
Simplifying Clustering with Graph Neural Networks

Filippo Maria Bianchi

UiT the Arctic University of Norway and NORCE Norwegian Research Centre
filippo.m.bianchi@uit.no

Abstract

The objective functions used in spectral clustering
are generally composed of two terms: i) a term that
minimizes the local quadratic variation of the clus-
ter assignments on the graph and; ii) a term that
balances the clustering partition and helps avoid-
ing degenerate solutions. This paper shows that
a graph neural network, equipped with suitable
message passing layers, can generate good cluster
assignments by optimizing only a balancing term.
Results on attributed graph datasets show the ef-
fectiveness of the proposed approach in terms of
clustering performance and computation time.

1 Introduction

Traditional clustering techniques partition the data
directly in the input space by drawing regular
boundaries to separate the clusters. This makes
them unsuitable to handle complex data structures,
such as images or time series, which lie in high-
dimensional spaces where the relationships between
samples are highly non-linear. Deep learning tech-
niques allow to transform data samples into suit-
able representations, which can partitioned into
meaningful clusters [16]. Remarkably, end-to-end
deep learning frameworks can directly map com-
plex data directly into their cluster assignments [8].
Of particular interest for this work, are those

data characterized by relationships, or interactions,
among samples that are described by a graph.
Graph Neural Networks (GNNs) are deep learn-
ing architectures specifically designed to process
and make inference on such data [6]. Recently,
GNNs have been adopted to cluster the nodes of
an attributed graph based on their features and
the graph topology. Inspired by spectral clustering
algorithms, such GNNs optimize an unsupervised

loss composed of two terms: the first ensures that
connected nodes are assigned to the same cluster;
the second is a balancing term, which prevents de-
generate solutions both by encouraging the samples
to be assigned to only one cluster and the clusters
to have similar size [1, 13].

In this work, I considerably simplify the clus-
tering objective optimized by the previous GNN
models by introducing a minimalist unsupervised
loss, which consists only of a balancing term. The
proposed loss is used to train a GNN composed of
standard message passing layers that operate on a
particular connectivity matrix. The empirical eval-
uation shows that the proposed model significantly
reduces the computational complexity, while main-
taining competitive clustering performance.

2 Background

Let a graph be represented by a tuple G = {V, E},
with node set V and edge set E . Let |V| = N and
|E| = E be the number of nodes and edges, re-
spectively. Each node i is associated with a feature
vector xi ∈ RF . A graph is conveniently described
by its adjacency matrix A ∈ RN×N and the node
features matrix X ∈ RN×F .

2.1 Spectral Clustering

Graph clustering aims at partitioning the nodes in
K subsets, so that the similarity between nodes
in the same subset is maximized. The most fa-
mous graph clustering approach is spectral cluster-
ing, which relies on the k−way mincut objective to
find a partition that minimizes the volume of edges
crossing different clusters [14]. To avoid degenerate
solutions, the objective function includes a balanc-
ing term that penalizes partitions where clusters
have very unequal sizes. Specifically, the balanced

1

K-cut objective can be defined as a ratio of two set
functions:

min
C1,...,CK

K∑
k=1

cut(Ck, C̄k)

B̂(Ck)
, (1)

where B̂(·) is a set function that balances the size
of the clusters in the partition. Depending on the
choice of B̂(·), one obtains different cuts, such as
ratio cut and normalized cut [7, 14]. The numerator
of (1) can be expressed in matrix form. To see that,
first one rewrites cut(Ck, C̄k) as∑

i∈Ck,j∈C̄k

aij(1− zizj) s.t. zi, zj ∈ {−1, 1},

Then,

∑
i,j

aij(1− zizj) =
∑
i,j

aij

(
z2i + z2j

2
− zizj

)

=
1

2

∑
i

[∑
j

aij

]
z2i +

1

2

∑
j

[∑
i

aij

]
z2j . . .

−
∑
i,j

aijzizj

=
1

2

∑
i

diiz
2
i +

1

2

∑
j

djjz
2
j − zTAz

= zTDz − zTAz = zTLz,

where L is the graph Laplacian. The relaxation
done in spectral clustering to handle the discrete
optimization problem is:

min
zk∈{−1,1}N

K∑
k=1

zT
k Lzk

B̂(Ck)
→ min

sk∈RN

K∑
k=1

sTkLsk
B(Ck)

, (2)

where B(Ck) is the continuous counterpart of
B̂(Ck).

Remark 1: Besides the graph Laplacian, other
operators matching the sparsity pattern of the
adjacency matrix can be used in problem (2). One
of such operators is the symmetrically normalized
Laplacian, Ls = I − D− 1

2AD− 1
2 , which generally

yields a different partition as the edges to be cut
are weighted by the degree of their end nodes.

Remark 2: The term sTLs in (2) measures the
local quadratic variation (LQV) of s on the graph,

which is the quadratic variation of s across adjacent
vertices. Laplacian smoothing minimizes LQV, by
making similar the elements si and sj if nodes i
and j are connected. When using Ls, the LQV is:

sTLss =
1

2

∑
(i,j)∈E

ai,j

(
si√
di

− sj√
dj

)2

. (3)

2.2 Graph Neural Networks

The main building block of a GNN is the message
passing (MP) layer that, first, combines the node
features with those of the neighbors on the graph.
Then, the aggregated features are mapped into a
new representation by applying an affine transfor-
mation and a nonlinearity [3]. A basic MP layer is
implemented as follows:

X(l+1) = MP(X(l), Ã) = σ(ÃX(l)Θl), (4)

where X(l) and X(l+1) are, respectively, the input
and output node features of the l-th MP layer, Ã
is an operator matching the sparsity pattern of A,
σ is a nonlinear activation function, and Θl are
trainable parameters.

2.3 Clustering with GNNs

MinCutPool [1] is a GNN layer that computes soft
cluster assignments as:

S = softmax
(
MLP

(
X̄,ΘMLP

))
∈ RN×K , (5)

where K is the number of clusters, X̄ are node
features generated by a stack of one or more MP
layers, and MLP(·) denotes a multi-layer perceptron
with trainable parameters ΘMLP. The softmax

function ensures that S is a proper cluster assign-
ment matrix, since S1 = 1 and 0 ≤ si,j ≤ 1.
To learn the cluster assignments, MinCutPool

optimizes the following unsupervised loss:

Lmc = −Tr(ST ÃS)

Tr(ST D̃S)︸ ︷︷ ︸
Lq

+

∥∥∥∥ STS

∥STS∥F
− IK√

K

∥∥∥∥
F︸ ︷︷ ︸

Lb

, (6)

where Ã = D− 1
2AD− 1

2 and D̃ is the degree matrix
of Ã. The first term, Lq, minimizes the LQV, while
Lb is a balancing term that helps prevent degener-
ate solutions. Compared to problem (2), the LQV

2

and the balancing terms are summed rather than
taking their ratio. This helps both to prevent nu-
merical issues when Lb gets too small and to keep
Lmc in a controlled range, which is desirable when
the GNN must also minimize other losses.

Similarly to MinCutPool, DMoN [13] optimizes
a loss composed of an LQV and a balancing term:

Ldm = −Tr(ST ÃS)

2E︸ ︷︷ ︸
Lm

+

√
K

N

∥∥∥∥∥∑
i

ST
i

∥∥∥∥∥
F

− 1︸ ︷︷ ︸
Lr

, (7)

where Ã = A− dTd and d is the degree vector of
A. The term Lm pushes strongly connected compo-
nents to the same cluster, while Lr is a regulariza-
tion term that penalizes the degenerate solutions.

3 Proposed approach

The cluster assignments S, computed as in (5), can
be optimized by minimizing:

L = −Tr
(√

STS
)

(8)

The proposed loss simplifies Lmc and Ldm consid-
erably as it consists only of a balancing term. Such
a simplification offers the following advantages:

• The computational complexity is reduced, as
less operations are needed to compute L.

• Fewer competing terms in the loss can ease the
training and speed-up the convergence.

• There are no ratios in L, which could cause
numerical instability during training.

Despite its simplicity, the proposed loss can still
yield an optimal clustering assignment. The key
insights that motivated its design are presented in
the following.

3.1 Removal of the LQV term

The absence of the LQV term in the loss is compen-
sated by the presence of the MP layers that gen-
erate the features X̄ used to compute the cluster

assignments S in (5). In particular, consider the
following MP layer:

X(l+1) = σ
([

I− δ(I−D− 1
2AD− 1

2)
]
X(l)Θl

)
(9)

where Ã = I − δ(I − D− 1
2AD− 1

2) is an operator
matching the sparsity pattern of the graph and
δ is an hyperparameter. When δ = 1, Eq. 9 re-
duces to X(l+1) = σ(D−1/2AD−1/2X(l)Θl), which
is very similar to the update equation used in pop-
ular MP layers [2]. When δ = 0, the node features
are not aggregated with those of the neighbors and
the MP layer becomes equivalent to a dense layer
of an MLP.

Theorem 1. The MP layer in (9) minimizes the
LQV of the node features X.

Proof. Let

||x||LQV =
1

2

N∑
i=1

N∑
j=1

ai,j

(
xi√
di

− xj√
dj

)2

To minimize the LQV, we first compute the
derivative with respect to the i-th component:

(∂||x||LQV)i =
1√
di

∑
j

ai,j

(
xi√
di

− xj√
dj

)
=

xi

di

∑
j

ai,j −
∑
j

ai,j√
di
√
dj

xj

= (Ix)i − (D−1/2AD−1/2x)i

The whole gradient is given by:

∇(||x||LQV) = (I−D−1/2AD−1/2)x

The following update minimizes the LQV of the
node features with gradient descent:

x(l+1) = x(l) − δ∇(||x||LQV)
(l)

= x(l) − δ(I−D−1/2AD−1/2)x(l)

where δ indicates the gradient step.

Clearly, there is a difference in minimizing the
LQV of X rather than the LQV of S directly, as
done by the terms Lq in (6) and Lm in (7). Nev-
ertheless, being (5) a smooth function, if two node
features xi and xj are similar they will likely be
mapped into similar cluster assignments si and sj .

3

3.2 Optimality of the proposed bal-
ancing term

The purpose of the balancing term is to encourage
a partition where:

• the nodes are assigned with high confidence to
only one cluster;

• the number of elements in each cluster is ap-
proximately the same.

Typical degenerate solutions are those that vi-
olate one these two requirements. In particu-
lar, the first degenerate solution is when samples
are uniformly assigned to all cluster, i.e., si =
[1/K, 1/K, . . . , 1/K], i = 1, . . . , N . The second de-
generate solution occurs when all samples are as-
signed to the same cluster, e.g., si = [1, 0, . . . , 0],
i = 1, . . . , N .
It is straightforward to see that the first degener-

ate solution is avoided when L in (8) is minimized.
The trace is the sum of the elements along the di-
agonal of

√
STS. Since 0 ≤ si,j ≤ 1, the trace

is maximized when each cluster assignment si has
one entry equal to 1, i.e., when si,j ∈ {0, 1}. On the
other hand, if a sample i is assigned to more than
one cluster, due to the softmax normalization si
will have two or more non-zero entries with values
less than 1. As a consequence, at least one value
in the off-diagonal of

√
STS would be non-zero and

the trace would be smaller.
The second degenerate solution is avoided when

the clusters assume equal size, which is ensured by
the following theorem.

Theorem 2. The optimum of the problem

max
S1=1,si,j∈{0,1}

Tr
(√

STS
)

(10)

is a balanced partition with clusters of size N
K .

Proof. Let STS = C ∈ RK×K . The conditions
S1 = 1 and si,j ∈ {0, 1} imply the constraint∑K

i=1 ci,i = N , being ci,i the volume of samples as-
signed to cluster i. The solution of the constrained
optimization problem can be found using Lagrange
multipliers. Specifically, the Lagrangian is

L(C, λ) =

K∑
i=1

√
ci,i − λ

(
K∑
i=1

ci,i −N

)
.

To be an optimum, ∂L(C,λ)
∂ci,i

= 0 must hold for for

each i. Hence, by taking the derivative one obtains

1

2
√
ci,i

− λ = 0 → ci,i =
1

4λ2
(11)

Solving for λ can be done by considering the con-
straint

∑K
i=1 ci,i = N , which gives

K∑
i=1

1

4λ2
= N → λ =

√
K

4N
. (12)

Finally, substituting (12) in (11) gives ci,i =
N
K .

3.3 Numerical computation

The matrix STS is symmetric and is either positive
definite or positive semi-definite The latter case oc-
curs when at least one cluster is completely empty,
i.e., si,k = 0 for each vertex i. Either way, the ma-

trix
√
STS is unique and real. The matrix square

root is computed by first reducing the matrix to
quasi-triangular form with the real Schur decom-
position. The square root of the quasi-triangular
matrix is then computed directly.

The computational cost of the proposed loss
is dominated by the matrix multiplication STS
and by the Schur decomposition. The first costs
O(NK2), while the second costs O(K3). Since
N > K, the total cost is O(NK2). On the other
hand, the cost in MinCutPool and DMoN is dom-
inated by the numerators of the LQV terms in
(6) and (7), whose complexity is O(N2K +NK2).
When using sparse operations, the latter cost is re-
duced to O(EK+NK2), which is still greater than
the complexity of the proposed loss.

4 Experimental evaluation

Dataset N E F K

Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3
DBLP 17,716 105,734 1,639 4

Table 1: Details of the citation datasets: number of
nodes (N), number of edges (E), dimension of the fea-
ture vectors (F), and number of classes/clusters (K).

4

The clustering performance are tested on four
citation datasets, whose details are reported in
Tab. 4. In each dataset, the number of clusters
K is set equal to the number of classes to which
the nodes belong to. The distribution of the node
classes for each dataset, depicted in Fig. 1, shows
that the classes are rather unbalanced, which makes
the clustering problem non-trivial.

Cora Citeseer Pubmed DBLP

Figure 1: Distribution of the node classes.

The proposed architecture, referred to as Just
Balance GNN (JBGNN), consists of a stack of
MP layers, which outputs X̄, followed by an MLP,
which outputs S. The MP layers are implemented
by a GCN [9] operating on the connectivity matrix
Ã defined in (9). The whole JBNN is optimized
only by minimizing the loss in (8). The following
hyperparameters are used for each dataset: δ: 0.85;
MP activation: ReLU; MP channels: 64; MP lay-
ers: 10; MLP activation: ReLU; MLP channels: 16;
MLP hidden layers: 1; learning rate: 5e-5; epochs:
2,000. The software implementation of JBNN is
available online 1.

The performance of JBGNN are compared
against three classes of methods. The first are algo-
rithms that generate node embeddings based only
on the adjacency matrix. The node embeddings
are then clustered with k-means. Representatives
of this category are Spectral Clustering (SC), Deep-
Walk [11], Node2vec [5], and NetMF [12]. The sec-
ond class of methods are neural networks that gen-
erate node embeddings by accounting both for the
adjacency matrix and for the node features. Also
in this case, the learned embeddings are clustered
with k-means in a post-processing step. The cho-
sen representatives for this category are the Graph
AutoEncoder (GAE) and Variational Graph Au-
toEncoder (VGAE) [10]. Finally, the last class of
methods are end-to-end GNN models that directly
generate soft cluster assignments S by account-
ing both for the graph connectivity and the node
features. The hard cluster assignments are com-
puted as s̄ = argmax(S). DiffPool [15], DMoN [13],

1https://github.com/FilippoMB/

Simplifying-Clustering-with-Graph-Neural-Networks

MinCutPool [1], and the proposed JBGNN belong
to this class. To make the comparison fair be-
tween DiffPool, DMoN, MinCutPool, and JBGNN,
the GNN architectures are configured to have the
same capacity (number of layers and trainable pa-
rameters) and are trained for the same number of
epochs. The only difference is in the loss and in
how the cluster assignments S are computed (Diff-
pool uses an MP layer rather than the MLP in (5)
to compute S).
The clustering performance is evaluated in terms

of the normalized mutual information (NMI) be-
tween true class labels y and cluster assignments s̄
and the cluster accuracy (ACC), defined as

ACC =
1

N

N∑
i=1

θ (yi, h(s̄i)) , (13)

where h(·) maps the hard-cluster assignment s̄i to
the best matching class label according to Kuhn-
Munkres algorithm, and θ is the Heaviside step
function, which is 1 when yi and h(s̄i) are equal,
and zero otherwise. The results are reported in
Tab. 2. Methods with stochastic components are
trained and evaluated 10 different times.

The computational complexity of the GNN mod-
els for clustering is measured in terms of training
times. Tab. 3 reports the seconds used by each
model to perform one step of gradient descent and,
in red, the percentage increments from the times
used by JBGNN. Times are measured on an Nvidia
RTX A6000. Finally, Fig. 2 reports the evolution
of the losses and the NMI during training. LQV
losses are in orange and balance losses are in blue.

5 Discussion and conclusions

The clustering performance of JBGNN is competi-
tive with respect to the other end-to-end GNN clus-
tering methods: it achieves a comparable ACC and
NMI on Cora and Pubmed, and it is the best overall
performing method on DBLP. Diffpool is the worse-
performing method in this category, as it does not
optimize a proper clustering objective. On Cite-
seer, MinCutPool outperforms every other method,
including JBGNN, by a large margin. As discussed
in Section 3.1, JBGNN minimizes the LQV of X̄
while MinCutPool directly minimizes the LQV of
S, which could make a significant difference in cer-
tain datasets.

5

https://github.com/FilippoMB/Simplifying-Clustering-with-Graph-Neural-Networks
https://github.com/FilippoMB/Simplifying-Clustering-with-Graph-Neural-Networks

Cora Citeseer Pubmed DBLP
ACC NMI ACC NMI ACC NMI ACC NMI

SC 0.298 0.028 0.217 0.014 0.589 0.182 0.458 0.023
DeepWalk 0.229 (0.020) 0.064 (0.024) 0.193 (0.002) 0.004 (0.001) 0.361 (0.001) 0.001 (0.000) 0.266 (0.001) 0.001 (0.000)

Node2vec 0.229 (0.025) 0.060 (0.029) 0.194 (0.003) 0.004 (0.001) 0.362 (0.001) 0.001 (0.000) 0.272 (0.001) 0.001 (0.000)

NetMF 0.389 0.251 0.277 0.127 0.448 0.058 0.455 0.037

GAE 0.464 (0.062) 0.327 (0.051) 0.381 (0.038) 0.162 (0.029) 0.588 (0.071) 0.235 (0.044) 0.416 (0.035) 0.111 (0.028)

VGAE 0.572 (0.054) 0.437 (0.028) 0.360 (0.038) 0.156 (0.034) 0.610 (0.060) 0.245 (0.043) 0.507 (0.047) 0.212 (0.021)

DiffPool 0.472 (0.010) 0.306 (0.005) 0.336 (0.007) 0.180 (0.008) 0.418 (0.002) 0.084 (0.001) 0.370 (0.042) 0.045 (0.043)

DMoN 0.488 (0.063) 0.357 (0.042) 0.364 (0.043) 0.196 (0.029) 0.559 (0.042) 0.192 (0.048) 0.590 (0.039) 0.334 (0.026)

MinCut 0.534 (0.041) 0.406 (0.029) 0.497 (0.049) 0.295 (0.029) 0.572 (0.034) 0.208 (0.014) 0.538 (0.033) 0.297 (0.024)

JBGNN 0.457 (0.025) 0.351 (0.128) 0.334 (0.019) 0.140 (0.024) 0.564 (0.023) 0.223 (0.013) 0.607 (0.008) 0.359 (0.008)

Table 2: Clustering performance metrics for each dataset. For method with stochastic components, the mean
and the standard deviation (in brackets) obtained from 10 independent runs is reported.

Cora Citeseer Pubmed DBLP

Diffpool 0.009 0.030 0.234 0.229
+200% +42% +1376% +477%

DMoN 0.006 0.028 0.030 0.061
+100% +33% +76% +27%

MinCut 0.006 0.029 0.030 0.061
+100% +38% +76% +27%

JBGNN 0.003 0.021 0.017 0.048

Table 3: Training times (seconds/step). In red, the
increments in training times with respect to JBGNN.

About the performance of the other methods,
SC, DeepWalk, Node2vec, and NetMF always
achieve worse ACC and NMI. This is expected,
as they build embeddings based only on the graph
connectivity. On the other hand, GAE and VGAE
also account for the node features and achieve su-
perior performance. Compared to the end-to-end
GNN clustering methods, GAE and VGAE follow
a significantly different approach: they optimize a
link reconstruction loss to learn node embeddings,
which are then clustered in post-processing with
k-means. Despite the combination of GAE and
VGAE embeddings with k-means yields very good
performance, it has the disadvantage of being a
two-step procedure. In addition, the k-means is
computationally expensive and is not designed for
out-of-samples predictions. On the other hand, the
GNN-based approaches directly output soft clus-
ter assignments, which are efficiently evaluated at
inference time and can also be used to implement
differentiable operations, such as graph pooling [4].

In terms of computational complexity, JBGNN

0 500 1000 1500 2000
Iteration

1

0

1
Lo

ss

0 500 1000 1500 2000
Iteration

0.0

0.2

0.4

NM
I

(a) MinCutPool

0 1000 2000
Iteration

0.05

0.00

Lo
ss

0 1000 2000
Iteration

0.1

0.2

0.3
NM

I

(b) DMoN

0 500 1000 1500 2000
Iteration

125

100

75

50

Lo
ss

0 500 1000 1500 2000
Iteration

0.0

0.1

0.2

0.3

NM
I

(c) JBGNN

Figure 2: Evolution of the losses and NMI when train-
ing MinCutPool, DMoN and JBGNN on Cora.

outperforms all other GNN clustering methods
thanks to its simplicity and efficient formulation.
In particular, JBGNN achieves a speed improve-
ment ranging from 27% to 1,376% compared to
the other methods across the four datasets, making
it particularly suitable for large-scale applications.
Referring to Fig. 2, MinCutPool and DMoN start

6

to converge between 1000 and 1500 epochs, while
JBGNN generally converges earlier. This, together
with the faster updates, makes training the JBGNN
significantly faster.
A natural extension of this work is to test

JBGNN in other tasks, such as to implement graph
pooling [4] in a deep GNN architecture for graph
classification. As a concluding remark, it should be
noted that the proposed clustering objective relies
on the assumption that all clusters have equal size.
This is reasonable, since clustering is an unsuper-
vised task and the actual sizes are usually unknown.
However, if information about cluster size is avail-
able, a clustering objective that puts a bias towards
an unbalanced partition could be used instead.

Acknowledgments I gratefully acknowledge the
support of Nvidia Corporation with the donation of
the two RTX A6000 GPUs used in this work.

References

[1] F. M. Bianchi, D. Grattarola, and C. Alippi.
Spectral clustering with graph neural networks
for graph pooling. In International Conference
on Machine Learning, pages 874–883. PMLR,
2020.

[2] M. Defferrard, X. Bresson, and P. Van-
dergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering.
Advances in neural information processing sys-
tems, 29, 2016.

[3] J. Gilmer, S. S. Schoenholz, P. F. Riley,
O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In Interna-
tional conference on machine learning. PMLR,
2017.

[4] D. Grattarola, D. Zambon, F. M. Bianchi, and
C. Alippi. Understanding pooling in graph
neural networks. IEEE Transactions on Neu-
ral Networks and Learning Systems, 2022.

[5] A. Grover and J. Leskovec. node2vec: Scalable
feature learning for networks. In Proceedings of
the 22nd ACM SIGKDD international confer-
ence on Knowledge discovery and data mining,
2016.

[6] W. L. Hamilton. Graph representation learn-
ing. Synthesis Lectures on Artifical Intelligence
and Machine Learning, 14(3):1–159, 2020.

[7] M. Hein and S. Setzer. Beyond spectral
clustering-tight relaxations of balanced graph
cuts. In NIPS. Citeseer, 2011.

[8] M. Kampffmeyer, S. Løkse, F. M. Bianchi,
L. Livi, A.-B. Salberg, and R. Jenssen. Deep
divergence-based approach to clustering. Neu-
ral Networks, 113:91–101, 2019.

[9] T. N. Kipf and M. Welling. Semi-supervised
classification with graph convolutional net-
works. International Conference on Learning
Representations, 2016.

[10] T. N. Kipf and M. Welling. Varia-
tional graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[11] B. Perozzi, R. Al-Rfou, and S. Skiena. Deep-
walk: Online learning of social represen-
tations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowl-
edge discovery and data mining, 2014.

[12] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and
J. Tang. Network embedding as matrix fac-
torization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the 11th ACM in-
ternational conference on web search and data
mining, 2018.

[13] A. Tsitsulin, J. Palowitch, B. Perozzi, and
E. Müller. Graph clustering with graph neural
networks. arXiv preprint arXiv:2006.16904,
2020.

[14] U. Von Luxburg. A tutorial on spectral clus-
tering. Statistics and computing, 17(4):395–
416, 2007.

[15] Z. Ying, J. You, C. Morris, X. Ren, W. Hamil-
ton, and J. Leskovec. Hierarchical graph repre-
sentation learning with differentiable pooling.
Advances in neural information processing sys-
tems, 31, 2018.

[16] S. Zhou, H. Xu, Z. Zheng, J. Chen, J. Bu,
J. Wu, X. Wang, W. Zhu, M. Ester, et al.
A comprehensive survey on deep clustering:
Taxonomy, challenges, and future directions.
arXiv preprint arXiv:2206.07579, 2022.

7

	Introduction
	Background
	Spectral Clustering
	Graph Neural Networks
	Clustering with GNNs

	Proposed approach
	Removal of the LQV term
	Optimality of the proposed balancing term
	Numerical computation

	Experimental evaluation
	Discussion and conclusions

