high frequency information conventionally in the Fourier
space. Structured illumination extends the diffraction limit by an amount equal to the spatial
frequency of the illumination pattern. Since the highest spatial frequency of the illumination
pattern is diffraction limited, the best enhancement of lateral resolution in SIM is by a factor of
about two [19]. Two-factor resolution enhancement is valid in the case of linear SIM i.e., when
emission intensity is proportional to the excitation wavelength. Non-linear SIM can provide
further resolution enhancement [18–20], but it uses extremely high intensity to saturate the
excited state of molecules, which results in non-linear relation between the emission rate per
fluorophore and the illumination intensity.

Another limitation of the conventional SIM-based system is the use of same objective lens for
creating structured illumination and also for collecting the light from the sample. If one intends
to support SIM with another objective lens of a different numerical aperture, recalibration and
realignment of the system become imperative. This not only increases the demand on cost, but
mandates complicated procedure during the process of imaging. The central reason for this
limitation is that precise knowledge of the illumination patterns, including the pattern shift and
rotation, is crucial for the reconstruction algorithm of SIM.

Our goal is to circumvent the limitation of fixed resolution of SIM system and the requirement
of precise knowledge of illumination patterns to achieve super-resolution in SIM. We also intend
to reduce the sensitivity of SIM reconstruction to the signal to background ratio. It has been
reported that SIM reconstruction algorithms pose certain stringent requirements on the signal
quality [21]. As explained in section 2, we achieve our goals by using (a) using non-saturated high
frequency illumination pattern achieved within linear optical regime and (b) reconstructing the
image using non-linear reconstruction algorithm that does not require illumination to be known a
priori. We show in-principle support for resolution enhancement better than the linear structured
illumination by decoupling the illumination and detection path and using high NA objective
lens for illumination. Experimental results with multiple collection objective lens are shown
for validation and wider applicability of the proposed system. We show good reconstructions at
signal to background ratio as small as <3.

The motivation of using different collection objective lenses also comes from the potential
applications. The dimensions of structures inside cells vary greatly. For example, cytoskeleton
on its largest scale of visualization and function spans the entire cell (10s of µm) and requires
visualization of <200 nm at its smallest scale. In addition, upgrading the system with switchable
laser source and use the best super-resolution for actin and microtubules (<200 nm), the next to
best for mitochondria (0.5- 3 µm), and the subsequent one for the cell membrane of cytoskeleton
scale. Further, operating in linear regime without the knowledge of illumination simplifies the
optical system design and implied relatively inexpensive, easy-to-use instrumentation. We show
that the same system can achieve scalable resolution by using the same illumination objective
lens, but employing different collection objective lenses. As a consequence, our framework
opens up a new possibility for structured illumination based super-resolution techniques.

2. Principle and deviation from the conventional SIM

The essence of SIM lies in being able to introduce precisely known clean high frequency peaks
in the illumination pattern in order to (a) down-modulate the high frequency components of the
specimens into the collection optical transfer function (OTF) in a systematic manner, and (b)
design a simple reconstruction algorithm that solves a linear system of equations derived from
the prior knowledge of the illumination pattern. In order to circumvent the need of structured
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illumination to achieve super-resolution, both the conditions above have to be relaxed by removing
the need of precise peaks corresponding to sinusoidal patterns.

The present article proposes a unique solution to the above problem. We develop a simplified
structured illumination system by decoupling illumination and detection arm and employ a
reconstruction approach that does not assume sinusoidal illumination patterns. The fundamental
empowering component of our approach is to deviate from the conventional SIM and NL-SIM in
terms of not needing clean peaks corresponding to sinusoidal illumination patterns.

Our solution comprises of two complementary components shown in Fig. 1(a,b):

• Easy to align instrumentation with structured illumination pattern: We present a
simple and efficient optical system working in linear regime to induce structured illumination
and thereby down-modulate the high frequency components of the specimens into the
imaging objective lens’s OTF. The presented framework may employ, in principle, random
digital patterns or encoded patterns (such as Hadamard, etc.) with translations and
rotations regardless of the final resolution desirable, making our method more robust and
flexible. For simplicity, we use binary periodic patterns of sufficiently high frequency
and project them onto the sample through an illumination objective lens (see Fig. 1(a)
and Supplementary Fig. S1). Consequently, the higher frequency components of the
binary patterns are blurred by the OTF of the illumination objective lens at the sample
plane. The blurred patterns therefore do not have clean peaks corresponding to higher
frequency components of the binary pattern needed for conventional SIM reconstruction
(see Fig. 1(c)). Nonetheless, problems associated with high illumination intensity are
avoided.

Fig. 1. Overview of proposed imaging an reconstruction technique. (a) Binary patterns
are projected into the sample using spatial light modulator to encode high spatial frequency
components. (b) Raw datasets with different illumination orientation processed using
Multiple signal classification algorithm (MUSICAL). (c) experimentally measured higher
order frequencies using binary pattern
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• Illumination blind reconstruction algorithm: A non-linear reconstruction algorithm is
used which does not require the prior knowledge of illumination patterns, nor needs to
estimate the illuminations as an intermediary step. For this purpose, we use the principle
of pseudospectral decomposition which isolates the spatial frequency components of
the illuminated samples that can be well separated from noise for reconstruction. This
alleviates the need of knowing or estimating individual illumination patterns. For simplicity
of adaptation, we use multiple signal classification algorithm (MUSICAL [14]), which is
based on pseudospectral decomposition and has been adapted as a reconstruction approach
recently [22] (see Fig. 1(b)). We note that other blind reconstruction algorithms may be
employed, and special illumination priors may be incorporated for example when using
Hadamard or other computationally exploitable patterns.

3. Methods

3.1. Experimental setup

The experimental setup and illumination strategy is shown in Fig. 1. A collimated laser light beam
passes through a polarizer (P1). The polarized light is modulated using spatial light modulator
(SLM), which has a binary pattern supporting high spatial frequencies. This pattern is projected
on to the sample through the cross polarizer and illumination objective lens MO1. Therefore,
the pattern on the sample is the clean frequency peaks of the original digital pattern convolved
with MO′

1s OTF. The sample is placed in a plane somewhere between the ’f’ and ’2f’ planes
of the illumination objective lens MO1. The blurring due to MO1 and the imperfect projection
of the pattern implies that only a few peaks that fall within the bandwidth of MO1 reach the
sample. However, this does not pose a problem because we do not need to know or estimate the
illumination pattern in our reconstruction.

The design of the illumination pattern is discussed in section 3.2. The sample, labeled with
fluorescent dyes, emits photons in response to these illuminations. These photons are collected
by imaging optics through imaging microscope objective MO2 and matching tube lens (TL)
on an image sensor array. In order to fully automate the data acquisition and synchronize the
SLM pattern projection and camera acquisition, we designed an image acquisition code in
labVIEW. We used Cobolt laser of wavelength 660 nm, SLM Pluto-2.1 from Holoeye, 60X,
0.9NA (RMS60X-PFC, Olympus) objective lens for MO1, different options for MO2, tube lens
matching the MO2, and ORCA-Fusion C14440-20UP sCMOS camera for the image sensor array.
In addition, polarization control is maintained by two polarizers in the illumination path and
SLM.

Our motivation to use SLM for illumination modulation was two-fold. First, SLM is
an electronic device which implies illumination patterns can be changed without mechnical
movements. Second, the pixel size of the SLM was 8 µm, which together with the MO1 and
MO2 gives sufficient sampling of the point spread function (PSF) of the MO2. However, we note
that other digital adaptive optical devices (such as digital micromirrors) or analog binary phase
or amplitude masks could have been used instead of SLM without the loss of generality.

Further, we used MO1 and MO2 to be two distinct microscope objective lenses in transmission
setup in order to investigate the effect of the illumination objective lens independent of the
collection, and use different combinations for the objective lens for understanding the advantage
accrued by the high spatial frequencies of illumination.

3.2. Selection of illumination patterns

The selection of the illumination patterns, in our case, is treated as a geometric and signal
processing problem.
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Periodicity Given the numerical aperture (NA) of MO2, twice the null-to-null width (w) of
the PSF is used as the period of the binary pattern. The duty cycle of the binary pattern is
50%. The choice of 3× or 1× the width of the PSF results in deteriorated results. The reason
is explained through an illustration in Fig. 2(a). Consider an Airy point spread function with
null-to-null width w. Convolving a binary pattern of periodicity 2w results in the best modulation
depth together with minimum flat components of maximum and zero intensity. Having larger flat
components implies less level of fluctuations in two consecutive pattern shifted images. The
advantage of using larger period is also manifest in better robustness to noise, this is illustrated
in Supplementary Fig. S2. Indeed, one could use smaller period (say only of size (w)), which
results in half the number of images per orientation, and therefore better temporal resolution.
However, the tradeoff is threefold: (a) poorer modulation depth, therefore (b) lesser fluctuations,
and (c) poorer robustness to noise. More numerical experiments with different periodicities are
presented in Supplementary Note S1 and Supplementary Fig. S4.

Fig. 2. The selection of parameters of the binary pattern projected on MO1 before
illuminating the sample. (a) Selecting periodicity other than ∼ 2w leads to either poor
modulation depth or flat regions of maximum or no illumination, both of which reduce
differential information between two consecutive translated illumination patterns. (b) The
illumination and collection objective lenses determine what region in Fourier space of the
sample gets images and how many orientations are needed for for imaging the sample without
having shadow regions in the Fourier domain. (c) For a more general scenario, the scheme
in (b) presents some limitations.

Pattern shifts (i.e. translations) In order to have uniform illumination for a given orientation,
we introduce shifts in patterns by one pixel of SLM at a time for the entire period of the binary
pattern. Uniformity of illumination can be achieved in principle using just two patterns, namely a
binary pattern and its Boolean inverse, However, shifting one pixel at a time allows for introducing
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the maximum diversity of spatial fluctuations at every point in sample. Further study on the
pattern shift is presented in Supplementary Note S2 and Supplementary Fig. S4.

Orientations Given the desired order of resolution enhancement K over FWHM (∼ w/2) and
the effective size of OTF (proportional to 1/(2w)) of MO2, we compute the number of orientations
such that there is no shadow region within the desired bandwidth. This is illustrated in Fig. 2(b).
It is simply specified using the smallest integer exceeding π/θ, where θ = sin−1 (2/K). However,
this assumes that period 2w was used. Attempting to incorporate a more general scenario, such
as with a different selection of period of patterns and/or f1 including the effect of noise presents
challenges. We therefore include a more sophisticated scheme of coverage of desired spectrum in
Supplementary Note S3 and Supplementary Fig. S5. We note that the analyses discussed here
pertain to the minimum number of orientations needed. We present a discussion regarding using
more orientations than necessary in Supplementary Fig. S6 and Supplementary Note S4.

The parameters derived from the above considerations Given the 660 nm laser light and
the MO2 i.e., 10X (0.25 NA, RMS10X Olympus), 20X (0.4 NA, RMS20X Olympus) and 40X
(0.65 NA, RMS40X Olympus) the null-to-null width w ≈ λ/NA is ∼ 2640, ∼ 1650 and ∼ 1015
nm respectively. Further, the pixel size of SLM (8 µm) combined with 60X of MO1 illumination
implies that the w in SLM pixels is approximately 20, 13 and 8 pixels. Thereby the periodicity of
the patterns is 40, 26 and 16 pixels, the number of pattern shifts is 40, 26 and 16 per orientation.
Further, we used 90 orientations, where two consecutive orientations differed by 2◦. This covered
the entire 360◦ since each orientation is symmetric along the origin. The oversampling in the
orientation is intentional so that the best achieved resolution is limited only by noise in the images.
Further, we optimized the number of pattern required to achieve super-resolution imaging for
different objective lens in the Supplementary Table S1.

3.3. Blind reconstruction approach for super-resolution

We use MUSICAL for blind reconstruction of the sample. While MUSICAL was originally
envisioned for widefield illumination, its capabilities allows its use also for structured illumination
microscopy. This was proved already in [22] where MUSICAL was used with images where the
sample was illuminated using a lattice projecting structured illumination on it. A nice feature of
the algorithm is that every illumination is inherently used without a precise knowledge of it. The
key feature of illumination patterns exploited in MUSICAL is that fluctuations at the same point
in the sample region occur in different time frames from the variety of illumination patterns.
This implies that no illumination estimation algorithm is needed as a pre-processing or tandem
processing step. As a consequence, not only the entire computation is rather simple, also the
sensitivity of the reconstruction to errors in illumination estimation is not a concern.

MUSICAL’s algorithm The algorithm is a combination of Singular Value Decomposition
(SVD) and the knowledge of the PSF of the system together with the mathematically linear
model of imaging discussed in the supplementary document of the original article [14]. Let’s
consider a sequence of images taken for a particular sample stained with fluorescent molecules.
The intensity emitted by these molecules is a random variable and they can be considered as
independent sources or emitters. If this sample is imaged in time, we can obtain a sequence
of images which we then call an image stack. If every image in the stack is flattened to be
represented as a column vector, then the entire stack, can be expressed as single rectangular matrix
I whose columns correspond to each single frame in the stack. This allows its decomposition
using SVD as I = USV with U and V being square matrices and S a diagonal matrix. Due
to the structure of I, we can conclude that the information of its columns is encoded in U.
Further, S contains in its diagonal the singular values of the matrix associated to the respective
columns of U. We refer to these as the eigenvalues and the eigenimages of the stack. Then,
the columns of U, or eigenimages, form a basis of the image stack originally acquired. Among
others properties, these vectors are orthogonal and ordered by their statistical importance in
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terms of how much information they contain with respect to the particular sample. On the
other hand, the stack can be modeled as a convolution of the original emitters distribution E(r)
and the point-spread-function of the optical G(r), where both terms are considered as scalar
functions and r is a two-dimensional vector containing the coordinates in the imaging plane.
Then I(r) = G(r) ∗ E(r) with ∗ meaning convolution. Additionally, if the sample is formed by K
different emitters, then its underlying structure can be expressed as a discrete sum of K impulses
centered in the location of the emitters. This is E(r) =

∑︁K
k=1 bkδ(r − rk). We can then use the

properties of the impulse function and express the image as I(r) =
∑︁K

k=1 bkG(r − rk). Here, bk
is the intensity of each individual emitter. Furthermore, in the discrete case this can be more
easily expressed as the matrix multiplication I = GE where we have use bold letters to indicate
column vectors. In this expression, I corresponds to a single image whose values correspond to
the intensity measured at different sensor or pixels. G is the matrix of K columns containing the
point-spread-function of the system but shifted at the location of the different emitters. Finally,
E correspond to the values of bk. If bk were to vary in time, then we can acquire a stack as
defined previously. In this case, the stack can also be expressed as a matrix multiplication as
I = GE. From this, it is possible to conclude that the columns of G span the entire space of
images regardless of the values of E which can be considered as random. If the same stack were
to be decomposed using SVD as explained before, then the space spanned by G would be the
same than the one spanned by U. If the number of pixels is P, then U has P columns. The
assumption in MUSICAL is that the rank, or the number of non-zero eigenvalues, of I is less than
P. If the rank is S, then it means that the image can be formed only from the span of the S first
eigenimages. This is called the signal subspace. On the other hand, the remaining eigenimages
are considered as forming the noise subspace. Due to the orthogonality of U, both spaces are
orthogonal. However, images are affected by noise and in turn, real images are full-ranked which
makes separation non-trivial. In order to deal with this problem, MUSICAL separates the space
using the eigenvalues and a threshold given by the user. The eigenimages with eigenvalues above
such threshold are considered as the signal, and the one below, noise.

After such separation is made, we can exploit the fact that the signal space spanned by the
eigenimages is the same than the space spanned by the columns of G. As a consequence, the
columns of G are orthogonal to the noise space and therefore its projection on the noise space is
zero. Based on the projections this can be used to define an indicator function which allows to
test an arbitrary point by comparing the point-spread-function centered at that point, and the
eigenimages obtained from the actual image. The indicator function is expressed below in Eq. (1).

f (rt) =
⎛⎜⎝
√︄∑︁

i∈Signal |ui · gt |2∑︁
i∈Noise |ui · gt |2

⎞⎟⎠
α

(1)

Here, ui corresponds to the columns of U indexed by the index i, and gt is the image of a single
test emitter indexed by t given by the shifted PSF of the system. The indicator function assigns a
numerical value at points in the sample, where this numerical value indicates the presence of
fluorophore. In practice, these points are located on a grid finer than the one given by original
pixels, reducing the pixel size of the resulting image when compared to the original image. The
factor α is a contrast enhancement factor whose value is based on heuristics.

In terms of processing, MUSICAL is carried out using a moving window that process a small
patch at the time, instead of the entire field of view. The patch corresponds to a section of the
size of the main lobe of the point-spread-function in the lateral coordinates, but including all the
temporal information. These patches overlap and their corresponding super-resolved images are
then merged by averaging in order to obtain a MUSICAL image of the entire field of view. The
total number of patches correspond to the total number of pixels in the lateral plane.
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A final note on the indicator function is presented here. This can be modified to combine
signal and noise using a weighting function [23]. This is called soft MUSICAL or MUSICAL-S
and allows leave the threshold out of the indicator function. The weighting is a function of
the eigenvalues and allows to include partially information of noise into the numerator of the
indicator function, and signal into the denominator.

Illumination patterns and MUSICAL In the conventional form of MUSICAL, the fluctua-
tions in fluorescence emissions from emitters occurs as the temporal information encoded in V
and the spatial distribution of the emitters gets encoded in the signal space of U. However, in the
application presented here, each frame corresponds to a different illumination pattern. Therefore,
the variation of illumination intensities at pixels over time is encoded in V and the ensemble
of spatial distributions of the illumination patterns is encoded in the signal space of U together
with the sample distribution. The mathematical derivations related to the form in which the
illumination patterns are encoded in U were presented in the supplementary information of [24]
and [22]. The relevant portions of the derivations are reproduced in our Supplementary Note
S5. Here, the derivations of [22] directly apply and thereby the maximum possible resolution
supported by MUSICAL (in the case of best selection of algorithmic parameters) is given by
2(kmax + kMO2 ), where kmax is the maximum frequency supported by the illumination patterns
and kMO2 is the maximum frequency supported by the collective objective lens. It is however
worth noting in our case that kmax depends upon the noise present in the image as the noise levels
determine the farthest peak in the illumination spectrum that is separable from the noise floor.

As described previously, U contains structural information in its columns or eigenimages. And
since the number of matrices U is generally large, studying them is challenging. In the following
section we explain how we have carried out a small analysis of the eigenimages of these matrices
to show how they differ in therms of the information they carry.

The analysis is done by creating images using a single eigenimage from each patch. The
selection criteria is based on the order that every eigenimage has in its own matrix U. So, an
image of the eigenimage of order i is build using the following function:

f (rt)
(i) = |ui · gt | (2)

As can be seen Eq. (2), the expression corresponds to the projection of the PSF on a determined
eigenimage. The stitching procedure is the same than for MUSICAL as describe previously
with the patch-based processing. In Fig. 3 we show a visual example of the relation between
U using the projection of eigenimages of different orders, the diffracted-limited image, and the
MUSICAL result. The first row show the actual images that were obtained using this method,
in addition to the diffracted-limited and MUSICAL image. To improve visualization, these
were normalized following different procedures. For the diffracted-limited and super-resolved
they were first normalized by its maximum value as IN(r) = I(r)/maxr(Ir). For the projections
of eigenimages, the normalization involves the set of all of them. Let o be the order of an
eigenimage. The, the normalization is carried as I(o)N (r) = I(o)(r)/maxr,o I(o)(r). This allows a
fairer comparison between different orders in terms of intensities value in the images. The images
are presented in logarithmic scale of base 10. The bottom row shows the Fourier Transform of
the corresponding image shown in top. These were normalized as IN(r) = |I(r)/maxr(I(r))|2 and
then plotted in logarithmic scale as well. Looking to the first to columns, the first we observe is
how MUSICAL provides a richer frequency content thanks to its super-resolution properties.
Second, we notice how the projection of the first eigenimage (Fig. 3(c),top) do not contain
information for super-resolution as can be see in the smaller radius in the frequency domain
(Fig. 3(c),bottom) when compared to the diffracted limit. This reduction is due to the stitching
process as technically the first eigenimage corresponds actually to the diffracted-limited image
when only a single patch is considered. More interesting is that the projection of higher orders
(Fig. 3(e),top) provide in fact more frequency content than the diffraction-limited but not more
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than MUSICAL as the latter combines all the information available in the eigenimages. Finally,
it’s interesting to note that even though the signal decreases and the background increases as we
move to higher orders, the spectrum seems invariable in terms of coverage. We observed that the
coverage in the frequency domain seems the same except for the first order. However, a study of
this phenomena goes beyond the scope of this manuscript.

Fig. 3. The Fourier Transform allows to compare the spectrum of the diffracted image and
the MUSICAL result in sample of Actin acquired with a 10x, 0.25 NA objective. Scale bar
is 50 µm. The upper row displays different images after a logarithmic transformation in base
10, while the bottom shows their corresponding Fourier Transform.

3.4. Sample preparation, data acquisition and data processing

We consider 2 types of samples in our experiments, namely bead samples with known bead
diameters and actin in HeLa cells. The sample preparation, data acquisition, and data processing
details for the different samples are presented here. A customized mount system is designed to
hold and image the sample.

Bead sample The sample was prepared in the cover slip. Tetra beads of diameter 200 nm
(Tetraspeck, Thermofisher T7279) were employed and excitation/emission wavelength of 660/690
nm were used for them. The stock solution of tetra beads was diluted in proportion 1:50 in
distilled water. 100 µL of the solution was added on the petri dish and allowed to dry completely.
We used 40X, 0.65 NA objective lens for MO2. The exposure time of acquisition is 200 ms per
frame.

HeLa cells sample HeLa cells were grown in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin in a standard
humidified incubator at 37◦C with 5% CO2. Cells were seeded into the glass bottom petri
dish 1−2 days before imaging. For imaging, the cells were washed in PBS and fixed in 4%
paraformaldehyde for 15 minutes. Cells were then washed with PBS and permeabilized with 0.1%
Triton X-100 in PBS for 4 minutes, and washed three times in PBS. Cells were then incubated
with Atto-647N phalloidin in PBS for 20 minutes in order to label F-actin in the cells.

These samples were imaged using different objective lenses for MO2 in order to assess the
resolution scalability with the same illumination strategy but using different collection optics.
These samples were also used to perform several supplementary studies. In the results reported
in the main article, we used four candidate objective lenses for MO2, namely 10X (0.25 NA),
20X (0.40 NA), 40X (0.65 NA) and 50X (0.55 NA). The exposure time in either case is 100 ms
per frame.
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3.5. Data acquisition and analysis

Total 1260 illumination patterns were used to generate super-resolution images in case of beads
and Hela cells. However, number of patterns were further optimized to achieve super-resolution
with minimum frames. All the raw datasets were processed using MUSICAL, without any
preprocessing. Soft-MUSICAL version reported in [23], which alleviates the need of user-
specified threshold. Python implementation of the algorithm was used. Further, we used α = 4
(refer to Eq. (1) above) and sub-pixelation of 10 i.e., one pixel in the raw image corresponds to
10×10 pixels in the MUSICAL generated image. Raw and processed images presented in the
article have been pseudocolored using standard colormaps available on imageJ platform. The
selection of the colormap and the intensity range is done heuristically for good visualization, as
conventional for microscopy data visualization.

3.6. Resolution estimation

In order to estimate the resolution enhancement, we used decorrelation analysis to estimate the
resolution of the computationally generated super-resolved images [25]. It has been shown in
the past to overcome the limitations of Fourier ring correlation [25]. While performing the
decorrelation analysis, we used the Matlab implementation provided by the authors, and set the
parameter for sampling the frequency domain as 50 and the number of low-pass filters as 30. In
order to convert the cut-off frequency kc given by the tool into resolution in metric system, we
used the formula given by the authors, r = 2∗p

kc
, where p is the pixel size.

4. Results

Results on 200 nm beads We first demonstrate the resolution improvement of the present
approach by imaging 200 nm fluorescent beads. The collection objective lens is 40X (0.65 NA)
and the illumination objective is 60X (0.9 NA), which corresponds to diffraction limit of ∼445
nm. Therefore the beads are smaller than the expected resolution enhancement of linear SIM.
Further, some of these beads are spaced within the classical diffraction limit, also closer than the
resolution achievable by linear SIM as well.

Average of the images taken using our illumination patterns is shown in Fig. 4 (left and
middle panels) as a representative of diffraction limited image. The middle panel shows two
region of interests (ROI), each with cluster of beads placed relatively densely. These images are
reconstructed using MUSICAL to utilize non-linear patterns introduced in the acquired datasets.
The results are shown in the right panel of Fig. 4 for the chosen ROIs.

In order to quantify the resolution enhancement achieved by our method, we measured the
PSF from the image of few single beads across the sample in the diffraction limited (average of
all images) and the super-resolved images. The average full width at half maximum (FWHM) of
the single beads is 946 nm. On the other hand, the average FWHM of the same beads in the
super-resolved image is ∼ 347 nm, roughly 3× the diffraction limit.

In addition to FWHM, we also estimated resolution using decorrelation analysis. The resolution
observed in diffraction-limited image is 954 nm and in super-resolved 376 nm. Therefore, the
resolution enhancement is found approximately 2.54. This agrees with the qualitative results as
well, as we explain here. A crop from diffraction-limited image that appears qualitatively similar
to two crops from super-resolved image are identified in Fig. 4. Each of these crops appear to
have two beads placed close to each other. The line profiles across the two beads are also plotted
for each crop. It is seen from the line profiles that the beads in the diffraction-limited crop are
separated by ∼ 1069 nm, while for the super-resolved crops are 400 nm and 368 nm respectively.
This indicates also a resolution enhancement by ∼ 2.6 to 2.9 times. The resolutions obtained by
decorrelation analysis are plotted as a function of number of orientations in Supplementary Fig.
S2.
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Fig. 4. Resolution improvement beyond the diffraction limit, shown using sample
containing 200 nm beads. 40X,0.65 NA objective lens is used for collection of light.
Diffraction limit is ∼445 nm, resolution observed in diffraction limited image is 954 nm and
in super-resolved 376 nm. Region a shown as an inset in top-left panel is diffraction limited
and visually similar to the super-resolved versions of regions 1 and 2 shown in top-right
panel and zoomed-in in the lower panels.

Actin filaments in cells Fig. 5 presents the results for actin filaments. It shows the comparison
of diffraction limited image and our super-resolved reconstruction of actin filaments of Hela cell
using two different objective lenses. Figure 5(a) depicts the superposition of average images and
super-resolved images of the the sample using 10X, 0.25 NA. The same ROI is imaged by 50X,
0.55 NA lens and shown in Fig. 5(b). The zoom-ins of one region of interest, shown using white
rounded rectangle in Fig. 5(a), are shown for the 10X diffraction limited, 10X super-resolved, 50X
diffraction limited, and 50X super-resolved images in Fig.5 (c1-c4), respectively. Analogously,
the zoom-ins of another ROI, shown using sharp cornered rectangle in Fig. 5(a), are shown in
Fig. 5(d1-d4). The results show improvement of contrast and sharpness using our approach in
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Fig. 5. Super-resolution imaging of actin filaments in Hela cells.a) Image acquired with
a 10X, 0.25NA lens and a super-resolved image. b) Similar field of view is imaged by 50X,
0.55 NA lens. Smaller ROI are magnified and shown in c1-c4 and d1-d4). Yellow arrows
point at contrast enhancements leading to better visualization. Cyan arrows show resolution
enhancement leading to better feature details.

sparse regions (shown using yellow arrows), and enhancement of resolution in the dense regions
(shown using cyan arrows) of the diffraction limited image. The regions which are not resolved in
0.25 NA (Fig. 5(c1, d1)) are marked and compared with the super-resolved image (Fig. 5(c2, d2))
generated from the datasets acquired using 0.25NA. Figure 5(c2, d2) can also be compared with
the Fig. 5 image of 0.55 NA (Fig. 4(c3, d3)). It is seen that the features in Fig.5(c2, d2) generally
match well with Fig. 5(c3, d3), with some mismatch of finer details. The possible reason could
be the sample preparation, mechanical instability in the system and polarization sensitivity of the
SLM. Since SLM is an polarization sensitive device, contrast of the illuminated pattern could be
directional dependent. Nonetheless, the issue could be overcome simply by replacing the sample
mounting stage with the fine rotational stage and synchronize with the illumination pattern.

The decorrelation analysis for the data acquired using 10X indicated a resolution of 1856 nm in
the diffraction limited image and 480 nm for the super-resolved image. This indicates a resolution
enhancement of approximately 3.77 times. The decorrelation analysis for the data acquired
using 50X indicated a resolution of 697 nm for the diffraction-limited image and 254 nm for the
super-resolved. This indicates a resolution enhancement of approximately 2.74. The resolution
measured in the diffraction limited and super-resolved images for both collection objective lenses
are presented in Supplementary Fig. S2. Furthermore, we have shown the application of current
work only using low NA detection since. Since, high NA lenses have limited working distance,
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Fig. 6. Pattern optimization for super-resolution imaging with different collection
lenses. Similar region of interests is imaged by three different NA (0.25, 0.40 and 0.65)
without any re-calibration. Scale bar: 20 µm.

more precise alignment of the system will be required to achieve super-resolution on higher NA
lenses. Further accommodation for using liquid immersion medium is a consideration if a special
sample holder is designed for the purpose. On the other hand, low NA lens capture images with
larger depth of field and larger field-of-view, which is desired in many applications.

Multiscale resolution Finally, we optimized minimum number of pattern and angles required
to achieve super-resolution images using different collection lenses. We used three different
collection objective lens i.e., 10X (0.25NA), 20X (0.45 NA), 40X (0.65 NA) and acquired the
datasets of actin filaments of the Hela cells. Period of the binary pattern is selected twice the
null-to-null width of the PSF of collection lens. Details of the optimum number of angles is
simulated and presented in Supplementary Fig. S5 and Supplementary Fig. S7 and Table S1.
Simulated protocols is verified experimentally where 20◦ rotation angle is found suitable for
10X, 0.25 NA to fill OTF symmetrically. On the other hand, 60◦ is well suited for 20X, 0.45 NA
and 40X, 0.65 NA lens. Therefore, total number of frames required to achieve super-resolution
images in case of 10X, 20X and 40X are 360, 78 and 48 respectively. The diffraction limited and
super-resolved images for each case is shown in Fig. 6. Experimentally observed resolution and
the resolution enhancement for each collection geometry is shown in Table 1. Note that, increasing
numerical aperture of the collection objective lens decreases the number of photons per pixel
therefore the signal to background strength decreased in high NA objective lens. Experimentally
calculated resolution in case of 0.25 NA, 0.40 NA and 0.65 NA is found to be 1718 nm, 987 nm
and 681 nm respectively. The results show resolution enhancement by a factor of 1.96, 3.40 and
2.68 for 0.25 NA, 0.40 NA and 0.65 NA, respectively. Even though the signal to background ratio
for 0.40 NA and 0.65 NA is 3.03 and 2.40, which is considered inadequate in case of conventional
SIM, our approach offers resolution enhancement by a factor of 3.40 and 2.68. In Supplementary
notes S6 and Supplementary Fig. S8 and S9, we have compared fluctuation based technique
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such as MUSICAL, SOFI, SRRF and open source SIM reconstruction tool i.e., FairSIM in low
signal to background SIM data. We addressed the artifacts of the methods under two different
levels of signal to background ratio (SBR). The sample can be imaged with high SBR in SIM
and low SBR in our system to still achieve comparable resolution enhancement. Therefore, the
proposed approach could be considered as a simple solution to avoid the instrumentation and
computational complexity of SIM. In addition, the entire framework can be applied to different
imaging modalities by improving their resolution and field of view.

Table 1. Experimental diffraction limited resolution and super-resolution using
different collection objective lens. Factor of resolution enhancement of 2-3.5 with

signal to background ratio of 2.4-5.9. Note that signal to background ratio of
2.4-5.9 considered inappropriate in conventional SIM reconstruction approach.
Less resolution enhancement in case of 0.25NA is observed because of poor

sampling of PSF.

Collection lens Expt. diffraction Expt. super Resolution Signal to

(NAcoll) limited resolution (nm) resolved (nm) enhancement background

0.25 1718 877 1.96 5.93

0.40 987 289 3.40 3.03

0.65 681 254 2.68 2.40

5. Conclusion

In this work, we have presented a structured illumination approach using linear optical system
together with non-linear reconstruction algorithm to achieve super-resolution imaging. Our
technique enables more than the conventional 2-fold resolution enhancement of linear SIM.
The key enabling idea is to obviate the need of strictly clean peaks in the Fourier spectrum of
the illumination by using illumination-blind super-resolution algorithm. The idea is realized
through an experimental scheme which introduces an illumination pattern containing high orders
of frequency peaks obfuscated by an illumination objective lens that projects binary periodic
illumination patterns on the sample. We validate the resolution enhancement using beads sample
and actin filaments in cell sample. We show the resolution enhancement using a variety of
collection objective lenses, ranging from 10X, 0.25 NA to 50X, 0.55 NA. We used the same
illumination objective lens while using the different collection objective lenses, indicating easy
scalability of resolution and field-of-view. We use a fixed high NA lens for illumination in the
present work therefore the field of view will be limited by the illumination objective lens. The
main motivation for this choice was to demonstrate the technique’s strength of being able to
use different collection lenses. Nonetheless, low NA illumination objective lens can be used
to improve the space-bandwidth product of the current approach if desired at almost no extra
complication and with a resolution enhancement of only 2x. This can be achieved by replacing
the excitation objective lens with a multi-objective lens turret such as used in the collection path.

In addition, the results consistently show resolution enhancement by a factor of 2.6 to 4 because
of using high NA condenser lens for the excitation and low NA as a collection objective lens.
On the other hand, non-linearity of the reconstruction algorithm supports better resilience to
noise as well as better contrast enhancement, which further helps in achieving the said resolution
enhancement in very low signal conditions. In the future, we would like to improve the signal
strength while balancing the exposure time, light dose, system stability and photobleaching,
thereby optimizing the system for living cells with resolution enhancement by a factor of more
than 4. We believe that the proposed experimental+computational framework using linear optical
system will find wide applicability to many biological applications where simple optical design
and super-resolution is essential.
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