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Abstract. Detailed and complete mapping of forest roads is important
for the forest industry since they are used for timber transport by trucks
with long trailers. This paper proposes a new automatic method for
large-scale mapping forest roads from airborne laser scanning data. The
method is based on a fully convolutional neural network that performs
end-to-end segmentation. To train the the network, a large set of image
patches with corresponding road label information are applied. The final
network is then applied to detect and map forest roads from lidar data
covering the Etnedal municipality in Norway. The results show that we
are able to map the forrest roads with an overall accuracy of 97.2%. We
conclude that the method has a strong potential for large-scale opera-
tional mapping of forest roads.
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1 Introduction

In 2015, Norway officially decided to collect airborne laser scanning (ALS) data
for the entire land area below the timber line. The point density will be at
least two first returns per square metre, with the main purpose to obtain a very
detailed digital terrain model (DTM) of the entire country. For open areas above
the tree line, i.e., in the mountains, the DTM will be based on automatic image
matching from aerial photography.

The national coverage of ALS data provides large opportunities for new map-
ping products, e.g. maps of small roads like forest roads that are difficult to
observe in optical remote sensing images. Forest roads are used for timber trans-
port by trucks with long trailers, and due to the forest industry’s demands for
profitable management, accurate, detailed and complete mapping of forest roads
is important.

Remote sensing imagery is often characterized by complex data properties
in the form of heterogeneity and class imbalance, as well as overlapping class-
conditional distributions [3]. Together, these aspects constitute severe challenges
for creating land cover maps or detecting and localizing objects, producing a
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high degree of uncertainty in obtained results, even for the best performing
model [13,16].

Automatic detection and mapping of road networks from remote sensing data
has previously been studied by several authors [7,22], however, most of the work
focus on optical data [22], and current state-of-the art algorithms fail to extract
roads in optical images for cases where surrounding objects like water, buildings,
trees, grass and cars occlude the road or cast shadows, especially with influence
of spatial structures such as overpasses [22].

In recent years, deep convolutional neural networks (deep CNNs) have emerged
as the leading modelling tools for image pixel classification and segmentation
in general [8, 14], and have had an increasing impact also in remote sensing
[12, 13, 16, 17, 19]. This increasing interest is reflected for example in the ISPRS
semantic segmentation challenge [11], where deep CNNs are dominating and are
shown to provide the best performing models.

In practice, there are currently two main approaches to performing image
segmentation using CNNs. The first one, which we refer to as patch-based, relies
on predicting every pixel in the image by looking at the enclosing region of the
pixel. This is commonly done by training a classifier on small image patches
and then either classify all pixels using a sliding window approach, or more effi-
ciently, converting the fully connected layers to convolutional layers [20], thereby
avoiding overlapping computations. Further improvements may be achieved by
using multi-scale approaches or by iteratively improving the results in a recurrent
CNN [6,18].

The second approach is based on the idea of pixel-to-pixel semantic segmen-
tation using end-to-end learning [14]. It uses the idea of a fully convolutional net-
work (FCN), consisting of an encoder and a decoder. The encoder is responsible
for mapping the image to a low resolution representation, whereas the decoder
provides a mapping from the low resolution representation to the pixel-wise pre-
dictions. Up-sampling is achieved using fractional-strided convolutions [14]. This
approach has recently improved the state-of-the art performance on many image
tasks and, due to the lack of fully-connected layers, allows pixel-wise predictions
for arbitrary image sizes.

In this paper we build upon the work by Mnih and Hinton [15], who applied
a neural network to detect roads in very high resolution optical remote sensing
data, and hypothesize that we can train a deep convolutional neural network and
apply it to perform automatic mapping of small roads in lidar data. To address
the hypothesis we rely on state-of-the-art fully convolutional neural networks,
tailored to perform semantic mapping [14], also with good results on remote
sensing images [12].

2 Data

ALS data of the majority of Etnedal municipality, Oppland County, Norway,
have been captured with an average of 6.5 ground hits per m2. However, this
varies from 0 (below dense canopies of deciduous trees) to 20/m2 at strip over-
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laps. For the entire Etnedal municipality, vector data in the form of ESRI shape
files, containing the current official mapping of road centre lines and road area,
are available.

2.1 Pre-processing

The ALS data consisted of point measurements (x, y, z) in UTM zone 32. Each
point had a number of attributes, including:

1. Class (one of: ground, vegetation, building, other)
2. Return number, a number between 1 and 4 where 1 denotes the first return

and 4 the last return.
3. Return intensity (uncalibrated radiance)

From these attributes, the following images were generated:

1. Digital terrain model (DTM) from all ALS points labelled as ground
2. Elevation gradient of DTM, measured in degrees
3. Digital surface model (DSM) from all ALS points labelled as first returns

The pilot study [21] and further investigations indicated that the gradient
image had the best potential for automatic detection of roads, compared with
alternative representations of the ALS data. The other representations included:
laser return intensity image, hill-shaded relief image, local relief image, aspect
direction image, and the ALS point cloud of ground returns.

Two resolutions for the DTM, and thus, the gradient image, were evaluated.
Although 0.2 m gives slightly better detail than 0.5 m whenever there are mul-
tiple ALS ground returns within a 0.5 m pixel, the increased data volume has a
negative impact on the deep learning method. Smaller areas, measured in m2,
are input to the vision methods of the deep neural network, described below,
meaning that the context of a road may be lost in the vision task. Also, with
6.5/m2 ALS ground point density on average, not much detail is lost (on av-
erage) when reducing the resolution from 25 pixels per m2 to 4 pixels per m2,
corresponding to 0.2 m and 0.5 m pixel sizes, respectively. Another benefit is
that the number of pixels is reduced by a factor of 6.25.

The gradient image of Etnedal municipality was divided into two sets, one
for training and one for testing. Form each data set 256×256 image patches with
50% overlap were extracted. For the training and test dataset, only image patches
that contain road segments were used. A total of 59004 images of size 256× 256
pixels were available. This was divided into two equal sized datasets, one for
training and one for test. 10% of the training images were used as validation
data.

3 Automatic detection of roads

We applied the same FCN architecture as Kampffmeyer et al. [12], which al-
lowed end-to-end learning of pixel-to-pixel semantic segmentation. The network
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was implemented on a graphical processing unit (GPU), in order to speed up
computations. The network was trained in mini-batches on patches of 256× 256
pixels. The patch size was chosen due to GPU memory considerations.

Fig. 1. Pixel-to-pixel architecture. Blue layers represent convolutional layers (including
ReLU and batch-normalization layer), red layers represent pooling layers, the green
layer represents the fractional-strided convolution layer and the yellow layer the softmax
layer.

Architecture The CNN architecture of the FCN network (Fig. 1) consisted of
four sets of two 3 × 3 convolutions (blue layers), each set separated by a 2 × 2
max pooling layer with stride 2 (red layers).

All convolution layers have a stride of 1, except the first one, which has a
stride of 2. The change in the first convolution layer was a design choice, which
was mainly made due to limits in GPU memory during test phase when consid-
ering large images. All convolutional layers were followed by a ReLU nonlinearity
and a batch normalization layer [10]. Weights were initialized according to He
et al. [9]. The final 3× 3 convolution was followed by a 1× 1 convolution, which
consisted of one kernel for each class to produce class scores. The convolutional
layers were followed by a fractional-strided convolution layer [14] (green layer in
Fig. 1, sometimes also referred to as deconvolution layer), which learned to up-
sample the prediction back to the original image size, and a softmax layer (yellow
layer in Fig. 1). The network was trained end-to-end using backpropagation

Data augmentation The image patches were extracted from the input im-
age with 50% overlap and were flipped (left to right) and rotated at 90 degree
intervals, yielding 8 augmentations per image patch.
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Median frequency balancing Training of the FCN network was done using
the cross-entropy loss function. However, as this loss was computed by summing
over all the pixels, it did not account well for imbalanced classes. To take the
imbalanced classes into account, the loss of the classes was weighted using median
frequency balancing [1,5,12]. Median frequency balancing weights the class loss
by the ratio of the median class frequency in the training set and the actual class
frequency. The modified cross-entropy function is

L = − 1

N

N∑
n=1

∑
c∈C

`(n)c log
(
p̂(n)c

)
wc, (1)

where N is the number of samples in a mini-batch,

wc =
median (fc|c ∈ C)

fc
(2)

is the class weight for class c, fc the frequency of pixels in class c, p̂
(n)
c ) is the

softmax probability of sample n being in class c, `
(n)
c corresponds to the label of

sample n for class c when the label is given in one-hot encoding and C is the set
of all classes.

3.1 Pre-processing and post-processing

Merging output probabilities and class image In test mode each 256 ×
256 image was augmented by 90 degree rotation and flipping as described in
Section 3, and sent through the CNN. The output of the CNN for a given image
was a score map for each class. The score maps for each rotation and flip is
rotated backwards, and merged by averaging. From the averaged score image,
the class image was computed by, for each pixel, selecting the class with the
largest score.

Merging of classification result The neural network outputs classified images
of size 256× 256, based on input images of the same size. In order to avoid edge
effects in the merged classification result, the input images are generated with
50% overlap between any two neighbouring images vertically or horizontally. In
other words, subimages of size 256 × 256 pixels are generated with 128 pixels
step size from the gradient image.

The classified images of size 256 × 256 pixels contain the values 1 (road)
and 0 (background). These images are then cropped to size 128 × 128 pixels
by removing pixels that are less than 64 pixels from the edge. These cropped
images of size 128 × 128 pixels are then merged edge-to-edge to form the full
classification map.

4 Results

The average classification accuracies of using the FCN approach to classify the
validation dataset were
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– Non-road: 97.2%

– Road: 95.3%

– Overall: 97.2%

Please note that the overall accuracy is equal to the non-road accuracy. This is
due to the high class imbalance between the road and non-road classes.

The automatic road detection method produced results that are not perfect.
However, when comparing with the existing road centre lines, the automatic
mapping often produced more accurate centre lines. For example, a gap in the
existing tractor road centre line was closed by the automatic method (Fig. 2),
the existing tractor road centre line ran outside of the tractor road at some
curves, whereas the automatically generated centre lines stay inside the tractor
road (Fig. 3), and there was no existing tractor road (or path) centre line at the
detected location (Fig. 4).

Fig. 2. There is a gap in the original centre line (left, orange) that is closed in the au-
tomatically detected centre line (right,orange) The cyan outline indicates the detected
road area.

There are also examples of situations where the automatic method had prob-
lems. For example, a road that is difficult to see in the gradient image (Fig. 5)
may be missed. A road crossing a field (Fig. 6), may result in fragmented map-
ping. Some terrain features, e.g. two parallel ditches (Fig. 7) may result in a
false road.
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Fig. 3. Left: Existing tractor road centre line, with hill-shaded DTM. Right: road cen-
tre line and outline from automatic method, with gradient of DTM. Yellow/green: 0.25
m maximum displacement in point reduction. Orange/cyan: 1.0 m maximum displace-
ment.
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Fig. 4. A road that was mapped by the automatic method (right), but missing in the
existing vector data (left).

Fig. 5. Tractor road that was missed by the automatic method. Left: existing road
centre line. Right: the road is difficult to see in the gradient image.
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Fig. 6. Tractor road crossing a field. Left: existing centre line. Right: result of automatic
detection.

Fig. 7. False automatic detection of road.
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5 Discussion

Even though the deep fully convolutional neural network provides very good
results for mapping forest roads in lidar data, there is a potential to improve the
approach. Adding more training data often helps to improve the performance
of deep neural networks. More data also provides you with the opportunity
to increase the network size and thereby its modelling capabilities. In terms
of network architectures, the topology aware FCN proposed by BenTaieb and
Hamarneh [2] is one promising method that should be investigated. Another
approach is to use a conditional random field (CRF) based post-processing.

Pre-trained networks, e.g. Alexnet, VGGnet or GoogleNet, in combination
with fine-tuning, could also be applied as part of the FCN [14]. The use of pre-
trained networks has become a standard technique in computer vision and may
provide a performance gain, in particular if we have a limited number of training
images.

As a post-processing step for the automatic road detection method, a point
reduction method [4], or a method that is good in replicating the curvatures of
actual roads, may be used. Clearly, there is a lower limit on the radius of a turn.
This radius may be measured at any vertex by finding the circle arc that passes
through that vertex, the preceding vertex and the succeeding vertex.

Another alternative could be to grow the skeleton image (by creating a dis-
tance map with a maximum distance limit) and then to re-create the skeleton
image by thinning a thresholded distance map. This may produce a smoother
skeleton image. However, the skeleton image will always result in a vectorised re-
sult with only eight possible directions (multiples of 45 degrees), so a smoothing
or point reduction of the vector data is always needed.

Training of the detection method was done on a subset of the Etnedal dataset.
There is always a trade-off between training and testing. If the training data set
is too small, then the method may be over-fitted on the training data and may
produce bad results on other areas. E.g., if the training data only includes steep
hillsides with roads with many turns, then the method may be bad at detecting
straight roads in flat terrain, and vice versa. However, if the method is trained
on representative parts of all of Norway, then the method may be bad at making
local adaptions. So, a solution may be to run training or fine-tuning with existing
road centre line data for each dataset, and then run automatic detection on the
same dataset, or combine the results of a model for whole Norway with the results
of from a local model. In both cases, the result may be improved centre lines
in those parts of the terrain where the original centre lines were inaccurate or
missing. Further, it could be interesting to compute quality metrics by comparing
the new centre lines with the existing:

1. For all roads where there is an old and a new centre line, what is the average
deviation between the vertices of the new centre line and the corresponding
closest locations on the old centre line?

2. How many metres of new road centre lines do not match an existing road
centre line?
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3. How many metres of existing road centre line do not have a corresponding
new road centre line?

6 Conclusions

In this paper, we have demonstrated that end-to-end segmentation using a fully
convolutional neural networks provides very good results in terms of mapping
forests roads in lidar data. Do to these promising results, we conclude that deep
neural network methods provides a good basis for designing algorithms for large
scale mapping of roads, but also other objects like e.g. cultural heritages, in lidar
data.
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