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ABSTRACT
The bonding in metals is analysed within the framework of the PATMOS (Perturbed AToms in
MOlecules and Solids) model. The electronic binding energy per atom is written as a sum of a distor-
tion energy of the atoms and the partitioned interaction energy comprising Coulombic, exchange
and correlation terms. The adopted physical model of the infinite system, is spherical embedding
of the atoms of the reference unit cell. Correlation energies are calculated by second-order Møller-
Plesset and second-order Epstein-Nesbet perturbation theory. The binding energy of lithium solid
is calculated for 16 nearest neighbour distances from 4.0 to 10.0 Bohr. Electron correlation is of
paramount importance for the binding energy. The calculated cohesive energy is (0.0571 ± 0.004)
Hartree comparing with experimental value 0.0599 Hartree. The bonding picture is characterised by
slightly expanded atomic orbitals.
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1. Introduction

Metallic bonding is apparently very different from bond-
ing in polyatomic molecules. The latter is localised and
directional. For a huge class of molecules, it can be
described by localised electron-pair bonds [1]. Accord-
ing to Ruedenberg and coworkers [2], it is the quantum
mechanical interference of wave functions of fragments
that leads to the kinetic energy decrease in the system –

CONTACT Inge Røeggen inge.roeggen@uit.no Hylleraas Centre for QuantumMolecular Sciences, Department of Chemistry, UiT The Arctic University
of Norway, Tromsø N–9037, Norway

which becomes the driving force behind chemical bond-
ing. Most of studies have agreed upon the Ruedenberg’s
framework though fine details may diverge for differ-
ent theoretical methods [3]. This picture of electron-
pair bonding is not easily transferred to a metal. For
an alkali metal with a bcc-structure, there are eight
nearest-neighbour atoms for a particular atom, but only
one valence electron for each atom. Hence, a system of
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2 I. RØEGGEN AND B. GAO

electron-pair bonds for the metal is indeed difficult to
imagine. To cope with this enigma it is customary to sup-
pose that a metal is characterised by a delocalised ‘sea’
of electrons and that this ‘sea’ of negative charge holds
the atoms together. The corresponding mathematical
model is Hartree-Fock theory with delocalised orbitals,
i.e. canonical Hartree-Fock orbitals. However, within the
one-determinant approximation, the wave function is
invariant with respect to a unitary transformation of the
orbitals. A delocalised picture can be transferred to a
localised picture. Accordingly, the original problem of
explaining bonding is as puzzling as before. The scien-
tific community has then more or less disregarded this
particular problem and instead focussed on what can be
obtained by molecular orbital theory with delocalised
orbitals. An extensive body of scientific work demon-
strates the success of this approach.

One of the difficulties of explaining bonding in met-
als can be traced back to a simplistic interpretation of
the electron-pair bond concept. It is often interpreted
as if electrons in complexes prefer to stick together
in pairs. However, electrons repel each other, and left
to themselves they separate. As for the ground state
of a system, electrons try to come as close as possi-
ble to the nuclei in accordance with the Pauli exclu-
sion principle. For localised orbitals we might inter-
prete the Pauli principle as stating that two electrons
with different spins can occupy the same part of the
physical space. In order to obtain the lowest possible
total energy for the system, the electrons arrange them-
selves in such a way that they are close to a nuclues
or a pair of nuclei. In electron-pair bonds an electron
of an atom is shifted towards the nucleus of a neigh-
bouring atom, and vice versa. This particular feature
of the electron-pair bonding is demonstrated in a work
by Røeggen and Gao [4]. By moving away from the
paring concept but keeping its physical content of the
bonding, i.e. shifting of electrons in direction of neight-
boring atoms, bonding in metals might be more easily
understood.

Another key to understand bonding in metals is
related to the electron density. The density inmetals is not
very different from the sum of the atomic densities of iso-
lated atoms put in the positions of the nuclei of the metal.
Hence, the atomic wave-functions are only modestly dis-
torted in forming the metal. This fact has an important
corollary. If one uses restricted Hartree-Fock in the study
of metals, which implies doubly occupied orbitals, this
feature of the metallic bond cannot be disclosed. There-
fore, one should preferably use unrestrictedHartree-Fock
as a basic approximation in describing metals since it
is essential to have one spatial orbital for each valence
electron.

The purpose of this work is twofold: first, to construct
a workable computational model for ab initio studies of
the electronic structure of atoms in three-dimensional
lattices. Second, to understand the origin of bonding in
metals. As for the first purpose, the PATMOSmodel [4,5]
(Perturbed AToms in MOlecules and Solids) is a con-
venient starting point. PATMOS calculations on finite
chains of metallic atoms strongly suggest that the elec-
tronic structure of the atoms of chains can be charac-
terised by localised orbitals, i.e. distorted atoms. Hence,
a physical model with spherical embedding around each
atom of the reference unit cell, is appropriate. The spheri-
cal embedding guarantees correct symmetry. In this work
we shall then demonstrate that ab initio calculations on
metallic atoms in three-dimensional lattices are feasible.

The structure of the paper is as follows: The second
section is devoted to a short description of the PATMOS
model adapted to periodic systems. The third section
focuses on a physical model of the solid using spheri-
cal embedding. The fourth section gives details on the
computational aspects of the model. The fifth section
is devoted to calculations on lithium atoms in a three-
dimensional lattice. In the last section there is a discus-
sion of the different sources of errors in this work.

2. The PATMOSmodel

To manage the electron correlation problem for large
molecules, it is now well established that within the
wave function framework local correlation models are
required. The local models can be traced back to the fun-
damental works by Pulay and coworkers [6–9]. To avoid a
large virtual orbital space, Pulay [6] proposed to remove
the component of the localised occupied orbitals from the
atomic basis. He denoted the modified basis projected
atomic orbitals (PAO). In calculating the inter-atomic
correlation energy one could then use the union of the
PAO’s for the atoms involved instead of the full virtual
orbital space for the complex. Hence, a drastic reduction
of the computation time could be achieved.

To date various local correlation models have been
developed and applied for periodic systems, for instance,
the local second-order Møller-Plesset theory (MP2)
[10], divide-expand-consolidate MP2 [11] and cluster-
in-molecule local correlation approach [12]. Another
way of adapting local correlation methods to metals is to
use the energy incremental scheme. The orbital energy
incremental scheme was introduced by Nesbet [13], and
refined by Stoll and coworkers [14–16], Røeggen [17,18],
Bytautas and Ruedenberg [19], Voloshina and Paulus
[20], and more recently by Paulus and Stoll [21]. The
PATMOS model is formulated within the energy incre-
mental scheme. In principle the correlation energy in
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PATMOS model can be calculated by any size extensive
correlation model. The detailed description of the PAT-
MOS model is given in our previous works [4,5]. In this
work we sketch only the essential elements: the energy
partitioning and the PATMOS basis set approach.

2.1. Energy partitioning

The total electronic energy of a complex can within the
PATMOS framework, be written as

EPATMOS =
Natoms∑
A=1

(EUHF
A + EcorrA )

+
Natoms∑
A<B

(ECoulAB + EexchAB + EcorrAB )

+
Natoms∑
A<B<C

EcorrABC + · · · . (1)

In Equation (1) Natoms denotes the number of atoms in
the physical model, EUHF

A and EcorrA are respectively the
unrestricted Hartree-Fock (UHF) energy and the corre-
lation energy for atom A, ECoulAB and EexchAB are respectively
the Coulomb and exchange part of the interaction energy
between the atoms A and B, and EcorrAB is the correlation
energy between the same atoms. Effective atomic energies
can be introduced

EPATMOS =
Natoms∑
A=1

EeffA , (2)

where

EeffA = EUHF
A + EcorrA + 1

2

Natoms∑
B�=A

(ECoulAB + EexchAB + EcorrAB )

+ 1
3

⎧⎪⎨
⎪⎩

Natoms∑
B,C

A<B<C

EcorrABC +
Natoms∑
B,C

B<A<C

EcorrBAC +
Natoms∑
B,C

B<C<A

EcorrBCA

⎫⎪⎬
⎪⎭

+ · · · . (3)

An important term for a periodic system is the sum of
effective atomic energies for the atoms in the reference
cell:

EPATMOS
uc =

Nuc
atoms∑
A=1

EeffA . (4)

In Equation (4)Nuc
atoms is the number of atoms in the unit

cell. As we increase the number of atoms in the physical
model, EPATMOS

uc should converge to the corresponding
value for the infinite system.

In this work we are interested in the binding energy
per atom:

EbindA = EeffA − EisoA , (5)

where EisoA is the energy of the isolated atom. Then it
follows from Equation (3)

EbindA = �dist
A + ECoulA,inter + EexchA,inter + EcorrA,inter (6)

where

�dist
A = EUHF

A + EcorrA − EUHF,iso
A − Ecorr,isoA , (7)

ECoulA,inter = 1
2

Natoms∑
B�=A

ECoulAB , (8)

EexchA,inter = 1
2

Natoms∑
B�=A

EexchAB , (9)

EcorrA,inter = 1
2

Natoms∑
B�=A

EcorrAB + 1
3

⎧⎪⎨
⎪⎩

Natoms∑
B,C

A<B<C

EcorrABC

+
Natoms∑
B,C

B<A<C

EcorrBAC +
Natoms∑
B,C

B<C<A

EcorrBCA

⎫⎪⎬
⎪⎭ + · · · . (10)

The term �dist
A , the distortion energy, represents the

change in the energy of atomA in the complex due to the
presence of the surrounding atoms. The interpretation of
the terms in Equations (8) to (10) should be evident.

The virial theorem yields additional insight into the
character of electronic binding energy. Let T denote the
kinetic energy operator:

T = −1
2

neleccomp∑
i=1

∇2
i , (11)

where neleccomp is the number of electrons in the considered
complex. Then according to the virial theorem:

Eiso = −〈� iso
exact |T� iso

exact〉 = −Ekiniso,exact, (12)

where Ekiniso,exact is the kinetic energy of the complex com-
prising the isolated atoms or subsystems, calculated by
the exact wave function. A similar reltion is valid for the
bonded complex with the equilibrium geometry:

Ecomp = −〈�comp
exact |T�comp

exact 〉 = −Ekincomp,exact. (13)

Hence, we have for the binding energy:

Ebind = −
(
Ekincomp,exact − Ekiniso,exact

)
. (14)
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Accordingly, if the system is bounded, then

Ekincomp,exact > Ekiniso,exact. (15)

As a consequence, in the energy partitioning scheme the
change in the kinetic energy is a ‘response’ effect, but it is
hidden in the positive distortion energy.

2.2. The PATMOS basis set procedure

In the recent work by Røeggen and Gao [5] a basis func-
tion (BF) region is defined as a unit cell and a certain
number of nearest neighbour unit cells. However, since
we in this work advocate spherical embedding, the BF-
region of an atom comprizes the atom in question and all
its partner atoms in a sphere centred on the nucleus of the
atom. The number of atoms of the BF-region is denoted
NA
BF. See illustraction in Figure 1. Two different atom-

centred basis sets are associatedwith each nucleus, a large
one, {χA,lb

μ ;μ = 1, . . . ,mlb
A }, and a small one, {χA,sb

μ ;
μ = 1, . . . ,msb

A }. The basis set for an atom in the unit cell
is then

�A
dual =

{
χA,dual
μ ;μ = 1, . . . ,mdual

A

}

=
{
χA,lb
μ ;μ = 1, . . . ,mlb

A

}
⋃

B∈�A
BF

{
χB,sb
μ ;μ = 1, . . . ,msb

B

}
, (16)

where�A
BF is the set of atoms in the BF-region (excluding

atom A).
The spatial part of a spin orbital (α- or β-type):

ψA
i =

mdual
A∑
μ=1

Udual
μ,i χ

A,dual
μ . (17)

The orbitals of the UHF wave functions are subjected to
orthogonality constraints:

〈ψA,α
i |ψB,α

j 〉 = δijδAB, (18)

〈ψA,β
i |ψB,β

j 〉 = δijδAB. (19)

The constraints, Equations (18) and (19), require special
attention in the optimisation procedure since the orbitals
of different atoms are expressed in different basis sets.

2.3. Orbital localisationmeasures

To describe orbital localisation, we use charge centroids
and charge ellipsoids [22] in this work. As illustrated in
our previous work [4], it is a very compact and visual way

Figure 1. Two different models of infinite, one-dimensional peri-
odic systems of unit cells. (a) Fixed number of unit cells. (b)
Spherical embedding.

of looking at orbital localisation. The charge centroid is
defined as

rC = 〈ψ | rψ〉, (20)

where ψ is any spatial orbital.
The extension or spread of an orbital can be described

by the second-order variance matrix

Mrs = 〈ψ | (xr − xCr )(xs − xCs )ψ〉, r, s ∈ {1, 2, 3},
(21)

where xCr is the rth component of the charge centroid
vector rC. Diagonalization of the second-order variance
matrixMrs yields the charge ellipsoid.

The eigenvalues {a1, a2, a3} of the matrix Mrs corre-
spond to the squares of the half-axes of the ellipsoid. The
standard deviations in three orthogonal directions, i.e.
the directions of the half-axes, are therefore given by

�li = a1/2i , i ∈ {1, 2, 3}, (22)

which can be used as a measure of the extension of
the orbital with respect to the charge centroid posi-
tion. We may also use the volume of the ellipsoid V =
4
3π�l1�l2�l3 as a single number for the extension.

The half-axes also define a lower bound for the kinetic
energy associated with a given orbital ψ :

Ekin =
〈
ψ

∣∣∣∣−1
2
∇2ψ

〉
≥ 1

8

[
1

(�l1)2
+ 1
(�l2)2

+ 1
(�l3)2

]
.

(23)
This inequality can be derived from the Heisenberg
uncertainty principle [4] and expresses neatly that the
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kinetic energy increases when an orbital becomes more
compact.

3. The physical model for a periodic system

In the physical model for constructing the orbitals of the
UHF function we include as a constraint that all atoms of
the same type should be described by identical orbitals,
i.e. translational symmetry should be satisfied. Hence,
there are no surface effects in the physical model. In
Figure 1 we consider a one-dimensional system with two
different atoms in the unit cell. We look at two different
types of embedding. The first one, (a), is an embedding
with a fixed number of unit cells. In Figure 1, embedding
(a) consists of the reference cell and the two first near-
est neighbouring cells (1NN). The second embedding is
a spherical one including all atoms in sphere surrounding
an atom of the reference cell. In Figure 1, the radius of the
sphere is slightly larger than the unit cell distance.

When we optimise the UHF orbitals, we consider an
effective Hamiltonian for each atom in the reference cell.
The Hamiltonian includes only the atoms of the BF-
region. We notice that for embedding (a), the atom A
of the reference cell has two atoms on the left and three
atoms on the right, and vice versa for atom B. This lack of
symmetry creates an artificial shift of the charge density.
For a one-dimensional system this shift can be reduced by
including a large number of unit cells in the BF-region.
However, for atoms in three-dimensional lattices, such
an extension is not feasible. On the other hand, if we
look at spherical embedding, Figure 1(b), we have perfect
symmetry for any size of the embedding.

4. Computational aspects

The computational feasibility of a model is of paramount
importance when we consider large complexes such as
a metal. In the first subsection we shall give details on
the procedure for obtaining the spin orbitals of the UHF
wave function. The second and the third subsections are
devoted to the electron correlation problem restricted
to intra-atomic and diatomic terms. In particular the
diatomic terms need careful considerations. We have to
compute of the order 1000 diatomic terms for obtaining
sufficiently converged results. Hence, a simplistic, but still
fairly accurate, procedure has to be constructed.

4.1. Determination of the UHF orbitals

The starting point for the UHF procedure is an effective
Hamiltonian for an atom A of the reference unit cell:

HA
eff =

NA∑
i=1

hAeff (ri)+
NA∑
i<j

1
rij
, (24)

where the effective one-electron Hamiltonian is given by

hAeff (ri) = h(ri)+
Natoms∑
B∈�A

BF

NB∑
j=1

(
JBj − KB

j

)
. (25)

NA and NB are the number of electrons of atoms A and
B, respectively. JBj and KB

j are the Coulomb and exchange
operators generated by the spin orbitalψB

j of atom B, and
h(ri) is the one-electron operator for the complex: atom
A +�A

BF, i.e.

h(ri) = −1
2
∇2
i − ZA

|RA − ri| −
∑

B∈�A
BF

ZB
|RB − ri| . (26)

In Equation (26), the symbols have their conventional
meaning. The spin orbitals of the atom A are orthogonal
to all spin orbitals of the atoms in the set�A

BF, i.e.

〈ψA
i |ψB

j 〉 = 0, 1 ≤ i ≤ NA, B ∈ �A
BF,

1 ≤ j ≤ NB. (27)

In order to comply with the orthogonality constraints
of Equation (27), and the translational symmetry of the
orbitals, the optimisation procedure consists of several
iterative steps.

Preliminary calculations on one-dimensional systems
of pure metals demonstrate that the localised orbitals are
slightly perturbed atomic orbitals. The PATMOS basis set
procedure with a large and a small basis sets assigned to
each atom, is particularly well-suited to deal with this fea-
ture. The large basis set can easily account for the small
expansion of the atomic density while the small basis set
for the partner atoms in �A

BF takes care of the orthogo-
nality constraints. However, we can introduce a further
simplification. Let PB,αocc denote the projection operator
associated with the α-type spin orbitals of an atom B
in the BF-region of atom A. The dual space of atom A,
Equation (16), is modified in the follwing way:

χ̂A,dual
μ =

⎛
⎜⎝1 −

∑
B∈�A

BF

PB,αocc

⎞
⎟⎠χA,dual

μ , 1 ≤ μ ≤ mdual
A .

(28)
A linear independent set of functions, {φA,αμ ; 1 ≤ μ ≤
m̃dual

A ≤ mdual
A }, is constructed from the functions defined

in Equation (28). The next step is to project the large
basis set, {χA,lb

μ ; 1 ≤ μ ≤ mlb
A}, onto the modified dual

set. The perturbed large basis set is denoted {χ̃A,lb;α
μ ; 1 ≤

μ ≤ mlb
A}. By construction this modified basis is orthog-

onal to all α-type orbitals of the atoms of �A
BF. A similar

procedure yields {χ̃A,lb;β
μ ; 1 ≤ μ ≤ mlb

A}.
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The next step is to solve the Hartree-Fock equations
for atom A:

FαAψ
A,α
i = ε

A,α
i ψ

A,α
i , (29)

and

FβAψ
A,β
i = ε

A,β
i ψ

A,β
i . (30)

The orbitals are expressed in terms of the modified large
basis sets, i.e.

ψ
A,α
i =

mlb
A∑

μ=1
UA,α
μ χ̃A,lb;α

μ , (31)

and

ψ
A,β
i =

mlb
A∑

μ=1
UA,β
μ χ̃A,lb;β

μ . (32)

A fixed-point iteration procedure does not necessarily
converge. Hence, we introduce a UHF functional

EUHF
uc =

Nuc
atoms∑
A=1

EUHF,eff
A , (33)

where

EUHF,eff
A = EUHF

A + 1
2

∑
B∈�A

BF

(ECoulAB + EexchAB ). (34)

Let {ψA,old
i } denote the spin orbitals of the previous iter-

ation, and {ψA,new
i } the spin orbitals of the last one. Then

we minimise the functional EUHF
uc with respect to the

length of the orbital correction:

ψA
i (λ) = ψ

A,old
i + λ

(
ψ

A,new
i − ψ

A,old
i

)
,

1 ≤ A ≤ Nuc
atoms, 1 ≤ i ≤ NA, 0 < λ ≤ 1.

(35)

The orbitals {ψA
i (λ)} have to be properly symmetrised.

The procedure is described in Appendix. We denote the
symmetrised orbitals {ψA,sym

i (λ)}.
If

EUHF
uc

({
ψ

A,sym
i (λ)

})
< EUHF

uc

({
ψ

A,old
i

})
, (36)

then we continue to the next iteration. Otherwise, we
choose new values of λ until we can perform a parabolic
fit. Two or three values of λ are in most cases sufficient.
To obtain a converged result of accuracy 10−7 Hartree,
typically 15–20 iterations are required.

4.2. Correlation energy

Typically, intra-atomic MP2 energy yields 80–90% of the
corresponding full configuration interation (FCI) energy.
The intra-atomic MP2 energy for lithium varies only
slightly for different values of the lattice parameter, i.e.
less than 1%. Hence, MP2 should be sufficiently accurate
for our purpose.

The inter-atomic correlation terms are more demand-
ing. In this work we are using both MP2 and second-
order Epstein-Nesbet (EN2) theory. MP2 underestimates
the inter-atomic correlation enery while EN2 usually
overestimates it.

4.2.1. Intra-atomic correlation energy
Let {ψA

i ; 1 ≤ i ≤ 2mlb
A } denote the spin orbitals obtained

by solving the Hartree-Fock equations, Equations (29)
and (30), and {εAi ; 1 ≤ i ≤ 2mlb

A } the corresponding
orbital energies. The intra-atomic correlation for atom A
is then approximated by the standard MP2 expression:

EMP2
A =

occ∑
i<j

virt∑
r<s

∣∣∣〈ψA
i ψ

A
j |gψA

r ψ
A
s 〉

− 〈ψA
i ψ

A
j |gψA

s ψ
A
r 〉

∣∣∣2
εAi + εAj − εAr − εAs

, (37)

where the two sums are restricted to respectively occu-
pied and virtual spin orbitals. By distinguishing between
α- and β-type spin orbitals, the MP2 energy can be
written as a sum of three different terms:

EMP2
A = EMP2;αα

A + EMP2;ββ
A + EMP2;αβ

A . (38)

4.2.2. Inter-atomic correlation energy
For atom A we calculate the diatomic correlation terms
for all atoms with a sphere of radius rsphmodel surround-
ing the nucleus of A. The radius of the sphere is deter-
minde by a selected convergence criterion. For a pair of
atoms (A,B) we define inter-atomic embedding �A

inter
and �B

inter. The embedding �A
inter includes all atoms

within a sphere of radius rsphinter surrounding the nucleus
of atom A (but excluding atom A). Similarly for atom B.
The embedding for the pair (A,B) is then (see Figure 2)

�AB
inter = �A

inter ∪�B
inter −�A

inter ∩�B
inter. (39)

The effective Hamiltonian for the pair (A,B) is

HAB
eff =

NA+NB∑
i=1

hABeff (ri)+
NA+NB∑
i<j

1
rij
, (40)
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Figure 2. Different embeddings. The largest sphere with radices
rsphmodel includes all atoms B interacting with atom A. The smaller
spheres surrounding A and B define the embedding used in cal-
culating the interaction between atoms A and B.

where

hABeff (ri) = −1
2
∇2 − ZA

|RA − ri| − ZB
|RB − ri|

−
∑

C∈�AB
inter

⎡
⎣ ZC

|RC − ri| +
NC∑
j=1

(
JCj − KC

j

)⎤
⎦ .

(41)

In Equation (41), the symbols have their standard
meaning. The Coulomb and exchange operators in
Equation (41) require special attention. For each pair of
atoms (A,B), the proper calculation of two-electron inte-
grals requires three sets of dual basis sets as defined in
Equation (16): �A

dual, �
B
dual and �

C
dual. Since the number

of atoms in�AB
inter is of the order of the sumof atoms in the

sets �A
BF and �

B
BF, the computational cost of this proper

approach is prohibitively high. Our simplistic procedure
is based on the fact that the charge ellipsoids [4] associ-
ated with the occupied orbitals are spherical symmetric.
Hence, we project the orbitals {ψC

i ; 1 ≤ i ≤ NC} onto the
small basis set {χC;sb

μ ; 1 ≤ μ ≤ msb
C }:

ψ
C;sb,α
i =

msb
C∑

μ=1
χC;sb
μ UC;sb,α

μ,i , (42)

ψ
C;sb,β
i =

msb
C∑

μ=1
χC;sb
μ UC;sb,β

μ,i . (43)

Accordingly, by using {ψC;sb,α
i } and {ψC;sb,β

i } in calcu-
lating the matrix elements of the operators JCj and KC

j
in Equation (41), the number of two-electron integrals
are restricted to the basis sets {χA;lb

μ ; 1 ≤ μ ≤ mlb
A } ∪

{χB;lb
μ ; 1 ≤ μ ≤ mlb

B } plus the small basis sets for the
atoms in�AB

inter.
The virtual orbitals to be used in the diatomic corre-

lation treatment are derived from the intra-atomic cal-
culations. For both α and β orbitals we go through
the following steps. A symmetric orthonormalization of
{ψA;virt

a ; 1 ≤ a ≤ mvirt
A } ∪ {ψB;virt

b ; 1 ≤ b ≤ mvirt
B } yields

{φab;virtr ; 1 ≤ r ≤ mvirt
A + mvirt

B }. If atom B ∈ �A
BF, then

the occupied orbitals of atom B are by construction
orthogonal to the occupied orbitals of atom A [see
Equation (27)]. If B /∈ �A

BF, then the orthogonality con-
dition is not necessarily fulfilled. Consequently, we per-
form a symmetric orthonormalization of the occupied
orbitals. This is followed by a Gram-Schmidt orthonor-
malization of occupied plus virtual orbitals. The orbitals
are appropriately divided in three separate groups –
for α-type orbitals, {ψA;occ;α

i ; 1 ≤ i ≤ NαA}, {ψB;occ;α
j ; 1 ≤

j ≤ NαB } and {ψAB;virt;α
r ; 1 ≤ r ≤ mvirt

A + mvirt
B = mvirt

AB }.
If FαAB denotes the α-type Fock operator for the atom pair
(A,B), we define

ε
A;occ;α
i = 〈ψA;occ;α

i | FαABψA;occ;α
i 〉, (44)

ε
B;occ;α
j = 〈ψB;occ;α

j | FαABψB;occ;α
j 〉. (45)

The virtual orbitals correspond to a diagonal block of the
Fock operator, i.e.

〈ψAB;virt;α
r | FαABψAB;virt;α

s 〉 = δrsε
AB;virt;α
r . (46)

By using spin orbitals the diatomic MP2 energy can be
written as

EMP2
AB =

NA∑
i=1

NB∑
j=1

mvirt
AB∑

r<s

∣∣∣〈ψA
i ψ

B
j | gψAB

r ψAB
s 〉

− 〈ψA
i ψ

B
j | gψAB

s ψAB
r 〉

∣∣∣2
ε
A;occ
i + ε

B;occ
j

−εAB;virtr − εAB;virts

. (47)

The MP2 energy can be partioned into a sum of four
termswhenwe distinguish betweenα andβ spin orbitals:

EMP2
AB = EMP2;αα

AB + EMP2;ββ
AB + EMP2;αβ

AB + EMP2;βα
AB .

(48)
As for the Epstein-Nesbet correction we introduce a two-
electron Hamiltonian related to the spin orbitals ψA

i
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and ψB
j

HA,i;B,j
eff (r1, r2) = hA,i;B,jeff (r1)+ hA,i;B,jeff (r2)+ 1

r12
, (49)

where

hA,i;B,jeff (r) = hABeff (r)+
NA∑
iA �=i

(
JAiA − KA

iA

)

+
NB∑
jB �=j

(
JBjB − KB

jB

)
, (50)

and hABeff (r) is defined in Equation (41). The Coulomb
and exchange operators in Equation (50) have their
conventional meaning.

By introducing the following set of two-electron
functions

�
ij
o = det

∣∣∣ψA
i ψ

B
j

∣∣∣ , (51)

�rs = det
∣∣∣ψAB;virt

r ψAB;virt
s

∣∣∣ , 1 ≤ r, s ≤ mvirt
AB , (52)

the Epstein-Nesbet correction to second order (EN2) for
the spin orbital pair {ψA

i ,ψ
B
j } is then simply given as

EEN2A,i;B,j =
mvirt
AB∑

r<s

∣∣∣〈�ij
o |HA,i;B,j

eff �rs〉
∣∣∣2

Eijo − Eijrs
, (53)

where

Eijo = 〈�ij
o |HA,i;B,j

eff �
ij
o〉, (54)

and

Eijrs = 〈�rs |HA,i;B,j
eff �rs〉. (55)

In actual calculations the expression for EN2,
Equation (53), is slightly modified. The spin orbitals ψA

i
and ψB

j are determinde by using a spherical embedding.
As is evident from Figure 2, the embedding described
by�AB

inter is not spherical. The deviation from the spheri-
cal embedding depends strongly on the radius rsphinter. The
larger radius, the smaller deviation. As a consequence of
this deviation, the energy Eijo is not necessarily the low-
est eigenvalue for the Hamiltonian HA,i;B,j

eff . To cope with
this problem,we include only thosewave functionswhich
correspond to Eijrs > Eijo . Unfortunately, this leads to an
unsystematic error in the calculated EN2 energy.

5. The bcc structure of lithium

In this section we present a series of calculation on solid
lithium in a body centred cubic (bcc) structure (unit

cell parameter or lattice parameter a). The lithium atoms
situated at the corners of cubes have the electronic config-
uration (1sα1sβ2sα), for short α-atoms, and the atoms in
the centre of cubes (1sα1sβ2sβ), for short β-atoms. The
unit cell (uc) includes one α-atom and one β-atom.

The basis sets adopted are uncontracted Gaussian
type functions (GTF). A small basis set (sb) = (11s1p),
and two large basis sets (lb) = (15s7p2d1f ) and (lb) =
(19s8p7d5f 2g1h). Our integral code requires family type
basis sets. Further, the exponents are all drawn from
the same set of universal type exponents, i.e. {ηk =
αβk−1, 1 ≤ k ≤ kmax}. The parameters defining the basis
sets are given in Table 1.

In this work two-electron integrals are represented by
Cholesky vectors. The idea of a Cholesky decomposition
of the two-electron integral matrix was first suggested
by Beebe and Linderberg [23] and later adopted by sev-
eral research groups [24–26]. In this work, an integral
threshold of 10−7 Hartree is used for the calculation of
intra-atomic terms, and 10−5 Hartree for inter-atomic
terms. The latter approximation affects the total energy
per atom by less than 10−6 Hartree.

The BF-region is defined by a sphere of radius, rsphBF =
auc. A sphere with the cube corner (0, 0, 0) and radius
rsphBF encloses six α-type atoms and eight β-type atoms.
The first nearest-neighbour distance r1NN is the distance
between the α-atom in position (0, 0, 0) and the β-atom
in position ( auc2 , auc2 , auc2 ). The UHF and MP2 energy for
isolate lithium is given in Table 2. The half-axes of the
charge ellipsoid of the 2s orbital are also included.

The typical pattern of convergence of the iterative
procedure for obtaining the perturbed atomic orbitals,
is shown in Table 3. Only atoms of the BF-region are
included in the determination of the orbitals. The orbitals
of the isolated atoms, properly symmetrised for the BF-
region, are used as starting orbitals. The effective UHF
energy for an atom is converged after 14 iterative cycles.
For all cases considered in this work, convergence is
obtained after 15–20 iterations. In order to calculate the
interaction between an atom A in the reference unit cell
and all atoms within a sphere of radius rsphmodel surround-
ing the nucleus of atomA, we have partitioned this sphere
into an inner sphere of radius r = auc, and concentric
shells of thickness auc. The results are presented inTable 4
for a nearest-neighbour distance r1NN = 6.0 Bohr. We
notice the rapid convergence with respect to shell dis-
tance. In this work shell 4 is the last shell included. The
correlation terms are not fully converged, but the con-
tribution from neglected shells are assumed to be small
compared with the total error of the EN2 correlation
energy.

The main results of this work is presented in
Table 5 and Figure 3. Binding energy per atom as a
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Table 1. Lowest and highest exponents of the GTF-family basis sets used in this work (ηk =
αβk−1, 1 ≤ k ≤ kmax).

Basis β s p d f g h

11s1p 2.976 0.018708 0.1657
1019.7707 0.1657

15s7p2d1f 2.427 0.031055 0.031055 0.075366 0.1829
7632.8365 6.344116 0.1829 0.1829

19s8p7d5f2g1h 2.427 0.003802 0.054334 0.054334 0.131859 0.131859 0.32
32408.6986 26.936846 11.099601 4.573703 0.32 0.32

Table 2. For isolated lithium atom: UHF energy, MP2 correlation
energy and half-axes of the charge ellipsoid of the 2s orbital.

EUHFLi EMP2Li l2sx = l2sy = l2sz
Basis (Hartree) (Hartree) (Bohr)

11s1p −7.432305 2.436
15s7p2d1f −7.432704 −0.035485 2.416
19s8p7d5f2g1h −7.432744 −0.040407 2.433

Table 3. Convergency of the UHF optimisation procedure.

Iterative cycle Step length parameter (λ) �EUHF,effLi;sb/lb (Hartree)

1 0 0.010252
2 0.2 0.005556
3 0.2 0.003381
4 0.4 0.001384
5 0.4 0.000639
6 0.4 0.000294
7 0.4 0.000137
8 0.4 0.000064
9 0.4 0.000030
10 0.4 0.000014
11 0.4 0.000007
12 0.4 0.000003
13 0.4 0.000001
14 0.4 0.000000

Notes: The step length parameter is defined in Equation (35). r1NN = 6.0 Bohr.
Basis set: (11s1p/15s7p2d1f ). Converged EUHF,effLi;sb/lb = −7.425200 Hartree.

function of the first nearest-neighbour distance, r1NN,
is given for UHF, UHF+MP2 and UHF+MP2/EN2.
The experimental cohesive energy [27] for lithium is
0.059903Hartree (cohesive energy is defined as positive).
The nearest-neighbour distance r1NN = 5.744214 Bohr
corresponds to experimental crystal structure [28]. We
notice that UHF yields only a shallow minimum of
−0.0047Hartree at a distance of 7.03 Bohr (parabolic fit).
TheUHF+MP2gives a binding energy of−0.028011 and
an equilibrium distance of 5.997 Bohr (parabolic fit). The
PATMOS-MP2 result for the binding energy is less than

Figure 3. The electronic binding energy as a function of the
nearest-neighbour distance for three different models: UHF,
UHF+MP2 and UHF+MP2/EN2 (intra-atomic: MP2, inter-atomic:
EN2).

50% of the experimental binding energy (correcting for
zero-point energy). The PATMOS-EN2 binding energy is
roughly 5% off the experimental value. However, the EN2
inter-atomic correlation energies are subjected to unsys-
tematic errors. As is evident from Figure 3, the value for
r1NN = 5.4 Bohr, i.e. −0.062566 Hartree, overestimates
the binding energy. If we disregard this value and perform
a parabolic fit based on the distances {5.0, 5.2, 5.6} Bohr,
we obtain a binding energy of −0.05817 Hartree at a
distance of r1NN = 5.30 Bohr. We shall return to this
problem in the error discussion, Section 6. The mag-
nitude of the difference between the estimated value of
the binding energy and the calculated value for r1NN =
5.4 Bohr, is used as a measure of the unsystematic error
of the EN2 correlation energies. It is roughly 8% of the
EN2 correlation energy.

Table 4. Total interaction energy and different contributions per atom from atoms of an inner shpere (radius = auc), and concentric
shells of thickness auc where auc is the lattice parameter.

Number of atoms ECoulLi;inter EexchLi;inter Ecorr,MP2Li;inter Etot,MP2Li;inter Ecorr,EN2Li;inter Etot,EN2Li;inter

Sphere (rsph = auc) 14 −0.036753 −0.021347 −0.017932 −0.076032 −0.032102 −0.090202
Shell 1 (auc, 2auc) 50 −0.006090 −0.002304 −0.006822 −0.015216 −0.015344 −0.023738
Shell 2 (2auc, 3auc) 194 −0.000489 −0.000223 −0.001377 −0.002089 −0.002679 −0.003391
Shell 3 (3auc, 4auc) 278 −0.000030 −0.000080 −0.000218 −0.000328 −0.000430 −0.000540
Shell 4 (4auc, 5auc) 530 −0.000001 −0.000000 −0.000092 −0.000093 −0.000188 −0.000189

Notes: r1NN = 6.0 Bohr and auc = 6.928203 Bohr. Basis set: (11s1p/15s7p2d1f ).
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Table 5. Binding energy per atom for lithium in a bcc-structure as
a function of the nearest-neighbour distance r1NN.

r1NN UHF PATMOS-MP2 PATMOS-EN2
(Bohr) (Hartree) (Hartree) (Hartree)

4.0 0.090910 0.041582 0.014718
4.2 0.070408 0.027027 −0.002089
4.4 0.058668 0.015067 −0.016804
4.6 0.044060 −0.002924 −0.034498
4.8 0.031645 −0.007449 −0.041831
5.0 0.021540 −0.015332 −0.055468
5.2 0.013711 −0.021193 −0.057872
5.4 0.007857 −0.024518 −0.062566
5.6 0.003590 −0.026755 −0.055675
5.744214 0.001288 −0.027535 −0.054842
6.0 −0.001570 −0.028011 −0.052314
6.4 −0.003881 −0.026800 −0.049904
6.8 −0.004666 −0.024473 −0.045075
7.2 −0.004695 −0.021769 −0.039113
8.0 −0.003810 −0.016312 −0.029502
10.0 −0.001093 −0.005653 −0.011636

Notes: Basis set: (11s1p/15s7p2d1f ).

The character of the binding of solid lithium is dis-
closed in Table 6. To easily group the relative contribution
of the components, we have used the magnitude of the
Coulomb interaction as energy unit. The partitioning of
the binding energy demonstrates very clearly that the
correlation energy is of paramount importance. Its rela-
tive contribution increases with increasing value of r1NN.
There is one repulsive term: the distortion energy, i.e. the
charge in intra-atomic energy due to the interaction with
the surrounding atoms. The magnitude of the ‘semiclas-
sical’ Coulomb energy, ECoulLi;inter, is less than the distortion
energy for all distances considered in this work. As a
consequence, the Hartree model, i.e. the UHF energy
minus the exchange energy (UHForbitals are used for the
Hartree model) yield no binding. This feature is demon-
strated in Table 7.Measured by the half-axes of the charge

Table 7. Binding energy at the Hartree and UHF levels and the
half-axes of the charge ellipsoid of the 2s orbital, as a function of
the nearest-neighbour distance r1NN.

r1NN Hartree model UHF lx = ly = lz
(Bohr) (Hartree) (Hartree) (Bohr)

4.0 0.166053 0.090910 2.037
5.0 0.061578 0.021540 2.353
5.4 0.040372 0.007857 2.398
5.744214 0.028552 0.001288 2.463
6.0 0.022313 −0.001570 2.504
7.2 0.007727 −0.004695 2.630
8.0 0.003950 −0.003810 2.663
10.0 0.000621 −0.001093 2.552

Notes: For isolated atom: lx = ly = lz = 2.416 Bohr. Basis set:
(11s1p/15s7p2d1f ).

ellipsoid of the 2s orbital, we notice that there is only a
small extension of the electron density at the experimen-
tal equilibrium distance r1NN = 5.744214 Bohr.

With exception of some round-off errors less than
10−6 Hartree, we have identical results for the α- and β-
atoms of the reference unit cell. As for the inter-atomic
interactions, those terms are only calculated for the
α-type atom.

To summarise this section: binding of lithium in a
bcc structure can be described by localised orbitals. The
perturbed atomic orbitals are only slightly distorted. Fur-
thermore, the correlation energy is extremely important
in order to obtain an accurate binding enregy.

6. Discussion

There are mainly three different sources of error in this
work: basis set, correlation energy and model errors. We
consider first the basis set errors. At the distance r1NN =
6.0 Bohr, there is a small extension of the atomic electron

Table 6. Partitioning of the binding energy per atom, Equation (6), for some nearest-
neighbour distances.

r1NN �dist
Li ECoulLi;inter EexchLi;inter Ecorr,MP2Li;inter Ecorr,EN2Li;inter Ebind,EN2Li

(Bohr) (Hartree) (Hartree) (Hartree) (Hartree) (Hartree) (Hartree)

4.0 0.301008 −0.134955 −0.075143 −0.049327 −0.076192 0.014718
(2.23) (−1.00) (−0.56) (−0.37) (−0.56) (0.10)

5.0 0.132722 −0.071144 −0.040038 −0.036874 −0.077010 −0.055468
(1.87) (−1.00) (−0.56) (−0.52) (−1.08) (−0.78)

5.4 0.098273 −0.057901 −0.032515 −0.032374 −0.070422 −0.062566
(1.70) (−1.00) (−0.56) (−0.56) (−1.22) (−1.08)

5.744214 0.077579 −0.049027 −0.027264 −0.028824 −0.056129 −0.054842
(1.58) (−1.00) (−0.56) (−0.59) (−1.14) (−1.12)

6.0 0.065675 −0.043362 −0.023881 −0.026441 −0.050743 −0.052314
(1.51) (−1.00) (−0.55) (−0.61) (−1.17) (−1.20)

7.2 0.031712 −0.023985 −0.012420 −0.017074 −0.034418 −0.039113
(1.32) (−1.00) (−0.52) (−0.71) (−1.43) (−1.63)

8.0 0.019544 −0.015634 −0.007722 −0.012500 −0.025692 −0.029502
(1.25) (−1.00) (−0.49) (−0.78) (−1.64) (−1.88)

10.0 0.004235 −0.003687 −0.001643 −0.004559 −0.010543 −0.011636
(1.15) (−1.00) (−0.45) (−1.24) (−2.86) (−3.15)

Notes: Values in parentheses are the magnitudes of the Coulomb interaction as energy unit. Basis set:
(11s1p/15s7p2d1f ).
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Table 8. Energy components of the binding energy per atom for two different large
basis sets.

�dist
Li ECoulLi;inter EexchLi;inter EMP2Li;inter EEN2Li;inter

Basis (Hartree) (Hartree) (Hartree) (Hartree) (Hartree)

(11s1p/15s7p2d1f ) 0.065675 −0.043362 −0.023881 −0.026441 −0.050743
(1.51) (−1.00) (−0.55) (−0.61) (−1.17)

(11s1p/19s8p7d5f2g1h) 0.065499 −0.043205 −0.024105 −0.027095 −0.047194
(1.52) (−1.00) (−0.56) (−0.63) (−1.09)

Notes: Values in parentheses are the magnitudes of the Coulomb interaction as energy unit.

Table 9. The change in intra-atomic correlation energy as a
function of the nearest-neighbour distance r1NN.

r1NN �EMP2Li;intra
(Bohr) (Hartree)

4.0 −0.000244 −0.7%
5.0 −0.000210 −0.6%
6.0 0.000070 0.2%
7.2 0.000141 0.4%
8.0 0.000144 0.4%
10.0 0.000065 0.2%

Notes: For isolated Li: EMP2Li;intra = −0.035485 Hartree. Basis set:
(11s1p/15s7p2d1f ). r1NN = 6.0 Bohr.

density, see Table 7. The half-axes of the charge ellip-
soid of the 2s orbital are respectively 2.504 Bohr and
2.498 Bohr for the two large basis sets (15s7p2d1f ) and
(19s8p7d5f 2g1h). As demonstrated in Table 8, there are
only small differences of the UHF energy components,
roughly 1% or less. For the MP2 inter-atomic correlation
energy the change is around 3%. Due to the unsystematic
error of the EN2 component, the basis set effect is hidden
in the unsystematic error. If we consider the difference
between the two EN2 energies in Table 8 as a measure
of the unsystematic error in the EN2 calculations, the
error is roughly 7% of calculated correlation energy. This
estimate is consistent with our previous one obtained
in Section 5, i.e. 8%. In Table 9, the change in intra-
atomic MP2 energy is shown as a function of the r1NN
distance. The change is less than 1% for all distances con-
sidered. For the smaller large basis the change in intra-
atomic MP2 energy due to the surrounding atoms, is
0.000060 Hartree to be compared with 0.000056 Hartree
for the basis (19s8p7d5f 2g1h). Hence, the basis set error
with respect to MP2 intra-atomic correlaton energy is
negligible.

There are two types of model errors in this work
related to the spheres with distances rsphmodel and rsphinter,
see Figure 2. The error of neglecting atoms outside the
model sphere, i.e. the larger one, is well accounted for
in this work. However, the interpair spheres with radius
rsphinter are the main sources of errors. In principle it can
be reduced by increasing the radius rsphinter, say from auc to
2auc. But then the number of atoms in interpair spheres

increases from 14 to 64, and the number of basis func-
tions increases by almost a factor 5. Hence, at present this
is not computationally feasible.

Our best estimate of the binding energy derived from
a parabolic fit using the nearest-neighbour distances
{5.0, 5.2, 5.6} Bohr: −0.05817 Hartree. The binding
energy per atom as a function of r1NN, i.e. EbindLi (r1NN),
is describing a collective contraction/expansion of the
crystal. In approximating the nuclear motion of an
atom, we use a harmonic potential. A straightforward
calculation yields a zero-point vibratonal energy per
atom equal to 0.00076 Hartree. With a 7% unsys-
tematic error of EN2 correlation energy we arrive at
the following estimate of the cohesive energy 0.0571 ±
0.004 Hartree, comparing with experimental value[27]
0.0599 Hartree.

7. Concluding remarks

Our main objective of this work has been achieved: to
construct a computationally feasible model for describ-
ing the electronic structure of pure metals using
localised orbitals. Our calculated cohesive energy for
lithium is in fair agreement with the experimental
result.

A second point to emphasise is the importance of the
electron correlation energy. TheUHFmodel yields only a
shallow minimum of the potential energy surface. Large
basis sets are necessary conditions for obtaining reliable
binding energies. A strong merit of the PATMOS model
is the dual basis set approach. Large basis sets of the same
quality as for molecules can be adopted. Furthermore,
since we are using fixed atomic domains for the orbital
spaces (slightly modified by orthogonality constraints),
and we are calculating only diatomic corrections, lin-
ear dependencies can be avoided by just checking for
linear dependency in calculations on the corresponding
diatomic molecules.

A challenge for future work is to extend the model
such that the unsystematic errors of the EN2 correla-
tion energies can be reduced. Further, to improve the
calculated correlation energy, we shall consider a more
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accuratemodel than EN2 for the nearest-neighbour atom
pairs.

We are now in the beginning of a research programme
devoted to the study of chemical binding using the
PATMOS framework. As for solids, this implies time-
consuming calculations. Some preliminary calculations
on solid beryllium seem to indicate that bonding in this
case might not be correlation driven. The results will be
reported in due time.

Finally, if our conjecture concerning localised orbitals
and bonding in metals, can be confirmed, then there is
nice similarity between molecules and metals: bonding
for both types of systems is most appropriately described
by localised orbitals, but for spectroscopy canonical
orbitals is the proper choice.
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Appendix. Symmetric orthonormalization of
spin orbitals

Let A denote an atom in the reference unit cell, and Ap an atom
of the same type in the BF-region of atom A. The number of
atoms of type A, excluding atom A, in the BF-region of A is
denoted Npartner

A . The set of partner atoms in the BF-region:

�
A,partner
BF =

{
Ap; 1 ≤ p ≤ Npartner

A

}
. (A1)

For a fixed modified one-centre basis {χ̃Ap,lb;α
μ ; 1 ≤ μ ≤ mlb

A },
we construct an iterative procedure for symmetrising the α-

type orbitals: {ψA,α
i ; 1 ≤ i ≤ NαA}

Npartner
A∪
p=1

{ψAp ,α
i ; 1 ≤ i ≤ NαA}.

For each atom pair (A,Ap) we perform a symmet-

ric orthonormalization of the set, {ψA,α
i ; 1 ≤ i ≤ NαA}

Npartner
A∪
p=1

{ψAp,α
i ; 1 ≤ i ≤ NαA}. As a result we obtain {ψ̂A,α

i ; 1 ≤ i ≤
NαA}. Then we project this set onto {χ̃Ap,lb;α

μ ; 1 ≤ μ ≤ mlb
A }.

A symmetric orthonormalization of the prjected orbitals
yields {ψ̃A,α

i (Ap); 1 ≤ i ≤ NαA}. The argument Ap in the orbital
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symbol emphasises that the modification of the orbitals is due
to the orbtials of atom Ap. An orbital correction is given by the
equation

�ψ̃
A,α
i (Ap) = ψ̃

A,α
i (Ap)− ψ

A,α
i , (A2)

and accumulated correction is

�ψ
A,α
i =

Npartner
A∑
p=1

�ψ̃
A,α
i (Ap). (A3)

A new set of orbitals for atom A is defined as

ψ̃
A,α
i = ψ

A,α
i +�ψ

A,α
i , 1 ≤ i ≤ NαA . (A4)

Symmetric orthonormalization of {ψ̃A,α
i ; 1 ≤ i ≤ NαA} yields

{ψ sym;A,α
i ; 1 ≤ i ≤ NαA}. The iterative cycle is then repeated.

Typically, 15–20 cycles are required in order to have a con-
verged result. If the procedure does not converge within a fixed
number of cycles, the parameter λ in Equation (35), i.e. the step
length, is reduced.
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