
 

 
 

M A T - 3 9 0 0  

M A S T E R ’ S  T H E S I S  I N  M A T H E M A T I C S  

 
 
 
 
 

Matroids, Demi-Matroids and Chains of Linear Codes 
 
 
 
 
 

James Martin 
 
 
 

November, 2010 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FACULTY OF SCIENCE AND TECHNOLOGY 
Department of Mathematics and Statistics 

University of Tromsø 



 



 

 
 

 

 

M A T - 3 9 0 0  

M A S T E R ’ S  T H E S I S  I N  M A T H E M A T I C S  
 
 
 
 
 

Matroids, Demi-Matroids and Chains of Linear Codes 
 
 
 
 
 

James Martin 
 
 
 

November, 2010 
 



 



 

 

Acknowledgements 
 

    Firstly, I would like to express sincere thanks to my supervisor, Professor Trygve Johnsen, 

Head of The Dept. of Mathematics and Statistics at The University of Tromsø. His help, 

encouragement, expert advice and guidance throughout the composition of this thesis were and 

are greatly appreciated. It has been a great pleasure having him as my supervisor over the past 

two years. 

    I would also like to thank my family especially my parents for all their encouragement and 

support for the duration of this Masters program. 

 

 

 

 

 

 

 

 

 

 

 



 



Contents

1 Matroids 5

1.1 Linearly Independent Sets of a Matroid . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Bases of a Matroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Circuits of a Matroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Rank of a Matroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Vectorial Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Dual of a Matroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Matroid Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Coding Theory 11

2.1 Matroids obtained from Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Code Parameters and Matroid isomorphism Classes. . . . . . . . . . . . . . . . . 16

3 Graph Theory 18

3.1 Cycle Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Dual of a Graphic Matroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Deletion and Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Linear codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Demi-Matroids 32

4.1 Invariants of Demi-Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



4.2 An Equivalent Characterisation of a Demi-Matroid . . . . . . . . . . . . . . . . . 43

5 Higher Weights of Linear Codes 46

6 Demi-Matroids obtained from Multi-Codes (Chains of Codes). 50

6.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Generalisation of results in [5] 58

8 Bibliography 79

2



Introduction

The central theme of this thesis is the study of matroids and related concepts. A matroid is

a combinatorial structure which can be de�ned in several di¤erent but, equivalent ways. We

can view it as a structure that captures the essence of the notion of independence and which

generalises this notion for matrices and graphs. It is an ordered pair consisting of a �nite set (the

ground set of the matroid) and a collection of subsets (the independent sets of the matroid) of

the ground set, which satisfy certain conditions. We study matroids in connection with related

phenomena like linear codes and graphs. Codes and graphs both motivate the de�nition of

matroids and give interesting and striking examples of the relevance of the concept. Following

[1] we also show how the de�nition of matroids can be relaxed so that other objects, namely

demi-matroids, arise. In more than half of the thesis we study themes related to demi-matroids.

We study how some results in coding theory are essentially consequences of results for demi-

matroids.

In Chapter 1 we list the basic properties of matroids. De�nitions and proofs in this chapter

are taken from [6].

In Chapter 2 we list the basic properties of block codes over �nite alphabets and linear

codes. We describe how matroids arise from linear codes. While a large portion of this chapter

is comprised of well known facts and de�nitions some information has been sourced [3].

In Chapter 3 we �rst sketch some basic properties of graphs and matroids derived from

graphs. Then we describe the concepts of deletion and contraction for graphs and matroids

and puncturing and shortening of linear codes. We describe how these phenomena are related

to each other. De�nitions, graphs and examples in this chapter have been sourced from [4], [6]

and [7].
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Collectively chapters 1-3 are intended to show the deep connections between graphs, codes

and matroids but, we do not claim to show anything new in these chapters.

In Chapter 4 we recall the de�nition of demi-matroids from [1] and study associated invari-

ants in detail.

In Chapter 5 we study higher weights of linear codes and give them a (demi-)matroid

theoretical interpretation.

Chapters 4 and 5 are inspired by [1] and give a more detailed exposition of the topics treated

there.

In Chapter 6 we study chains of linear codes or multi-codes. We show how they give rise to

demi-matroids and describe duality.

In Chapter 7 we generalise concepts and results in [5] for pairs of codes to multi-codes and

we use a demi-matroid theoretical setting.

Collectively chapters 4-7 are intended to show a connection between chains of linear codes

(and chains of graphs since each graph in the chain gives rise to a matroid which is vectorial

and thus can be associated with a linear code) and demi-matroids.

We end the thesis by giving a generalisation of the Singleton bound to multi-codes and a

generalisation of MDS codes to optimal chains of codes.
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Chapter 1

Matroids

Matroids were introduced by Hassler Whitney in 1935 in an e¤ort to try to capture abstractly

the essence of dependence. They are an abstraction of several combinatorial structures (such

as matrices and graphs) and can be de�ned in several di¤erent but, equivalent ways. In this

section, four de�nitions for a matroid will be presented along with the relationships which

connect them [7].

1.1 Linearly Independent Sets of a Matroid

De�nition 1 A matroid M is an ordered pair (E, I) consisting of a �nite set, E and a collection

I of subsets of E satisfying the following three conditions

(I1) ; 2 I.

(I2) If I 2 I and I 0 � I , then I 0 2 I.

(I3) If I1and I2 are in I and jI1j < jI2j , then there is an element e of I2 � I1 such that I1[ e

2 I.

If M is the matroid (E, I), then M is called a matroid on E. The members of I are the

independent sets of M, and E is the ground set of M. A subset of E that is not in I is

called dependent.
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1.2 Bases of a Matroid

De�ning a matroid in terms of all the independent sets associated with it, is an unnecessarily

cumbersome approach to take. If instead a matroid is described in terms of its maximal inde-

pendent sets (from which all independent sets can be obtained, by (I2) above) a much more

e¢ cient de�nition of a matroid is attained.

De�nition 2 A maximal independent set in M is called a basis or a base of M.

Lemma 3 If B1and B2 are bases of a matroid M, then jB1j = jB2j.

If B is the set of bases of a matroid M then the following axioms hold.

(B1) B is non-empty (from (I1)).

(B2) If B1 and B2 are members of B and x 2 B1 � B2, then there is an element y of B2 � B1
such that (B1 � x ) [ y 2 B.

Theorem 4 Let E be a set and B be a collection of subsets of E satisfying (B1) and (B2).

Let I be the collection of subsets of E that are contained in some members of B. Then (E, I)

is a matroid having B as its collection of bases.

1.3 Circuits of a Matroid

De�nition 5 A minimal dependent set is one whose proper subsets are independent.

De�nition 6 A circuit of a matroid M is a minimal dependent set of M.

A matroid M is uniquely determined by its set of circuits C, since I (the set of independent

sets of M) can be obtained from C. If C is the set of circuits of a matroid then the following

axioms hold.

(C1) ; =2 C.

(C2) If C 1and C 2 are members of C and C1 � C2, then C1 = C2.
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(C3) If C 1and C 2 are distinct members of C and e 2 C 1\C 2, then there is a member C3 of C

such that C3 � (C1 [ C2)� e.

Theorem 7 Let E be a set and C be a collection of subsets of E satisfying (C1), (C2) and

(C3). Let I be the collection of subsets of E that contain no member of C. Then (E, I) is a

matroid having C as its collection of circuits.

The set of circuits C and set of bases B of a matroid are related as follows. B is the collection

of maximal subsets of E that contain no member of C, while C is the collection of minimal sets

that are contained in no member of B.

1.4 Rank of a Matroid

De�nition 8 Let M = (E, I) be a matroid, and let X � E.The rank function of M is the

function r : 2E ! N0 with r(X) = max(jIj j I � X; I 2 I): r(X) is called the rank of X.

De�nition 9 For any subsets X, Y of E, the rank function of a matroid M on E is a function

r : 2E ! N0 with the following properties:

(R1) If X � E, then 0 � r(X) � jXj :

(R2) If X � Y � E, then r(X) � r(Y ).

(R3) If X and Y are subsets of E, then r(X [ Y ) + r(X \ Y ) � r(X) + r(Y ).

Theorem 10 Let E be a set and let r be a function that maps 2E ! N0 and satis�es (R1),

(R2) and (R3). Let I be the collection of subsets X of E for which r(X) = jXj. Then (E, I)

is a matroid having rank function r.

If M is the matroid (E, I) with rank function r and X � E then the following are true:

1. X is an independent set i¤ jXj = r(X).

2. X is a basis i¤ jXj = r(X) = r(M):

3. X is a circuit i¤X is non-empty and, for all x 2 X; r(X � x) = jXj � 1 = r(X):
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1.5 Vectorial Matroids

The most renowned examples of matroids are those obtained from the columns of a matrix over

a given �eld. These are indeed the examples which have given rise to the name matroid, since

we can concider matroids as structures, derived from matrices. To be more precise:

Proposition 11 If E is the list of labels of column vectors of an m�n matrix A over a �eld F

and I the set of subsets of E such that the multiset of columns labelled by the subset is linearly

independent over Fm then (E, I) is a matroid.

Proof. Clearly I satis�es (I1) and (I2). Let I1 and I2 be linearly independent subsets

of E such that jI1j < jI2j. Let W be the subspace of Fm spanned by I1 [ I2. Then dim(W ),

the dimension of W, is at least jI2j : Now suppose that I1 [ e is linearly independent for all

e in I2 � I1: Then W is contained in the span of I1. Thus jI2j � dim(W ) � jI1j < jI2j ; a

contradiction. We conclude that I2� I1 contains an element e such that I1 [ e 2 I, that is (I3)

holds.

Example 12 Let A be the matrix

1 2 3 4 526664
0 0 1 0 1

1 0 0 1 0

0 1 0 0 1

37775
over R the �eld of real numbers. Then E={1,2,3,4,5} and

I={;, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5},

{4,5}, {1,2,3}, {1,2,5}, {1,3,5}, {2,3,4}, {2,4,5}, {3,4,5}}.

B={{1,2,3}, {1,2,5}, {1,3,5}, {2,3,4}, {2,4,5}, {3,4,5}}.

C={{1,4}, {2,3,5}}.

De�nition 13 If a matroid M is isomorphic to the vector matroid of a matrix D over a �eld F,

then M is said to be representable over F or F-representable. A matroid is representable

if it is representable over some �eld.
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De�nition 14 The non-Pappus matroid is the matroid on E = {1, 2, 3, 4, 5, 6 , 7, 8, 9}

whose bases are all triples except {1,2,3}, {7,8,9}, {1,4,8}, {2,4,7}, {1,5,9}, {3,5,7}, {2,6,9},

{3,6,8}.

Claim 15 The non-Pappus matroid is not F-representable for a �eld F and is thus an example

of a matroid which does not arise from a matrix.

Proof. For a proof of the above claim see [6] pg173.

1.6 Dual of a Matroid

De�nition 16 For the matroid M with ground set E and set of bases B (which we can denote

as B(M)) there exists another matroid M� with ground set E and set of bases B�(which we can

denote as B�(M)) given by B� = fE �B j B 2 Bg this matroid is called the dual of M .

Thus B(M�) = B�(M) and it is clear that since (B(M�))� = B(M) then (M�)� = (M):

Theorem 17 IfM is the vector matroid of [IkjA] = G; thenM�(the dual matroid) is the vector

matroid of [�AT jIn�k] = H.

Example 18 Considering the matroid M of Example 12. The dual matroid M� has set of

bases B�; set of independent sets I� and set of circuits C� given by:

B� ={{1,2}, {1,3}, {1,5}, {2,4}, {3,4}, {4,5}}.

I�={;,{1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,5}, {2,4}, {3,4}, {4,5}}.

C�={{1,4}, {2,3}, {2,5}, {3,5}}.

The set of bases, independent sets and circuits of M� are called the cobases, coindepen-

dent sets and cocircuits of M respectively.

De�nition 19 The rank function of M� is called the corank function of M .

Proposition 20 For all subsets X of the ground set E of a matroid M ,

r�(X) = jXj � r(M) + r(E �X):

Proof. See [6] page 72.
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1.7 Matroid Isomorphisms

The matroids M1= (E, I) and M2= (E 0, I 0) are isomorphic, if there is a bijection � : E ! E0

such that for all X � E, �(X) is independent in M2 i¤X is independent in M1.

Example 21 For the matroid (E, I) in the previous example, taking � : E ! E, such that

� =

0@1 2 3 4 5

2 4 5 1 3

1A then the set of linearly independent sets of the matroid (E, I 0) given by

�(I) = f�(x) j x 2 Ig is I 0={;, {1}, {2}, {3}, {4}, {5}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4},

{2,5}, {3,4}, {3,5}, {4,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}}. In this ex-

ample the matroid (E, I 0) has the same ground set {1,2,3,4,5} as (E, I) but, (E, I 0) is the

matroid associated with the matrix A
0
obtained from A by permuting the columns of A corre-

spondingly.

A =

1 2 3 4 526664
0 0 1 0 1

0 1 0 1 0

1 0 1 0 1

37775 A
0
=

1 2 3 4 526664
0 0 1 0 1

1 0 0 1 0

0 1 0 0 1

37775
Remark 22 We observe that if M1 wM2 )M�

1 wM�
2 .

Remark 23 Two isomorphic matroids have the same number of elements in their respective

ground sets .i.e. E(M) = n. Since there exists a bijection between the bases of two isomorphic

matroids they have the same rank k.
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Chapter 2

Coding Theory

De�nition 24 Let A be a �nite alphabet given by fa1; a2; a3::::; aqg where q 2 N. Then a code

word over A is an element (n-tuple) of An for some n 2 N0 = f0; 1; 2; ::::g and A0 is considered

to be the empty word.

Example 25 If A = fa; b; c; :::; y; z;æ;ø;�ag (the Norwegian alphabet) then c 2 A; (p;�a) 2 A2;

(s; a; w) 2 A3:

The set of all possible code words is given by V=
1
[
n=0

An = ff;g [A [A2 [A3 [ ::::g:

De�nition 26 A code is a subset of V i.e. C � V:

Example 27 If A={a,b,c,.....,x,y,z} (the English alphabet) then a list of all English words is

a code.

De�nition 28 A block code C is a subset of An for a �xed value of code word length n i.e.

C � An,n � 1:

De�nition 29 If the alphabet A is a �nite �eld Fq, then for some �xed n, the sub vector space

C of the vector space (Fq)n is called a linear code.

Assume C is a block code whose alphabet A is a group G, such that C � Gn. Let

g = (g1; g2; ::::::::::; gn) and h = (h1; h2; ::::::::::; hn) 2 C. Multiplication is de�ned as gh =

(g1h1; g2h2; ::::; gnhn) and is such that gh 2 Gn. This operation makes Gn a group.
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De�nition 30 A code C is called a group code if:

1. (1; 1; ::::; 1) 2 C. 1 = identity element of G.

2. For (g1; g2; ::::::::::; gn) 2 C, then (g�11 ; g�12 ; ::::::::::; g�1n ) 2 C

3. For g; h 2 C, gh 2 C.

Example 31 For the additive group G with g = (g1; g2; ::::::::::; gn), h = (h1; h2; ::::::::::; hn) 2

G, if C � Gn is a group code, then the following are true:

1. (0; 0; 0; ::::::::; 0) 2 C:

2. If (g1; g2; ::::::::::; gn) 2 C, then (�g1;�g2; ::::::::::;�gn) 2 C:

3. If g; h 2 C then gh = (g1 + h1; g2 + h2; ::::::::::; gn + hn) 2 C

If the block code alphabet is over a �eld F (with addition as its group operation), i.e.

C � Fn then the code is a linear code if:

1. For g = (g1; g2; ::::::::::; gn) 2 C; k(g1; g2; ::::::::::; gn) 2 C where the constant k 2 F:

2. g; h 2 C then gh = (g1 + h1; g2 + h2; ::::::::::; gn + hn) 2 C

Remark 32 It is clear that requirements 1. and 2. of de�nition 30 for a group code are

satis�ed by 1. and 2. above.

Claim 33 The number of code words M in a block code C is �nite.

Proof. M=jCj � jAnj = qn where q = jAj i.e. the number of code words in C is less than

or equal to the total number of possible code words.

De�nition 34 The dimension (or rank) k of a code is de�ned as k = logqM .

k will only be an integer if M = qk for some k 2 N0.

Remark 35 For a linear code C it is observed that dim(C) = k 2 N0.
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De�nition 36 The Hamming distance between two vectors a and b of An is the number

of places in which they di¤er. Formally if a = (a1; a2; ::::::::::; an) and b = (b1; b2; ::::::::::; bn)

2 An. The Hamming Distance d(a;b) is given by:

d(a;b) = jfijai 6= bi; i = 1; 2; ::::n:gj

The Hamming distance satis�es the following three requirements for a metric:

1. d(a;b) � 0; with equality i¤ a = b.

2. d(a;b) = d(b;a):

3. d(a; c) � d(a;b) + d(b; c).

De�nition 37 The (minimum) distance of a code, denoted d(C), is the smallest value of

Hamming distance considered over all pairs of distinct code words in the code. Formally d(C) =

min fd(a;b)ja;b 2 C;a 6= bg

De�nition 38 The minimum distance d of a linear code C is equal to the smallest of the

weights of the non-zero code words.

De�nition 39 Two q-ary block codes are in general called equivalent if one can be obtained

from the other by a combination of operations of the following types:

1. A permutation of the positions of the code.

2. A permutation of the symbols appearing in a �xed position.

Example 40 If (2,5,0,4,1) and (3,2,6,0,5) are two code words of a code C over F7; then a

permutation of positions 2 and 4 yield the code words (2,4,0,5,1) and (3,0,6,2,5) of the equivalent

code µC. µC is obtained from C by applying this permutation to all code words in C. This is an

example of operation 1.

Example 41 If (2,5,0,4,1), (1,2,3,5,6), and (3,2,6,0,5) are three code words of a code C over

F7; then a permutation � =

0@ 0 1 2 3 4 5 6

6 2 5 0 1 4 3

1A of the symbols in position 3 yields the

13



code words (2,5,6,4,1), (1,2,0,5,6) and (3,2,3,0,5) of the equivalent code �C. �C is obtained from

C by applying a permutation of this type to all code words in C. This is an example of operation

2.

Remark 42 When dealing with linear q-ary codes, we use a more restrictive version of equiv-

alence, called linear equivalence where operation 2 is speci�ed to be:

2�. A permutation of the symbols appearing in a �xed position obtained by multiplying all

of them by a �xed non-zero �eld element.

Since the distance between two code words is given by the number of places in which they

di¤er, it is clear that distance of the code d(C) remains unaltered by these two operations.

Thus two equivalent codes have the same distance. Similarly the length of the code words n

remains unchanged by these permutations and equivalent codes have the same length.

De�nition 43 The Dual Code of a linear code C � (Fq)n is the linear code de�ned by C? =

fx 2 (Fq)nj < x; c >= 0 8c 2 Cg where < x; c >=
nP
i=1

xici is a scalar product. If C is an

[n; k]-code over Fq then C? is a linear [n; n� k] code. (C?)? = C.

De�nition 44 Given a linear code C, a (k�n) generator matrix G of C is a matrix whose

rows generate all the elements of C, i.e. if G = (r1r2:::rk)
T then every code word w of C

can be represented as a linear combination of the row vectors of G in a unique way i.e. w =

c1r1 + c2r2 + :::+ ckrk = cG; where c = (c1c2:::ck).

Two k�n matrices generate equivalent linear codes (of length n and dimension k) over F if

one matrix can be obtained from the other by a sequence of operations of the following types:

(R1) Permutation of rows.

(R2) Multiplication of a row by a non-zero scalar.

(R3) Addition of a scalar multiple of one row to another.

(C1) Permutation of the columns.

(C2) Multiplication of any column by a non-zero scalar.

Theorem 45 Let G be a generator matrix of an [n; k]-code. Then by performing operations of

types (R1), (R2), (R3), (C1) and (C2), G can be transformed to the standard form [IkjA]

where Ik is the k � k identity matrix, and A is a k � (n� k) matrix.
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De�nition 46 A parity check matrix H of a linear code C is a generator matrix of the dual

code C?. As such, a code word c is in C if and only if the product cHT = 0:

Theorem 47 If G = [IkjA] is the standard form generator matrix of an [n; k]-code C, then a

parity check matrix for C is H = [�AT jIn�k].

If G is a generator matrix for a code C and H is a parity check matrix for C, then H is a

generator matrix for C? and G is a parity check matrix for C?.

2.1 Matroids obtained from Linear Codes

Proposition 11 provides us with a way to relate two matroids MG(C) and MH(C) (via our

generator matrix and parity check matrix respectively) to our linear code C.

Replacing the generator matrix G by another generator matrix G�gives the same matroid

as for G i.e. MG(C) = MG0(C). This is obvious since G� is obtained from G by a series

of elementary row operations, which does not e¤ect the columns of the matrix, whose linear

independence determine the matroid.

De�nition 48 We de�ne MG(C) = M(C) for any generator matrix of C and M?(C) =

MH(C) for any parity check matrix of C.

Theorem 49 For a linear code C, the matroids MG(C) and MH(C) are dual to each other.

Proof. If G is a generator matrix for C, (with corresponding vector matroidMG(C)) it can

be reduced to standard form to give G0 = [IkjA] and then H = [�AT jIn�k] is a parity check

matrix for C. Theorem 17 shows that MG(C) and MH(C) (the vector matroid associated with

H) are dual matroids. Since (M�)� =M the result follows.

Corollary 50 The generator matrix G of a linear code C is a parity check matrix for the

dual code C? and the parity check matrix H of C is a generator matrix for C?.This yields the

following relationship between codes and matroids : M?(C) = (M(C))� andM(C?) = (M(C))�
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2.2 Code Parameters and Matroid isomorphism Classes.

Given a linear code C with generator matrix G. If dim(C) = k and word length is n, then G

is a k � n matrix of rank k. This gives that for the matroid MG(C), E(MG) has n elements.

The rank of MG(C) = k and the rank of MH(C) = n� k, while E(MH) = n.

Since all matroids isomorphic to MG(C) have ground sets E(M) with the same cardinality

n and same rank k, both n and k are determined by properties which are only dependent on

the isomorphism class of MG(C). (Similarly for MH(C)).

Since the number of words in the codeM = qk is determined by k and k in turn is determined

by the isomorphism class ofMG(C) thenM is also determined by isomorphism class ofMG(C):

(Similarly for MH(C)).

Theorem 51 Suppose C is a linear code of length n and dimension k over Fq with parity check

matrix H. The minimum distance of C is d if and only if any d� 1 columns of H are linearly

independent but some d columns are linearly dependent.

Proof. The minimum distance of C is equal to the smallest of the weights of the non-zero

code words. Let x = x1x2:::::xn be a vector in (Fq)n.

Then x 2 C() xH T = 0()x1H1+x2H2+:::::+xnHn = 0; where H1;H2;:::::;Hn denote

the columns of H :

Thus corresponding to each code word x of weight d, there is a set of d linearly dependent

columns of H . On the other hand if there existed a set of d� 1 linearly dependent columns of

H , say Hi1 ;Hi2 ;:::::;Hid�1 , then there would exist scalars xi1xi2 :::::xid�1 , not all zero, such that

xi1Hi1+xi2Hi2+:::::+xid�1Hid�1 = 0: But then the vector x = (0:::0xi10:::0xi20:::::0xid�10::::0);

having xij in the ijth position for j = 0; 1; 2; ::::; d�1; and 0s elsewhere, would satisfy xHT = 0

and so would be a non-zero code word of weight less than d.

From Theorem 51 we have that d(C) = minimum number of linearly dependent columns of

H i.e. a circuit. So d(C) is the smallest possible cardinality for a circuit inMH(C). Clearly the

number d(C) is only dependent on the isomorphism class of MH(C) and this in turn depends

only on the isomorphism class of MH(C) which is only dependent on the isomorphism class of

MG(C) which is dual to MH(C).
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Conclusion 52 In summary the code parameters n; k; d;M of a linear code C are only depen-

dent on the isomorphism classes of the matroids M(C) (and also M?(C)).

Remark 53 Equivalent linear codes give isomorphic matroids. This is true since performing

the row operations (R1), (R2), (R3) and column operation (C2), leaves the matroid unaltered.

While using operation (C1) one permutes columns and obtains an isomorphic matroid.
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Chapter 3

Graph Theory

A graph consists of a non-empty set V (G) of vertices and a multiset E(G) of edges each of

which consists of an unordered pair (possibly identical) vertices. If e 2 E(G) and e = fu; vg

where u and v are in V (G), then we say that u and v are neighbours or adjacent, and e is

incident with u and v. We call V (G) and E(G) the vertex set and edge set, respectively, of the

graph G.

Figure 1 is a pictorial representation of a particular graph. The vertex and edge set of this

graph are fv1; v2; ::; v5g and fe1; e2; ::; e5g, respectively. An edge such as e5, which joins a vertex

to itself, is called a loop. Edges such as e2 and e3, which join the same pair of distinct vertices

are called parallel edges. The vertex v5 which does not meet any edges, is an isolated vertex.

The ends of the edge e1 are v1 and v2.

e5

e4
e3

V3 V2

V1
e1

V5V4

e2

Figure 1

A graph is simple if it has no loops and no parallel edges.
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A graph H is a subgraph of a graph G if V (H) and E(H) are subsets of V (G) and E(G),

respectively. If V 0 is a non-empty subset of V (G), then G[V 0] denotes the subgraph of G whose

vertex set is V 0 and whose edge set consists of those edges of G which have both endpoints

in V 0. We say that G[V 0] is the subgraph of G induced by V 0. Similarly if E0 is a non-empty

subset of E(G), then G[E0] the subgraph of G induced by E0, has E0 as its edge set and the set

of endpoints of edges in E0 as its vertex set.

If G1 and G2 are graphs, their union G1 [G2 is the graph with vertex set V (G1) [ V (G2)

and edge set E(G1) [ E(G2). If V (G1) and V (G2) are disjoint, then so are E(G1) and E(G2)

and G1 and G2 are called disjoint graphs.

Graphs G and H are isomorphic, written G �= H, if there are bijections  : V (G)! V (H)

and � : E(G)! E(H) such that a vertex v of G is incident an edge e of G if and only if  (v)

is incident with �(e).

A walk W in a graph G is a sequence v0e1v1e2::::vk�1ekvk such that v0; v1; ::::; vk are vertices

and e1; e2::::; ek are edges and each vertex or edge in the sequence, except vk, is incident with

its successor in the sequence. Now suppose that the vertices v0; v1; ::::; vk are distinct, then the

edges e1; e2::::; ek are also distinct and W is a path. The end-vertices of this path are v0 and vk

and the path is said to be a (v0; vk)-path or to join v0 and vk. The vertices v1; ::::; vk�1 are the

internal vertices of the path. The length of a path is the number of edges that it contains.

A graph is connected if each pair of distinct vertices is joined by a path. A graph that is

not connected is disconnected. In any graph G, the maximal connected subgraphs are called

(connected) components. The vertex sets of the components of G partition V (G). The number

of these components will be denoted !(G).

If P is a (u; v)-path in a graph G and e is an edge of G that joins u to v but, is not in P , then

the subgraph of G whose vertex set is V (P ) and whose edge set is E(P ) [ e is called a cycle.

A connected graph having no cycles is called a tree, while a union of trees is called a forest. A

graph is a forest if and only if it has no cycles. A spanning tree of a connected graph G is a

subgraph T of G such that T is a tree and V (T ) = V (G). For all trees T , jE(T )j = jV (T )j � 1.

Hence if T is a spanning tree of a graph G, then jE(T )j = jV (G)j � 1
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3.1 Cycle Matroids

Proposition 54 Let E be the set of edges of a graph G and C be the set of edge sets of cycles

of G. Then C is the set of circuits of a matroid on E.

Proof. Clearly C satis�es (C1) and (C2). To prove that it satis�es (C3), let C1 and C2 be

the edge sets of two distinct cycles of G that have e as a common edge. Let u and v be the

endpoints of e. We now construct a cycle of G whose edge set is contained in (C1[C2)� e. For

i = 1; 2, let Pi be the path from u to v in G whose edge set is Ci � e. Beginning at u, traverse

P1 towards v letting w be the �rst vertex at which the next edge of P1 is not in P2. Continue

traversing P1 from w towards v until the �rst time a vertex x is reached that is distinct from

w but, also in P2. Since both P1 and P2 end at v, such a vertex must exist. Now adjoin the

section of P1 from w to x to the section of P2 from x to w. The result is a cycle, the edge set

of which is contained in (C1 [ C2)� e. Hence C satis�es (C3).

De�nition 55 The matroid derived above from the graph G is called the cycle matroid or

polygon matroid. It is denoted by M(G). Its ground set and set of circuits are denoted by

E(M) and C(M) respectively.

A subset X of E(G) the edges of a graph G is independent in M(G) if and only if X does

not contain the edge set of a cycle, or equivalently G[X] the subgraph induced by X is a forest.

Thus X is a basis of M(G) precisely when G[X] is a forest and for all e =2 X, G[X [ e] contains

a cycle. It follows that when G is connected that X is a basis of M(G) if and only if G[X] is a

spanning tree of G. In general, X is a basis of M(G) if and only if, for each component H of

G having at least one non-loop edge, H[X \ E(H)] is a spanning tree of H.

Recalling that the rank of a matroid is given by the number of elements in a basis (i.e. the

number of edges in a spanning forest). Let M =M(G) where G is a connected graph. Then a

basis of G is the set of edges of a spanning tree in G. For a tree T we have that

jE(T )j = jV (G)j � 1:

Since G is connected

r(M) = jV (G)j � 1:
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Now if G has !(G) connected components, then

r(M) = jV (G)j � !(G):

So, the rank of a cycle matroid is the number of vertices of the graph less the number of

connected components of the graph.

It follows that if X � E(G), then

r(X) = jV (G[X])j � !(G[X]):

De�nition 56 A matroid that is isomorphic to the cycle matroid of a graph is called graphic.

Proposition 57 Every graphic matroid is representable over every �eld. Thus, if G is a graph,

then M(G) is representable over every �eld.

G is a graph whose vertices are labelled numerically and whose edges are labelled alpha-

betically. Applying an arrow (whose direction is arbitrarily chosen) to each of the edges, gives

a directional graph D(G). Let MD(G) denote the incidence matrix of D(G), that is, MD(G) is

the matrix [mij ] whose rows and columns are indexed by the vertices and edges respectively, of

D(G) where

mij �

8>>><>>>:
1 if vertex i is the tail of non-loop arc j;

�1 if vertex i is the head of non-loop arc j;

0 otherwise.

MD(G) is a matrix over F3 which can be transformed to a matrixMU(G) over F2 by replacing

all "�1" entries by "1". The proof of Proposition 57 consists of showing that the matroid

associated with the matrix MD(G) and also matrix MU(G), is the same as the graphic matroid

M(G). So a graphic matroid is representable over F2 and thus over any �eld. A detailed proof

of the proposition is given in [6] pg 139.

Example 58 The directed graph D(G) is shown in Figure 2. MD(G) the corresponding matrix

over F3 is given underneath Figure 2.
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Figure 2

MD(G) =

1

2

3

4

5

a b c d e f g26666666664

�1 �1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 �1 �1 �1 �1 0

0 0 0 1 0 0 0

0 0 0 0 1 1 0

37777777775
Transforming this to a matrix over F2 gives MU(G) .

MU(G) =

1

2

3

4

5

a b c d e f g26666666664

1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 1 1 1 1 0

0 0 0 1 0 0 0

0 0 0 0 1 1 0

37777777775
The two matrices MD(G) and MU(G) yield the same matroid.

It is clear from the way in which the matrix is constructed, that it is governed by the relation

r1 + r2 + ::::: + rq = 0 where ri is the ith row of the matrix. This shows that the n rows are

linearly dependent and we can remove any one of the rows without a¤ecting the rank of the

matrix or the corresponding vectorial matroid. Since each row corresponds to a vertex of the

graph this concurs with the previously attained result regarding the rank of a cycle matroid
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associated with a connected graph i.e.

r(M) = jV (G)j � 1:

In fact this equation shows that the remaining q� 1 (in this case 5� 1) rows of MD(G) and

MU(G) are independent, if G is connected.

Remark 59 We observe that a circuit of G gives a relation between the columns of MU(G).

The sum of these columns is zero.

Similarly for a disconnected graph, a matrix is constructed for each of the connected com-

ponents. A single linearly dependent row can be removed from each of the matrices. Each

matrix is then a sub-matrix of the matrix M from which we can regenerate our Matroid M(G).

Example 60 If G is a disconnected graph consisting of 3 connected components GA, GB and

GC with corresponding matrices A, B and C, having n, o and p rows respectively, then the rank

of the matroid M(G) is given by (n+ o+ p)� 3.

A =

26666664
a11 : : a1l

: :

: :

an1 anl

37777775gn� rows) rank = n� 1:

B =

26666664
b11 : : b1k

: :

: :

bo1 : : bok

37777775go� rows) rank = o� 1:

C =

26666664
c11 : : c1j

: :

: :

cp1 : : cpj

37777775gp� rows) rank = p� 1:
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M =

266666666666666666666666666666664

a11 : : a1l

: :

: :

an�11 an�1l

b11 : : b1k

: :

: :

bo�11 : : bo�1k

c11 : : c1j

: :

: :

cp�11 : : cp�1j

377777777777777777777777777777775

g(n+ o+ p)� 3 rows) rank = (n+ o+ p)� 3

3.2 Dual of a Graphic Matroid.

If G is a graph, we denote the dual of the cycle matroid of G by M�(G). This matroid is called

the bond matroid of G or the cocycle matroid of G. An arbitrary matroid that is isomorphic to

the bond matroid of some graph is called cographic.

If X is a set of edges in a graph G then, GnX denotes the subgraph of G obtained by

deleting all edges in X. If GnX has more connected components than G, then X is called an

edge cut of G. An edge e for which feg is an edge cut is called a cut-edge. A minimal edge cut

is also called a bond or cocycle of G..

Proposition 61 The following statements are equivalent for a subset X of the set edges of a

graph G:

1. X is a circuit of M�(G).

2. X is a cocircuit of M(G).

3. X is a bond of G.

See [6] pg 89 for a proof of this proposition.
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For an arbitrary graph G, the circuits of M�(G) are the edge sets of bonds of G. If v is

a vertex of G and X is the set of edges meeting v, then X is an edge cut. If such an X is a

minimal edge cut, we call it a vertex bond of G.

The graph G [7]:
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(a) Constructing the dual G� of G (b) G� [7]:

3.3 Deletion and Contraction

3.3.1 Graphs

De�nition 62 Let G be a graph with edge set E(G) and vertex set V (G). For e 2 E, we

denote the graph obtained from G by deleting e as Gne. This action is called edge deletion.

Repeating this process for all the edges in a subset T of E(G) gives the graph GnT .

De�nition 63 Let G be a graph with edge set E(G) and vertex set V (G). For e 2 E, we

denote the graph obtained from G by contracting e (i.e. identifying the the ends of e with one

another and then deleting e) as G=e. This action is called edge contraction. Repeating this

process for all the edges in a subset T of E(G) gives the graph G=T .
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Deletion and Contraction of edge 4 of the graph G [7]:

3.3.2 Matroids

De�nition 64 Let M be the matroid (E, I) and suppose that X � E: Let IjX be fI � X :

I 2 Ig. Then it is easy to see that the pair (X; IjX) is a matroid. We call this matroid the

restriction ofM to X or the deletion of E�X fromM . It is denoted byM jX orMn(E�X).

Remark 65 The circuits of the matroid M jX are given by C(M jX) = fC � X : C 2 C(M)g.

De�nition 66 Let M be a matroid on E and T be a subset of E. Let M=T , the contraction

of T from M , be given by M=T = (M�nT )�.

Remark 67 M=T has ground set E�T . It is sometimes written as M:(E�T ) and called the

contraction of M to E � T .

Remark 68 If G is a graph and T � E(G) recall that GnT denotes the graph obtained from

G by deleting the edges in T . Deletion for matroids extends this graph-theoretic operation, i.e.

M(GnT ) =M(G)nT

Similarly for contraction

M(G=T ) =M(G)=T
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Proof. See [6] page 111.

3.3.3 Linear codes

De�nition 69 Let C be a linear [n; k; d] code over Fq: The action of deleting the same coordi-

nate i in each code word is called puncturing.

Remark 70 The resulting punctured code is still linear. Its length is n � 1 and it is denoted

C�: If G is a generator matrix for C, then a generator matrix for C� is obtained from G by

deleting column i (and omitting a zero or duplicate row that may occur).

Theorem 71 Let C be a linear [n; k; d] code over Fq, and let C� be the code C punctured on

the ith coordinate.

1. If d > 1, C� is an [n � 1; k; d�] code where d� = d � 1 if C has a minimum weight code

word with a nonzero ith coordinate and d� = d otherwise.

2. When d = 1, C� is an [n� 1; k; 1] code if C has no code word of weight 1 whose nonzero

entry is in coordinate i; otherwise, if k > 1; C� is an [n� 1; k � 1; d�] code with d� � 1:

Example 72 Let C be the [4; 2; 1] binary code with generator matrix

G =

241 0 0 0

0 1 1 1

35 :
Let C�1 and C

�
4 be the code C punctured on coordinates 1 and 4, respectively. They have

generator matrices

G�1 =
h
1 1 1

i
and G�4 =

241 0 0

0 1 1

35 :
So G�1 is a [3; 1; 3] code and G

�
4 is a [3; 2; 1] code.

Remark 73 In general a code C can be punctured on the coordinate set T by deleting compo-

nents indexed by the set T in all code words of C. If T has size t, the resulting code denoted

CT , is a [n� t; k�; �d�] code with k� � k � t and d� � d� t by Theorem 71 and induction [4].
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De�nition 74 Let C be a linear [n; k; d] code over Fq and let T be any set of t coordinates.

Consider the set C(T ) of code words which are 0 on T ; this set is a subcode of C. Puncturing

C(T ) on T gives a code over Fq of length n � t called the code shortened on T and denoted

CT .

Example 75 Let C be the [6; 3; 2] binary code with generator matrix

G =

26664
1 0 0 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1

37775
C? is also a [6; 3; 2] binary code with generator matrix

G? =

26664
1 1 1 1 0 0

1 1 1 0 1 0

1 1 1 0 0 1

37775
If the coordinates are labeled 1; 2; ::; 6 let T = f5; 6g. Generator matrices for the shortened

code CT and punctured code CT are

GT =

241 0 1 0

0 1 1 0

35
and

GT =

26664
1 0 0 1

0 1 0 1

0 0 1 1

37775
Shortening and puncturing the dual code gives the codes (C?)T and (C?)T , which have

generator matrices

(G?)T =
h
1 1 1 1

i
and

(G?)T =

241 1 1 1

1 1 1 0

35
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Remark 76 It is clear from the above example that (C?)T = (CT )? and (C?)T = (CT )?.

Remark 77 If C has parity check matrix G?, then it is easy to see that a parity check matrix

of the shortened code CT is obtained simply by deleting the corresponding columns of G?.

Theorem 78 Let C be a linear [n; k; d] code over Fq and let T be any set of t coordinates.

Then:

1. (C?)T = (CT )? and

2. (C?)T = (CT )?, and

3. if t < d, then CTand (C?)T have dimensions k and n� t� k, respectively.

4. if t = d and T is the set of coordinates where a minimum weight code word is nonzero,

then CTand (C?)T have dimensions k � 1 and n� d� k + 1, respectively [4].

Proof. See [4].

Remark 79 Let C be a linear code with generator matrix G (with columns labeled 1; 2; :::; n).

The corresponding vectorial matroid obtained from G is called MC =MG(C). If C is punctured

on coordinate i then, the generator matrix for the punctured code is given by deleting column i

from G. Since the columns of G correspond to the elements EC of the matroid MC then deletion

of columns in G corresponds to deletion of elements in MC .

Conclusion 80 Puncturing a code corresponds to deletion in the associated vectorial matroid

MC .

Remark 81 From the de�nition of contraction M=T = (M�nT )�, the relationship between a

linear code C (with generator matrix G and corresponding vectorial matroid MC) and contrac-

tion can be explained. M�
C is the vectorial matroid corresponding to G

?, a parity check matrix.

Deletion of T from M�
C , then corresponds to puncturing G

? at T , i.e. removing the correspond-

ing columns of G?. So the vectorial matroid obtained from the code which has G? punctured at

T as generator matrix, is M�
CnT . The code which corresponds to (M�

CnT )� (the dual of M�
CnT

) is the dual of the code which corresponds to M�
CnT . It has just been shown that the code

corresponding to M�
CnT is the one with G? punctured at T as generator matrix. Hence its dual

is one having G?nT as parity check matrix.
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Conclusion 82 If C is linear code with G? as a parity check matrix and corresponding vectorial

matroid MC , then MC=T is the matroid corresponding to the code with G? minus the columns

labeled by T as parity check matrix.

On the other hand Theorem 78 part 2 says:

(CT )
? = (C?)T

which is equivalent to:

CT = ((C
?)T )?

Hence we observe that the process of shortening when viewed from a matroid perspective

corresponds precisely to contraction:

M=T = (M�nT )�

Conclusion 83 MC=T =MCT .
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Chapter 4

Demi-Matroids

The contents of this Chapter which precede "An Equivalent Characterisation of a Demi-

Matroid" is a more detailed exposition of material from [1] and the de�nitions are taken from

that article.

De�nition 84 A demi-matroid is a triple (E; s; t) consisting of a �nite set E and two func-

tions s; t : 2E ! N0, satisfying the following two conditions for all subsets X � Y � E :

(R) 0 � s(X) � s(Y ) � jY j and 0 � t(X) � t(Y ) � jY j :

(D) jE �Xj � s(E �X) = t(E)� t(X).

Proposition 85 If M = (E; r) is a matroid with rank r, then, the triple (E; r; r�) where r� is

the corank of M is a demi-matroid.

Proof. From the de�nition of a rank function r and its dual r�, (R) is satis�ed trivially by

simply equating r and r� with s and t respectively. Let us prove (D), i.e. if s = r and t = r�,

then jE �Xj � s(E �X) = t(E)� t(X) 8 X � E:

This is the same as

t(X) = t(E)� jE �Xj+ s(E �X) (�)

We know that

r�(X) = jXj � r(M) + r(E �X) by de�nition:

Substituting s and t for r and r�

t(X) = jXj � s(M) + s(E �X) (��)
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Hence it is enough to prove that (�) and (��) is the same identity. This is true if

t(E)� jE �Xj = jXj � s(E);

which in turn is true i¤

t(E) = jXj+ jE �Xj � s(E) = jXj � s(E):

But this holds since setting X = ; in (D) we obtain:

jEj � s(E) = t(E)� t(;):

By (R) we have

0 � t(;) � j;j = 0; so t(;) = 0:

Hence

t(E) = jEj � s(E) as desired.

Remark 86 Note that s(;) = t(;) = 0 by (R). It follows that (D) is equivalent to the following

condition :

(D�) jE �Xj � t(E �X) = s(E)� s(X).

Proof. Setting X = ; in (D) gives

jEj � s(E) = t(E)� t(;) = t(E):

Thus

jEj � s(E) = t(E)

or equivalently

jEj = t(E) + s(E):

Now setting X = E �X in (D) gives

jXj � s(X) = t(E)� t(E �X):

Adding jE �Xj+ s(E) to both sides yields

jE �Xj+ s(E) + jXj � s(X) = jE �Xj+ s(E) + t(E)� t(E �X)

jEj+ s(E)� s(X) = jE �Xj+ jEj � t(E �X):

Which gives our desired result:

jE �Xj � t(E �X) = s(E)� s(X).

So (D) ) (D�) and by a similar argument (D) ( (D�), so (D) , (D�).

Remark 87 Inspired by the previous argument, we observe that the axioms (R) and (D) imply

that t is completely determined by s, in the same way as r� is determined by r in a matroid.
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Hence we could have written s� instead of t. This is true since axiom (D) implies, for X = ; :

jEj � s(E) = t(E)� t(;) = t(E);

so

t(E) = jEj � s(E):

Thereby (D) gives

t(X) = t(E)� jE �Xj+ s(E �X) = jEj � s(E)� jE �Xj+ s(E �X)

t(X) = jXj � s(E) + s(E �X):

Which shows that t is dependent on s. This expression may be called s�.

De�nition 88 (s�)� = s.

Proof. The proof that (s�)� = s is the same as for matroids.

s�(X) = jXj � s(E) + s(E �X)

(s�)�(X) = jXj � s�(E) + s�(E �X)

= jXj � (jEj � s(E)) + (jE �Xj � s(E) + s(X))

= jXj � jEj+ s(E) + jE �Xj � s(E) + s(X)

= s(X):

Remark 89 Conversely to proposition 85, if (E; s; t) is a demi-matroid, then s is the rank

function of a matroid M on E if and only if t is the rank function of M�.

Example 90 Suppose that E = fa; bg and de�ne s(X) := 0 for X = ;; fag; fbg; and s(E) := 1.

The triple (E; s; t) is a demi-matroid but, s is not the rank function of any matroid on E. In

this case t = s as the following simple calculation shows:

t(fag) = jfagj � s(E) + s(fbg) = 1� 1 + 0 = 0:

t(fbg) = jfbgj � s(E) + s(fag) = 1� 1 + 0 = 0:

t(fa; bg) = jfa; bgj � s(E) + s(f;g) = 2� 1 + 0 = 1:

It is clear that axiom R3 (which is a requirement for the rank function of a matroid) fails

and thus s is not a rank function of a matroid.

If X and Y are subsets of E, then r(X [ Y ) + r(X \ Y ) � r(X) + r(Y ).

Taking a = X and b = Y and rank function s we get

s(a [ b) + s(a \ b) � s(a) + s(b)
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s(E) + s(;) � s(a) + s(b) but,

1 + 0 � 0 + 0:

De�nition 91 The dual demi-matroid D = (E; r; r�) arising from the matroidM = (E; r) is

given by the demi-matroid D� = (E; r�; r) which corresponds to the dual matroid M� = (E; r�).

In general for the demi-matroid D = (E; s; t) the dual demi-matroid is given by D� = (E; t; s)

and D = (D�)�.

A second type of demi-matroid duality is obtained from the following involution:

De�nition 92 For any real function f : 2E ! R, let f denote the function given by

f(X) := f(E)� f(E �X):

Remark 93 Since f(X) := f(E)� f(E �X) = f(E)� f(;)� f(E) + f(X) = f(X)� f(;);

it follows that if f(;) = 0; then the operation f ! f is an involution, i.e. f = f .

Theorem 94 The triple D = (E; s; t) is a demi-matroid called the supplement of D; further-

more, D = D and D� = (D)�.

Proof. To show that D is a demi-matroid, �rst note that s(;) = t(;) = 0 and that

s(E) = s(E) and t(E) = t(E). Consider subsets X � Y � E. By (R) and (D�),

E � Y � E �X

s(E � Y ) � s(E �X)

�s(E � Y ) � �s(E �X)

s(E)� s(E � Y ) � s(E)� s(E �X)

s(E)� s(E �X) � s(E)� s(E � Y )

but from (D�)

jE �Xj � t(E �X) = s(E)� s(X)

jXj � t(X) = s(E)� s(E �X)) jY j � t(Y ) = s(E)� s(E � Y )

which gives

0 � s(E)� s(E �X) � s(E)� s(E � Y ) = jY j � t(Y ) � jY j;
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so 0 � s(X) � s(Y ) � jY j. Similarly, it is easy to show that 0 � t(X) � t(Y ) � jY j, so D

satis�es (R).

By (D�),

jE �Xj � t(E �X) = s(E)� s(X)

jE �Xj � (s(E)� s(X)) = t(E �X)

jE �Xj � s(E �X) = t(E)� t(X)

jE �Xj � s(E �X) = t(E)� t(X);

so D satis�es (D). Hence D is a demi-matroid.

Remark 95 It has already been shown that f = f , similarly, s = s and t = t. Thus we see

that D = (E; s; t) = (E; s; t) = D.

Remark 96 Note also D� = (E; t; s) = (E; t; s) = (E; s; t)� = (D)�:

Remark 97 The supplement operation does not generally apply to matroids as the following

example illustrates.

Example 98 Consider the matroid M := (E; �) where E = fa; b; cg and �(X) = 0 for X =

;; fag and �(X) = 1 for all other subsets X � E. Then D := (E; �; ��) is a demi-matroid, so

D := (E; �; ��) is also a demi-matroid. However (E; �) is not a matroid, since it would have

rank 1 but, only contain loops i.e.

�(X) = �(E)� �(E �X)

�(a) = �(E)� �(fb; cg) = 1� 1 = 0) a is a loop.

�(b) = �(E)� �(fa; cg) = 1� 1 = 0) b is a loop.

�(c) = �(E)� �(fa; bg) = 1� 1 = 0) c is a loop.

�(E) = �(E)� �(;) = 1� 0 = 1:

But it is impossible to have a matroid comprising of loops with rank greater than 0. Thus

(E; �) is not a matroid.

It is easy to see that (E; �) is a graphical matroid consisting of a loop (fag) and a set of

parallel edges (fb; cg). It can also be veri�ed by checking the rank axioms R1�R3 are satis�ed

(which they are).
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4.1 Invariants of Demi-Matroids

Lemma 99 s(X � x) � s(X)� 1 and t(X � x) � t(X)� 1 for all X � E and x 2 E.

Proof. By (R) and (D),

t(X � x) = t(E)� jE � (X � x)j+ s(E � (X � x))

� t(E)� jE �Xj � 1 + s(E �X)

= t(X)� 1.

De�nition 100 De�ne for all i = 0; :::; k and j = 0; :::; n� k;

�i := minfjXj : X � E; s(X) � ig;

� j := minfjXj : X � E; t(X) � jg;

si := maxfjXj : X � E; s(X) � ig;

tj := maxfjXj : X � E; t(X) � jg:

Example 101 If we consider the graphical matroid M(G) of Figure 1. The Demi-matroid

arising from this matroid has the following values for �i; � j ; si; tj:

k = s(E) = 3 and n� k = 5� 3 = 2:

�0 = j;j = 0:

�1 = jfe1gj = jfe2gj = jfe3gj = jfe4gj = 1:

�2 = jfe1; e2gj = jfe1; e3gj = jfe1; e4gj = jfe2; e4gj = jfe3; e4gj = 2:

�3 = jfe1; e2; e4gj = jfe1; e3; e4gj = 3:

By constructing the graph of the dual M�(G) (shown in Figure 3) we can easily determine

the values of � i. The following information may be useful in the construction and in clar-

ifying the relationship between independent sets and both �i and � j. E = fe1; e2; e3;e4; e5g,

B = ffe1; e2; e4gfe1; e3; e4gg ) B� = ffe3; e5g; fe2; e5gg ) fe2g; fe3g; fe5g 2 I
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e2

e3

e1

e4

e5

Figure 3

�0 = j;j = 0:

�1 = jfe2gj = jfe3gj = jfe5gj = 1:

�2 = jfe2; e5gj = jfe3; e5gj = 2:

s0 = (number of loops) = jfe5gj = 1:

s1 = (number of loops) + (max. number of parallel elements) = jfe5gj+ jfe2; e3gj = 3:

s2 = jfe2; e3; e4; e5gj = jfe1; e2; e3; e5gj = 4:

s3 = jEj = 5:

t0 = (number of loops) = jfe1; e4gj = 2:

t1 = (number of loops) + (max. num. of parallel elements) = jfe1; e4gj+ jfe2; e3gj = 4:

t2 = jEj = 5:

Remark 102 Considering the case for invariants of a demi-matroid which is not a matroid,

it can be seen that it is not necessarily true that �i = i or that � j = j:

Example 103 Revisiting example 90 and using results obtained there:

E = fa; bg and s(X) := 0 for X = ;; fag; fbg; and s(E) := 1.

k = 1

�0 = j;j = 0:

�1 = jfa; bgj = 2:

Using the results obtained for t(X) in example 90 we get:

�0 = j;j = 0:

�1 = jfa; bgj = 2:

Thus we see that neither �i = i nor � j = j for all respective i and j.
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By (R) and Lemma 99, all of the numbers �i; � j ; si and tj are well de�ned and may be

given the following equivalent characterisations:

Lemma 104 For all i = 0; :::; k and j = 0; :::; n� k;

�i = minfjXj : X � E; s(X) = ig;

� j = minfjXj : X � E; t(X) = jg;

si = maxfjXj : X � E; s(X) = ig;

tj = maxfjXj : X � E; t(X) = jg:

Proof. Let U be one of the subsets X which satis�es

�i = minfjXj : X � E; s(X) � ig so s(U) � i.

Now if s(U) � i+ 1:

Let V = U � fag where a 2 U .

s(V ) � s(U)� 1 � (i+ 1)� 1 = i, by Lemma 99

But, since jV j < jU j and jU j = minfjXj : X � E; s(X) � ig

this is a contradiction

) s(U) � i

) s(U) = i: A similar argument holds for � j :

For si we have the following:

Let U be one of the subsets X which satis�es

si = maxfjXj : X � E; s(X) � ig.

Now if s(U) � i� 1:

Let V = U + fag where a 2 (E � U).

s(V ) � s(U) + 1 � (i� 1) + 1 = i, by Lemma 99

But, since jU j < jV j and jU j = maxfjXj : X � E; s(X) � ig

this is a contradiction

) s(U) � i

) s(U) = i: A similar argument holds for tj :

Remark 105 If M is a matroid on E with rank function �, then the coe¢ cients �i and � j for

the demi-matroid D := (E; �; ��) are trivial: �i = i and � j = j for all i; j.
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Proof. Let M = (E; �) be a matroid. Then for any subset X � E, �(X) = i) jXj � i. So

if jXj = i with �(X) = i, then X 2 fXjminfjXj : X � E; s(X) � igg. But, the subsets which

satisfy this criterion are exactly those X 2 I such that jXj = i. Thus �k = dim(B) = k where

B 2 B. Similarly �k�1 = dim(B � fag) = k � 1 where a 2 B and it follows that �i = i. By a

similar argument � j = j:

Lemma 106 The following inequalities hold:

0 = �0 < �1 < �2 < � � �� < �k � n;

0 = �0 < �1 < �2 < � � �� < �n�k � n:

Proof. For each i = 1; ::::; k, let X � E be a subset such that jXj = �i and s(X) � i. By

Lemma 99, s(X � x) � i � 1 for any x 2 X, so �i�1 � jX � xj � �i. Similarly, � j�1 < � j for

each j = 1; :::::; n� k.

Lemma 107 The following inequalities hold:

0 � s0 < s1 < s2 < � � �� < sk � n;

0 � t0 < t1 < t2 < � � �� < tn�k � n:

Proof. For each i = 1; ::::; k, let X � E be a subset such that jXj = si and s(X) � i. Let

a 2 (E �X), then by Lemma 99, s(X [ fag) � s(X) + 1 � i+ 1

which gives jX [ fagj � si+1 but, since jX [ fagj = si + 1 we have that si + 1 � si+1 )

si < si+1. Similarly, tj < tj+1 for each j = 1; :::::; n� k.

The four above monotonicities each induce a generalized Singleton-type bound for demi-

matroids:

Corollary 108 For all i = 0; :::; k and j = 0; :::; n� k;

�i � n� k + i;

si � n� k + i;

� j � k + j;

tj � k + j:

Proof. From Lemma 106 we have that

0 = �0 < �1 < �2 < � � �� < �k � n: Thus
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�k � n

�k�1 � n� 1

�k�2 � n� 2

.

.

�k�a � n� a

Now letting i = k � a we get:

�i � n� k + i.

A similar proof yields � j � k + j. Considering Lemma 107 and applying a similar logic as

in the above proof

si � n� k + i and

tj � k + j are obtained.

Notation 109 Let the invariants �i; � j be de�ned by s and t in the same way as �i and � j

are de�ned from s and t.

Lemma 110 For each i = 0; :::; k and j = 0; :::; n� k;

si = n� �k�i;

�i = n� sk�i;

tj = n� �n�k�j ;

� j = n� tn�k�j :

Proof. tj = maxfjXj : X � E; t(X) = jg

= maxfjE �Xj : X � E; t(E �X) = jg

= n�minfjXj : X � E; t(E �X) = jg

= n�minfjXj : X � E; t(X) = n� k � jg from t(X) = t(E)� t(E �X) = n� k � j

tj = n� �n�k�j .

Now if we observe that

tj = n� � (n�k)�j
is the same as

tj = n� � t(E)�j
Then we can obtain an analogous result for si
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si = n� �s(E)�i
si = n� �k�i
Now since s(E) = s(E) we get

si = n� �s(E)�i = n� �k�i
�k�i = n� si )

�i = n� sk�i
Now since t(E) = t(E) we get

tj = n� � t(E)�j = n� �n�k�j
�n�k�j = n� tj )

� j = n� tn�k�j

De�nition 111 For each demi-matroid D, set

SD := fn� sk�1; :::; n� s1; n� s0g;

TD := ft0 + 1; t1 + 1; :::; tn�k�1 + 1g;

UD := f�1; �2; :::; �kg;

VD := fn+ 1� �n�k; :::; n+ 1� �2; n+ 1� �1g:

Lemma 110 implies the following identities:

Lemma 112 SD = UD and TD = VD.

The following two fundamental duality theorems for demi-matroids generalize Wei�s Duality

Theorem.

Theorem 113 UD [ VD = f1; :::; ng and UD \ VD = ;:

Proof. Assume that there are integers i; j such that �i = n + 1 � � j . Let X � E be a

subset satisfying jXj = � j and t(X) � j. Then jE � Xj = �i � 1, so s(E � X) � i � 1 from

Lemma 106. By (D),

s(E �X) = jE �Xj � t(E) + t(X)

= n� � j � (n� k) + j

= �� j + k + j � i� 1 (i)

Similarly, n� �i � k + i � j � 1 (ii)
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Combining (i) and (ii) gives

�1 = n� �i � � j � �2, a contradiction.

This proves UD \ VD = ;.

Now �i � i and � j � j gives UD � f1; ::::; ng and VD � f1; ::::; ng with jUDj = k and

jVDj = n� k. Since UD \ VD = ; then, jUD [ VDj = n and UD [ VD = f1; ::::; ng.

Theorem 114 SD [ TD = f1; :::; ng and SD \ TD = ;:

Proof. From Theorem 113 UD [VD = f1; :::; ng and UD \VD = ; but, since this is true for

all demi-matroids, it is also true for D thus, UD [ VD = f1; :::; ng and UD \ VD = ;: Applying

Lemma 112 gives SD [ TD = f1; :::; ng and SD \ TD = ;:

4.2 An Equivalent Characterisation of a Demi-Matroid

The material in this subsection is not explicitly contained in [1].

A demi-matroid has previously been de�ned in De�nition 84. This will now be used in

conjunction with Lemma 99 to show that a demi-matroid is characterised by the following

de�nition:

De�nition 115 A demi-matroid is a triple (E; s; t) consisting of a �nite set E and two

functions s; t : 2E ! N0, satisfying the following two conditions:

(R�) s(;) = 0 and s(X) � s(X [ feg) � s(X) + 1 for all X � E and e 2 E

(D�) t(X) = jXj � s(E) + s(E �X) for all X � E.

A proof showing the equivalence of De�nition 84 and De�nition 115 is now given:

Proof. (i) From (D) we have t(X) = t(E) + s(E � X) � jE � Xj. From the proof of

Proposition 85 we have that t(E) = jEj � s(E): So we can write

t(X) = jEj � s(E) + s(E �X)� jE �Xj.

= jXj � s(E) + s(E �X):

So (D�) holds.

(ii) Assume both (R) and (D) hold:

Let X = Y = ;:

43



Thus 0 � s(;) � s(;) � j;j = 0

) s(;) = 0:

Now if we set X = X and Y = X [ feg then from (R) we get s(X) � s(X [ feg).

Lemma 99 gives:

s(A� feg) � s(A)� 1 for all A � E, and e 2 E.

Let X � E and e 2 E. Let A def
= X [ feg:

So A� feg = (X [ feg)� feg =

8<: X if e =2 X

X � feg if e 2 X:
We now prove (R�): s(X [ feg) � s(X) + 1:

If e 2 X then this is trivial since we get s(X) � s(X) + 1. So we only consider the case

where e =2 X and thus A� feg = X.

Returning now to Lemma 99 which states: s(A� feg) � s(A)� 1 we get the following:

s(X) � s(X [ feg)� 1 which in turn gives:

s(X [ feg) � s(X) + 1.

This shows that (R�) holds.

(iii) Assume (R�) and (D�) hold:

From (R�) we have that s(;) = 0

(D�) gives:

t(X) = jXj � s(E) + s(E �X)

and

t(E) = jEj � s(E) + s(;) = jEj � s(E):

Hence

t(X) = jEj � jE �Xj � s(E) + s(E �X)

= t(E)� jE �Xj+ s(E �X)

and we obtain:

jE �Xj � s(E �X) = t(E)� t(X).

Thus (D) holds.

(iv) Assume (R�) and (D�) hold:

Let X � Y � E and Y �X = fy1; y2; :::; yng

Now s(X) � s(X[fy1g) � s(X[fy1g[fy2g) � ������ � s(X[fy1g[fy2g[���[fyng) = s(Y ):
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If Y = fw1; w2; :::; wjY jg then we have:

s(fw1g) � s(;) + 1:

s(fw1g [ fw2g) � s(fw1g) + 1 � (s(;) + 1) + 1 = s(;) + 2:

�

�

�

s(fw1g[ � � [fwjY jg) � s(fw1g[ � � [fwjY j�1g)+ 1 � (s(;)+ jY � 1j)+ 1 = s(;)+ jY j = jY j:

So s(Y ) � jY j.

Finally

; � X

so

0 = s(;) � s(X)

and (R) holds.
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Chapter 5

Higher Weights of Linear Codes

We start this chapter by giving some standard de�nitions and results about higher support

weights.

Remark 116 Theminimum distance d of a linear code C was earlier de�ned as minw(x);

x 6= 0; x 2 C (smallest of the weights of the non-zero code words).

De�nition 117 The support of a code word x is de�ned as Supp(x) = fi 2 f1; ::; ngjxi 6= 0g.

Proposition 118 w(x) = jSupp(x)j:

Example 119 If x = (0; 2; 1; 0; 4) 2 C � (F7)
5 then Supp(x) = f2; 3; 4g and we see that

w(x) = jSupp(x)j = 3:

De�nition 120 Let M � C then Supp(M) = [
x2M

Supp(x) and w(M) = jSupp(M)j: We have

0 � w(M) � n; where n is the code word length.

Example 121 IfM = f(0; 2; 1; 0; 4); (0; 0; 0; 2; 6)g then Supp(M) = f2; 3; 5g[f4; 5g = f2; 3; 4; 5g

and w(M) = jSupp(M)j = 4: And 0 � w(M) � 5 = n:

Remark 122 If C � (Fq)n and L is the one dimensional subspace of C given by L = fkxjk 2

Fqg for x 2 C, then Supp(L) = Supp(x) and w(L) = w(x).

Example 123 If x = (0; 2; 1; 0; 4) then kx = (0; 2k; k; 0; 4k) and Supp(L) = Supp(x) =

f2; 3; 5g and w(L) = w(x) = 3:
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Remark 124 The minimum distance d is then given by minfw(L)jL � C;dim(L) = 1g:

De�nition 125 The ith generalized Hamming weight of C is di(C)
def
= minfjSupp(L)j :

L � C;dim(L) = ig:

Remark 126 For a code C, d(C) = d1.

Theorem 127 For an [n; k] linear code C with k > 0 we have 1 � d1(C) < d2(C) < � � �� <

dk(C) � n:

Proof. That di�1(C) � di(C) is trivial; it remains to prove that strict inequalities hold.

Let D � C with jSupp(D)j = di(C) and dim(D) = i. Let j 2 Supp(D) and Dj := fx 2 D :

xj = 0g: Thus Supp(Dj) is obtained by removing j from Supp(D). Then dim(Dj) = i� 1 and

di�1(C) � jSupp(Dj)j � jSupp(D)j � 1 = di(C)� 1.

Corollary 128 For an [n; k] linear code C, di(C) � n � k + i; for all i = 1; 2; ::::; k. (When

i = 1 this is the Singleton bound).

Now we give our own proof of the following result, given in [8]. Let C be a q-ary [n; k; d]

code, and H a parity check matrix for C. For any I � f1; 2; ::; ng let M(I) = hHi : i 2 Ii be

the submatrix of H, consisting of the columns Hi, where i 2 I.

Theorem 129 dr(C) = minfjIj : jIj � rank(M(I)) � rg where I � f1; 2; ::; ng.

Proof. For any I � f1; 2; ::; ng; let S(I) be the column space spanned by fHi : i 2 Ig, where

Hi is column number i of H, so S(I) is the column space of M(I). Let S?(I) := fx : xi = 0 for

i =2 I, and
P
i2I

xiHi = 0g. By the Dimension Theorem for Linear Transformations we have that

rank(M(I)) + nullity(M(I)) = jIj, or equivalently dim(col(M(I))) + dim(ker(M(I))) = jIj )

dim(S(I)) + dim(S?(I)) = jIj:

Let d = minfjIj : jIj � rank(M(I)) � rg. But we have minfjIj : jIj � rank(M(I)) �

rg = minfjIj : jIj � rank(M(I)) = rg: This follows from Proposition 130 below in addition

to Lemma 104. Let I � f1; 2; ::; ng be such that jIj � dim(S(I) = r; and jIj = d. Then

dim(S?(I)) = r; and S?(I) is a subcode of C, and dr(C) � jSupp(S?(I))j = jIj = d. So

dr(C) � minfjIj : jIj � rank(M(I)) � rg. The inequality in the other direction remains to
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be established. Let D � C with dim(D) = r and jSupp(D)j = dr(C). Let I = Supp(D), the

D � S?(I _). Given dr(C), we choose I such thatjIj = jSupp(D)j = dr0(C) and dim(S(I)) � r

but, this entails that d, which is the smallest cardinality to an I such that jIj � dim(S(I)) � r

is less than or equal to the I we have initially chosen i.e. d � dr(C).

Let (E; s; t) be the demi-matroid derived from the matroid MC = (E; s) where E =

f1; 2; ::::; ng and s is the rank function of the matroid. Recall De�nition 100 and Notation

109 for �r and � r. This motivates the two next propositions, which are taken from [1] and

which we prove in detail here.

Proposition 130 dr = �r.

Proof. Let the generator and parity check matrices corresponding to MC be G and H

respectively.

Applying Theorem 129 to the demi-matroid (E; s; t) we get:

dr(C) = minfjXj : jXj � rank(M(X)) � rg

= minfjXj : jXj � t(X) � rg

= minfjXj : s(E)� s(E �X) � rg

= minfjXj : s(X) � rg

= �r.

De�nition 131 dr?
def
= dr(C

?)

Proposition 132 dr? = � r.

Proof. Let (E; s; t) be the demi-matroid derived from the matroid MC = (E; s) where

E = f1; 2; ::::; ng and s is the rank function of the matroid. Let the generator and parity

check matrices corresponding to MC be G and H respectively. Let N(I) = hGi : i 2 Ii be the

submatrix of G, consisting of the columns Gi, where i 2 I

Applying Theorem 129 to the demi-matroid (E; s; t) we get:

dr? = dr(C
?) = minfjXj : jXj � rank(N(X)) � rg

= minfjXj : jXj � s(X) � rg

= minfjXj : t(E)� t(E �X) � rg

= minfjXj : t(X) � rg
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= � r.

Theorem 133 Let C be a [n; k] code. Then fdr(C) : 1 � r � kg [ fn + 1 � dr? : 1 � r �

n� kg = f1; 2; ::::; ng.

Theorem 134 Let C be a [n; k] code. Then fdr(C) : 1 � r � kg \ fn + 1 � dr? : 1 � r �

n� kg = ;.

Proof. It has been shown that dr = �r and dr? = � r. Thus fdr : 1 � r � kg = f�r : 1 �

r � kg = UD = SD by Lemma 112, and fn + 1 � dr? : 1 � r � n � kg = fn + 1 � � r : 1 �

r � n � kg = VD = TD by Lemma 112. Furthermore by Theorem 114, SD [ TD = f1; :::; ng

and SD \ TD = ;, so fdr(C) : 1 � r � kg [ fn + 1 � dr? : 1 � r � n � kg = f1; 2; ::::; ng and

fdr(C) : 1 � r � kg \ fn+ 1� dr? : 1 � r � n� kg = ;.
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Chapter 6

Demi-Matroids obtained from

Multi-Codes (Chains of Codes).

The material in this chapter is new. We begin by considering a chain of subcodes Cm �

Cm�1 � � � �� � C2 � C1 of length n. Each Ci has generator matrix Gi and corresponding

matroid MCi =M [Gi] and associated rank function �i : 2
E ! N [ f;g where E = f1; 2; ::::; ng.

So for each X � E; �i : X 7! �i(X).

De�nition 135 We introduce new functions

sm(X) = �1(X)� �2(X) + �3(X)� �4(X) + � � � �+(�1)m+1�m(X)

and

tm(X) = n� k � jE �Xj+ sm(E �X)

where

k
def
= sm(E) =

X
(�1)i+1�i(E) =

X
(�1)i+1ki

so

ki = �i(E) = rank(Gi):

The following is the main result of this chapter:

Theorem 136 (E; sm; tm) is a demi-matroid.
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Proof. To prove Theorem 136 axioms (R) and (D) for a demi-matroid must be satis�ed.

If X � Y � E:

(R) (i) 0 � sm(X) � sm(Y ) � jY j and (ii) 0 � tm(X) � tm(Y ) � jY j :

(D)jE �Xj � sm(E �X) = tm(E)� tm(X):

We rewrite sm(X) as

sm(X) = [�1(X)� �2(X)] + [�3(X)� �4(X)] + � � � �+[�m�1(X)� �m(X)]

when m is even and similarly as

sm(X) = [�1(X)� �2(X)] + [�3(X)� �4(X)] + � � � �+[�m�2(X)� �m�1(X)] + �m(X)

when m is odd.

We see that �i(X) � 0 8i, and since Ci � Ci�1, then �i�1(X)� �i(X) � 0 8i. This implies

that 0 � sm(X).

Now we rewrite sm(Y ) as

sm(Y ) = �1(Y )�[�2(Y )��3(Y )+�4(Y )������(�1)m+1�m(Y )] = �1(Y )�[Rm�1(Y )] � jY j�0 = jY j:

Here

Rm�1(Y ) = �2(Y )� �3(Y ) + �4(Y )� � � � � �(�1)m+1�m(Y )

is obtained from the chain of subcodes

Cm � Cm�1 � � � �� � C2

and the argument in the previous paragraph gives Rm�1(Y ) � 0. Thus we have shown sm(Y ) �

jY j.

Next we show sm(X) � sm(Y ) by proving sm(Y )� sm(X) � 0. In the case where m is even

we get:
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sm(Y )� sm(X) = [�1(Y )� �2(Y )] + [�3(Y )� �4(Y )] + � � � �+[�m�1(Y )� �m(Y )]

�[�1(X)� �2(X)]� [�3(X)� �4(X)]� � � � � [�m�1(X)� �m(X)]

In the case where m is odd we get:

sm(Y )� sm(X) = [�1(Y )� �2(Y )] + [�3(Y )� �4(Y )] + � � � �+[�m�2(Y )� �m�1(Y )] + �m(Y )

�[�1(X)� �2(X)]� [�3(X)� �4(X)]� � � � � [�m�2(X)� �m�1(X)]� �m(X)

Now since �m(Y ) � �m(X) the situation for m odd and even amount to the same problem.

This in turn reduces to the solving for m = 2.

We de�ne the projection

� : (Fq)
�1(E) ! (Fq)

�2(E)

which maps

XjC1 ! XjC2

Now

s2(Y ) = �1(Y )� �2(Y ) = dim(ker(�jY ))

and similarly

s2(X) = �1(X)� �2(X) = dim(ker(�jX)):

But, since X � Y it must be true that

dim(ker(�jY )) � dim(ker(�jX))
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so

s2(Y )� s2(X) � 0

and

s2(Y ) � s2(X)

Thus (R) (i) is proved.

From tm(X) = n� k � jE �Xj+ sm(E �X) we get

tm(E) = n� k so tm(X) = tm(E)� jE �Xj+ sm(E �X)

and rewriting gives

jE �Xj � sm(E �X) = tm(E)� tm(X)

so (D) is proved.

Now returning to (R) (ii); we have the following sequence of equivalences

tm(Y ) � jY j

, n� k � jE � Y j+ sm(E � Y ) � jY j

, n� k � (n� jY j) + sm(E � Y ) � jY j

, �k + sm(E � Y ) � 0, �k + sm(E � Y ) � 0

, sm(E � Y ) � k = sm(E):

The last statement follows from (R) (i). Hence the �rst statement tm(Y ) � jY j is also true.

Next we show that for X � Y we have

tm(X) � tm(Y ):

If this is the case then since ; � X we have that

tm(;) � tm(X):
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where

tm(;) = n� k � jE � ;j+ sm(E � ;) = n� k � n+ k = 0

Hence the statement

0 � tm(X)

follows from

tm(X) � tm(Y )

if X � Y and it is su¢ cient to show that. Now we have the sequence of equivalences

tm(X) � tm(Y )

, n� k � jE �Xj+ sm(E �X) � n� k � jE � Y j+ sm(E � Y )

, sm(E �X)� sm(E � Y ) � jE �Xj � jE � Y j

We now simplify our notation by letting E �X = X 0 and E � Y = Y 0 and get

sm(X
0)� sm(Y 0) � jX 0j � jY 0j:

sm(X
0)� sm(Y 0) = �1(X

0)� [�2(X 0)� �3(X 0) + �4(X
0)� � � � � �(�1)m+1�m(X 0)]

��1(Y 0) + [�2(Y 0)� �3(Y 0) + �4(Y 0)� � � � � �(�1)m+1�m(Y 0)]

= [�1(X
0)� �1(Y 0)]� [Rm�1(X 0)�Rm�1(Y 0)] � jX 0j � jY 0j:

We recall the de�nition

Rm�1(Y ) = �2(Y )� �3(Y ) + �4(Y )� � � � � �(�1)m+1�m(Y );
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Thus (R) (ii) has been proven.

6.1 Duality

For the chain of subcodes

Cm � Cm�1 � � � �� � C2 � C1 (�)

we consider the special case:

C2m � C2m�1 � � � �� � C2 � C1

Since

C?i = f�!y j�!x :�!y = 08�!x 2 Cig � C?i+1 = f�!y j�!x :�!y = 08�!x 2 Ci+1g

we get

C?2m � C?2m�1 � � � � � C?2 � C?1 (��)

For the chain of subcodes in (�) we have for all X � E the associated function

s2m(X) = �1(X)� �2(X) + �3(X) � � � �+ �2m�1(X)� �2m(X)

Similarly for the chain of subcodes in (��) we have for all X � E the associated function

��2m(X)� ��2m�1(X) + � � � �+��2(X)� ��1(X)

Now rewriting gives
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[jXj � ��1(X)]� [jXj � ��2(X)]+

[jXj � ��3(X)]� [jXj � ��4(X)]+

�

�

�

[jXj � ��2m�1(X)]� [jXj � ��2m(X)]

and applying s(E)� s(E �X) = jXj � t(X) gives

[�1(E)� �1(E �X)]

�[�2(E)� �2(E �X)]

�

�

�

+[�2m�1(E)� �2m�1(E �X)]

�[�2m(E)� �2m(E �X)]

= [�1(E)� �2(E) + �3(E) � � � �+ �2m�1(E)� �2m(E)]

�[�1(E �X)� �2(E �X) + �3(E �X) � � � �+ �2m�1(E �X)� �2m(E �X)]

= s2m(E)� s2m(E �X) = s2m(X)

For the case where we have an uneven number of subcodes in our chain i.e.

C2m�1 � C2m�2 � � � �� � C2 � C1

we simply introduce a dummy code C2m = 0; which is perfectly valid since the zero code is a

subcode of all linear codes. Thus we get

C2m � C2m�1 � � � �� � C2 � C1
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as before with �2m(X) , 0 and can use our previously attained formulae for an even number

of subcodes.
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Chapter 7

Generalisation of results in [5]

The results of this chapter are new unless otherwise speci�ed. They are inspired by results in

[2] for simple codes and [5] for pairs of codes. We prove corresponding results for multi-codes

and use to a great extent demi-matroid techniques.

De�nition 137 Let X � E = f1; :::; ng, for an [n; k] linear code C, its subcode CX is de�ned

as f(a1; a2; a3::::; an) 2 Cjat = 0 for t =2 Xg. Its projection PX(C) is de�ned as fPX(a)ja =

(a1; a2; a3::::; an) 2 Cg where PX(a) is a vector of length n and the tth component of PX(a) is

given by at if t 2 X and given by 0 if t =2 X.

What follows is called The First Duality Lemma [2]:

Lemma 138 For an [n; k] linear code C and a set X � E = f1; :::; ng

dim[PX(C)] + dim(CE�X) = k.

Proof. CX is e¤ectively a mapping � : (Fq)
n ! (Fq)

dimPX(C). For example if X =

fi1; i2; i3g, then � : (a1; a2; a3::::; an) 7! (0; ai1 ; 0; :::; ai2 ; 0; ::::0; ai3 ; 0::0) which clearly illustrates

that the subcode given by fa = (0; ai1 ; 0; :::; ai2 ; 0; ::::0; ai3 ; 0::0)g has dimension PX(C). The

kernel of � is given by ker� = fajai1 = ai2 = ai3 = 0g = CE�X . Now by The Dimension

Theorem we have:

dimC = dim(ker�) + dim(image(�))

) k = dim(CE�X) + dim(PX(C)):
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We note that dim[PX(C)] = �(C) where � is the rank function associated with the matroid

MC .

We denote dim[PX(C)] by �(X) and consider the demi-matroid (E; �; ��). For this demi-

matroid we have:

Lemma 139 �(X) = dim(CX)

Proof. From Lemma 138 we have that:

�(X) + dim(CE�X) = k = �(E):

So

dim(CE�X) = �(E)� �(X):

Now substituting for X = E �X we get

dim(CX) = �(E)� �(E �X) = �(X):

Thus the lemma is proved.

We now look at the multi-code case where we have:

Cm � Cm�1 � � � �� � C2 � C1

We set

sm(X) = �1(X)� �2(X) + �3(X)� �4(X) + � � � �+(�1)m+1�m(X)

where

�i(X) = dim[PX(Ci)] which we denote dim[PX(C
i)]

Then we consider the demi-matroid (E; sm; tm) introduced in De�nition 135. For this demi-

matroid we have:
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sm(X) = sm(E)� sm(E �X)

= [�1(E)��2(E)+ � � � �+(�1)m+1�m(E)]� [�1(E�X)��2(E�X)+ � � � �+(�1)m+1�m(E�X)]

[�1(E)� �1(E �X)]

�[�2(E)� �2(E �X)]

�

�

�

+(�1)m+1[�m(E)� �m(E �X)]

= �1(X)� �2(X) + � � � �+(�1)m+1�m(X)

= dim(C1X)� dim(C2X) + � � � �+(�1)m+1 dim(CmX )

Conclusion 140 If

sm(X)
def
= dim[PX(C

1)]� dim[PX(C2)] + � � � �+(�1)m+1 dim[PX(Cm)]

then

sm(X) = dim(C
1
X)� dim(C2X) + � � � �+(�1)m+1 dim(CmX )

For any demi-matroid (E; s; t), we de�ne Ki and eKi as follows:

De�nition 141 Ki
def
= maxfs(X) j jXj = ig and eKi

def
= minfs(X) j jXj = ig

Remark 142 We observe in the article [5] with m = 2 that we have he following situation:

Ki(C
1; C2) = max(dim(C1X)� dim(C2X) : jXj = i)

and that corresponds to the situation where

s(X) = s2(X) = dim(C
1
X)� dim(C2X) = �1(X)� �2(X)
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eKi(C
1; C2) = min(dim[PX(C

1)]� dim[PX(C2)] : jXj = i)

and

s(X) = s2(X) = dim[PX(C
1)]� dim[PX(C2)] = �1(X)� �2(X)

For the multi-code case we have

Cm � Cm�1 � � � �� � C2 � C1

with demi-matroid

(E; sm; tm)

and

s(X)
def
= sm(X) and s(X) = sm(X)

Then

Ki = maxfs(X)jjXj = ig

= max(dim(C1X)� dim(C2X) + � � � �+(�1)m+1 dim(CmX ) : jXj = i)

= max(�1(X)� �2(X) + � � � �+(�1)m+1�m(X) : jXj = i)

and

s(X)
def
= sm(X)

so eKi = minfs(X)jjXj = ig

= minfdim[PX(C1)]� dim[PX(C2)] + � � � �+(�1)m+1 dim[PX(Cm)] : jXj = ig

= minf�1(X)� �2(X) + � � � �+(�1)m+1�m(X) : jXj = ig

Remark 143 In [5] it is proven that:

Ki(C
1; C2) = (a1 � a2)� eKn�i(C

1; C2);
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where ai = dim(Ci), for i = 1; 2:

This result is analogous to that obtained for a demi-matroid given in the next theorem.

Theorem 144 For any demi-matroid (E; s; t), we have

Ki = s(E)� eKn�i

where n = jEj.

Proof. eKi = minfs(X)jjXj = ig

= minfs(E)� s(E �X)jjXj = ig

= minfs(E)� s(X)jjXj = n� ig

= s(E) + minf�s(X)jjXj = n� ig

= s(E)�maxfs(X)jjXj = n� ig

= s(E)�Kn�i

so eKi = s(E)�Kn�i

replacing i by n� i gives eKn�i = s(E)�Ki

Corollary 145 Theorem 144 also holds for the multi-code case:
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For

Cm � Cm�1 � � � �� � C2 � C1

we have

Ki = sm(E)� eKn�i

where sm(X) is as de�ned earlier.

Remark 146 In [5] it is proven in Proposition 1 that for m = 2:

0 � Ki+1(C
1; C2)�Ki(C

1; C2) � 1

and

0 � eKi+1(C
1; C2)� eKi(C

1; C2) � 1

and

K0(C
1; C2) = eK0(C

1; C2) = 0

and

Kn(C
1; C2) = eKn(C

1; C2) = dimC1 � dimC2.

It will now be shown that this is also essentially a result about demi-matroids in general. In

other words:

Proposition 147 For a demi-matroid (E; s; t) we have:

0 � Ki+1 �Ki � 1

0 � eKi+1 � eKi � 1

for i � n� 1 where n = jEj.

Proof. We have

Ki = maxfs(X)jjXj = ig
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and

Ki+1 = maxfs(X)jjXj = i+ 1g

Let X0 � E be such that

jX0j = i

and

s(X0) = Ki:

Let y 2 (E �X0) and set

X1 = X0 [ fyg.

Then

jX1j = i+ 1:

Furthermore

Ki = s(X0) � s(X1) � maxfs(X)jjXj = i+ 1g = Ki+1

So

0 � Ki+1 �Ki:

Next we choose Y0 � E such that

jY0j = i+ 1

and

s(Y0) = Ki+1:

Pick y 2 Y0 and set

Y1 = Y0 � fyg:

Then

jY1j = i

and

Ki � s(Y1) � s(Y0)� 1 = Ki+1 � 1

64



so

1 � Ki+1 �Ki:

Furthermore eKi = s(E)�Kn�i

eKi+1 � eKi = (s(E)�Kn�i�1)� (s(E)�Kn�i) = Kn�i �K(n�i)�1 = Ki0+1 �Ki0

So the proof also holds for eKi+1 and eKi.

Remark 148 It will now be shown that K00 = eK0 = 0 and that Kn0 = eKn = s(E):

Proof. We have that

Ki = maxfs(X)jjXj = ig

so

K0 = maxfs(X)jjXj = 0g

= s(;) = 0

We also have that

Kn = maxfs(X)jjXj = ng

= s(E)

Now from Theorem 144 we have that

Ki = s(E)� eKn�i

which gives

K0 = s(E)� eKn

0 = s(E)� eKn

) eKn = s(E)
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Returning to Theorem 144 we have

eKi = s(E)�Kn�i

eK0 = s(E)�Kn

eK0 = s(E)� s(E)

) eK0 = 0

Remark 149 For linear codes we recall that

di = �i

For a general demi-matroid we use the expression

Mi
def
= �i

def
= minfjXj : s(X) � ig:

We have simultaneously

Ki = maxfs(X)jjXj = ig

For demi-matroids we have that the Mj are determined by the Ki, and the Ki are determined

by the Mi, in the following explicit way:

Theorem 150

Mj = minfijKi � jg

Ki = maxfjjMj � ig

where 0 � i � n and 0 � j � s(E).

Proof.

minfi : Ki � jg

= minfi : 9jXj = i such that s(X) � jg
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= minfjXj : s(X) � jg =Mj :

and

maxfjjMj � ig

= maxfj : 9jXj � i such that s(X) � jg

= maxfs(X) : jXj � ig = Ki:

Proposition 151 Given a demi-matroid (E; s; t) then

Mj+1 > Mj

for all j = 0; :; s(E)� 1. Moreover, Mo = 0 and

Mj = minfijKi = jg

= minfjXj : s(X) = jg

for 0 � j � s(E).

Proof. Clearly Mj �Mj+1: Assume

Mj =Mj+1:

We know that

Mj = minfijKi � jg:

This implies

KMj�1 � j � 1:

If Mj =Mj+1 then

KMj � j + 1:
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Hence .

KMj �KMj�1 � (j + 1)� (j � 1) = 2:

This is a contradiction. Hence

Mj < Mj+1:

Obviously M0 = 0 which comes from the fact that

M0 = minfjXj : s(X) � jg = 0

since

s(;) = 0:

We now show

Mj = minfijKi = jg.

We know

Mj = minfijKi � jg

this implies

KMj�1 � j � 1

hence

KMj � KMj�1 + 1 � (j � 1 + 1) = j

but, since

KMj � j

we have that

KMj = j

Hence

Mj = minfijKi = jg

Next we show

Mj = minfjXj : s(X) = jg.
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We know that

Mj = minfjXj : s(X) � jg.

We choose X, such that

jXj =Mj , and s(X) � j

We now consider Y = X � fx0g where x0 2 X. Then

jY j =Mj � 1

and hence

s(Y ) � j � 1:

If

s(X) > j + 1;

then

s(X)� s(X � fx0g) � 2

which by Lemma 99 is a contradiction. Hence

s(X) = j

and

Mj = jXj = minfjXj : s(X) = jg:

Remark 152 We will now generalise Section IV of [5], (which is itself takes the Singleton

bound for single code and generalises it to the pair of codes case.), to the multi-code case. The

Singleton bound was de�ned in Corollary128 for linear codes C..

We have seen earlier that for the matroid M [C], we have di = Mi, k = s(E) with eKi and

Ki being determined by Mi, and visa versa. In terms of Mi, eKi and Ki the Singleton bound

reads as follows:
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Mj �

8<: 0 for j= 0:

n� k + j for j = 1; ::::; k:

Ki �

8<: 0 for i = 0; 1; :::::; n� k:

i� (n� k) = i� n+ k for i = n� k; ::::; n:

and

eKi �

8<: i for i = 0; :::::::::::::::; k:

k for i = k; :::::::::::::::; n:

We have in fact equality in the inequality for all i , C is an MDS code , M [C] is a

uniform matroid.

These bounds are now generalised to the case of demi-matroids which have been obtained

from multi-codes. We start with the eKi :

Proposition 153 First we observe that eK�2h = 0 where �i
def
= �i(E) for all i:The generalised

lower bound for the fKi is given by:

fKi �

8>>><>>>:
0 for i � �2h

i��2h for �2h � i � �2h + s2h(E) = s2h�1(E):

s2h(E) for i � s2h�1(E)

:

Proof. Since

dim(C2h) = �2h;9 I � f1; :::; ng with jIj = �2h;

and

dim[PI(C2h)] = �2h:

This gives:

dim[PI(Ci)] = �i for all i:

Now

s2h(I) =
X
(�1)i+1�i(I) =

X
(�1)i+1�i(I) = dim[PI(Ci)] =

2hX
i=1

(�1)i+1�2h = 0:
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But eKi = minfs(X)jjXj = ig

so eK�2h = minfs(X)jjXj = �2hg:

Choose X = I and we get

s2h(I) = 0:

Hence eK�2h = 0

and eKi = 0; 8i � �2h:

Furthermore eKi+1 � eKi � 1 8i:

Thus eKi � i� �2h; for i = �2h; �2h+1; :::; �2h + s2h(E)

Now look at the range

i � �2h + s2h(E)

= �1(E)� �2(E) + :::+ �2h�1(E)� �2h(E) + �2h(E)

= �1(E)� �2(E) + :::+ �2h�1(E)

= s2h�1(E):

Then we have eKi � s2h(E)

This is clear since eKi
def
= minfs2h(X)jjXj = ig
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For all X; we have that

s2h(X) � s2h(E)

clearly eKi � s2h(E);8i:

We end up with the generalised Singleton bound :

fKi �

8>>><>>>:
0 for i � �2h

i��2h for �2h � i � �2h + s2h(E) = s2h�1(E):

s2h(E) for i � s2h�1(E)

Proposition 154 The generalised upper bound for the Ki is given by:

Ki �

8>>><>>>:
s2h(E)� s2h(E) = 0 for i � n� s2h�1
i�(n� s2h�1(E)) = i�n+ s2h�1(E) for n� s2h�1(E) � i � n� �2h(E):

s2h(E) for n� �2h�1(E) � i � n:

Proof. We use the formula

Ki = s2h(E)� eKi

to derive the lower bound for the Ki: We get:

Ki �

8>>><>>>:
s2h(E)� s2h(E) = 0 for i � n� s2h�1
i�(n� s2h�1(E)) = i�n+ s2h�1(E) for n� s2h�1(E) � i � n� �2h(E):

s2h(E) for n� �2h�1(E) � i � n:

Proposition 155 The generalised lower bound for the Mj is given by:

Mj �

8<: 0 for j = 0

n� �2h � s2h(E) + j for j = 1; 2; ::::; s2h(E):

Proof. We have from Theorem 150 that

Mj = minfijKi � jg:
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Set

n� �2h � s2h(E) = a

and

n� �2h = b:

We see that

M0 � 0

M1 � a+ 1

M2 � a+ 2

�

�

�

Ms2h(E) � b = a+ s2h(E)

We get:

Mj �

8<: 0 for j = 0

n� �2h � s2h(E) + j for j = 1; 2; ::::; s2h(E):

Remark 156 We now check our generalisation for the cases where we have pairs of codes

C2 � C1 and individual codes C1.

Solution 157 Assume h = 1, so C2 � C1 are the only codes. We get: M0 = 0; Mj =

n� �2 � s2(E) + j = n� s2(E) + j = n� (�1 � �2) + j which is the bound given in Section IV

of [5]. For the case of individual codes with dim(C1)
def
= k = �1, we examine the case where

C2 = f;g, and get: dj =Mj � n� �1 + j = n� k + j: Which is the usual Singleton bound.

De�nition 158 A multi-code, C2h � � � � � C1 is optimal if there is equality in the Singleton

bound for all i, i.e.
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Mi =

8<: 0 for i = 0

n� �2h � s2h(E) + i for i = 1; 2; ::::; s2h(E):

equivalently

Ki =

8>>><>>>:
s2h(E)� s2h(E) = 0 for i � n� s2h�1
i�(n� s2h�1(E)) = i�n+ s2h�1(E) for n� s2h�1(E) � i � n� �2h(E):

s2h(E) for n� �2h�1(E) � i � n:

equivalently

fKi =

8>>><>>>:
0 for i � �2h

i��2h for �2h � i � �2h + s2h(E) = s2h�1(E):

s2h(E) for i � s2h�1(E)

Proposition 159 The code is optimal if:

eK�2h+s2h(E)
= s2h(E)

equivalently

Kn�s2h�1(E) = 0 (Ka = 0)

equivalently

M1 = a+ 1

where

a = n� (s2h(E) + �2h) as before:
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Figure 4

Proof. We will �rst prove that if Ka = 0, then Ki is equal the speci�ed values of De�nition

158 for all i. These values are indicated in Figure 4. And c = s2h(E). If i � a, then Ki � Ka

(which follows directly from Proposition 147). We also have Ki � 0, so then Ki = 0 for these

i. For a � i � b, we have the Singleton bound.: Ki � i� a. This means that the points (i;Ki)

are not below the sloped section of the graph. On the other hand: Ki+1 �Ki � 1, for all i, so

Ka+1 � Ka + 1 = 0 + 1 = 1:

Ka+2 � Ka+1 + 1 � 1 + 1 = 2:

and so on. Hence the points (i;Ki) are not above the sloped section of the graph for a � i � b.

So the points (i;Ki) lie on the sloped section of the graph for a � i � b. For i � b the Singleton

bound gives Ki � s2h(E), hence we are not below the upper horizontal line. On the other hand:

Ki is trivially at most s2h(E) by De�nition 141 (since s2h(X) � s2h(E) = s2h(E)).
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Figure 5

We now prove the second part of the Proposition 159 while referring to Figure 5:

Proof. Since eKa0 � 0, (Singleton bound), we must have eKa0 = 0 since eKi is non negative.

Moreover eKi = 0, for all i � a0, since eKi is non decreasing in i. Further eKi � s2h(E) for all i,

including i � b0. But since eKb0 = s2h(E), we have that eKi � eKb0 = s2h(E) for i � b0, since theeKi are non-decreasing in i. Hence eKi = s2h(E), for i � b0. For a0 � i � b0 we have eKi � i� a0

by the Singleton bound. But eKb0�1 � eKb0 � 1 by Remark 146. In the same way

eKb0�2 � eKb0�1 � 1 � ( eKb0 � 1)� 1 = eKb0 � 2

eKb0�3 � eKb0�2 � 1 � ( eKb0 � 2)� 1 = eKb0 � 3

and so on.

Hence eKb0�j � eKb0 � j = s2h(E)� j for all positive j
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eKi = eKb0�(b0�i) � s2h(E)� (b0 � i)

= s2h(E)� b0 + i

= i� (b0 � s2h(E))

= i� (s2h�1(E)� s2h(E))

= i� �2h

where

j = b0 � i:

We now prove the third part of the Proposition 159 while referring to Figure 6:

Proof. We will prove that if Mi = a+1, then the Mi are equal to the speci�ed values from

of De�nition 158 for all i. Firstly we have

M0 = 0

since

M0
def
= minfjXj : s(X) � 0g:

But,

s(;) = 0;

so

M0 = 0:

Moreover, the Singleton bound gives:

Mi � a+ i

for all i, so the points (i;Mi) are not above the slope of the curve for i � 1.

In addition

Mi+1 �Mi + 1
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for all 1 � i � s2h(E)� 1.

Hence

M2 �M1 + 1 = (a+ 1) + 1 = a+ 2:

M3 �M2 + 1 � (a+ 2) + 1 = a+ 3:

and so on.

Hence Mi � a+ i for all of these i.

Figure 6
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