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Climate-controlled submarine landslides on
the Antarctic continental margin

JennyA. Gales 1 , RobertM.McKay 2, LauraDe Santis 3,Michele Rebesco3,
Jan Sverre Laberg 4, Amelia E Shevenell 5, David Harwood6, R. Mark Leckie7,
Denise K. Kulhanek 8,9, Maxine King1, Molly Patterson9, Renata G. Lucchi 3,4,
Sookwan Kim10, Sunghan Kim11, Justin Dodd12, Julia Seidenstein7,13,
Catherine Prunella5,14, Giulia M. Ferrante 3 & IODP Expedition 374 Scientists*

Antarctica’s continental margins pose an unknown submarine landslide-
generated tsunami risk to Southern Hemisphere populations and infra-
structure. Understanding the factors driving slope failure is essential to
assessing future geohazards. Here, we present a multidisciplinary study of a
major submarine landslide complex along the eastern Ross Sea continental
slope (Antarctica) that identifies preconditioning factors and failure mechan-
isms. Weak layers, identified beneath three submarine landslides, consist of
distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and
glaciomarine diamicts. The observed lithological differences, which arise from
glacial to interglacial variations in biological productivity, ice proximity, and
ocean circulation, caused changes in sediment deposition that inherently
preconditioned slope failure. These recurrent Antarctic submarine landslides
were likely triggered by seismicity associated with glacioisostatic readjust-
ment, leading to failure within the preconditioned weak layers. Ongoing cli-
mate warming and ice retreat may increase regional glacioisostatic seismicity,
triggering Antarctic submarine landslides.

Submarine landslides are global geohazards that can displace huge
volumes of sediment, exceeding the size of their terrestrial counter-
parts by several orders of magnitude1. These landslides can generate
tsunamis, which may have significant socio-economic consequences
through destroying human life, seafloor equipment and
infrastructure2,3. For example, the 1929 Grand Banks submarine
landslide-generated tsunami off Canada generated tsunamiwaveswith

a 13m runup that killed residents along the Newfoundland coast,
impacted the coast of Portugal, and caused significant economic
damage by severing trans-Atlantic telecommunications cables4,5. In
1998, a submarine landslide near Papua New Guinea generated tsu-
nami waves that killed 2200 people6. In the mid-Holocene, the Stor-
egga submarine landslide off Norway produced tsunami waves with
20m runup that likely impacted populations along the southernNorth
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Sea coast, Iceland and Greenland, >900 km away7. In the southern
hemisphere, tsunami waves arriving from South America, New Zeal-
and, and Southeast Asia have been observed around Antarctica and
models indicate that centimetre-to-metre scale tsunami waves may
impact Antarctica’s margins;8,9 thus, tsunami waves originating from
Antarctica could reverse this path. Because few submarine landslides
are documented around Antarctica10, little is known about the prob-
ability and potential of southern hemisphere socio-economic impacts
of tsunami waves originating from Antarctica’s continental margins.
This potential geohazard risk, coupled with increased international
interest in subsea internet cable connections toAntarctica, highlights a
critical need to improve understanding of downslope processes spe-
cific to glaciated continental margins11.

Glacially influenced continental shelves make up a fifth of Earth’s
continental margin area and are particularly sensitive to climate
changes12. It is not clear if the low numbers of Quaternary submarine
landslides on the Antarctic margin reflect the region’s limited geo-
physical data coverage or if Antarctica’s slopes are relatively stable due
tomorehomogenousmargin sediments, lower regional sedimentation
rates, or increased sediment compaction via ice sheets10. In contrast,
the extensively surveyed northern hemisphere high-latitude margins
host some of Earth’s largest Holocene submarine slope failures, which
may result from changes in marine sedimentation rates and lithologic
properties, gas hydrate dissociation, ice-proximal glacial dynamics,
seismicity due to glacioisostatic rebound, and relative sea-level
changes2,13–19. Because glacial ice transports large volumes of poorly
sorted sediment towards the shelf edge, changes in glacial dynamics
can influence ice-proximal submarine landslide occurence16. Rapid
sedimentation decreases pore fluid dissipation, leading to over-
pressure, under-compaction and a reduction in the sediment effective
stress, causing slope failure17,18. As many high-latitude submarine
landslide triggers (e.g. gas hydrate dissociation, rapid sea level rise,
seismicity due to glacioisostatic rebound, and changes in
sedimentation2,13,19) are sensitive to climate perturbations, it is hypo-
thesised that ongoing and future climate warming may increase the
likelihood (or frequency) of high-latitude submarine landslides and
associated tsunamis2,13,19. Thus, understanding the factors that pre-
condition slopes to fail and mechanisms triggering high-latitude sub-
marine landslides is essential for predicting the timing and location of
future slope failures with ongoing climate warming20.

On glacial-interglacial timescales, observations indicate that
changes in sedimentation on high-latitude margins can result in weak
layer formation21–23. During interglacials in the circum-Antarctic, dia-
tom productivity and/or sedimentation has been observed to increase
within the seasonal sea ice zonewhile sedimentation rates are typically
lower (e.g. few cmkyr−1 24) and under the influence of contouritic,
plumitic, hemipelagic/pelagic processes21–23. Recent studies highlight
the importance of climate-influenced diatom production/sedimenta-
tion (e.g. diatom oozes) in weak layer formation and submarine land-
slide occurrence, where climatic changes such as variations in sea-ice
cover and ocean temperatures have been shown to affect diatom
abundance23,25,26. Failure along weak layer planes results from loading
and overpressurisation by younger, rapidly deposited glaciogenic or
glaciomarine sediments18,23,26. Differences in the strength and sediment
composition of overlying layers is recognised as a key factor pre-
conditioning slope failure14,15,23. However, because of the challenges
associated with characterising and constraining weak layers (e.g. lim-
ited seismic and geotechnical data resolution, availability and dating
uncertainties), failure planes are often difficult to identify20,23. Thus,
establishing the environmental conditions that predispose slopes to
fail on glacial continental margins remains a challenge.

The Iselin Bank, located on the eastern Ross Sea continental shelf
(Antarctica), adjacent to the southwest-northeast trending Hillary
Canyon (Fig. 1), consists of packages of tabular, lens, and wedge-
shaped stratified units separated by a series of unconformities above a

faulted continental basin27. The eastern Ross Sea is part of the West
Antarctic Rift System, where extension in West Antarctica likely initi-
ated during the late Cretaceous (~100Ma) and ceased by the early
Miocene28. This part of the margin is now considered tectonically
passive. The Ross Sea continental shelf is cut by glacially carved
troughs eroded by repeated glacial advances since the early Miocene
(~18Ma; Fig. 1)29–31. In most of the Ross Sea, grounded ice likely
extended to the shelf edge during repeated glacial expansions but not
to the Iselin Bank shelf-edge32. Grounding zonewedges ~80kmwest of
the Iselin Bank are probably associated with maximum Last Glacial
Maximum ice extent, consistent with model-based
reconstructions33–35. Contourite mounds observed on the Iselin Bank
outer shelf, slope, and continental rise are tens to hundreds of metres
thick36.

Presently, theAntarctic SlopeCurrent (ASC)flowswestward along
the continental shelf break and across the Iselin Bank, with average
bottom-current velocities of ~0.1–0.3ms−1 (Fig. 1)36,37. Warm Cir-
cumpolar Deep Water (CDW; T > 1.0 °C; S < 34.7)38 moves onto the
continental shelf via bathymetric lows at the shelf edge39 and mixes
with surface and shelfwaters to formmodifiedCDW (mCDW;T < −1 °C;
S < 34.6)38,40. Cold dense Ross Sea Bottom Water (RSBW; T < −1.85 °C;
S < 34.7)40 forms via brine rejection during sea-ice formation and cools
and mixes during sub-ice shelf circulation. Hillary Canyon, adjacent to
Iselin Bank, forms a major conduit for RSBW, which flows down the
canyon at velocities up to 1m s−1 andmixeswithCDWto formAntarctic
Bottom Water (T = < −1 °C; S < 34.6)38,40.

Here, we provide a high-resolution (centimetre-to-metre scale),
multidisciplinary analysis of Neogene to Quaternary (<23Ma) sub-
marine landslide preconditioning and triggering on the Antarctic
continental margin. We integrate downhole-log data with lithologic,
chronologic, and seismicdata recovered from theRoss Sea continental
margin during International Ocean Discovery Programme (IODP)
Expedition 374 to identify multiple weak layers beneath a large sub-
marine landslide complex and provide minimum ages for these sub-
marine landslides obtained by dating stratigraphic horizons
immediately overlying submarine landslide scarps. Chronologic data
indicate that long-term climatic shifts in the Neogene and Quaternary
may have played a critical role in the formation of distinct lithological
contrasts that form weak layers prone to failure. Our insights will
inform future investigations of geohazards associated with continued
climate warming and Antarctic ice retreat.

Results
Submarine landslide morphology and stratigraphy
A large submarine landslide complex of >6000 km2 (including eva-
cuation and deposit area; Fig. 2) extends >100 kmalong the Iselin Bank
upper slope (average slope gradients: ~6.5˚). The complex consists of
multiple submarine landslide scarps (herein scarps) and headwalls
>100m high and is divided into northern and southern regions based
on bathymetric data availability (Fig. 2a b, c, Supplementary Fig. 1).
The seafloor is relatively smooth between the scarps, revealing multi-
ple exposed bedding planes. The southern submarine landslide region
consists of two main along-slope scarps (S1 and S2) with volumes of
~19 km3 (water depth: 1116m; area: 141.5 km2), and ~13 km3 (water
depth: 1500m; area: 106 km2; Supplementary Fig. 2). Smaller isolated
scarps occur between the main along-slope scarps and four large
scarps (in places >100m high) occur on the continental rise (Fig. 2a).
The northern submarine landslide region is characterised by a large,
crescent-shaped failure with a volume of >70 km3 (water depth:
1300m; area: >370 km2; Fig. 2c). Five large (<180m) scarps occur on
the continental slope (Fig. 2c).

Seismic lines (IT17RS301, IT17RS316 and BGR80-009A) cross the
headwalls of twoexposed scarps (S1 andS2) andoneburied scarp (S1b)
in the southern submarine landslide region36 (Figs. 3, 4). Landward of
the scarps, the seismic data show stratified, parallel, high-medium
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amplitude seismic reflectors that can be traced from the shelf edge to
IODP Site U1523, located ~15 km south of S1 and S2. The seismic data
show that the slope failed along three parallel and continuous bedding
planes (Fig. 3), identified as the topmost continuous reflection beneath
each scarp, which we refer to as weak layers. Weak Layer 1 (WL1) out-
crops at ~1.72 s Two-Way-Time (TWT) at the shelf edge beneath sub-
marine landslide 1 (S1) and is characterised by a medium-amplitude
seismic reflection. Weak Layer 1b (WL1b) occurs beneath buried sub-
marine landslide 1b (S1b) and outcrops at ~1.68 s TWT at the shelf edge.
Weak Layer 2 (WL2) occurs at ~1.99 s TWT at the shelf edge beneath
submarine landslide 2 (S2) and is characterised by a laterally con-
tinuous, medium-amplitude seismic reflection overlain by continuous
packages of sediment (Fig. 3). WL1/WL1b and WL2 can be traced lat-
erally northward along-slope for >15 km, consistently outcropping
beneath S1 and S2 (Fig. 4, Supplementary Fig. 5). Limited resolution of
seismic line BGR80-009A inhibits our ability to distinguish WL1 and
WL1b along-slope.

Seismic line IT17RS301 shows a thick chaotic sedimentary unit at
the base of the slope, partially buried by stratified parallel sub-
horizontal reflections and interlayered with opaque tabular lenses and
mounds, representing small mass-transport deposits (MTDs; Fig. 4).
TheMTDs are 1–2 km long and ~25msTWT thick (~20m; seeMethods).
A channel crosscuts thewestern flank of theMTD complex at the slope
base and is filled with sediments with a chaotic acoustic signal. Seismic
lines IT17RS303 and IT17RS315 show twoMTDs on the continental rise
(Fig. 5). The Iselin MTD is semi-transparent, covers >960 km2, has a
maximum thickness of ~0.3 s TWT (~240m) and volume of ~230 km3.
The buried MTD (~4.1 s TWT), is rectangular in shape, has an area of
~50 km2 and is 0.17 s TWT thick (~136m), indicating aminimumvolume
of ~7 km3.

Weak layer sedimentology and downhole physical properties
WL1 occurs beneath S1 and within core U1523B-7F (66.2–70.2m below
sea floor, mbsf; Figs. 6, 7). WL1 occurs within a ~4-m thick bed of
bioturbated muddy diatom ooze with dispersed clasts and multiple
millimetre-to-centimetre scale silt and occasional sand stringers
throughout. The matrix is characterised by high porosity (~63%) and
moderate grain size (D4,3 = 51μm), magnetic susceptibility (MS;
68 × 10−5 SI), bulk density (~1.6 g cm-3), and shear strength
(1.65 kg cm−2). The core scanning XRF-derived element log-ratio of
silica to aluminiumcounts (ln(Si/Al)) shows high values (~3.35)with low
Zr/Rb (~1.3) and Ti/Al (~2.1) ratios indicating high sediment opal con-
tent. Sediment grain size, XRF, natural gamma radiation (NGR) andMS
data indicate bigradational grading with bioturbation and pyrite
infilling observed (Fig. 7).

The sediments immediately overlying WL1 are interbedded muds
and clast-poor sandy diamicts (Fig. 7; D4,3 = 174μm). Contacts are
sharp to bioturbated with pyrite infilling and glauconite observed
throughout. Sand beds tens of centimetres thick (D4,3 = 129.6μm;
~70% sand) are present, with bioturbated upper and lower contacts.
Physical property data show an increase in grain size (D4,3 = 174μm),
bulk density (~2 g cm−3), MS (128 × 10−5 SI) and shear strength
(3.5 kg cm−2), and a decrease in porosity (~52%) relative to WL1. Grain
size analysis shows that the clay fraction decreases in the overlying
package from ~19% (WL1) to ~10% and that the ln(Si/Al) record declines
(~3.1), while the Ti/Al (~2.45) and Zr/Rb (~2.1) records increase.

WL1b lies beneath buried S1b and occurs within core U1523B-5F
(56.6–60.9 mbsf; Fig. 6; Fig. 7). This interval is characterised by a ~4-m
thick bed of bioturbated muddy diatom ooze with dispersed clasts.
Physical property data indicate that the beds are very fine grained
(D4,3 = 37μm), with low MS ( ~ 10 × 10−5 SI), NGR ( ~ 27 counts s−1), bulk
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density (~1.5 g cm-3) and shear strength (0.6 kg cm−2) and high porosity
(63%). The XRF data reveal high log-ratios of ln(Si/Al). Themuddy sand
bed overlying WL1b is coarser-grained (D4,3 = 96μm) and there is a
stepwise increase in MS (89 × 10−5 SI), NGR ( ~ 40 counts s−1), bulk
density (~1.9 g cm−3), shear strength (1.5 kg cm−2), and decreased por-
osity (61%).

WL2 is located at ~267 mbsf and its physical properties are only
available from downhole-log data due to extremely low core recovery
below ~155 mbsf (Fig. 8). WL2 is characterised by moderate downhole
sonic velocity (~1780m s−1) andMS (~2070 counts) as well asmoderate-
highporosity (~42%). FormationMicroScanner (FMS) resistivity images
show a low resistivity interval, with submeter-scale variations in low to
medium resistivity, indicating interbedded diatom-bearing to -rich
muds.High-resistivity spots indicate occasional clasts. Vp/Vs forWL2 is
~3.96, indicating shaly intervals with elevated porosity (see Methods).

The package immediately above WL2 (~264 mbsf; Fig. 8) is char-
acterised by increased downhole sonic velocity (~1880ms−1) and MS
(~2260 counts) and decreased porosity (~41%). FMS images indicate
this interval has generally high resistivity, with commonhigh resistivity
spots indicative of clasts in diamict and/or gravel. The Vp/Vs ratio
decreases slightly, indicating decreased porosity.

Age model and chronology
We present a revised age model for IODP Site U1523 (Fig. 9, Supple-
mentary Fig. 8; Supplementary Table 1). Core-seismic correlations
show that minimum weak layer ages are WL1b: ~ 2.82Ma (age range
2.93–2.82Ma) and WL1: ~ 3.07Ma (age range 3.21−3.07Ma; see Meth-
ods). Within the WL1b and WL1 intervals (56.6–60.9 and
66.2–70.2mbsf, respectively) there are unique samples containing
very rich, well-preserved diatoms with rare planktic foraminifera
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(Fig. 7). The richest diatom samples contain only traces of reworked
diatoms from older ages and represent primary pelagic biogenic
sedimentation. WL2 is below the maximum depth of the age model
(220 mbsf), but is likely older than ~13Ma, based on the last appear-
ance datum (LAD) of diatom Denticulopsis lauta (~13.0Ma) and first
appearance datum (FAD) of diatom Nitzschia denticuloides (13.5Ma) in
the deepest diatom bearing sample at 221.55mbsf35. If the sedi-
mentation rate remained constant and the age model linearly extra-
polated to the WL2 depth of 267 mbsf, this surface would correlate to
~14.8Ma. However, the validity of this assumption remains equivocal
due to limited recovery (52% below 120mbsf; Fig. 9)36. Minimum
submarine landslide ages, based on core-seismic correlation of the
post-failure reflectors (horizons directly above each of the submarine
landslide scarps: S1Top, S1bTop and S2Top; Fig. 3) traced into the adjacent
unfailed slope to Site U1523, are S1: < 400 ka, S1b: ~1.72Ma, and S2:
~12.14Ma (see Methods; Fig. 9).

Regional core-seismic integrations show that the buried MTDs in
thedistal sector of the continental rise (Fig. 5) incise Antarctic Regional
Seismic Unconformity (RSU)-4 and are overlain by seismic Ross Sea
Sequence (RSS)−5L and RSU3a36,41, indicating an age range of
~11–14.5Ma. The Iselin MTD incises RSS-7 and RSU2 to RSU3a, sug-
gesting an age <2.5Ma36. Small MTDs younger than RSU3 (3–5Ma)36

occur at the Iselin Bank slope base (Fig. 4).

Discussion
Interpretations of core-downhole log-seismic and chronological data
from the eastern Ross Sea have implications for constraining sub-
marine landslide preconditioning and triggering around Antarctica.
Large-scale recurrent slope failures have occurred along >100 km of
the Iselin Bank since at least the middle Miocene, with weak layers
identified beneath three submarine landslide scarps. We propose that
global climatic changes influenced weak layer formation on the Ross

Sea shelf and slope by creating distinct lithological contrasts between
the diatomaceous weak layers and overlying diamicts that precondi-
tioned slopes to fail. This study indicates the importance of climate in
preconditioning slope failure and provides insight into geohazards
associated with future warming and ice retreat.

The lithologies and physical properties of weak layers (WL1 and
WL1b) reveal thick packages of muddy diatom ooze and diatom-rich
mud (Fig. 7), with downhole-log properties indicating WL2 is likely
formed of similar hemipelagic, higher porosity, diatomaceous sedi-
ments. Increased diatom content affects the geotechnical properties
of sediments through increases in water content, opal content, com-
pressibility, permeability, and the angle of friction within
sediments23,25,42–45. Excess pore pressure can be generated by trapping
water and/or quickly decreasing the pore space available due to tec-
tonic stress, compaction, cementation, rapid sedimentation and low
permeability of overlying glacial sediments, sometimes promoting
slope instability in overlying sediments23,25,45.

Sedimentation rates associated with WL1 and WL1b deposition
are relatively low (~3.4 cmkyr−1; Fig. 9). Modelling studies show
that excess pore pressure generated under similar conditions
(<15 cmkyr-1 46) in comparable fine-grained hemipelagic muds is also
low, with conditions unlikely to result in slope failure without an
external trigger18,46,47. Numerical modelling shows that sediment
compressibility is a critical factor in the stability of low gradient
slopes46, where compressibility increases with increasing biogenic
opal content48. Diatom oozes and diatom-rich muds, such as those
observed in the Iselin Bank weak layers, are more compressible than
siliciclastic muds; therefore the process of compaction could release
excessfluid thatmight accumulate if bounded by a lower-permeability
unit, leading to weak layer formation18,22,23,42,47. Excess pore pressure
can also be generated by crushing of in-situmicrofossils present in the
hemipelagic sediments during compaction49, and the expulsion of
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intraparticle waters stored in their tests50. Water released during
diagenetic alteration of biogenic silica may also result in slope failure,
although this process typically occurs between 300 and 800 mbsf25,
below the depth of observed Iselin Bank weak layers (between 60 and
270 mbsf) and the opal CT transition zone at IODP continental shelf
Site U1521 (~285mbsf)35.

High-density diamicts deposited above low-density diatom ooze
and diatom-richmuds likely create lower permeability boundaries that
prevent upward migration of pore fluids, leading to increased pore
pressure and decreased shearing resistance. Although direct perme-
ability experiments were not conducted, the permeability of the
overlying glacigenic packages is likely low, based on porosity-
permeability relationships of similar sediments14,15,45.

Based on our revised age model for Site U1523, we suggest that
abundant, well-preserved diatoms and fine-grained siliciclastic sedi-
ments that characterise diatom oozes and diatom-rich muds of
regional weak layers (Fig. 7), were deposited at the seasonal sea ice
edge or in seasonally ice-free open marine conditions during pro-
longed intervals of warmer-than-present climates. At present, in
circum-Antarctic shelf and slope sediments, high diatom productivity
and deposition are associatedwith seasonally openmarine conditions,
and often with warmer sea surface temperatures51. Core-log-seismic
integration reveals ages of ~2.93−2.82Ma for WL1b, ~ 3.21–3.07Ma for
WL1 and ~14.8Ma for WL2. These periods correspond with notably
warm global climates of the late Pliocene interglacials (e.g. Marine
Isotope Stage G11: ~2.83Ma, and/or G17: ~ 2.95Ma), the mid Pliocene
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Warm Period (mPWP: 3.264–3.025Ma) and the Miocene Climate
Optimum (MCO: 17–14.5Ma) where there were reduced Antarctic ice
volumes, higher sea levels, warm Southern Ocean surface waters and
regional open marine conditions52–56.

Analysis of the planktic foraminiferal assemblages and planktic
foraminiferal and diatom geochemistry of Site U1523 provides further
evidence of reduced ice volume and warmer-than-present ocean tem-
peratures at the site when WL1b and WL1 were deposited (between
~3.07 and 2.82Ma)35,57,58. Within the WL1b interval (~2.93–2.82Ma),

subtropical and temperate planktic foraminifera dating to ~2.9Ma
indicate distinct warm-water incursions into the Ross Sea57. WL1
(~3.07Ma) corresponds to the mPWP (3.264–3.025Ma), an interval
whenmean temperaturewas 2–4 °Cwarmer than today59 andnumerical
modelling shows higher sea levels (~25m higher than today) and
reduced Antarctic ice-sheet extent60,61. These weak layer intervals cor-
respond with negative foraminiferal and biogenic silica oxygen isotope
data58,62, and peaks in the XRF data (ln(Si/Al)), a proxy for sedimentary
biogenicopal content63 are coincidentwithdeep-sea stable isotopedata
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andmodels which suggest that climate was warmer and ice volumewas
reduced during WL1 and WL1b diatom ooze deposition59–61,64,65. Ice-
proximal evidence fromANDRILL AND-1B in the southwestern Ross Sea
indicates reduced summer sea-ice extent during peak interglacials prior
to 2.58Ma, and a significant interval of meltwater-rich ice retreat near
the G17 interglacial (~2.95Ma)53,60. Continental shelf deglaciation and
warming may have resulted in enhanced productivity and greater
accumulation of diatom ooze relative to periods of increased summer
sea-ice duration before 2.6 Ma53.

WL1b and WL1 are overlain by packages of sandy muds, gravels,
and diamict (Fig. 7)35. The interpretation of gravel-rich strata above
WL1b is supportedby the inferenceof hard layers at ~46mbsf indicated
by drilling parameters35. This increase in grain size likely reflects a shift
towards enhanced sediment delivery from expanded ice sheets and
iceberg rafting, combined with enhanced winnowing by invigorated
along-slope bottom currents as global and regional climates cooled36.
Evidence from AND-1B sediments show glacial-interglacial grounding-
line oscillations between 3.3Ma and 2.0Ma that are associated with
stepwise cooling from 2.8Ma to 2.6Ma, a cooling trend also observed
in deep oxygen records53. A significant cooling event occurred at
2.6Ma, with increased polynya activity, sea-ice presence, and
grounding-line advance leading to reduced diatom ooze deposition53.

WL2 (~14.8Ma) is characterised by downhole-log data suggesting
the presence of diatom oozes and diatom-rich muds were deposited
under seasonally open marine conditions with minimal terrigenous
sediment input66. This interval of enhanced diatom deposition

occurred at the end of the MCO when Southern Ocean temperatures
were the warmest of the Neogene and ice volume was
reduced35,54,55,67–69. MCO-age records from IODP Site U1521 and Deep
Sea Drilling Project Site 273 recoveredmetres-thick sections of diatom
oozes and diatom-rich muds, providing additional support for our
interpretation of the Site U1523 downhole-log data35,67.

The package overlying WL2 is characterised by a diamict-
dominated sequence with ice rafted debris (IRD), suggesting an ice-
proximal to glacimarine depositional environment. As seismic, litho-
logic and geomorphological data from the Iselin Bank suggest that
grounded ice did not override Site U1523 during full glacial
conditions35, this change in sedimentation reflects increased bottom-
current activity leaving behind coarser-grained lag deposits consisting
of IRD, glacimarine outwash, and mass-wasting deposits35. The sedi-
mentary package corresponds to RSS-5, above RSU-4 (~14.5Ma), based
on regional seismic correlation36,68. Contourite mound growth and
slope progradation were also enhanced from ~14.5Ma to 8Ma, sug-
gesting that increased sediment discharge, down-slope flows, and
bottom-current activity occurred as Antarctic ice sheets expanded and
climate cooled30,36. This observation is consistent with western Ross
Sea evidence for amajor discontinuity at ~14.6Macoincidentwith a 30-
mdecrease in eustatic sea level and cooling of SouthernOceanbottom
water temperatures55,66,70.

Submarine landslide scarps are associated with a distinct change
in the orientation of Iselin bank to a more north-south orientation and
where regional oceanographic modelling predicts maximummodern-
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day ASC velocities36 (Supplementary Fig. 9). Modern velocities
(>0.2m s−1) are fast enough to deposit bedload and transport fine-
grained suspended load71. A decrease in average current intensity (to
~0.03m s−1) occurs over the outer shelf to continental rise, leading to
sediment deposition and construction of contourite mounds35,36

(Supplementary Fig. 9).
Presently, ASC strength and position varies in response to climate

changes37,72, leading to changes in sediment erosion and deposition,
which likely influenced repeated slope failure on the Iselin Bank. By
analogy with modern warming, the Neogene interglacials—when weak
layer sediments were deposited – were likely associated with easterly
winds over the continental shelf, weaker bottom-current strength, and
warmer intermediate water access to the shelf, contributing to ice
retreat36,60. Sediments within WL1b and WL1 are predominantly cohe-
sive, withmud contents between ~95 and 98%, suggesting low bottom-
current velocities, whichmay have resulted from a shift in the position
of the core of a proto-ASC current37. Increased nutrients at the sea-ice
edge likely enhanced diatom productivity and deposition, resulting in
diatomaceous sediment deposition in this low energy setting.

In sediment packages overlying the weak layers, changes in sedi-
ment type, shown in the elemental composition (XRF), physical
properties and downhole-log data, may reflect a northward shift in the
pathwayand strength of regional bottomcurrents and the sea-ice edge
due to a more northerly position of the core of easterly winds during
glacials72. Increased bottom-current strength prevents the deposition

of (or winnows) finer grained material, consistent with observed grain
size increases above the weak layers. As ice did not ground at the Iselin
Bank shelf edge, increased terrigenousmaterial in sediments overlying
the weak layers likely reflects a combination of changes in the proxi-
mity of the ice margin, increased availability and transport of IRD and
sediment-laden meltwater35. These environmental conditions likely
reduced diatom productivity at the shelf break53,73.

On the Iselin Bank, slope gradients are enhanced by locally
mounded contourite geometries resulting from bottom current-
driven sediment deposition (Fig. 4)36. This may have caused over-
steepening that facilitated slope failure andundercutting at the base of
the slope by current scouring, as indicated by the channel observed at
the continental slope base, where the present-day ASC has maximum
velocity (Fig. 4a, Supplementary Fig. 9). Contourite mounds are asso-
ciated with slope failure in a range of global settings74,75 and can
increase pore pressure via high sedimentation rates and rapid loading,
as well as sediment characteristics including high-water content, low
permeability, and high porosity, leading to under consolidation and
gas-associated fluidification74–77. Such conditions may have influenced
mass wasting along similar high-latitude contouritic settings (e.g.
Storegga submarine landslide)14,78,79. Columnar blankings observed on
Ross Sea continental rise seismic profiles may indicate gas-associated
fluid escape36. However, no columnar blanking is observed on the shelf
or slope surrounding the Iselin Bank scarps. Further, there is no evi-
dence of methane gas or gas hydrates in regional seismic profiles,
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suggesting that gas hydrate dissociationwas unlikely to have triggered
slope failure80. Even if gashydrateswere present in this area in the past,
they were likely stable at the Iselin Bank submarine landslides depths81.

Modelling studies of similar sediments and sedimentation rates
show that excess pore pressure alone is unlikely to result in slope
failure15,18,45,47. Thus an external triggerwas likely required todestabilise
Iselin Bank sediments. Submarine landslide ages on the Iselin Bankmay
be correlated with broad-scale climate events: S1: < 400 kyr, S1b:
~1.72Ma, and S2: ~ 12.14Ma (see Methods for uncertainties). This is
based on unique chronologic ties at 21.7 mbsf (C1r.3r/2n: 1.78Ma) and
48.52 mbsf (C2r/C2An: 2.58Ma) and FAD and LAD events (see Meth-
ods). Direct correlations between the submarine landslides and MTDs
on the continental rise are limitedby seismic correlationdown-slopeof
U1523. However, regional core-seismic correlations36,41 show that S1/
S1bmay correlatewith the IselinMTD (<2.5Ma), and S2with the buried
MTD (~11–14.5Ma)36.

We propose that submarine landslide triggers on the Iselin Bank
may be associated with changes in sedimentation following periods of
climatic deterioration and/or rapid local uplift following glacial retreat,
glacio-isostatic readjustment, and unloading19,82. S1b and S2 follow the
Plio-Pleistocene transition (3.2–2.6Ma)53 and middle Miocene Climate
Transition (~14Ma)54,66. Direct evidence of major ice sheet advances
across the Ross Sea continental shelf at these times are unequivocally
provided by drill sites on the continental shelf60,67,69, followed by per-
iods of extensive ice sheet retreat as climate rebounded in the late

Miocene and early Pleistocene31,83. The S1 event postdates the Mid-
Pleistocene Transition (~1–0.8Ma; Fig. 9; Supplementary Table 1)83

where evidence from ANDRILL cores suggest Antarctic ice sheet
grounding lines retreated into the inner continental shelf during Ross
Sea interglacials between 400 kyr and present day, compared tomore
expansive ice sheet coverage between 800 and 400 kyr83. We suggest
that climatic changes preconditioned slope instability and indirectly
influenced submarine landslide occurrence (Fig. 10). This follows
previous studies that show no correlation of global submarine land-
slide age with significant changes in global climate20. During periods of
climatic warmth (e.g. MCO andmid Pliocene), low density diatom-rich
weak layers are deposited. During periods of climatic cooling (e.g.
middle to late Miocene and Plio-Pleistocene glacials), more proximal
grounded ice increases erosion and terrigenous sediment supply to
the outer shelf. On Iselin Bank, diamicts deposited above diatom-rich
weak layers preconditioned its slope to fail. Glacial retreat, glacio-
isostatic readjustment and unloading may also have led to rapid local
uplift19,82, increasing earthquake frequency19 that could trigger slope
failure via liquefaction of weak layers when bounded by lower per-
meability layers4,78,84.

Our study has global implications for large-scale mass-wasting
events, as biogenic opal deposition is prevalent in the Southern Ocean
and circum-Pacific upwelling zones. However, Iselin Bank’s unique
environmental setting may explain the region’s abundance of sub-
marine landslides. Here, continuous along-slope sediment deposition
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of relatively uncompacted diatomaceous sediments occurs alternating
with mud, sand, and gravel-rich sediments. Bathymetric, seismic and
core data show that scarps occur at similar depths along-slope and are
likely coeval, with weak layers extending >15 km along-slope beneath
the scarps (Supplementary Fig. 5, Supplementary Fig. 7). Further,
unlike many Antarctic margins, the bathymetry of Iselin Bank
shelf edgemayprevent iceberg keel scouring and ice-sheet grounding,
even during sea level lowstands, resulting in the accumulation and
preservation of the observed contouritic deposits. Ice was instead
likely frequently grounded at least near to the shelf edge aroundmuch
of Antarctica33,65, preventing the build-up, and subsequent failure, of
weak sedimentary packages over multiple glacial cycles, resulting in
over-compacted, lithologically uniformand overall stable depositional
sequences. The conditions that led to recurrent failure on the Iselin
Bank are likely to be present in other high-latitudemargins, suggesting
that these margins are likely unstable and may pose a significant
hazard risk43. Our results emphasise the need for future researchaimed
at understanding the extent and presence of weak layers around Ant-
arctic margins and highlight increased risk of slope instability with
ongoing and future rapid warming and ice retreat.

Our study also has implications for predicting submarine land-
slide frequency and occurrence, the potential for submarine cable
breaks, and global tsunami risks. Tsunami wave characteristics are
largely controlled by submarine landslide volume, slope gradient, and
submergence depth3. On the Iselin Bank, submarine landslide volumes
exceed 70 km3 with MTDs on the continental rise exceeding 230 km3.
The volumes of sediment displaced are great enough to generate
tsunami waves, based on analogous submarine landslides in similar
high-latitude depositional settings5,85,86. For example, numerical mod-
elling of submarine landslides (10–100 km3) on the North Scotia Ridge
generated tsunami waves ranging from 1-40m amplitude85. Similarly,

the Grand Banks submarine landslide (185 km3) caused 3–8m wave
amplitudes4,5 and the Storfjorden submarine landslide, Norway
(40 km3) caused 1–2.5m wave amplitudes86. Recent studies demon-
strate teleconnections between Antarctica and Southern Hemisphere
landmasses, with centimetre-to-meter scale tsunami waves reaching
Antarctica within hours of generation8,9. These teleconnections show
that tsunami waves originating from Antarctica have the potential to
reverse these pathways.

Recurrent slope failure occurred along >100 kmof the Iselin Bank
slope during the Neogene. Core-log-seismic data show that three
submarine landslides occurred above recognisable weak layers char-
acterised by distinct packages of water-rich diatom oozes overlain by
dense, water-poor coarse-grained diamicts. Sedimentological and
chronologic analyses indicate that pastwarm climate events, including
theMCOand themPWP, led to enhanced diatomdeposition. Theweak
layers are overlain by low permeability glacigenic sediments likely
deposited by down-slope transport of glacimarine outwash, debris-
rich icebergs, and winnowing by along-slope currents. We propose
that the combination of undisturbed packages of weak, water-rich
sediments overlain by dense coarser grained glacigenic sediments
increased pore pressure in the biogenic weak layers making the slope
susceptible to failure. While the ages of the weak layers correspond to
warm climate intervals, the ages of the submarine landslides are not
correlated to specific climate events. The trigger required to destabi-
lise the slopewasmost likely seismicity generated by glacial loading or
unloading during periods of rapid marine-based ice-sheet retreat. This
study has important implications for understanding the influence of
global climate changes on factors influencing slope failure. Given
increasing interest in deploying submarine cable networks to Antarc-
tica, similar morphological settings should be prioritised for study
elsewhere around Antarctica’s margins to better understand the
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causes and consequences of large submarine landslides. This is espe-
cially pertinent given predictions of future rapid global warming.

Methods
Geophysical data
Multibeam echosounder (MBES) and high-resolution single-channel
seismic data were acquired during the 2017 ANTSSS and ODYSSEA
expeditions on RVOGS Explora. Bathymetric data were acquired using
a hull-mounted 12 kHz Reason SeaBat 7150 and 8111 MBES and were
processed using PDS2000 and Caris Hips and Sips v8.0 to a 30-m cell
size. Sound-velocity data were acquired from two sound velocity
probe stations. ArcGIS v10.7 was used to create a slope-gradient map
(◦) with a 30-m cell size from the bathymetric data. Single-channel
seismic-reflection lines IT17RS301, IT17RS302, IT17RS303, IT17RS316
and IT17RS315 were acquired using a linear array of two 210 cu.in GI
guns spaced2mapart, towedat 4mwater depth, and shot in harmonic
mode. The vertical resolution is ~3m based on a frequency of 130Hz
and sound velocity of 1600ms−1 36. A shotpoint interval of 8 swasused,
corresponding to a shot distance of 13–15m. A 9.5 mini-streamer
receiver array was towed 35m from the source, which included 10
hydrophones spaced 0.625–1m apart. Processing and interpretation
were done using Schlumberger Vista and Petrel software and included
bandpass filtering, deconvolution, horizontal stacking of the 10 traces
to produce a single channel configuration, amplitude gain normal-
isation and time-migration.

Multi-channel seismic reflection line BGR80-009A was acquired
by RV OGS Explora in 1980 which used a 2400-m, 58-trace streamer
and 23.4 l, 24-gun source array. Seismic reflection line BGR80-009A
was reprocessed for this study using the open-source Seismic Unix®
software and Echos/Geodepth (Paradigm®) software. Processing
included static corrections, band-pass filtering, geometrical spreading
correction, automatic gain control, horizontal stacking and time
migration. The vertical resolution is ~17m based on a frequency of
23Hz and sound velocity of 1600m s−1.

Multi-channel seismic reflection line IT94A127A was acquired by
RV OGS Explora in 1993–94 using a 3000-m, 120 trace streamer and a
74.8 l, 2 × 20-gun source array. The seismic line was reprocessed for
this study using the open-source Seismic Unix® software and Echos/
Geodepth (Paradigm®) software, with processing including resampling
in timeand space, andband-passfiltering. Seismic line IT94A127Ahas a
vertical resolution of ~13m based on a frequency of 30Hz and sound
velocity of 1600m s−1.

A sound velocity of 1600m s−1 was used to calculate the dimen-
sions of seismic features in metres, includingMTDs on the continental
rise (not crossing site U1523)36.

Submarine landslide volume calculations
Submarine landslide volumes were calculated by creating a digital
elevation model representing the smooth pre-submarine landslide
surface for each submarine landslide scarp (Supplementary Fig. 2)
using ArcGIS v10.7. Interpolation (Topo to Raster tool) was used to
estimate the pre-submarine landslide surface by using depth values
directly adjacent to the failed submarine landslide headwall (Supple-
mentary Fig. 2). The Cut Fill tool was used to deduct the modern-day
bathymetry from the interpolated pre-submarine landslide surface,
providing an estimation of the volume difference between the two
surfaces. A grid cell size of 30-m was used for the interpolated and
modern bathymetry. This calculation provides a minimum submarine
landslide volume as data is limited down-slope of the submarine
landslide headwalls in places. Only volumedifference in regions where
modern-day bathymetry is present were calculated.

Sediment data
Site U1523 was drilled in 828m water depth on the outermost Ross
Sea continental shelf during IODP Expedition 37435. The site includes

five holes (U1523A-E) drilled in close proximity35. Stratigraphic cor-
relation and the composite depth scale incorporates Holes A, B and E
and is based on high-resolution (cm-scale) core scanning X-ray
fluorescence (XRF) analysis87. High-resolution (cm-scale) shipboard
physical property measurements were made on the recovered core
material35. Measurements included: gamma-ray attenuation bulk
density (2.5 cm resolution), MS (2.5 cm resolution), compressional
(P-wave) velocity (2.5 cm resolution), spectral gamma ray (2.5 cm
resolution) and colour reflectance and colorimetry (2.5 cm resolu-
tion). Undrained shear strength measurements were made using a
handheld Torvane. Moisture and density analyses measured wet and
dry bulk density, porosity, and grain density on discrete ~10 cm3

sediment samples every ~75 cm down-core. Post-expedition core
scanning XRF measurements were made using the Avaatech XRF
fluorescence core scanner at the Gulf Coast Repository (1–2 cm
sampling resolution). Elemental ratios Zr/Rb, Ti/Al and ln(Si/Al) were
used as proxies to show variations in grain-size and sediment opal
content63,88.

Grain size of the <1mm fraction was measured every 15 cm down-
core using a Malvern Mastersizer 2000 laser particle size-analyser.
Each 5mm3 subsample was dry sieved using a 1-mmmesh sieve, a 10%
H2O2 solution was added to remove organic material and the samples
were left overnight in a water bath at 60 °C. A 10% solution of sodium
hexametaphosphate was added and ultrasound applied before mea-
surement. To analyse the coarse fraction (>1mm), subsamples of 1 cm3

were manually dry-sieved in a nested stack at half-phi intervals from
1.4–16mm. Grain-size data were analysed using GRADISTAT software
according to the following grain-size intervals: very fine-coarse sand
(1mm–62.5μm), silt (62.5–4μm) and clay (<4μm). The volume mean
grain-size diameter is presented (D4,3). These data alongside post
expedition core descriptions have been used to refine the high-
resolution stratigraphic columns presented here, using the same
classification scheme as ref. 35.

Downhole measurements and core-log-seismic integration
Two downhole-logging runs were carried out in Hole U1523D using a
modified triple combo and FMS-sonic tool strings35. Down-hole
acoustic porosity was derived indirectly from the sonic log (Sonic
derived Porosity, SPHI89). Vp/Vs was derived from the ratio of com-
pressional to shear wave velocity. The log curves were depth matched
using the total gamma-ray log from the triple combo tool string
and depth-shifted to the seafloor35. The data were processed at
Lamond Doherty Earth Observatory following standardised proce-
dures, including removing depth offsets between logging runs, data
conversion and image creation35. Data were visualised using Schlum-
berger Petrel and Techlog software. Discrepancies in the extent of
individual tool measurements downhole are due to different tool
positions along the ~50 m-long tool string35.

Downhole-log data were combined with core analysis from Holes
U1523A, B and E and seismic-reflection data. Lithostratigraphic and
core measurement depths were converted from depth in metres to
two-way-travel time to create adepth-travel time relationshipusing the
Petrel software package, using P-wave calliper point-source velocity
data fromphysical propertymeasurements and in-situ and continuous
sonic velocity data from the Dipole Sonic Imager collected during
downhole-logging operations35.

Chronology
A revised chronology was developed for IODP Site U1523 (Supple-
mentary Fig. 8) basedondiatom, radiolarian, andmarine palynomorph
(dinocyst) biostratigraphic events presented in Supplementary
Table 1. The revised chronology benefits from the addition of diatom
analyses at 20–40 cmsample spacing,which resulted in the additionof
diatom events, and adjustments to the depth of biostratigraphic
events. Radiolarian and dinocyst events are from shipboard results35,
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and two magnetic polarity reversals35 were also identified shipboard
(Supplementary Table 1).

A series of four holes at Site U1523 resulted in the development of
a composite section87. Core recovery in each hole is presented in
metres in Supplementary Fig. 8, relative to core depth below seafloor
(CSF-A)35. First Appearance Datum (FAD) and Last Appearance Datum
(LAD) events areplotted on Supplementary Fig. 8 as arrowspointing to
the left or right, respectively, which help constrain an interpreted age-
depth line of correlation that accommodates the biostratigraphic
constraints and the two magnetic polarity events. Vertical lines reflect
uncertainty in location of the biostratigraphic event due to wide
sample spacing from shipboard samples or due to gaps in core
recovery. The ages assigned to biostratigraphic events are derived
from the Proceedings of the IODP Expedition 374 volume35.

Two segments of a linear age-depth line of correlation are pre-
sented in Supplementary Fig. 8 which represent a preferred inter-
pretation for the composite of holes from Site U1523 to accommodate
the available data. The upper interval between 0 and 21.70m CSF-A is
interpreted to represent the time interval from 0 to 1.78Ma, with an
average sediment accumulation rate of 1.219 cmkyr−1 (~72% core
recovery). The lower interval between 21.70 and 48.52m CSF-A is
interpreted to represent the time interval from 1.78Ma to 2.58Ma,with
an average sediment accumulation rate of 3.352 cmkyr−1 (~52% core
recovery).

Most of the samples examined for diatombiostratigraphy contain
poorly preserved diatoms with an abundance of inferred and obvious
reworking. Of note are two diatom-rich intervals with excellent pre-
servationat 61 and62.1mCSF-A. In selecting the depth of FADand LAD
events, preference was given to the biostratigraphic information
derived from the discrete, rare, and discontinuous samples that yiel-
ded rich and diverse diatom assemblages. These were interpreted to
result fromprimary sedimentation fromsurfacewaters to the seafloor,
with only minimal modification by glacial and transport (reworking)
processes (e.g. no fragments, pristine tests, etc.). These rich diatom-
rich samples are inferred to reflect seasonally open marine conditions
above Site U1523.

The coincident occurrence of numerous biostratigraphic LAD and
FAD events at the boundary between Lithological Units II and III indi-
cates the presence of a disconformity spanning the time interval from
8.2 to 4.1Ma. The position and slope of the segment of the age-depth
correlation in Unit III is transferred from that of the shipboard age
model35.

Weak layer and submarine landslide chronology
Theminimumweak layer ages are basedon core-seismic correlationby
tracing the horizons directly beneath the submarine landslide scarps
into the undisturbed sedimentary sequence to Site U1523. Where an
age range is presented, this represents the minimum-maximum weak
layer age range, based on dating constraints (Fig. 9; Supplementary
Fig. 8)35. Theminimum submarine landslide ages are based on the ages
of the post-failure reflectors (hemipelagic sediments that immediately
overlie the submarine landslide scarps:20 S1Top, S1bTop and S2Top) traced
into the undisturbed sedimentary sequence to Site U1523. The U1523
age model, alongside the published record from ANDRILL53,60, were
used to constrain the weak layer and submarine landslide ages.

Chronologic uncertainty intervals for the weak layers and mini-
mum submarine landslide ages are shown on the U1523 age model as
vertical lines highlighting uncertainty (Fig. 9; Supplementary Fig. 8).
Uncertainty occurs because biostratigraphic and magnetic polarity
datums were used to calculate ages, which are affected by sample
spacing, core gaps and fossil reworking35. Uncertainty is also intro-
duced during core-seismic integration due to seismic resolution (ver-
tical resolution is 3m) and low sediment deposition rates (e.g.
1.219–3.352 cmkyr−1; Fig. 9). Uncertainties due to core-seismic inte-
gration are calculated by the limit of seismic resolution/sedimentation

rate20. We use the U1523 age model tie points closest to each of the
submarine landside scarps to calculate the rate of sediment deposition
of the overlying deposits (Fig. 9).

Data availability
IBCSO v2 bathymetric data is available via the Pangaea library: https://
doi.org/10.1594/PANGAEA.937574. Seismic-reflection profiles used in
this study are provided in Supplementary Figs. 3–7 and are available
through the Antarctic Seismic Data Library System (SDLS): https://sdls.
ogs.trieste.it/cache/index.jsp. Figs. 5–8 have accessible data that can
be obtained in raw format from the IODP LIMS database: https://web.
iodp.tamu.edu/LORE/. The grainsize data generated in this study has
been deposited in the PANGAEA database: PDI-34376. The datum
points of biostratigraphic events used in the revised age model are
provided in Supplementary Table 1.
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