Secure Distributed Storage in
Peer-to-peer networks

@yvind Hanssen

07.02.2007

Motivation

Mobile and ubiquitous computing
x Persistent information in untrusted networks

Sharing of storage and information
*x But privacy and integrity

Digital archiving
* Very durable storage

*x Very robust storage
= But high availability

Scalability

* Global network...

Outline

P

L > Peer to peer computing
— .
nfrastructure, overlays ...
= Structured vs. unstructured

a2 Structured overlays (distributed hash tables)
* Example: Pastry
x (Other: Chord, CAN, Tapestry, etc.)
* Some security issues

1 Secure Storage
*x Challenges
*x Techniques: Cryptographic, byzantine agreement
x Examples: Past, Oceanstore, Pesto, Pacisso,

What is P2P computing?

o Different definitions in litterature

= Strictest: Totally distributed system in which all nodes are
completely equivalent

= “..class of applications that take advantage of resources ...
available at the edges of the internet” (Shirky, 2000)
= “ ..the sharing of computer resources and services by direct

exchange between systems” (Milojicic et.al 2002)

= “..interconnected nodes able to self-organize into network
topologies with the purpose of sharing resources ... capable of
adapting to failures... without requiring the intermediation or
support of a global centralized server or authority” (Androutsellis &
Spinnellis, 2004)

P2P applications

Communication and collaboration
x E.g.I1CQ, Jabber, Skype

Distributed computation
* E.g. SetiAtHome

Internet service support
* E.g. Multicast systems

Database systems
*x Queries, semantic web etc..

Content distribution

*x File sharing
*x Storage systems (focus: persistence, security)

Infrastrucure

P2P application layer
API:
s/ S Data objects
remove(key)

Location and routing infrastructure
(overlay network)

- Nodes (peers)
S — ;% =

Overlay networks

2 Centralization

*x Purely decentralized
. All nodes are equal
*x Partially centralized
. Some nodes are ‘more equal than others”
- But there should be no single points of failure

* Hybrid decentralized
- Central servers

a Network structure

* Unstructured
. Loose rules, ad hoc

*x Structured
- Content placed deterministically at locations

Network structure

2 Unstructured P2P

x Typically: Flooding to send queries
*x Good for popular items, bad for rare items
*x Cannot guarantee that item is found

2 Structured P2P

= Distributed Hash Tables

= Efficient location of rare items, some overhead for popular items
*x Can guarantee that item is found

* Scalable

Outline

1 Peer to peer computing

= Infrastructure, overlays ...
* Structured vs. unstructured

P

;>Structured overlays (distributed hash tables)

x Example: Pastry
* (Other: Chord, CAN, Tapestry, etc.)
* Some security issues

1 Secure Storage
*x Challenges
x Techniques: Cryptographic, byzantine agreement
*x Examples: Past, Oceanstore, Pesto, Pacisso,

Distributed hash tables

Goal: Locate data objects identities to nodes

Uniform “random” identifiers
Assigned to nodes (nodeld)
Assigned to application objects (keys)

Routing
Each node has a routing table and neighbour set
Collectively maps key to node (key's root) Q

Replica function @/v

Pastry

2 Nodeids/data keys
*x 128 bit
* Sequence of digits with base 2°

2 Routing table
* 2° columns,128/2° rows (typically 16x8)

*x Each entry contains IP address of node.
. Try to select one which is “nearby”

= In addition: A neighbour set (+- I/2 nodeld's. | depends on N)

Prefix routing (Pastry)

Routing table for nodeld 65A 1xxxx

0 1 2 3 4 5 7 8 9 A B C D E F
60 |61 62 63 64 66 67 |68 69 |6A 6B |6C 6D 6E 6F
650 651 652 653 |654 655 656 |657 658 659 65B [65C 65D 65E |65F

65A0 65A2 65A3 65A4 65A5 65A6 65A7 65A8 65A9 65AA 65AB 65AC 65AD 65DE 65AF

Routing

0
* Each step: At least one more digit
* If no entry found, try a node which is
numerically closer (neighbour list).
. Random, with some preference for
“nearby” nodes.
= |f not found, we have reached the
destination.
DISDAS x O(log1gN) hops
D4213F D
D467C4
D46A1C — —

2128_1

Security issues in DHT

2 Routing attacks
* |ncorrect lookup
* |ncorrect routing updates
*x Partition

2 Storage and retrieval attacks

Deny existence of data, refuse to serve
Censorship: Take control of all replica roots
Solution: secure/verifiable nodeld assignment
*x Sybil attack. Attacker gets multiple nodeld's

a Misc. attacks

Inconsistent behaviour

Overload targeted nodes

Trick system into unnecessary rebalancing
Unsolicited response messages

* Ot

»*

b D D

Outline

1 Peer to peer computing

= Infrastructure, overlays ...
* Structured vs. unstructured

2 Structured overlays (distributed hash tables)

x Example: Pastry
* (Other: Chord, CAN, Tapestry, etc.)
* Some security issues

> Secure Storage
ﬁ/
* Challenges
x Techniques: Cryptographic, byzantine agreement
*x Examples: Past, Oceanstore, Pesto, Pacisso,

Challenges

a1 Availability and durability
1 Consistency among updates and replicas

1 Security on top of untrusted P2P network
* Secure storage: Privacy and integrity
*x Authorisation without central authority
* Authentication without central authority

Basic mechanisms

2 Cryptography

* Symmetric crypto
. Same key for encrypting and decrypting

*x Asymmetric crypto (or public-key crypto)
. Two keys: One for encrypting and one for decrypting
- One key is public and one is private (kept secret)
- Encrypt: Encrypt with public key.
. Sign: Encrypt with private key.

a1 Certificate
* A signed statement

1 Secure hash
= Difficult to reproduce a given hash value by modifying content content

* (one way function)

Byzantine agreement

= Consensus, despite failing participants...
= Solvable if no more than m of n = 3m+1 are faulty

1 (proposal) 2. correct node 3. Failing node
w\‘!L»
yes
yes
no _
9 -4

Byzantine agreement

1 (proposal) 2. correct node 3. Failing node 4. correct node
es
Y/ yes

s N
;X\:&‘

yes

yes
\/ y Y y

Some techniques

Encrypted data
*x Predicates: compare-version, compare size, compare-block, search
*x QOperations: replace-block, insert-block, delete-block, append

Self certifying data

*x Secure hash and possibly a signature

Information dispersal / erasure coding

*x Encode files into m blocks where any n < m blocks are sufficient to
reproduce them. More efficient than simple replication.

Shamir's Secret sharing

x A secret key K can be split into a number of shares. Any subset of
size k can reproduce K. k-1 shares can not reproduce K.

* Can be combined with mutual signing protocols

Smartcards

Past w/smartcards

1 Based on Pastry

a2 Smartcards

*
*
*
*

2 Files
*

*

Each node, each user

private/public key

Certificate - signed by issuer (broker)
Maintain storage quotas (enforce contract)

Immutable ...

FileID (160 bit)— secure hash of filename, owners public key.
. 128 most significant bits used to locate node

File certificate:
e FilelD, replication factor, date, secure hash of content
. Signed by owner (owner's smartcard!)

Reclaim certificate:
. Storage of FilelD can be reclaimed

Immutable Objects

= Mutable files by having
multiple versions.

= Simplifies some issues

related tocaching and

replication.
= Update — write a new version

= What is the latest valid
version?

= Consistency, serialisability
requirements?

OceanStore/Pond

Durability, availability, flexible update-semantics..
Some highlights

*

L D I T R o

Built on top of Tapestry (similar to Pastry)

Versioning

Erasure coding for storage + secondary replicas and caching
Uses cryptography and digital certificates

Updates: List of predicate/action pairs

Each data object assigned an “inner ring” of nodes
. Primary replica and update semantics
. Byzantine agreement protocol
- Private key sharing
. Proactive threshold signature scheme (replace private key shares)

OceanStore/Pond

AGUID

M| [T [
l

VGUIDj+1

VGUID;

d; dydsds |ds dg | do

OceanStore Update

Other approaches

a Pesto

x User-User contracts (outside Pesto)
x User decides whom to “trust” for specific tasks
* Symmetric crypto

a Pacisso

= Access control by “gatekeeper’ nodes
*x Key-sharing, byzantine agreement ...

2 Plutus
* Lazy revocation, key-rotation...

... and more

Conclusions

2 Second generation P2P overlays

* Analogy: Distributed hash table

* Provides deterministic routing and randomized placement
= Can support replication, locality, etc..

*x Security issues mostly denial of service...

1 Secure storage systems on top of overlays

*x Hard to achieve without some central/trusted components or trusted

authorities
. Smartcards, PKI's
. Trusted groups of nodes instead of single nodes

*x Cryptographic methods
. Key management

Replication, redundant encoding
Versioning, file block level replication
Another layer?

Litterature

S. Androutsellis-Theotokis, D. Spinellis, A Survey of Peer-to-Peer Content Distribution
Technologies, ACM Computing Surveys, Vol. 36, No. 4, December 2004, pp. 335-371

E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, A Survey and Comparison of Peer-to-Peer
Overlay Network Schemes, |IEEE Communications Survey and Tutorial, March 2004.

D.S. Wallach, A Survey of Peer-to-Peer Security Issues, in Proc. Intl. Symposium on Software
Security, November 2002.

W. Sit, R. Morris, Security Considerations for peer-to-peer distributed hash tables, in Proc. 2™ Intl.
Workshop on Peer-to-Peer Systems.

P. Druschel, A. Rowstron, PAST: A large-scale, persistent peer-to-peer storage utility, In Proc. 8"
Workshop on Hot Topic in Operating Systems, 2001

J. Kubiatowicz, Extracting Guarantees from Chaos, CACM, February 2003.

J. Kubiatowicz, et. al. OceanStore: An Architecture for Global-Scale Persistent Storage, In Proc.
ACM ASPLQOS, 2000.

S.Rhea, et. al. Pond:the OceanStore Prototype, In Proc. 2" Usenix Conference on File and Storage
Technologies 2003.

F.W. Dillema, T.Stabell-Kulg, Pesto Flavoured Security, SRDS 2003.

E. Cog, M. Baur, G. Caronni, PACISSO: P2P Access Control Incorporating Scalability and Self-
Organization for Storage Systems, Sun Microsystems SMLI TR-2007-167, June 2007

