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This paper describes a flexible non-Gaussian statistical method used to model polarimetric synthetic aperture radar (POLSAR)
data. We outline the theoretical basis of the well-know product model as described by the class of Scale Mixture models and discuss
their appropriateness for modelling radar data. The statistical distributions of several Scale mixture models are then described,
including the commonly used Gaussian model, and techniques for model parameter estimation are given. Real data evaluations
are made using airborne fully polarimetric SAR studies for several distinct land cover types. Generic scale mixture of Gaussian
features is extracted from the model parameters and a simple clustering example presented.

1. Introduction

It is well known that POLSAR data can be non-Gaussian
in nature and that various non-Gaussian models have been
used to fit SAR images—firstly with single channel amplitude
distributions [1–3] and later extended into the polarimetric
realm where the multivariate K-distributions [4, 5] and G-
distributions [6] have been successful. These polarimetric
models are derived as stochastic product models [7, 8] of
a non-Gaussian texture term and a multivariate Gaussian-
based speckle term, and can be described by the class of
models known as Scale Mixture of Gaussian (SMoG) models.
The assumed distribution of the texture term gives rise to
different product distributions and the parameters used to
describe them.

In this paper we only investigate the semisymmetric zero-
mean case, which is expected for scattering in the natural
terrain, and the more general scale mixture model includes
a skewness term to account for a dominant or coherent
scatterer and a mean value vector. Extension to the non-
symmetric case or expanding to a multitextural/nonscalar
product will be addressed in the future. It is worth not-
ing that these methods are general multivariate statistical
techniques for covariate product model analysis and can
be generally applied to single, dual, quad, and combined
(stacked) dual frequency SAR images, or any type of coherent

imaging system. The significance and interpretation of the
parameters, however, may be different in each case.

The scale mixture models essentially describe the proba-
bility density function giving rise to the measured complex
scattering coefficients. They therefore model at the scattering
vector level, that is, Single-Look Complex (SLC) data
sets, which contain 4-dimensional complex values. These
complex vectors represent both magnitude and phase for the
four combinations of both transmitted and received signals
for both horizontal and vertical polarisation. Statistical
modelling is achieved by looking at a small neighbourhood
of pixels around each point and the model parameters are
estimated from this collection of data vectors. Parameter
estimation, particularly of higher-order statistical terms, is
improved by using a larger neighbourhood size, but at the
expense of image resolution and the introduction of class
mixture effects at the boundaries. So a compromise must be
made between a small neighbourhood to avoid mixtures and
blurring and a large neighbourhood to improve parameter
estimation.

The model fitting procedure generates the model param-
eters at each image pixel location which gives rise to a new
feature space description of the image and can be used for
subsequent classification or image interpretation. Although
many different models have been used to describe non-
Gaussian data, with quite different orders of complexity
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and parametric descriptions, the parameters are usually
estimated from measurable sample moments. Since the
parameters are simply nonlinear relations of measured
moments, one can say that the moments themselves repre-
sent the rawest form, and additionally they are independent
of the particular model in question. We therefore see two
quite different avenues to take regarding analysis: firstly,
one can choose a specific non-Gaussian model with an
explicit probability density function (pdf) and use Bayesian
statistical techniques to analyse the data, or alternatively, one
can extract general scale mixture of Gaussian features (that
are independent of any explicit model pdf) and work solely
in a two-moment generic SMoG feature space. In this sense,
the Gaussian-based analysis is a single moment method.

Speckle variation may be reduced by multilook aver-
aging, either in the frequency domain during process-
ing or in the spatial domain postimaging, and produces
Multilook Complex (MLC) matrix data. Such multi-look
averaging modifies the intensity distribution of the data
and subsequent statistical modelling must take this into
account for parameter estimation or statistical inference.
The multi-looked matrix-variate distribution derived from
purely Gaussian data is the complex Wishart distribution[9]
and for the Scale Mixture case is the generalised Wishart
distribution, for example, the K-Wishart [10]. Statistical
clustering using these multi-look matrix-variate models has
been demonstrated elsewhere [6, 10, 11], and here we only
describe multi-look data for model parameter estimation.

The plan for this paper is to describe the modelling in
Section 2, with general properties and suitability discussed
in Section 3. Intercomparison and parametric feature results
are shown for several data sets in Section 4, followed by our
conclusions in Section 5.

We denote scalar values by either lower or upper case
standard weight characters, vectors as lower case bold
characters and matrices as bold uppercase characters. For
simplicity, we have not distinguished between random
variables and instances of random variables, as such can be
ascertained through context.

2. Scale Mixture of Gaussian Scheme

The Scale Mixture of Gaussian models, also known as
normal-variance mixtures [12, 13], are a statistical product
model with a texture random variable times a speckle
random variable. The pure speckle term has a standard
complex multivariate Gaussian distribution and the texture
term has any positive only scalar distribution. Since the
textural random variable models the variance of the signal
rather than its amplitude, it is introduced as a square root
term in the data vector (described in [8]).

Mathematically, we model the vector of polarimetric
scattering coefficients (y) under the multidimensional SMoG
scheme as

y = µ +
√
zΓ1/2 x, (1)

where µ is the mean vector, the scale parameter z is a
strictly positive random variable (scalar), Γ is the inter-
nal covariance structure matrix, normalised such that the

determinant |Γ| = 1, and x is a standardised, complex
multivariate Gaussian variable with zero mean and identity
covariance matrix, that is, x ∼ NC(0, I). We will hereafter
assume that µ = 0. This assumption is well justified
for natural environments (i.e., distributed targets without
dominant coherent scatterers), where the complex values of
y are theoretically expected to be, and generally are, zero
mean. Theoretically, this is the case of distributed coherent
imaging where the resolution cell size and roughness are
large relative to the illuminating wavelength, leading to the
absolute phase variation over all scatterers in the cell being
uniformly randomly distributed and the integrated in-phase
and quadrature signals are therefore expected to be zero. We
have chosen to normalise the covariance structure matrix
instead of the scale parameter in our work, because of the
analogy between the average scale, E{z}, and the radar cross
section, σ , of 1-dimensional data (also described in [8]),
even though this interpretation is not straight forward for
multidimensional data.

This scheme describes different parametric families of
distributions, depending on the scale parameter probability
density function, fz(z). Given the pdf for the scale parameter,
the marginal pdf for y can be obtained by integrating the
conditional pdf of y | z, which is multivariate Gaussian, over
the density of z. That is,

fy
(

y
) =

∫∞

0
fy|z
(

y | z) fz(z)dz. (2)

Four scale mixture models, derived with closed form
expressions in [14], are depicted in Table 1, including the
Multivariate Gaussian (MG) distribution as a special case.
All are heavy-tailed (sparse) and symmetric distributions,
with a global shape for all dimensions, but an allowable
width variation described by the covariance structure matrix.
Both the MG and multivariate Laplacian (ML) distributions
have fixed shapes and only vary with width parameter.
The two-parameter Multivariate K-distribution (MK) and
multivariate normal inverse Gaussian (MNIG) distributions
describe a range of shapes as well as widths, both including
the MG as a limiting shape. See Figure 1 for an example of
these shapes. Both the MK and the MNIG distribution have
theoretical links to the nature of distributed target scattering,
as they can be derived from Brownian motion models [1, 15].
Many other models have been investigated in literature with
some authors advocating the three parameter Generalised
Inverse Gaussian (GIG) for the scale parameter, since it has
the Gamma, Exponential, and Dirac delta distributions as
subcases and is even more flexible to fit to real data. Note
that having more parameters requires more complicated
estimation expressions, and higher-order moment estima-
tors are known to have higher variance. Considering the
limited sample sizes used in the modelling, the benefit of
such complicated modelling may not be significant. The
article with the three-parameter GIG model is subsequently
simplified to two parameter special cases, which proved
flexible enough for modelling real data variations. We all
agree that more flexibility than a purely Gaussian analysis is
sometimes required.
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Table 1: Scale mixture of Gaussian models.

z distribution Multivariate scale mixture distribution

Constant (Dirac delta) (z; σ2) Gaussian, MG(y; σ2,µ,Γ)

Exponential (z; λ) = 1
λ

exp
(
− z
λ

)
Laplacian, ML(y; λ,µ,Γ) = 1

πd
2
λ

Kd−1(2
√
q(y)/λ)

(
√
λq(y))

d−1

Gamma (z;α,μz) =
(
α

μz

)α
zα−1

Γ(α)
exp

(

− α

μz
z

)
K-distribution, MK(y;α,μz,µ,Γ)

= 2
πd Γ(α)

(
α

μz

)(α+d)/2

(q(y))(α−d)/2Kα−d

(

2

√
α q(y)
μz

)

Inverse Gaussian (z; δ, γ) Normal Inverse Gaussian, MNIG(y; δ, γ,µ,Γ)

= δ√
2π

eδγ z−3/2 exp

(

−1
2

(
δ2

z
+ γ2z

))

= √2δeδγ

⎛

⎝ γ

π
√
δ2 + 2q(y)

⎞

⎠

d+(1/2)

Kd+(1/2)(γ
√
δ2 + 2q(y))

q(y) = (y − µ)TΓ−1(y − µ) is the scaled squared Mahalanobis distance from the mean, with µ = 0 for the PolSAR case.
Km(x) is a modified Bessel function of the second kind with order m.

Gaussian Laplacian

K-distribution

Normal inverse Gaussian

Figure 1: Example shapes for each model distribution, fixed width.
The two parameter models, the K-distribution and the normal
inverse Gaussian, can vary in shape.

Given such a general scheme as in (1), it can be readily
shown that

E
{

y
} = µ (= 0), (3)

E
{(

y − µ
)(

y − µ
)H} = E{z}Γ (= Σ), (4)

E
{[(

y − µ
)H
Σ−1(y − µ

)]2
}
= E

{
z2
}

[E{z}]2 d(d + 1), (5)

where (·)H means (Hermitian) conjugate transpose, E{·}
is the expectation operator, and d is the dimension (which
will be 4 for PolSAR data). These equations can be used to
estimate the various parameters: obtaining Γ and E{z} from

the sample covariance via (4) plus the normalisation |Γ| = 1,
and the second moment E{z2} from the sample multivariate
Kurtosis via (5) [16]. It is mathematically convenient to
define a scale invariant measure of non-Gaussianity, the
Relative Kurtosis (RK), as Mardia’s multivariate kurtosis of
the sample divided by d(d+1). Mardia’s multivariate kurtosis
is scale invariant due to the Σ−1 in (5) and is relative to
the complex Gaussian distribution value of d(d + 1). This
equates to E{z2}/[E{z}]2 for our texture random variable, as
is easily found from (5). The particular parametric form of
the distribution of z is then obtained by the solution for its
first and second moments given the estimates obtained for
z = E{z} and RK from (4) and (5). The solutions are shown
in Table 2, but note that some smart numerical exceptions
may need to be made, for example, when the sample kurtosis
is less than the d(d + 1) due to sample variation.

In the general case, all the model parameters are free to
be optimised in the fitting procedures. However, if we have
some a priori knowledge about a parameter’s value, we would
expect a better model fit by actually constraining it. The most
obvious constraint in our radar data is the expected zero-
mean and we have further zero and pair value constraints
on the covariance structure matrix. Simulated studies show
that applying the constraints has a great improvement in
the estimated parameters, particularly when the sample size
is small, with the covariance constraints being the most
significant. Figure 2 depicts an estimate of Γ11 versus sample
size with and without applying either the zero-mean or
Gamma matrix constraints. However, in this paper the
modelling has been left free because the sample sizes are large
enough that the mean is very nearly zero and the covariance
constraints are approximately met anyway. The examples are
all analysed with a 13× 13 = 169 window size.

Estimation in the case of L-look MLC data is based upon
the neighbourhood mean of the matrix-variate data, plus
the variance of a mean squared Mahalanobis measure (M)
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Table 2: Moment expressions and parameter solutions for each model.

Model z distribution E{z} E{z2} Solution given z and RK = z2

z2

MG Constant (σ2) σ2 not needed σ̂2 = z

ML Exponential (λ) λ not needed λ̂ = z

MK Gamma (α,μz) μz
(α + 1)
α

μ2
z μ̂z = z

α̂ = 1

(z2/z2)− 1

MNIG Inverse Gaussian (δ, γ)
δ

γ

(

1 +
1
δγ

)
δ2

γ2
δ̂ =

√
z

(z2/z2)− 1

γ̂ = δ̂

z
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Figure 2: Effect of constraints on Γ11 estimate versus sample
size: Unconstrained in blue, zero-mean constraint in green, and
covariance constraints in red. Note that the green points completely
overprint the blue above size 100.

which is equivalent to trace(Σ−1C). Assuming that µ = 0 for
simplicity, it is easily shown that

C = 1
L

L∑

l=1

yyH , (6)

E{C} = E{z}Γ (= Σ), (7)

M = tr
(
Σ−1C

)

= 1
L

L∑

l=1

(
yHl Σ

−1yl
)

,
(8)

E{M} = d, (9)

E
{

(M − d)2
}
= 1
L

E
{
z2
}

[E{z}]2 d(d + 1)− 1
L
d2. (10)

Note that the expectation of M equals d because of the
normalisation with respect to each local covariance matrix
Σ in trace(Σ−1C). The parameters Γ and E{z} are obtained
from the mean matrix by applying the constraint that |Γ| =
1, and RK is obtained in terms of var(M) by rearranging
(10). Subsequently, the texture parameters are solved for as
in Table 2.

3. Properties and Suitability

All models are symmetric about the mean and although each
dimension may have different relative widths, distributed
by the covariance matrix Γ, they will each have a similar
(global) shape governed by the scalar parameters. All models
are also sparse distributions, meaning that they are more
pointed in the peak and heavier tailed than the Gaussian.
The MG and ML distributions have a fixed shape and the
scalar parameter varies the width. The MK’s and MNIG’s two
scalar parameters lead to a range of shapes as well as overall
width. The shapes range from more pointed than Laplacian,
through to rounded like the Gaussian (see Figure 1). The
effect of the shape parameter on the density function is
highly nonlinear with value, with the clearly visible variation
occurring for small parameter values (e.g., α < 10 for the K-
distribution) and converging rapidly towards the Gaussian in
shape from only moderate values (e.g., α > 15) up to infinity.
Also note that both the ML and MK distribution’s pdfs can
go to infinity at the mean value, whereas the MNIG always
has a finite peak.

If we take our assumption of scale mixture of Gaussians
modelling and our theoretical radar scattering as a vector
sum with uniformly random phase, then three main prop-
erties emerge: zero-mean, semisymmetric shape, and global
shape. It seemed appropriate to investigate whether the real
PolSAR data showed similar general features as a validation
for using such a mixture model.

Figure 3 shows three different sets of real PolSAR data
distributions depicted as marginal Parzen estimates for both
the real and imaginary parts of all 4 dimensions of the
data vector. The intention is to observe the general features
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Figure 3: Real data observations: non-Gaussian, global symmetric shape, polarimetric width variations, zero-mean, and individual and
overall shape α estimates noted. Actual locations represent water, forest, and urban areas.

of the data. Firstly, it can be seen, in all sets of data,
that they do appear to be distributed with a mean of zero
for each dimension. Secondly, taking each set individually
(columns), it appears that the shape is consistent and
symmetric down all dimensions (rows), although the shape
can appear distinctly different from one sample location to
another. Specifically, the first set (location 1) has a Gaussian-
like roundness to each dimensional distribution, the second
set (location 2) has a reasonably pointed peak with smoothly
sloping sides, quite triangular in appearance, and the third
set (location 3) has a marked kink in the sides and is very
heavy tailed, again with each dimension showing basically
the same shape. Some shape parameter values, α from the
MK model, are noted within each box, and although there
is some random variation for each value, probably due to
estimation inaccuracy in the random sample, the shape value
is consistent for each location, and clearly distinguishable
from the other location values. The actual locations represent
water, forest, and urban areas, respectively, and the observed
progression in non-Gaussianity is expected for these target
types.

It is interesting to also note that the polarimetric
information becomes visible in the form of the different
widths of each dimension, which can vary distinctly as in the
first set, showing very little cross-polarisation scattering, or
be much more evenly scaled as in the other two locations.
Also note the pairwise equality in the distributions, because

the real and imaginary parts will have equal magnitudes,
and the centre four dimensions being equally scaled due to
reciprocity.

Clearly, the choice of semi-symmetric, zero-mean scale
mixture of Gaussian models appears to be well suited for this
type of PolSAR data.

4. Modelling Results

After obtaining four parametric descriptions of the data, we
then compare a goodness-of-fit measure of each to determine
which model fits best. Since we are comparing four different
parametric descriptions to the same data set, it is sufficient
to use a relative ranking measure only, and we do not require
an absolute or normalised measure of fit. The log-likelihood
measure is fast and efficient and simply requires summing
the log of the model pdf value at each data point. The
logarithmic nature of this measure also makes it sensitive to
differences in the tails of the distributions and is therefore
well suited for testing heavy-tailed distributions.

A “best fit” map is produced by goodness testing all four
fitted models and mapping the chosen best-fitted model in
different colours, white for Gaussian, green for Laplacian, red
for K-distribution, and blue for normal inverse Gaussian. We
also observed that although one model may be chosen as the
best fit, some of the other models may be quite reasonable

31



6 EURASIP Journal on Advances in Signal Processing

MG + ML −MK + MNIG ∗

(a)

MG −ML + MK −MNIG ∗

(b)

Figure 4: Examples of good-fit histograms showing that several
models may have very similar fitting to the data, and from which we
derived our 0.5% relative log-likelihood threshold. The top example
shows that the MG (black), MK (red), and MNIG (blue, and the
best-fit) are all acceptable fits to the data, whereas the ML (green)
is not. The lower example shows that the ML and MNIG (best) are
good fits, while the MG and MK are not.

fits, with visually similar fitting to the data histograms and
very similar log-likelihood scores. An absolute goodness-
of-fit measure for multivariate data is not a simple matter,
particularly when the actual data histogram is not known,
and the sample sizes relatively small. However, we found that
an empirical threshold of within 0.5% of the best-fitted log-
likelihood score clearly separated the bad fits from visually
acceptable fits to the data histogram. Figure 4 shows two such
examples where the data histogram is shown as grey bars,
the MG model in black, the ML in green, the MK in red,
and the MNIG in blue. The upper example shows that the
MG, MK, and MNIG are all good fits, with the MNIG being
the best-fitted model. The ML is clearly not a good fit to
the histogram. The lower example shows that the MG is too
“short and fat,” while the MK is too “tall and thin,” and they
are both considered poor fits to the data. Both the ML and
MNIG are good fits, with the MNIG again being the best
fit of these examples. Using this threshold, we can produce
a “coverage” map for each distribution that shows not only
where it was the best fit but also where it was considered a
“good” and poor fit too. Where each model was the best fit is
depicted in red, a good fit in magenta, and a poor fit in black.
Of real interest is in fact the regions where each model was
considered a poor fit (black) and thus do not represent the
data very well at all.

The modelling was tested on several different real PolSAR
data images to compare the behaviour for quite different
terrain types. The “Bleikvatnet” (a) mountain lake and forest

area and the “Okstinden” (b) mountain glacier area, both
in Norway, are from airborne EMISAR flights in 1995. The
“sea ice” (c) image is from an airborne CONVAIR flight
in Canada in 2001. And the “Foulum” (d) agricultural and
urban area is from an airborne EMISAR flight over Denmark
in 1998. The best fit maps, and reference intensity maps, are
shown for all four areas in Figure 5, from which the following
observations may be made.

(i) Uniform, smooth, or homogeneous areas are usually
best fitted as Gaussian (white), as seen in the central
lake area in (a), the large open snow areas in (b), the
(presumably) snow covered old ice patches in (c), and
the water inlet and several large fields in (d).

(ii) The land in general, the visible icy crevasses, rocky
outcrops, urban areas, and certainly anything with
small scale details and high contrast are certainly
non-Gaussian in nature and were poorly fitted by the
Gaussian model.

(iii) All types of vegetated land appear to be best described
by the normal inverse Gaussian distribution, whereas
the sea ice image by the K-distribution, although the
difference compared to the NIG was negligible.

(iv) The urban areas and coastlines are best fitted more
often by the Laplacian; however this may be due
to high contrast edge mixture effects because it
appears at all water/land boundaries, around point
sources like known huts within the forest, and along
hedge/fence lines around fields.

The coverage maps for each separate model and for each
area are shown in Figure 6. We observe the following.

(i) The Gaussian model is usually a poor fit for signifi-
cant parts of the image area, over 20%.

(ii) The Laplacian model is very good at detecting edges
and point sources and is otherwise very poor at
fitting to natural terrain types. Its seemingly good
fit for urban areas is presumably because of the
predominance of points and edges of mixed terrain
in the urban landscape.

(iii) In all cases the two parameters of the MK and MNIG
give a shape space that finds a “good” fit for the
majority of the data points (over 90%), and mostly
“fail”, that is, are more poorly fitted, for the high
contrast edges and point sources.

(iv) The normal inverse Gaussian model has the greatest
“good” fitted area for all images and is usually the
greatest best fit also.

Our results indicate that using a single, flexible two
parameter model is sufficient to capture the majority of
shapes seen in real PolSAR imagery. Our results indicate that
the normal inverse Gaussian model is the best choice, and the
K-distribution model for sea ice analysis, although both are
flexible enough for all types of data.

The reason that the Laplacian seems better at edges than
either the MK or MNIG is probably because of the influence
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MG 38.2% ; ML 3.3%; MK 17.6%; MNIG 40.9%

(a) Mountain lake and forest

MG 53.7% ; ML 4.8%; MK 13.5%; MNIG 28.0%

(b) Mountain glacier: snow, ice and rock

MG 16.6% ; ML 0.4%; MK 49.2%; MNIG 33.8%

(c) Sea ice

MG 16.3% ; ML 25.7%; MK 9.7%; MNIG 48.4%

(d) Agricultural, urban and water

Figure 5: Intensity and “best fit” coloured maps for the four areas: Gaussian in white, Laplacian in green, K-distribution in red, and normal
inverse Gaussian in blue.
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Gaussian coverage: best fit 38.24%,

good fit 41.79%, poor fit 19.97%

Laplacian coverage: best fit 3.33%,
good fit 6.43%, poor fit 90.24%

K-distribution coverage: best fit 17.56%,

good fit 73.63%, poor fit 8.81%

NIG coverage: best fit 40.88%, good fit 54.57%,

poor fit 4.55%

(a) Bleikvatnet area, model coverage maps: MG, ML, MK, MNIG

Gaussian coverage: best fit 53.70%,

good fit 19.78%, poor fit 26.52%

Laplacian coverage: best fit 4.76%,
good fit 10.44%, poor fit 84.80%

K-distribution coverage: best fit 13.55%,

good fit 72.80%, poor fit 13.65%

NIG coverage: best fit 27.99%, good fit 64.98%,

poor fit 7.03%

(b) Okstinden area, model coverage maps: MG, ML, MK, MNIG

Gaussian coverage: best fit 16.63%,

good fit 59.82%, poor fit 23.55%

Laplacian coverage: best fit 0.35%,
good fit 1.60%, poor fit 98.06%

K-distribution coverage: best fit 49.24%,

good fit 48.98%, poor fit 1.78%

NIG coverage: best fit 33.78%, good fit 63.67%,

poor fit 2.55%

(c) Sea ice area, model coverage maps: MG, ML, MK, MNIG

Gaussian coverage: best fit 16.29%,

good fit 16.47%, poor fit 67.25%
Laplacian coverage: best fit 25.67%,

good fit 27.69%, poor fit 46.64%

K-distribution coverage: best fit 6.69%,

good fit 38.52%, poor fit 51.79%

NIG coverage: best fit 48.36%, good fit 33.54%,

poor fit 18.11%

(d) Foulum area, model coverage maps: MG, ML, MK, MNIG

Figure 6: Coverage maps for all four models and all areas. Best fit in red, good fit in magenta, and poor fit in black.
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Figure 7: Two-part discrete mixture of Gaussians (black) fitted
as Laplacian (green), K-distribution (red) and normal inverse
Gaussian (blue dashed). The mixture appears to have a high non-
Gaussianity measure.

of the outer shoulder in such mixed distributions. If indeed
the “edge” distribution is from a very narrow and a very
broad boundary mix, then it is unlikely to have the expected
peak height for the apparent shoulder and tail for either the
MK or MNIG and the best fit parameters seem to emphasise
the tail region. The Laplacian has a fixed shape and simply
fits roughly centrally over the middle “kink” and therefore
leads to a higher goodness-of-fit score. This can be seen in
the simple example, a mixture of two Gaussians, in Figure 7.
The mixed distribution is shown in black. Observe that the
Laplacian (in green) fits higher up the peak and lower in the
tails, whereas the K-distribution (red) and normal inverse
Gaussian (blue dashed) are almost identical and fit most
tightly in the tails.

It is important to remember that only the goodness-
of-fit testing of each model has been depicted in the
figures so far, and not an actual image segmentation based
upon the modelled parameters. The modelled parameters
consist of a brightness (or total intensity) value, a non-
Gaussianity (shape or texture) value, and a polarimetric
matrix. The main emphasis of our method is to include
the non-Gaussianity measure, which gives additional infor-
mation that is otherwise ignored in a purely Gaussian-
based approach. Additionally, by working with the raw non-
Gaussianity measure, these features are independent of the
specific scale model and can be considered a general two
moment SMoG model.

The polarimetry can be interpreted in the usual manner
because our matrix is simply a normalised covariance matrix.
For example, a Pauli RGB colouring scheme, or the Freeman-
Durden decomposition [17], can be used for display and
interpretation with respect to general scattering mechanisms.
Simple polarimetric features, extracted from the covariance
matrix, are cross-polarisation fraction, co-pol ratio, co-pol
correlation magnitude, and correlation phase. In total we
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Figure 8: Extracted 6D feature histogram plots. Each feature shows
several peaks such that a discrete mixture model may well describe
the data.

have six scalar features, and we found that a logarithmic
transformation of the brightness, non-Gaussianity, cross-
pol fraction, and co-pol ratio improved visualisation and
linearity of those features.

We demonstrate the modelling features with an airborne
L-band (1.25 GHz) PolSAR data set acquired with the
EMISAR instrument over the agriculture test area of Foulum,
Denmark, in April 17, 1998. The resolution is 1.5 m in range
and 0.75 m in azimuth. Referring to the Pauli composite
image (R = HH − VV , G = HV , B = HH + VV) shown
in Figure 12, the image contains a lake (purple-blue area
stretching diagonally from left edge to bottom edge), some
forest (e.g., the whitest areas in the central image), patches of
cropland separated by roads, and some urban areas (greyish
areas along right-hand edge). Ground truth data is described
in [18]. Figure 8 depicts the six feature histograms for the
Foulum image data and shows a significant amount of detail
in each feature.

Figure 9 shows just the first two features as a scatter
plot to demonstrate that natural compact clusters are clearly
visible and a simple discrete mixture of Gaussian clustering
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Figure 9: Two-feature scatter plot: non-Gaussianity versus Bright-
ness. Note the natural clusters, but remember that there are four
other dimensions too.

Figure 10: Non-Gaussianity measure (RK) image showing low
values (Gaussian data) for the water and many fields, moderate
values for the forest, and high values for the urban areas and mixed
edges.

of the 6D feature space may be quite suitable. A stretched
mixing line is also visible and probably corresponds to class
boundary mixtures of bright and dark classes stretching from
bright to dark via high non-Gaussianity as discussed for
Figure 7.

Figure 11: Brightness measure (μz) image showing low values for
some fields and water, high values for forest and urban areas, and
particularly bright for certain buildings that presumably faced the
radar. Some range effect is also visible towards the left-hand edge of
the image.

The features can also be viewed as images, to indicate
where different features are significant, with a colour scale
from blue for low values through yellow to red for high
values. Figure 10 shows non-Gaussianity, where the water
inlet and many fields have low values (dark blue), the forested
areas have moderate values (light blue), and the urban
areas are light blue to yellow, with bright point and edge
mixtures showing the highest non-Gaussianity values in red.
The brightness image is shown in Figure 11 and shows the
expected range from low for smooth fields and water to
bright for forest and urban areas. Some extremely bright
buildings are visible, which presumably line up with the
radar acquisition direction, and also note that some range
effect is visible with the forest getting progressively brighter
towards the left-hand side of the image, corresponding to
lower incidence angles. The polarimetry is viewed as a Pauli
RGB image in Figure 12, showing some distinctly different
polarimetric responses.

Image segmentation of the parametric feature set derived
from the modelling has a rich distinguishing power as
seen in a simple preliminary segmentation of the Foulum
image shown in Figure 13. Depicted is an unsupervised
image segmentation created as a 16-class discrete mixture of
Gaussians clustering of the 6D feature set. The segmentation
looks quite good by visual inspection, but rigourous ground
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Figure 12: Polarimetry (Γ matrix) image shown as Pauli RGB
colours (R = |HH −VV |, G = |HV |, B = |HH +VV |).

truth testing has not been performed due to lack of data.
The significance of adding the non-Gaussianity could be
demonstrated by comparing segmentation images made with
and without that feature; however the results can only be
meaningfully compared with good ground truth testing. A
quick test (not shown) did indeed show some differences;
however, we have not yet investigated the details.

Besides image segmentation, the features may be useful
for physical parameter extraction or physical interpretation
in terms of polarimetry or backscattering brightness or
texture. This has not yet been rigourously studied, but the
level of detail shown in these parameters is encouraging.

5. Conclusion

The scale mixture of Gaussians models indeed seems well
suited to modelling PolSAR data which show inherently
heavy-tailed distributions with zero-mean and a global shape
for each dimension.

We have confirmed that many terrain types are clearly
non-Gaussian in nature and that a flexible two-parameter
model is able to capture the full shape range of PolSAR data
distributions, whereas the Gaussian model cannot. Different
terrain types can show quite different distribution shapes;
therefore the non-Gaussianity/shape parameter should be of
benefit to subsequent image segmentation.

Figure 13: Foulum image segmentation example based upon
modelled parameters. 16-class discrete mixture of multivariate
Gaussian clustering on 6D feature set.

It was demonstrated that the normal inverse Gaussian
distribution is the better fitting model, out of those analysed,
and usually better than the more commonly used K-
distribution, with the exception of over sea ice. The MNIG
model captures the greater proportion of distribution shape
variations and has less trouble at boundary mixtures than the
MK. The normal inverse Gaussian also has strong theoretical
grounds derived from Brownian motion theory. A detailed
study of why it is generally superior, and why not for sea ice,
has not yet been undertaken.

We also described how a generic, two-moment, scale
mixture of Gaussian analysis may be performed without
the need for choosing a specific model. The feature space
obtained from the modelling contains non-Gaussianity,
Brightness and a Polarimetric matrix. Six features were
extracted, displayed, and discussed, with a final simple image
segmentation as an example application.

The methods described here can be considered the
foundation for our statistical analysis of PolSAR data and
future work will investigate some of the observations made
here as well as address several important extensions to the
model that were discussed in the introduction.
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