
1.  Introduction
The high latitude ionosphere has historically been a challenging system to model (Buchert, 2020; Lockwood 
et al., 1990; Rasmussen et al., 1986). A rich collection of external drivers and interactions drive ionospheric 
behavior, including strong electric fields, magnetospheric coupling via particle precipitation and current systems, 
and rapid changes in the thermospheric state. These dynamic conditions, paired with a lack of high latitude 
observations when compared to mid and low latitudes, present a substantial problem for operational ionospheric 
modeling. With increased interest in polar ionospheric monitoring (Thayaparan et al., 2018) and High Frequency 
(HF) communications, it is now imperative that a near-real-time, operational model of high latitude electron 
density be developed and deployed for use in this region.

Abstract  The Assimilative Canadian High Arctic Ionospheric Model (A-CHAIM) is an operational 
ionospheric data assimilation model that provides a 3D representation of the high latitude ionosphere in 
Near-Real-Time (NRT). A-CHAIM uses low-latency observations of slant Total Electron Content (sTEC) from 
ground-based Global Navigation Satellite System (GNSS) receivers, ionosondes, and vertical TEC from the 
JASON-3 altimeter satellite to produce an updated electron density model above 45° geomagnetic latitude. 
A-CHAIM is the first operational use of a particle filter data assimilation for space environment modeling, to 
account for the nonlinear nature of sTEC observations. The large number (>10 4) of simultaneous observations 
creates significant problems with particle weight degeneracy, which is addressed by combining measurements 
to form new composite observables. The performance of A-CHAIM is assessed by comparing the model 
outputs to unassimilated ionosonde observations, as well as to in-situ electron density observations from the 
SWARM and DMSP satellites. During moderately disturbed conditions from 21 September 2021 through 29 
September 2021, A-CHAIM demonstrates a 40%–50% reduction in error relative to the background model in 
the F2-layer critical frequency (foF2) at midlatitude and auroral reference stations, and little change at higher 
latitudes. The height of the F2-layer (hmF2) shows a small 5%–15% improvement at all latitudes. In the topside, 
A-CHAIM demonstrates a 15%–20% reduction in error for the Swarm satellites, and a 23%–28% reduction in 
error for the DMSP satellites. The reduction in error is distributed evenly over the assimilation region, including 
in data-sparse regions.

Plain Language Summary  While we often think of space as a perfect vacuum, the region of 
space near Earth is filled with plasma, known as the ionosphere. This plasma can have significant effects on 
satellites and radio communications, and so it is important to be able to detect changes in the ionosphere. The 
Assimilative Canadian High Arctic Ionospheric Model (A-CHAIM) is a new system that has been developed 
to help improve our understanding of space weather in the northern hemisphere. It combines data from several 
different kinds of instrument to produce a forecast to predict the local space environment for the next 2 hours. 
One of the most important data sources used in A-CHAIM is Global Positioning System (GPS) stations. 
Changes to the ionosphere disrupt GPS service, but we can use these disruptions to learn how the plasma is 
moving. These observations require special processing to be useful, and so new techniques had to be developed 
for A-CHAIM. We compare the predictions made by A-CHAIM to measurements of the space plasma from 
satellites, and specialized instruments that use radio signals to measure the ionosphere from the ground. This 
allows us to show that A-CHAIM is able to produce an improved space weather forecast.
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Conventional physics-based models have generally struggled to perform independently at sufficient accuracies 
in their specification of electron density for operational applications, when compared to empirical models (Shim 
et al., 2018). This is due in part to limited spatial resolution of prescribed electric fields and particle precipi-
tation (Cosgrove & Codrescu, 2009) and the general quality of model driver specification (Fernandez-Gomez 
et al., 2019). Even at mid and low latitudes these challenges, and the computational requirements of physics-based 
models, have often led to operational users having to rely on empirical ionospheric models, such as the Interna-
tional Reference Ionosphere (IRI) (Cervera et al., 2018; Cervera & Harris, 2014); and NeQuick (Montenbruck & 
González Rodríguez, 2019), which have been demonstrated to generally outperform most other available models 
(Shim et al., 2011, 2018). At high latitudes, however, the IRI insufficiently represents climatological behavior 
and nearly completely lacks specification of ionospheric storm-time variability (Bjoland et al., 2016; Themens 
& Jayachandran, 2016; Themens et al., 2014). This was highlighted in Themens et al. (2014) which showed that 
the IRI can exhibit errors in peak ionospheric critical frequency (foF2) in excess of 70% at times; furthermore, in 
Themens et al. (2020) the IRI was demonstrated to represent less than 5% of the amplitude and between 0.5% and 
9% of the variance of ionospheric variability on intermediate (1-to-30 days) timescales.

These limitations inspired the development of the Empirical Canadian High Arctic Ionospheric Model 
(E-CHAIM), which was designed explicitly to better represent the climatological ionosphere at high latitudes 
(Themens et al., 2017; Themens, Jayachandran, & McCaffrey, 2019; Themens, Jayachandran, & Varney, 2018). 
The model generally exhibits strong performance in the polar cap, auroral zone, and Russian sector (Maltseva & 
Nikitenko, 2021; Themens, Jayachandran, McCaffrey, Reid, & Varney, 2019; Themens et al., 2021); however, it 
struggles at sub-auroral latitudes in the North American sector (Themens et al., 2021) and, despite doing better 
than the IRI at high latitudes, it is still only capable of representing up to 50% of the amplitude and 4%–25% of 
the variance of ionospheric variability on intermediate timescales (Themens et al., 2020). This ultimately neces-
sitates the use of data assimilation to improve further upon E-CHAIM's representation over North America and to 
capture smaller spatial and temporal scales. The focus of this work is to develop a data assimilation technique that 
can be used as a near-real-time operational system to produce a higher fidelity 4D electron density model of  the 
high latitude ionosphere, the Assimilative Canadian High Arctic Ionospheric Model (A-CHAIM).

There are many data assimilation techniques used in ionospheric research, and by the broader geophysical 
community, each with their own advantages and disadvantages (Angling et  al.,  2009; Bust & Immel,  2020; 
Chartier et al., 2016; Elvidge, Sean & Angling, Matthew J., 2019; Lee et al., 2012; Nickisch et al., 2016; Prol 
et al., 2021; Scherliess et al., 2004; Schunk et al., 2016; Spencer & Mitchell, 2003). Any choice of assimilation 
technique for A-CHAIM must be able to operate in near-real-time on reasonable hardware. This requirement to 
run in near-real-time places sharp constraints on what level of model complexity we are able to use. Running 
an ensemble of physics-based models, such as a General Circulation Model (GCM), would require significant 
computing resources. Existing physics-based assimilations at high latitudes have not shown strong improvements 
over climatology (Shim et al., 2011, 2018), and so it is difficult to justify using such a computationally expensive 
model if one is interested purely in electron density. Of course, physics-based data assimilation does have its 
advantages, as it can be used to infer information about other elements of the state space, such as thermospheric 
winds and densities (Chartier et al., 2016; Elvidge, Sean & Angling, Matthew J., 2019; Lee et al., 2012).

There exist a dozen or more different data assimilation models of the ionosphere that mainly use GNSS slant 
TEC measurements. Unfortunately, the path-integrated nature of these measurements heavily restricts the 
constraint afforded by them, particularly in the vertical distribution of electron density, and instrumental biases 
pose a substantial challenge, particularly at high latitudes (Coster et al., 2013; Nesterov & Kunitsyn, 2011; Prol 
et al., 2021; Themens et al., 2015).

The reconstruction of a 2D or 3D density using line integrals (tomography) is a common nonlinear inverse 
problem across many fields in medicine and geophysics. Tomographic techniques with radiofrequency beacon 
satellites for ionospheric studies have been practiced for decades (Prol et al., 2021). However, tomography works 
best when you have dense, evenly spaced networks of receivers (Chartier et al., 2014), which are not available 
in the high latitude region. Successful use of tomographic techniques usually requires careful conditioning and 
regularization, or fitting the solution to horizontal and vertical basis functions to reduce the dimensionality of the 
problem (Bust et al., 2004; Spencer & Mitchell, 2003).

There has been considerable success in using GNSS measurements to produce maps of vertical TEC (vTEC) 
as an operational product (Hernández-Pajares et al., 2009; Wielgosz et al., 2021). These products convert the 
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fundamentally nonlinear sTEC measurements into vTEC through projection functions, to bypass the limitations 
in the reconstruction of the vertical structure of electron density from GNSS measurements. While these products 
do have exceptional value for many user segments, they do not produce a 3D electron density model and they 
have limitations in their performance based on the projection required in their construction (Smith et al., 2008). 
Furthermore, these vTEC maps only use a single data type (GNSS measurements) in their reconstruction and are 
thereby unable to take advantage of complementary measurements.

To meet the computational limitations placed on a near-real-time system, we will here instead pursue the devel-
opment of an empirical model-based data assimilation. A-CHAIM will be constructed as a series of perturbations 
on E-CHAIM. This sort of scheme has been used in an operational assimilation system before with the IRI Real-
Time Assimilative Mapping (IRTAM), in which the diurnal and spatial profile parameters that govern the behav-
ior of the IRI are adjusted using autoscaled ionosonde data (Galkin et al., 2012). IRTAM is unique in its approach 
of updating the coefficients of the background model, rather than using a conventional grid or voxel representa-
tion of its state space. This approach places some limitations on how the IRTAM can operate. The IRI basis set 
for its ionospheric peak parameters is made up of Fourier components in modified dip latitude, local time, and 
longitude (Jones & Gallet, 1962). Because local time is part of the horizontal basis set of the model, IRTAM 
requires a 24-hr time history of geographically-fixed data to be assimilated and cannot mix data types (Galkin 
et al., 2012). This is problematic, as the distribution of ionosondes is severely limited at high latitudes, and this 
approach precludes using more widely distributed GNSS data. Pignalberi et al. (2021) show that while IRTAM 
improves the representation of foF2 in the regions covered by data, it degrades performance in regions away from 
the ionosondes. Its reliance on ionosonde data also results in limited performance in hmF2, not just in regions 
away from data, but also in their vicinity. As such the IRTAM approach, while having desirable elements in terms 
of its computational efficiency and straightforward integration into the IRI, is not suitable for our application.

A-CHAIM uses a particle filter with 1,000 particles to assimilate ionospheric observations in Near-Real-Time 
(NRT). NRT operation naturally restricts which data sources will be available for the assimilation, as outlined in 
Section 2. These observations are used to produce an updated 3D representation of ionospheric electron density 
above 45° magnetic latitude. The assimilation runs hourly, producing outputs with a 5-min time resolution that 
begin 3 hr before real time. A-CHAIM also produces a simple persistence-based forecast that runs 2 hr ahead 
of real time. To meet the computational constraints of NRT operation, and to facilitate distribution of the output 
files, A-CHAIM is constructed as a series of spherical cap harmonic perturbations on E-CHAIM. This highly 
nonlinear state precludes the use of more traditional assimilation techniques, resulting in this first use of a particle 
filter for operational ionospheric modeling as described in Section 3. To assess the reliability of A-CHAIM, and 
of this novel application of particle filtering, the performance of the assimilation both in near-real-time and as a 
forecast is presented in Section 4.

2.  Near-Real-Time Data
A-CHAIM must be able to take advantage of as many data sources and instrument types as possible. Any instru-
ments that make their data available with a delay greater than a few hours will not provide much use in this 
context, as the ionosphere often responds to external drivers on timescales on the order of minutes, with little 
information retained on timescales greater than an hour (Chartier et al., 2016). The limited availability of NRT 
ionospheric observations is the most important consideration in the design of A-CHAIM.

2.1.  Ground-Based GNSS Data

Ground-based Global Navigation Satellite System (GNSS) receivers are by far the most numerous sources of 
ionospheric data, with several orders of magnitude more GNSS stations providing publicly-available data than 
any other class of instrument. GNSS receivers are able to determine the path integrated electron density of the 
ionosphere between the satellite and receiver (sTEC), usually expressed in TEC Units 1  ×  10 16m −3 (TECu). 
Currently, A-CHAIM only uses data from the Global Positioning System (GPS) constellation. With each receiver 
able to observe 6–12 GPS satellites at a given time, a single receiver can cover a significant spatial area. With 
their high availability, low latency, and wide spatial coverage, GNSS TEC observations are an ideal inclusion in 
an NRT ionospheric data assimilation.

To extract TEC from GNSS data, one takes advantage of the dispersive propagation of radio waves in the 
UHF band used by GNSS, whereby ionospheric group delays and phase advances are dependent on the signal 
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frequency. Using a geometry-free combination of the phase and code observables recorded on each GNSS carrier 
frequency, whereby the observables from each frequency are simply differenced to remove non-dispersive effects, 
the TEC can (to a first-order approximation) be related to the observables by

sTEC = 1
�

(

� 2
1 �

2
2

� 2
1 − � 2

2

)

(Δ� +� +������ +������)� (1)

where A = 40.3, fm is the mth frequency, Δϕ is the difference in the signal carrier phases, DCBrcv and DCBsat are 
the receiver and satellite differential code biases caused by instrumental delays, and W is a phase-leveling term 
used to correct an integer ambiguity in the phase-derived TEC using the code observables (Themens et al., 2013). 
In our use case, W is an average of the difference in the geometry-free code and phase observables over each 
signal lock arc, weighted by the sine of the satellite elevation (Carrano & Groves, 2009). To quality control the 
phase leveling process against potentially overlooked cycle slips, multipath, or leveling issues due to insufficient 
lock time, a standard deviation (σ) of the difference in the phase- and code-derived TEC is also recorded for each 
lock arc (Carrano & Groves, 2009). Any arc with σ > 4.5 TECu is discarded from the system.

In A-CHAIM, GNSS data is downloaded in the Receiver Independent Exchange Format (RINEX) format from 
eight different sources, listed in Table  1. The geographic distribution of these GNSS receivers is plotted in 
Figure  1. The downloaded files are then passed to a processing routine that converts the GNSS observables 
to biased TEC. The TEC data are then corrected for the satellite differential code bias DCBsat using the values 
provided by the Institute of Geodesy and Geophysics (IGG) of the Chinese Academy of Sciences (CAS) (Wang 
et al., 2016). The data is not corrected for the receiver bias DCBrcv in this preprocessing stage, rather the DCBrcv 
are derived as a part of the assimilation. This is necessary in order to be able to use data from GNSS stations 
which do not have known DCBrcv, which is the overwhelming majority of stations. Solving for the DCBrcv does 
require additional complexity, however a full analysis of this component of the assimilation is outside the scope 
of this work (Table 2).

2.2.  Ionosondes

Ionosondes are vertically-sounding HF radars capable of providing the 
vertical electron density profile up to the height (hmF2) of the peak density 
(NmF2) of the ionosphere. These instruments have been used for ionospheric 
specification since the discovery of the ionosphere and formed an important 
component of the data set used to build E-CHAIM (Themens, Jayachandran, 
& Varney, 2018; Themens, Jayachandran, McCaffrey, Reid, & Varney, 2019; 
Themens, Jayachandran, & McCaffrey, 2019; Themens et al., 2017).

First the NOAA National Centers for Environmental Information (NCEI) is 
polled for available data, before the Global Ionospheric Radio Observatory 
(GIRO) (Reinisch & Galkin, 2011) is subsequently polled for any stations 
that were not available from the NOAA repository. The redundancy provided 
by the NOAA repository is a substantial benefit in limiting the effects of 

Table 1 
Data Sources Providing Ground-Based GNSS Measurements in Near-Real-Time Used by A-CHAIM

Network Source Source link

IGS, EUREF, GREF German Federal Agency for Cartography and Geodesy (BKG) igs.bkg.bund.de

CHAIN Canadian High Arctic Ionospheric Network (CHAIN) chain.physics.unb.ca

CDDIS Crustal Dynamics Data Information System (CDDIS) cddis.gsfc.nasa.gov

NOAA NOAA National Geodetic Survey (NGS) geodesy.noaa.gov

GARNER California Spatial Reference Center (CSRC) garner.ucsd.edu

CACS Natural Resources Canada (NRCan) rtopsdata1.geod.nrcan.gc.ca

QGN Ministère de l’Énergie et des Ressources naturelles (MERN) ftp.mrn.gouv.qc.ca

Table 2 
Dependence of Modeled Observation Error R With Magnetic Latitude, as 
Used in A-CHAIM

Ionosonde Observation error (R)

Characteristic (R0) MLAT ≤ 45° MLAT 60° MLAT ≥ 75°

foF2 0.15 MHz 0.30 MHz 0.45 MHz

foF1 0.25 MHz 0.50 MHz 0.75 MHz

hmF2 15 km 30 km 45 km

B0/B1→HBot 0.4 HBot 0.4 HBot 0.4 HBot

Note. Errors are smallest at the lower boundary where R = R0, increasing to 
a maximum of R = 3R0 above 75° MLAT. HBot measurements derived from 
B0/B1 do not vary with magnetic latitude.
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service interruptions and reduces the network burden placed on any one data source. The locations of the iono-
sondes are noted in Figure 1. Ionograms aggregated by GIRO are processed first at the ionosonde using the local 
version of the ARTIST automatic ionogram scaling software (Huang & Reinisch, 2001) before both the ionogram 
data and processed profiles are sent to the GIRO repository. A minority of stations, such as those operated by 
Roshydromet, are processed using the Autoscala software with only processed profile information being sent to 
the GIRO database.

A-CHAIM uses five of the ionosonde-derived characteristics: foF2, hmF2, foF1, B0, and B1. Each characteristic 
is treated as being independent, even when they are derived from the same ionogram. B0 and B1 are parameters 
that control the bottomside profile in the IRI (Altadill et al., 2009), and are converted to the E-CHAIM equiva-
lent HBot (Section 3.1) using a nonlinear fit to the equivalent IRI shape. Autoscaled ionosonde measurements do 
not have Gaussian measurement errors, and the true error varies widely with instrument latitude, geomagnetic 
and solar activity, interference environment, instrument design and configuration, as well as the version and 
configuration of the autoscaling software. Lacking a universal method to determine the errors, A-CHAIM uses 
the following simple heuristic to generate Gaussian errors. All characteristics except HBot have observation errors 
that increase with magnetic latitude, to reflect both the greater likelihood of scaling errors, and the variability 
within the assimilation window. This error R is modeled as a minimum error R0 scaled by a simple transition 
function (2).

𝑅𝑅 = 𝑅𝑅0(2 + tanh((𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 60𝑜𝑜)∕5))� (2)

At the lower boundary R = R0, increasing with magnetic latitude through the auroral region to peak at R = 3R0 in 
the polar cap. In addition, a filter on hmF2 is applied to the data, where all characteristics from a sounding with 

Figure 1.  Geographic distribution of assimilated data sources used in A-CHAIM from September 21st though 29 September 2021. Also included are the four 
unassimilated ionosondes indicated in blue. The JASON figure shows all data points that were captured with a low enough latency to be included through the entire 
study period. The SO166 ionosonde was excluded during the test period.
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hmF2 < 175 km or hmF2 > 450 km are rejected. This simple filter catches highly biased ionogram scaling errors 
typically associated with scaler early stopping; where the scaling routine truncates a trace prematurely, or with the 
scaler missing the F2 trace and misinterpreting the F1 layer as the F2 layer (Themens et al., 2022).

2.3.  Altimeter

A-CHAIM also makes use of space-borne altimeter data from the JASON-3 satellite mission, provided by the 
NOAA National Oceanographic Data Center. As a by-product of the altimeter solution for sea-surface height, 
vertical ionospheric TEC above the ocean can be inferred (Li et  al.,  2018). This is done following the same 
concept as GNSS TEC products, where JASON's Ku band antenna excess phase can be directly related to the 
TEC along the ray path as

���� =
dR� 2

40.3
� (3)

where dR is the excess ground range and f = 13.575 GHz is the signal frequency. The resulting TEC is then 
filtered to remove outliers and ground/ice scatter using the provided quality flags. While the overall precision of 
the JASON TEC is 4 TECU, it is largely unbiased and provides a crucial constraint over the oceans, where no 
other data set has adequate coverage.

2.4.  Latency

The A-CHAIM system has been gathering data and running in real time since 2020. During this time, it has been 
updated several times. To assess the performance of the system, we will focus on the period from September 
21st through 29 September 2021. This time period includes a moderate Kp 4 event, with a M2.8 solar flare on 
September 23rd, providing an opportunity to study how the assimilation behaves during disturbed conditions. 
The results in this study were generated with the latest version of A-CHAIM in an offline run. To ensure that 
there were minimal difference between the offline run and the real-time performance, the results presented here 
were generated using the actual data collected during each hour by the online system, as well as the outputs of the 
background model E-CHAIM as they were produced in real time.

E-CHAIM uses several geophysical indices to produce a storm model (Themens et al., 2017). However, when 
operating in near-real-time, or producing a forecast, these indices may not be available, and therefore the storm 
model cannot operate as normal. The performance of the background model E-CHAIM is therefore dependent 
on the time when the model was run. In general, the storm model will turn off at an unpredictable time mid-run, 
which is dependent on the specific timings of the index providers. This race condition behavior is hard to model 
outside of a real-time setting, and is the reason why we use the outputs of E-CHAIM that were generated in real 
time.

At each hour, A-CHAIM takes the data file produced from the processing pipeline and begins a run. This run 
nominally starts 3 hours in the past, using the output of the previous hour's run to provide the initial conditions. 
A-CHAIM proceeds forward through the present time, and continues until it reaches 2 hr into the future. This 
provides a low-skill persistence forecast. Figure 2 shows the number of observations from each instrument type 
available during each 5  min assimilation window. It is clear that the amount of available data varies greatly 
depending on how close the assimilation time is to the present time.

Through successive runs of A-CHAIM, the same assimilation window is traversed 5 times, twice as a forecast, 
and thrice with actual data. Each output A-CHAIM generates for that assimilation window was produced with 
very different amounts of data, and so it is important to assess the performance of each of these five versions of 
the same time window. We can group these separated by the number of hours latency from the time when the data 
was collated and passed to the assimilation routine. These are labeled t−02h, t−01h, t−00h, t+00h, and t+01h, 
indicating the number of hours from the current time, rounding toward zero. Each of these sets of a given latency 
forms a continuous time series of outputs, and each latency contains every assimilation window exactly once. We 
can therefore compare the performance of each of these latencies to each other.

Throughout the study period, the number of instruments of each type were recorded for each 5-min assimilation 
window. The results are summarized in Figure 3 for each instrument type, separated by latency. The form of these 
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plots is markedly different for each data source. For GNSS receivers, as we pass the threshold of each hour, we 
lose a significant fraction of the number of stations reporting data. At t−02h, we have an average of 537 stations 
reporting, at t−01h this drops to 121, and at t−00h only 15 stations are reporting. As most NRT GNSS data is 
distributed in the form of hourly RINEX files, no data is available until the hour has finished. As a result, the 
number of GNSS observations does not change significantly during any given hour. Accordingly, there would be 
little benefit to running A-CHAIM more frequently than hourly. While very low latency GNSS data is also avail-
able using Network Transport of RTCM via Internet Protocol (NTRIP), few networks fully implement NTRIP 
at the present time and particularly few with coverage at remote high latitudes. At the present time NTRIP is not 
used by A-CHAIM, but is planned for future implementation.

Figure 2.  Histogram showing the mean number of observations available per instrument type, relative to the current time of the assimilation. Each hour a data file is 
created containing all observations from the past 3 hr. A new run of A-CHAIM is initialized from the previous hour's run, and then assimilates all of the data in this file. 
As latency has a large effect on the number of observations available, A-CHAIM outputs are labeled based on the number of hours removed from the time of data file.
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Ionosondes, which are distributed as individual files for each sounding, do not show this sharp hourly transition. 
The number of ionosondes reporting data is nearly identical for both t−02h and t−01h. There is less data available 
at only t−00h, but the average number of stations available is still half that at t−02h. After a single hour, nearly all 
ionosonde data that will be available has already been published. There is a distinctive double-sinusoidal pattern 
to the ionosonde latency data, which is an aliasing effect of the sounding schedules of the individual ionosondes.

The intermittent nature of JASON data is clearly visible in Figure 2. JASON data is distributed in files that cover 
discrete lengths of time, and so like GNSS data the data from the beginning of a file period is only available once 
the file has ended. Accordingly, JASON data is only useable when the high-latitude measurements happen to fall 
near the end of the observation file. When data is available, JASON provides hundreds of measurements over a 
broad area, and so provides a useful NRT data source despite its intermittent nature.

3.  Assimilation Method
The objective of data assimilation is generally to produce a statistical measure of the behavior of a system, given 
a certain set of observations and model constraints. The relatively small state space used in A-CHAIM comes at 
the cost of unavoidable nonlinearity, which necessitates the use of a particle filtering technique. As particle filters 
are still relatively unknown in the ionospheric physics community, a basic outline is given in Section 3.2. A more 
complete treatment of particle filters is given in the very accessible Doucet and Johansen (2009). Particle filters 
are part of a broad class of statistical models known as Hidden State Markov models. This class includes many 
other techniques, like the ubiquitous Kalman filters that are often used in data assimilation (Doucet et al., 2000).

3.1.  Parameterization of the Ionospheric Electron Density

E-CHAIM is parameterized as a set of ionospheric profile parameters, used to reconstruct the vertical electron 
density profile via a semi-Epstein layer formulation. These parameters are specified as coefficients which depend 
on the date, time, and geophysical indices, expanded horizontally in terms of spherical cap harmonics in Altitude 
Adjusted Corrected Geomagnetic Coordinates (AACGM) coordinates (Shepherd, 2014). A full description of the 
relevant components of the E-CHAIM parameterization can also be found in Themens et al. (2017), Themens, 
Jayachandran, and Varney (2018), and Themens, Jayachandran, and McCaffrey (2019). In A-CHAIM we use the 
same vertical parameterization as the E-CHAIM model. The shape of the profile is controlled by eight parame-
ters, NmF2, hmF2, hmF1, hmE, HBot, HTop, HF1, and HE. Electron density for a height h is given by:

Figure 3.  Number of unique instruments reporting data at each latency during the study period, 21 September through 29 September 2021.
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𝑁𝑁𝑒𝑒(ℎ) ∶= 𝑁𝑁𝑁𝑁𝑁𝑁2 ⋅ sech2
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� (5)

𝐻𝐻𝐵𝐵 = 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 +𝐻𝐻𝐹𝐹1 ⋅ sech
2

(

ℎ − ℎ𝑚𝑚𝑚𝑚1

(ℎ𝑚𝑚𝑚𝑚2 − ℎ𝑚𝑚𝑚𝑚1)∕2.5

)

+𝐻𝐻𝐸𝐸 ⋅ sech2
(

ℎ − ℎ𝑚𝑚𝑚𝑚

25

)

� (6)

g = 0.18 and r = 20 are constants (Themens, Jayachandran, Bilitza, et al., 2018).

In E-CHAIM, auroral electron precipitation is represented by a semi-physical precipitation scheme outlined in 
Watson et  al.  (2021). While this module performs well, it can be computationally intensive to calculate for 
ensemble assimilation methods; as such, in A-CHAIM an additional layer is used to represent the electron density 
enhancement from precipitating electrons. This is modeled as a Chapman function with height-varying scale 
height, which is described by an additional four parameters: NmP, hmP, H1P, and H2P.

��(ℎ) = NmP ⋅ exp(1 − � − exp(−�))� (7)

𝑧𝑧 =
ℎ − ℎ𝑚𝑚𝑚𝑚

𝐻𝐻1𝑃𝑃 −𝐻𝐻2𝑃𝑃 ⋅

exp(−(ℎ−ℎ𝑚𝑚𝑚𝑚 )∕15)

1+exp(−(ℎ−ℎ𝑚𝑚𝑚𝑚 )∕15)

� (8)

The parameters for the auroral layer are produced by fitting the Chapman layer to a 3D gridded output of the 
E-CHAIM precipitation module. Without this layer, the vertical parameterization would not be able to describe 
auroral electron densities, which can be a significant contributor to observed TEC. This would result in decreased 
performance during strong auroral enhancements, as the increase in TEC could be falsely attributed to some other 
feature, such as an F-region enhancement.

The 12 parameters above provide a specification of the vertical electron density profile above a single geographic 
point, at a single time. To describe the geographic variation in these vertical profile parameters, as shown in 
Figure 4, the output of the E-CHAIM model is fitted with a spherical cap harmonic expansion in centered dipole 
(CD) coordinates. This basis is defined in a cone with half-angle θc = 51° centered on the North geomagnetic 
pole. The CD colatitude is rescaled as in Equation 9 so that the south pole of the regular spherical harmonic 
basis is coincident with the cap. For any profile parameter f, with rescaled magnetic dipole colatitude θ and CD 
geomagnetic longitude ϕ:

� = 180�
��

(90� − mlat��)� (9)

� (�, �) =
∞
∑

�=0

�
∑

�=0

��� =
∞
∑

�=0

�
∑

�=0

���(cos �)(��� cos�� + ��� sin��)� (10)

The coefficients of this expansion, Clm and Slm, specify the 2D geographic variation of the corresponding profile 
parameter f. Together all of these maps of profile parameters specify a complete 3D ionosphere state at a fixed 
time. This parameterization has several notable advantages. The shape of the electron density profile is constrained 
to be physically realistic, unlike parameterizations that use discrete points at fixed altitudes. The electron density 
is also guaranteed to be spatially smooth and differentiable for raytracing applications. It also allows a complete 
description of the 3D electron density with relatively few parameters. Using 12 orders of spherical cap harmonics 
for each vertical profile parameter, the entire state can be specified with only 1,352 parameters, with an additional 
676 for the auroral precipitation.

The size of the state can be further reduced by removing certain parameters from the assimilation. The contribu-
tions to electron density from the E and F1 layers outside of the auroral region are both relatively well captured 
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by empirical models, being driven primarily by solar activity. Additionally, variations in these layers do not 
contribute significantly to TEC and so most of the available data is not sensitive to these parameters. Rather than 
updating the E, F1, or auroral layers in the assimilation, we can keep the corresponding parameters fixed to their 
empirical values. By excluding hmF1, hmE, HF1, HE, NmP, hmP, H1P, and H2P, and preserving NmF2, hmF2, 
HBot, HTop we can further reduce the number of parameters to estimate to only 676.

Each set of coefficients describes the configuration of the ionosphere for a single fixed time. To capture the 
time evolution of the system, it is necessary to specify a set of these coefficients for each 5-min assimilation 
window. The amount of data available during any one assimilation window is usually insufficient to produce a 
well-determined solution for the optimal set of coefficients, and therefore unlikely to produce a good estimate 
of the ionospheric state. To be able to produce a physically realistic model, information from one time period 
must be passed forward to subsequent times. The most probable history of model coefficients, and therefore 
ionospheric states, must be determined.

3.2.  Particle Filters

Any given parametrization of our system defines vector space 𝐴𝐴 𝕏𝕏 , the set of all possible configurations of system. 
A specific configuration of the system is described by a state vector 𝐴𝐴 𝐱𝐱 ∈ 𝕏𝕏 . For the purposes of this model we will 
treat x as describing an instantaneous and static configuration of the system. The system is assumed to maintain 
this fixed state xk for a discrete period of time δt at a time tk. During each time interval tk we record some set of 
observations yk. The time evolution of the system can then be modeled as a succession of states x1:n at discrete 
times t1:n. Naturally, the true configuration of a system like the ionosphere is not directly observable. The trajec-
tory in state space x1:n is hidden, and only indirectly measured through the observations y1:n.

�1∶� = {�1, �2, . . . , ��−1, ��}

�1∶� = {�1, �2, . . . , ��−1, ��}

�1∶� = {�1, �2, . . . , ��−1, ��}

� (11)

Figure 4.  Example of the geographic variation of the four active ionospheric profile parameters at 22:00 UTC, 22 September 2021. All other parameters are not 
updated by the assimilation, and so are identical for both models.
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The observations yk are subject to error and so are a random variable sampled with a likelihood p(yk|xk). To restate 
the problem of data assimilation in these terms, we seek to make some inference about the hidden trajectory of 
our system in state space x1:n given some set of imperfect observations y1:n. Using Bayes' theorem, this requires 
evaluating the following expressions.

𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) =
𝑝𝑝(𝐱𝐱1∶𝑛𝑛)𝑝𝑝(𝐲𝐲1∶𝑛𝑛|𝐱𝐱1∶𝑛𝑛)

𝑝𝑝(𝐲𝐲1∶𝑛𝑛)

𝑝𝑝(𝐲𝐲1∶𝑛𝑛) = ∫ 𝑝𝑝(𝐱𝐱1∶𝑛𝑛)𝑝𝑝(𝐲𝐲1∶𝑛𝑛|𝐱𝐱1∶𝑛𝑛)𝑑𝑑𝐱𝐱1∶𝑛𝑛

� (12)

The probability of moving from a state xn−1 to xn is given by the transition probability, or forecast model f(xn|xn−1).

As we do not have a physics-based model to perform the forecasting step of the assimilation, we must use some 
other method to propagate the state forward in time. If we let 𝐴𝐴 𝐮𝐮𝑛𝑛 ∈ 𝕏𝕏 be the state vector corresponding to the 
background model at time tn, then we can simply propagate the state forward by following the movement in the 
background model from un−1 to un. While this is clearly unable to capture the dynamic evolution of the iono-
sphere, it will at least allow the assimilation to follow the diurnal variations that are well described by clima-
tology. We would also like the state to gradually converge with the background model over time, which can be 
controlled with a multiplicative factor λ ∈ [0, 1]. In A-CHAIM λ = 0.95 is used for all parameters, which causes 
the distance between the particles and the background to approximately halve every hour. The non-stochastic 
components of the time evolution of our model define a forecast operator Fn(xn−1) Equation 13.

𝐅𝐅𝑛𝑛(𝐱𝐱𝑛𝑛−1) = 𝜆𝜆(𝐱𝐱𝑛𝑛−1 + 𝐮𝐮𝑛𝑛 − 𝐮𝐮𝑛𝑛−1) + (1 − 𝜆𝜆)𝐮𝐮𝑛𝑛� (13)

To compensate for our incomplete knowledge of the processes involved, there is some uncertainty in the time 
evolution of the ionospheric system. This stochastic behavior can be modeled by assuming that the ionospheric 
state will deviate from Equation 13 by some random deviation drawn from a multivariate Gaussian distribution 

𝐴𝐴  (0,𝐐𝐐𝑛𝑛) . Qn is a positive definite matrix, analogous to the noise covariance matrix in a Kalman filter. The 
precise form of Qn is discussed in detail in 3.5 Combining this noise process with our forecast operator Equa-
tion 13 gives us the transition probability, f(xn|xn−1), the probability of moving from a state xn−1 to xn.

𝑓𝑓 (𝐱𝐱𝑛𝑛|𝐱𝐱𝑛𝑛−1) = exp
[

−
1

2
(𝐱𝐱𝑛𝑛 − 𝐅𝐅𝑛𝑛(𝐱𝐱𝑛𝑛−1)

𝑇𝑇
𝐐𝐐

−1
𝑛𝑛 (𝐱𝐱𝑛𝑛 − 𝐅𝐅𝑛𝑛(𝐱𝐱𝑛𝑛−1)

]

� (14)

This forecast model also defines the a priori probability density of the state space p(x1:n):

𝑝𝑝(𝐱𝐱1∶𝑛𝑛) =

𝑛𝑛
∏

𝑘𝑘=1

𝑓𝑓 (𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1)� (15)

Particle filters are a Monte Carlo technique that use an ensemble of samples 𝐴𝐴 𝐗𝐗1∶𝑛𝑛 ∈ 𝕏𝕏 as an empirical approxi-
mation 𝐴𝐴 𝐴𝐴𝐴(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) of a target density p(x1:n|y1:n). Using the Dirac delta distribution δ:

𝐗𝐗1∶𝑛𝑛 ∼ 𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛)� (16)

𝑝̂𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) =

𝑁𝑁
∑

𝑖𝑖=1

𝛿𝛿
𝐗𝐗
𝑖𝑖

1∶𝑛𝑛
(𝐱𝐱1∶𝑛𝑛)� (17)

As p(x1:n|y1:n) is the unknown density which we wish to approximate, it is not practical to sample from it directly. 
Instead, we sample from a more tractable importance density q(x1:n) that has the same support. The exact form 
of q(x1:n) can vary depending on the objective. Generally the best performance is maintained by keeping the 
importance density as close to q(xn|y1:n, x1:n−1) = p(x1:n|y1:n, x1:n−1) as is practical (Doucet & Johansen, 2009). We 
are able produce an ensemble X1:n ∼ q(x1:n), hereafter called particles, which allow us to reconstruct the original 
density p(x1:n|y1:n) by assigning each particle a weight. Each particle 𝐴𝐴 𝐗𝐗

𝑖𝑖

1∶𝑛𝑛
 has an unnormalized weight 𝐴𝐴 𝐴𝐴𝑛𝑛

(

𝐗𝐗
𝑖𝑖

1∶𝑛𝑛

)

 
at time tn given by:

𝑤𝑤1(𝐱𝐱1) =
𝑝𝑝(𝐱𝐱1)𝑝𝑝(𝐲𝐲1|𝐱𝐱1)

𝑞𝑞(𝐱𝐱1)
, 𝑤𝑤𝑛𝑛(𝐱𝐱1∶𝑛𝑛) = 𝑤𝑤1(𝐱𝐱1)

𝑛𝑛
∏

𝑘𝑘=2

𝑓𝑓 (𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1)𝑝𝑝(𝐲𝐲𝑘𝑘|𝐱𝐱𝑘𝑘)

𝑞𝑞𝑘𝑘(𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1)
� (18)
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when we normalize the weights wn(x1:n) our sum in Equation 17 takes the following form:

𝐗𝐗1∶𝑛𝑛 ∼ 𝑞𝑞(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛)� (19)

𝑊𝑊
𝑖𝑖

𝑛𝑛 =
𝑤𝑤𝑛𝑛

(

𝐗𝐗
𝑖𝑖

1∶𝑛𝑛

)

∑𝑁𝑁

𝑗𝑗=1 𝑤𝑤𝑛𝑛

(

𝐗𝐗
𝑗𝑗

1∶𝑛𝑛

)� (20)

𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) ≈ 𝑝̂𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) =

𝑁𝑁
∑

𝑖𝑖=1

𝑊𝑊
𝑖𝑖

𝑛𝑛 𝛿𝛿𝐗𝐗𝑖𝑖

1∶𝑛𝑛
(𝐱𝐱1∶𝑛𝑛)� (21)

By definition, the particles 𝐴𝐴 𝐗𝐗
𝑖𝑖

1∶𝑛𝑛
 are sampled from the importance density q(x). Using the forecast model f(xn|xn−1), 

and the observations y1:n, we are able to generate weights 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑛𝑛 for each particle. These weights, once normalized, 
allow us to estimate the probability density we are interested in, p(x1:n|y1:n) using Equation 21. We can also take 
the expectation value of a function ϕ(x1:n), allowing the calculation of any statistical moment of interest.

⟨𝜙𝜙(𝐱𝐱1∶𝑛𝑛)⟩ = ∫
𝜙𝜙(𝐱𝐱1∶𝑛𝑛)𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛)𝐝𝐝𝐝𝐝1∶𝑛𝑛 ≈

1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑊𝑊
𝑖𝑖

𝑛𝑛𝜙𝜙

(

𝛿𝛿
𝐗𝐗
𝑖𝑖

1∶𝑛𝑛

)

� (22)

Critically for A-CHAIM, Equation  22 allows the calculation of the expectation value of electron density, 
〈Ne(x1:n)〉, using Equation 4.

3.3.  Weight Degeneracy and Resampling

The weights 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑛𝑛 provide a measure of how probable a particle 𝐴𝐴 𝐗𝐗
𝑖𝑖

1∶𝑛𝑛
 is, given the observations y1:n. Higher weight 

particles are more likely, and so contribute more to the weighted sum in Equation 22. Conversely, lower weight 
particles contribute less. As n increases, the variance of the estimates produced by the set of particles X1:n tends 
to increase dramatically. The unnormalized weight of a particle 𝐴𝐴 𝐴𝐴𝑛𝑛

(

𝐗𝐗
𝑖𝑖

1∶𝑛𝑛

)

∝
∏𝑛𝑛

𝑘𝑘=1 𝑝𝑝
(

𝐲𝐲𝑘𝑘|𝐗𝐗
𝑖𝑖

𝑘𝑘

)

 , so even small differ-
ences between particles become magnified over time. The near-inevitable result is weight degeneracy, where only 
a single particle will have a non-zero weight, and all other particles having an identical and permanent weight of 
zero (Bengtsson et al., 2008). In order to prevent this issue, sequential sampling schemes need to re-generate their 
particles through a process known as resampling.

In resampling we use our weighted ensemble of particles 𝐴𝐴 𝐗𝐗
𝑖𝑖

1∶𝑛𝑛
∼ 𝑞𝑞(𝐱𝐱1∶𝑛𝑛) to produce an unweighted ensemble of 

particles 𝐴𝐴 𝐗̃𝐗
𝑖𝑖

1∶𝑛𝑛
∼ 𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) . This is simple to accomplish by taking a random sample from 𝐴𝐴 𝐗𝐗

𝑖𝑖

1∶𝑛𝑛
 with probability 

𝐴𝐴 𝐴𝐴
𝑖𝑖

1∶𝑛𝑛
 . There are several unbiased resampling methods in the particle filter literature, and we have used the simple 

and common method known as systematic resampling (Douc et al., 2005). This produces another Monte Carlo 
approximation to p(x1:n|y1:n)

𝐗̃𝐗
𝑖𝑖

1∶𝑛𝑛
∼ 𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛)� (23)

𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) ≈ 𝑝̃𝑝(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) =

𝑁𝑁
∑

𝑖𝑖=1

1

𝑁𝑁
𝛿𝛿
𝐗̃𝐗
𝑖𝑖

1∶𝑛𝑛
(𝐱𝐱1∶𝑛𝑛)� (24)

This is equivalent to a weighted sum where all of the weights are 𝐴𝐴
1

𝑁𝑁
 . By replacing our original sample 𝐴𝐴 𝐗𝐗

𝑖𝑖

1∶𝑛𝑛
 with 

𝐴𝐴 𝐗̃𝐗
𝑖𝑖

1∶𝑛𝑛
 , and 𝐴𝐴 𝐴𝐴

𝑖𝑖

1∶𝑛𝑛
 with 𝐴𝐴

1

𝑁𝑁
 we have reset our particle weights and prevented weight degeneracy. Resampling will tend 

to remove low-weight particles from 𝐴𝐴 𝐗𝐗
𝑖𝑖

1∶𝑛𝑛
 and replace them with copies of high-weight particles, at the cost of 

some loss of information. It is therefore optimal to use the weighted particles to calculate statistical moments of 
interest from 𝐴𝐴 𝐴𝐴𝐴(𝐱𝐱1∶𝑛𝑛|𝐲𝐲1∶𝑛𝑛) before resampling.

At a fundamental level, particle degeneracy is a result of the ever-increasing dimensionality of the particle trajec-
tories through state space. At each time tn, the number of dimensions occupied by 𝐴𝐴 𝐗𝐗

𝑖𝑖

1∶𝑛𝑛
 increases by the size 

of 𝐴𝐴 𝕏𝕏 (Doucet & Johansen,  2009), while the number of particles remains fixed. While resampling is able to 
alleviate the issues created by increasing dimensionality over time, this becomes a more critical problem in 
inherently high-dimensional particle filters. For large scale geophysical systems, the size of the state space is 
great enough that no realistic number of particles can prevent degeneracy in a basic particle filter (Bengtsson 
et al., 2008). van Leeuwen et al. (2019) provides an in-depth review of more sophisticated particle filtering tech-
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niques implemented across geophysics to avoid this dimensionality issue. Localization is given particular focus, 
as it allows for the separate treatment of small subsets of the state and data spaces. This dramatically reduces 
the dimensionality of the problem. Other data assimilation techniques also use localization, such as the Local 
Ensemble Transform Kalman Filter (LETKF) (Ott et al., 2004). One major drawback of localization for iono-
spheric studies is that GNSS sTEC, the most numerous and widespread electron density measurement, is inher-
ently non-local. As the electron density is integrated along line-of-sight, there is no specific point in space where 
the observation took place. Using non-local observations in a LETKF is still an open problem in data assimilation 
(van Leeuwen, 2019). GNSS sTEC measurements are non-localizable, non-linear, highly correlated, biased, and 
have very low information content on a per-measurement basis. Their utility in assimilation is only due to the 
very large number of observations available. In order to perform adequately given the operational constraints of 
A-CHAIM, a new solution to particle degeneracy had to be developed.

3.4.  Composite Observations

Without access to localization, some other approach must be taken to reduce the dimensionality of the problem. 
To accomplish this, we will combine the real observations into a new, composite observable process, which exists 
in a lower-dimensional observable space. With a few caveats, this composite observable space preserves all of the 
desired properties of the original observations.

For clarity of notation we will consider only a single time tn. Our measurements yn form an m–dimensional vector 
of observables by which we infer the hidden process xn. If there exists some subset of our measurements that are 
independent from any measurement outside of the subset, then it is possible to factor the likelihood p(yn|xn). Let ι 
⊂ {1, 2, …, m} be an index set so that 𝐴𝐴 𝐲𝐲

𝜄𝜄

𝑛𝑛 ⟂ 𝐲𝐲
¬𝜄𝜄
𝑛𝑛  , then 𝐴𝐴 𝐴𝐴(𝐲𝐲𝑛𝑛|𝐱𝐱𝑛𝑛) = 𝑝𝑝(𝐲𝐲𝜄𝜄𝑛𝑛|𝐱𝐱𝑛𝑛)𝑝𝑝(𝐲𝐲

¬𝜄𝜄
𝑛𝑛 |𝐱𝐱𝑛𝑛) . Let 𝐴𝐴 𝐴𝐴

𝜄𝜄

𝑛𝑛(𝐱𝐱𝑛𝑛, 𝐲𝐲
𝜄𝜄

𝑛𝑛) be a function of 
the log likelihood of the observations indexed by ι.

𝑙𝑙
𝜄𝜄

𝑛𝑛 = 𝑙𝑙
𝜄𝜄

𝑛𝑛(𝐱𝐱𝑛𝑛, 𝐲𝐲
𝜄𝜄

𝑛𝑛) = −2log 𝑝𝑝(𝐲𝐲𝜄𝜄𝑛𝑛|𝐱𝐱𝑛𝑛)� (25)

If 𝐴𝐴 𝐴𝐴(𝐲𝐲𝜄𝜄𝑛𝑛|𝐱𝐱𝑛𝑛) can be modeled as a multivariate Gaussian with an observation error covariance 𝐴𝐴 𝐑𝐑
𝜄𝜄

𝑛𝑛 , then 𝐴𝐴 𝐴𝐴(𝑙𝑙𝜄𝜄𝑛𝑛|𝐱𝐱𝑛𝑛) has 
a comparatively simple closed-form solution. Let n(ι) be the number of observations included in the subset. As 
the sum of n(ι) squared random variables, the likelihood of the combined observations 𝐴𝐴 𝐴𝐴(𝑙𝑙𝜄𝜄𝑛𝑛|𝐱𝐱𝑛𝑛) are χ 2 distributed 
with n(ι) degrees of freedom. See Appendix A for a brief derivation.

�(���|��) =
1

2�(�)∕2Γ(�(�)∕2)
(���)�(�)∕2−1exp(−���∕2)� (26)

As 𝐴𝐴 𝐴𝐴
𝜄𝜄

𝑛𝑛 is a function of xn, it is not an observable. It is a statistic that measures how well the residuals of 𝐴𝐴 𝐲𝐲
𝜄𝜄

𝑛𝑛 −𝐇𝐇
𝜄𝜄
(

𝐗𝐗
𝑖𝑖

𝑛𝑛

)

 
fit the expected distribution specified by the error covariance matrix 𝐴𝐴 𝐑𝐑

𝜄𝜄

𝑛𝑛 . Rather than the n(ι)-dimensional 𝐴𝐴 𝐲𝐲
𝜄𝜄

𝑛𝑛 , 𝐴𝐴 𝐴𝐴
𝜄𝜄

𝑛𝑛 
is a scalar.

Let 𝐴𝐴 𝐴𝐴𝑛𝑛 =
{

𝜄𝜄1, 𝜄𝜄2, . . . , 𝜄𝜄𝜇𝜇 | 𝐲𝐲𝑛𝑛 =
⋃

𝜄𝜄∈𝜏𝜏𝑛𝑛
𝐲𝐲
𝜄𝜄

𝑛𝑛

}

 be a set of index sets that form a partition of yn. Any choice of partition τn must 

have 1 ≤ μ ≤ m elements. If we choose each component of the partition 𝐴𝐴 𝐴𝐴𝑛𝑛 =
{

𝜄𝜄1, 𝜄𝜄2, . . . , 𝜄𝜄𝜇𝜇 | 𝐲𝐲
𝜄𝜄

𝑛𝑛 ⟂ 𝐲𝐲
𝜉𝜉

𝑛𝑛 ∀ 𝜄𝜄 ≠ 𝜉𝜉𝜉∈ 𝜏𝜏𝑛𝑛

}

 
so that each 𝐴𝐴 𝐲𝐲

𝜄𝜄

𝑛𝑛 is independent of every other.

𝐥𝐥𝑛𝑛 = {𝑙𝑙𝜄𝜄𝑛𝑛|𝜄𝜄 ∈ 𝜏𝜏𝑛𝑛}� (27)

Using Equation 26 we can find p(ln|xn).

𝑝𝑝(𝐥𝐥𝑛𝑛|𝐱𝐱𝑛𝑛, 𝜏𝜏𝑛𝑛) =
∏

𝜄𝜄∈𝜏𝜏

𝑝𝑝(𝑙𝑙𝜄𝜄𝑛𝑛|𝐱𝐱𝑛𝑛)� (28)

If we replace the target distribution in Equation 12 with Equation 29

𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐥𝐥1∶𝑛𝑛, 𝜏𝜏1∶𝑛𝑛) =
𝑝𝑝(𝐱𝐱1∶𝑛𝑛)𝑝𝑝(𝐥𝐥1∶𝑛𝑛|𝐱𝐱1∶𝑛𝑛, 𝜏𝜏1∶𝑛𝑛)

𝑝𝑝(𝐥𝐥1∶𝑛𝑛, 𝜏𝜏1∶𝑛𝑛)

𝑝𝑝(𝐥𝐥1∶𝑛𝑛, 𝜏𝜏1∶𝑛𝑛) = ∫ 𝑝𝑝(𝐱𝐱1∶𝑛𝑛)𝑝𝑝(𝐥𝐥1∶𝑛𝑛|𝐱𝐱1∶𝑛𝑛, 𝜏𝜏1∶𝑛𝑛)𝑑𝑑𝐱𝐱1∶𝑛𝑛

� (29)

We can re-derive all of the particle filter equations in terms of this new target distribution. Rather than working 
in the m-dimensional space Y, we are in the μ-dimensional space 𝐴𝐴  . The densities in state space q(x) and f(x) 
are unchanged.
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𝑤𝑤1(𝐱𝐱1) =
𝑝𝑝(𝐱𝐱1)𝑝𝑝(𝐥𝐥1|𝐱𝐱1, 𝜏𝜏1)

𝑞𝑞(𝐱𝐱1)
, 𝑤𝑤𝑛𝑛(𝐱𝐱1∶𝑛𝑛) = 𝑤𝑤1(𝐱𝐱1)

𝑛𝑛
∏

𝑘𝑘=2

𝑓𝑓 (𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1)𝑝𝑝(𝐥𝐥𝑘𝑘|𝐱𝐱𝑘𝑘, 𝜏𝜏𝑘𝑘)

𝑞𝑞𝑘𝑘(𝐱𝐱𝑘𝑘|𝐱𝐱𝑘𝑘−1)
� (30)

𝐗𝐗1∶𝑛𝑛 ∼ 𝑞𝑞(𝐱𝐱1∶𝑛𝑛|𝐥𝐥1∶𝑛𝑛, 𝜏𝜏1∶𝑛𝑛)� (31)

𝑊𝑊
𝑖𝑖

𝑛𝑛 =
𝑤𝑤𝑛𝑛

(

𝐗𝐗
𝑖𝑖

1∶𝑛𝑛

)

∑𝑁𝑁

𝑗𝑗=1 𝑤𝑤𝑛𝑛

(

𝐗𝐗
𝑗𝑗

1∶𝑛𝑛

)� (32)

𝑝𝑝(𝐱𝐱1∶𝑛𝑛|𝐥𝐥1∶𝑛𝑛, 𝜏𝜏1∶𝑛𝑛) ≈ 𝑝̂𝑝(𝐱𝐱1∶𝑛𝑛|𝐥𝐥1∶𝑛𝑛, 𝜏𝜏1∶𝑛𝑛) =

𝑁𝑁
∑

𝑖𝑖=1

𝑊𝑊
𝑖𝑖

𝑛𝑛 𝛿𝛿𝐗𝐗𝑖𝑖

1∶𝑛𝑛
(𝐱𝐱1∶𝑛𝑛)� (33)

The partition of the observation space τ is not prescribed, other than being constrained by the statistical inde-
pendence of the measurements. This flexibility allows tuning of the particle filter for any number of experimental 
objectives. For example, τ could be chosen to minimize the variation of the weights w i. In A-CHAIM the observa-
tions are partitioned such that each instrument type is handled separately. This largely eliminates the problem of 
particle degeneracy, which was the primary objective. It also solves the problem of trying to balance the relative 
influence of each instrument type on the assimilation. The number of GNSS, ionosonde, and altimeter observa-
tions during any given assimilation step usually fluctuate by orders of magnitude, and so being able to assimilate 
each instrument type independently removes the need for ad-hoc solutions like kriging, spoofing or duplicating 
data. Partitioning and recombining the observations yn into composite observables ln allows us to recover many 
of the advantages of localization, even in a system that does not easily permit localization.

3.5.  Forecast Optimization

The forecast model in A-CHAIM has a deterministic component (13) and a stochastic component. Let 𝐴𝐴 𝐗𝐗
𝑖𝑖

𝑛𝑛|𝑛𝑛−1
 be 

the particles at time tn after the deterministic component of the forecast step, but before any stochastic movement 
is added.

𝐗𝐗
𝑖𝑖

𝑛𝑛|𝑛𝑛−1
= 𝐅𝐅

(

𝐗𝐗
𝑖𝑖

𝑛𝑛−1

)

� (34)

The stochastic component is modeled as a Gaussian random noise as in Equation 14. At each time we add a 
random displacement 𝐴𝐴 𝐴𝐴𝐗𝐗

𝑖𝑖

𝑛𝑛 ∼  (0,𝐐𝐐𝑛𝑛) .

𝐗𝐗
𝑖𝑖

𝑛𝑛 = 𝐗𝐗
𝑖𝑖

𝑛𝑛|𝑛𝑛−1
+ 𝛿𝛿𝐗𝐗

𝑖𝑖

𝑛𝑛� (35)

It was determined though experimentation that a minimum stochastic variance at any timestep 

𝐴𝐴 𝐐𝐐
min
𝑛𝑛 = diag

(

(

𝐮𝐮𝑛𝑛−𝐮𝐮𝑛𝑛−1

2

)2
)

 allowed the filter to perform well during calm conditions, but was not able to adapt 

quickly enough during storm periods. Choosing a fixed covariance that was able to capture storm behavior would 
degrade the filter performance during quiet periods. It is therefore necessary to evolve the diagonal variance 
matrix Qn with the particle filter, to be able to adapt to changing ionospheric variability. A simple way to accom-
plish this without reliance on external drivers is to monitor the stochastic movements of previous timesteps. By 
examining the step sizes of higher weight particles, we can estimate an improved variance 𝐴𝐴 𝐐̃𝐐𝑛𝑛 = diag(𝐸𝐸

[

(𝛿𝛿𝐗𝐗𝑛𝑛)
2
]

 . 
This variance estimate tends to be very noisy, and can tend to produce unstable behavior if not tempered. In 
A-CHAIM Qn is updated with a simple algorithm, but more sophisticated techniques to estimate this variance 
are certainly possible.

𝐐𝐐0 = 𝐐𝐐
min
0

, 𝐐𝐐𝑛𝑛 = 𝜆𝜆𝐐𝐐𝑛𝑛−1 + (1 − 𝜆𝜆)max
(

𝐐̃𝐐𝑛𝑛−1,𝐐𝐐
min
𝑛𝑛

)

� (36)

Optimizing the stochastic forecast helps the assimilation adjust to changing ionospheric conditions, as all devia-
tions from the background model are driven by the stochastic component of the forecast. This approach does have 
limitations, notably that an undirected random walk is just as likely to step a particle in the wrong direction as it 
is to move it closer to the truth. When the stochastic variance Qn increases in response to disturbed conditions, 
the particle filter is attempting to sample a larger region of state space with a fixed number of samples. While 
this is necessary to model the behavior of the ionospheric system, it does result in reduced sampling efficiency as 
particles are given a greater ability to take random steps into unlikely states.
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This problem can be alleviated if the number of samples of state space is not fixed. In A-CHAIM we use a subset 
of the available observations 𝐴𝐴 𝐲̆𝐲𝑛𝑛 ⊂ 𝐲𝐲𝑛𝑛 with a greatly expanded number of particles to attempt to steer the particles 
into higher probability regions. It is computationally trivial to evaluate the measurement operator for ionosonde 
characteristics. Unlike the GNSS data, the ionosonde measurements are often direct measurements of an iono-
spheric profile parameter, which are linear functions of the A-CHAIM state.

After the deterministic component of the forecast step, A-CHAIM resamples uniformly from 𝐴𝐴 𝐗𝐗
𝑖𝑖

𝑛𝑛 to produce 𝐴𝐴 𝑁̆𝑁 
temporary copies of each particle, hereafter labeled 𝐴𝐴 𝐗̆𝐗

𝑖𝑖𝑖𝑖

𝑛𝑛 , 𝑗𝑗 = 1, 2, . . . , 𝑁̆𝑁 . In A-CHAIM, 𝐴𝐴 𝑁̆𝑁 = 20 copies of each 
particle X i are produced. Each of these daughter particles is then given the random displacement 𝐴𝐴 𝐴𝐴𝐗̆𝐗

𝑖𝑖𝑖𝑖

𝑛𝑛 ∼  (0,𝐐𝐐𝑛𝑛) . 
This gives a total of 𝐴𝐴 𝐴𝐴 ⋅ 𝑁̆𝑁 = 20000 unique temporary particles.

For each temporary particle 𝐴𝐴 𝐗̆𝐗
𝑖𝑖𝑖𝑖

𝑛𝑛  a preliminary weight 𝐴𝐴 𝑤̆𝑤
𝑖𝑖𝑖𝑖 is produced using only ionosonde and altimeter data, 

along with f(xn|xn−1) and q(xn|xn−1). This allows A-CHAIM to predict which forecast steps are likely to produce 
particles with high weights. Using these weights a new set of particles is generated.

{

𝐗𝐗
𝑖𝑖

𝑛𝑛

}

=
{

𝐗̆𝐗
𝑖𝑖𝑖𝑖

𝑛𝑛 |𝑤̆𝑤
𝑖𝑖𝑖𝑖 = sup 𝑤̆𝑤𝑖𝑖𝑖𝑖

, 𝑗𝑗 ∈ 1. . .𝑁̆𝑁

}

� (37)

For each original particle 𝐴𝐴 𝐗𝐗
𝑖𝑖

𝑛𝑛 , the highest weight daughter particle is kept, and all others discarded. This prelim-
inary filtering is invisible to the rest of the particle filter, as preserves the one-to-one relationship between 𝐴𝐴 𝐗𝐗

𝑖𝑖

𝑛𝑛−1
 

and 𝐴𝐴 𝐗𝐗
𝑖𝑖

𝑛𝑛 , and so the weights W1:n−1 are unchanged. This is in contrast to the more conventional resampling in 
Equations 23 and 24, where the weights W1:n are reset to 𝐴𝐴

1

𝑁𝑁
 . The 𝐴𝐴 𝐗𝐗

𝑖𝑖

𝑛𝑛 produced by this forecast sampling are indis-
tinguishable from those which could be found by generating N random displacements from 𝐴𝐴  (0,𝐐𝐐𝑛𝑛) , except that 
they are less likely to have arrived in a low weight region of state space by chance.

Figure 5 gives a schematic overview of how this process integrates with the rest of A-CHAIM. The forecast 
sampling takes less than a second of computation time per assimilation step, but allows the filter to behave as if 
it had a factor of 𝐴𝐴 𝑁̆𝑁 more particles. Most random displacements result in suboptimal particles that can be easily 
rejected by ionosonde data. This ensures that computationally expensive sTEC raytracing is not wasted.

4.  Results
To evaluate the performance of the assimilation, we will compare the predicted values at each latency to data 
sources which were not included in the assimilation. The assimilation should produce an improved representation 
of ionospheric electron density. In particular, this assimilation should address some of the known shortcomings 
of the background model E-CHAIM that were outlined in the introduction, in particular improving the spatial 
and temporal resolution.

Figure 5.  Diagram showing a simplified representation of the particle filtering technique used in A-CHAIM. The points follow the changes to the particles through 
a single assimilation step, with the diameter representing their weight. Panel (a) Show the particles from the previous assimilation step. In (b) the deterministic part 
of the forecast Fn(xn) brings the particles to 𝐴𝐴 𝐗𝐗

𝑖𝑖

𝑛𝑛|𝑛𝑛−1
 . In (c) each particle is resampled multiple times, and the daughter particles 𝐴𝐴 𝐗̆𝐗

𝑖𝑖𝑖𝑖

𝑛𝑛  are given preliminary weights 𝐴𝐴 𝑤̆𝑤
𝑖𝑖𝑖𝑖

𝑛𝑛  . 
The highest weight offspring of each original particle is selected to form 𝐴𝐴 𝐗𝐗

𝑖𝑖

𝑛𝑛 , and in (d) the entire set of observations is used to generate the final weights 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑛𝑛 . A final 
resampling occurs in (e), to remove any low weight particles to pass 𝐴𝐴 𝐗̃𝐗

𝑖𝑖

𝑛𝑛 to the next assimilation step.
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4.1.  Ionosondes

Ionosondes which do not provide automatically processed data, and therefore are not available for assimilation, 
provide an ideal reference to examine the performance of A-CHAIM. Table 3 summarizes the geographic and 
magnetic coordinates of the four reference stations used in this study, and they are also shown along with the 
assimilated data in Figure 1. The instruments in Pond Inlet and Blissville are Canadian Advanced Digital Iono-
sondes (CADIs) (Jayachandran et al., 2009). The ionosonde on Svalbard, located in Ny-Ålesund, is also a CADI. 
It is operated by Tromsø Geophysical Observatory. Ionograms from these instruments were manually processed 
at 30-min time resolution and subsequently inverted to extract hmF2 using the POLynomial ANalysis (POLAN) 
software package (Titheridge, 1988). In addition to these three CADI systems, we will also use the Alpha-Wolf 
ionosonde at Sodankylä, operated by the Sodankylä Geophysical Observatory (SGO). The instrument is well 
positioned to provide an assessment of system performance in the European sector, and manually processed 
hourly data is publicly available.

The value of foF2 measured at each station though the assimilation period are plotted in Figure 6. In order to 
highlight the differences between A-CHAIM and E-CHAIM, the right column shows the same data with the value 
predicted by E-CHAIM subtracted. This serves primarily to remove the diurnal variation in foF2, which is well 
captured by E-CHAIM. The stations are ordered by decreasing geomagnetic latitude, with PONC and SVAL in 
the polar cap, SODAN at auroral latitudes, and BLISS in the midlatitudes.

Table 3 
Locations of Ionosondes Used to Validate A-CHAIM Performance

Station Geographic coords. AACGM coords. (300 km) Source link

Pond Inlet (PONC) 72.69°N, 282.04°E 80.18°N, 1.87°E chain.physics.unb.ca

Svalbard (SVAL) 78.93°N, 11.85°E 77.00°N, 106.58°E www.tgo.uit.no

Sodankylä (SODAN) 67.4°N, 26.6°E 65.0°N, 105.9°E www.sgo.fi

Blissville (BLISS) 45.61°N, 293.46°E 53.43°N, 14.45°E chain.physics.unb.ca

Figure 6.  A-CHAIM foF2 performance at four reference ionosondes during the 21 September through 29 September 2021 period. The left column shows the 
predicted values of A-CHAIM and E-CHAIM plotted against the manually processed observations. The right column shows the same data with the value of E-CHAIM 
subtracted, to remove the diurnal variations. Gray bars mark periods where at least one of the latencies was not available due to missing data. For clarity, only the values 
of E-CHAIM t−02h are plotted.
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The variability of the high-latitude ionosphere is immediately apparent at 
PONC and SVAL, with the variation between sequential measurements being 
much larger than the difference between A-CHAIM and E-CHAIM. As this 
data came from manually scaled ionograms, this variation is not an artifact 
of the autoscaling process, but is a result of the dynamic processes of the 
storm. Each of these stations is also in a relatively data-sparse region. The 
ionosonde THJ76 at Thule is relatively close to PONC, and several GNSS 
receivers are nearby, including a co-located receiver. Only a single GNSS 
receiver on Svalbard provided data near the SVAL ionosonde, which was not 
enough to provide a meaningful improvement. This can be seen in Table 4, 
where the overall RMSE of each latency of A-CHAIM and E-CHAIM are 
tabulated for each station. PONC shows a marginal overall improvement at 
each latency, with a reduction in error of 0.12 MHz at the t−02h latency, with 
worsening performance as the latency decreases. SVAL shows essentially no 
change in overall performance at any latency. While this does demonstrate a 
limitation of the assimilation, this is desirable behavior. If the assimilation 
is not able to improve upon the background model, either due to a lack of 
data, or because the state space we have chosen is not able to capture the real 
ionospheric behavior, then the ideal result would be to make no changes to 
the background.

The relative performance of A-CHAIM becomes very different once we move 
to lower geomagnetic latitudes. SODAN is situated near several ionosondes 
which were included in the assimilation, as well as the dense GNSS networks 
in Europe. While the variability in foF2 is lower than at the higher-latitude 
stations, we can see that E-CHAIM consistently underestimates foF2 during 
the day, and overestimates foF2 at night during this period. As a result, the 
overall E-CHAIM RMSE at SODAN is comparable to both PONC and 
SVAL at 0.8 MHz. At SODAN, A-CHAIM shows a strong improvement over 
E-CHAIM at all latencies, with RMSE between 0.39 and 0.54 MHz. Unex-

pectedly, the best performance at this location is at one of the forecasted latencies, t+00h. This effect is small and 
unique to this station, which has fewer total observations than the other reference stations in this study.

The improvement in foF2 that A-CHAIM produces is readily apparent at the mid-latitude BLISS ionosonde. 
E-CHAIM consistently overestimates the peak electron density, except during the depletion from September 
22nd and 23rd, where E-CHAIM overestimates the peak. A-CHAIM is able to correct this diurnal-scale error. 
Additionally, A-CHAIM is able to capture smaller time-scale variations, most notably through September 24th. 
Overall A-CHAIM shows a strong improvement at all latencies, reducing the error from 0.75 to 0.3 MHz at 
latencies with available data. The forecasted latencies show diminishing improvements, with the most advanced 
forecast showing an error of 0.5 MHz.

We can also examine the ability of A-CHAIM to model the altitude of the peak electron density, hmF2. The results 
of the assimilation at each station are plotted in Figure 7. There are no observations of hmF2 at SODAN in this 
analysis, as the electron density profiles are not inverted by the SGO. The overall RMSE for the remaining three 
stations are given in Table 5, for each latency of A-CHAIM and E-CHAIM. Every station reporting data shows the 
same overall trend, namely a small but consistent improvement in hmF2 across all latencies, with the performance 
of each latency directly influenced by the amount of available data. While this is the behavior we would expect from 
a well-condition assimilation, these results are more striking when we compare them to the foF2 results in Table 4.

At SVAL there was no meaningful change in the foF2 RMSE, whereas hmF2 RMSE at that location was reduced 
by 12%–16%. GNSS sTEC and JASON measurements are not sensitive to changes in hmF2, and so most of the 
improvement in hmF2 must be driven by assimilated ionosonde measurements of hmF2. Given that our reference 
stations, and in particular SVAL, are isolated from other ionosondes, these improvements must be a result of large 
spatial scale corrections to hmF2. This is an advantage of fitting a parameter to a global basis set, improvements 
can be projected far from where the observations were made. A natural corollary to this advantage is that a global 
basis set also allows errors to be projected anywhere in the assimilation region. Investigating this possibility thor-
oughly requires using a reference data set with more global coverage than ionosondes can provide.

Table 4 
Summary of A-CHAIM and E-CHAIM Performance in foF2 Determination 
at Four Reference Ionosondes During the September 21st Through 29 
September 2021 Period

Station RMSE t−02h t−01h t−00h t+00h t+01h

PONC A-CHAIM 0.69 0.71 0.73 0.73 0.76

E-CHAIM 0.80 0.80 0.79 0.79 0.79

Δ (MHz) −0.12 −0.09 −0.06 −0.06 −0.03

Δ (%) −14.4 −11.7 −7.4 −8.1 −3.8

SVAL A-CHAIM 0.85 0.83 0.84 0.79 0.79

E-CHAIM 0.83 0.83 0.80 0.80 0.80

Δ (MHz) 0.02 0.00 0.04 −0.01 −0.01

Δ (%) 2.1 0.6 4.6 −1.1 −1.8

SODAN A-CHAIM 0.48 0.42 0.43 0.39 0.54

E-CHAIM 0.75 0.75 0.76 0.76 0.76

Δ (MHz) −0.27 −0.33 −0.33 −0.36 −0.22

Δ (%) −36.1 −43.7 −43.0 −48.1 −28.7

BLISS A-CHAIM 0.34 0.32 0.33 0.47 0.59

E-CHAIM 0.80 0.78 0.75 0.75 0.76

Δ (MHz) −0.46 −0.46 −0.43 −0.28 −0.16

Δ (%) −57.2 −58.7 −56.6 −37.7 −21.8

Note. The rows summarize the overall RMSE in MHz at each latency for 
A-CHAIM and E-CHAIM, those labeled Δ show the difference in RMSE 
both in MHz, and as a percentage of the E-CHAIM RMSE.
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4.2.  In Situ Electron Density Measurements

In order to assess the performance of the assimilation in the entire region, we will also make use of a limited 
data set of in situ plasma density measurements made onboard the Defense Meteorological Satellite Program 

(DMSP) and European Space Agency's Swarm satellite missions. These 
instruments have several properties that make them ideal as a rigorous test 
of performance, the foremost being their global coverage. This gives an abil-
ity to test the assimilation over the regions where no ground-based data is 
available, particularly over the oceans. As well, no measurements of in-situ 
plasma density, nor other direct measurements from the topside ionosphere, 
are included in the assimilated data. If the assimilation is altering the iono-
spheric state in an unphysical or inconsistent way, then these in-situ measure-
ments would provide an ideal test.

4.2.1.  Swarm

The ESA Swarm mission is a constellation of three satellites (Swarm A, B, 
C). Each satellite operates in a polar orbit with slow local time precession 
of 2.7 hr/month (Knudsen et al., 2017). As of 2021, Swarm A and Swarm C 
orbit at 440 km and Swarm B orbits at 505 km. As Swarm does not provide 
data in near real time, this study will make use of Swarm Langmuir Probe 
in situ measurements for independent validation of the assimilation system. 
To prepare the data, the Lomidze et al. (2018) calibration factors have been 
applied to the data set prior to comparison and all periods with non-nominal 
quality flags were discarded.

Figure 8 shows the root mean square error (RMSE) of all three Swarm satel-
lites for all latencies of E-CHAIM and A-CHAIM, binned by geographic 
latitude and longitude for the entire study period. The errors in E-CHAIM 
are concentrated in three regions, the outer edge of the model where 

Table 5 
Summary of A-CHAIM and E-CHAIM Performance in hmF2 Determination 
at Three Reference Ionosondes During the 21 September Through 29 
September 2021 Period

Station RMSE t−02h t−01h t−00h t+00h t+01h

PONC A-CHAIM 18.43 18.91 19.47 19.49 19.60

E-CHAIM 20.67 20.68 20.68 20.68 20.68

Δ (km) −2.24 −1.76 −1.21 −1.19 −1.08

Δ (%) −10.8 −8.5 −5.9 −5.8 −5.2

SVAL A-CHAIM 21.29 21.41 21.31 21.04 22.12

E-CHAIM 25.18 25.19 25.19 25.19 25.19

Δ (km) −3.90 −3.77 −3.87 −4.15 −3.07

Δ (%) −15.5 −15.0 −15.4 −16.5 −12.2

BLISS A-CHAIM 12.84 13.32 13.49 13.85 14.03

E-CHAIM 14.67 14.67 14.67 14.68 14.68

Δ (km) −1.83 −1.36 −1.18 −0.83 −0.65

Δ (%) −12.5 −9.2 −8.0 −5.6 −4.4

Note. The rows summarize the overall RMSE in km at each latency for 
A-CHAIM and E-CHAIM, those labeled Δ show the difference in RMSE 
both in km, and as a percentage of the E-CHAIM RMSE.

Figure 7.  A-CHAIM hmF2 performance at four reference ionosondes during the September 21st through 29 September 2021 period. The left column shows the 
predicted values of A-CHAIM and E-CHAIM plotted against the manually processed observations. The right column shows the same data with the value of E-CHAIM 
subtracted, to remove the diurnal variations. Gray bars mark periods where at least one of the latencies was not available due to missing data. For clarity, only the values 
of E-CHAIM t−02h are plotted.
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45° < MLAT < 50°, the polar cap, and over central Canada. These patterns are consistent across all latencies, with 
slightly deteriorating performance at t−00h and later when the storm model was unavailable. By comparison, the 
errors in A-CHAIM are more spatially uniform at all latencies where data is available. The forecasted A-CHAIM 
(t+00h, t+01h) are still more uniform than the background model, but do show a steady decrease in performance 
relative to the assimilated latencies (t−02h, t−01h, t−00h).

The errors in A-CHAIM are significantly reduced compared to E-CHAIM at each latency. The greatest 
change is in the low magnetic latitude region, and over central Canada and Eurasia. Of note is the significant 
improvement at low latitudes over the Atlantic and Pacific Ocean. There are some regions which show a slight 
decrease in performance, namely over large bodies of water at high latitudes, for example, the Bering Sea, 
Hudson Bay, and along the northern coast of Greenland. These tend to be areas where there are relatively few 
measurements available, where E-CHAIM does relatively well, and nearby to regions where E-CHAIM does 
particularly poorly.

Table 6 summarizes the overall RMSE for each Swarm satellite, model, and latency. The strict ordering of the 
model performance is notable. For each satellite, every latency of A-CHAIM has a lower overall error than any 
version of E-CHAIM, with or without the storm model. The performance of A-CHAIM is always best at the 
t−02h latency, with decreasing performance as less data is available. The difference in RMSE between E-CHAIM 
with and without the storm model is also evident. The overall error is reduced by 15%–20% for all latencies other 
than the longest forecast t+01h, with a more modest 8%–9% reduction.

Figure 8.  A-CHAIM performance using in-situ electron density measurements from the Swarm A, Swarm B and Swarm C satellites during the 21 September through 
29 September 2021 period, binned by latitude and longitude. The top row shows the overall E-CHAIM RMSE, and the middle row shows the overall A-CHAIM RMSE. 
The bottom row shows E-CHAIM RMSE subtracted from the A-CHAIM RMSE at each latency, to highlight the differences. Measurements during periods where one 
or more of the latencies were unavailable were excluded.
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4.2.2.  DMSP

The DMSP satellites (F-16, F-17, and F-18) orbit in a Sun-synchronous, circular orbit at between 830 and 880 km, 
each with an orbital period of 110 min (Garner et al., 2010). Similar to Swarm, the DMSP satellites each operate 
an array of in situ plasma density measurement systems and also do not provide data in near real time. Due to 
their higher altitude, these satellites represent a unique validation data set, and given the strong performance of 
the E-CHAIM background model in comparison to DMSP in the past (Themens, Jayachandran, McCaffrey, Reid, 
& Varney, 2019), this data set should pose a significant challenge to achieving improvement over the background.

Figure 9 follows the same format as Figure 8, showing the binned RMSE for all latencies of E-CHAIM and 
A-CHAIM, binned by geographic latitude and longitude for the entire study period. The performance of E-CHAIM 
varies strongly with latitude, with relatively minor variations longitudinally. The greatest errors are concentrated 
in a ring in the polar cap, and to a lesser degree at the outer edge of the assimilation region MLAT  <  50°. 
A-CHAIM preserves this overall form, with the greatest errors at the extreme high and low latitudes. The errors 
in A-CHAIM are more evenly distributed across the assimilation region when compared to E-CHAIM, which is 
similar to the trend observed in the Swarm data.

The errors in A-CHAIM are significantly reduced at each latency, when compared to the corresponding E-CHAIM 
result. There are strong improvements at virtually all auroral and sub-auroral latitudes, including over the Atlantic 
Ocean, the Russian Far East and much of the Pacific. The greatest improvements occur in the American and Euro-
pean sectors. There are several regions that do show a slight decrease in performance, namely over the Pacific 
near North America, over the southern tip of Greenland, and in a few places over the Arctic ocean in the European 
and Russian sectors. As in the Swarm data, these are places where there are few measurements, where E-CHAIM 
performed relatively well, and are in close proximity to regions with comparatively large errors.

Table 7 summarizes the overall RMSE for each DMSP satellite, model, and latency. For each satellite, A-CHAIM 
t−02h has the best performance, and each latency that follows shows a decrease in performance as fewer observa-
tions are available. Every latency of A-CHAIM has smaller overall error than any of the E-CHAIM latencies, as 
we saw in the Swarm data. The overall error is reduced by 24%–29% for all latencies with assimilated data. The 
t+00h forecast has a reduction in error of 19% and the longest forecast t+01h shows a 10% reduction.

It is clear from examining the in-situ data from both DMSP and Swarm that A-CHAIM is able to provide a 
significant improvement in electron density at all latencies, including in regions where no observations are avail-
able, and during forecasts. In addition to an overall reduction in error, the spatial distribution of errors is more 

Table 6 
Summary of A-CHAIM and E-CHAIM Performance Using In Situ Electron Density Measurements From the Swarm A, 
Swarm B and Swarm C Satellites During the 21 September Through 29 September 2021 Period

Satellite RMSE t−02h t−01h t−00h t+00h t+01h

Swarm A A-CHAIM 3.06 3.12 3.24 3.43 3.64

E-CHAIM 3.76 3.78 3.99 3.99 4.00

𝐴𝐴 Δ
(

𝑚𝑚
−3 × 1010

)

  −0.70 −0.66 −0.76 −0.56 −0.36

Δ (%) −18.5 −17.4 −19.0 −14.1 −8.9

Swarm B A-CHAIM 2.37 2.40 2.61 2.79 3.01

E-CHAIM 3.05 3.06 3.29 3.29 3.29

𝐴𝐴 Δ
(

𝑚𝑚
−3 × 1010

)

  −0.68 −0.66 −0.68 −0.50 −0.28

Δ (%) −22.2 −21.5 −20.8 −15.1 −8.5

Swarm C A-CHAIM 2.98 3.04 3.10 3.26 3.45

E-CHAIM 3.56 3.57 3.78 3.78 3.78

𝐴𝐴 Δ
(

𝑚𝑚
−3 × 1010

)

  −0.58 −0.54 −0.68 −0.52 −0.33

Δ (%) −16.3 −15.1 −17.9 −13.7 −8.7

Note. The rows summarize the overall RMSE in 𝐴𝐴 𝐴𝐴
−3 × 1010 at each latency for A-CHAIM and E-CHAIM, those labeled Δ 

show the difference in RMSE both in absolute terms, and as a percentage of the E-CHAIM RMSE.
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Figure 9.  A-CHAIM performance using in-situ electron density measurements from the DMSP F-16, F-17, and F-18 satellites during the September 21st through 29 
September 2021 period, binned by latitude and longitude. The top row shows the overall E-CHAIM RMSE, and the middle row shows the overall A-CHAIM RMSE. 
The bottom row shows E-CHAIM RMSE subtracted from the A-CHAIM RMSE at each latency, to highlight the differences. Measurements during periods where one 
or more of the latencies were unavailable were excluded.

Table 7 
Summary of A-CHAIM and E-CHAIM Performance Using In Situ Electron Density Measurements From the DMSP F-16, 
F-17, and F-18 Satellites During the 21 September Through 29 September 2021 Period

Satellite RMSE t−02h t−01h t−00h t+00h t+01h

F-16 A-CHAIM 5.57 5.75 6.43 7.09 7.83

E-CHAIM 7.86 7.99 8.74 8.74 8.74

𝐴𝐴 Δ
(

𝑚𝑚
−3 × 109

)

  −2.29 −2.24 −2.31 −1.65 −0.92

Δ (%) −29.2 −28.0 −26.4 −18.9 −10.5

F-17 A-CHAIM 5.79 5.86 6.40 6.87 7.55

E-CHAIM 7.61 7.71 8.39 8.39 8.39

𝐴𝐴 Δ
(

𝑚𝑚
−3 × 109

)

  −1.82 −1.86 −1.98 −1.52 −0.84

Δ (%) −23.9 −24.1 −23.7 −18.1 −10.0

F-18 A-CHAIM 5.23 5.44 6.05 6.56 7.29

E-CHAIM 7.33 7.48 8.16 8.16 8.16

𝐴𝐴 Δ
(

𝑚𝑚
−3 × 109

)

  −2.10 −2.03 −2.11 −1.61 −0.87

Δ (%) −28.7 −27.2 −25.8 −19.7 −10.7

Note. The rows summarize the overall RMSE in 𝐴𝐴 𝐴𝐴
−3 × 109 at each latency for A-CHAIM and E-CHAIM, those labeled Δ 

show the difference in RMSE both in absolute terms, and as a percentage of the E-CHAIM RMSE.
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even than in E-CHAIM. There were some areas where the performance of A-CHAIM was slightly worse than 
in E-CHAIM in at least one of the datasets. In both DMSP and Swarm, this only occurred in areas that had few 
observations, good E-CHAIM performance, and were in close proximity to regions with poor E-CHAIM perfor-
mance. This is likely inevitable due to the limited horizontal resolution of the model. By correcting the region 
with poor performance, and without sufficient observations to constrain it, the assimilation can disrupt a nearby 
region where the background model does unusually well. Equivalently, if the assimilation smooths out the spatial 
variation of the errors in the background model, then regions where the background model performs well may 
end up worse off, even as the overall error is significantly reduced.

5.  Conclusion
This study was performed using both data and outputs from the background model E-CHAIM that were produced 
in real time, in an operational environment. Using these, A-CHAIM is able to produce a significant improve-
ment in modeled electron density when compared to the background model E-CHAIM. This reduction in error 
is largely uniform across the entire assimilation region, as measured by in-situ satellite-borne electron density 
measurements. The performance of A-CHAIM is best at higher latencies, up to 3 hours before the current time. 
However, A-CHAIM is able to produce an improved representation of electron density in near-real-time, with 
a 15%–25% reduction in error. A-CHAIM is also able to show improvements up to 2 hours in the future as a 
low-skill forecast, with a 15%–20% reduction in error in the first hour, and 8%–10% reduction in the second hour.

The ability of A-CHAIM to describe the shape of the ionosphere was also assessed, using four manually-processed 
ionosondes that were not included in the assimilated data. The critical frequency of the F2 layer, foF2, shows 
strong improvement at mid- and auroral latitudes, but does not show a significant improvement in the polar cap. At 
the lower latitude stations, A-CHAIM was able to produce an improvement of 0.3–0.46 MHz in near-real-time, 
and a 0.15–0.2 MHz improvement in the second hour of the forecast. A-CHAIM is also able to improve hmF2 
at all latitudes, although the scale of the improvement is small (<5 km) when compared to natural ionospheric 
variability.

The challenges created by sparse data, limited computing resources, and unknown physical drivers are not unique 
to A-CHAIM, or the high latitude ionosphere. The unique flexibility of particle filtering as a data assimilation 
technique can be used to circumvent some of these issues, as the above results demonstrate. While particle filters 
do have limitations, in particular weight degeneracy, the techniques developed for A-CHAIM should be broadly 
applicable. Reducing the dimensionality of the measurements by building composite observables should produce 
a strong improvement when assimilating large numbers of low-information observations, and can be used in 
conjunction with localization techniques in systems that admit them.

As A-CHAIM continues to operate, further studies will need to be taken to assess the long term trends in perfor-
mance. A-CHAIM does also produce estimates of the DCBs of the GNSS receivers it assimilates, and character-
ization of the accuracy and stability of those biases needs to be evaluated.

Appendix A:  χ 2 Distribution of Log-Likelihood
Let S be some physical system, characterized by some set of parameters x. All possible configurations of S define 
a state space 𝐴𝐴 𝕏𝕏 , such that 𝐴𝐴 𝐱𝐱 ∈ 𝕏𝕏 . The properties of S can only be inferred through some set of observables y, 
which exist in a measurement space 𝐴𝐴 𝕐𝕐  such that 𝐴𝐴 𝐲𝐲 ∈ 𝕐𝕐  . There is a measurement operator 𝐴𝐴 𝐇𝐇(𝐱𝐱) ∶ 𝕏𝕏 → 𝕐𝕐  which 
maps from the state space to the measurement space. H(x) is also described as the forward model, as it is a model 
which predicts which set of observations yobs would be produced for a given state x. For example, for ionospheric 
slant Total Electron Content, H(x) could take the form in Equation A1, a set of line integrals for each of m 
receiver-satellite pairs.

𝐇𝐇(𝐱𝐱) =

(

∫

𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑒𝑒

(

𝐱𝐱, 𝑟𝑟
)

𝑑𝑑𝑑𝑑𝑑

)𝑇𝑇

for 𝑖𝑖 ∈ 1, 2, . . .𝑚𝑚� (A1)

In general, both the parameterization of the system, and the construction of the forward model H(x) will be 
imperfect. This, along with any error in the measuring instrument itself, contribute to the measurement error ϵ. If 
xtrue is the true configuration of the system, then the actual values observed yobs will be Equation A2.

𝐲𝐲𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐇𝐇(𝐱𝐱𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝝐𝝐� (A2)
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If the measurement error is able to be represented by a multivariate Gaussian distribution, then ϵ is a vector of m 
random variables with 𝐴𝐴 𝝐𝝐 ∼  (0,𝐑𝐑) . This gives the familiar form Equation A3 for the likelihood p(y|x) of obser-
vations with multivariate Gaussian error.

𝑝𝑝(𝐲𝐲|𝐱𝐱) = exp
[

−
1

2
(𝐲𝐲 −𝐇𝐇(𝐱𝐱))𝑇𝑇𝐑𝐑−1(𝐲𝐲 −𝐇𝐇(𝐱𝐱))

]

� (A3)

As R must be positive definite, it has a Cholesky decomposition R = LL T. If z is a vector of i.i.d. random vari-
ables 𝐴𝐴 𝐳𝐳 ∼  (0, 𝕀𝕀𝑚𝑚)

𝜖𝜖 = 𝐲𝐲 −𝐇𝐇(𝐱𝐱) = 𝐋𝐋𝐋𝐋� (A4)

log �(�|�) = −1
2
(� −�(�))��−1(� −�(�))

= −1
2
(��)�

(

���
)−1(��)

= −1
2
����

(

��
)−1�−1��

= −1
2
�� �

� (A5)

Let l(x) = −2 log  p(y|x), then l(x) is proportional to a sum of squared standard normal variables, meaning it is χ 2 
distributed with n(z) = m degrees of freedom.

Data Availability Statement
The near real time outputs of A-CHAIM, along with software to interpret the output files, is publicly avail-
able at https://www.rspl.ca/index.php/projects/chaim/a-chaim. Interpreter software is available in the C and 
MATLAB languages. E-CHAIM is available at https://www.rspl.ca/index.php/projects/chaim/e-chaim, and is 
available in C, MATLAB, and IDL. The output files, interpreter, and all reference datasets used in this work 
are available at https://doi.org/10.5281/zenodo.6642849. The GNSS data used in A-CHAIM is provided by: the 
German Federal Agency for Cartography and Geodesy (BKG) for the International GNSS Service (IGS) (2021) 
https://igs.bkg.bund.de/root_ftp/IGS/highrate/, IAG (International Association of Geodesy) Regional Refer-
ence Frame sub-commission for Europe (EUREF)  (2021) https://igs.bkg.bund.de/root_ftp/EUREF/highrate/, 
and Integrated Geodetic Reference Network of Germany (GREF)  (2021) https://igs.bkg.bund.de/root_ftp/
GREF/nrt/ networks; the Canadian High Arctic Ionospheric Network (CHAIN)  (2021) http://chain.physics.
unb.ca/data/gps/data/highrate/; the Crustal Dynamics Data Information System (CDDIS)  (2021) https://cddis.
nasa.gov/archive/gnss/data/highrate/; the NOAA National Geodetic Survey (NGS)  (2021) http://geodesy.
noaa.gov/corsdata/rinex/; the California Spatial Reference Center (CSRC) GARNER GPS Archive  (2021) 
http://garner.ucsd.edu/pub/nrtdata/; Natural Resources Canada (NRCan)  (2021) http://rtopsdata1.geod.nrcan.
gc.ca/gps/data/nrtdata/; and the Ministry of Energy and Natural Resources (MERN)  (2021) ftp://ftp.mrn.
gouv.qc.ca/Public/GPS/. Precise orbit determination in.SP3 format is provided by International GNSS Service 
(IGS) (1994) https://cddis.nasa.gov/archive/gnss/products. Satellite DCBs are provided by the Institute of Geod-
esy and Geophysics (IGG) of the Chinese Academy of Sciences (CAS), International GNSS Service (IGS) (2013) 
https://cddis.nasa.gov/archive/gnss/products/bias/. Near-Real-Time Ionosonde data is provided by the National 
Centers for Environmental Information (NCEI) (2021b) https://www.ngdc.noaa.gov/ionosonde/data/; and by the 
Global Ionospheric Radio Observatory (GIRO)  (2011) http://spase.info/SMWG/Observatory/GIRO. Altimeter 
data from the Jason-3 satellite is provided by the NOAA National Oceanographic Data Center https://www.
ncei.noaa.gov/archive/accession/Jason3-xGDR. The CADI ionosonde data used for verification was provided 
by Vertical Incidence Soundings (Ionograms)  (2021) http://chain.physics.unb.ca/data/cadi/, and the Tromsø 
Geophysical Observatory  (2021) https://www.tgo.uit.no/ionosondeNAL/. Ionosonde data from Sodanklya was 
provided by the Sodankylä Geophysical Observatory (SGO) (2021) http://www.sgo.fi/pub_ion/dailydata/. In situ 
electron density measurements from the Swarm mission are provided by the European Space Agency (2021) at 
https://swarm-diss.eo.esa.int/#swarm%2FLevel1b%2FEntire_mission_data%2FEFIx_LP. In-situ measurements 
from the DMSP missions are provided by National Centers for Environmental Information (NCEI) (2021a) at 
https://satdat.ngdc.noaa.gov/dmsp/data/.
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