
Secure Distributed Storage in 
Peer-to-peer networks

Øyvind Hanssen

07.02.2007



Motivation

 Mobile and ubiquitous computing
 Persistent information in untrusted networks

 Sharing of storage and information
 But privacy and integrity

 Digital  archiving
 Very durable storage
 Very robust storage
 But high availability

 Scalability
 Global network...



Outline

 Peer to peer computing
 Infrastructure, overlays ...
 Structured vs. unstructured

 Structured overlays (distributed hash tables)
 Example: Pastry
 (Other: Chord, CAN, Tapestry, etc.)
 Some security issues

 Secure Storage
 Challenges
 Techniques: Cryptographic, byzantine agreement
 Examples: Past, Oceanstore, Pesto, Pacisso,  



What is P2P computing?

 Different definitions in litterature
 Strictest: Totally distributed system in which all nodes are 

completely equivalent

 “...class of applications that take advantage of resources ... 
available at the edges of the internet” (Shirky, 2000)

 “...the sharing of computer resources and services by direct 
exchange between systems” (Milojicic et.al 2002)

 “... interconnected nodes able to self-organize into network 
topologies with the purpose of sharing resources ... capable of 
adapting to failures... without requiring the intermediation or 
support of a global centralized server or authority” (Androutsellis & 
Spinnellis, 2004)



P2P applications

 Communication and collaboration
 E.g. ICQ, Jabber, Skype

 Distributed computation
 E.g. SetiAtHome

 Internet service support
 E.g. Multicast systems

 Database systems
 Queries, semantic web etc.. 

 Content distribution
 File sharing 
 Storage systems (focus: persistence, security)



Infrastrucure

Location and routing infrastructure 
(overlay network)

P2P application layer

API: 
 put(key, value)
 get(key) -> value
 remove(key)

Nodes (peers)

Data objects



 Overlay networks

 Centralization
 Purely decentralized

 All nodes are equal
 Partially centralized

 Some nodes are “more equal than others”
 But there should be no single points of failure

 Hybrid decentralized
 Central servers

 Network structure
 Unstructured

 Loose rules, ad hoc
 Structured

 Content placed deterministically at locations



Network structure

 Unstructured P2P
 Typically: Flooding to send queries
 Good for popular items, bad for rare items
 Cannot guarantee that item is found

 Structured P2P
 Distributed Hash Tables
 Efficient location of rare items, some overhead for popular items
 Can guarantee that item is found 
 Scalable



Outline

 Peer to peer computing
 Infrastructure, overlays ...
 Structured vs. unstructured

 Structured overlays (distributed hash tables)
 Example: Pastry
 (Other: Chord, CAN, Tapestry, etc.)
 Some security issues

 Secure Storage
 Challenges
 Techniques: Cryptographic, byzantine agreement
 Examples: Past, Oceanstore, Pesto, Pacisso,  



Distributed hash tables

 Goal: Locate data objects identities to nodes
 Uniform “random” identifiers 

 Assigned to nodes (nodeId)
 Assigned to application objects (keys)

 Routing
 Each node has a routing table and neighbour set
 Collectively maps key to node (key's root)

 Replica function 



Pastry

 Nodeids/data keys
 128 bit 
 Sequence of digits with base 2b 

 Routing table
 2b columns,128/2b rows (typically 16x8)
 Each entry contains IP address of node. 

 Try to select one which is “nearby”
 In addition: A neighbour set (+- l/2 nodeId's.  l depends on N)



Prefix routing (Pastry)

0 1 2 3 4 5 7 8 9 A B C D E F

60 61 62 63 64 66 67 68 69 6A 6B 6C 6D 6E 6F

650 651 652 653 654 655 656 657 658 659 65B 65C 65D 65E 65F

65A0 65A2 65A3 65A4 65A5 65A6 65A7 65A8 65A9 65AA 65AB 65AC 65AD 65DE 65AF

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

Routing table for nodeId 65A1xxxx



Routing

0

2128-1

 Each step: At least one more digit

 If no entry found, try a node which is 
numerically closer (neighbour list).
 Random,  with some preference for 

“nearby” nodes. 

 If not found, we have reached the 
destination.

 O(log16N)  hops
D13DA3

D4213F

D467C4
D46A1C



Security issues in DHT

 Routing attacks
 Incorrect lookup 
 Incorrect routing updates
 Partition

 Storage and retrieval attacks
 Deny existence of data, refuse to serve
 Censorship: Take control of all replica roots
 Solution: secure/verifiable nodeId assignment
 Sybil attack. Attacker gets multiple nodeId's

 Misc. attacks
 Inconsistent behaviour
 Overload targeted nodes
 Trick system into unnecessary rebalancing
 Unsolicited response messages



Outline

 Peer to peer computing
 Infrastructure, overlays ...
 Structured vs. unstructured

 Structured overlays (distributed hash tables)
 Example: Pastry
 (Other: Chord, CAN, Tapestry, etc.)
 Some security issues

 Secure Storage
 Challenges
 Techniques: Cryptographic, byzantine agreement
 Examples: Past, Oceanstore, Pesto, Pacisso,  



Challenges

 Availability and durability
 Consistency among updates and replicas
 Security on top of untrusted P2P network

 Secure storage: Privacy and integrity
 Authorisation without central authority
 Authentication without central authority



Basic mechanisms

 Cryptography
 Symmetric crypto

 Same key for encrypting and decrypting
 Asymmetric crypto (or public-key crypto)

 Two keys: One for encrypting and one for decrypting
 One key is public and one is private (kept secret)
 Encrypt: Encrypt with public key.  
 Sign: Encrypt with private key. 

 Certificate
 A signed statement

 Secure hash
 Difficult to reproduce a given hash value by modifying content content
 (one way function)



Byzantine agreement

 Consensus, despite failing participants...
 Solvable if no more than m of n = 3m+1 are faulty

no

yes

yes

yes

1 (proposal) 2. correct node 3. Failing node

?



Byzantine agreement

no

yes

yes

yes

1 (proposal) 2. correct node 3. Failing node

no

yes

4. correct node

yes
yes

yes



Some techniques

 Encrypted data
 Predicates: compare-version, compare size, compare-block, search
 Operations: replace-block, insert-block, delete-block,  append

 Self certifying data
 Secure hash and possibly a signature

 Information dispersal / erasure coding
 Encode files into m blocks where any n < m blocks are sufficient to 

reproduce them. More efficient than simple replication.  

 Shamir's Secret sharing
 A secret key K can be split into a number of shares. Any subset of 

size k can reproduce K. k-1 shares can not reproduce K. 
 Can be combined with mutual signing protocols

 Smartcards



Past w/smartcards

 Based on Pastry
 Smartcards

 Each node, each user
 private/public key
 Certificate - signed by issuer (broker)
 Maintain storage quotas (enforce contract)

 Files
 Immutable ...
 FileID (160 bit)– secure hash of filename, owners public key.

 128 most significant bits used to locate node 
 File certificate:

 FileID, replication factor, date, secure hash of content
 Signed by owner (owner's smartcard!) 

 Reclaim certificate: 
 Storage of FileID can be reclaimed



Immutable Objects

 Mutable files by having 
multiple versions.

 Simplifies some issues 
related tocaching and 
replication. 

 Update – write a new version

 What is the latest valid 
version?

 Consistency, serialisability 
requirements?



OceanStore/Pond

 Durability, availability, flexible update-semantics..
 Some highlights

 Built on top of Tapestry (similar to Pastry)
 Versioning
 Erasure coding for storage + secondary replicas  and caching
 Uses cryptography and digital certificates
 Updates: List of predicate/action pairs
 Each data object assigned an “inner ring” of nodes 

 Primary replica and update semantics
 Byzantine agreement protocol
 Private key sharing
 Proactive threshold signature scheme (replace private key shares)



OceanStore/Pond

M

 d1  d2 d3 d4  d5 d6  d7

M

 d6  d7

VGUIDi VGUIDi+1

AGUID



OceanStore Update

App

Archive

Primary replica
(inner ring)

Secondary
replica

App



Other approaches

 Pesto
 User-User contracts (outside Pesto)
 User decides whom to “trust” for specific tasks
 Symmetric crypto

 Pacisso
 Access control by “gatekeeper” nodes
 Key-sharing, byzantine agreement ...

 Plutus
 Lazy revocation, key-rotation...

... and more



Conclusions

 Second generation P2P overlays 
 Analogy: Distributed hash table
 Provides deterministic routing and randomized placement
 Can support replication, locality, etc.. 
 Security issues mostly denial of service... 

 Secure storage systems on top of overlays
 Hard to achieve without some central/trusted components or trusted 

authorities
 Smartcards, PKI's 
 Trusted groups of nodes instead of single nodes

 Cryptographic methods
 Key management

 Replication, redundant encoding
 Versioning, file block level replication
 Another layer?



Litterature
 S. Androutsellis-Theotokis, D. Spinellis, A Survey of Peer-to-Peer Content Distribution 

Technologies, ACM Computing Surveys, Vol. 36, No. 4, December 2004, pp. 335-371

 E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, A Survey and Comparison of Peer-to-Peer 

Overlay Network Schemes, IEEE Communications Survey and Tutorial, March 2004.

 D.S. Wallach, A Survey of Peer-to-Peer Security Issues, in Proc. Intl. Symposium on Software 

Security, November 2002.
 W. Sit, R. Morris, Security Considerations for peer-to-peer distributed hash tables, in Proc. 2nd Intl. 

Workshop on Peer-to-Peer Systems. 
 P. Druschel, A. Rowstron, PAST: A large-scale, persistent peer-to-peer storage utility, In Proc. 8th 

Workshop on Hot Topic in Operating Systems, 2001

 J. Kubiatowicz, Extracting Guarantees from Chaos, CACM, February 2003. 

 J. Kubiatowicz, et. al. OceanStore: An Architecture for Global-Scale Persistent Storage, In Proc. 

ACM ASPLOS, 2000.
 S.Rhea, et. al. Pond:the OceanStore Prototype, In Proc. 2nd Usenix Conference on File and Storage 

Technologies 2003.

 F.W. Dillema, T.Stabell-Kulø, Pesto Flavoured Security, SRDS 2003. 

 E. Coç, M. Baur, G. Caronni, PACISSO: P2P Access Control Incorporating Scalability and Self-

Organization for Storage Systems, Sun Microsystems SMLI TR-2007-167, June 2007


