

Faculty of Science and Technology
Department of Computer Science

Product Tracing in the Norwegian Fishing Industry Supply Chain

Utilizing GoQuorum Blockchain and Smart Contracts

Erik Godtliebsen
INF-3981 Master's Thesis in Computer Science – June 2023

i

List of Tables .. ii

List of Figures ... iii

Acknowledgements .. v

Abstract ... vi

1 Introduction .. 1

1.1 Problem definition ... 2

1.2 Context... 2

1.3 Method ... 3

1.4 Scope and limitations... 4

1.5 Outline ... 4

2 Related work .. 5

3 Background .. 9

3.1 Blockchain ... 9

3.2 Ethereum .. 11

3.2.1 Smart contracts ... 13

3.2.2 Decentralized Applications .. 14

3.2.3 Ethereum clients ... 14

3.3 GoQuorum ... 16

3.3.1 Consensus Protocols ... 17

3.3.2 Istanbul Byzantine Fault Tolerance Consensus ... 18

3.3.3 Docker and Quorum Developer Quickstart .. 19

3.4 Product tracing ... 19

3.4.1 Food and Agriculture Organization.. 20

3.4.2 EAN-13 .. 20

4 Design & Implementation .. 23

4.1 GoQuorum network ... 24

ii

4.2 Smart contracts .. 24

4.2.1 Product Registration Contract .. 26

4.2.2 Batch Addition Contract ... 27

4.2.3 Transaction Update Contract .. 29

4.3 API servers .. 30

4.4 Simulating the supply chain .. 35

5 Evaluation ... 39

5.1 Results ... 40

6 Discussion .. 49

6.1 Security analysis .. 49

6.2 Comparison to related work .. 52

6.3 Reflection on thesis results .. 54

7 Conclusion .. 56

7.1 Concluding remarks ... 56

7.2 Future work.. 56

References .. 57

List of Tables

Table 1: Overview of the reviewed product tracing systems ... 5

Table 2: Explanation for the fields in Figure 2 .. 12

Table 3: EAN-13 product code description .. 21

Table 4: API endpoints for Directorate of Fisheries .. 32

Table 5: Overview of the experiments conducted, the metrics collected, and their purpose. .. 39

Table 6: Hardware specifications for the server used to benchmark the system. 40

Table 7: Response time for API endpoints used to register products, add batches, update

transaction histories, as well as the time required to run the supply chain simulation script. . 44

Table 8: Overview of identified threats and the proposed mitigation strategies 50

iii

List of Figures

Figure 1: Bitcoin blockchain .. 10

Figure 2: Transaction and transaction receipt in JSON format. ... 11

Figure 3: EAN-13 barcode ... 21

Figure 4: Simplified supply chain of the Norwegian fishing industry 23

Figure 5: Overview of the participants in the GoQuorum network ... 24

Figure 6: Data structure and product event used in PRC. .. 26

Figure 7: Smart contract code for registering a product. .. 27

Figure 8: Data structure and event used in BAC. ... 28

Figure 9: Smart contract code for adding a batch. ... 29

Figure 10: Data structure and event used in TUC. ... 30

Figure 11: Smart contract code for updating the transaction history of a batch. 30

Figure 12: Linking fish batch and product batch transaction histories. 33

Figure 13: Flow chart for updating the batch transaction history. ... 34

Figure 14: Flow chart for the supply chain simulation script. ... 36

Figure 15: Accessing the transaction history. .. 37

Figure 16: PC screenshot displaying the page consumers view by scanning QR codes. 37

Figure 17: Smartphone screenshot displaying the page consumers view by scanning QR

codes. .. 38

Figure 18: Transaction throughput when registering products in the PRC for different number

of validators under varying workloads. .. 41

Figure 19: Transaction throughput when adding batches in the BAC for different number of

validators under varying workloads. .. 42

Figure 20: Transaction throughput when updating transaction histories in the TUC for

different number of validators under varying workloads. .. 42

Figure 21: The average latency for smart contract transactions for various workloads. 43

Figure 22: Average API server latency for retrieving product histories for various workloads.

 .. 44

Figure 23: A time series line chart displaying the servers CPU utilization during idle and

heavy workloads. .. 45

iv

Figure 24: The average memory utilization by validators (left) and regular nodes (right)

during idle and heavy workloads. .. 46

Figure 25: The average network traffic for validators (left) and regular nodes (right) during

idle and heavy workloads. .. 46

Figure 26: The average LevelDB I/O for validators (left) and regular nodes (right) during idle

and heavy workloads. ... 47

Figure 27: The average disk I/O for validators (left) and regular nodes (right) during idle and

heavy workloads. .. 47

v

Acknowledgements

I would like to express my sincerest thanks to my supervisor, Professor Håvard Dagenborg. His

guidance, insightful feedback, and encouragement throughout this thesis have been essential.

To my friends whom I have studied and played table tennis with these past five years, I express

my heartfelt thanks. Your friendship and competitive spirit made this journey memorable.

Lastly, my deepest gratitude goes to my parents for the constant encouragement and loving

support I have received.

vi

Abstract

The Norwegian fishing industry faces a significant issue of fishery crimes, with product

traceability systems presenting a potential solution to counter these illegal activities. Current

supply chain management in the seafood industry is vulnerable to information alterations,

thereby complicating product traceability. Blockchain technology, with its unique properties,

offers an interesting approach to address these challenges. Despite this, existing blockchain-

based product traceability systems often fail to integrate government regulation and provide

limited access to traceability data for consumers. Moreover, those providing such access often

lack user-friendliness. This thesis explores if a blockchain-based product traceability system

can support supply chain management, enhance consumer confidence, and enforce regulatory

compliance. We conducted a review of existing literature and assessed the potential of

blockchain technology to optimize supply chain management. Furthermore, a traceability

system, entitled SeaChain, incorporating a permissioned blockchain, smart contracts, and

governmental regulations was developed. We evaluated this system and compared it with

existing systems. Our findings suggest that blockchain technology can enhance supply chain

management, bolster consumer trust, and aid in mitigating fishery crimes. The research

conducted provides valuable insights for improving supply chain management and contributes

to future studies in this field.

Page 1 of 59

1 Introduction

Norway holds a prominent position as one of the world’s leading seafood-exporting nations. In

2022, the country exported nearly 3 million tons of seafood, generating revenues of

approximately 150 billion NOK [1]. The fishing industry plays a crucial role in the Norwegian

economy, providing a significant source of income and employment opportunities. Moreover,

the exported seafood serves as an essential food supply for countries that import Norwegian

seafood products. Unfortunately, the fishing industry faces challenges posed by illegal fishing

activities. Fishery crimes have significant consequences, leading to substantial economic

losses, over-exploitation of marine resources, and environmental degradation. Additionally,

these crimes threaten global food security by obscuring the origin and processing methods of

products [2].

One potential solution to mitigate fishery crimes is the implementation of a product tracking

system incorporating provenance data throughout the fishing industry supply chain. Such a

system can not only help ensure regulatory compliance by businesses but also enhance

consumer confidence in food products. Supply chains can be quite complex, often involving a

multitude of enterprises that collaborate and interact at various stages of the production and

distribution process. In traditional supply chain management, data is primarily recorded by each

enterprise in a centralized database to which only the respective enterprise has access [3]. This

not only allows for easy data manipulation, which can be exploited to serve the enterprise’s

interests, but it also poses a significant obstacle for government entities attempting to monitor

and detect illegal activities within the supply chain. Consequently, it leads to mistrust between

enterprises and results in inconsistent information throughout the supply chain. Traditional

product tracking systems face challenges due to these shortcomings in supply chain

management.

Blockchain technology presents innovative approaches for tracking products within supply

chains. Blockchain’s decentralized, transparent, and immutable nature addresses the limitations

of traditional supply chain management [3]. By integrating smart contracts into the blockchain

network, various processes can be automated, eliminating the need for intermediaries. This

combination of blockchain technology and smart contracts enable secure and immutable

product tracing throughout the supply chain, ensuring no authority or enterprise can manipulate

data.

Page 2 of 59

In this thesis, a proof-of-concept, smart contract-based product traceability system, dubbed

SeaChain, has been developed and tailored for the Norwegian fishing industry. SeaChain, built

upon the GoQuorum blockchain, is designed to trace fish and associated products in batches

using the smart contracts. The GoQuorum network comprises supply chain organizations and

the Directorate of Fisheries, a government-controlled regulatory body. SeaChain enhances

consumer confidence by providing QR codes on products, which can be scanned to view

comprehensive transaction histories and provenance data.

1.1 Problem definition

Fishery crimes in the Norwegian sea pose significant challenges to the Norwegian fishing

industry. A system capable of preventing or reducing these illegal activities would be highly

beneficial. Blockchain technology and smart contracts have the potential to address these issues

by enhancing the transparency, security, and data integrity of the supply chain.

Our thesis is:

“A blockchain-based traceability system utilizing smart contracts can address the limitations

of traditional supply chain management by providing secure and transparent tracking, leading

to enhanced consumer confidence and regulatory compliance.”

To strengthen the thesis, our research will pursue the following objectives:

1. Implement a proof-of-concept product traceability system for the Norwegian fishing

industry using blockchain technology and smart contracts.

2. Assess whether such a system can improve the Norwegian fishing industry supply chain

and help reduce fishery crimes.

1.2 Context

This thesis is set within the context of the Cyber Security Group (CSG) at UiT The Arctic

University of Norway. CSG is a research group that tackles fundamental challenges within the

domain of distributed systems. Its primary objective is to develop robust methodologies for the

design and implementation of reliable and efficient distributed systems. Furthermore, CSG

focuses on the application of digital technology in various sectors, such as clinical medicine

and financial fraud prevention [4, 5].

Page 3 of 59

In recent years, CSG has been actively involved in numerous projects aimed at mitigating fraud

in the fishing industry [6-8]. This thesis specifically explores the application of blockchain

technology, a type of distributed system, with the goal of mitigating fishery crimes. The focus

of this work naturally aligns with the ongoing research interests and objectives of CSG.

1.3 Method

In 1989 the Task Force on the Core of Computer Science released a report on how to divide the

discipline of computing into three major paradigms. These paradigms are theory, abstraction,

and design [9]. An explanation of each paradigm is provided below.

The theory paradigm, rooted in the principles of mathematics, adheres to the following four-

step process for developing a coherent and valid theory:

1. Definition – Characterize the objects of study.

2. Theorem – Formulate hypotheses about potential relationships among the identified

objects.

3. Proof – Evaluate the theorems, proving or disproving them.

4. Interpretation – Interpret the results obtained from the proof stage.

The abstraction (or modeling) paradigm, which is based on the experimental scientific method,

follows this four-step process to investigate a phenomenon:

1. Hypothesis – Formulate a hypothesis about the phenomenon being researched.

2. Model & Predict – Construct a model based on the hypothesis and make a prediction

about its behavior or outcomes.

3. Experiment & Data Collection – Design an experiment to test the model and collect

relevant data.

4. Analysis – Analyze the results from the experiment and data collection stage.

The design paradigm is based on engineering principles and uses the following four steps in the

construction of a system intended to solve a given problem:

1. Requirements – State the requirements that the system needs to meet.

2. Specifications – Outline the detailed specifications that guide the system’s design and

functionality.

Page 4 of 59

3. Design & Implementation – Design the system according to the stated specifications

and implement it.

4. Testing - Conduct thorough testing to ensure the system functions as intended and meets

the requirements and specifications.

In our research, we incorporate elements of the abstraction and design paradigms to investigate

the problem posed in our thesis statement. We have formulated a hypothesis and made a

prediction of its outcome. While we do not perform an experiment in a real-world scenario, we

have designed and tested a product tracing system, which aims to address the challenges related

to supply chain management and fishery crimes. Despite the lack of real-world

experimentation, our methodology remains comprehensive, ensuring the system operates as

intended.

1.4 Scope and limitations

We make two key assumptions regarding the product tracing system:

1. Each fishing vessel is equipped with an onboard system that automatically gathers data

related to the species and weight of fish caught, as well as the GPS location of the boat.

2. All connections between applications are assumed to be secure, employing modern

cryptographic protocols and standards, such as TLS, to ensure data integrity and

confidentiality.

1.5 Outline

Section 2 reviews existing product tracing systems and explores the role of blockchain

technology in supply chain management.

Section 3 provides the necessary theoretical background to understand the work presented in

this thesis.

Section 4 presents the design and implementation of SeaChain, the product tracing system

developed in this thesis.

Section 5 evaluates the performance of the components used in building SeaChain.

Section 6 conducts a security analysis of SeaChain, compares it to existing product tracing

systems, and reflects on the achievements of this thesis.

Section 7 concludes the thesis and outlines potential areas for future work.

Page 5 of 59

2 Related work

This section explores research related to the application of blockchain technology within supply

chain management. The primary objective is to examine existing product tracing systems, as

well as to study blockchain technology’s role in supply chain management. The goal is to gain

a comprehensive understanding of the research field and to establish a context for the work

conducted in this thesis with respect to the existing literature. The primary criteria for selecting

the reviewed papers in Table 1 include their recency and relevance to the use of blockchain in

supply chain management. This section is structured to provide an overview of each selected

paper individually. A comparative analysis between the reviewed product tracing systems and

SeaChain will be presented in Section 6.2.

Authors Paper Technology

Wang et al. [3] Smart Contract-Based Product Traceability System

in the Supply Chain Scenario

Public blockchain,

smart contracts

Ding et al. [10] Permissioned Blockchain-Based Double-Layer

Framework for Product Traceability System

Permissioned and

private blockchain,

smart contracts

Madumidha et al.

[11]

A Theoretical Implementation: Agriculture Food

Supply Chain Management using Blockchain

Technology

Public blockchain,

smart contracts,

IoT

Malik et al. [12] ProductChain: Scalable Blockchain Framework to

Support Provenance in Supply Chains

Permissioned

blockchain

Lin et al. [13] Food Safety Traceability System Based on

Blockchain and EPCIS

Public blockchain,

smart contracts

Salah et al. [14] Blockchain-Based Soybean Traceability in

Agricultural Supply Chain

Public blockchain,

smart contracts

Table 1: Overview of the reviewed product tracing systems

Wang et al. [3] designed a product traceability system built on top of the Ethereum blockchain

for supply chain management. The system utilizes smart contracts to enable smooth information

flow and trace transactions throughout the supply chain. To view the transaction history of a

product, a consumer must join the blockchain network as a node and interact with a webpage

that requires manual input. The authors proposed an event response mechanism to guarantee

Page 6 of 59

the validity of a transaction by verifying the identities of both parties, but this mechanism was

not implemented. Updating the transaction history of a product requires human interaction

through a front-end webpage that interacts with the smart contracts. The system tracks materials

and products separately but fails to create a link between them. Consequently, while a product

can be traced back to its manufacturer, the origin of the materials used in the product remains

untraceable.

Ding et al. [10] identify several issues with existing product traceability systems, such as a lack

of consideration for government regulation, difficulties in protecting sensitive enterprise data,

and performance bottlenecks. To address these challenges, they propose a product traceability

scheme based on a permissioned blockchain within a double-layer framework. The primary

layer comprises a consortium blockchain, while the secondary layer consists of private

blockchains belonging to individual enterprises. These layers employ smart contracts to

facilitate government regulation and update product traceability information. The two layers

are connected by key nodes, which are responsible for maintaining both the consortium

blockchain in the primary layer and the private blockchain in the secondary layer. The authors

claim that their double-layer framework can reduce regulatory costs, protect sensitive data,

improve performance of product data querying, enhance scalability, and ensure tamper

resistance. However, the framework does not present a mechanism for consumers to access the

product traceability data, resulting in no consumer accessibility.

Madumidha et al. [11] present a theoretical description of a system that leverages the Ethereum

blockchain, smart contracts, and Internet of Things (IoT) technology to enable food traceability

in the agriculture supply chain. The authors review major drawbacks of traditional supply chain

management, including the lack of traceability and concerns surrounding food safety. They

argue that implementing a food traceability system can enhance transparency, streamline

management, and bolster trust between consumers and suppliers. As part of this system, they

consider the use of an app to display product traceability data to consumers, thus increasing

accessibility. Furthermore, they claim that traceability can help minimize errors and mitigate

unethical and illegal activities.

Malik et al. [12] proposed a consortium-based blockchain framework, dubbed ProductChain,

designed to enable consumers and stakeholders to trace the origin of products. The blockchain

network consists of government regulatory bodies and the key entities within the supply chain.

Featuring a three-tiered architecture, the system employs sharding to address scalability

Page 7 of 59

concerns. The framework incorporates a transaction vocabulary that allows a final product to

be linked to multiple raw ingredients, as well as access control mechanisms that ensure no

single participant dominates the blockchain. The system leverages QR codes on products for

consumers to retrieve traceability data. However, the interface used to display data is not

showcased, leaving the accessibility to consumers somewhat unclear. Additionally, the authors

conducted a security analysis demonstrating the system’s resilience against a wide variety of

client and network-based attacks.

Lin et al. [13] designed a food safety traceability system, leveraging blockchain technology and

the Electronic Product Code Information Services (EPCIS). Their system enables consumers to

query product data using a product code and a smart contract address. Unfortunately, the

authors do not explain this process in detail or display what the consumer interface looks like.

To mitigate the issue of data explosion arising from rapid accumulation of data in the

blockchain, their system integrates dynamic management of on-chain and off-chain data. Smart

contracts are employed to protect sensitive information and prevent data tampering. The authors

developed a prototype utilizing the Ethereum blockchain and compared its performance with

existing traceability systems. Their evaluation results demonstrate that the proposed system

outperforms three others in terms of tamper-resistance, privacy protection, centralization, and

the volume of data stored on-chain.

Salah et al. [14] present a versatile framework utilizing the Ethereum blockchain and smart

contracts for tracking, tracing, and executing business transactions within the soybean

agricultural supply chain. The framework is designed to remove the need for intermediaries and

trusted centralized authorities. Its generic design enables the implementation of trusted and

decentralized traceability for a wide range of crops and products in the agricultural supply

chain. The authors claim that their system offers enhanced transparency and traceability in a

secure, reliable, and efficient manner. Despite these advances, the framework does not provide

a method for consumers to view traceability data for products. The framework also does not

address critical challenges in blockchain technology, including scalability, governance,

privacy, standards, and regulations. In future research, the authors aim to address these issues

and incorporate proof of delivery and automated payments into their system.

In conclusion, this section has reviewed various studies that focus on blockchain-based supply

chain management, particularly with respect to product tracing systems. The reviewed literature

highlights key issues in supply chain management and demonstrates how the combination of

Page 8 of 59

blockchain technology and smart contracts can improve transparency, traceability, and security.

Furthermore, the studies suggest that food traceability systems can enhance management

efficiency, foster trust between suppliers and consumers, and reduce illegal activities within the

supply chain. Despite these benefits, it is evident that many existing product tracing systems

still have issues related to scalability, governance, privacy, and regulations. By building upon

the insights gained from the reviewed literature, this thesis aims to contribute to the

advancement of product tracing systems by addressing some of these challenges. A comparative

analysis between the reviewed systems and SeaChain will be presented in Section 6.2.

Page 9 of 59

3 Background

This section provides the necessary theoretical foundation required for understanding the work

presented in this thesis. It is designed to address any questions that may have arisen from

Section 2 and to deepen the reader’s knowledge of blockchain technology. After reading both

Section 2 and this section, the reader should have a solid understanding of blockchain

technology and its application in supply chain management. The section begins with an

introduction to blockchain technology, followed by an explanation of the Ethereum blockchain,

smart contracts, and decentralized applications. The focus then shifts to the GoQuorum

blockchain, which is built on top of Ethereum and forms the backbone of the work presented

in this thesis. Essential properties of consensus protocols are examined before delving into the

specific consensus protocol used in this thesis. The section concludes with an explanation of

product tracing, provenance data, and international standards for unique identifiers.

3.1 Blockchain

Blockchain technology is a type of Distributed Ledger Technology (DLT) characterized by

decentralized databases operating as Peer-to-Peer (P2P) networks without a central authority.

Users within the network share, replicate, and synchronize data using a consensus algorithm

[15]. The term blockchain first emerged in the whitepaper for Bitcoin, the world’s first

cryptocurrency [16]. A cryptocurrency is a type of digital currency that uses cryptography for

security and enables parties to transfer funds without relying on a financial institution [16, 17].

In a blockchain, transactions are grouped together and stored in blocks, which are then linked

to one another using cryptographic hashes [15]. This structure creates an immutable chain of

records that is infeasible to alter without controlling the majority of the nodes in the network.

The first block created is the foundation of the blockchain and is denoted as the genesis block.

Every block contains metadata, but this data may vary a lot depending on the blockchain

platform. Typical metadata are block numbers, a hash to the previous block, and a timestamp

for when the block was created. Figure 1 shows an example of how the blocks in Bitcoin are

linked together. A block contains metadata and a list of its recorded transactions. The hash

pointing to the previous block is created by using the SHA256 algorithm on the metadata of the

previous block [16].

Page 10 of 59

Figure 1: Bitcoin blockchain

The three main types of blockchains are public, private, and consortium [15, 18]. Public

blockchains do not have admission control that regulates who can join the network. This means

anyone can become a node in the network and read and write transactions. Private blockchains

enforce strict access control and only allow authorized users to participate. Typically, a single

authority controls the network and access to data is restricted to members. Private blockchains

are more centralized than the public variants but still provide useful features such as data

immutability and auditability. Consortium blockchains, also known as permissioned

blockchains, are a hybrid between public and private blockchains, controlled by a group of

organizations or entities. The governing group decides on the rules, permissions, and who can

participate in the network. Consortium blockchains can be used when multiple parties need to

collaborate without there being any third-party that is trusted by each member [18].

The choice of consensus algorithm for a blockchain is crucial, as it heavily impacts the

performance of the blockchain. This includes metrics like transaction verification speed,

transaction throughput, block creation speed, and scalability. Furthermore, the consensus

algorithm affects security, energy efficiency, and accessibility [19]. Bitcoin and Ethereum are

the most well-known public blockchains, and both initially used the consensus algorithm Proof

of Work (PoW) [16, 20, 21]. However, as of 2022, Ethereum has switched to Proof of Stake

(PoS), an algorithm that offers better energy efficiency, reduced hardware requirements, and

increased security [22]. GoQuorum is an example of a blockchain that can be configured as

either private or consortium-based. This blockchain supports multiple Proof of Authority (PoA)

consensus algorithms, such as Clique and Istanbul Byzantine Fault Tolerance (IBFT) [23].

In summary, blockchains offer key properties such as decentralization, immutability, security,

transparency, and consensus. These properties make blockchains suitable for use in various

industrial sectors, including agriculture, healthcare, and supply chain management [15].

Page 11 of 59

3.2 Ethereum

Ethereum is a decentralized blockchain platform featuring an embedded computer called the

Ethereum Virtual Machine (EVM). Every node participating in the network maintains a copy

of the EVM state, ensuring consensus on its current state. The EVM is Turing-complete,

meaning it can execute any algorithm provided sufficient time and resources, enabling complex

computations [20]. In comparison to Bitcoin, which primarily serves as a cryptocurrency

platform, Ethereum offers a more modern and versatile blockchain solution.

To interact with the Ethereum network and send transactions, you must have an account. There

are two types of accounts in Ethereum: Externally Owned Accounts (EOA) and Contract

Accounts. Both types of accounts have a unique public address that serves as an identifier for

the account. The account address is a 42-character hexadecimal string that starts with a "0x"

prefix. An EOA can be controlled by anyone who possesses the private keys associated with

the account. In contrast, a Contract Account is associated with a smart contract and is controlled

by the code within the contract [22].

An Ethereum transaction is initiated by an EOA and contains instructions to be executed on the

blockchain. Transactions can be categorized as regular transactions, contract deployment

transactions, or contract execution transactions. A regular transaction could e.g. involve

sending cryptocurrency from one account to another. Contract deployment transactions occur

when a smart contract is deployed, while contract execution transactions refer to any transaction

that interacts with a deployed smart contract [22]. Figure 2 shows an example of a transaction

and transaction receipt from interacting with a smart contract. Table 2 provides an explanation

of the various fields displayed in Figure 2.

Figure 2: Transaction and transaction receipt in JSON format.

Page 12 of 59

Field Explanation

from The Ethereum address of the account that sent the transaction.

to The Ethereum address of the smart contract.

gas The amount of gas the sender is willing to spend on the transaction.

gasPrice The price of the gas for the transaction.

nonce A number representing the total amount of transactions sent from the

sender’s address.

data The input data for the transaction, e.g., a smart contract function call and

the provided arguments.

transactionHash A unique hash identifier for the transaction.

blockNumber The block the transaction was included in.

transactionIndex The index position of the transaction inside of the block.

status A Boolean indicating if the transaction was successful or not.

gasUsed The gas consumed by the transaction.

cumulativeGasU

sed

The total amount of gas used in the block after the transaction was

executed.

logs An array containing log objects generated by the transaction. These log

objects represent events that were emitted by the smart contract while

executing the transaction.

logsBloom A 256-byte bloom filter that is a compact representation of the logs

included in the transaction receipt. The bloom filter enables efficient

searching and filtering without processing the entire logs array.

Table 2: Explanation for the fields in Figure 2

In Ethereum, gas measures the amount of computational effort needed to execute specific

operations on the blockchain. All transactions require computational resources, and therefore

each transaction has a gas fee. These fees are paid in Ethereum’s native currency, ether (ETH)

[22]. The nodes that participate in the network and add transactions to the blockchain are

compensated for their work with transaction fees, which are calculated based on the gas used

and paid in ETH. The concept of gas exists to manage the network’s resources efficiently, create

incentives for nodes that perform computations, and provide a flexible pricing model.

The blocks in Ethereum are linked together similarly to Bitcoin in terms of their chain structure,

with the linking process explained in Section 3.1. One difference between the blocks in these

Page 13 of 59

two blockchains is the metadata they store. Ethereum blocks contain more metadata that can

for example provide information about the state of the network. Just like each transaction

receipt contains a bloom filter, each block also has a bloom filter. This filter enables clients to

quickly search and check if a specific smart contract event occurred without having to process

all the transactions stored in the block.

3.2.1 Smart contracts

A smart contract is a program that executes when certain predefined rules or conditions are met.

This establishes trust and security while also eliminating the need for intermediaries. Smart

contracts are a key feature of Ethereum and once deployed, smart contract code resides on-

chain and cannot be changed or modified. However, developers do have techniques that can be

used to upgrade the contracts. One technique for upgrading a smart contract is to transfer the

state and functionality to another smart contract [22]. This process is typically performed

through a script that deploys a new contract, copies all the necessary data to the new contract

and updates all references in other contracts to point to the new contract.

An Ethereum smart contract is deployed by sending a transaction containing the compiled smart

contract bytecode without specifying any recipient [22]. The bytecode is machine-readable

code used by the EVM to execute the contract’s code. To interact with a smart contract, you

need to have access to the contract’s Application Binary Interface (ABI). An ABI is a JSON

representation of the functions, events, and other contents of the smart contract. The ABI

defines how to interact with the smart contract and acts as a bridge between external

applications and the contract’s binary code [22]. Without a contract’s ABI, external applications

will not know how to encode and decode data sent and received from the smart contract.

Most Ethereum smart contracts are written in a programming language called Solidity [22]: a

statically typed high-level language inspired by C++, Python, and JavaScript. Compiling a

contract creates the smart contract’s ABI and bytecode. In Solidity, smart contract events are

named data structures which can be emitted during execution of a transaction. Events allow the

contract to emit information to external applications that are not connected to the blockchain.

The parameters in the data structure can be marked with the indexed keyword to make searching

for them in transaction logs more efficient. Applications can set up an event listener that queries

the logs and filters for specific events and indexed parameters [24]. Events can thus help

broadcast information to other applications and be used to monitor and react to specific events

in smart contracts.

Page 14 of 59

Retrieving data from Solidity smart contracts can also be done through functions that are read-

only, denoted view functions. These functions do not modify the state of the blockchain,

meaning that they do not require a transaction to be executed and do not consume gas. Since

no transaction is executed when reading data, an account is not necessary. This can be

convenient for applications that only want to read data from the blockchain.

3.2.2 Decentralized Applications

Together, the EVM and smart contracts make it possible to create more advanced blockchain

applications such as decentralized applications (DApp). The backend code of a DApp is the

smart contract code which runs on the blockchain, rather than on a centralized server. This

means that the blockchain serves as both a data storage mechanism and a platform for executing

the application’s logic [22]. DApps offer many benefits such as zero downtime, identity

privacy, and complete data integrity. In addition, smart contracts are guaranteed to execute in

predictable ways, which provides verifiable behavior. A few drawbacks are the performance

overhead from all nodes having to validate every transaction and network congestion that can

occur when the network is overwhelmed with transactions. Maintenance of DApps can also be

difficult since a smart contract cannot easily be updated once deployed.

Web3.js is a popular JavaScript library which is often used for developing DApps. The library

enables you to interact with a local or remote Ethereum node through HTTP, IPC or WebSocket

[25]. Web3.js provides functionality for creating Ethereum accounts, generating cryptographic

keys, and signing and sending transactions. In addition, it can be used to deploy and interact

with smart contracts deployed on the Ethereum blockchain. Developers can use the library to

create contract instances and call methods in the contracts. Event listeners can also be set up to

listen for specific smart contract events. The library can be used in both server-side and

browser-based applications.

3.2.3 Ethereum clients

There are several different Ethereum clients available that allow nodes to connect and join the

Ethereum network. All these clients follow the same protocol specifications to ensure

compatibility within the network. Geth is one of the original Ethereum implementations and is

written in the Go programming language. Geth handles transactions, deployment and execution

of smart contracts, contains an EVM, and supports various consensus mechanisms. To turn a

machine into an Ethereum node Geth can be installed, configured, and run according to the

Page 15 of 59

appropriate guidelines [26]. Every Ethereum client implements a JSON-RPC API, which is

used by applications to interact with the Ethereum blockchain. JSON-RPC is a stateless Remote

Procedure Call (RPC) protocol [22]. Libraries like Web3.js use this API to interact and

communicate with the Ethereum clients.

The three different types of nodes an Ethereum client can run are full, lightweight, and archive

nodes. A full node stores the full blockchain data, but periodically prunes the data, meaning it

does not store state data back to the genesis block. The full node validates every block and

transaction in the blockchain and provides data on request. A lightweight node only downloads

the block headers and utilizes full nodes for other necessary information. These nodes do not

participate in the consensus algorithm but can independently verify data they receive based on

the state roots stored in the block headers. The benefits of lightweight nodes include not

requiring powerful hardware and consuming less bandwidth. Additionally, a lightweight node

can access the blockchain with the same security guarantees and functionality as a full node.

An archive node stores everything a full node does and creates an archive of historical states.

This type of node is necessary when someone wants to query data stored in old blocks. The

drawback of archive nodes is that they are more resource-intensive since they typically store

terabytes of data. Despite this, archive nodes are still incredibly useful for services like block

explorers and chain analytics [22].

Regardless of the type of node (full, lightweight, or archive), all Ethereum nodes need to

manage and store the network state. One of the key data structures that enable this is the Merkle

Patricia Trie (MPT), which contains critical information about accounts, storage, smart contract

code, and transaction receipts. The MPT data structure is a combination of a Merkle tree and a

radix tree. A Merkle tree is a data structure that uses cryptography to enable efficient and secure

verification of large data sets [27]. Radix trees are efficient and space-optimized data structures

used for key-value storage [28].

Combining a Merkle tree and a radix tree enables efficient storage and retrieval of state data

and provides cryptographic verifiability [22]. Note that the metadata in Ethereum blocks

contain a state root, which is the hash of the MPT. Each time a node updates the state, the MPT

is modified, and the resulting root hash is included in the block. This means that the network

state is secured and cryptographically verified by the consensus algorithm. Ethereum clients

store the block data and MPT on disk. Geth, which is a popular client, uses LevelDB to store

its data. LevelDB is a key-value storage that has ordered mapping from string keys to string

Page 16 of 59

values. The database was developed by Google and is optimized for high write and read

performance [29].

3.3 GoQuorum

GoQuorum, also known as Quorum, is an open-source Ethereum client that can be used to run

both private and permissioned networks. It is a lightweight fork of the Geth client and

implements proof of authority consensus mechanisms [30]. GoQuorum shares many

similarities with Geth like following the Ethereum protocol, supporting smart contracts, using

an EVM, and it is written in the Go programming language. This means that core functionality

like how transactions are processed, how smart contracts execute, how data is stored on disk,

and interaction between nodes are the same in GoQuorum and Ethereum.

There are a few differences between GoQuorum and Ethereum since GoQuorum is designed

for private and permissioned networks. The consensus algorithms are PoA oriented, and the

available algorithms are IBFT, Clique, and Quorum Byzantine Fault Tolerance (QBFT). The

P2P layer is changed so only nodes with permission can join the network. GoQuorum has added

support for private transactions and private smart contracts, which are only visible to a specified

group of participants. To enable both public and private transactions, the MPT has been split

into a public MPT and a private MPT [30]. The private transactions and private smart contracts

are handled by Tessera, which is a private transaction manager. Each of the GoQuorum clients

has a Tessera component that runs alongside it. This means all regular nodes have a Tessera

component that can encrypt, decrypt, and distribute private transactions to other nodes.

Although the block contents in GoQuorum and Ethereum are similar, the PoA consensus

algorithms and private transactions result in block generation and block validation to be

significantly different [30]. Another difference is that GoQuorum is by default configured to be

a zero-gas network. This means that the pricing of gas is removed, but the concept of gas itself

remains. Since GoQuorum is designed for private and consortium-based networks, there is no

need to incentivize nodes using gas.

The two main types of nodes in GoQuorum are known as validators and regular nodes.

Validators participate in the consensus process and are responsible for validating transactions

and blocks. Regular nodes store a full copy of the blockchain and can send transactions that are

handled by validators. The regular nodes provide the RPC interface for interacting with the

blockchain and act as a gateway for applications that want to use the blockchain. There also

Page 17 of 59

exists a third type of node known as a qlight node that uses its own client. These nodes are

lightweight replicas of regular nodes, optimized to consume less resources. They store only a

subset of the blockchain data but still allow users to access data. Qlight nodes rely on regular

nodes to access data that they do not have a copy of.

3.3.1 Consensus Protocols

GoQuorum provides three different PoA consensus protocols to choose from when configuring

a network. To ensure the network operates correctly all nodes must be configured with the same

protocol. PoA consensus protocols can only be used when participants know each other and

there is a certain degree of trust between them. Some of the important properties to consider

when comparing consensus protocols are finality, speed, security, scalability, and the required

minimum number of validators.

Finality in blockchains means that well-formed blocks cannot be reversed once added to the

blockchain. In consensus protocols like PoW, the finality is probabilistic, and the deeper a block

is in the blockchain, the higher the probability that the transaction cannot be reversed [31].

Immediate finality refers to the condition where a transaction or block is considered irreversible

once it has been added to the blockchain. There is no possibility that a transaction or block can

be changed or removed after it has been added to the chain. This assurance relies on the

conditions necessary for consensus, such as network synchrony and a valid number of

Byzantine nodes. The immediate finality property guarantees that the chain of blocks cannot

experience a fork [32]. Forking occurs when the blockchain splits into multiple chains because

the nodes have different views of the transaction history. Thus, a protocol that has immediate

finality ensures that all nodes always agree on one consistent version of the chain.

The time it takes to reach consensus is of utmost importance as it determines the throughput of

the network, affects scalability, and impacts overall performance. A fast consensus protocol

improves the user experience for applications that use the blockchain. In addition, it can

improve security by reducing the chance of forks and various attacks. A consensus protocol’s

resistance to attacks and other malicious behavior is also important to consider. A poorly

designed protocol could weaken the integrity of the blockchain [33].

The consensus protocol used in a blockchain directly impacts the scalability of the network.

How a protocol handles an increased number of nodes and transactions is important to consider.

The performance of a good consensus protocol should not be ruined by an increase in nodes

Page 18 of 59

and transactions. The choice of protocol can also determine the minimum number of required

nodes to function correctly. Byzantine Fault Tolerant (BFT) protocols typically require that

two-thirds of the validators are operating as intended [34, 35]. Note that Byzantine fault

tolerance refers to the ability to continue functioning correctly and reach consensus despite

nodes failing or sharing incorrect information to other nodes [32]. A protocol which is BFT

requires at least 3f + 1 nodes, where f is the number of faulty nodes the system should be able

to handle [36]. Therefore, 4 validators are the minimum number of nodes required for BFT

consensus protocols to function correctly when up to one validator is unresponsive.

3.3.2 Istanbul Byzantine Fault Tolerance Consensus

IBFT is one of the protocols recommended by the developers of GoQuorum for production

networks. The protocol uses a group of validators to determine if a proposed block should be

added to the chain. Blocks are added in rounds and each round a validator is arbitrarily selected

as the proposer. The proposer is responsible for constructing the block and sharing it with the

other validators. If two-thirds of the validators agree on the validity of the block it is added to

the chain. When the consensus round is over, a different validator is selected to be the proposer

for the next block [37].

After a block has been appended to the chain by being approved by two-thirds of the validators,

it cannot be changed. This means IBFT provides immediate block finality and ensures no

transactions are changed after the validators agree to add a block. As the name implies, IBFT

provides Byzantine fault tolerance. The protocol offers system stability if less than one-third of

the validators are behaving incorrectly [37]. The GoQuorum developers do not recommend

using IBFT with less than four validators. A network containing less than four validators can

still produce blocks but cannot provide the finality guarantee [32].

The possible states for a validator in IBFT are awaiting proposal, preparing, ready, and round

change. A validator in the awaiting proposal state is waiting to receive a block from the

proposer. In the preparing state, a validator has received a proposed block, which it must

validate and then notify other validators of the result. After doing this, the validator waits to

receive messages from others. When a validator is in the ready state, it has validated the block

and it exchanges commit messages with other validators. These messages indicate that they are

ready to add the block to their local copy of the blockchain. Once a validator has received

commit messages from at least two-thirds of the validators, it adds the block to the chain. The

Page 19 of 59

round change state occurs when consensus is not reached within a given time limit or when a

block fails to insert [37].

In GoQuorum, IBFT can be configured to manage validators through either block header

selection or contract selection. With block header selection, validators propose and vote to add

or remove validators using the JSON-RPC API. In contrast, contract selection relies on a smart

contract to specify the set of validators [38]. Both methods for managing the validators are

initially configured in the genesis file, which is used to configure the network when it is created.

In conclusion, IBFT in GoQuorum is a consensus protocol that offers immediate finality and

Byzantine fault tolerance. It is designed for private networks and reduces the required

infrastructure that other consensus algorithms like PoW require [37].

3.3.3 Docker and Quorum Developer Quickstart

Docker is a platform used to build, deploy, run, update, and manage containers. A container is

a standardized, executable component that consists of application code and all the dependencies

required to run the code in any environment. Containers can simplify development and delivery

of distributed applications [39]. Docker compose is a tool that enables running multi-container

Docker applications. Compose uses a YAML file to configure the application’s services and

allows developers to start the multi-container application with a single command [40].

One way of setting up a GoQuorum network is using Quorum Developer Quickstart (QDQ).

This is a command-line tool that creates a local GoQuorum network. Each node runs as a

Docker container and is managed by Docker Compose. QDQ also operates various other

services within separate containers, such as block explorers, and monitoring tools like Grafana

and Prometheus. Grafana provides real-time visual analytics and Prometheus is used as a time

series database to store data logged by the nodes. By default, the network uses the IBFT

consensus protocol and consists of four validator nodes and three regular nodes. Since each

node operates as an isolated process in a Docker container, data storage is not shared between

the nodes. Every container has its own file system where it stores the blockchain data.

3.4 Product tracing

Product tracing refers to the ability to track the journey of a product or a batch of products from

its origin throughout all stages of the supply chain. These stages include the sourcing of raw

materials, manufacturing, storage, and transportation. Traceability in the supply chain can help

Page 20 of 59

ensure food safety, prevent fraud, verify the authenticity of products, and create consumer trust

[11]. Modern supply chains can be highly complex and can consist of hundreds of stages [3].

This complexity makes it difficult to trace products using traditional supply chain management

where each enterprise stores its data separately. Blockchain technology has the potential to

enhance supply chain traceability through decentralized and transparent tracking of products

using transactions. Product tracing systems that utilize blockchain can provide secure and

tamper-proof logs that contain product histories.

Provenance data refers to metadata that records data origin and its processing history [41].

Collecting provenance data in each part of the supply chain can help create the detailed product

history needed in product tracing systems. Another important aspect of product tracing is the

usage of unique identifiers. Products with unique identifiers are easier to manage and track in

the supply chain. Using international information systems and standards for unique identifiers

can improve traceability, efficiency, and accuracy in the supply chain. The following

subsections provide explanations of the unique identifiers used in SeaChain.

3.4.1 Food and Agriculture Organization

The Food and Agriculture Organization (FAO), a part of the United Nations, manages an

information system called the Aquatic Sciences and Fisheries Information System (ASFIS).

ASFIS contains a global reference list of aquatic species used for fishery purposes, which

includes standardized names, taxonomic classification, and unique species identification codes

for fish and other aquatic organisms. The primary aim of the list is to enable data exchange and

communication among fishery organizations, researchers, and other stakeholders in the field

[42]. The list for aquatic species is used in SeaChain to uniquely identify fish species.

The unique identifier for a species consists of three alphabetic characters and is known as a 3-

alpha code. The three letters are usually assigned randomly but, in a few cases, they are related

to the scientific or English name of the species. The ASFIS list of species currently contains

13417 different species. Since more than 17500 different 3-alpha codes can be generated using

the 26 characters in the English alphabet, the database can be further expanded. The ASFIS list

of species can only be updated by the Fisheries and Aquaculture Division of the FAO [42].

3.4.2 EAN-13

EAN-13 is a widely used 13-digit barcode standard managed by GS1, an international

organization that maintains standards for supply chains. Using EAN-13, unique product codes

Page 21 of 59

can be generated for products. An EAN-13 code consists of a country prefix, company prefix,

product number, and check digit [43]. Table 3 explains the length and purpose of each part of

the code. SeaChain uses EAN-13 product codes to uniquely identify products.

Country prefix 2-3 digits; Represents the country of the product’s

manufacturer.

Company prefix 4-7 digits; A unique identification code for the company.

Product number 3-6 digits; A unique reference number for a product.

Check digit 1 digit; A checksum based on the first 12 digits of the

EAN-13 code.

Table 3: EAN-13 product code description

The country and company prefixes are both assigned by GS1. Large countries or those with

more companies requiring unique identification codes can have a range of country codes instead

of a single code. The length of the company prefix will vary depending on the number of

products the company needs to identify. Each company is responsible for maintaining unique

product numbers for their products. When added together, the country, company, and product

number must always be 12 digits. The 13th digit, the checksum, is used for error detection.

Figure 3 shows an example of what an EAN-13 barcode can look like. For instance, the country

code 700 indicates that the company is in Norway and GS1 has assigned the company the

unique code 12345. Since the product number is 0001 it can be interpreted as this being the

company's first product. The checksum for the country code + company prefix + product

number is 7.

Figure 3: EAN-13 barcode

Page 22 of 59

The checksum for an EAN-13 code is calculated using the 4-step algorithm displayed below

[43]. In this algorithm, 𝑑𝑖 represents the 𝑖-th digit of the first 12 digits in the EAN-13 code,

where 𝑖 ranges from 1 to 12.

1. 𝑂 = ∑ 𝑑2𝑖−1
6
𝑖=1

2. 𝐸 = 3 ∗ ∑ 𝑑2𝑖
6
𝑖=1

3. 𝑆 = 𝑂 + 𝐸

4. 𝐶ℎ𝑒𝑐𝑘𝑠𝑢𝑚 = (10 − (𝑆 𝑚𝑜𝑑 10)) 𝑚𝑜𝑑 10

In summary, product tracing is a crucial component of supply chain management that involves

tracking a product throughout the supply chain. Implementing a product tracing system that

employs international standards for unique identifiers, provenance data, and the inherent

security and transparency provided by blockchain technology, presents a promising approach

to improving supply chain management.

Page 23 of 59

4 Design & Implementation

In this section we describe SeaChain: a smart contract-based product traceability system

designed to track fish and related products throughout the supply chain in the Norwegian fishing

industry. Utilizing a GoQuorum blockchain, SeaChain is built upon three distinct smart

contracts, inspired by those proposed by Wang et al. [3] (see Section 2). Members of the

GoQuorum network use SeaChain’s API servers to deploy and interact with these smart

contracts.

In SeaChain, fish and product information are added in batches and the system records their

transfer history through the supply chain using the smart contracts. This creates an immutable

chain of records on the blockchain that can be used to trace the origin of products. After a

product has gone through the supply chain, consumers can scan a QR code that is on the product

to view its transaction history.

Since the supply chain can be complex and involve many entities, this thesis considers only a

simplified supply chain as displayed in Figure 4. First, a fishing vessel delivers fish to a fish

factory. Then the fish factory produces a product and hands it over to a distributor, which ends

up moving it to a retailer. Note that this simplification is only made to make our descriptions

clearer. SeaChain is designed to handle any number of entities and is not limited to those

depicted in Figure 4. To simulate a product moving through the supply chain, a script is used

that sequentially interacts with the API servers.

Figure 4: Simplified supply chain of the Norwegian fishing industry

The upcoming sections will first provide a detailed explanation of the GoQuorum network, the

smart contracts, and the API servers. Finally, an overview of how the supply chain is simulated

will be presented, illustrating how the components work together. All source code is available

in the zip-file submitted with the thesis. Please refer to the included README file for a detailed

explanation of the file structure and contents.

Page 24 of 59

4.1 GoQuorum network

A local GoQuorum network has been set up using the Quorum Developer Quickstart tool. Each

node in the network runs as a Docker container, and the validators use the IBFT consensus

algorithm. Figure 5 provides an overview of the network, illustrating the various entities

involved. The network consists of participants from the supply chain and the Directorate of

Fisheries, a regulatory organization.

Figure 5: Overview of the participants in the GoQuorum network

Each entity controls a validator and regular node, except for the Directorate of Fisheries which

has an additional regular node. This extra node is used to provide services such as querying

product transaction histories. In total, the network consists of 21 nodes, including 10 validators

and 11 regular nodes.

4.2 Smart contracts

The three smart contracts used in SeaChain are the Product Registration Contract (PRC), the

Batch Addition Contract (BAC), and the Transaction Update Contract (TUC). The PRC is

deployed once by the Directorate of Fisheries and is used to register products or fish species. A

BAC is deployed for each registered product or fish species, providing the functionality to add

a batch of that product or species. A TUC is deployed for each batch and contains the transaction

history for the batch. These three smart contracts are designed to trace the fish and the products

made with the fish separately. This means that the unprocessed fish and the product made with

it have two separate transaction histories.

Page 25 of 59

As previously mentioned, the contracts are inspired by those proposed by Wang et al. [3]. All

three contracts have been refactored to a newer version of Solidity and updated with additional

functionality. The most notable changes are the addition of events to improve communication

with off-chain applications and design modifications that enhance the product tracing

capabilities. These modifications include creating a link between the transaction history of the

unprocessed fish and the final product, which enables traceability all the way back to the origin

of the fish. Furthermore, the contracts track additional provenance related data such as weight

and location. The structure and error handling of the smart contracts have also been significantly

improved.

All SeaChain contracts contain authorization mechanisms that verify if the account initiating a

transaction is permitted to interact with the smart contract. These access restrictions apply only

to functions that add new data to the smart contract, without preventing other accounts from

reading the stored data. Since GoQuorum is not a public network, access to smart contract data

remains limited to those with network permissions. When a contract is deployed, the deploying

account is granted administrator privileges, allowing them to manage authorizations for adding

new data to the contract. Implementing these authorization mechanisms ensures that faulty

applications or users with malicious intent cannot fill smart contracts with erroneous data.

Another similarity between the three contracts is the use of Solidity mappings, which are key-

value data structures. Mappings enable efficient storage and organization of data in the smart

contract, allowing fast searches using the keys. The contracts utilize these mappings for various

purposes, including storing product, batch, and transaction data. Additionally, the mappings are

used to provide various functions such as managing authorization and linking product codes to

IDs.

The ABI and bytecode for each smart contract are required so applications can interact and

deploy the contracts, respectively. Compiling the contracts to obtain the ABI and bytecode is

achieved using a script. Most of the contracts are deployed by API servers. However, the PRC

is only deployed once, making its deployment process unique. To reduce the possibility of

multiple PRCs being deployed accidentally, a script has been written for its deployment. When

this script is executed, the PRC contract is deployed by an account representing the Directorate

of Fisheries.

Page 26 of 59

4.2.1 Product Registration Contract

The data structure used by SeaChain to store both products and fish species, as well as the

associated event, is illustrated in Figure 6. The data is stored in a mapping where the key is the

number of registered products. Each product entry contains a product name, an EAN-13 product

code, a 3-alpha code specifying the type of fish, an account address to the registrant, an address

for the associated BAC, and a timestamp. Since fish species are registered using the same data

structure as products, they contain the same information as a product. However, for a fish

species, the product code is replaced by a 3-alpha code provided by the FAO.

Figure 6: Data structure and product event used in PRC.

The smart contract code presented in Figure 7 is used to register products. It requires four

arguments, and the sender must be authorized to interact with the contract. The function starts

with error handling to ensure that the product has not already been registered and that the

provided arguments are valid. Next, the product is created using the provided arguments, the

sender's address, and a timestamp from the blockchain. Subsequently, the smart contract

updates multiple mappings with information about the new product. The total number of

products is then increased, and the register product event is emitted. This event uses the indexed

keyword to enable efficient transaction log filtering on product IDs and the product owner’s

address. Since the code for registering a fish species is almost identical to registering a product,

it is not shown here but can be viewed in the source code.

Page 27 of 59

Figure 7: Smart contract code for registering a product.

4.2.2 Batch Addition Contract

Batches of fish or products are stored in mappings using the data structure shown in Figure 8.

Each batch stored in the contract contains a batch number, product code, account address of the

sender, and the addresses of the related TUCs. Additionally, a batch stores a timestamp, weight,

and GPS coordinates. This provenance data is used to help track the history and origin of

products throughout the supply chain.

The fish and products are tracked separately in batches, and a TUC is deployed for each batch.

To create a link between a batch of products and the batch of fish used to create the products,

each batch contains a reference TUC. This reference is the address of the TUC belonging to the

batch of fish used to create a product. By linking the batch of unprocessed fish and batch of

products together in this manner, a complete product history is created. This history traces a

product from the time the fish is caught until its delivery to the retailer.

Page 28 of 59

Figure 8: Data structure and event used in BAC.

Adding a batch is done through the smart contract code presented in Figure 9. This function

requires seven arguments and ensures that the sender is authorized. These arguments include

the batch number, product code, TUC addresses, and other provenance data. The function first

performs error handling to check that batch number has not been used before and that the

provided arguments are valid. Since the Solidity programming language does not have native

support for floats, the GPS decimal degrees are stored as integers using fixed-point arithmetic.

The product batch is then created, and all batch related mappings are updated. Finally, the total

number of batches is increased and the add batch event, defined in Figure 8, is emitted.

Page 29 of 59

Figure 9: Smart contract code for adding a batch.

4.2.3 Transaction Update Contract

The transaction history of every batch is stored in TUCs using the data structure displayed in

Figure 10. The data structure includes the hash of the current and previous transactions, the

addresses of the sender and receiver, and a timestamp. The transaction hashes are 32-byte

hexadecimal strings that uniquely identifies each transaction within the network. By using the

number of transactions as the key in a mapping, an ordered list is created, providing the

transaction history of a product.

Page 30 of 59

Figure 10: Data structure and event used in TUC.

Updating the transaction history of a product is done using the smart contract code displayed

in Figure 11. This function is called each time a batch of fish or products is transferred between

entities in the supply chain. The function requires the sender to be authorized and takes the

hashes of the current and previous transactions, as well as the address of the receiving entity,

as arguments. Error handling is first performed to confirm the validity of the current and

previous transactions and the receiver address. Then the new transaction is added to storage,

the number of transactions is increased, and the add transaction event is emitted.

Figure 11: Smart contract code for updating the transaction history of a batch.

4.3 API servers

To interact with the smart contracts, each organization that participates in the GoQuorum

network has an API server. In our simulated supply chain, the Directorate of Fisheries, fishing

vessels, fish factories, and distributors utilize API servers. Retailers, however, do not need one

as they are the final destination in the supply chain and do not update the transaction history of

Page 31 of 59

products. The API servers are configured to use each entity’s node credentials to communicate

with the blockchain. A web3 instance, which enables interaction with the blockchain network,

is created using each node’s WebSocket JSON-RPC URL.

Each API server is built using JavaScript Express, a lightweight web application framework for

Node.js. The framework simplifies the process of creating server-side applications and provides

a robust set of features. These API servers use HTTP as the underlying communication protocol

for exchanging data. Since each API server runs locally on the same server, they share a utilities

file to reduce code duplication. This file contains elements such as the ABI and bytecode for

each contract, as well as other shared functionality, like the code required for deploying smart

contracts.

Event listeners are used by the API servers to automatically react to events emitted by the smart

contracts. For instance, fishing vessels and fish factories listen for the species registered event

to always have an up-to-date list of available species. Initially, the API servers communicated

with the GoQuorum network using HTTPS. However, this was changed to WebSocket because

the web3 event listener requires it. It is important to note that, although the API servers interact

with the network using WebSocket, the endpoints for each API are accessed using HTTPS.

In our deployment scenario, the Directorate of Fisheries API server has many endpoints, and

some of them are used by the other API servers. To simplify the explanation of this API, Table

4 provides an overview of each endpoint and a brief explanation. Since this API server belongs

to a regulatory organization it has a list that contains the names and addresses of the different

nodes in the network. It also has an overview of all nodes that are supposed to be able to add

batches and register products. When this API starts up, it ensures all accounts who should have

access to the PRC are authorized.

Endpoint Functionality

GET request

/prc-address

Used by other API servers to retrieve the PRC address. This ensures all

entities use the official PRC and not a fabricated smart contract.

GET request

/species-to-bac

Sends a key-value collection that contains 3-alpha species codes (keys)

mapped to BAC addresses (values). This can be used by other API

servers to easily obtain an overview of the different available species and

their corresponding BACs.

Page 32 of 59

GET request

/species-to-name

Similar to the /species-to-bac endpoint but instead sends a key-value

collection that maps 3-alpha species codes to their standardized name.

GET request

/products

Retrieves all the registered products from the PRC and sends them as a

list.

GET request

/product-batches

Takes a BAC address or species/product code as query parameters.

Sends a list of all the batches added for either a fish species or a product.

GET request

/get-nodes

Sends a collection of contact information for the different nodes in the

network. The contact information consists of the company name and

their account address.

POST request

/register-species

Used by the Directorate of Fisheries to register a new fish species in the

PRC. A new BAC is created for the new species and all nodes in the

network who should have access to it are authorized.

Table 4: API endpoints for Directorate of Fisheries

The API server that retrieves the product history of a batch, denoted the transaction history API,

also belongs to the Directorate of Fisheries. This server has an endpoint that retrieves the

complete transaction history of a product. The endpoint requires the product code and batch

number as query parameters. The product code and batch number are used to retrieve the TUC

address of the product batch and the fish batch used to create the product. Then all the recorded

transactions for both the fish batch and the product batch are retrieved from the smart contract

in separate lists. After this, the previous transaction field in the first transaction of the product

batch is updated to reference the last transaction of the fish batch. The process of linking the

fish batch and product batch is illustrated in Figure 12. Formatting is then performed on the

data to present it in human-readable format. A few examples include converting Unix time to a

regular date format, changing account addresses to company names, and dividing GPS decimal

degrees due to fixed-point arithmetic. Finally, an HTML template is rendered using a

templating engine to display the transaction history to a consumer. When a consumer scans the

QR code on a product, this is the API endpoint they are taken to.

Page 33 of 59

Figure 12: Linking fish batch and product batch transaction histories.

The API servers for fishing vessels, fish factories, and distributors all have an endpoint that

enables them to update the transaction history of a batch. Updating the transaction history

occurs after the product is transferred from one entity to another, making the address of the

receiving entity necessary. Additionally, the species code or product code, along with the batch

number, is required to retrieve the address of the TUC belonging to the batch. The total number

of transactions is then read from the TUC and used to determine if this is the first transaction

recorded. This information is necessary for setting the previous transaction field in the data

structure of the new transaction. For the first transaction, the previous transaction field is set to

the string "FirstTransaction". In all other cases, the field is set to the hash of the previous

transaction. After this, the new transaction is created, and the smart contract function to add a

transaction is called to store it permanently. To help illustrate how updating the transaction

history occurs, Figure 13 displays a flow chart of the process. Note that the dashed lines in the

flow chart indicate that it is not possible to loop back.

Page 34 of 59

Figure 13: Flow chart for updating the batch transaction history.

Fishing vessels and fish factories both have a similar endpoint for adding batches. Note that we

assume the fishing vessel API servers automatically register batches based on data received

from the system that automatically collects fish data (see section 1.4). To add a fish or product

batch, the API servers deploy a new TUC, authorize the appropriate accounts, generate a unique

batch number, and call the add batch function in the BAC. Unique batch numbers are generated

by using the date (DD.MM.YY), time (HH:mm), and the variable in each BAC that keeps track

of the total number of batches (Total Count or TC). The format of the batch number is

"DD.MM.YY-HH:mm-TC".

Page 35 of 59

A major difference between adding a fish batch and a product batch lies in the links they

establish. While a product batch is linked to the fish batch used to create the product, a fish

batch has no such connection. This is because fish is viewed as a raw material in a product

rather than a product itself. For example, consider fish batch A and product batch B, where

batch B is made using batch A. Batch A sets the TUC supply reference (see data structure in

Figure 8) to the zero address, commonly used to indicate the absence of an address. In contrast,

product batch B sets the TUC supply reference to the TUC address of batch A. This is done to

create a complete product history, as mentioned in Section 4.2.2.

The fish factory API server also features an endpoint for registering a new product. To register

a product, a product name, a species code for the fish used, a country code, and company code

are required. First, a BAC is deployed for the new product, followed by retrieving the number

of registered products from the PRC. The country code, company code, and number of products

are used to generate a unique EAN-13 product code. Once the product code is generated, the

register product function in the PRC is called to create the product.

4.4 Simulating the supply chain

Since SeaChain has not yet been deployed in a product setting, the supply chain and product

data must be simulated. A script has been written for this purpose and it sequentially interacts

with the API servers to portray the supply chain. There is no mechanism to verify the delivery

of a batch. Therefore, we assume that each entity receives their batch of fish or products when

it is transferred in the supply chain, and the entity transferring the batch is notified upon

successful delivery.

Figure 14 displays a flow chart of the supply chain script, illustrating how the API servers

interact with the smart contracts. The figure also contains a legend with color codes that

represent which entity an API server belongs to. Note that the dashed lines in the flow chart

indicate that it is not possible to loop back. The script follows these steps:

1. The Directorate of Fisheries registers a new fish species using the PRC.

2. A fishing vessel adds a new fish batch by interacting with a BAC.

3. The fishing vessel transfers the batch to the fish factory, then it updates the transaction

history in the TUC for this batch.

4. The fish factory registers a new type of product in the PRC and adds a new product

batch using the fish batch it received.

Page 36 of 59

5. The product batch is transferred to a distributor, and then the fish factory updates the

product batch transaction history.

6. The distributor transfers the product batch to a retailer and then updates the transaction

history.

7. Finally, the script generates a QR code that can be scanned to view the transaction

history.

Figure 14: Flow chart for the supply chain simulation script.

Page 37 of 59

By scanning the QR code generated by the supply chain script, consumers can access important

information about the product. The transaction history API retrieves product information, origin

of the fish, and the transaction history. The process is displayed in Figure 15, and the product

history is linked together as shown in Figure 12.

Figure 15: Accessing the transaction history.

The data displayed to consumers when accessing the webpage on PC can be viewed in Figure

16. The product history table tracks the journey of fish and product batches throughout the

supply chain, with the sender and receiver fields indicating the addresses of various entities

involved. To make the information more easily understandable for consumers, the addresses

are converted into company names. The time field denotes the moment when a batch is

transferred from the sender to the receiver. The previous and current transaction fields display

unique transaction hashes originating from the blockchain, serving as evidence for the

transaction history’s validity. It should be noted that since this thesis utilizes a simplified supply

chain model, the product history is quite short. If SeaChain were used in a production

environment, each batch would have a more extensive history.

Figure 16: PC screenshot displaying the page consumers view by scanning QR codes.

Page 38 of 59

Since the product history is accessed by scanning a QR code, the page has been designed for

mobile compatibility as well. Figure 17 illustrates the mobile layout, with the primary

difference being tables optimized for screen size and the addition of horizontal scrolling

functionality added to the product history table.

Figure 17: Smartphone screenshot displaying the page consumers view by scanning QR codes.

Page 39 of 59

5 Evaluation

This section evaluates the performance of the three smart contracts, the core functionality of

the API servers, and the GoQuorum network. Table 5 outlines the experiments conducted to

analyze performance, the metrics collected, and their respective purpose. These metrics have

been selected since they are standard benchmarks for blockchain networks and other systems.

In this evaluation, transaction throughput refers exclusively to the network’s capacity to process

smart contract transactions. This emphasis aligns with the thesis’s relevance and objectives, as

the measurement of regular transactions, such as cryptocurrency transfers, is not considered

necessary for this analysis. Latency provides insights into the delays involved in transaction

processing and the responsiveness of each API endpoint. Additionally, hardware utilization

offers an understanding of the system’s resource efficiency. By examining these metrics under

varying workloads, we can measure system performance and identify potential bottlenecks.

Experiment Metrics Purpose

Evaluation of smart

contracts with various

numbers of validators

Transactions per second,

transaction latency

Measure the performance

and efficiency of each smart

contract and see how the

network scales with more

validators

Evaluation of API endpoints

for registering products,

adding batches, and updating

transaction histories

Response latency Determine the

responsiveness of the API

servers

Product history retrieval Latency for retrieving

product histories

Assess the efficiency of

product history retrieval and

API server performance

GoQuorum network

performance

CPU usage, memory usage,

network traffic, disk usage,

database usage

Evaluate the resource

utilization of the GoQuorum

network

Table 5: Overview of the experiments conducted, the metrics collected, and their purpose.

All metrics, except for those related to hardware utilization, have been collected using scripts

that run multiple benchmarks. This method provides a more accurate representation of

Page 40 of 59

performance, allowing for the calculation of standard deviations to better understand the

variability of results. The benchmarking scripts are included in the source code submitted with

the thesis. It is important to note that the GoQuorum network and API servers used in this thesis

are running in a centralized manner on an Azure virtual machine (VM). While decentralizing

the network was beyond the scope of this thesis, such a setup could potentially yield different

experimental results. The hardware specifications for the VM are detailed in Table 6.

Component Specification

Processor Intel(R) Xeon(R) Platinum 8171M (8 cores available)

Memory 32 GiB

Storage 64 GiB SSD (Max 12800 IOPS, 192 MBps)

Network Max 4 NICs. Expected network bandwidth: 4000Mbps

Operating System Ubuntu 20.04 (Focal Fossa)

Table 6: Hardware specifications for the server used to benchmark the system.

Hardware utilization data was collected from each node in the network using Prometheus, a

monitoring tool that functions as a time series database. The collected data was visualized with

Grafana, an analytics and monitoring tool that has integration support for Prometheus. Data

was logged under both idle and heavy workload conditions to capture the network’s operation

under different scenarios. Queries to the Prometheus database were specifically configured to

select the average performance of validator and regular nodes, respectively. To simulate heavy

workloads, a script testing the transaction throughput was executed during the performance

measurement for both validator and regular nodes.

The details of each experiment, including the steps taken during each test, will be discussed in

the upcoming section. The section will also include an analysis and detailed discussion of the

results for each experiment.

5.1 Results

The Transactions Per Second (TPS) metric was measured by running a script designed to

register products, add batches, and update transaction histories. The script sent batches of

concurrent transactions to the network nodes, distributing the transactions evenly to avoid

potential bottlenecks. To focus on the pure transactional performance of the smart contracts,

the transactions were sent directly to the contracts, circumventing the API servers, which add

Page 41 of 59

an extra layer of processing. The experiments were performed for each smart contract with

networks containing 4, 10, and 20 validators. The results of these benchmarks are displayed in

Figure 18, Figure 19, and Figure 20.

The results suggest that the TPS can vary significantly, which is likely due to competition for

hardware resources. The upcoming hardware utilization analysis confirms that CPU resources

were indeed a point of contention during these benchmarks. As the number of validators

increased, each node had access to a smaller share of the CPU resources. Keeping this in mind

while analyzing the graphs, it becomes evident that the difference in TPS between networks

with 4 and 20 validators is not as substantial as one might initially expect.

Figure 18: Transaction throughput when registering products in the PRC for different number of validators under

varying workloads.

Page 42 of 59

Figure 19: Transaction throughput when adding batches in the BAC for different number of validators under

varying workloads.

Figure 20: Transaction throughput when updating transaction histories in the TUC for different number of

validators under varying workloads.

Page 43 of 59

The transaction latency, defined as the duration from the submission of a transaction until it is

confirmed to be added to the blockchain, was measured under varying workloads to evaluate

scalability under network constraints. The results of this experiment, illustrated in Figure 21,

suggest a relatively linear relationship between the workload and the latency. However, the

standard deviation indicates an increased variability in latency as workloads increase, possibly

due to limited hardware resources.

Figure 21: The average latency for smart contract transactions for various workloads.

The core functionality of the API servers utilized in the supply chain includes registering

products, adding batches, and updating transaction histories. Therefore, the latency associated

with these API interactions was measured. Furthermore, the duration required to simulate the

entire supply chain – from the moment a batch of fish is caught until a product is delivered to

a retailer – was also assessed. The results of this experiment are presented in Table 7. The

average response time is significantly higher than the TPS achieved when directly interacting

with the smart contracts. This difference arises because the API servers are tasked with essential

operations such as deploying new contracts, processing data, and performing error handling.

Page 44 of 59

Functionality Average latency (s)

Register product 9.9

Add batch 15.2

Update transaction history 10.3

Supply chain simulation 84.7

Table 7: Response time for API endpoints used to register products, add batches, update transaction histories, as

well as the time required to run the supply chain simulation script.

Consumer retrieval of product histories through an API server was evaluated for various

workloads. The experiment measured the average latency of the API server in fetching and

processing product histories in response to batches of concurrent calls to the API endpoint. The

results, displayed in Figure 22, show a linear performance trend, which is expected given the

concurrent call handling capability of the Express framework used in creating the API servers.

The average latency for retrieving a single product’s history is approximately 35ms, a delay so

brief it would likely be unapparent to a consumer.

Figure 22: Average API server latency for retrieving product histories for various workloads.

Hardware utilization for both validators and regular nodes was benchmarked using the same

methodology. This involved first measuring a few minutes of idle load, followed by running

Page 45 of 59

the TPS benchmark that sends concurrent transactions, and finally capturing a few more

minutes of load to observe any residual effects. Notably, the script sending these concurrent

transactions incorporates a brief pause between each batch to prepare the next set of

transactions. This pause is visible in certain graphs and will be further clarified within the

discussions accompanying any graph where its influence on the visual representation is

significant.

Figure 23 presents a time series line chart illustrating the CPU utilization during idle workload

and the TPS benchmark execution. Given the use of a multi-core VM with eight cores, the

maximum CPU utilization for the VM is represented as 800%. The results reveal that during

idle load, the CPU uses approximately 1/8 of its total capacity. Conversely, during the

benchmarks, it operates at maximum capacity while processing the concurrent batches of

transactions sent by the script. This suggests that the system performance may be constrained

by the CPU, and more powerful hardware could potentially enhance performance. The

substantial dips evident in the graph occur when the validators have completed processing the

transactions and the script is preparing to send the next batch of concurrent transactions.

Figure 23: A time series line chart displaying the servers CPU utilization during idle and heavy workloads.

The average memory utilization by validators and regular nodes is illustrated in Figure 24. This

graph tracks both the memory actively used by each node and the memory reserved by them.

During benchmarking, a substantial surge in memory usage was observed for both validators

and regular nodes. Interestingly, the memory reserved is much greater than what is currently

being utilized, likely because nodes allocate memory in anticipation of future needs and do not

instantly deallocate memory once tasks are completed. The data suggests that validator nodes

consume slightly more memory during idle load, while regular nodes are more memory-

intensive during heavy workloads. The larger memory consumption by regular nodes during

heavy workloads likely stems from the benchmarking script distributing concurrent transactions

Page 46 of 59

only to regular nodes, resulting in significant memory usage. During some experiments, the

memory limit of the VM was reached, which constrained the experiments to sending no more

than 750 concurrent transactions.

Figure 24: The average memory utilization by validators (left) and regular nodes (right) during idle and heavy

workloads.

Figure 25 illustrates the average network traffic for both validators and regular nodes, capturing

both ingress (incoming) and egress (outgoing) network traffic. The data demonstrates that

validators consistently transmit and receive more data than regular nodes, a trend observable

under both idle and heavy load conditions. It is worth noting that during idle load, the ingress

and egress network traffic of validators is approximately five times higher than that of regular

nodes. This is expected, given that validators must engage in extensive communication to reach

consensus on the state of the blockchain.

Figure 25: The average network traffic for validators (left) and regular nodes (right) during idle and heavy

workloads.

The rate at which data is read and written to the LevelDB database (which stores the chain data)

by each node in the network is illustrated in Figure 26. Since there were no requests for data

during the idle load or during the benchmarking, the read rate is consistently zero in the graphs.

Page 47 of 59

Both validators and regular nodes have a similar write speed to the database during idle and

heavy workloads. This makes sense since regardless of node type, the chain data stored in the

LevelDB database should be the same.

Figure 26: The average LevelDB I/O for validators (left) and regular nodes (right) during idle and heavy

workloads.

The average read and write rate for disk activity among validators and regular nodes are

illustrated in Figure 27. The graph reveals that validators have a higher I/O rate than regular

nodes. Although the scale of the graph makes it less obvious, the idle write rate for validators

is double that of regular nodes, and the read rate nearly quadruples. Comparing this to the

average LevelDB I/O portrayed in Figure 26, the disk usage is notably higher. This difference

can be attributed to the fact that the disk utilization data considers all disk access operations,

including logging, Docker I/O, and other necessary disk activities.

Figure 27: The average disk I/O for validators (left) and regular nodes (right) during idle and heavy workloads.

In summary, the experiments demonstrate that the GoQuorum network possesses solid

transaction throughput and low latency. The smart contracts operate efficiently, and despite

hardware constraints limiting the extent of testing, the network displays potential for scaling

Page 48 of 59

with an increase in validators. The API servers that register products, add batches, and update

transaction histories provide responses within a reasonable timeframe, considering the tasks

they perform. The retrieval of product histories experiences minimal delay, and the API server

displays linear performance under concurrent workloads. Hardware benchmarks indicate that

the system’s performance is bottlenecked by the CPU utilization and the 32 GiB memory limit.

However, these limitations stem from running the network locally, suggesting that a

decentralized network will likely not encounter the same issues with CPU and memory.

Page 49 of 59

6 Discussion

This section is divided into three distinct parts, each providing deeper insight into different

aspects of our research. We begin with a security analysis of SeaChain, with the aim of

assessing its robustness and identifying potential vulnerabilities. The second part involves a

comparison of SeaChain with the existing product tracing systems previously discussed in

Section 2. In the final part of this section, we reflect on the achievements of our research,

evaluating if the objectives have been met and to what extent our findings support the thesis

statement.

6.1 Security analysis

Ensuring the confidentiality, integrity, and availability of supply chain data is crucial to be able

to enforce regulatory compliance and provide consumers with legitimate information. In this

section, we perform a security analysis of SeaChain. Threats are identified and mitigation

strategies are proposed. Although the GoQuorum network utilized in this thesis is operating

locally, this analysis will consider a fully decentralized deployment as intended in a practical

application. The objective is to analyze the potential vulnerabilities, evaluate SeaChain’s

robustness against these threats, and suggest areas for further improvement.

The identified threats, along with their description and proposed mitigation strategies, are

presented in Table 8. This table serves as an overview of the identified threats, and the

remaining part of this section will provide a more in-depth review of each threat.

Threat Description Mitigation Strategies

Unauthorized

access

Unauthorized entities gaining

access to the system

Implement robust authentication and

authorization mechanisms

Supply chain data

integrity threats

False or inaccurate data is input

into the system

Deploy systems that automatically

register data in a trusted and reliable

manner.

Smart contract

vulnerabilities

Bugs or vulnerabilities in smart

contracts that can be exploited

to manipulate the behavior of

the system

Regularly conduct security audits.

Use formal verification methods to

ensure that a smart contract’s logic

meets predefined specifications

Page 50 of 59

Denial of service

(DoS) attacks

Overwhelming the API servers

with traffic, rendering services

unavailable

Employ rate limiting and DoS

protection services

Insider threats Organizations with legitimate

access to the system misuse it

with malicious intent

Regular government-controlled

audits. Establish clear sanctions for

misuse

Physical security

threats

Threats to the physical

infrastructure hosting the API

servers and nodes in the

network

Secure physical infrastructure

locations. Employ hard-drive

encryption.

Table 8: Overview of identified threats and the proposed mitigation strategies

Despite the assumption of implementing secure communication standards, such as

TLS/HTTPS, on the API servers, unauthorized access to the system remains a significant threat.

An attacker who has successfully obtained valid credentials might submit fraudulent

transactions or leak sensitive information. To mitigate this risk, it is crucial to implement robust

authentication and authorization mechanisms, such as secure passwords, two-factor

authentication, API keys, and regular access reviews. In addition, logging system activities and

continuous monitoring for any unusual behavior are essential steps for enabling swift responses

in case of a security breach.

The challenge of ensuring data integrity in the supply chain is of utmost importance in a product

tracing system. False or inaccurate data compromises the reliability of the system, which could

lead to loss of trust and illegal activities going unnoticed. SeaChain relies on fishing vessels

being equipped with systems that automatically register data regarding the fish caught. This

automated system avoids the possibility of manual input errors and makes it difficult for false

data to be entered maliciously. However, even with automated data entry, errors can still occur.

Therefore, incorporating data validation mechanisms at various stages of data capture and entry

is essential. These mechanisms can help identify and correct errors, ensuring that only accurate

and reliable data is written to the blockchain.

Smart contracts are quite different from regular applications that can be patched whenever a

vulnerability or bug is found. Although there are methods for updating smart contracts, they are

not as straightforward as simply changing the code that causes the vulnerability. If

vulnerabilities are not detected before deployment, smart contracts can be exploited, putting the

Page 51 of 59

system’s integrity at risk. Due to these challenges, it is crucial to keep the development of smart

contracts simple and clearly document them to minimize bugs. Furthermore, thorough testing

and regular security audits should be conducted before deploying the smart contracts. To

provide stronger guarantees of functional correctness, formal methods can also be used in the

development and verification process.

The API servers in SeaChain serve as crucial gateways for interacting with the smart contracts

stored on the blockchain. Their central role makes it important to protect them from becoming

overloaded, which could lead to them being unable to process valid requests. Any disruption to

the API servers could cause significant impact to the supply chain process, leading to

operational difficulties. To alleviate these risks, specific techniques can be employed to manage

and control the traffic to the servers. One effective method is rate limiting, a process that limits

the number of requests a user can make within a certain timeframe. This method helps prevent

any user or entity from monopolizing the server’s resources and degrading its performance. In

addition, the use of DoS protection services can further enhance the server’s resilience against

attacks that try to overwhelm and incapacitate the system. These services are designed to

identify and block traffic from sources exhibiting malicious or unusual behavior, thereby

ensuring that the servers remain accessible to legitimate users.

The threat posed by authorized entities with potential malicious intent can be particularly

challenging to address. Since these users are authorized, they have the capability to leak

sensitive information or attempt to deliberately input false data into the system. Such actions

can have serious consequences including privacy breaches and compromised data integrity. To

reduce this risk, regular government-controlled audits should be performed to detect any

misuse. Furthermore, strict penalties can be enforced for violations, reinforcing the

consequences of system misuse. Additional strategies to address the potential issue of

information leakage from the blockchain are elaborated in Section 6.2.

Physical attacks on the infrastructure hosting the API servers and nodes in the network pose a

serious threat to the system’s stability and security. These attacks can lead to service disruption,

potential data loss, and breaches of sensitive information. The consequences of such incidents

can extend beyond immediate operational difficulties, potentially damaging the trust in the

system and causing reputational harm. To mitigate these risks, it is crucial to secure the physical

locations housing the infrastructure. This can be achieved using access control mechanisms,

surveillance systems, and security protocols. Moreover, the use of hard-drive encryption can

Page 52 of 59

offer an additional layer of protection. Disk encryption will prevent attackers, who manage to

gain physical access to a server or node, from accessing confidential and sensitive information.

In conclusion, the security analysis of SeaChain has identified several significant threats that

need to be addressed before the system can be effectively deployed in a real-world scenario.

These critical threats include unauthorized access, integrity of supply chain input data,

vulnerabilities within smart contracts, the potential for DoS attacks, insider threats, and physical

security risks. Each threat has been discussed in detail and appropriate mitigation strategies

have been proposed. These strategies include enhancing access control, deploying reliable data

registration systems, conducting thorough testing and audits of smart contracts, implementing

rate limiting and DoS protection services, and enforcing physical security measures.

Implementing these countermeasures will help ensure the confidentiality, integrity, and

availability of SeaChain.

6.2 Comparison to related work

This section provides a comparative analysis of SeaChain and the related work reviewed in

Section 2. The objective of this analysis is to contextualize the findings of this thesis, assess the

unique contributions of the system, and identify potential areas for future development. The

related work reviewed is primarily focused on the application of blockchain technology for

enhancing supply chain management and product traceability. These studies provide valuable

insights into state-of-the-art blockchain-based product traceability systems. Each work presents

a unique approach to tackling the challenges of supply chain management, with each study

emphasizing different aspects of importance. The comparison will focus on key aspects such

as consumer accessibility, data privacy, scalability, and traceability.

One of the primary advantages of SeaChain is its enhanced accessibility for consumers. The

system simplifies the process of viewing product information by allowing consumers to access

data through a simple QR code scan. This feature significantly enhances the user friendliness

and the amount of work required to view the data. In contrast, Wang et al. [3] require consumers

to join the blockchain network as a node or lightweight node to view product data. This

requirement could potentially limit the ease of access for consumers, as it is much more

technical and cumbersome.

Ding et al. [10] and Salah et al. [14], on the other hand, do not present any specific method for

consumers to view product data. Their focus primarily lies on the product traceability

Page 53 of 59

framework itself, without mentioning how consumers interact with it. Madumidha et al. [11]

propose the use of a dedicated app for displaying data to consumers. This approach is more

consumer-focused than Wang et al. [3], but still involves more steps than scanning a QR code.

Lin et al. [13] suggest that consumers can query product data using a product code and a smart

contract address. Their explanation of this process is somewhat vague, leaving uncertainties

around the ease of use for consumers. Finally, Malik et al. [12] propose using QR codes on

products to retrieve product histories, similar to our approach. However, they do not provide a

demonstration of the consumer interface, making it difficult to assess whether their system is

as user-friendly as ours.

Our system, along with the ones proposed by Ding et al. [10] and Malik et al. [12], employs

permissioned and private blockchain approaches. These blockchains restrict network access

and safeguard sensitive enterprise data, contrasting with the public blockchain approaches used

by the other systems reviewed in this thesis. The approach presented by Ding et al. [10] utilizes

a combination of permissioned and private blockchains. This stands out as an optimal strategy

for concealing sensitive data between enterprises and can provide valuable guidance for future

improvements to our system.

To address scalability, several of the reviewed works utilize various strategies. Ding et al. [10]

improve scalability by implementing a double-layer framework which separates the functions

of data entry and data reading. This strategy allows for more efficient handling of data input

and output requests. Malik et al. [12] employ sharding, which divides the blockchain into

multiple separate chains, an approach that can increase the network’s capacity. Lin et al. [13]

uniquely address the challenge of rapid data accumulation in the blockchain. They manage this

by dynamically balancing on-chain and off-chain data, which effectively reduces the volume

of data stored directly on-chain. This mitigates the potential performance drawbacks that can

arise due to large quantities of data in the blockchain. Each of these strategies offers a unique

solution to help improve scalability. The data management scheme proposed by Lin et al. [13]

could be a valuable addition if future large-scale testing indicates that data size might become

an issue in our system.

Most of the reviewed product tracing systems, including SeaChain, utilize smart contracts in a

similar way to track data throughout the supply chain. One exception is Malik et al. [12], which

creates a transaction vocabulary that is used to track products. Based on the reviewed literature

the use of smart contracts seems to be the best way to ensure accurate and efficient traceability

Page 54 of 59

in blockchain-based systems. Therefore, the traceability functionality in SeaChain does not

stand to gain any improvements from those presented in the reviewed literature.

The comparative analysis presented above provides a description of the unique attributes of

SeaChain as well as its similarities with those described in the existing literature. Additionally,

it emphasizes distinctive aspects of the other systems that could potentially improve our own.

Our system surpasses the others in terms of consumer accessibility. Like the majority of the

systems reviewed, SeaChain also utilizes smart contracts for product tracking. Data privacy

could potentially be improved in our system by integrating elements of the double-layer

framework proposed by Ding et al. [10]. Moreover, the scalability of our system, especially

concerning data size, might be improved by adopting the dynamic data management approach

proposed by Lin et al. [13]. It is important to note that like our system, all the others reviewed

have only been tested as prototypes, with some systems being purely theoretical. To advance

the development of blockchain-based product tracing it is essential to test these systems in real-

world scenarios.

6.3 Reflection on thesis results

This section revisits the initial objectives of this research to assess its success. The first

objective was to develop a proof-of-concept product tracing system using blockchain and smart

contracts. The second objective was to evaluate if this system could improve the Norwegian

fishing industry’s supply chain and contribute to reducing fishery crimes. This section discusses

these objectives considering our findings and evaluates if they were fulfilled. This assessment

will help us determine the overall validity of our thesis statement.

Reading the design and implementation section should make it clear that the first objective has

been achieved. A proof-of-concept product tracing system has been successfully implemented

and evaluated. The system consists of a local GoQuorum blockchain network, three distinct

smart contracts, and multiple API servers. Our findings indicate that, when compared to other

systems in related literature, our system refines consumer accessibility and user-friendliness,

while maintaining a high degree of traceability. Additionally, the research suggests that data

privacy and scalability are potential areas for improvement in our system.

The evidence gathered from this research and the supporting literature indicates that the second

objective has been achieved. SeaChain has the potential to significantly enhance the

transparency, traceability, and security of data in the Norwegian fishing industry’s supply chain.

Page 55 of 59

By leveraging the system’s collection of provenance data and the inherent immutability of

blockchain, there is a strong potential to reduce fishery crimes. This could be achieved by

ensuring authentic product origin and history, making illegal activities more difficult to perform

without detection. However, to accurately measure the system’s effectiveness in reducing

fishery crimes, further research involving its deployment and use in real-world scenarios is

required.

Given the successful achievement of both objectives, the findings of this research strongly

support the thesis statement. The blockchain-based traceability system, leveraging smart

contracts, has shown its potential to address the limitations of traditional supply chain

management. The transparency and security provided by blockchain technology can enhance

consumer confidence and reinforce regulatory compliance. Nonetheless, it is important to

continue research in this field and perform real-world testing to verify and extend these

findings.

Page 56 of 59

7 Conclusion

7.1 Concluding remarks

We have successfully developed and evaluated SeaChain, a proof-of-concept product tracing

system leveraging blockchain technology and smart contracts, specifically tailored for the

Norwegian fishing industry. With SeaChain, we demonstrated the practical potential of

blockchain in enhancing transparency, traceability, and security within supply chain

management. Our research confirms our initial thesis and outlines a potential approach to

alleviating the widespread issue of fishery crimes.

SeaChain provides enhanced consumer confidence by offering comprehensive product

information, provenance data, and transaction histories for seafood products. This data is easily

accessible to consumers through a simple QR code scan. The system also helps enforce

regulatory compliance, making illegal activities more challenging to perform without detection.

However, we must acknowledge the limitations of our system as well. Perhaps most

importantly, the potential issues related to data privacy and scalability that we observed during

the research. Furthermore, our security analysis of SeaChain identified certain threats that need

to be addressed to ensure the robustness and reliability of the system.

Despite the limitations of SeaChain, this thesis provides a solid foundation for future research

in this field, as well as a step towards strengthening and increasing traceability within the supply

chain of the Norwegian fishing industry. Our findings extend beyond national context and the

fishing industry, providing insights for global efforts to improve supply chain management.

7.2 Future work

Although the objectives of this thesis have been achieved, further research involving the

deployment and use of the system in real-world scenarios is required to accurately measure its

effectiveness in reducing fishery crimes. The issues related to data privacy need to be addressed

and large-scale testing is necessary to reveal potential scalability issues. Furthermore, the

mitigation strategies proposed in the security analysis should be implemented. Future work

should aim to solve these issues and continue research in this field to extend and refine the

findings of this thesis. The use of blockchain technology in supply chain management is a

promising domain, and there is a lot of potential for future research.

Page 57 of 59

References

[1] P. T. Aandahl and E. H. Brækkan. "Norge eksporterte sjømat for 151,4 milliarder

kroner i 2022." https://seafood.no/aktuelt/nyheter/norge-eksporterte-sjomat-for-1514-

milliarder-kroner-i-2022/ (accessed 2023).

[2] (2019). Framtidens fiskerikontroll. [Online] Available:

https://www.regjeringen.no/no/dokumenter/nou-2019-21/id2680187/

[3] S. Wang, D. Li, Y. Zhang, and J. Chen, "Smart Contract-Based Product Traceability

System in the Supply Chain Scenario," IEEE Access, vol. 7, pp. 115122-115133,

2019, doi: 10.1109/ACCESS.2019.2935873.

[4] A. Sharma et al., "Up-to-the-Minute Privacy Policies via Gossips in Participatory

Epidemiological Studies," (in English), Frontiers in Big Data, Original Research vol.

4, 2021-May-13 2021, doi: 10.3389/fdata.2021.624424.

[5] T.-A. S. Nordmo, A. B. Ovesen, H. D. Johansen, M. A. Riegler, P. Halvorsen, and D.

Johansen, "Dutkat: A Multimedia System for Catching Illegal Catchers in a Privacy-

Preserving Manner," presented at the Proceedings of the 2021 Workshop on

Intelligent Cross-Data Analysis and Retrieval, Taipei, Taiwan, 2021. [Online].

Available: https://doi.org/10.1145/3463944.3469102.

[6] A. B. Ovesen, T.-A. S. Nordmo, H. D. Johansen, M. A. Riegler, P. Halvorsen, and D.

Johansen, "File System Support for Privacy-Preserving Analysis and Forensics in

Low-Bandwidth Edge Environments," Information, vol. 12, no. 10, p. 430, 2021.

[Online]. Available: https://www.mdpi.com/2078-2489/12/10/430.

[7] T.-A. S. Nordmo et al., "Njord: a fishing trawler dataset," presented at the Proceedings

of the 13th ACM Multimedia Systems Conference, Athlone, Ireland, 2022. [Online].

Available: https://doi.org/10.1145/3524273.3532886.

[8] J. A. Alslie et al., "Áika: A Distributed Edge System for AI Inference," Big Data and

Cognitive Computing, vol. 6, no. 2, p. 68, 2022. [Online]. Available:

https://www.mdpi.com/2504-2289/6/2/68.

[9] D. E. Comer et al., "Computing as a discipline," Commun. ACM, vol. 32, no. 1, pp. 9–

23, 1989, doi: 10.1145/63238.63239.

[10] Q. Ding, S. Gao, J. Zhu, and C. Yuan, "Permissioned Blockchain-Based Double-Layer

Framework for Product Traceability System," IEEE Access, vol. 8, pp. 6209-6225,

2020, doi: 10.1109/ACCESS.2019.2962274.

[11] S. Madumidha, P. S. Ranjani, U. Vandhana, and B. Venmuhilan, "A Theoretical

Implementation: Agriculture-Food Supply Chain Management using Blockchain

Technology," in 2019 TEQIP III Sponsored International Conference on Microwave

Integrated Circuits, Photonics and Wireless Networks (IMICPW), 22-24 May 2019

2019, pp. 174-178, doi: 10.1109/IMICPW.2019.8933270.

[12] S. Malik, S. S. Kanhere, and R. Jurdak, "ProductChain: Scalable Blockchain

Framework to Support Provenance in Supply Chains," in 2018 IEEE 17th

International Symposium on Network Computing and Applications (NCA), 1-3 Nov.

2018 2018, pp. 1-10, doi: 10.1109/NCA.2018.8548322.

[13] Q. Lin, H. Wang, X. Pei, and J. Wang, "Food Safety Traceability System Based on

Blockchain and EPCIS," IEEE Access, vol. 7, pp. 20698-20707, 2019, doi:

10.1109/ACCESS.2019.2897792.

[14] K. Salah, N. Nizamuddin, R. Jayaraman, and M. Omar, "Blockchain-Based Soybean

Traceability in Agricultural Supply Chain," IEEE Access, vol. 7, pp. 73295-73305,

2019, doi: 10.1109/ACCESS.2019.2918000.

https://seafood.no/aktuelt/nyheter/norge-eksporterte-sjomat-for-1514-milliarder-kroner-i-2022/
https://seafood.no/aktuelt/nyheter/norge-eksporterte-sjomat-for-1514-milliarder-kroner-i-2022/
https://www.regjeringen.no/no/dokumenter/nou-2019-21/id2680187/
https://doi.org/10.1145/3463944.3469102
https://www.mdpi.com/2078-2489/12/10/430
https://doi.org/10.1145/3524273.3532886
https://www.mdpi.com/2504-2289/6/2/68

Page 58 of 59

[15] M. Asante, G. Epiphaniou, C. Maple, H. Al-Khateeb, M. Bottarelli, and K. Z.

Ghafoor, "Distributed Ledger Technologies in Supply Chain Security Management: A

Comprehensive Survey," IEEE Transactions on Engineering Management, vol. 70,

no. 2, pp. 713-739, 2023, doi: 10.1109/TEM.2021.3053655.

[16] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 03/24 2009.

[17] E. Tedeschi, T.-A. S. Nordmo, D. Johansen, and H. D. Johansen, "On Optimizing

Transaction Fees in Bitcoin using AI: Investigation on Miners Inclusion Pattern,"

ACM Trans. Internet Technol., vol. 22, no. 3, p. Article 77, 2022, doi:

10.1145/3528669.

[18] B. H. Swathi, M. S. Meghana, and P. Lokamathe, "An Analysis on Blockchain

Consensus Protocols for Fault Tolerance," in 2021 2nd International Conference for

Emerging Technology (INCET), 21-23 May 2021 2021, pp. 1-4, doi:

10.1109/INCET51464.2021.9456310.

[19] S. J. Alsunaidi and F. A. Alhaidari, "A Survey of Consensus Algorithms for

Blockchain Technology," in 2019 International Conference on Computer and

Information Sciences (ICCIS), 3-4 April 2019 2019, pp. 1-6, doi:

10.1109/ICCISci.2019.8716424.

[20] V. Buterin. "Ethereum Whitepaper." https://ethereum.org/en/whitepaper/ (accessed

02.04, 2023).

[21] E. Tedeschi, T. A. S. Nordmo, D. Johansen, and H. D. Johansen, "Predicting

Transaction Latency with Deep Learning in Proof-of-Work Blockchains," in 2019

IEEE International Conference on Big Data (Big Data), 9-12 Dec. 2019 2019, pp.

4223-4231, doi: 10.1109/BigData47090.2019.9006228.

[22] "Ethereum development documentation." https://ethereum.org/en/developers/docs/

(accessed 2023).

[23] E. Lin. "Consensus protocols."

https://docs.goquorum.consensys.net/concepts/consensus (accessed 02.04, 2023).

[24] "Solidity." https://docs.soliditylang.org/en/v0.8.19/ (accessed 2023).

[25] "web3.js - Ethereum JavaScript API." https://web3js.readthedocs.io/en/v1.8.2/

(accessed 2023).

[26] "go-ethereum - Official Go implementation of the Ethereum protocol."

https://geth.ethereum.org/ (accessed 2023).

[27] H. Liu, X. Luo, H. Liu, and X. Xia, "Merkle Tree: A Fundamental Component of

Blockchains," in 2021 International Conference on Electronic Information

Engineering and Computer Science (EIECS), 23-26 Sept. 2021 2021, pp. 556-561,

doi: 10.1109/EIECS53707.2021.9588047.

[28] V. Alvarez, S. Richter, X. Chen, and J. Dittrich, "A comparison of adaptive radix trees

and hash tables," in 2015 IEEE 31st International Conference on Data Engineering,

13-17 April 2015 2015, pp. 1227-1238, doi: 10.1109/ICDE.2015.7113370.

[29] S. G. a. J. Dean. "LevelDB." https://github.com/google/leveldb (accessed 2023).

[30] E. Lin. "Architecture." https://docs.goquorum.consensys.net/concepts/architecture

(accessed 2023).

[31] N. Oba. "Finality in Blockchain." https://medium.com/minima-global/finality-in-

blockchain-e5a62ca0f9f4 (accessed 2023).

[32] E. Lin. "Comparing proof of authority consensus protocols."

https://docs.goquorum.consensys.net/concepts/consensus/comparing-poa/ (accessed

2023).

[33] J. R. Douceur, "The Sybil Attack," in Peer-to-Peer Systems, Berlin, Heidelberg, P.

Druschel, F. Kaashoek, and A. Rowstron, Eds., 2002// 2002: Springer Berlin

Heidelberg, pp. 251-260.

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/developers/docs/
https://docs.goquorum.consensys.net/concepts/consensus
https://docs.soliditylang.org/en/v0.8.19/
https://web3js.readthedocs.io/en/v1.8.2/
https://geth.ethereum.org/
https://github.com/google/leveldb
https://docs.goquorum.consensys.net/concepts/architecture
https://medium.com/minima-global/finality-in-blockchain-e5a62ca0f9f4
https://medium.com/minima-global/finality-in-blockchain-e5a62ca0f9f4
https://docs.goquorum.consensys.net/concepts/consensus/comparing-poa/

Page 59 of 59

[34] M. Castro and B. Liskov, "Practical Byzantine fault tolerance," presented at the

Proceedings of the third symposium on Operating systems design and implementation,

New Orleans, Louisiana, USA, 1999.

[35] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, "HotStuff: BFT

Consensus with Linearity and Responsiveness," presented at the Proceedings of the

2019 ACM Symposium on Principles of Distributed Computing, Toronto ON,

Canada, 2019. [Online]. Available: https://doi.org/10.1145/3293611.3331591.

[36] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals Problem," ACM

Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982, doi:

10.1145/357172.357176.

[37] ConsenSys. "Scaling Consensus for Enterprise: Explaining the IBFT Algorithm."

https://consensys.net/blog/enterprise-blockchain/scaling-consensus-for-enterprise-

explaining-the-ibft-algorithm/ (accessed 2023).

[38] E. Lin. "Configure IBFT consensus." https://docs.goquorum.consensys.net/configure-

and-manage/configure/consensus-protocols/ibft (accessed 2023).

[39] IBM. "What is Docker?" https://www.ibm.com/topics/docker (accessed 2023).

[40] "Docker Compose overview." https://docs.docker.com/compose/ (accessed 2023).

[41] R. Hu, W. Ding, and L. Yang, "A survey on data provenance in IoT," World Wide

Web, vol. 23, 03/01 2020, doi: 10.1007/s11280-019-00746-1.

[42] FAO. "ASFIS List of Species for Fishery Statistics Purposes."

https://www.fao.org/fishery/en/collection/asfis/en (accessed.

[43] (2023). GS1 General Specifications Standard. [Online] Available:

https://ref.gs1.org/standards/genspecs/

https://doi.org/10.1145/3293611.3331591
https://consensys.net/blog/enterprise-blockchain/scaling-consensus-for-enterprise-explaining-the-ibft-algorithm/
https://consensys.net/blog/enterprise-blockchain/scaling-consensus-for-enterprise-explaining-the-ibft-algorithm/
https://docs.goquorum.consensys.net/configure-and-manage/configure/consensus-protocols/ibft
https://docs.goquorum.consensys.net/configure-and-manage/configure/consensus-protocols/ibft
https://www.ibm.com/topics/docker
https://docs.docker.com/compose/
https://www.fao.org/fishery/en/collection/asfis/en
https://ref.gs1.org/standards/genspecs/

