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Abstract. The concept of Vilenkin–Lebesgue points was introduced in
[12], where the almost everywhere convergence of Fejer means of
Vilenkin–Fourier series was proved. In this paper, we present a different
(and simpler) approach to prove a similar result, which can be used to
prove that the corresponding result holds also in a more general context,
namely for regular Norlund and T -means.
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1. Introduction

Concerning some definitions and notations used in this introduction, we refer
to Sect. 2.

The fact that the Walsh system is the group of characters of a compact
abelian group connects Walsh analysis with abstract harmonic analysis was
discovered independently by Fine [7] and Vilenkin [40]. Later on, in 1947
Vilenkin [40–42] actually introduced a large class of compact groups (now
called Vilenkin groups) and the corresponding characters which includes the
dyadic group and the Walsh system as a special case. For general references to
the haar measure and harmonic analysis on groups see Pontryagin [33], Rudin
[34], and Hewitt and Ross [14]. In particular, Vilenkin investigated the group
Gm, which is a direct product of the additive groups Zmk

=: {0, 1, . . . ,mk−1}
of integers modulo mk, where m =: (m0,m1, . . .) are positive integers not less
than 2, and introduced the Vilenkin systems {ψj}∞

j=0. These systems include
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as a special case the Walsh system and many of the proofs presented for the
Walsh system can be generalized readily to the Vilenkin case.

Fejer’s theorem shows that (see, e.g., [1,5,6,37]) if one replaces ordinary
summation by Fejer means σn defined by

σnf :=
1
n

n∑

k=1

Skf,

then, for any 1 ≤ p ≤ ∞, there exists an absolute constant Cp, depending
only on p such that

‖σnf‖p ≤ Cp ‖f‖p .

If we define the maximal operator σ∗ of Fejer means by

σ∗f := sup
n∈N

|σnf | ,

then the weak type inequality

μ (σ∗f > λ) ≤ c

λ
‖f‖1 , (λ > 0)

holds for any integrable function. For example, this result can be found in
Zygmund [47] (see also [9,19]) for trigonometric series, in Schipp [35] for
Walsh series and in Pál, Simon [28] (see also [30,44–46]) for bounded Vilenkin
series. It follows that the Fejer means with respect to trigonometric and
Vilenkin systems of any integrable function converges a.e to this function.

It is known that almost every point x is a Lebesgue point of a function
f ∈ L1 and the Fejer means σT

n f of the trigonometric Fourier series of f ∈ L1

converge to f at each Lebesgue point.
Weisz [43] introduced the Walsh–Lebesgue points and proved the ana-

logue of the preceding result: almost every point is a Walsh–Lebesgue point
of an integrable function f ∈ L1 and the Walsh–Fejer means of f converge
to f at each Walsh–Lebesgue point. Later, Goginava and Gogoladze [12] in-
troduced the Vilenkin–Lebesgue points and proved similar result. They used
methods of martingale Hardy spaces.

In this paper, we consider some more general summability methods,
which are called Nörlund and T -means. In particular, the n-th Nörlund mean
tn and T -mean Tn of the Fourier series of f are, respectively, defined by

tnf :=
1

Qn

n∑

k=1

qn−kSkf (1)

and

Tnf :=
1

Qn

n−1∑

k=0

qkSkf, (2)

where

Qn :=
n−1∑

k=0

qk.

Here, {qk : k ≥ 0} is a sequence of nonnegative numbers, where q0 > 0 and

lim
n→∞ Qn = ∞.
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Then, the summability method (1) generated by {qk : k ≥ 0} is regular if
and only if (see [17])

lim
n→∞

qn−1

Qn
= 0.

Moreover, the summability method (2) is regular if and only if

lim
n→∞ Qn = ∞.

It is well known (for details see, e.g., [32]) that every Nörlund summabili-
ty method generated by non-increasing sequence (qk, k ∈ N) is regular, but
Nörlund means generated by non-decreasing sequence (qk, k ∈ N) is not al-
ways regular. On the other hand, every T -mean generated by non-decreasing
sequence (qk, k ∈ N) is regular, but T -means generated by non-increasing
sequence (qk, k ∈ N) is not always regular. In this paper, we investigate only
regular Nörlund and T -means.

Almost everywhere convergence and summability of Nörlund and T -
means were studied by several authors. We mentioned Bhahota, Persson and
Tephnadze [3] (see also [2,4,16,31]), Tutberidze [38,39], Fridli, Manchanda,
Siddiqi [8], Móricz and Siddiqi [18] Nagy [20–23] (see also [24–27]).

We also define the maximal operator t∗ of Nörlund means by

t∗f := sup
n∈N

|tnf | .

If {qk : k ∈ N} is non-increasing and satisfying the condition

1
Qn

= O

(
1
n

)
, as n → ∞, (3)

then the weak-type inequality

yμ {t∗f > y} ≤ c ‖f‖1 , f ∈ L1(Gm), y > 0 (4)

was proved in [30]. When the sequence {qk : k ∈ N} is non-decreasing,
then the weak-(1,1) type inequality (4) holds for every maximal operator
of Nörlund means. It follows that for such Nörlund means of f ∈ L1(Gm),
we have that

lim
n→∞tnf(x) = f(x), a.e. on Gm.

Define the maximal operator T ∗ of T -means by

T ∗f := sup
n∈N

|Tnf | .

It was proved in [38] that if {qk : k ∈ N} is non-increasing or if {qk : k ∈ N}
is non-decreasing and satisfying the condition

qn−1

Qn
= O

(
1
n

)
, as n → ∞, (5)

then the following weak-type inequality holds:

yμ {T ∗f > y} ≤ c ‖f‖1 , f ∈ L1(Gm), y > 0.

It follows that for such T -means and for f ∈ L1(Gm), we have that

lim
n→∞Tnf(x) = f(x), a.e. on Gm.
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The main aim of this paper is to find a different and simpler approach,
with the help of which we can generalize the results in [12] and prove them
for a more large class of regular Norlund and T -means.

The paper is organized as follows: the main results are presented, proved
and discussed in Sect. 3. In particular, Theorems 1 and 2 are parts of this
new approach. The announced results for Norlund and T -means can be found
in Theorems 3 and 4, respectively. In order not to disturb the presentations
in Sect. 3, we use Sect. 2 for some necessary preliminaries (e.g., definition-
s, notations, lemmas). In particular, Lemma 2 is new and of independent
interest.

2. Preliminaries

Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Let m :=
(m0,m1, . . . ) denote a sequence of the positive integers not less than 2. Denote
by

Zmk
:= {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.
Define the groups Gm as the complete direct product of the group Zmj

with the product of the discrete topologies of Zmj
, s. The direct product μ

of the measures
μk ({j}) := 1/mk (j ∈ Zmk

)

is the Haar measure on Gm with μ (Gm) = 1. In this paper, we discuss
bounded Vilenkin groups only, that is

sup
n∈N

mn < ∞.

The elements of Gm are represented by the sequences

x := (x0, x1, . . . , xk, . . . ) ( xk ∈ Zmk
) .

It is easy to give a base for the neighborhood of Gm, namely

I0 (x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ N).

The intervals In(x) (n ∈ N, x ∈ Gm) are called Vilenkin intervals. Denote
In := In (0) for n ∈ N and In := Gm\In. Let

en := (0, . . . , 0, xn = 1, 0, . . . ) ∈ Gm (n ∈ N) .

If we define the so-called generalized number system based on m in the fol-
lowing way:

M0 := 1, Mk+1 := mkMk , (k ∈ N),

then every n ∈ N can be uniquely expressed as

n =
∞∑

k=0

njMj , where nj ∈ Zmj
(j ∈ N)
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and only a finite number of nj ‘s differ from zero. Let

|n| := max{j ∈ N, nj 	= 0}.

Defining In := Gm\In and

Ik,lN :=

⎧
⎪⎪⎨

⎪⎪⎩

IN (0, . . . , 0, xk 	= 0, 0, ..., 0, xl 	= 0, xl+1, . . . , xN−1, . . .),
for 0 ≤ k < l < N,
IN (0, . . . , 0, xk 	= 0, xk+1 = 0, . . . , xN−1 = 0, xN , . . .),
for 0 ≤ k < l = N,

we have

IN =
N−1⋃

s=0

Is\Is+1 =

(
N−2⋃

k=0

N−1⋃

l=k+1

Ik,lN

)
⋃

(
N−1⋃

k=0

Ik,NN

)
. (6)

Next, we introduce on Gm an orthonormal system, which is called the
Vilenkin system. First, define the complex valued function rk (x) : Gm → C,
the generalized Rademacher functions, as

rk (x) := exp (2πıxk/mk)
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

We define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as

ψn (x) :=
∞∏

k=0

rnk

k (x) (n ∈ N) .

Especially, we call this system the Walsh–Paley one if m ≡ 2 (for details see
[13,36]). The Vilenkin system is orthonormal and complete in L2 (Gm) (for
details see, e.g., [1,36,40]).

Next, we introduce analogues of the usual definitions in Fourier analysis.
If f ∈ L1 (Gm), we can define the Fourier coefficients, the partial sums of the
Fourier series, the Fejer means, the Dirichlet and Fejer kernels with respect
to the Vilenkin system ψ in the usual manner:

f̂ (k) :=
∫

Gm

fψkdμ, (k ∈ N) ,

Snf :=
n−1∑

k=0

f̂ (k) ψk, (n ∈ N+, S0f := 0) ,

σnf :=
1
n

n−1∑

k=0

Skf, (n ∈ N+) ,

Dn :=
n−1∑

k=0

ψk , (n ∈ N+) ,

Kn :=
1
n

n−1∑

k=0

Dk, (n ∈ N+) .

Recall that (for details see, e.g., [1,10,11]),

DMn
(x) =

{
Mn, if x ∈ In,
0, if x /∈ In,

(7)
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n |Kn| ≤ c

|n|∑

l=0

Ml |KMl
| , (8)

and ∫

Gm

Kn(x)dμ(x) = 1, sup
n∈N

∫

Gm

|Kn(x)| dμ(x) ≤ c < ∞. (9)

Moreover, if n > t, t, n ∈ N, then

KMn
(x) =

⎧
⎪⎨

⎪⎩

Mt

1−rt(x)
, x ∈ It\It+1, x − xtet ∈ In,

Mn+1
2 , x ∈ In,

0, otherwise,

and

|KMn
(x)| ≤ c

n∑

s=0

Ms

ms−1∑

r=1

1In(x−res). (10)

A point x is called a Lebesgue point of an integrable function f if

lim
h→0

1
h

∫ x+h

x

|f(t) − f(x)| dμ(t) = 0.

Weisz [43] introduced the concept of Walsh–Lebesgue points for the dyadic
group with the help of the operator

WAf(x) :=
A∑

s=0

2s
∫

IA(x−es)

|f(t) − f(x)| dμ(t).

Similarly to [12], now we generalize this by

WAf(x) :=
A∑

s=0

Ms

ms−1∑

r=1

∫

IA(x−res)

|f(t) − f(x)| dμ(t).

A point x ∈ Gm is called a Vilenkin–Lebesgue point of the function f ∈
L1(Gm), if

lim
A→∞

WAf(x) = 0.

We also define the operator VA by

VAf(x) :=
A∑

s=0

Ms

ms−1∑

r=1

∫

IA(x−res)

f(t)dμ(t).

It is evident that

VAf(x) =
A∑

s=0

Ms

MA

ms−1∑

r=1

∫

Gm

DMA
(x − res − t)f(t)dμ(t)

=
∫

Gm

(
A∑

s=0

Ms

MA

ms−1∑

r=1

DMA
(x − res − t)

)
f(t)dμ(t)

=
∫

Gm

YA(x − t)f(t)dμ(t),
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where

YA(x) =
A∑

s=0

Ms

MA

ms−1∑

r=1

DMA
(x − res).

It is obvious that

lim
A→∞

WAf(x) = 0,

if and only if

lim
A→∞

VA|f − f(x)|(x) = 0.

Next, we state the following Lemma, which is very important to study
almost everywhere convergence of Vilenkin–Fejer means (see, e.g., [44]).

Lemma 1. Suppose that the sigma-sublinear operator V is bounded from Lp1

to Lp1 for some 1 < p1 ≤ ∞ and
∫

I

|V f | dμ ≤ C ‖f‖1

for f ∈ L1 and Vilenkin interval I, which satisfies that

suppf ⊂ I and
∫

Gm

fdμ = 0. (11)

Then, the operator V is of weak type (1, 1), i.e.,

sup
y>0

yμ ({V f > y}) ≤ ‖f‖1 .

We also need the following new Lemma of independent interest:

Lemma 2. Let N ∈ N. Then,
∫

Gm\IN
sup
A>N

|YA| dμ ≤ c < ∞,

where c is an absolute constant.

Proof. Let A > N and x ∈ Ik,lN , k = 0, . . . , N − 2 and l = k + 1, . . . , N − 1.
Then it is easy to prove that x − res ∈ Gm\IN for all r = 1, . . . , ms − 1.
Using (7), we get that

DMA
(x − res) = 0 for A > N

so that

YA(x) =

∣∣∣∣∣

A∑

s=0

Ms

MA

ms−1∑

r=1

DMA
(x − res)

∣∣∣∣∣ = 0 for A > N. (12)

Let A > N and x ∈ Ik,NN . Using again (7), we can conclude that
DMA

(x − res) = 0 if s 	= k and DMA
(x − rek) = 0 if r 	= xk. Moreover,

DMA
(x − xkek) =

{
MA, x ∈ IA(xkek),
0, x ∈ Gm\IA(xkek).
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Hence,
∣∣∣∣∣

A∑

s=0

Ms

MA

ms−1∑

r=1

DMA
(x − res)

∣∣∣∣∣ =
Mk

MA
|DMA

(x − xkek)|

=
{

Mk, x ∈ IA(xkek),
0, x ∈ Gm\IA(xkek).

(13)

By combining (6), (12) and (13), we find that
∫

Gm\IN
sup
A>N

|YA(x)| dμ(x)

=
N−2∑

k=0

N−1∑

l=k+1

N−1∑

j=l+1

mj−1∑

xj=0

∫

Ik,l
N

sup
A>N

|YA(x)| dμ(x)

+
N−1∑

k=0

∫

Ik,N
N

sup
A>N

|YA(x)| dμ(x)

=
N−1∑

k=0

∫

IA(xkek)

sup
A>N

∣∣∣∣∣

A∑

s=0

Ms

MA

ms−1∑

r=1

DMA
(x − res)

∣∣∣∣∣ dμ(x)

≤ c

N−1∑

k=0

Mk

MN
< C < ∞.

The proof is complete. �

3. The Main Results with Applications

In our first main result, we consider the maximal operator V ∗ defined by

V ∗f(x) := sup
A∈N

|VAf(x)|.

Theorem 1. Let f ∈ L1(Gm). Then, the operator V ∗ is of weak type (1, 1),
i.e.,

sup
y>0

yμ {V ∗f > y} ≤ ‖f‖1 .

Proof. Since

‖V ∗f‖∞ ≤ c‖f‖∞ sup
A∈N

1
MA

A∑

s=0

Ms ≤ c‖f‖∞,

we obtain that V ∗ is bounded from L∞(Gm) to L∞(Gm). According to Lem-
ma 1, the proof will be complete if we prove that

∫

I

|V ∗f | dμ ≤ c‖f‖1 (14)

for every function f satisfying the conditions in (11), where I denotes the
support of the function f. Without loss the generality, we may assume that f
is a function with support I and μ (I) = MN . We may assume that I = IN .
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It is easy to see that Vnf = 0 when n ≤ MN . Therefore, we can suppose
that n > MN . Hence,

|V ∗f(x)| = sup
n>MN

∣∣∣∣∣∣

∫

IN

Yn(x − t)f(t)dμ (t)

∣∣∣∣∣∣
.

Let t ∈ IN and x ∈ IN . Then x − t ∈ IN and by applying Lemma 2, we
get that

∫

IN

|V ∗f(x)| dμ(x) ≤
∫

IN

∫

IN

sup
n>MN

|Yn (x − t) f(t)| dμ (t) dμ (x)

≤
∫

IN

∫

IN

sup
n>MN

|Yn (x − t) f(t)| dμ (x) dμ (t)

≤
∫

IN

∫

IN

sup
n>MN

|Yn (x) f(t)| dμ (x) dμ (t)

=
∫

IN

|f(t)| dμ (t)
∫

IN

sup
n>MN

|Yn (x)| dμ (x)

≤ ‖f‖1
∫

IN

sup
n>MN

|Yn (x)| dμ (x) ≤ c ‖f‖1 ,

which means that (14) holds so the proof is complete. �

Next, we state the following convergence result for the operator WA :

Corollary 1. Let f ∈ L1 (Gm) . Then

lim
A→∞

WAf(x) = 0 a.e. x ∈ Gm.

Proof. It is easy to see that

lim
A→∞

WAf(x) = 0

for every Vilenkin polynomial. Hence, since the Vilenkin polynomials are
dense in L1(Gm), the usual density argument (see Marcinkiewicz and Zyg-
mund [15]) and Theorem 1 imply the proof. �

Our convergence result for the Fejer means reads:

Theorem 2. Let f ∈ L1(Gm). Then,

lim
n→∞σnf(x) = f(x),

for all Vilenkin–Lebesgue points of f .

Proof. By combining (8), (9) and (10), we get that

|σnf(x) − f(x)| ≤ c

n

|n|∑

A=0

MA

∫

Gm

|f(t) − f(x)||KMA
(x − t)|dμ(t)
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≤ c

n

|n|∑

A=0

MA

A∑

s=0

Ms

ms−1∑

r=1

∫

IA(x−res)

|f(t) − f (x)| dμ(t)

≤ c

n

|n|∑

A=0

MAWAf(x) → 0, as n → ∞.

The proof is complete. �

Corollary 2. Let f ∈ L1(Gm). Then,

lim
n→∞σnf(x) = f(x) a.e. on Gm.

Based on Theorem 2, we can prove our next main result.

Theorem 3. Suppose that f ∈ L1(Gm) and for some x ∈ Gm,

lim
n→∞σnf(x) = f(x).

The following statements hold true:
a) Let tn be a regular Nörlund mean generated by non-decreasing sequence

{qk : k ∈ N}. Then,

lim
n→∞tnf(x) = f(x).

b) Let tn be a Nörlund mean generated by non-increasing sequence {qk :
k ∈ N} satisfying condition (3). Then

lim
n→∞tnf(x) → f(x).

Note that if {qk : k ∈ N} is non-increasing, then the Norlund means are
regular. If this sequence is non-decreasing, then (3) is obviously satisfied.

Proof. a) Suppose that

lim
n→∞|σnf(x) − f(x)| = 0

for some x ∈ Gm. If we invoke Abel transformation we get the following
identities:

Qn :=
n−1∑

j=0

qj =
n∑

j=1

qn−j · 1 =
n−1∑

j=1

(qn−j − qn−j−1) j + q0n (15)

and

tn =
1

Qn

⎛

⎝
n−1∑

j=1

(qn−j − qn−j−1) jσj + q0nσn

⎞

⎠ . (16)

By combining (15) and (16), we can conclude that

|tnf(x) − f(x)|

≤ 1
Qn

⎛

⎝
n−1∑

j=1

(qn−j − qn−j−1) j|σjf(x) − f(x)| + q0n|σnf(x) − f(x)|
⎞

⎠
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≤ 1
Qn

n−1∑

j=0

(qn−j − qn−j−1) jαj +
q0nαn

Qn

:= I + II,

where

αn := |σnf(x) − f(x)| → 0, as n → ∞.

Since tn are regular Nörlund means, generated by sequence of non-decreasing
numbers {qk : k ∈ N} we obtain that

II ≤ q0nαn

Qn
≤ Cαn → 0, as n → ∞.

Moreover, since αn converges to 0, we get that there exists an absolute
constant A, such that αn ≤ A for any n ∈ N and for any ε > 0, there exists
N0 ∈ N, such that αn < ε when n > N0. Hence,

I =
1

Qn

N0∑

j=1

(qn−j − qn−j−1) jαj +
1

Qn

n−1∑

j=N0+1

(qn−j − qn−j−1) jαj := I1 + I2.

Since αn < A, we obtain that

I1 =
1

Qn

N0∑

j=1

(qn−j − qn−j−1) jαj ≤ AN0qn−1

Qn
→ 0, as n → ∞.

Moreover, by (15),

I2 =
1

Qn

n−1∑

j=N0+1

(qn−j − qn−j−1) jαj

≤ ε

Qn

n−1∑

j=N0+1

(qn−j − qn−j−1) j

≤ ε

Qn

n−1∑

j=0

(qn−j − qn−j−1) j < ε.

We conclude that also I2 → 0, so the proof of a) is complete.
b) In view of condition (3), the proof of part b) is step-by-step analogous

to that of part a) so we omit the details. The proof is complete. �

Corollary 3. a) Let Let tn be a regular Nörlund mean generated by non-
decreasing sequence {qk : k ∈ N}. Then, for all Vilenkin–Lebesgue points
of f ∈ L1(Gm),

lim
n→∞tnf(x) = f(x).

b) Let tn be a Nörlund mean generated by non-increasing sequence {qk :
k ∈ N} satisfying condition (3). Then, for all Vilenkin–Lebesgue points
of f ∈ L1(Gm),

lim
n→∞tnf(x) = f(x).
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Analogously, we can state the following results for T -means with respect
to Vilenkin systems.

Theorem 4. Suppose that f ∈ L1(Gm) and, for some x ∈ Gm,

lim
n→∞σnf(x) = f(x).

The following statements hold true:
a) Let Tn be a regular T -mean generated by non-increasing sequence {qk :

k ∈ N}. Then,

lim
n→∞Tnf(x) = f(x).

b) Let Tn be a T -mean generated by non-decreasing sequence {qk : k ∈ N}
satisfying condition (5). Then,

lim
n→∞Tn(x) = f(x).

Note that if {qk : k ∈ N} is non-decreasing, then the T -means are regular
and if it is non-increasing then (5) holds automatically.

Proof. The proof is step by step analogous to that of Theorem 3, so we omit
the details. We just need to replace condition (3) by condition (5) in the
proof. �

Corollary 4. a) Let Tn be a regular T -mean generated by non-increasing
sequence {qk : k ∈ N}. Then, for all Vilenkin–Lebesgue points of f ∈
L1(Gm),

lim
n→∞Tnf(x) = f(x).

b) Let Tn be a T -mean generated by non-decreasing sequence {qk : k ∈ N}
satisfying condition (5). Then, for any T -means and for all Vilenkin–
Lebesgue points of f ∈ L1(Gm),

lim
n→∞Tnf(x) = f(x).

Final Remark: We refer to our new book [32] for some complementary new
information and frame of this paper. For another (of Carleson–Hunt type)
new convergence result, we refer to our recent paper [29].
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