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Introduction: The PalaeoArc network and its 
predecessors

PalaeoArc (Processes and Palaeo-Environmental 
Changes in the Arctic: From Past to Present) is an 
international network research programme, the aim of 
which is to understand and explain the climatically 
induced environmental changes in the Arctic that have 
taken place throughout the Quaternary and continue in 
the present-day (see http://www.palaeoarc.no/). This 
network builds on and extends the impressive legacy of 
previous palaeo-Arctic network programs and projects 
extending back to the 1980s. This began with the “Polar 
North Atlantic Margins—Late Cenozoic Evolution” pro-
ject (PONAM: 1990–1994; Hjort and Persson 1994; 
Landvik and Salvigsen 1995; Elverhøi et al. 1998), 
which was followed by the “Quaternary Environment 
of the Eurasian North” project (QUEEN: 1996–2002; 
e.g., Larsen, Funder, and Thiede 1999; Thiede et al.  
2001, 2004; Kjær et al. 2006). These were then followed 
by the “Arctic Palaeoclimate and Its Extremes” project 
(APEX: 2004–2012; Jakobsson et al. 2008, 2010, 2014) 
and the “Palaeo-Arctic Spatial and Temporal Gateways” 
project (PAST Gateways: 2012–2018; Ó Cofaigh et al.  
2016, 2018).

The latest incarnation of the network—PalaeoArc— 
was conceived at the final meeting of the PAST 
Gateways project in Durham, UK, in April 2019, when 
a new international steering committee was appointed to 
organize a series of activities and annual conferences for 
the following six years (2019–2024). The new interna-
tional network held its first meeting in Poznań (20– 
24 May 2019), hosted by the Faculty of Geographical 
and Geological Sciences, Adam Mickiewicz University, 
Poznań (see Lyså et al. 2019), comprising the usual mix 

of talks, posters, discussions, workshops, and a field 
excursion. The network planned to organize 
a conference hosted by the Department of Earth 
Sciences at the University of Pisa in May 2020, but this 
had to be postponed due to the COVID-19 pandemic 
and was eventually held online in May 2021, endorsed 
by the International Arctic Science Council, Italian 
Geological Society, and Italian Association for the 
Study of the Quaternary. The meeting proved incredibly 
popular and was “attended” by over 250 Arctic scientists 
from twenty-six different countries over a four-day per-
iod, allowing glacial and marine geologists, palaeocea-
nographers, palaeoecologists, and specialists in 
permafrost and numerical modeling to discuss records 
of Arctic environmental change over decadal to millen-
nial timescales. The collection of articles in this special 
issue stems from this second PalaeoArc International 
Conference and encompasses the diverse range of topics 
presented at the meeting, each of which addresses the 
overarching aims of PalaeoArc (detailed below). The 
third international PalaeoArc conference took place (in 
person) in Rovaniemi in August 2022. The network has 
been extended for a year, with further meetings planned 
in Akureyri (2023), Stockholm (2024), and Tromsø 
(2025).

A changing Arctic and Palaeo-Arctic

On a warming planet, the Arctic stands out for the 
rapidity of change that is currently occurring due to 
increased anthropogenic greenhouse gas emissions. 
Surface air temperatures in this region have increased 
far more than at lower latitudes (Meredith et al. 2019), 
with recent work suggesting that Arctic amplification 
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may have been almost four times higher than the global 
average for the period 1979 to 2021 (Rantanen et al.  
2022). Future projections indicate that even if global 
temperature increases are limited to below 2°C by the 
end of the century, environmental changes in the Arctic 
will be considerable and long-lasting, with significant 
loss of sea ice and glacier ice on land, permafrost thaw, 
and increasing precipitation where a larger fraction falls 
as rain rather than snow (Arctic Monitoring and 
Assessment Programme 2017; Allen et al. 2018; 
Turetsky et al. 2020; Fox-Kemper et al. 2021; Francis, 
Scambos, and Tedesco 2021; Vavrus and Holland 2021; 
Scambos and Moon 2022). It is also being increasingly 
recognized that in order to understand a rapidly chan-
ging Arctic and the complex feedbacks that occur there, 
palaeo records can provide a longer-term perspective 
and context in addition to new insights into climate 
states and transitions that are not necessarily captured 
by more recent observational records.

Past climate variations in Arctic areas, especially 
those of the Quaternary period, have caused major 
environmental changes, resulting in significant impacts 
in marine and terrestrial environments and, in particu-
lar, the cryosphere that have led to sea-level changes of 
several tens of meters. Stratigraphic records and 
imprints on both land and the sea floor bear witness to 
the processes and changes that have taken place during 
this period, often very rapidly. Palaeo records, for exam-
ple, provide a long-term perspective on the recent 
decline of Arctic sea ice that was unprecedented in the 
last 1500 years (Kinnard et al. 2011). Ocean sediment 
records also attest to rapid iceberg discharge events 
(Heinrich 1988; Hemming 2004) that have been linked 
to abrupt changes in temperature recorded in Greenland 
ice core records (Bond et al. 1993). The growth and 
decay of the North America and Eurasian Ice Sheet 
complexes also provide new constraints on the rate 
and magnitude of both meltwater runoff and sea level 
rise from ice sheets during a warming climate (Tarasov 
and Peltier 2005; Tarasov et al. 2012; Gowan et al. 2021; 
Kirkham et al. 2022), including rapid sea level rise 
(Gregoire, Payne, and Valdes 2012). Reconstructions of 
former Arctic ice shelves have also highlighted the sen-
sitivity of marine-based ice sheet margins to abrupt 
climate change (England et al. 2022; Jennings et al.  
2022).

With this in mind, PalaeoArc seeks to strengthen 
recent advances in a number of key areas by connecting 
those with expertise from a range of disciplines, includ-
ing those working in both marine and terrestrial envir-
onments, those using numerical modeling, and those 
using and refining geochronological methods. For 
example, recent work has seen the compilation of 

impressive new syntheses of geochronological data to 
produce refined reconstructions of both the Eurasian 
(Hughes et al. 2016) and Laurentide-Innuitian Ice 
Sheet complexes (Dalton et al. 2020) during the last 
deglaciation that will require updating and testing as 
new data become available. These empirically derived 
ice sheet outlines also provide crucial data to both cali-
brate and test numerical ice sheet models (e.g., Tarasov 
et al. 2012), and recent efforts have been targeted at 
developing more robust and quantitative methods to 
combine geomorphological and geochronological data 
with ice sheet modeling output (Ely et al. 2021).

Following the landmark paper by Svendsen et al. 
(2004) that emerged from the QUEEN program, there 
has been continued interest in reconstrutions of the 
Eurasian Ice Sheet (Hughes et al. 2016; Sejrup et al.  
2022) as well as renewed interest in the evolution of 
Arctic ice sheets prior to the Last Glacial Maximum, 
using both empirical evidence (Batchelor et al. 2019; 
Dalton, Stokes, and Batchelor 2022) and numerical 
modeling (Gowan et al. 2021). This work has highlighted 
key uncertainties, such as palaeoenvironmental change 
in the Arctic and associated sea level changes during the 
last deglaciation (cf. Brendryen et al. 2020) as well as the 
stadials and interstadials of Marine Isotope Stage (MIS) 
5 (Barlow et al. 2018), which many view as an analogue 
for the Arctic over the next few centuries. Indeed, the 
response of the Arctic to earlier and globally strong 
(warm) interglacials, such as MIS 11 (Past Interglacials 
Working Group of PAGES 2016), is also required to help 
inform its response to future warming. Recent work has 
also focused on the buildup of ice sheets toward the Last 
Glacial Maximum and their extent during MIS 3 (e.g., 
Dalton et al. 2016, 2019; Sarala et al. 2016; Pico, 
Creveling, and Mitrovica 2017; Helmens 2019; Miller 
and Andrews 2019; Kleman et al. 2021). The penulti-
mate deglaciation and the distribution of circum-Arctic 
ice sheets during earlier Late Pleistocene glaciations are 
also subject to large uncertainties (Niessen et al. 2013; 
Colleoni et al. 2016), including the extent and timing of 
an Arctic ice shelf (Jakobsson et al. 2016). These are just 
some examples of themes that PalaeoArc seeks to 
address, including some of the articles in this special 
issue.

PalaeoArc themes and overview of articles

There are four major themes to the PalaeoArc pro-
gramme, each of which are represented by the articles 
in this special issue:

(1) the dynamics of Arctic ice sheets, ice shelves, and 
glaciers;
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(2) the dynamics of high-latitude oceans and sea ice;
(3) the dynamics of the terrestrial environment and 

landscape evolution; and
(4) the climatic response to, and interaction between, 

these different parts of the Arctic system.

The overarching rationale for PalaeoArc is that knowl-
edge of past environmental processes and change in the 
Arctic are key to understanding the present and future 

of the Arctic and vice versa. PalaeoArc also strives for 
inclusivity and aims to bring together and build bridges 
between scientists from different countries and career 
stages and from different disciplines in Arctic science, 
which we hope is exemplified by the diverse authorship 
of articles in this special issue. This includes marine and 
terrestrial researchers, working with field data on 
numerical modeling approaches and from across the 
Arctic and sub-Arctic (Figure 1).

Figure 1. Location of Palaeo-Arctic studies represented in this special issue (red marked areas): Theme 1: The Dynamics of the Arctic Ice 
Sheets, Ice Shelves, and Glaciers: (1) Ottesen and Dowdeswell 2022; (2) Larsen et al. 2022; (3) Sarala et al. 2022. Theme 2: The Dynamics 
of High-Latitude Oceans and Sea Ice: (4) Vermassen et al. 2021; (5) Gamboa-Sojo et al. 2022; (6) Torricella et al. 2022; (7) Swärd et al.  
2022. Theme 3: The Dynamics of the Terrestrial Environment and Landscape Evolution: (8) Alexanderson et al. 2022. Theme 4: The 
Climatic Response to, and Interaction between, These Different Parts of the Arctic System: (9) Kelleher et al. 2022; (10) Alatarvas et al.  
2022.
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The dynamics of the Arctic ice sheets, ice shelves, 
and glaciers

The dynamics of the former Fennoscandian Ice Sheet on 
the mid-Norwegian continental shelf is investigated in 
the article by Ottesen and Dowdeswell (2022). They use 
high-resolution multibeam bathymetric data to describe 
the morphology and origin of distinctive iceberg 
ploughmarks on the upper continental slope. The 
ploughmarks are distinguished by chains of well- 
defined and regularly spaced pits. The orientation and 
morphology of the pits indicate formation under a tidal 
influence, with each pit coinciding with a low tide and 
the distance between pits recording the distance of ice-
berg drift between successive low tides as the icebergs 
were transported northeastwards along the margin by 
the Norwegian Atlantic Current. It is inferred that the 
ploughmarks likely date to retreat of the Norwegian 
Channel Ice Stream from the outer shelf c. 19,000 years 
ago, and this article offers a useful template to interpret 
similar features elsewhere, with important implications 
for ice stream activity and iceberg drift patterns.

Larsen et al. (2022) also address the theme of Arctic 
ice sheets in a new study that presents 47 10Be cosmo-
genic exposures ages to constrain the timing of deglacia-
tion of the Greenland Ice Sheet (GrIS) from the outer 
coast to the present glacier margin. Furthermore, these 
results are combined with previously published data 
from the region to review the broader ice sheet history 
since the LGM. It is reported that the shelf edge was 
glaciated during LGM and that the GrIS remained at the 
shelf until at least 26 and 20 cal ka. Though the onset of 
the deglaciation still is uncertain, it is suggested that the 
GrIS reached the outer coast between 12.8 and 9.7 ka 
and the present ice extent was reached between 10.8 and 
5.8 ka. A further key conclusion is that the ice sheet 
likely retreated inside its present margin during the 
Middle Holocene before it readvanced during the Little 
Ice Age. A combination of increased atmospheric and 
ocean temperatures is thought to be the driving mechan-
isms of the deglaciation in North and Northeast 
Greenland. However, Larsen et al. (2022) suggest that 
local topography may have been of importance because 
the deep fjords were deglaciated faster than the shal-
lower fjords and the terrestrial-based areas.

The third article in the special issue that addresses the 
theme of Arctic ice sheet dynamics is by Sarala et al. 
(2022), who established a new database of all of the 
published optically stimulated luminescence age results 
from different sediment sequences in Finland. The data-
base includes ~180 ages, spanning the past 
235,000 years, dating both Saalian and Weichselian sedi-
mentary successions. Exploratory cluster analysis of the 

database reveals three primary age clusters representing 
Early and Middle Weichselian ice-free periods (115– 
70 ka and 55–22 ka, respectively) and the Late 
Weichselian deglaciation (16–10 ka). This new record 
highlights a record of pronounced stadial-intertstadial 
variations, and further demonstrates the prevalence of 
short ice advance phases and glaciations during much of 
Weichselian in Finland, with a transition to longer sta-
dials during the final Middle and Late Weichselian 
periods.

The dynamics of high-latitude oceans and sea ice

The biostratigraphy of mid-Pleistocene high-latitiude 
ocean sediment records is the focus of the paper by 
Vermassen et al. (2021). This article provides new 
insight into the stratigraphic framework of the Arctic 
Ocean. Litho- and biostratigraphic correlations between 
Arctic Ocean sediment core AO16-8GC from the Alpha 
Ridge and the well-dated core LOMROG12-3PC from 
the Lomonosov Ridge suggest that the planktic forami-
niferal species Turborotalita egelida may be a marker 
within MIS 15 or 17. If this biohorizon is supported by 
further study, then T. egelida arrived in the Arctic Ocean 
during the latest part of the mid-Pleistocene transition 
rather than within the superinterglacial, MIS 11, with 
important implications for the response of the Arctic 
Ocean to the change from 41 ka to 100 ka glacial–inter-
glacial cycles.

High-latitude oceanographic changes are investigated 
over much more recent and shorter timescales in the 
article by Gamboa-Soja et al. (2022). Foraminiferal 
assemblages and stable O and C isotopes in a sediment 
core from Krossfjorden, western Spitsbergen document 
the changing environments in the fjord driven by retreat 
of Lilliehöök glacier toward the fjord head and increas-
ing core temperatures of Atlantic Water in the West 
Spitsbergen Current. Also, off Spitsbergen, Torricella 
et al. (2022) provide a multiproxy investigation of 
a sediment core from the Bellsund Drift spanning the 
2,000 years. A study of biological proxies (calcareous 
nannofossils, diatoms, benthic, and planktic foramini-
fera assemblages) and lithological data, including X-ray 
fluorescence spectroscopy and clay mineral analysis by 
X-ray diffraction, provide new insights into the response 
of the marine environment to climatic changes asso-
ciated with changing freshwater influx from melting 
glaciers on Svalbard and the strength of Atlantic Water 
carried by the West Spitsbergen Current. Changes in 
water column stratification and sea ice conditions are 
related to established warm and cold periods including 
the Roman warm period, the Dark Ages cold period, the 
Mediaeval warm period, and the Little Ice Age.
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Holocene sediments from the Mackenzie Trough in 
Arctic Canada are the focus of the article by Swärd et al. 
(2022). They analyzed the mineralogy (X-ray diffrac-
tion) and isotopic (Sr and Nd) compositions of the fine 
fraction (<38 μm) of sediments from an 81.5-m degla-
cial-to-Holocene borehole (MTW01) recovered from 
45-m water depth in the Mackenzie Trough. The goal 
was to identify the mineralogical and isotopic signature 
of Mackenzie River sediments as a basis for document-
ing past sediment contributions of Mackenzie River 
discharge to the Arctic Ocean.

The dynamics of the terrestrial environment and 
landscape evolution

A third theme of PalaeoArc is to examine the dynamics 
of terrestrial environments and/or the processes in ter-
restrial environments linked to ice sheet activity. This is 
the focus of the article by Alexanderson et al. (2022), 
who tested the age of formation of the Veiki moraine 
belt of northern Sweden using optically stimulated lumi-
nescence and radiocarbon dates. The landscape com-
prises plateaus formed by downwasting of debris- 
covered glacier ice near the ice sheet margin leading to 
formation of ice-walled depressions that subsequently 
filled with sediment. The landforms were largely pre-
served during later expansion of cold-based ice. 
Arguments are laid out that the age data support the 
assignment of the Veiki moraine formation to MIS 3 
(best estimate 56–39 ka), during the Middle 
Weichselian, providing a significant advance in our 
understanding of an intermediate-sized ice sheet during 
MIS 3 conditions in Fennoscandia.

The climatic response to, and interaction between, 
these different parts of the Arctic system

Recognizing that the ice sheets and ocean and terrestrial 
environments are often intimately linked in the Arctic, 
the final theme of the PalaeoArc network address these 
often complex but nonetheless important linkages 
across these environments. The article by Kelleher 
et al. (2022), for example, combines themes 1 and 4. 
Sediment cores from Lancaster Sound and northwest 
Baffin Bay, Canada, reveal that the Lancaster Sound Ice 
Stream retreated into Lancaster Sound by ~15,300 years 
ago, initiating the massive calving events BBDC 1 and 0 
into Baffin Bay, and show that Arctic Ocean freshwater 
via the Canadian Arctic Archipelago gateways began 
with Parry Channel opening 10,600 years ago followed 
2,200 years later by the opening of Nares Strait.

The final article in the special issue is by Alatarvas 
et al. (2022), which reports sedimentary facies and clay 

mineralogy of the late Pleistocene Landsort Deep sedi-
ments in the Baltic Sea and explores the implications for 
the Baltic Ice Lake development. This is a part of the 
Integrated Ocean Drilling Program Expedition 347 core 
from the ice-marginal Baltic Ice Lake that is thought to 
have developed from ~13.5 to 10.5 ka. They used sedi-
mentary facies, grain size, physical properties, water and 
carbon content, and detrital clay mineral assemblages to 
derive not only a palaeoenvironmental reconstruction 
but also the drainage condition of the palaeolake along 
with its termination.
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