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Abstract

In scienti�c experiments there are an increasing usage of cameras, along with
other instruments, to observe parameters of physical processes. In this the-
sis, we will discuss how a microcontroller (ATMEL ATmega 324 PA) can be
used to control the operation temperature in a camera.

It will be discussed why this control of temperature can be useful for the
quality of the pictures. Since this thesis is a practical type, we will develop
an active cooling system that handles the temperature control. The thesis
will include descriptions of these hardwares, which has been developed to
achieve this cooling.

When we use cameras in scienti�c experiments we rely on strict and ac-
curate time control of exposure time in the camera. We will make a trigger
system to check the stability and precision of three di�erent trigger sources.
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Chapter 1

Introduction

Aerial photography is a technology, that is mainly used in cartography to
construct topographic maps. It is useful for site planning, archaeology, movie
production, environmental studies, surveillance, commercial advertising,
conveyancing and artistic projects. [7] We want to check if it is possible
to make an automated system that can start taking pictures in presence of
an external trigger.

1.1 Problem

Cameras are used more rapidly in sienti�c experiments, where they are mostly
used to observe parameters in physical processes. If we want an accurate
comparison with observations done by other cameras and/or other types of
instruments, a strict control of exposure time on the camera is required.
Therefore we will study the precision and stability of three di�erent trigger
sources, one software trigger and two external triggers.

When a camera takes a picture, the quality of that picture is very dependent
on the temperature of the sensor chip in the camera. If we want good qual-
ity on the data from the sensor chip, it is prefered that the sensor chip has
a temperature as close as possible to the lower limit of the operative tem-
perature to the camera. This can be solved with an active cooling device.
In this thesis we will measure the temperature in the camera, and cool it if
necessary. We will also discuss the improvement of this active cooling device.
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2 CHAPTER 1. INTRODUCTION

1.2 Goal

We need to develop hardware that will be used to measure the temperature
inside the camera. The precision of this hardware needs to be at least 0.1
degrees Celsius. We use the cooling system to control the operational tem-
perature inside the camera and hold it stabil around 0-1 ∘C.

We have to develop software that can control the camera, the microcon-
troller and show the quality of the pictures as we vary the temperature in
the camera. We will check which other sources can in�uence the quality of
the pictures.

We will use one software trigger source, a computer, two di�erent exter-
nal trigger sources, a microcontroller and a frequency generator. This is to
check the precision and stability when we use an external trigger compared
to a software trigger.

1.3 Structure

The structure of the thesis is as follows:
∙ Chapter 2 will discuss the system design of both the cooling system and
the trigger system.
∙ Chapter 3 will discuss the control unit and its internal ADC (Analog to
Digital Converter).
∙ Chapter 4 will discuss the camera and di�erent noise sources that could
occure in it.
∙ Chapter 5 will discuss the design of the thermometer and do the necessary
calculations to get the best possible resolution.
∙ Chapter 6 will discuss the design of the cooling system and the necessary
calibrations.
∙ Chapter 7 will discuss the quality of the pictures.
∙ Chapter 8 will discuss the possibilities we have when we want to use an
external trigger on the camera.
∙ Chapter 9 will discuss the precision and stability of three di�erent trigger
sources.
∙ Chapter 10 will discuss the results we got in this thesis.
∙ Chapter 11 will draw a conclusion from this thesis.



Chapter 2

System Design

The automated system that will be made in this master thesis consists of two
smaller systems, one cooling system and one trigger system. The automated
system will take pictures at a prede�ned camera temperature.

Figure 2.1: This is a sketch of the cooling system. The control unit gets
an input from the thermometer and will compute an output from this. The
output signal will turn the switch on or o�. The cooling element is controlled
by the switch and will cool the temperature inside the camera.

In �gure 2.1 we see the layout of the cooling system. In the �gure we see
that the thermometer is placed on the camera to measure the cameras tem-
perature. The thermometer provides the control unit with a voltage value.
The control unit can convert this analog voltage into a digital number. After
the control unit has converted the analog voltage, it will know if the camera

3



4 CHAPTER 2. SYSTEM DESIGN

is too hot and needs cooling. The control unit will turn on the switch when
the camera is too hot and the cooling element will recieve power to start the
cooling process.

The trigger system is supposed to use either a software trigger source or
an external trigger source. We will use this trigger system to check the pre-
cision and stability of three trigger sources. In �gure 2.2 we see the layout
of the trigger system.

Figure 2.2: This is a sketch of the trigger system. The camera is programmed
by a computer. The camera then recieve a trigger signal from either a
function generator, microcontroller or a computer. After the picture is taken
it is sent to the computer from the camera.

We've got a computer to program the camera. When the camera is pro-
grammed it can understand what trigger source it is going to recieve a signal
from. It will also know the exposure time, gain and how many pictures it is
going to take. The computer is receiving and storing the pictures after they
have been taken. One at a time, the three trigger sources will provide the
camera with a trigger signal.



Chapter 3

Control Unit

The microcontroller used in this thesis is an ATMEL ATmega 324PA. The
microcontroller from ATMEL has a built-in Analog-to-Digital Converter
(ADC). In the �gure 3.2 on the following page we see the block diagram
of this Analog-to-Digital Converter. [4]

We can see from the chart that the ADCSRA, ADCSRB and ADMUX are
the registers that manage the components in the ADC. These registers can
be used to control the ADC. For instance, they can control when to start a
conversion or if the ADC should be enabled. These registers helps the analog
voltage from the thermometer to be converted into a digital value through
this ADC.

We are now going to study these registers, in �gure 3.1 we see how the
representation of the bits is in each register.

Figure 3.1: Description of the Bit-representation of the ADMUX, ADCSRA
and ADCSRB registers.

5



6 CHAPTER 3. CONTROL UNIT

Figure 3.2: Analog-to-digital Converter Block Schematic. This is a block
diagram of the ADC that is inside the microcontroller

3.1 ADCSRA - ADC Control and Status Reg-

ister A.

Bit 0:2 are the ADC Rescale Select Bits. These bits determine the division
factor between the crystal frequency on the card and the input clock on
the ADC. The input clock on the ADC will determine how accurate the
measurements will be. [4]

Crystal frequency
Division factor

= ADC input clock (3.1)

Bit 3 represents the ADC Interrupt Enable. When this bit is written to one
you have activated the ADC's interrupt mode. [4]
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Bit 4 refers to ADC interrupt �ag. This bit is set when a conversion com-
pletes and the data registers are updated. This interrupt is executed if the
ADC interrupt is enabled. [4]

Bit 5 is the ADC Auto Trigger Enable bit. This bit decides whether the
ADC Auto Trigger is active or not. The trigger source is selected by setting
the ADC Trigger Select bits in ADCSRB (discussed in section 3.2). [4]

Bit 6 tells the ADC to start a conversion, this is for the case when you
use single conversion mode. In single conversion mode, you need to write
this bit to one in your program to start each conversion. In free running
mode this will be automated, but it will take more time to convert one input
because the microcontroller need to set all the values itself. When we use
free running mode this bit will exchange between one and zero, since it tells
us if the ADC is converting or not. [4]

Bit 7 decides if the ADC is on or o�. When this bit is written to one it
enables us to use the ADC, and if this bit is zero the ADC will be switched
o�. [4]

3.2 ADCSRB - ADC Control and Status Reg-

ister B.

Bit 0:2 refers to ADC auto trigger source. This are the bits that selects which
trigger source we want to use after setting the ADC auto trigger enable bit in
ADCSRA. In table 3.1 on the following page we can see the di�erent sources
we can choose from. [4]

Bit 3:7 are reserved bits, which we can't control. These bits are for fu-
ture use in the ATmega 324PA. These bits must be written to zero when
ADCSRB is written, this is to ensure compability with future devices. [4]

3.3 ADMUX - ADC Multiplexer Selection

Register.

Bit 0:4 provide the multiplexers with control signals, so that the right com-
bination of analog inputs will be linked to the ADC. The cooling system gets
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ADTS 2 ADTS 1 ADTS 0 Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/Counter0 Over�ow
1 0 1 Timer/Counter1 Compare Match B
1 1 0 Timer/Counter1 Over�ow
1 1 1 Timer/Counter1 Capture Event

Table 3.1: ADC Auto Trigger Source Selections.

a single-ended (how this is implemented in hardware is explained in chapter
6) input on the �rst pin on port A, ADC0, on the microcontroller. [4]

Bit 5 represents the ADC Left Adjust Result (ADLAR) bit. It contains
the control signal for how the converted result from the ADC is presented in
the ADC Data Register. If the ADLAR bit is 1, the representation of the
converted result is left adjusted; otherwise it would be right-aligned. If we
use a 8-bit ADC we can represent the result left adjusted, but if we want to
use a 10-bit ADC we need to have the result right adjusted. The reason for
this is the way the microcontroller read its calculated value from the ADC
Data Register. [4]

Bit 6:7 - REFS 0:1, represents the reference voltage that is used in the con-
verter. These bits are called Reference Selection Bits, and since there are
two of these bits we will be able to have four choices of this reference voltage.
[4] In table 3.2 it is shown what choices we got:

REFS 1 REFS 0 Voltage Reference Selection
0 0 AREF, Internal Vref is turned o�
0 1 AVCC with external capacitor at AREF pin
1 0 Internal 1.1V Ref. with external capacitor at AREF pin
1 1 Internal 2.56V Ref. with external capacitor at AREF pin

Table 3.2: REFS-table to the Analog-to-digital Converter.
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3.4 Implementation of the Registers

Now we use these registers to program the microcontroller. In this thesis
the registers are set to enable the ADC, and the converted value is set in
free running mode, meaning that the ADC converts the incoming value at all
time. When the �rst conversion is �nished, the second is started. The ADC
is programmed to start the converted value at a rising edge on the crystal.

3.4.1 ADCSRA

Bit 0:2 are the ADC Rescale Select Bits. We use a maximal division factor,
so we get maximized the accuracy on the measurements. The maximal divi-
sion factor is 128 and is retrieved by writing these bits to 111. We now use
equation 3.1 on page 6 to retrieve the input clock frequency for the ADC.
We see that the frequency will be 15,6 kHz (156250 Hz).

Bit 3 represents the ADC Interrupt Enable. We don't need this interrupt in
our case, this bit is zero.

Bit 4 refers to ADC interrupt �ag. We do not use the interrupt mode,
therefore it's no use for this �ag and this bit is set to zero.

Bit 5 is the ADC Auto Trigger Enable bit. We have an ADC which is
auto triggered, this bit will therefore be one and the selected source will be
discussed later.

Bit 6 tells the ADC to start a conversion. We use free running mode and
as we have discussed this mode will alternate the bit between one and zero.
This bit is written to zero in the beginning; it has no e�ect since the bit-value
will be one as it gets a conversion started.

Bit 7 decides if the ADC is on or o�. We want to enable the ADC, so
we write this bit to one.

The ADCSRA's bit pattern is now 1010 0111 (bin) or 0xA7 (hex).

3.4.2 ADCSRB

Bit 0:2 refers to ADC auto trigger source. We will use the free running mode,
000. It will take more time than the single conversion mode, but there is no
time limit in this measure feature. This free running mode uses 25 clock
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cycles per conversion, while the single conversion mode uses about 13 clock
cycles per conversion.

The ADCSRB's bit pattern is now ANDed with 1111 1000 (bin) or 0xF8
(hex), this is done so we can set the last three bits without changing the �rst
�ve. The �rst �ve are the reserved bits. The �nal bit pattern in ADCSRB
is now xxxx x000 (bin), the x's marks the reserved bits.

3.4.3 ADMUX

Bit 0:4 provide the multiplexers with control signals, so that the right com-
bination of analog inputs will be linked to the ADC. The system gets a
single-ended input on the �rst pin on port A, ADC0, the control signal will
therefore be 00000.

Bit 5 is the ADLAR bit. This code operates with a 10-bit ADC and we
need our result to be right-adjusted, so this bit will be 0.

Bit 6:7 - REFS 0:1. We have chosen the REFS bits to be 00, which gives us
reference voltage from the AREF pin. The voltage on this pin is 2,5V, we
are now going to see why. When we choose the referance voltage, we need to
know how the microcontroller works. The settings in the microcontroller will
change if the input voltage value exceeds 2,5V on ADC0, since the ADC0
will go from low to high. We also want to use a 10-bit resolution ADC, in
order to achieve max resolution from the ADC. Remember our goal is to
achieve a resolution, 0,1 degrees for each digital value or better. With these
two requirements we see that the reference voltage needs to be 2,5V.

The bit pattern in the ADMUX is now 0000 0000 (bin) or 0x00 (hex). The
microcontroller is programmed to have a 10-bit resolution, and therefore,
there will be 1024 levels.

Voltage per level =
Reference voltage
Number of levels

= 0, 0024V/level

The voltage sent into the converter will get a value between 0 and 1024, and
this value will be written in the ADC Data Register, see �gure 3.2 on page 6.
To obtain this value we use the read_adc feature (see Appendix C).
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3.5 ADC Accuracy

The ADC accuracy is important since we know that there will occure errors
inside the microcontroller while it calculates the output. Therefore we check
what errors could occure in a microcontroller. In addition to the following
error sources we got Integral Non-Linearity and Di�erential Non-linearity.

3.5.1 O�set Error

An o�set error is shown in �gure 3.3, the actual curve will have a deviation
from the ideal curve. The o�set will be the same at all points on the curve,
so the actual curve will have the same slope as the ideal curve. [4]

Figure 3.3: This is a representation of the o�set error we might have in a
microcontroller.

3.5.2 Gain Error

A gain error is shown in �gure 3.4 on the next page. We can see that the only
di�erence between the ideal and the actual curve is the slope. This means
that the microcontroller have been calculating the output with a slightly
di�erent gain than it was supposed to. To �nd this error we need to check
the deviation between the two curves of the last transition. [4]
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Figure 3.4: This is a representation of the gain error we might have in a
microcontroller.

3.5.3 Quantization Error

Our microcontroller got a �nite number of values it could adress to the input
voltage, due to this quantization, an input voltage which is 1 LSB wide will
be adressed the same value (LSB in this content stands for least signi�cant
bit). Maximum ±0.5LSB from the true value. [4]

3.6 Timing inside the ADC

When we use the microcontroller as an external trigger source it is important
that it is precise. In chapter 9 we will see how we use this microcontroller to
make a square pulse at a frequency of 10 Hz. In chapter 8 we will see how
this square pulse can be used as an external trigger.

From �gure 3.5 on the facing page we can see how the timing works inside
the microcontroller. We see from the �gure that the end o� each operation
happens after the clock has performed a cycle.

This may be enough to make the microcontroller a bad trigger source. Since
the instruction fetch and instruction execute is as long as the clock cycle it
should'nt have any a�ect on the frequenzy of the square pulse.
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Figure 3.5: This shows us the internal timing in the microcontroller when
operations are processing. We see that both instruction fetch and instruction
execute is ended after the clock cycle is �nished.
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Chapter 4

Camera

The AVT Guppy F044 NIR is the camera that will be used. The camera have
a 6-pin FireWire connection and an 8 pin HIROSE cable connection. The
AVT Guppy F044 NIR is also equipped with a Sony CCD ICX429 device.
It can have a shutter speed from 62�s and up to 67 108 864�s. The camera
is highly sensitive to Infrared light. The camera support Trigger_Mode_0,
Trigger_Mode_15 and trigger delay which will be discussed in chapter 7. The
camera can also amplify the pictures by programming the camera to use gain.
The camera can amplify pictures with 24dB (decibel) in 680 gain steps. [13]
This means:

Increment length =
Decibel

Gain Steps

= 0.035
dB

step

4.1 The CCD Detector

The camera that is used in this master thesis consists of a Sony CCD ICX429
device. This is a charge coupled device (CCD), which was invented in the
1970's. The CCD is used in professional astronomical imaging. It has re-
placed �lm and photographic plates because the CCD's ability to collect light
is more e�cient. Since the resulting data is digital, it allows images to easily
be processed in a computer. [6]

The CCD is usually referred to as an electronic photon detector. If you
have a CCD camera it consists of a two-dimensional array of photon detec-
tors that lies in a layer of silicon, this silicon works as a semi-conducting
material. In order to collect images this array of photon detectors is placed

15



16 CHAPTER 4. CAMERA

at the focal plane of a telescope. [6]

Each one of these detectors is referred to as a pixel. These pixels are ca-
pable of collecting photons and storing the produced number of electrons
individually. Since each individual pixel has detected varying intensities of
light, it's possible to produce a digital image by reading it into a computer.
[6]

4.2 Primary Sources of Noise

4.2.1 Readout Noise

Readout noise is a type of additive electronic noise; it is added to the �nal
picture as it is being read out of the device. In order to understand the
readout noise, we can study a picture that has been illuminated with exactly
100 photons in every pixel. [10]

The �nal image will not have exactly 100 registrated electrons in each pixel
because of the random �uctuations within the readout ampli�er. The uni-
form illumination of each and every pixel isn't very practical. If we instead
take a picture where we are supposed to get zero in each pixel, it will be
easier to check how big these �uctuations will be. [10]

To capture such a photo we put the lens cap on the camera and use an
exposure time equal to zero. A photo like this will contribute to construct a
bias frame. A bias frame is generated by averaging nine or more images. We
have to do this averaging to get the right image of the readout noise, since it
will be di�erent for each time there is captured a photo. The readout noise
can be removed by subtracting this bias frame from the source image. [6]
[10]

4.2.2 Thermal and Dark Noise

Thermal noise is the most basic type of noise, caused by thermal vibrations of
bound charges. Consider a resistor at a temperature of T degrees Kelvin(K),
as depicted in �gure 4.1 on the next page. [8]

The electrons in this resistor are in random motion, with a kinetic energy
that is proportional to the temperature, T. These random motions produce
small, random voltage �uctuations at the resistor terminals, as illustrated in
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the �gure. This voltage has a zero average value, but a nonzero rms value.
[8]

Figure 4.1: A random voltage generated by a noisy resistor.

This thermal noise is another source of noise in a CCD camera. In a CCD
this thermal noise is represented in a di�erent way. In this case there are two
types of electrons, those we want and those we don't want. [6]

The type of electrons we want are the ones that are generated by the photons
which has been hitting the pixels. The other type of electrons are generated
by heat that is produced in the system. When these electrons hit the pixels,
there is no way the system can distinguish these unwanted electrons from the
wanted photons. [6]

The electrons that have been excited even when light does not hit the de-
tector are referred to as dark current. The electrons from each pixel will be
counted and more dark current will contribute to increase the mean value of
a picture (more of this in chapter 7). As we understand this dark noise is
a consequence of the thermal noise. If we use a long enough exposure time,
the detector could be �lled with electrons generated by the thermal noise. [6]

This noise can be eliminated by cooling the CCD detector. But even when
the CCD is cooled, there will still be thermal noise. This noise can be re-
moved in the same way as for the readout noise. [6]

If we make a dark frame, we can subtract this dark frame from the source
image and compute the image as correct as possible. A way we can create
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this dark frame is to putt the lens cap on the camera and set the exposure
time and other settings, as gain, to be the same as the settings in the source
image. We take nine or more pictures and averaging these to make a frame
which will represent the dark noise in a source image. [6]

4.2.3 Shot Noise

In electronic circuits there could occur noise of the form "shot noise". This
noise occurs because of the electric currents random nature. We know that
the electric current consists of individual charged electrons, when this current
is moving it won't move in a continual motion. There will be a di�erence in
distance between each individual electron. [2]

This means that the time between each electron arrives at a cross section
of a wire, is completely independent from when other electrons arrives. This
will lead to a slight variation in the �ow. When we talk about DC (Direct
Current) we don't get any information about this variation, we use the mean
value when referring to this current. [2]

In a CCD camera we will also have shot noise as a source of noise. When
you take a picture, there is no way to get the exact same number of photons
recorded in each pixel with a constant exposure time. There will be a slight
variation in intensity. This noise is removed at the same time as the dark
current is removed. [2]

4.2.4 Other Sources of Image Degradation

The quality of the pictures can be disturbed in other ways than the ones
already mentioned. For instance hot spots. Hot spots are pixels that have
higher dark current than average. The reason for this may be that the silicon
used in the CCD-chip took some damage under the manufacturing process.
[6]

Sometimes the electrons get caught in traps when the readout is under pro-
cess. When the vertical transfer of charge is blocked during the readout
process, dark columns and long vertical dark streaks will occur on the pic-
tures. [6] Bright vertical streaks could also appear on the pictures; these
are also caused by traps. But in this case, the captured electrons have been
leaked out into the closest pixels during the readout process. These defects
will be revealed in a dark frame. [6]



Chapter 5

Thermometer

We are going to make a thermometer with a NTC-thermistor (Negative Tem-
perature Coe�cient-Thermistor). Since this thermometer is to be used as an
indicator for if we have to cool the camera or not, we need quite good reso-
lution.

We have decided that a resolution near 0.1 degrees Celsius for each digi-
tal value will be enough. In �gure 5.1 on the following page, we can see
a Wheatstone bridge that will be used to measure the temperature. This
bridge will be modi�ed as we design and calculate the values for R1 to R4.

The output voltage from a resistive de�ection bridge as the Wheatstone
bridge [3] is de�ned by formula:

Vout = Vs(
R1

R1 +R4

− R2

R2 +R3

) (5.1)

The Wheatstone bridge that we use includes just one variable resistor; a
10kΩ NTC-thermistor. We can exchange one of the resistors, see �gure 5.2
on page 21. The NTC will vary as the temperature increase or decrease. This
can be used to get di�erent output voltage for various values of the temper-
ature. Since we have exchanged R1 to RT we rewrite the equation 5.1.

Vout = Vs(
RT

RT +R4

− R2

R2 +R3

)

If we divide by RT in the �rst fraction and divide by R2 in the second fraction,
we get:

Vout = Vs(
1

1 + R4

RT

− 1

1 + R3

R2

)
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Figure 5.1: This is a sketch of the Wheatstone bridge befor we start the
designing prosess.

We use R2, R3 and R4 as �xed resistors, and need to address these resistors to
some values. The supply voltage will be decided later as we design the bridge.

From RT we can �nd the minimum and maximum output voltage.[3]

Vmin = Vs(
1

1 + R4

RTmin

− 1

1 + R3

R2

)

Vmax = Vs(
1

1 + R4

RTmax

− 1

1 + R3

R2

)

From the thermistor's datasheet we know how the resistant in the NTC
varies with temperature, see �gure 5.3 on page 22. [11] We know that the
temperature will lie in the [0 30] degrees Celsius range. We can see the
resistors value for these temperatures; it will be about 32000Ω at 0 degrees
Celsius and around 8000Ω at 30 degrees Celsius.

To design the bridge we require a balanced bridge, which means that Vmin =
0.[3] To ful�ll this we can see that:

R4

RTmin

=
R3

R2

This means that R3 = R4 and R2 got to have the same value as RTmin , RTmin

is about 8000Ω. We use a potentiometer to match this resistant. To �nd R3
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Figure 5.2: The Wheatstone bridge with a NTC-termistor.

and R4 we need to study some more.

We want to get as much di�erence between Vmin and Vmax as possible, since
we want a good resolution. To achieve this we check where Vmax - Vmin got
the largest value as we vary R3 and R4.

Vmax − Vmin = Vs(
1

1 + R4

RTmax

− 1

1 + R3

R2

)− Vs(
1

1 + R4

RTmin

− 1

1 + R3

R2

)

y =
Vdiff
Vs

=
1

1 + R4

RTmax

− 1

1 + R4

RTmin

(5.2)

From �gure 5.4 on page 23 we can see how this voltage di�erence vary with
di�erent resistors at R3 and R4. The voltage di�erence is viewed in percent
of the supply voltage. We see that we have maximum around 16000Ω. This
will give maximum di�erence in the output voltage for a temperature range
of 30 degrees Celsius.

We check the result by deriving the expression 5.2 to retrieve this maximal
di�erence between Vmin and Vmax, as we vary R4. To �nd the maximum we
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Figure 5.3: Resistance in the NTC versus temperature in the NTC.
Resistance [kΩ] at the y-axis and temperature [∘C] at the x-axis

need to check where the derived expression is equal to zero.

y =
1

1 + R4

RTmax

− 1

1 + R4

RTmin

(5.3)

�y

�R4

= 0 = − 1

RTmax(1 + R4

RTmax
)2

+
1

RTmin(1 + R4

RTmin
)2

R2
4[

1

RTmin

− 1

RTmax

]− (RTmax −RTmin) = 0

Solve this second order equation and we retrieve R4:

R4 = 16000

We have found R3 = R4 = 16000Ω. We don't have this resistant, so we
used the closest one we got, approximate 17, 2kΩ. We have now designed the
bridge to have maximum voltage di�erence at the output measure points.

To �nd the supply voltage we need to know how much the microcontroller
can take. The microcontroller can take an input di�erence of 2,5V on the
ADC input. The reason for this is as we explained in chapter 3, that when
the input voltage on the ADC exceeds 2,5V the pin value goes from low to
high and destroy the settings in the microcontroller.

We have learned to stay away from boundaries like these when designing
circuits. Therefore we say that the maximum voltage the microcontroller
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Figure 5.4: Here we have the voltage di�erence in relation to the supply
voltage as we vary R3 and R4.

can handle at the ADC input is Vdiff = 2, 4V . We can now �nd what supply
voltage we need.

Vdiff
Vs

= Voltage di�erence in percent of supply voltage.

Vs = 7, 2V

In the calculation we use 0,333, this is the voltage di�erence in percent of
the supply voltage at R4 = 17, 2kΩ, see �gure 5.5 on the following page.
We see that the supply voltage over the bridge needs to be 7,2V to get the
maximal voltage di�erence to be about 2,4V at the di�erential output from
the bridge. Since we use a NTC(Negative Temperature Coe�cient) ther-
mistor, this voltage di�erence is achieved when the temperature is 0 degrees
Celsius.

Now we have taken advantage of all the 1024 digital values, so we should
be able to calculate the resolution.

Resolution =
Degrees Celsius
Number of levels

(5.4)

= 0, 029[
∘C

level
]
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Figure 5.5: Here we have the zoomed version of �gure 5.4. We have plotted
the voltage di�erence in relation to the supply voltage as we vary R3 and R4.

We can see that we now got a better resolution than the one we actually
wanted. This would have been the real resolution if we didn't consider the
boundaries when calibrating the system. The �nal resolution will therefore
be viewed after we have calibrated the overall cooling system.

When we calibrated the bridge, we found that the supply voltage actually
needed to be 7,15V (the calibration will be discussed in chapter 6). We could
also see �uctuations in the output voltage, not big ones, but enough to throw
the microcontroller out of control. The digital value varied with about 60
digital values, in temperature this would correspond to 2 degrees. We there-
fore used an oscilloscope to check the noise on the bridge.

The bridge got noise at high frequencies; the peak to peak value were hard
to read of the oscilloscope, but lied in the 300mV range. We see from this
number that we should have a larger variation of the digital value.

Variation in digital values =
Peak to peak value
Voltage per level
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The voltage per level is the same we found in chapter 3. From the 300mV
peak to peak value we should have had a variation of the digital value of
about 125 digital values. The reason for this smaller variation is because we
have written the software to take a mean value of 30 measured values (see
Appendix C).

We could also see on the ocsilloscope that the bridge had the legendary
50 Hz noise. In the attempt to remove this noise we started to place an elec-
trolyte on the bridge. This electrolyte is connected as shown in �gure 5.6.

Figure 5.6: Here we can see how the electrolyte is connected. We have also
set the value for R2, R3 and R4

An electrolyte is supposed to remove the 50 Hz noise, but because of its de-
sign it is also eliminating some high frequent noise. We use a dry electrolyte,
because it is more e�cient to remove the high frequent noise than a wet
electrolyte.

When we now connect the bridge to the oscilloscope, we see that the elec-
trolyte has almost completely removed the 50Hz. The 50 Hz comes from
antenna e�ects, which we can get from components and the bridge itself. To
minimize the antenna e�ect, we have to make the bridge as small as possible,
with as small components as possible.
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After making a smaller version of the bridge we check the noise again. There
was still some 50 Hz noise we had to get rid of. The high frequent noise is
still on the new bridge, but the peak to peak value has now reduced to about
200mV. The solution to get rid of the last bit of 50Hz noise is to make an
AC (Alternating Current) ground at the two measure points. See �gure 5.7
for how the bridge is designed.

There is now only the high frequent noise left on the bridge. The high
frequencies are removed by a capacitor that is placed over the output points.
It works as a low pass �lter. This low pass �lter removed a lot of the high
frequent noise. The peak to peak value of this noise is now 20 mV that will
have some e�ect on the output voltage. These e�ects is eliminated in the
software as we mentioned earlier (see Appendix C).

Figure 5.7: Here we see the �nal design of the Wheatstone bridge that will
be used as a thermometer in this thesis.



Chapter 6

Cooling System

6.1 Cooling Element

The cooling element which will be used in this thesis is a peltier element
(PE-127-10-13). When using a peltier element, it is critical to get all the
energy away from the camera. The camera is using maximum 2 watt at a
12 volt power supply. We therefore need a peltier element that can handle a
minimum of 2 watt. [1]

The peltier element we have chosen can handle up to 37,9 watt, we can
therefore be sure not to destroy it. We chose the peltier to have the same
dimentions as one of the camera sides so we get a big area covered. We
then designed an aluminium sheet to embrance the camera on three sides,
see �gure 6.1 on the next page. This was to cool the camera from three sides
in stead of just one. [1]

6.2 Switch

The switch is implemented as an electric component and works automaticly
when it get control signals from the microcontroller. The switch is con-
structed with two MOSFET transistors, TIP3055 and BD137. We use the
BD137 to turn on the TIP3055, as shown in �gure 6.2 on page 29, because
the microcontroller alone is not strong enough to turn on the TIP3055.

The reason why we have'nt implemented the BD137 alone, is because the
current that will run through the peltier element is too great for this tran-
sistor to bear. The solution is to use our microcontroller to switch on the

27
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Figure 6.1: This is a sketch of how the aluminium is designed to embrance
the camera, so the peltier element can cool the camera from three sides.

BD137 that will use the 12 volt power supply to switch on the TIP3055 tran-
sistor.

6.3 How the Cooling System Works

The microcontroller will get a voltage value in on one of the pins, ADC0.
This voltage is coming from the Wheatstone bridge. The Wheatstone bridge
has two outputs, so how does it work as a single ended input? If we use a
�oating power supply on the Wheatstone bridge we can use one of the out-
puts as a GND reference and send the other output to the ADC0 pin.

One of the outputs will be at a constant value; we send this to GND on
the microcontroller and the power supply will now act as a �oating one. The
output that will vary is sent as input to the ADC0. When this voltage is
getting to a certain value, we got to switch one pin at port D on the mi-
crocontroller to high. When the pin is high, the switch gets connected to
ground, and this turns on the peltier element. When the peltier element has
lowered the temperature on the camera, the microcontroller will turn o� the
peltier element.

If the microcontroller is to understand the voltage that is submitted from
the measure bridge, it must be converted into a digital signal. This is where
the built-in-ADC on the microcontroller is used. The analog voltage is con-
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Figure 6.2: To the left is a sketch of the designed switch, and to the right is
the switch in hardware.

verted to a digital value through the ADC. The relation between analog
voltage and digital values is:

Digital value =
Analog voltage
voltage/level

(6.1)

In table 6.1 on the next page we can see what voltage each digital value will
be equivalent to. The "Digital value" column represent the expected digital
value, while the "Displayed value" column describes what digital value the
microcontroller has calculated. The "O�set" column will be discussed in sec-
tion 6.4.

6.4 O�set

If we look at the "O�set" column in table 6.1 on the following page. The
o�set value is positive close to the digital value zero and slowly, but surely,
it crawls to the negative side as the displayed digital value reach 1006. In
chapter 3 we discussed ADC Accuracy, and here we clearly see that the mi-
crocontroller has accuracy issues.
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Measured voltage Digital value Displayed value O�set
0.004 1.6384 0 1.64
0.1 40.96 37 3.96
0.2 81.92 78 3.92
0.3 122.88 119 3.88
0.4 163.84 160 3.84
0.5 204.8 202 2.8
0.6 245.76 243 2.76
0.7 286.72 284 2.72
0.8 327.68 325 2.68
0.9 368.64 366 2.64
1.0 409.6 407 2.6
1.1 450.56 448 2.56
1.2 491.52 489 2.52
1.3 532.48 531 1.48
1.4 573.44 572 1.44
1.5 614.4 613 1.4
1.6 655.36 655 0.36
1.7 696.32 696 0.32
1.8 737.28 737 0.28
1.9 778.24 778 0.24
2.0 819.2 819 0.2
2.1 860.16 860 0.16
2.2 901.12 901 0.12
2.3 942.08 942 0.08
2.4 983.04 983 0.04
2.456 1005.9776 1006 -0.0224

Table 6.1: Digital values with known input voltage to the ADC.

We see that the o�set from the �rst measurement have a deviation from
the other o�sets. The reason for this might just be that we are close to zero.
If we look at the other o�sets, we see that they decrease as we increase the
voltage at the input on the ADC. We manage to use the three error sources,
discussed in section 3.5, to describe the error in the microcontroller.

First the o�set error occures, we have a deviation of about 4 from the real
value at 0.1V. Since the deviation decrease as we increase the voltage at the
input on the ADC, we have found gain error. If we look closer on the o�set
we can see that it permanently decrease by 0.04 digital values each time we
increase the voltage 0.1V, but we got three exceptions.
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We see that when we increase the voltage from 0.4 to 0.5, from 1.2 to 1.3 or
from 1.5 to 1.6, the deviation decrease 1,04 digital values. These three steps
can be associated with the quantization error.

6.5 Calibration of the System.

Before we can study how the cooling system is improving the pictures, we
have to calibrate the system. To calibrate the system we have to check what
voltages we got at the di�erent temperatures. In �gure 6.3 we see the cali-
bration setup.

This setup will give us a voltage at the measure points on the bridge. These
voltages will have a corresponding temperature which we get from the ther-
mometers. The water will have temperatures at: 0, 5, 10, 15, 20, 25 and 30
degrees Celsius.

We get these temperatures by adding cold and warm water. The temper-
ature of the water has to be stabilized, before we check the voltage at the
measure points. To be sure of the temperature, we use three thermometers
and calculate the average of the temperature.

Figure 6.3: This is the setup we have used to calibrate the cooling system.
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Temperature (average) Voltage Digital value Displayed digital value
0.2 ∘C 2.4 V 983.04 983
5.0 ∘C 1.982 V 811.83 812
10.2 ∘C 1.533 V 627.92 627
15.0 ∘C 1.137 V 465.72 465
20.1 ∘C 0.735 V 301.06 300
25.0 ∘C 0.364 V 149.09 148
30.0 ∘C 0.013 V 5.32 4

Table 6.2: Digital value after calibrating the system.

First we need to set the voltage supply over the bridge. We have balanced
the bridge and considered the boundary close to 0V. There are no problems
there, but when we get close to 0 degrees Celsius we need the voltage to
be 2.4V. We cool down the water to 0 degrees Celsius and change the sup-
ply voltage on the bridge until we have 2.4V at 0 degrees Celsius. This is
achieved at Vs = 7.15V .

In table 6.2 we can see which digital value each voltage are converted into
after we have set the supply voltage on the bridge. The values in the "Dig-
ital value" column are derived from equation 6.1 on page 29. We will use
the "Displayed digital values" in our program code to get control over the
temperature in the camera.

These values will be set as a limit value inside the microcontroller one at
a time. The microcontroller will start the cooling process each time the
calculated digital value gets smaller than the limit value. When the micro-
controller has cooled the camera for a while, and the calculated digital value
exceed the limit value it will stop the cooling process.

Since the system now is calibrated, and we got the �nal values from the
calibration, we are able to recalculate the �nal resolution for our thermome-
ter. We use the di�erence in degrees Celsius and the respective di�erence in
digital values. We use equation 5.4 on page 23:

Resolution =
30.0− 0.2

983− 4

= 0.03
Degrees

Digital value

We clearly see that the �nal resolution is far better than the one we wanted.



Chapter 7

Quality of Pictures

We will now check the pictures as we use what we have learned and made
throughout this master's thesis. Remember, all pictures are taken with the
lens cap on the camera, since we want to eliminate all photons to view the
noise problems with a camera.

When we were to take the pictures which were supposed to view the dark
current we discovered a noise source. We discovered the source when we used
650 in gain, so the source must be inside the camera. When we use 650 gain
it means that the pictures have been ampli�ed with 22.75dB.

In �gure 7.1 we can see one of the pictures taken. The picture is taken
at 25 degrees Celsius with an exposure time of 65 seconds. We can clearly
see that there is a lot of noise in the top left corner.

Figure 7.1: This picture is taken with an exposure time of 65 seconds and
with 650 gain. It shows us the unknown noise source.

We had to �nd the source of this noise. At the back of the camera there is
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placed two LED-lights, there may be a leakage of light from the back to the
front inside the camera. These LED's where covered to eliminate as much
noise as possible. Then we took a new picture with the same settings. In
�gure 7.2 we can see the result.

Figure 7.2: This picture had the same settings as �gure 7.1, but this picture
is taken after we have covered the LED-lights we �nd at the back of the
camera.

We see that we have improved the picture a bit, but there is still a lot of
noise. The light is eliminated as a noise source, so now we've got the tem-
perature left. We therefore cool down the camera so that we can see the e�ect.

The camera is tested in two ways. One; we had the camera running for
some time before we cooled it down and started the exposure. Two; we �rst
cooled the camera and then turned it on and started the exposure as fast as
possible. We can see the results in �gure 7.3 and 7.4 on the facing page.

Figure 7.3: The camera had the same settings as before. The camera has
been running for a while and then cooled down to 0 degrees Celsius. When
the camera was cold we took this picture.
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Figure 7.4: The camera had the same settings as before. The camera has
been turned o� while we have been cooling the camera. Immediately after
turning the camera on, we start the exposure and we retrieve this picture.

As we see from the pictures it's not easy to get rid of this noise. To identify
this noise source we contacted Allied Vision Technical support. They said
that there is placed a CCD Vertical Clock Driver on the CCD PCB card
(Card which holds the CCD). There might also be other noise sources on
this card. Keep in mind that the camera is not built to take pictures with
max exposure time and max gain.

There is no way to remove this noise. To calculate the dark current we
therefore decided to use only the pixels at the right bottom corner of the
pictures, as far away as we can get from the noise source. This thesis is
discussing dark current in a general CCD camera, not in a spesi�c Guppy
camera. Therefore we must study the dark current as if the Charged Coupled
Device (CCD) in the camera is placed a distance from all the opperational
components that are inside the camera.

We now check what di�erence it makes on the pictures to use the coolingsys-
tem on the camera. Since the camera is highly sensitive near infrared ligth,
we know that by cooling the camera it will give some e�ect on the pictures.

We use "`imread"' in MATLAB to calculate the mean value of each pic-
ture. The reason why we check the mean value is described in chapter 4 in
section 4.2.2 Thermal and dark noise. The pixels in the pictures got values
between 0 and 255 and by using "`imread"' we get these values put in an
array that is as big as the number of pixels in the picture. The value 0 will
correspond to completely black, while the value 255 will correspond to bright
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white (see Appendix E).

If we have a picture with a lot of noise, the mean value of that picture
will be greater than a picture with less noise. We calculate this mean for 7
temperatures between 0 and 30 degrees Celsius, we also check what di�erence
it makes to use 0 in gain rather than 650 in gain.

The �rst picture series are taken at the temperatures 0, 5, 10, 15, 20, 25
and 30 degrees with gain value set to 650. The second series are taken at the
same temperatures, but the gain is now set to 0. Both series had an exposure
time of 65 seconds.

The shot noise is removed in the same way as the dark noise, so if we re-
moved the shot noise we would not be able to see the e�ect by cooling the
camera. We will therefore not remove the shot noise from the pictures before
we calculate the mean values. The readout noise however have been removed
from the pictures before we have calculated the mean values of the pictures.

In �gure 7.5 on the next page we see the mean value of each picture at
the di�erent temperatures.

We check the mean values from the second series and we see the same pat-
tern, but the values are smaller. less gain less mean value. See �gure 7.6 on
page 38.
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Figure 7.5: This is a plot of the mean pixel values of the dark frames taken at
each temperature. The camera had 65 seconds exposure time and 650 gain
when these pictures were taken.
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Figure 7.6: This is a plot of the mean pixel values of the dark frames taken
at each temperature. The camera had 65 seconds exposure time and 0 gain
when these pictures were taken.



Chapter 8

External Trigger

If you can decide manually when the camera should or should not take pic-
tures, you would say that you got yourself an ordinary camera. If you want
to do this in an automated way it isn't as easy as you may think. The AVT
Guppy F044 NIR needs either a software trigger or an external trigger.

When we want to use the external trigger we need to program the camera to
wait for this external trigger. The computer will program all the registers in
the camera, and wait for the camera to take a picture.

The camera won't start the exposure before it have retrieved an external
trigger signal. When the camera gets the trigger signal the picture is taken.
The computer is on standby and waits for the picture to arrive. The com-
puter saves the incoming picture to its prede�ned place. In case of a software
trigger we need to program the camera to use the software trigger.

In �gure 8.1 on the next page we can see the pin con�guration that is in
the back of the camera. From the �gure we can see that the trigger input is
going in on pin 4 and the GND should be connected to pin 8. [14]

The Guppy cameras support three di�erent external trigger modes. To con-
trol the camera with external trigger you need to program the camera so
that it can understand one of these modes. The trigger signals needs to be
presented in a way the camera can understand them.

Trigger_Mode_0 is also known as the edge mode. It sets the shutter time to
the prede�ned shutter value which is set in one of the cameras registers. The
shutter value is set when programmed. [13]
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Figure 8.1: The pin con�guration at the back of the camera.

When the external trigger signal is applied to the input pin on the camera,
the camera will take a picture with its programmed settings. It's triggered
on falling edge. In �gure 8.2 we can see how the trigger works.

Figure 8.2: This shows us how the Trigger Mode 0 is working. When the
camera register a falling edge it starts the exposure time which is set in one
of the registers in the camera.

Trigger_Mode_1 is also known as the level mode. It sets the shutter time to
the active low time of the pulse applied (or active high time in the case of
an inverting input). If we use non-inverting input, the shutter will be on as
long as the trigger input is high. In �gure 8.3 on the next page we can see
how the trigger works. [13]
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Figure 8.3: This shows us how the Trigger Mode 1 is working. As long as
the trigger signal is high the camera will have its shutter turned on.

Trigger_Mode_15 is a programmable mode. It is a bulk trigger, which is trig-
gered by an external trigger signal. When this mode is activated with the
external trigger, it would be able to take continuous, one-shot or multi-shots
with the internal trigger. This mode is activated on falling edge, just as the
Trigger_Mode_0. See �gure 8.4 for how it works. [13]

Figure 8.4: This shows us how the Trigger Mode 15 works. When the camera
registers a falling edge it starts to take as many pictures as it is programmed
to capture.

Guppy F044 NIR support only Trigger_Mode_0 and Trigger_Mode_15. It
also support trigger delay, which you can compare with a self-timer. When
the camera gets the external trigger it will be able to delay the actual inter-
nal trigger with the prede�ned time delay. This ability to delay the trigger
would be a waste if we use the software trigger, since we are able to program
a delay into the software. [13]
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Chapter 9

Trigger System

When cameras like the AVT Guppy F044 NIR are used in scienti�c
experiments, we rely on the precision and the stability in the triggers. This
is to ensure that we get the data we need. In this chapter we will study the
precision and stability in three di�erent trigger sources, two external triggers
and one software trigger.

9.1 Hardware Setup

The hardware that is used as trigger sources will be a microcontroller (AT-
mega 324PA), HP 33120A Function Generator and a stationary computer.
The computer uses a MSI K9VGM-V mother board and a AMD SempronTM

3400+ processor. The �rewire is connected to one of the mother boards PCI
slots. The operative system we use on the computer is Ubuntu 9.04. The
camera is set to have an exposure time at 62�s and use Trigger_Mode_0 in
all three cases.

� The ATmega 324PA is the same microcontroller that we have been
using throughout this thesis. This microcontroller is now used as an
external trigger. It is programmed to create a square-pulse with a 10Hz
frequency (see Appendix C). This means that the time interval between
each falling edge is 100 ms. Since the camera has an exposure time of
62�s, it will be taken a picture for each pulse.

� The HP 33120A is a frequency generator, this is used as the second
external trigger source. The operative frequency range for a square
pulse is 100�Hz - 15 MHz. The frequency generator is using the same
settings as the microcontroller, a square-pulse at 10Hz.
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� We use the computer as the software trigger source. The computer is
programmed to have a 100ms delay for each time a picture is taken.
For this delay we use a while-loop inside the program. This will create
a frequency on outcomming pictures at 10Hz.

9.2 Method

As we mentioned earlier, we have a computer rigged to this trigger system.
The computer we use is the same as the software trigger source. The com-
puter will program the camera to its speci�ed settings. After the camera is
completely programmed, it waits for the trigger signal that will be sent from
one trigger source at a time.

We will take 5 series of 20 pictures for each of the trigger sources. We use
the setup as described in chapter 2 �gure 2.2 on page 4. The trigger source
in this �gure is exchanged for each test. The software trigger use the �rewire
to send its trigger signal. When the picture is taken the computer will store
the picture at its prede�ned place inside the computer.

On these pictures there will be a timestamp. This timestamp is used to
check the precision and stability of each trigger source. We have set the fre-
quency to be 10Hz for all three sources. This means that we would expect
the time di�erence between two timestamps to be 100ms.

9.3 Trigger Stability

We check the di�erence between each of these timestamps. We get 19
di�erences for each series. We check the mean value and variance for this
di�erence for each series. The following formula is used to calculate mean,
E(x), and variance, �2

x:

E(x) =
ΣN
i=0(xi)

N
�2
x = E(x2)− E(x)2

In table 9.1 on the facing page we see the results. We see that there is some
variation in the variance. We use weighted averaging (see Appendix A) to
get one mean value and one variance so that we manage to plot three Gauss
curves for these three trigger sources.
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Software Mean [ms] Variance [ms2]
Serie 1 99.99 0.0036689
Serie 2 99.99 0.0037924
Serie 3 99.99 0.0037596
Serie 4 99.99 0.0037779
Serie 5 99.99 0.0038055

Frequency generator Mean [ms] Variance [ms2]
Serie 1 100.00 0.0021527
Serie 2 100.00 0.0019839
Serie 3 100.00 0.0020702
Serie 4 100.00 0.0021526
Serie 5 100.00 0.0019980

Microcontroller Mean [ms] Variance [ms2]
Serie 1 100.03 0.0036111
Serie 2 100.03 0.0034737
Serie 3 100.03 0.0035801
Serie 4 100.03 0.0035382
Serie 5 100.03 0.0036845

Table 9.1: This table show us the mean value and variance for �ve series
with each trigger source.

In table 9.2 we can see the calculated values which we have used to plot the
Gauss curves.

Trigger Source Mean [ms] = x̄ Variance [ms2] = �2
x̄

Software 99.99 0.000752
Frequency generator 100.00 0.000414
Microcontroller 100.03 0.000715

Table 9.2: This table show us the mean value and variance for the three
trigger sources, which will be use to plot the Gauss curves.

The Gauss curves are plotted by using the following equation:

Px̄(x) =
1√

2��2
x̄

e
− (x−x̄)2

2�2
x̄ ,

Here is x̄ and �2
x̄ from table 9.2.
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Figure 9.1: This is three probability density functions, one for each of the
three trigger sources.

In �gure 9.1 we see the Gauss curves, also called probability density func-
tions. A probability density function will be tall when the variance is small.

A trigger source with a small variance will be more stable than a trigger
source with a big variance. When we say stable we mean that the expected
trigger signal is received when we expect it to be received.

9.3.1 Problem with the Software Trigger

When we were to check the variance of the software trigger we got extreme
variations, values between �2

x = 0.0030 and �2
x = 2.98. To identify the prob-

lem we need to check what priorities the computer do.

The computer we are using is low on memory, so it is hard to do many
things at the same time. The solution was to wait for the computer to be
done with the startup sequence and make the computer do nothing else than
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taking pictures, this implies writing calculations out to screen when running
the script for taking pictures.

The only thing the computer now do is to send the trigger signal and store
all data from the camera. After we have discovered these sources we took 5
new series with 20 pictures and the result is written in table 9.1 on page 45.
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Chapter 10

Discussion

The assembled system is now able to decrease the operational temperature
in the camera. We want the temperature to be stable around 0-1 ∘C. It is
also able to take pictures in the presence of an external trigger and we have
showed that there is a di�erence in precision and stability, whether you use
an external or a software trigger.

10.1 Pictures After Cooling.

To show the improvements of the cooling of the camera we have plotted
the mean values of pictures versus the temperature of the camera. As we
described in chapter 4 we would expect the mean value to decrease as we
decreased the temperature of the camera.

To show the dark current noise we have removed the readout noise from
the pictures. The shot noise is not removed from the pictures because it will
eliminate the dark current as well.

From the theory we discussed in chapter 4 about the shot noise we can
see that it is not dependent of temperature. The noise that is dependent of
temperature is referred to as dark current. We can therefore say that the
shot noise is not dependent of temperature, and will not contribute a lot to
the total noise we can see in the mean value, see �gure 7.5 on page 37 and
�gure 7.6 on page 38.

In these �gures we see that the mean value decrease as the themperature
decrease. Hence we see that the temperature is a visible factor for this dark
current.
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10.2 Stability in the Three Trigger Sources.

We study the �gure 9.1 on page 46. From this �gure we can see that the
microcontroller had an o�set from the wanted 100ms. We see this o�set both
in the �gure and the two tables 9.1 on page 45 and 9.2 on page 45.

The reason for the o�set in the microcontroller trigger source are the timing
issues (chapter 3) we got when we use commands instead of clock signals. In
Appendix C we can see that we have used a delay operation in the code.

Since the instruction fetch and instruction execute from �gure 3.5 on page 13
is as long as a clock cycle we would think that the code would make a square
pulse with a frequency of 10 Hz. This is not the reality.

There might be a lot of uncertainties for this o�set, and one of them could be
that it takes time for the microcontroller to change the voltage on the used
pin from high to low or the other way around.

We see from �gure 9.1 on page 46 that the frequency generator is the best
trigger source out of the three tested sources. This is quite reasonable since
the function generator is produced to make a precise pulse in its operative
frequency range, either if it is a sine, triangle or a square pulse. Operative
frequency range for a square pulse is 100�Hz - 15 MHz

The other two trigger sources are not as precise as the function generator,
because they are produced to do other tasks in addition to make a square
pulse at a frequency of 10Hz.
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Conclusion

We have developed hardware that have been used to measure and control the
operational temperature inside a Guppy F044 NIR camera. We achieved a
resolution = 0.03 degrees Celsius for each digital value on the thermometer.
With this resolution it is easy to keep the temperature in the camera stable
around 0-1 ∘C.

We conclude from the discussion that the cooling of the camera have a posi-
tive e�ect on the quality of the pictures.

The software that have been developed is attached as appendices(Appendix
B, C, D and E). The �rst two softwares are developed to program the cam-
era and the microcontroller (Appendix B and C). The last two softwares are
developed to view the quality of the pictures as we vary the temperature in
the camera and plot the Gauss curves to the three trigger sources (Appendix
D and E).

We have succesfully used three di�erent trigger sources on the camera, and
by ploting the probability density functions we have been able to see the
di�erence between them.

We conclude from the discussion and the measurements that the frequency
generator is the most precise and stable trigger source for this camera.
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Appendix A

Weighted Averaging

Bibliography:[12]

Assume that we have calculated the mean value for a number of picture
series, we have also found the standard deviation:

Case A: v = vA ± �A
Case B: v = vB ± �B

Since these results will vary a little bit, we still would expect the results to
represent the same mean value. How can we calculate the �nal mean value,
vbest, and variance, �2

vbest?

We can use the principle of maximum probability to �nd these parameters. If
we assume that the calculated values represent a normal distribution round
a unknown, true value V, then the probability to �nd vA is:

PV (vA) ∝ 1

�A
e
− (vA−V )2

2�2
A ,

while the probability to �nd vB is:

PV (vB) ∝ 1

�B
e
− (vB−V )2

2�2
B .

The probability for �nding vA in case A and vB in case B is given by:

PV (vA, vB) = PV (vA)PV (vB) ∝ 1

�B�A
e−

�2

2 (A.1)

here is �2:

�2 = (
vA − V
�A

)2 + (
vB − V
�B

)2 (A.2)
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The best estimate for V will be where we have maximum in equation A.1
on the preceding page, which is where we have a minimum in A.2 on the
previous page.

We derive equation A.2 on the preceding page with respect to V and set
the equation equal to zero, to �nd the best estimate to our vbest value

2(
vA − V
�A

) + 2(
vB − V
�B

) = 0

If we solve this equation for V, we �nd the best estimate vbest.

vbest = V =

vA
�2
A

+ vB
�2
B

1
�2
A

+ 1
�2
B

We simplify our vbest equation by de�ning weights:

wA =
1

�2
A

, wB =
1

�2
B

We get:

vbest =
wAvA + wBvB
wA + wB

This equation is a weighted avering of our input cases. We compare this
equation to the center of gravity of two bodies and see that wA and wB is
equivalent to the weights of the two bodies, and vA and vB is their positions.

This result could be generalized to combine even more measurements. As-
sume that we got N separated calculations of the mean value x.

x1 ± �1,

x2 ± �2,

...,

xN ± �N ,

here is �1, ..., �N the corresponding standard deviations.

The best estimatad value, xbest, will be the weighted averaging:

xbest =
ΣN
i=1wixi

ΣN
i=1wi

The expression for the standard deviation, �xbest, is derived from the basic
formula for error propagation.

�xbest = (ΣN
i=1wi)

− 1
2



Appendix B

Software to Program and Control

the Camera

/**************************************************************************
** Bibliography:[5]
** Title: Operate the Guppy F044 NIR camera
** by: Anders Kristiansen
** $Revision: 23. juni 2010
**
**������������������������-
**
**************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <inttypes.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <signal.h>
#de�ne _GNU_SOURCE
#include <getopt.h>
#include "sys/timeb.h"
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#include <libraw1394/raw1394.h>
#include "dc1394/dc1394.h"
#include "dc1394/vendor/avt.h"

#de�ne DROP_FRAMES DC1394_RING_BUFFER_LAST
#de�ne MAX_PORTS 9
#de�ne NUM_BUFFERS 9

#de�ne GUPPY1_ID 0x000a47010f08727fLLU // This is the true
// address of the Guppy F044 NIR
#de�ne CAMERA_OFF 0
#de�ne CAMERA_ON 1

/* Declarations for libdc1394 */
dc1394camera_t *camera;
dc1394featureset_t features;
dc1394video_frame_t *Videoframe;

/* Other declarations */
int res;
char *frame_bu�er=NULL, data�l[17];
int gain;
int exp_time;
int loop, imageloop;
struct timeval start, end;
int shotresult=1; //DC1394_SUCCESS = 0!
int camera_status=CAMERA_OFF;
FILE *fd;

void cleanup(void) {
if (frame_bu�er != NULL)

free( frame_bu�er );
}

/* Trap ctrl-c */
void signal_handler( int sig) {

signal( SIGINT, SIG_IGN);
cleanup();
exit(0);

}
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/*This function writes the picture to the computer*/

int skriv_data�l(dc1394video_frame_t *Vframe, char *�lnavn)
{

int i, j, k, imax, jmax;
char output_bu�er[1024];
char buf_0[] ="#0000 000 ";
char buf_1[] ="00000 000 ";
char buf_2[] ="#0000000000000000 ";
int ut�l;

imax = (int) Vframe->size[0];
jmax = (int) Vframe->size[1];
k = 0;

// The line below writes the timestamp to the �le.
fprintf(fd, "%llu\t", Vframe->timestamp);
ut�l = open(�lnavn, O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
write(ut�l, "P5\n", 3);

sprintf(buf_2, "#%llu\n", Vframe->timestamp);
write(ut�l, buf_2, 18);
sprintf(buf_0, "#%05d %03d\n", exp_time, gain);
write(ut�l, buf_0, 11);
sprintf(buf_1, "%03d %03d\n", imax, jmax);
write(ut�l, buf_1, 8);

write(ut�l, "255\n", 4);
for (j=0;j < jmax;j++) {

for (i=0;i < imax;i++) {
output_bu�er[k] = Vframe->image[i + j*imax]; // writing lsb
k++;
if (k == 1024) {

write(ut�l, output_bu�er, 1024);
k = 0;

}

}

}

if (k > 0)
write(ut�l, output_bu�er, k);
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close(ut�l);
return 0;

}

int main(int argc,char *argv[])
{

unsigned int speed;
int t = 0;
int y = 1;
dc1394error_t err;
dc1394_t * d;
dc1394camera_list_t * list;
uint32_t extexp;

// Make the program user friendly.
if(argc != 3){

printf("usage: %s Shutter gain\n", argv[0]);
exit(0);

}

exp_time = atoi(argv[1]);
gain= atoi(argv[2]);
imageloop = 20;
extexp = (uint32_t) exp_time*1000;

char serie[10];
serie[0] = '0';
serie[1] = '\0';

// Checks if we got a �le already open. This �le
// is where we write the timestamps to.
while(fopen(serie, "r")){

(*serie)++;
}

fd = fopen(serie, "w");

d = dc1394_new ();
err=dc1394_camera_enumerate (d, &list);
DC1394_ERR_RTN(err,"Failed to enumerate camera");
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// Checks if we got a camera connected
if (list->num == 0) {

dc1394_log_error("No camera found");
return 1;

}

camera = dc1394_camera_new (d, list->ids[0].guid);
if (!camera)

dc1394_log_warning("Failed to initialize camera with guid %llx", list-
>ids[0].guid);

dc1394_camera_free_list (list);

/* Setup camera for capture */
if(dc1394_feature_get_all(camera, &features) !=DC1394_SUCCESS){

printf("unable to get feature set\n");
} else {

// dc1394_print_feature_set(&features);
}

if (dc1394_video_get_iso_speed(camera, &speed) != DC1394_SUCCESS)
{

printf("unable to get the iso speed\n");
cleanup();
exit(-1);

}

/*Settings*/
camera_status = CAMERA_ON;
res=DC1394_VIDEO_MODE_FORMAT7_2; // 2x2 binning
dc1394_video_set_operation_mode(camera, DC1394_OPERATION_MODE_LEGACY);
dc1394_video_set_iso_speed(camera, DC1394_ISO_SPEED_400);
dc1394_video_set_mode(camera,res);
dc1394_format7_set_color_coding(camera, res, DC1394_COLOR_CODING_MONO8);
dc1394_avt_set_timebase(camera,9); // 9=1ms, 8=500us, 7=200us,

6=100us, 5=50us, 4=20us
dc1394_avt_set_extented_shutter(camera, extexp);
dc1394switch_t pwr = DC1394_ON;
dc1394_feature_set_value(camera, DC1394_FEATURE_GAIN, gain);
// The line below needs to be commented if we use an external trigger.
dc1394_software_trigger_set_power(camera, DC1394_ON);
//dc1394_external_trigger_set_mode(camera, 0);
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//dc1394_external_trigger_set_power(camera, pwr);

// The two lines above are used when we got an external trigger
// rigged to the system.

if (dc1394_capture_setup(camera, 4,DC1394_CAPTURE_FLAGS_DEFAULT)
!= DC1394_SUCCESS) {

fprintf(stderr, "unable to setup camera- check line %d of %s to make
sure\n",__LINE__,__FILE__);

perror("that the video mode,framerate and format are supported\n");
printf("is one supported by your camera\n");
cleanup();
exit(-1);

}

//If we use an external trigger we need to comment out the
// �ve lines below marked with: "//comment"

/* main event loop */
gettimeofday(&start, NULL); //comment
loop = 0;
while(loop<imageloop){

while(t<100000*y){ //comment
gettimeofday(&end, NULL); //comment
t = (end.tv_sec*1000000 + end.tv_usec)-(start.tv_sec*1000000
+ start.tv_usec); //comment

} //comment
y=y++;
// The line below starts the exposure in the case of a
// software trigger, if else it waits here for the trigger
// signal in the case of an external trigger.
shotresult = dc1394_video_set_one_shot(camera, DC1394_ON);

if (shotresult == DC1394_SUCCESS) {

if (dc1394_capture_dequeue(camera, DC1394_CAPTURE_POLICY_WAIT,
&Videoframe)!=DC1394_SUCCESS)

printf("Error: Failed to capture from GUPPY\n");

if (Videoframe) {



63

sprintf(data�l, "\n", loop);
skriv_data�l(Videoframe, data�l); // here we write to �le.
dc1394_capture_enqueue (camera, Videoframe);

}

}

loop++;
}

exit(0);
}
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Appendix C

Software to Program and Control

the ATmega324PA

Bibliography: [9]

#include <stdio.h>
#include <mega324.h>
#include <delay.h>
#de�ne ADC_VREF_TYPE 0x00

unsigned int i, j, max_temp, min_temp;
unsigned int x, x_min, x_max, x_measure, x_temp;

// Read the AD conversion result
unsigned int read_adc(unsigned char adc_input)
{

ADMUX=adc_input | (ADC_VREF_TYPE & 0x�);
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);

ADCSRA|=0x10;
return ADCW;

}

void main(void)
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{

// Crystal Oscillator division factor: 1
#pragma optsize-
CLKPR=0x80;
CLKPR=0x00;
#ifdef _OPTIMIZE_SIZE_
#pragma optsize+
#endif

// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In

Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T

State1=T State0=T
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out

Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0

State0=0
PORTB=0x00;
DDRB=0xFF;

// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In

Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T

State1=T State0=T
PORTC=0x00;
DDRC=0x00;

// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=Out Func2=In

Func1=In Func0=Out
// State7=T State6=T State5=T State4=T State3=T State2=T

State1=T State0=0
PORTD=0x00;
DDRD=0x09;
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// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0A output: Disconnected
// OC0B output: Disconnected
TCCR0A=0x00;
TCCR0B=0x00;
TCNT0=0x00;
OCR0A=0x00;
OCR0B=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: O�
// Input Capture on Falling Edge
// Timer1 Over�ow Interrupt: O�
// Input Capture Interrupt: O�
// Compare A Match Interrupt: O�
// Compare B Match Interrupt: O�
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=FFh
// OC2A output: Disconnected
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// OC2B output: Disconnected
ASSR=0x00;
TCCR2A=0x00;
TCCR2B=0x00;
TCNT2=0x00;
OCR2A=0x00;
OCR2B=0x00;

// External Interrupt(s) initialization
// INT0: O�
// INT1: O�
// INT2: O�
// Interrupt on any change on pins PCINT0-7: O�
// Interrupt on any change on pins PCINT8-15: O�
// Interrupt on any change on pins PCINT16-23: O�
// Interrupt on any change on pins PCINT24-31: O�
EICRA=0x00;
EIMSK=0x00;
PCICR=0x00;

// Timer/Counter 0 Interrupt(s) initialization
TIMSK0=0x00;
// Timer/Counter 1 Interrupt(s) initialization
TIMSK1=0x00;
// Timer/Counter 2 Interrupt(s) initialization
TIMSK2=0x00;

// Analog Comparator initialization
// Analog Comparator: O�
// Analog Comparator Input Capture by Timer/Counter 1: O�
ACSR=0x80;
ADCSRB=0x00;

// ADC initialization
// ADC Clock frequency: 156,250 kHz
// ADC Voltage Reference: AREF pin
// ADC Auto Trigger Source: Free Running
// Digital input bu�ers on ADC0: On, ADC1: O�, ADC2: O�, ADC3:

O�
// ADC4: O�, ADC5: O�, ADC6: O�, ADC7: O�
DIDR0=0xFE;
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ADMUX=ADC_VREF_TYPE & 0x�;
ADCSRA=0xA7;
ADCSRB&=0xF8;

j = 0;

while (1){
i=0;
x_temp =0;
x_min = 10000;
x_max = 1;
for (i = 0; i < 30; i++){

x_measure = (read_adc(PINA.0));
x_temp = x_temp + x_measure;

}

x = (x_temp/(i));
delay_ms(100);
PORTB = x;
delay_ms(1000);

min_temp = 984;
max_temp = 982;
if (x > min_temp){

PORTD.0 = 0;
}

if (x < max_temp){
PORTD.0 = 1;

}

//The following four lines are used when we use the
//microcontroller as an external trigger source,
//all other lines inside the while-loop then
//needs to be commented out.
//PORTD.3 = 0;
//delay_ms(50);
//PORTD.3 = 1;
//delay_ms(50);

};
}
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Appendix D

Calculations of the PDFs to the

Trigger Sources

% Here we plot the probability density functions for the three
% di�erent trigger sources.

clc

% The following values have been calculated with weighted
% averaging from the values listed in table 9.1.

% Software
sforv = 99.999;
svari = 0.000752;
% Frequency generator
�orv = 100;
fvari = 0.000414;
% Microcontroller
eforv = 100.03;
evari = 0.000715;

j=1;
min = 99.88;
max = 100.12;
x = min:1/1000:max;

for i=1:((max-min)*1000)+1
sy(j) =(1/(sqrt(2*pi*svari)))*exp(-(((x(i)-sforv)^2)/(2*(svari))));
fy(j) =(1/(sqrt(2*pi*fvari)))*exp(-(((x(i)-�orv)^2)/(2*(fvari))));
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ey(j) =(1/(sqrt(2*pi*evari)))*exp(-(((x(i)-eforv)^2)/(2*(evari))));
j=j+1;

end

�gure(1)
plot(x,sy,'r'),hold on;
plot(x,fy,'g'),hold on;
plot(x,ey,'b');
legend('Software','Frequency generator','Microcontroller',3);
xlabel('Millisecond');
ylabel('p_x(x)');
grid on;



Appendix E

Software to Calculate the Mean

Value of Pictures

% Find the mean value of pictures.

clc
M = 7; % Number of pictures
mA = zeros(1,M);

% Naming vectors
n = 1:M;
name = num2str(n);
name(name==' ') = [];
l = 9;
readout = num2str(l);
readout(readout==' ') = [];

for j = 1:M
A = imread([name(j),'.bmp'],'bmp'); % Loading bottom right pixels
B = imread([readout(1),'.bmp'],'bmp'); % Loading readout noise
a = double(A);
b = double(B);
s = b(:);
t = a(:);
v = t-s;
mA(j) = mean(v);

end

temp = [0 5 10 15 20 25 30];
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�gure(1);
stem(temp,mA,'o')
axis([-5 35 2 20]) % Axis used when we plot the

% serie taken with gain = 650.
% axis([-5 35 2 4]) % Axis used when we plot the

%serie taken with gain = 0.
xlabel('Temperature [C]')
ylabel('Mean of pixel value')
grid on


