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Abstract. A collisional gyro-fluid model is presented. The goal of the model is edge
and scrape-off layer turbulence. The emphasize in the model derivation heavily lies on
”implementability” with today’s numerical methods. This translates to an avoidance of
infinite sums, strongly coupled equations in time and intricate elliptic operator functions.
The resulting model contains the four moments density, parallel momentum, perpendicular
pressure and parallel energy and is closed by a polarisation equation and parallel Ampere
law. The central ingredient is a collisional long-wavelength closure that relies on a drift-fluid
gyro-fluid correspondence principle. In this way the extensive literature on fluid collisions can
be incorporated into the model including sources, plasma-neutral interactions and scattering
collisions. Even though this disregards the characteristic finite Larmor radius terms in the
collisional terms the resulting model is at least as accurate as the corresponding drift-fluid model
in these terms. Furthermore, the model does enjoy the benefits of an underlying variational
principle in an energy-momentum theorem and an inherent symmetry in moment equations
with regards to multiple ion species. Consistent particle drifts as well as finite Larmor radius
corrections and high amplitude effects in the advection and polarization terms are further
characteristics of the model. Extensions and improvements like short-wavelength expressions, a
trans-collisional closure scheme for the low-collisionality regime or zeroth order potential must
be added at a later stage.

Keywords: gyro-fluid, collisions, long-wavelength limit

1. Introduction
Gyro-kinetic and in extension gyro-fluid models arguably have difficult and often impractical
expressions for collisional inter-species interaction terms [1, 2, 3]. Furthermore, little to no work
exists on plasma-neutral interaction terms in gyro-fluid models, as does work on external sources
like heating or particle injection. The result is that practical implementations of gyro-fluid
models largely ignore collisions and plasma neutral interactions altogether [4, 5, 6, 7]. Drift-fluid
models are preferred for that purpose even though these models do not share many advantages
of gyro-fluid models: finite Larmor radius corrections, consistent particle drifts, an energy and
momentum theorem based on variational methods in the underlying gyro-kinetic model and an
inherent symmetry in moment equations with regards to multiple ion species [8, 9, 10, 11].
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In this work we derive a collisional closure for gyro-fluid models that is both practical to
implement numerically and easy to derive. It is known that drift-fluid models can be obtained
in the long-wavelength limit of gyro-fluid models when the gyro-radius is small compared to
the typical length-scales [12, 13, 14]. The central argument for a long-wavelength closure of
gyro-fluid models is that this correspondence extends to the collisional (scattering and reacting)
terms: they are such that their long-wavelength limit corresponds to the drift-fluid terms. In
that way a gyro-fluid model can be built based on the extensive literature on fluid collisions
[15, 16].

Our goal is to derive a practical four-moment, electromagnetic, multi-species model that in
particular can be used in the Theory, Simulation, Verification and Validation (TSSV) task 3 for
edge plasma fluid simulations. We will therefore focus on numerical “implementability” avoiding
infinite sums, strongly coupled equations or intricate operator functions. We further highlight
the impact of the derived collision terms on the conservation of currents “vorticity” equation
[14] as well as the impact on rotation [13].

In section 2 we start our derivation from the basic Vlasov equation and show the generic
gyro-fluid moment equation. In Section 3 we present our main closure scheme and present
a possible choice of fluid collision terms for both plasma-neutral as well as Coulomb collisions.
Finally, we present the complete model in Section 4 followed by a discussion of possible numerical
realisations and boundary conditions in Section 5. We conclude in Section 6.

2. Elements of a gyro-fluid model
We formally start with the kinetic Vlasov equation in the form presented by [15]

∂fa
∂t
+ v ⋅∇fa +

qa
ma
(E + v ×B)∂fa

∂v
= Ca (1)

Here, fa(x,v, t) is the particle distribution function of species a dependent on position x, velocity
v and time t. The Lorentz force mediates the interactions with the electric field E and magnetic
field B with charge qa and mass ma. The main focus in this work lies on the collision and source
term Ca that is presented as

Ca ∶= ∑
scatt.=ii,ie,ee

Ca,scatt + ∑
react.=iz,rec,cx

Ca,react + ∑
sources

Ca,sources (2)

We formally distinguish between (i) scattering (Coulomb) collisions i.e. collisions between ions
”ii”, ions and electrons ”ie” and electrons ”ee”, (ii) interactions between the plasma and neutrals
in ionization ”iz”, recombination ”rec” and charge exchange ”cx” and (iii) external sources like
for example plasma heating through microwave interaction or neutral beam and pellet injection.

Eq. (1) can be converted to gyro-kinetic coordinates [17] (X, µ, v∥, θ) with gyro-centre
position X, magnetic moment µ, parallel canonical velocity mw∥ =mv∥ + qA∥ and gyro-angle θ.

The parallel magnetic field potential A∥ represents magnetic field fluctuations with B̃ = ∇×A∥b̂.
The resulting gyro-kinetic particle distribution function F = F (X,w∥, µ, t) is gyro-averaged by
construction, while B = B(X) is the magnetic field strength that acts as the volume form in
the symplectic phase space. The gyro-kinetic collision operator C = C(X,w∥, µ, θ, t) is left
unspecified for now but needs to be averaged over the gyro-angle with the gyro-average ⟨⋅⟩.

∂ (BF )
∂t

+∇ ⋅ (BFẊ) +
∂ (BFẇ∥)

∂w∥
= ⟨BC⟩ (3)
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where the equations of motion are given by [18, 13]

Ẋ = 1
B

⎛
⎝
Bv∥ +

mv2∥

q
∇ × b̂ + µB

q
b̂ ×∇ lnB

+ v∥∇ ×A∥b̂ + b̂ ×∇Ψ) (4)

mẇ∥ = −
1

B
(B +

mv∥

q
∇ × b̂ +∇ ×A∥b̂)

⋅ (µB∇ lnB + q∇Ψ) + qẊ ⋅∇A∥ (5)

µ̇ =0 (6)

θ̇ =qB
m
+ q

2

m

∂Ψ

∂µ
(7)

For brevity of notation we omit the species index a in the equations. In the velocity equation
(4) we find the parallel velocity v∥, the curvature and grad-B drifts as well as the magnetic field
perturbation and E ×B drifts. The latter two are given by the perturbed parallel magnetic
potential A∥, the background static magnetic field B with unit vector b̂ ∶= B/B and the gyro-

centre potential Ψ = Ψ1+Ψ2 = ⟨ϕ⟩−q∂µ(⟨ϕ2⟩−⟨ϕ⟩2)/2B [18], where ϕ is the electric potential and
⟨⋅⟩ the gyro-average. In the parallel acceleration (5) we find the generalized mirror and parallel
electric forces. The magnetic moment is conserved by construction (6) while the gyro-angle is
averaged out in the conservative gyro-kinetic Vlasov equation (3).

In order to derive the gyro-fluid equations we first define the velocity space moment operator

∥ζ∥ ∶= ∫ m2BFζdw∥dµdθ (8)

where ζ(X,w∥, µ, t) is any function defined on phase-space and the integration encompasses the
entire velocity space where B acts as the volume form. Notice that we name the first few fluid
moments N ∶= ∥1∥, NU∥ ∶= ∥v∥∥, P⊥ ≡ NT⊥ ∶= ∥µB∥ and E∥ ≡ (P∥ +mNU2

∥ )/2 ∶= ∥mv
2
∥/2∥ with

P∥ ≡ NT∥. We also define the moment operator for the collision function C analogous to the
velocity space moment operator for the gyro-kinetic distribution function F in Eq. (8)

∥ζ∥C ∶= ∫ m2BCζdw∥dµdθ (9)

Analogous to the moments of F we name the source moments ΛN ∶= ∥1∥C , ΛP⊥ ∶= ∥µB∥C , etc.
Using Eq. (3) together with the fact that ∂/∂t and ∇ commute with the velocity integral and F
vanishes for w∥ = ±∞ we find the important identity

∂

∂t
∥ζ∥ +∇ ⋅ ∥ζẊ∥ = ∥dζ

dt
∥ + ∥ζ∥C = ∥

∂ζ

∂t
+ Ẋ ⋅∇ζ + ẇ∥

∂

∂w∥
ζ∥ + ∥ζ∥C (10)

From this we get (neglecting finite Larmor radius effects on the A∥ terms) [18] with
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k, l ∈ 1,2,3, ...
∂

∂t
∥(µB)kvl∥∥

+∇⋅ ((b̂ + b⊥)∥(µB)kvl+1∥ ∥ +
m

q
∥(µB)kvl+2∥ ∥K∇×b̂ +

1

q
∥(µB)k+1vl∥∥K∇B +

b̂

B
× ∥(µB)kvl∥∇ ⋅Ψ∥)

= k ((b̂ + b⊥)∥(µB)kvl+1∥ ∥ +
m

q
∥(µB)kvl+2∥ ∥K∇×b̂ +

1

q
∥(µB)k+1vl∥∥K∇B +

b̂

B
× ∥(µB)kvl∥∇ ⋅Ψ∥)

⋅∇ lnB

− l ( 1
m
∥(µB)k+1vl−1∥ ∥(b̂ + b⊥) +

1

q
∥(µB)k+1vl∥∥K∇×b̂) ⋅∇ lnB

− l ( q
m
(b̂ + b⊥) ⋅ ∥(µB)kvl−1∥ ∇Ψ∥ +K∇×b̂ ⋅ ∥(µB)

kvl∥∇Ψ∥) − l
q

m
∥(µB)kvl−1∥ ∥

∂

∂t
A∥

+ ∥(µB)kvl∥∥C (11)

The definitions of the curvature operators K
∇×b̂ and K∇B can be found in table A1. Note that

K∇B ⋅∇ lnB = 0 (12)

and we have

b⊥ ∶=
∇ ×A∥b̂

B
= A∥K∇×b̂ +

∇A∥ × b̂
B

(13)

Eq. (11) reveals already the structure of our equations as being a combination of a convection
term on the left hand side as well as two generalized mirror force terms ∝ ∇ lnB and the general
parallel electric field force. The significance of Eq. (11) lies in the fact that we are able to write
the gyro-fluid equation at any moment.

3. The long-wavelength collisional closure
As with any fluid model, the infinite hierarchy of moments given in Eq. (11) needs to be
closed. Several approaches exist. First, we can assume that the distribution function follows a
Maxwellian [4].

F = FM = N
1

2πT⊥m

¿
ÁÁÀ 1

2πT∥m
exp(−

m(v∥ −U)2

2T∥
− µB
T⊥
) (14)

From equation (14) we can for example derive [18]

R⊥∥ = ∥(µB)m(v∥ −U∥)2∥ = NT⊥T∥ R⊥⊥ = ∥(µB)2∥ = 2NT 2
⊥

R∥∥ = ∥m2(v∥ −U∥)4∥ = 3NT 2
∥ (15)

However, the somewhat distinct feature of a gyro-fluid model is that it needs special attention

in terms that involve the gyro-average (for example b̂
B × ∥(µB)

kvl∥∇ ⋅Ψ∥, which lead to infinite
sums in the gyro-fluid equations even if we assume the Maxwellian distribution function. These
terms can be expressed via Pade approximations [18], which are numerically tractable and we
will define explicitly in Section 4.

Finally, we have the somewhat inconspicuous term ∥(µB)kvl∥∥C . In fact, this term hides the
complicated coordinate transformation of the Coulomb collision operator. Expressions for this
operator have so-far only been found for linearized models [1, 19] or if linearization is omitted,
the expressions are highly impractical to implement numerically [2]. Furthermore, only Coulomb
collisions were considered without taking plasma-neutral interactions into account.
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3.1. The long wavelength collisional closure
We here propose a different approach from trying to explicitly work out the gyro-kinetic
coordinate transformation. We know from previous work that gyro-fluid models coincide in drift-
fluid models in the long-wavelength limit [12, 14]. Our main idea is to choose the collisional terms
such that in the long wavelength limit the drift-fluid terms are recovered and quasi-neutrality
in the gyro-fluid model is retained. In other words we first chose a closure of the fluid collisional
terms that result by taking moments of the original Vlasov equation (1) and in a second step
transform the fluid closure to gyro-centre coordinates.

It can be shown that gyro-fluid expressions can be transformed to their corresponding fluid
expressions in the long-wavelength limit via [13]

n = N +∆⊥ (
mP⊥
2qB2

) +∇ ⋅ (mN∇⊥ϕ
B2

) nu∥ = NU∥

p⊥ = P⊥ +∆⊥ (
mR⊥⊥
2qB2

) +∇ ⋅ (mP⊥∇⊥ϕ
B2

) e∥ = E∥ (16)

The omission of the correction terms in the parallel momentum and energy equations originates
in the neglect of the corresponding terms in the Hamiltonian. This can possibly be extended later
but is problematic because such an extension couples the parallel Ampere law to the polarization
equation, which is numerically problematic [17, 13].

The main observation now is that the fluid moment transformation (16) holds just as well for
the moments of any other function on phase space, including the collision operator. Furthermore
in the long-wavelength limit the relations can easily be inverted

ΛN = sn −∆⊥ (
msp⊥
2qB2

) −∇ ⋅ (msn∇⊥ϕ
B2

) ΛmNU∥ = snu∥

ΛP⊥ = sp⊥ −∆⊥ (
msr⊥
2qB2

) −∇ ⋅ (
msp⊥∇⊥ϕ

B2
) ΛE∥ = se∥ (17)

All that remains to do is to find appropriate expressions for the fluid collision terms sn, sp⊥ , snu∥
and se∥ that we can plug into Eq. (17). In the following we will set sr⊥ = 0. The only constraint
that we have on the collisional terms is that they should conserve the electric charge

∑
sp

qsn = 0 (18)

where we sum over all species.

3.2. Fluid collision terms
For the following terms for plasma-neutral interactions and ellastic collisions we follow
References [15, 16]. We have ionization

sn,i,iz ∶=nennKi,iz smnu∥,i,iz ∶=miun,∥sn,i,iz

sp⊥,i,iz ∶= (
1

2
miu

2
n,⊥ + Tn − δi,eϕiz) sn,i,iz sE∥,i,iz ∶= (

1

2
miu

2
n,∥ +

1

2
Tn − δi,eϕiz) sn,i,iz (19)

where we used mi/mn ≈ 1. Here, nn is the neutral density, Tn the neutral temperature and un,∥
is the neutral parallel velocity. Ki,iz is the ionization rate.

Further, we have recombination

sn,i,rec ∶= − neniKi,rec smnu∥,i,rec ∶=miui,∥sn,i,rec

sp⊥,i,rec ∶=ti,⊥sn,i,rec sE∥,i,rec ∶= (
1

2
miu

2
i,∥ +

1

2
ti,∥) sn,i,rec (20)
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where we used mi/mn ≈ 1 and neglect u2i,⊥ < ti,⊥. Charge exchange reads

sn,i,cx ∶=0 smnu∥,i,cx ∶= (miun,∥ −miui,∥)ninnKcx

sp⊥,i,cx ∶= (
1

2
miu

2
n,⊥ + Tn,⊥ − ti,⊥)ninnKcx

sE∥,i,cx ∶= (
1

2
miu

2
n,∥ +

1

2
Tn −

1

2
miu

2
i,∥ −

1

2
ti,∥)ninnKcx (21)

We follow here [16] and in the simplest case consider charge-exchange as an ionization followed
by an immediate recombination. Finally, Coulomb collisions can be described by [15]

sn,i,scatt ∶=0 smnu∥,i,scatt ∶= −mini∑
k

ν
∥
ik(u∥,i − u∥,k)

sp⊥,i,scatt ∶=∑
k

3nimiν
⊥
ik(t⊥,i − t⊥,k)
mi +mk

sE∥,i,scatt ∶=ui,∥smnu∥,i,scatt +∑
k

3nimiν
∥
ik(t∥,i − t∥,k)
mi +mk

(22)

which is essentially Spitzer resistivity and the collisional thermal energy exchange

4. The collisional gyro-fluid model
We now have all ingredients to finally note our full-F, collisional, multi-species gyro-fluid model.
This section largely bases on the ground work by references [18, 4].

4.1. Density Equation: k = l = 0

∂

∂t
N +∇ ⋅ JN = ΛN (23)

where we have the drift current

JN ∶=(b̂ + b⊥)NU∥

+N b̂

B
× (∇Γ1(ϕ) +∇ψ2 + Γ2(ϕ)∇ ln(B/T⊥))

+
P∥ +mNU2

∥

q
K
∇×b̂ +

P⊥
q
K∇B (24)

We have

ψ2 ∶= −
m

2qB2
∣∇⊥ϕ∣2 (25)

We use the Pade approximations [18]

Γ1 ∶= (1 −
ρ2

2
∆⊥)

−1

Γ2 ∶=
ρ

2

∂

∂ρ
Γ1 Γ3 ∶= (1 +

ρ

2

∂

∂ρ
)Γ2 (26)

ρ2 ∶=mT⊥
q2B2

(27)

These operators are involved with dynamic finite Larmor radius effects in the model [5, 6].
Expressions for Γ2 and Γ3 can be found in [18], which are essentially Helmholtz type operators.
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A possible improvement to the model is to follow [18] and relieve the long wavelength limit
of the polarization term to yield ψ2 = −m∣∇⊥

√
Γ0ϕ∣2/2qB2 with Γ0 = (1 − ρ2∆⊥)−1. However,

this will lead to both additional terms in Γ2 and Γ3 and also leads to (yet unsolved numerical)
problems in the polarisation equation (a matrix square root

√
Γ0 needs to be computed). We

have recently achieved a numerical realisation of the isothermal variant [20] but a solution for
the thermal, multispecies variant is still ongoing work. In this first iteration of the model we
thus keep the long wavelength approximation Γ0 = 1.

4.2. Polarisation equation
The polarisation equation reads

∑
sp

[qΓ†
1N +∇ ⋅ (

mN

B2
∇⊥ϕ)] = 0 (28)

where we sum over all species and define

Γ†
1 ∶= (1 −∆⊥ρ

2/2)−1 (29)

4.3. Parallel momentum equation k = 0, l = 1

∂

∂t
(mNU∥) + qN

∂

∂t
A∥ +∇ ⋅ JmNU = FmNU,∇B + FmNU,E +ΛmNU (30)

with the momentum currents

JmNU ∶=(mNU2
∥ + P∥)(b̂ + b⊥)

+m b̂

B
× (NU∥ [∇Γ1(ϕ) +∇ψ2 + Γ2(ϕ)∇ ln(B/T⊥)]+

Q⊥∥

T⊥
[∇Γ2(ϕ) + (Γ3 − Γ2)(ϕ)∇ ln(B/T⊥)])

+m
Q∥∥ + 3U∥P∥ +mNU3

∥

q
K
∇×b̂

+m
U∥P⊥ +Q⊥∥

q
K∇B (31)

and the electric and mirror force terms

FmNU,E = −mN(b̂ + b⊥) ⋅ (∇(Γ1(ϕ) + ψ2) + Γ2(ϕ)∇ ln(B/T⊥))
−mK

∇×b̂ ⋅ (NU∥ [∇(Γ1(ϕ) + ψ2) + Γ2(ϕ)∇ ln(B/T⊥)]

+
Q⊥∥

T⊥
[∇Γ2(ϕ) + (Γ3 − Γ2)(ϕ)∇ ln(B/T⊥)])

FmNU,∇B = − P⊥(b̂ + b⊥) ⋅∇ lnB −m
U∥P⊥ +Q⊥∥

q
K
∇×b̂ ⋅∇ lnB (32)

4.4. Parallel Ampere law
Neglecting all finite Larmor radius effects on A∥ we simply have

−µ0∆⊥A∥ = ∑
sp

qNU∥ (33)
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4.5. Perpendicular pressure equation, k = 1, l = 0
∂

∂t
P⊥ +∇ ⋅ JP⊥ = JP⊥ ⋅∇ lnB +ΛP⊥ (34)

with

JP⊥ ∶=(b̂ + b⊥)(U∥P⊥ +Q⊥,∥)

+ 1

q
(mU2

∥P⊥ + 2mU∥Q∥⊥ +R⊥∥)K∇×b̂ +
1

q
R⊥⊥K∇B

+ P⊥
b̂

B
× (∇(Γ1(ϕ) + ψ2) +∇Γ2(ϕ) + Γ3(ϕ)∇ ln(B/T⊥)) (35)

Note the alternative formulation ∇⋅J−J ⋅∇ lnB = B∇⋅(J/B) and the closure relation R⊥⊥ = 2NT 2
⊥

4.6. Parallel energy equation k = 0, l = 2
∂

∂t
E∥ + qNU∥

∂A∥

∂t
+∇ ⋅ JE∥ = FE∥,∇B + FE∥,E +ΛE∥ (36)

with

E∥ ∶=
1

2
(P∥ +mNU2

∥ ) (37)

JE∥ =
1

2
(b̂ + b⊥) (mNU3

∥ + 3U∥P∥ +Q∥∥)

+ 1

2q
(m2NU4

∥ + 6mU
2
∥P∥ + 4mU∥Q∥∥ +R∥∥)K∇×b̂

+ 1

2q
(mU2

∥P⊥ +R⊥∥ + 2Q⊥∥U∥)K∇B

+ 1

2

b̂

B
× ((P∥ +mNU2

∥ )∇(Γ1(ϕ) + ψ2) +
2mU∥Q⊥∥

T⊥
∇Γ2(ϕ))

+1
2

b̂

B
× ((P∥ +mNU2

∥ −
2mU∥Q⊥∥

T⊥
)Γ2(ϕ)∇ ln(B/T⊥) +

2mU∥Q⊥∥

T⊥
Γ3(ϕ)∇ ln(B/T⊥)) (38)

and the generalized mirror and electric forces / energy transfer

FE∥,∇B ∶=(P⊥U∥ +Q⊥∥)(b̂ + b⊥) ⋅∇ lnB

+ 1

q
(mU2

∥P⊥ + 2mU∥Q⊥∥ +R∥⊥)K∇×b̂ ⋅∇ lnB (39)

FE∥,E ∶=(b̂ + b⊥) ⋅ (NU∥ [∇(Γ1(ϕ) + ψ2) + Γ2(ϕ)∇ ln(B/T⊥)]+
Q⊥∥

T⊥
(∇Γ2(ϕ) + (Γ3(ϕ) − Γ2(ϕ))∇ ln(B/T⊥)))

+K
∇×b̂ ⋅ [E∥ [∇(Γ1(ϕ) + ψ2) + Γ2(ϕ)∇ ln(B/T⊥)]+

+
2mU∥Q⊥∥

T⊥
(∇Γ2(ϕ) + (Γ3(ϕ) − Γ2(ϕ))∇ ln(B/T⊥))] (40)

As closure relation we propose for the parallel fluxes of perpendicular/parallel pressure

Q⊥∥ = −κ⊥∥b̂ ⋅∇T⊥ Q∥∥ = −κ∥∥b̂ ⋅∇T∥ (41)

Alternatively we can use an expression for drift-kinetic models [21]

Q⊥∥ = −η⊥∥P⊥(U∥,e −U∥,i) − κ⊥∥b̂ ⋅∇T⊥ Q∥∥ = −η∥∥P∥(U∥,e −U∥,i) − κ∥∥b̂ ⋅∇T∥ (42)
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4.7. Energy conservation and conservation of currents
The model energy density equation reads [4, 18]

∂

∂t
E +∇ ⋅ JE = ΛE E ∶=∑

sp

(P⊥ +E∥ − qNψ2) +
(∇⊥A∥)2

2µ0
(43)

with

ΛE ∶= ∑
sp

(q(Γ1(ϕ) + ψ2) − Γ2(ϕ))ΛN + (1 +
qΓ2(ϕ)
T⊥

)ΛP⊥ +ΛE∥ (44)

Due to size limitations we omit the expression for the energy current JE .
In the recent Reference [14] the conservation of currents or ”vorticity” equation for our model

was explicitly derived in the long wavelength limit:

∂t∇ ⋅
⎡⎢⎢⎢⎣
∑
sp

mn

B2
(∇⊥p⊥
nq
+∇⊥ϕ)

⎤⎥⎥⎥⎦
= ... +∇ ⋅

⎡⎢⎢⎢⎣
∑
sp

m

B2
(
∇⊥sp

q
+ sn∇⊥ϕ)

⎤⎥⎥⎥⎦
(45)

We here only show the dependence on the fluid source terms. Under a flux-surface average this
equation becomes an equation for angular momentum [13]. Eq. (45) is a consequence of the
conservation of charge (18) and shows that sources of pressure (heating) as well as density can
lead to poloidal rotation.

5. Aspects of a numerical implementation
In this section we sketch how a possible implementation of our equations could look like. Our
goal here is to convince the reader of the possibility to implement the presented model with
today’s numerical methods.

First, we notice the general form of the equations that we derived in Section 4. Due to the
time derivatives on A∥ our system of equations is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1 qN

1

1 qNU∥

q −µ0∆⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N

NU∥

P⊥

E∥

A∥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+∇ ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

JN

JmNU

JP⊥

JE∥

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

FmNU,∇B + FmNU,E

JP⊥ ⋅∇ lnB

FE∥,∇B + FE∥,E

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ΛN

ΛmNU

ΛP⊥

ΛE∥

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(46)

The last equation is obtained by deriving the parallel Ampere law (33) in time. In each step
the polarisation equation Eq. (28) needs to be solved and the gyro-average operators (26) need
to be applied.

We here emphasize that the equations (46) are completely symmetric with respect to several
ion species. This is one of the advantages over existing drift-fluid models. Furthermore, the
polarisation equation decouples from the dynamical system (i.e. there is no time-derivative in
Eq. (28)). This contrasts to drift-fluid models where the potential is given by the vorticity
equation, which leads to a strongly coupled system that is hard to solve numerically [11].

5.1. Timestepper and the mass matrix
The main difficulty when formulating a timestepper for Eq. (46) is the mass matrix. Writing
Eq. (46) in the form M(y)ẏ = G(y, t) with y = (N,NU∥, P⊥,E∥,A∥) and M and G implicitly

defined, we see that we have to invert M to yield the canonical form ẏ = f(y, t) ≡ M−1G.
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Inspecting the matrix M we see that only the ˙NU∥ and Ȧ∥ equations are strongly coupled and
lead to the equation

⎛
⎝
−∑

sp

qN − µ0∆⊥
⎞
⎠
Ȧ∥ = ∑

sp

GNU∥ (47)

Once Ȧ∥ is known the equations for ˙NU∥ and Ė∥ can easily be inverted. The equations for Ṅ

and Ṗ⊥ are entirely decoupled. With the right hand side f ≡M−1G reliably computable, the
formulation of an adequate timestepper for the general form ẏ = f(y, t) poses no difficulty. An
abundance of timesteppers like Runge-Kutta or multistep methods are available.

Note that in our model we ignore all gyro-averaging effects on A∥. This is mainly because of
the difficulty of integrating ∂tNU +N∂tΓ1A∥ in time (the Gamma operator does not commute
with the time derivative). Further research is needed to show that it can be done at no significant
computational cost. For now Γ1A∥ ≈ A∥ is kept at lowest order.

5.2. Spatial discretization: advection and diffusion
The difficulty for the spatial discretization is to construct an appropriate advection solver for
the terms ∇ ⋅ J that is both stable and conserves invariants (for example the mass). Here, we
distinguish between the advection perpendicular and parallel to the magnetic field.

For the perpendicular direction, we recommend discontinuous Galerkin methods [22], which
can be seen as generalizations of finite element and finite volume schemes and have excellent
stability, parallelization and conservation properties. For the parallel direction (terms of the form

∇ ⋅ (b̂U∥..)) the flux-coordinate independent approach is the state of the art [23, 24] as flux-tube
approaches don’t generally work for geometries including X-points and direct discretizations
have too much numerical diffusion and a too severe CFL condition. However, do note the ”self-
advection” parallel Burger terms in the NU∥ and E∥ equations (e.g. mNU

2
∥ and the factor U3

∥
in the curvature drift), which without viscosity can lead to shocks. Additional artificial parallel
diffusion may be necessary to stabilize the scheme.

The implementation of the force terms F∇B and FE as well as the collisional and source terms
suggested in Section 3.2 is straightforward.

5.3. Elliptic solvers
We need elliptic solvers to solve both the polarization equation (28) as well as the application
of the gyro-averaging operators Γ1,Γ2 and Γ3 (26) and (29) (which also involve inversion of
an elliptic problem). The main difficulty here is that both the elliptic operator (28) as well
as the Helmholtz-type operators (26) and (29) depend on a dynamic field (density respectively
temperature), i.e. the discretization matrices change in each timestep. When inverting these
numerically iterative schemes seem paramount and one should use preconditioners that are (i)
easy and fast to compute and apply and/or (ii) reused from previous timesteps such that their
re-computation is ammortized. The Γ2 and Γ3 operators can be applied by successively applying
Γ1. The inversion of the Ampere equation in the form (47) poses no principle difficulty compared
to the polarisation and gyro-average operators.

5.4. Boundary conditions
Depending on the chosen simulation domain various boundary conditions must be considered.
If the domain should not include the core region of the plasma, one must either fix the values
of the four moments at the inner boundary (gradient driven simulation) or specify a constant
influx of mass and energy (flux-driven simulation). There are two major issues when it comes
to the outer boundary including the divertor: (i) when using structured spatial grids, the shape
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of the wall and divertor are generally not conforming to said grid and (ii) the formulation of
sheath boundary conditions for the proposed fluid model has strong influence on the numerical
stability of simulations.

The first problem can be solved by either using unstructured grids that are conforming to
the wall or by using immersed boundary conditions as proposed in Ref. [25]. For the second
problem we propose to start with insulating sheath boundary conditions that are shown to work
in Reference [26]. More realistic boundary conditions that come closer to model kinetic effects
as in [27] are subject to future extensions.

6. Conclusions
A 4-moment, multispecies, electromagnetic, full-F gyro-fluid model including sources as well
as reacting (plasma-neutral interactions) and scattering collisions was derived. The numerical
implementability with today’s numerical methods (avoiding infinite sums, nested time and/or
elliptic constructs) was discussed. The model includes finite Larmor radius effects wherever
possible and takes other (collisional) terms in the long wavelength limit. This makes the model
at least as accurate as drift-fluid models with regards to collisional terms. Consistent particle
drifts as a result of gyro-kinetic equations of motion are retained and the explicit energy theorem
and conservation of currents are shown.

Various improvements and future updates are possible. Firstly, it is known that the scrape-off
layer may not entirely be in the high collisionality regime [27]. For this regime, a trans-collisional
closure must be derived. Other shortcomings of the model include for example the absence of
a zeroth order high amplitude electric potential [28]. Furthermore, closure schemes that take
trapped particle dynamics into account should be considered. Finally, the ”correct” derivation
of a non-linear, short-wavelength collision operator may yield superior modelling capabilities in
the future. However, the presented model is ready to be implemented today.

Appendix A. The magnetic field
We assume a three-dimensional flat space with arbitrary coordinate system x ∶= {x0, x1, x2},
metric tensor gij and volume element

√
g ∶=
√
det g. Given a vector field B(x) with unit vector

b̂(x) ∶= (B/B)(x) we can define various differential operations.

Table A1. Definitions of geometric operators with bi the contra-variant components of b̂ and
gij the contra-variant elements of the metric tensor. We assume (∇ × b̂)∥ = 0.
Name Symbol Definition

Projection Tensor h hij ∶= gij − bibj Note h2 = h
Perpendicular Gradient ∇⊥ ∇⊥f ∶= b̂ × (∇f × b̂) = h ⋅∇f
Perpendicular Laplacian ∆⊥ ∆⊥f ∶= ∇ ⋅ (∇⊥f) = ∇ ⋅ (h ⋅∇f) = −∇†

⊥ ⋅∇⊥
Curl-b Curvature Operator Kκ Kκ(f) ∶=Kκ ⋅∇f = 1

B (b̂ ×κ) ⋅∇f with κ ∶= b̂ ⋅∇b̂

Grad-B Curvature Operator K∇B K∇B(f) ∶=K∇B ⋅∇f = 1
B (b̂ ×∇ lnB) ⋅∇f

Curvature Operator K K(f) ∶=K ⋅∇f = ∇ ⋅ ( b̂×∇fB ) = ∇ × b̂
B ⋅∇f ,

Parallel derivative ∇∥ ∇∥f ∶=B ⋅∇f/B Notice ∇ ⋅ b̂ = −∇∥ lnB

Explicit expressions for the above expressions depend on the choice of the magnetic field and
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the underlying coordinate system. Note that we have

K =K
∇×b̂ +K∇B ∇ ⋅K

∇×b̂ = −∇ ⋅K∇B = −K∇×b̂ ⋅∇ lnB,

∇⋅K = 0, K
∇×b̂ −K∇B =

1

B2
(∇ ×B), ∇∥ lnB = −∇⋅b̂. (A.1)

The last equality holds if ∇⋅B = 0. In any arbitrary coordinate system we have

(∇f)i = gij∂jf , ∇ ⋅ v = 1
√
g
∂i (
√
gvi) , (v ×w)i = 1

√
g
εijkvjwk . (A.2)
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[3] Hirvijoki E, Brizard A J and Pfefferlé D 2017 Journal of Plasma Physics 83 595830102
[4] Madsen J 2013 Physics of Plasmas 20 072301
[5] Wiesenberger M, Madsen J and Kendl A 2014 Physics of Plasmas 21 092301
[6] Held M, Wiesenberger M, Madsen J and Kendl A 2016 Nuclear Fusion 56 126005
[7] Scott B 2010 Physics of Plasmas 17 102306
[8] Simakov A N and Catto P J 2003 Physics of Plasmas 10 4744–4757
[9] Madsen J, Naulin V, Nielsen A H and Rasmussen J J 2016 Physics of Plasmas 23 032306

[10] Gath J and Wiesenberger M 2019 Physics of Plasmas 26 032304
[11] Poulsen A, Rasmussen J J, Wiesenberger M and Naulin V 2020 Physics of Plasmas 27 032305
[12] Scott B D 2007 Physics of Plasmas 14 102318
[13] Wiesenberger M and Held M 2020 Nuclear Fusion 60 096018
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