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Abstract
Marine oil spills are harmful for the environment and costly for society. Coastal
areas are particularly vulnerable since they provide habitats for organisms, ani-
mals and marine ecosystems. This thesis studied machine learning methods to
classify thick oil in a multi-class case, using remotely sensed multi-spectral data
in the Persian Gulf. The study area covers a large area between United Arab
Emirates (UAE) and Iran. The dataset is extracted from 10 Sentinel-2 tiles on
six spectral bands between 492 nm to 2202 nm. These images were annotated
for four classes, namely thick oil, thin oil, ocean water and turbid water by
using the Bonn Agreement to analyse true color composite images. A variety
of machine learning methods were trained and evaluated using this dataset.
Then a robustness evaluation was done by using selected machine learning
methods on an independent dataset. Initially multiple machine learning meth-
ods were included; three decision trees, six K-Nearest Neighbor (KNN) models,
two Artificial Neural Network (ANN) models, two Naive bayes models, and two
discriminant models. Two KNN models and two ANN models were then picked
for further evaluation. The results show that the fine KNN approach with two
nearest neighbors had the best performance based on the computed statistical
measures. However, the robustness evaluation showed that the tri-layered NN
performed better. This thesis has shown that supervised machine learning with
a multi-class approach can be used for oil spill monitoring using multi-spectral
remote sensing data in the Persian Gulf.
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1
Introduction
Marine anthropogenic oil spills have a negative impact on life and the surround-
ing environment [1, 2, 3]. This can affect ocean bottom habitats, sea corals
and a wide range of organism including fish, birds and plankton [3]. If the
oil reaches coastal areas the negative effects increases impacting habitats for
organisms, animals and marine ecosystems [3]. Larger oil spills comes from
catastrophic or accident events, such as the Exxon Valdez oil spill (EVOS) in
1989, the Hebei Spirit oil spill (HSOS) in 2007, and the Deepwater Horizon oil
spill (DWH) in 2010 [3]. More often marine anthropogenic oil spills appears in
smaller batches released from oil platforms, tankers or other vessels [4].

The effects are not limited to an environmental impact, it also has an econom-
ical impact on society. In case of an oil spill there is potential economic cost
associated with assessing, monitoring and cleaning up the oil spill [4, 5].

In case of a marine anthropogentic oil spill, response teams needs information
about the spill in order to efficiently react, limiting the spread and the environ-
mental impact [4]. This can be done by visual inspection of the affected area
onboard vessels and airplanes. Location and the size of an oil spill is important
considerations for a response team. Potentially the oil spill can be located in the
middle of a large ocean, and spread out over a large area. Vessels and airplanes
may use a long time reaching and assessing the oil spill, sometimes also inac-
curately [4], before response teams can act. A quick and correct assessment
of the oil spill is necessary to identify the thickest parts of the oil spill. This
is usually the most critical part, which a response team wants to control first

1



2 chapter 1 introduction

due to the risk of spread and drift. Remote sensing can be a more efficient way
to gather information about oil spills compared to airborne sensors or in-situ
observations. Remote sensing can cover large maritime areas with good spatial
resolution, providing accurate information about the size and thickness of oil
spills [4, 6]. Remote sensing can be used to regularly monitor large marine area
for oil spill, but also as a response service for oil spill emergencies. However,
large scale monitoring makes it difficult to get in-situ data for all detection,
especially smaller oil spills. Assessment is then dependent on the expertise
and experience of the oil analysis expert. In optical imagery, the use of the
Bonn Agreement Oil Appearance Code (BAOAC) [7] may be used as a decent
replacement for in-situ data, looking for oil in true color composite images
[4].

Oil spills are affected by several factors at the ocean surface, including wind
and sea currents [4]. Together these factors spread the oil spill on the ocean
surface by time. Due to this, time used analysing a remotely sensed image for
oil spills must be minimized. The analysis is mainly done manually by trained
observers, visually inspecting the remotely sensed images [4]. ML classifiers
can aid the observers to quickly identify potential oil spills, and aid in setting
a confidence for detected features believed to be oil spills [8, 9]. However, due
to the limited time, a trained observer can’t wait too long for a ML classifier, so
the ML classifier needs to be simple regarding computational time, yet effective
enough to be of aid. For instance, Sentinel-2 images are often stitched together
creating a mosaic of four or more tiles to cover a larger area compared to only
using one tile, yet keeping the fine 10 m resolution. This creates a large demand
of computational power for complex and time consuming ML classifiers.

There are several types of sensors used for oil spill remote sensing. Synthetic
Aperture Radar (SAR) is one of the most popular sensors due to its ability
to operate under a large variety of weather conditions [6, 10, 11]. It is oper-
ational in nighttime as well as daytime, and can penetrate clouds. The main
disadvantages are the limited spectral information collected due to that SAR
sensors rely on radar backscatter, and that SAR sensors generally are costly
due to the advanced radar technology and the complex data processing in-
volved [6]. Another type of sensors are optical sensors. They are multi-spectral
or hyper-spectral scanners, meaning that they capture data across a range of
spectral bands, with the potential to detect and classify oil spills based on their
spectral signature. Optical sensors can be cheaper than SAR sensors [6, 12],
and more free access data is available such as data from the Sentinel satellites
and the Landsat satellites. The main disadvantages of optical sensors are the
dependency of daylight, and the possible interference of sunglint when sun
angle is similar to the view angle [13]. Other sensors, like passive microwave
sensors, where not considered for this work. The detection of oil in remotely
sensed imagery is often done manually by trained operators, both for SAR and
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optical sensors [4]. This is often time consuming and resource-intensive. To
save time and resources, a goal would then be to automate this service, or if
this is not possible, create a tool that can aid the operators in their analysis.
This would require the use of ML methods that could identify oil with high
accuracy. Especially thick oil is of interest since this is the most critical part of
an oil spill and have the best potential to be cleaned up [4].

Many ML methods have been used for oil spill classification. This include Neu-
ral networks (NN) [9], using a binary approach with two classes, K-nearest
Neighbor (KNN) [9, 14] , Support Vector Machine (SVM) [14], Random Forest
(RF) [14] and Decision Trees [14] using a multi-class approach with five classes.
These methods are based on various fundamental principles and have different
advantageous properties. Despite that both SAR and optical sensor are popular
sensors used for oil spill detection[10], oil spill classification using ML methods
are mostly applied on SAR data [11]. A thorough comparison study on various
methods for multi-class classification, including thick oil might reveal the ac-
curacy and robustness of the machine learning models on multi-spectral data.
Therefore, the goal of this work is to compare and evaluate several machine
learning approaches to accurately classify and separate thick oil from thin oil,
oceanic and turbid waters in multi-spectral imagery. An additional class for ves-
sels was also included due to the large number of ships present in the area of
interest (AOI). The studied methods include NNs, KNNs, Decition trees, Naive
bayes classifiers and discriminant classifiers. The Persian Gulf was chosen for
the AOI due to frequent occurrence of oil spills. A secondary goal of this work
is to assess if the evaluated ML models could be of aid in an oil spill monitoring
services, such as KSAT’s oil spill detection service. To achieve the main objec-
tive of this work we first created the dataset, second we trained a variety of
different ML models, third we tuned the parameters of the ML models showing
best result. Fourth we trained and applied four ML models which were found
to have the highest accuracy in classifying thick oil. Finally we evaluated the
results and applied the ML models to labeled and unlabeled data.

1.1 Outline of the thesis

This thesis is structured in 8 chapters.

Chapter 2 outlines the fundamentals of optical remote sensing applied for oil
spill detection, presenting a theoretical background needed to understand the
main objective of the thesis.

Chapter 3 presents the experimental setup of this thesis, outlining the steps.



4 chapter 1 introduction

Chapter 4 describes the data included in this thesis, how it was selected, how
it was acquired, and the specifications.

Chapter 5 presents the methodology, describing how the dataset was created,
how the training, testing and classification was performed and the machine
learning setup for this thesis.

Chapter 6 presents the results of comparison and evaluation of the ML and
their application to unlabeled data.

Chapter 7 discusses the main results.

Chapter 8 concludes the thesis and suggest further work.



2
Theory
In this project optical remote sensing is used for oil spill detection in ocean
waters. Therefore, this chapter gives an overview of the relevant theoretical
background on electromagnetic radiation and it’s behaviour interacting with
the atmosphere and ocean, on passive remote sensing of oceans, on passive
remote sensing of marine oil slicks, and on pattern recognition and the machine
learning (ML) classifiers used in this work.

2.1 Background physics

Optical remote sensing of oil spills is based on the physical properties of elec-
tromagnetic radiation. Therefor, this section provides an overview on electro-
magnetic radiation and its interactions with atmosphere and ocean.

2.1.1 Electromagnetic radiation

Electromagnetic (EM) radiation are waves of electromagnetic energy. The sun
emits a complete spectrum of electromagnetic radiation. Microwaves, visible
light, X-rays and gamma rays are all examples of different types of electromag-
netic radiation. The electromagnetic spectrum, shown in Fig.2.1 describes the
whole range of electromagnetic radiation, where the electromagnetic radia-
tion is divided into different classes based on their wavelength and frequency

5



6 chapter 2 theory

[6]. Optical remote sensing is passive remote sensing using the wavelengths
from the ultraviolet to the infrared spectrum, which corresponds to the range
between 10 𝜇𝑚 - 1 mm [15].

Figure 2.1: The electromagnetic spectrum, highlighting the visible spectrum [16].

Electromagnetic energy propagates in the form of a sine wave which is a geo-
metric form that oscillates around an axis. A sine wave can be described by its
amplitude, wavelength and frequency. Wavelength is the distance between to
identical points in the wave, for instance the distance between crests. Ampli-
tude represents the magnitude of the wave. Often the amplitude measures the
energy level known as spectral irradiance. Frequency is a measure for counting
number of wavelengths passing a fixed point in unit time. Hertz is often used as
the unit of measurement, which counts passing’s per second. For instance, 1 Hz
means that one wavelength passes a fixed point in 1 second. Wavelength and
frequency are inversely affecting each other. When the wavelength decreases,
the frequency increases [6]. The parameters of the sine wave can be measured
by a satellites sensor. An optical sensor only receives EM waves from within
the optical range, ignoring EM waves from outside the optical range. The pa-
rameters are then used to estimate the surface reflectance values for optical
imagery.

EM radiation consists of two sine waves. First is an electric sine wave which
makes an electric field as it propagates. Second is a magnetic sine wave, which
makes a magnetic field. Electromagnetic radiation is made up of an electric
field and a magnetic field which both vary in magnitude and are oriented at
fixed angles. The magnitudes vary along an axis perpendicular to the axis of
propagation [6]. Figure 2.2 illustrates electromagnetic radiation propagating
in x-direction. The electric field is denoted by E and is measured in volts per
meter (V/m), which is equivalent to newtons per coulomb (N/C). The magnetic
field is denoted by the vector fields B and H. In vacuum, their relationship is
connected by the vacuum permeability, showed in Eq.2.1,
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𝐵 = 𝐻 ∗ 𝜇0, (2.1)

where B is the magnetic flux density, and is measured in Newton per meter per
ampere (Tesla units). H is the magnetic field strength, which is measured in
ampere per meter, and 𝜇0 is the vacuum permeability constant. Further, we will
describe how the electric and magnetic fields can be expressed by Maxwell’s
equations.

Figure 2.2: Electromagnetic wave propagating in a 3D space in x direction, showing
the Electric field E with red colors, and the magnetic field B with blue

colors [17].

Maxwell’s equations describes how electromagnetic waves behaves in vacuum.
Assuming no charges (p = 0) or currents (J = 0), the equations can be written
by

∇ · 𝐸 = 0 (2.2) ∇ · 𝐵 = 0 (2.3)

∇ × 𝐸 = −𝜕𝐵

𝜕𝑡
(2.4)

∇ × 𝐵 = 𝜇0𝜀0
𝜕𝐸

𝜕𝑡
(2.5)

where E is the electric vector, B is the induction vector, 𝜇0 is the permeability
constant in vacuum, 𝜇𝑟 is the relative permeability, 𝜀0 is the permittivity con-
stant in vacuum and 𝜀𝑟 is the relative permittivity [18, 19]. Given an isotropic,
homogeneous and nonmagnetic media, the wave equation can be derived com-
bining Maxwell’s equations. This can be expressed by

∇2𝐸 − 𝜇0𝜀0𝜇𝑟𝜀𝑟
𝜕2𝐸

𝜕𝑡2
= 0. (2.6)

Solving the differential equation in Eq. (2.6) results in the expression



8 chapter 2 theory

𝐸 = 𝐴𝑒𝑖 (𝑘𝑟−𝜔𝑡+𝜙 ) , (2.7)

where A is the wave amplitude, k is the wave vector in the medium, 𝜔 is the
angular frequency and 𝜙 is the phase [18].

Further on,wewill describe the term reflectance,which is ameasure of reflected
energy from the earth’s surface. This can be used to identify and separate
what we observe at the ocean surface, such as oil and algae. To be able to
explain reflectance, first we will describe relevant quantities measuring EM
radiation.

Radiometry

Here we define quantities of EM radiation thatwill be used in this work. Radiant
energy is the measure of the energy in electromagnetic radiation, with symbol
𝑄𝑒 and unit Joule (J). Radiant flux is radiant energy per second, with symbol
𝜙𝑒 and unit Watt, which is joule per second (J/s). Radiance is the radiant flux
per unit solid angle per unit area, with symbol 𝐿𝑒 and unit watt per steridian
per square meter (𝑊𝑠𝑟−1𝑚−2). Irradiance is the radiant flux received per unit
area, with symbol 𝐸𝑒 and unit watt per square meter𝑊 /𝑚2. Emittance is the
radiant flux emitted per unit area, with symbol 𝐽𝑒 and unit watt per square
meter𝑊 /𝑚2.

Reflectance

Remote sensed reflectance (𝑅𝑟𝑠) is a measure on how much of the radiance
that hits a surface are reflected to a sensor. This can be written by

𝑅𝑟𝑠 = 𝐿𝑟𝑒/𝐿𝑖𝑒, (2.8)

where 𝑅𝑟𝑠 is the remote sensing reflectance, 𝐿𝑟𝑒 is the reflected radiance at the
surface, and 𝐿𝑖𝑒 is the incident radiance to the surface. Due to that reflectance is
a measure of reflected radiance divided by the incident radiance, the reflectance
has no units and can be expressed in percentage or decimals. Using a sensor
with one band results in a single reflectance value for each data point. Using a
sensor with multiple bands gives us knowledge about the spectral behaviour,
how much reflected radiation there is in different parts of the electromagnetic
spectrum. When showing the reflectance as values dependent on wavelength,
we get a reflectance spectrum. Reflectance spectrums are unique, and can
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therefor act as a signature for the material[20]. This signature can be effected
by several factors, for instance weather conditions and sun angle. For the case of
oil slicks, thickness and type can have an impact on the spectral response[4, 21].
Fig.2.3 shows an example of a reflectance spectrum and illustrates the case
where thickness of the oil slick has an impact on the reflectance. It can be seen
that the reflectance decreases for oil slicks and increases for very thin oil in
comparison to seawater in the range between 400-900 nm. Figure 2.4 shows
another example of a reflectance spectrum [20]. This figure shows a stable
reflectance for black oil beneath the more varying reflactance for seawater.
Here we see that the reflectance for oil increases in the range between 400-
600 nm, and descreases in the range between 600-1000 nm in comparison to
seawater.

Figure 2.3: Reflectance spectrum of seawater, oil slick and very thin oil slick [20].

2.1.2 Atmospheric interactions

The atmosphere is a medium consisting of gases and aerosols which affects
the electromagnetic radiation that propagates through it. These affects can be
described by four interaction mechanisms; scattering, absorption, emission and
refraction [18]. When scanning the earth’s surface,we are only interested in the
reflectance values from the surface, but these mechanisms causes additional
radiation to the sensor. To be able to only observe the desired reflected radiation
from the ocean surface,we have to do a correction to filter out all other radiation
received. This is called the atmospheric correction (AC). The AC algorithm
calculates the contributions from the unwanted radiation.

Radiative transfer theory can be used to model the contributions from the atmo-
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Figure 2.4: Reflactance spectrum for seawater (upper curve) and floating black oil
[20].

sphere and to establish atmospheric correction algorithms [18]. The Radiative
Transfer Equation (RTE), Eq. (2.9) is radiative transfer theory that describes
how EM-radiation propagates in an absorbing and scattering medium and
can be used to calculate gain and loss for radiation propagating through the
atmosphere [18]. The equation can be written by

𝑑𝐼

𝑑𝑧
= −𝛼𝑎𝐼 − 𝛼𝑠𝐼 + 𝛼𝑎𝐵 + 𝛼𝑠 𝐽 , (2.9)

where the intensity loss in the wave due to absorption is given by

𝑑𝐼

𝑑𝑧
= −𝛼𝑎𝐼 (2.10)

and the intensity loss due to scattering is given by

𝑑𝐼

𝑑𝑧
= −𝛼𝑠𝐼 . (2.11)

The intensity gained from thermal emission in the medium is given by

𝑑𝐼

𝑑𝑧
= 𝛼𝑎𝐵, (2.12)
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and intensity gained from scattering of waves incident from other directions is
given by

𝑑𝐼

𝑑𝑧
= 𝛼𝑠 𝐽 . (2.13)

The term I is the original intensity before entering the medium. dI is the change
in intensity at a specified point in the medium and dz is the distance the wave
travels. The term 𝛼𝑎 is the absorption coefficient summarized for all gas and
particles in the medium. The term 𝛼𝑠 is the sum of the scattering coefficient
of all gases and particles in the medium. B is the the thermal energy from
the medium, and J is the intensity from waves incident from other directions
[18].

2.1.3 Ocean interactions

This section will describe the physics concerning reflection and scattering of
electromagnetic waves on the ocean surface. The reflected radiation carries
the information from the surface that is desired to retrieve by the spaceborne
sensor.

Surface scattering

Radiation hitting the ocean surface can be reflected, scattered, absorbed or
transmitted to different degrees and are depending on the surface properties
such as roughness and dielectric constant. On a flat surface, the reflections are
specular, similar to a reflection on a mirror. This is shown in Fig. 2.5 (a). The
incident angle and the reflection angle are then identical. This is also called
coherent scattering, meaning that the reflected radiation has a specific phase
relation with the incident beam [22]. A non-flat surface is more complicated
and is refereed to as a rough surface. A method to describe rough surfaces are
the Reyleigh Roughness Criterion (RRC), which can be expressed by

(𝜎𝜂 𝑐𝑜𝑠 𝜃 )/𝜆 < 1/8, (2.14)

and it determines if the water surface is rough or smooth. Here 𝜎𝜂 is the Root
Mean Square (RMS) surface height, 𝜃 is the angle and 𝜆 is the wavelength. The
reflection is specular if Eq.2.14 is satisfied, and rough otherwise [23].

If the RRC cannot be satisfied at any angle, the reflection is Lambertian. This
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is shown in Fig.2.5 (d) and is the case of an ideal rough surface with equal
distribution in all directions. Fig. 2.5(b) shows reflection happening partly by
specular scattering and partly by diffuse scattering. Diffuse scattering is also
called incoherent scattering, meaning it has a random phase relation with the
incident beam. As the ocean surface gets more rough, the specular scatter
decreases and the diffuse scatter increases. Fig. 2.5(c) shows the last case not
mentioned, where most of the scatter is diffuse in all directions, but still some
specular scatter exists [23].

Figure 2.5: Four different cases of scattering: a) Specular reflection, b)
Quasi-specular reflection, c) Quasi-Lambert reflection and d) Lambert

reflection [23].

Transmission and interior scattering

Parts of the solar radiation that reaches the ocean surface is transmitted through
the water body to different depths. The radiation is then either absorbed by the
water body or scattered. In the specular case, two different equations describes
the transmission and reflection of radiation. The first is Snell’s law which can
be written by

𝑛𝑤/𝑛𝑎 ≡ 𝑛 = 𝑠𝑖𝑛 𝜃𝑖/𝑠𝑖𝑛 𝜃𝑡 . (2.15)

It describes which angles the radiance is reflected and refracted. The second
is Fresnel equations, were the unpolarized case can be expressed by

𝑟 (𝜆, 𝜃𝑟 ) = 𝐿𝑟 (𝜆, 𝜃𝑟 )/𝐿𝑖 (𝜆, 𝜃𝑖). (2.16)

Fresnel equations concerns the magnitude for the reflected and refracted radi-
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ances depending on the incidence angle [23].

In Eq.2.15, 𝑛𝑤 and 𝑛𝑎 are the real part of the index of refraction for water and
air and 𝜃𝑖 and 𝜃𝑡 are the angles of incident and transmitted radiation. Fig.2.6
illustrates the concept of reflection and transmission at a planar surface with
relevant angles. In Eq.2.16 𝑟 (𝜆, 𝜃𝑟 ) is the reflectance. The reflectance equals
the ratio of the reflected radiance 𝐿𝑟 (𝜆, 𝜃𝑟 ) and the incident radiance 𝐿𝑖 (𝜆, 𝜃𝑖).
𝜆 is the wavelength, 𝜃𝑖 is the incident angle and 𝜃𝑟 is the reflected angle.

Figure 2.6: Concept of incident, reflected and transmitted radiation with angles on a
planar surface [23].

A method to describe scattering in the ocean interior is the plane irradiance
based reflectance 𝑅(𝜆, 𝑧). This reflectance is used to relate the incident so-
lar irradiance to the water-leaving emittance, the absorption properties and
the seawater scattering. 𝑅(𝜆, 𝑧) is defines as the the ratio of the upcoming
plane irradiance (𝐸𝑢) to the downgoing irradiance (𝐸𝑑 ), and it can be written
by

𝑅(𝜆, 𝑧) = 𝐸𝑢 (𝜆, 𝑧)/𝐸𝑑 (𝜆, 𝑧) . (2.17)

Here 𝜆 represents wavelength and z represents depth into the water. Fig.2.7
illustrates the concept of plane irradiance based reflectance [23].

This section gave an overview of background physics related to this work. This
is important due to that remote sensing is based on the principles mentioned
above.
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Figure 2.7: Concept of plane irradiance based reflectance [23].

2.2 Passive optical remote sensing of oceans

2.2.1 Radiation - From the sun to data products

Remote sensors receives and processes radiation. For optical remote sensing the
source of illumination is commonly reflected radiation from the sun [19]. Figure
2.8 illustrates the journey of the radiation from the sun to the sensor.

Figure 2.8: From sun to sensor. The black arrow shows the surface reflecting
radiation. The red arrow shows the radiation transmitting into the water
body, while the small blue arrows shows scattering in the atmosphere

and in the water interior.

Solar radiation travels undisturbed through space before entering the Earth’s
atmosphere. Parts of the radiation is then scattered or absorbed by atmospheric
gases and aerosols, as seen in Fig2.8, A. The remaining radiation reaches the
earths ocean surface. Here parts of the radiation is scattered or absorbed, while
other parts are transmitted through the water body and then scattered or ab-
sorbed at different depths. The rest are reflected at the surface. The interaction
at the surface and ocean interior is shown in Fig2.8, B. The reflected radiation
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travels back towards the sensor. Again parts of the radiation is scattered and
absorbed in the atmosphere while the rest reaches the sensor, as shown in
Fig2.8, C. The radiance are recorded and digitized by the sensor before being
pre-processed and prepared to be sent back to earth for processing valuable
data products.

In addition to the desired surface reflectance, a sensor also receives radiation
from other source. Figure 2.9 illustrates all contributions to the sensor.

Figure 2.9: Radiation to satellite. A) Absorption in atmosphere. B) Ocean surface
reflectance C) Scattering in the ocean interior. D) Scattering in
atmosphere. E) Emittance from Earth. F) Emittance from the

atmosphere.

The additional radiation that reaches the sensor is; scattered and emitted radia-
tion from the atmosphere (Fig.2.9, D and F), scattered radiation from the ocean
interior (Fig.2.9, C) and emitted radiation from the Earth’s surface (Fig.2.9,
E).

2.2.2 Passive optical sensing

A passive sensor senses radiation, mainly reflected radiation from the sun. This
thesis works with passive optical remote sensors. Passive optical sensors are
multispectral or hyperspectral scanners, meaning they obtain data from several
bands of the electromagnetic spectrum. Combining different bands they are
able to extract a large variety of spectral content from the data [6].

An advantage of multispectral data, is the ability to create colorful imagery,
using bands in different combinations, such as a true color composites, differ-
ent false color composites, and Normalized Difference Water Index (NDWI).
This way the spectral content can be fully exploited, enhancing features in the
image such as water, vegetation and urban areas for visual interpretation. The
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spectral information combined with high spatial resolution makes it possible
to interpret optical imagery for the human eye, possible to identify what we
observe and to separate objects from each other. Other common uses of passive
sensors can be to measure surface temperatures using infrared bands, mea-
suring the concentration of chlorophyll, measuring colored dissolved organic
matter (CDOM), or mineral particles close to or on the surface [19].

The alternative to a passive sensor is an active sensor. Common active remote
sensors are Synthetic aperture radars (SAR). Detection and classification of oil is
more often done in SAR imagery in practice [24]. An active sensor transmits it’s
own signal and senses the reflection of the same signal. For instance, an active
microwave sensor sends out microwaves which is reflected at the surface before
getting back to the sensor. Active sensors have fewer constraints compared to
a passive sensor, and can be used under a wide range of operational conditions
due to that they do not depend on radiation from the sun and is operational at
nighttime as well as daytime. Also, active microwave sensors have the ability
to penetrate clouds. This is what often makes SAR imagery a more attractive
choice for companies such as KSAT, in maritime surveillance for services such
as oil detection and vessel detection [24]. The downside of active sensors is
that they come at a higher price and more investment is needed [6].

2.2.3 Multispectral imaging

Multispectral satellite imaging is a technology that uses sensors onboard satel-
lites, airplanes, drones, e.g, to capture images of the Earth’s surface in multiple
wavelengths of light. The sensor can detect radiation in various spectral bands,
including the visible, near-infrared, and thermal infrared regions of the elec-
tromagnetic spectrum. Each spectral band of the electromagnetic spectrum
provides different information about the Earth’s surface. For instance, the visi-
ble bands can capture information about the reflectance of different land cover
types like vegetation, water bodies, and urban areas. The near-infrared bands
can capture information about vegetation health and biomass. The thermal
infrared band can capture information about the temperature of the Earth’s
surface [18, 23].

Multispectral satellite imaging can be used for a range of applications, including
agriculture, forestry, environmental monitoring, and natural resource manage-
ment. It can provide valuable information about crop health, vegetation cover,
water quality, and land changes. One of the benefits of multispectral satellite
imaging is its ability to capture images over large areas combined with a high
spatial resolution, making it useful for monitoring changes over time and identi-
fying trends and patterns. The technology has become more advanced over the
years, with new sensors and algorithms enabling more accurate and detailed
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imagery [25, 6].

2.2.4 Affects on detection capabilities for oil in optical
imagery

There are several factors that can affect the detection capabilities of oil slicks
in the optical imagery. In this section we describe these factors.

Sunglint

Sunglint is a phenomenon observed in optical satellite imagery where the angle
of the sun equals the viewing angle of the satellite. It is a reflection causing
the affected ocean area to appear silver-like. Often seen as a thick line through
parts of the image, with the unaffected areas in contrast. Sunglint can cause
a reduced detection capability when looking for surface constituents on the
ocean surface in an optical image [13].

Clouds and haze

Oil spill detection by optical sensors can be affected by clouds and haze. This
is due to the fact that clouds or haze can cover oil slicks, either partially or
completely. The sensor is then unable to see the reflectance from the surface
underneath [26].

Aquatic vegetation

The ocean is full of aquatic vegetation, often refereed to as the blue forest
[27]. Algae, kelp, and seaweeds are examples of marine vegetation. When
marine vegetation in various forms lays on the ocean surface, like for instance
Sargassum or algae, the reflection can be visible from optical remote sensors.
The chlorophyll in plant materials reflects light in the green part of the VIS
spectrum, and absorbs in the red and blue part of the VIS spectrum, which
make it appear green colored in true color composites. Other plant materials
may have different reflections. This reflection can sometime be mistaken for oil
in optical imagery. Examples of this is shown in Fig. 2.15, described in Sec.2.3.3
[4].
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Other disturbances in remote sensed optical imagery

Other factors that can affect the ocean surface appearance in an optical re-
motely sensed image are wind conditions, ice, internal waves, cloud shadows,
and oceanic fronts[4]. Altogether there are many factors that contribute to
the possible complexity for trained observers and machine learning algorithms
to detect oil spills at the ocean surface using passive optical remote sensing
data.

2.2.5 Optical properties

The optical properties of oil and water depends on a variety of factors. For oil,
thickness, type and oil:water emulsion ratio are important. For ocean water,
temperature and salinity are key factors. The optical properties affects the
remote sensing reflectance ending up at the sensor. This section presents some
optical properties of oil and water.

Properties of oil

Oil is a wide term including many different unctuous liquids. In this work our
goal is to separate petroleum oil from the ocean surface. The oil composition
will vary depending on several properties, bot physical and chemical. Physical
properties include density, sulphur content, viscosity, and water content. Chem-
ical properties are the composition of different elements, such as hydrocarbons,
nitrogen, oxygen, and nickel [28]. Examples of oil types are crude oil, lubricant
oil and fuel oil. Figure 2.10 shows absorption at different wavelength in the
visible spectrum for the three oil types. It can be seen that crude oil has the
highest absorption coefficient, while fuel oil has the lowest.

Properties of ocean water

The optical properties of clear water varies with temperature and salinity. Fig.
2.11a shows an example of the absorption coefficient at different wavelength
and Fig.2.11b shows an example of the scattering coefficient at different wave-
lengths.

Figure 2.12 show an example of the absorption and scattering of oil-in-water
emulsion and sea water.

The oil:water emulsion have a higher scattering coefficient than sea water
in the VIS spectrum. When viewing the absorption, we see that one sort of
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Figure 2.10: Absorption of three different oil types [21].

oil:water emulsion, Romashkino has higher absorption than sea water, while
the other oil:water emulsion, Petrobaltic has a lower absorption coeficcient than
sea water.

This section showed some examples for the optical properties of oil and water.
It can be seen in Fig. 2.12 that the scattering of oil differs from water in the VIS.
The same is valid for the absorption coefficient, but the absorption coefficient
seem to be greatly impacted by oil:water emulsion type.

2.2.6 Sensors

This section describes some of the commonly used free sensors and satellites
including Sentinel-2, which was used in this project. Table 2.1 shows the satel-
lites along with their sensors, swath width, two different types of resolution,
bands, spectrum interval and current lifespan. Swath width can be describes
as the largest width the sensor possible can obtain when sensing an image.
Spatial resolution describes the size of each pixel in the image. With higher
spatial resolution more details and smaller objects can be sensed on the surface.
Temporal resolution describes the revisiting time of a particular location on
the Earth’s surface. A revisiting time of 10 days means that it take 10 days for
the satellite to come back to the same location moving in the same direction.
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(a) Example of water absorption coefficient
[19].

(b) Example of water scattering coefficient
[19].

Figure 2.11: Examples of water absorption in the VIS and NIR spectrum and
scattering in the VIS spectrum [19].

Another resolution worth mentioning is the spectral resolution. Spectral resolu-
tion describes the smallest spectral interval that can be properly sensed by the
instrument [6]. Due to that each band has different spectral resolution, it is not
included in the table. Ideally we want highest possible spatial and spectral res-
olution to obtain as much information from the surface as possible, combined
with a high temporal resolution and a large swath width for more available
images covering larger areas. Unfortunately this is difficult to obtain. For in-
stance, a larger swath leads to a lower spatial resolution and vise versa. We
have to decide which parameters are more important for the given task.

*MultiSpectral Instrument
**Operational Land Imager
***Moderate Resolution Imaging Spectroradiometer
****Visible Infrared Imaging Radiometer Suit
*****PRecursore IperSpettrale della Missione Applicativa

2.2.7 Sentinel-2

The Sentinel-2 constellation consist of Sentinel-2A and Sentinel-2B. They are
a pair of European Space Agency (ESA) Earth observation satellites launched
in 2015 and 2017, respectively. They are part of the Copernicus Programme,
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Figure 2.12: Example of absorption and scattering for two oil-in-water emulsion and
sea water [29].

which is a joint initiative between the European Union and the European Space
Agency to monitor the Earth’s environment and security using space-based
technologies. They are equippedwith amultispectral imaging instrument called
the MultiSpectral Instrument (MSI), which captures data in 13 spectral bands
including wavelengths from the VIS (442 nm) to the SWIR spectrum (2202
nm). The MSI has a ground resolution of 10, 20, or 60 meters depending on the
spectral band, which makes it ideal for a wide range of applications, including
land cover mapping, agriculture, forestry, and coastal monitoring [30].

The Sentinel-2 satellites orbit the Earth at an altitude of 786 km and have
a revisit time of 5 days at the equator, which means they can image the en-
tire Earth’s land surface every 5 days. This high revisit time, combined with
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Table 2.1: Overview of sensors available for free optical remote sensing data in the
Persian Gulf [30, 31, 32, 33, 34, 35, 36].

Satellite and Swath Spatial Bands and Temporal Lifespan
sensor width resolution spectrum resolution

Sentinel-2A/2B: 290 km 10 m, 20 m 13 bands 5 days 23.06.15/
MSI* 60 m 442-2202 nm 07.03.17-

Landsat-8: 185 km 15 m, 30 m 9 bands 16 days 11.02.13-
OLI** 430-2290 nm

Landsat-9: 185 m 15 m, 30 m 9 bands 16 days 27.09.21-
OLI-2 430-2290 nm

Aqua/Terra: 2330 km 250 m, 500 m 36 bands 2 days 18.12.99(Terra)-
MODIS*** 1000 m 405 nm - 14.385 𝜇𝑚 04.05.02(Aqua)-
NOAA-20 3060 km 375 m, 750 m 22 bands 10 days 18.11.17-
VIIRS**** 400 nm - 12.5 𝜇𝑚

PRISMA***** 30 km 5 m, 30 m 238 bands 29 days 22.03.19-
PRISMA 400 nm - 2505 nm

the high spatial resolution of the MSI, allows for monitoring of changes to the
Earth’s surface in near-real-time. The Sentinel-2 satellites are also equipped
with a unique feature called the "revisit and tasking" capability, which allows
users to request specific areas to be imaged with a high priority. This is partic-
ularly useful for emergency response and disaster management applications
[30].

2.2.8 Processing

To extract useful information from multispectral data, the radiance measured
by the sensor must be processed. The processing is done in several steps which
results in different levels of processed data. The levels can be described as
follows [30]:

• Level-0 (L0): Unprocessed instrument data.

• Level-1A (L1A): Unprocessed instrument data, but appended informa-
tion such as geometric and radiometric calibration coefficients and geo-
referencing parameters.

• Level-1B (L1B): The beginning of science data. Applied the calibration
coefficients from L1A and processed to sensor units.

• Level-1C (L1C): L1B data that include new variables to describe the spec-
tra. For instance Top of Atmosphere (TOA) reflectance.
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• Level-2A (L2A): Geophysical sensor data and surface reflectance (e.g.
surface ground elevation or chlorophyll concentration).

• Level-2B (L2B): L2A data that have been processed to sensor units.

• Level-3 (L3): Variables mapped onto uniform space-time grids (e.g. create
large scale maps by combining images from multiple orbits, like mapping
the entire earth.)

In this work we used surface reflectance level-2A data. Using L2A data means
that any uncertainties in the pre-processing chain might propagate to the prod-
uct.

2.3 Passive remote sensing of marine oil slicks

2.3.1 Oil slick science

Oil slicks come from natural sources (seeps) as well as man made sources,
such as tanker vessel spills, pipeline leaks and platform spills [4]. The type of
oil and composition affect how the oil changes over time, as well as marine
factors such as weather, current, waves and water [37]. Figure 2.13 shows the
different effects oil can be affected by in the ocean. These effects are; "wind
and wave advection, compression from waves and currents (into wind rows and
narrow slicks), spreading and surface diffusion, sedimentation and dissolution into
the water column, emulsification, evaporation and photo-chemical and biological
degradation" [4].

Figure 2.13: Marine effects on oil [4].
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2.3.2 Environmental monitoring - machine learning

Passive optical remote sensing is used to routinely monitor ocean areas for
oil spills. Also, passive optical remote sensing can be an important tool for a
quick response in an emergency oil spill event [4]. Trained observers detect
marine oil slicks by observation. Machine learning can be a great asset to help
detecting oil spills, and also to prevent the detection of false positives. False
positive detection can be costly for the environment and society in a time
critical situation, allowing the real oil spill to spread more. Also, the resources
set into action using oil spill response teams are economically costly for society
[4].

In an event of an oil spill emergency we want to identify the thickest part of
the spill so that the ground response teams can minimize the spread by engag-
ing the thickest areas first. The thickest part is the most actionable part. [4].
Machine learning can be an asset classifying the oil. Using a trained machine
learning model to do a preliminary or additional screening of the image, look-
ing for oil slick, can possibly save time for trained observers and help classify
detections correctly. There are many different machine learning (ML) meth-
ods available. Commonly used ML methods for optical remote sensing are
[38]:

• Artificial Neural Network (ANN)

• Support Vector Machine (SVM)

• Fuzzy logic

• K-nearest neighbor

• Ensemble learning

The ML models used in this works are described in Sec. 2.4.2

2.3.3 Detecting oil slicks

Visual appearance

Identifying oil slicks in the visible part of the EM spectrum are complex due
to the number of look-alikes and the number of factors affecting the visual
appearance. Figure 2.14 shows aerial photos from the DWH spill in 2010, with
examples of thin sheen slicks and thicker oil slicks. To help standardizing re-
porting of oil slicks, the slick thickness can be defined based on the visual
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appearance on the ocean surface through an oil appearance code system; the
Bonn Agreement [4]. See "Bonn Agreement oil appearance code under Sec.
2.3.3.

Figure 2.14: Examples of the visual appearance of thick and thin oil [4].

Identifying oil spills can sometimes be challenging due to look-alikes, espe-
cially identifying thin "sheen" oil slicks. Marine phenomena such as ice, kelp
beds, plankton blooms, cloud shadows, weed beds, wind shadows, weather
fronts and algae, appear similar to thin sheens in true image composites [4].
Studies [39] have shown that the sea surface’s upper 1 mm microlayer is a
gelatinous biofilm. Figure 2.15 shows examples of marine phenomena simi-
lar to oil spills. Other non-marine factors affecting the visual appearance are
described in Sec.2.2.4.

Fig.2.15 (B) shows red oil that is similar to the algae andwake shown in Fig.2.15
(A). The orange oil in Fig.2.15 (D) is similar to the Sargassum shown in Fig.2.15
(C). Last the brown oil in Fig.2.15 (F) is similar to the brown algae in Fig.2.15
(E).
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Figure 2.15: Examples of marine phenomena similar to oil spills next to oil spills. [4].

Bonn Agreement Oil Appearance Code

The Bonn Agreement Oil Appearance Code (BAOAC) is a method for detec-
tion and estimation of oil volumes at sea by visual interpretation of oil spills,
developed by the Bonn agreement committee. The Bonn agreement is an agree-
ment between ten governments and the European Union cooperate dealing
with pollution in the north sea. The first agreement was signed in year 1969,
and the first agreement code was created in 1993 [7]. Fig.2.16 is a caption of
the most relevant part of the current oil appearance code, including a table
showing the different thickness categories. The appearance for codes 1 to 3 are
based on optical effects, while codes 4 and 5 are defined by the true color of
the oil slick. Code 1, sheen, is for the thinnest slicks, up to 0.3 𝜇m. They have
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a silvery appearance due to a higher reflectance relative to seawater. Code 2
slicks, appear with rainbow colors, and are defined with thickness up to 5 𝜇m.
From 5 to 50 𝜇m (code 3) we have oil color, but the reflection from the sky is
dominant. This is described as metallic. Codes 4 and 5, with oil slicks thicker
than 50 𝜇m, appears with the oil’s true color. Absorption is dominant in these
slicks, so sky reflection and optical effects are small [7, 4]. Figure 2.17 shows
an example of the sheen, rainbow and metallic oil appearance, and Fig. 2.18
shows an example of true colored oil appearance. In these examples, it can be
seen that the reflectance decreases with increasing oil thickness.

Figure 2.16: Bonn Agreement oil appearance code [7].

Visible, near infrared and short wave infrared spectrum

Studies [4] have shown that oil can have a variying spectral response in the NIR
and SWIR spectrum, based on the emulsion thickness and the oil:water ratio for
thick emulsions. This is shown in Fig.2.19. Observing Fig. 2.19A, showing the
reflectance for different oil:water emulsions, we see three distinct apexes. The
first with highest reflectance, is in the NIR range, about 0.8-1.3 𝜇m. Here there is
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Figure 2.17: Example showing code 1 (Sheen), 2 (Rainbow) and 3 (Metallic) [7].

Figure 2.18: Example showing code 5, true colored oil [7].

a distinct difference in the reflectance for the different oil:water emulsions. The
40:60 oil:water ratio, has the highest reflectance, while the 92:8 oil:water ratio,
has the lowest reflectance. In the second apex, in the SWIR range between 1.6-
1.85 𝜇m, the difference in reflectance between the 40:60 and 60:40 oil:water
ratio is small. There is still a gap down to the 75:25 and 92:8 oil:water emulsions.
In the last apexwith the lowest reflection of the apexes, in SWIR range betweem
2.1-2.3 𝜇m, the differences between the emulsions are similar to that of the
second apex.

Observing Fig. 2.19 B, showing reflectance for 60:40 oil:water emulsion with
different thicknesses, we see a similar curve of that in Fig. 2.19 A. Again, we
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see three distinct apexes. One between 0.7-1.4 𝜇m, a second between 1.55-1.85
𝜇m, and a third between 2.1-2.3 𝜇m. It appears to be little or no difference in
reflection values for the 8 mm, 4 mm and 1.85 mm thickness in all wavelengths.
In the range between 1.4-2.5 𝜇m, the difference in reflection values is small for
thicknesses between 0.5-8 mm. In the range between 1.9-2.5 𝜇m the difference
in reflection values is small for thicknesses between 0.1-8 mm.

From Fig. 2.19A and Fig. 2.19B we clearly see the impact the oil:water emulsion
ratio and the oil:water emulsion thickness has on the reflectance from oil in
optical remote sensing.

Figure 2.19: Figure A shows the reflectance for different oil:water emulsions. Figure
B shows the reflectance for 60:40 oil:water emulsion with different

thicknesses. Both showing reflectance values within the visible, NIR and
SWIR range [4].

2.4 Pattern recognition

Machine learning (ML) is the scientific field of automated learning. MLmethods
use training data consisting of an input and output dataset. This training data
is used to establish the ML algorithm for estimating the desired output. There
are many ML algorithms in pattern recognition. Various methods are used for
different applications. For instance it can be as simple as a spam filter searching
for keywords in emails, ormore advanced a facial recogniser looking for wanted
humans in surveillance videos[40]. In this work, classification algorithms were
used for detecting oil spills. This section will describe the methods used in this
thesis and the statistical measures used to measure their performance.
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2.4.1 Pattern recognition

Pattern recognition is a branch of machine learning,where the goal is to classify
data into classes. In this field, algorithms are often referred to as classifiers.
We separate between supervised and unsupervised classification. Supervised
classification uses training data with known classes to train the classifier before
it can be used. Unsupervised classification does not use any training data and
classifies based on similarities in the data [41].

For supervised classification, the data is usually divided into training, validation
and test data. The split percentage is user-specific, and the size of the training
data often vary from 50 % to 90 % of the dataset. There is no optimal split
percentage that covers all cases. The split percentage must be adjusted to
meet the ML models needs to get the best performance possible [42]. The
classification algorithm is then trained, tested and evaluated on this data. One
can also choose to exclude the validation part, such that the data are divided
into training and test data. For instance for a ML model with set parameters
and there is no need to tune the model using validation data. The performance
of the classifier algorithm can be evaluated by using confusion matrices and
accuracy measures, such as the overall accuracy [41, 40]. It is also possible to
apply a model on unlabeled data to visually inspect the model. Next, confusion
matrices, the overall accuracy and prediction are described.

A confusion matrix is a tool for measuring the performance of a classifier. After
a classifier has been trained, the performance is evaluated, either for validation
or testing, predicting the correct class for the data. The classified data is then
compared to the true classes in a specific table layout, the confusion matrix,
which shows the percentage of the each class being classified correctly and the
percentage of each class being classified falsely into other classes. The confu-
sion matrix can also be presented using the number of observations instead of
percentage. Figure 2.20 shows an example of a confusion matrix, presented
in percentage. The diagonal going from top left to bottom right in Fig. 2.20
is where the predicted class have been classified correctly as the true class.
This is the true positive rate (TPR) for each class, also referred to as sensitivity.
All other information in the table shows misclassified observations. When the
misclassified observations in a row are added together, it is called the false
negative rate (FNR) for that class. Confusion matrices are used to measure
how accurately a ML model classifies each class and to locate possible errors
[41, 40].

The overall accuracy (OA) is another statistic for measuring the performance of
a classifier. OA is defined by summing up all the TPR values for each class, and
divide the sum on the number of classes. This gives an OA, a tool to measure
the overall performance. It is a great tool to compare the model against other
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Figure 2.20: Example of a confusion matrix.

models, but it tells us little about the individual performance of each class. In
cases where certain classes are more important than others, or when we have
a large difference in observations for each class, TPR can be of greater value
than the OA. For instance in this thesis, the number of observation for ocean
water (class 3) and turbid water (class 4) is much greater than the number of
observations for thick and thin oil, see Sec. 4.3.3. If the OA is high, it might
be due to the fact that these classes have a high TPR. In this work, we are
interested in classifying a specific class, namely thick oil with high accuracy.
Therefore, both the confusion matrix and the OA are computed to evaluate the
performance of the method.

Once the classifier is established, we want to apply the model on a dataset
without labels. This is called prediction and are used in order to assess the per-
formance of the model visually. In our case, the models are applied to Sentinel-2
data, using the same bands as the model was trained with. The model evalu-
ates the data, and classifies it into classes based on the training, resulting in
a classified image with one label color representing each class. Since we now
are working with data without annotation, we have no statistical measures to
assess if the classification is true or false. We can only compare visually the
classified image against the equivalent true color composite. Masks may also
be used to filter out areas that we want excluded from the classification. For
instance, in the case of oil classification a landmask will be useful if the ML
model is only trained over marine areas.
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2.4.2 Algorithms

In this work, several algorithms were evaluated for oil slick classification. These
methods include Decision trees, K-Nearest Neighbors, Neural Networks, Naive
Bayes classifier and discriminant classifiers, a simple efficient linear SVM and a
simple efficient logistic regression classifier. Based on the computed statistical
measures, it was found that the best performers are KNN and ANN. Therefore,
these methods are briefly described below. More details on the methodology
can be found in Sec. 5.7.

K-nearest neighbour

The K-nearest neighbour (KNN) is a simple yet effective machine learning
classifier. Before using a KNN classifier, training data should be normalized
to avoid large differences between different features in a dataset. The KNN
classifier uses classified neighborhood values to determine the class of new
datapoints. The term K specifies how many neighbourhood data observations
the classifier uses in the estimation. By measuring distance between the new
observation and neighborhood observations, it finds the K-closest classified data
observation, and classifies the new observation to the class that is dominant in
the defined neighbourhood [43, 44].

Two factors affect the creation of a KNN classifier; the value of K and the mea-
sure of distance. The classification performance of KNN is greatly influenced
by the determination of the K-value. If K is small, "the local estimate tends to be
very poor owing to the data sparseness and the noisy, ambiguous or mislabeled
points" [45]. A large K number on the other hand can include outliers from
other classes. The distance measure can also affect the performance of the clas-
sifier, where different distance measures can include different neighborhood
datapoints. There are many type of distance measures, for instance Euclidean,
Euclidean squared, City-block and Chebychev [45]. The choice of the distance
measure and K depend on the type of the data.

Artificial neural networks

Artificial neural networks (ANN) are classifiers inspired by the brain. The brain
consist of 1011 neurons working in parallel as processor units. In the brain they
are connected with synapses, each having connections to around 10000 other
neurons. In artificial neural networks the "neuron" is called a perceptron or
node, and is the basic processing element. It receives an input and produces
an output. The perceptron takes input from the environment or from other
perceptrons, where each input has an associated weight. Together they can
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form a network. In the simplest case the output is a weighted sum of the inputs.
Fig.2.21 shows an example of a simple perceptron [43] including input nodes
(x), an output node (y) and weigths (w).

Figure 2.21: Simple Perceptron with input layer x, weights w and output layer y [43].

A node in an ANN has an activation function. In simple terms this function
decides if a node should be activated or not. The activation function takes the
summed weighted inputs inserted to the node, and creates an output value
depending on the function, to insert into the next layer or output. Figure 2.22
shows this case. Here x are the inputs, w are the weights, z is the sum of the
input and weights, f is the activation function, and a is the output. Examples
of activation function are Sigmoid, Rectified linear unit (ReLU) and tangent
hyperbolic (tanh) [46, 40].

There are many different type of ANNmodels, including Multi Layer Perceptron
(MLP), Radial basis function network (RBFN), Bayesian regularized neural
network (BRANN) and Kohonen’s selforganizing map (SOM) [48]. They can
be classified into Feed forward neural networks (FFNN) or Feed backward
neural networks (FBNN), also called backpropagation. In FFNN, the information
is transmitted in only one direction, from input node, via potential hidden
nodes, to an output node. Examples of FFNN are single layer or multilayer
perceptrons, and RBFN. In FBNN, the information can also be transmitted
backwards to adjust the network’s weights and biases. Here a cost function
are used to measure the performance of the network, comparing the output
with the training sample. The cost function is used to calculate the error of the
output layer, which is used to train the network [41]. Examples of FBNN are
BRANN and SOM.

When training an ANN classifier we need to build the network. This involves
deciding how many nodes we want and how many layers of nodes we want.
Also we need to decide which activation function to use. An ANN can greatly
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Figure 2.22: Node, the artificial neuron with input x, weights w, z which is sum of the
inputs, weights and bias, the activation function f(z) and output a [47].

vary in complexity depending on themodel choice and the configurations. More
layers and nodes leads to more complexity and greater need of computational
power.



3
Experimental setup
Chapter 3 gives an overview of the different steps involved working with this
thesis; the experimental setup.

This work experimented with multiple supervised ML methods applied to mul-
tispectral satellite data with the main goal of detecting thick oil. Figure 3.1
shows a flowchart explaining the experimental setup.

As shown in Fig. 3.1, the whole process can be divided into two parts, data and
methodology, and are described by; image selection, data collection, dataset
creation (annotation, band selection, up-sampling), training, testing, evaluating,
and prediction. Image selection describes how we chose the remote sensing
data included in this works and data collection describes how we collected the
data and what type of data we collected. Annotation describes how the labeled
data was created. Band selection describes how we chose the bands included in
this works, and up-sampling describes how we performed the up-sampling on
two of the bands. Then the dataset section explains how the extracted remote
sensing data and the labels were merged together, forming the dataset used for
training the classifiers in this works. Training, testing and evaluation describes
how the training and testing was performed and evaluated, and the different
stages involved. Confusion matrix and the overall accuracy where computed.
Last, in the prediction step, the ML models were applied to unlabeled data for
visual interpretation. The programming implementations in this works were
performed in Matlab software by Mathworks.

35
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Figure 3.1: Flowchart divided into data and methodology showing the steps involved
working with this thesis.



4
Data
The ideas and subject for this thesis were developed in collaboration with the
company Kongsberg Satellite Services AS (KSAT). The initial thoughts were
to use pattern recognition in optical satellite imagery to identify oil on the
ocean surface which is highly relevant for KSAT. Together with two expert
analysts from KSAT, we identified the Persian gulf as an interesting area due
to knowledge of previously detected oil spills in this area with good oil detec-
tion capabilities, which could be used as training data. For the oil detection,
high spatial resolution data was preferred. A finer spatial resolution gives more
detailed information about an oil slick [4], and we are more likely to detect
smaller oil slicks. Sentinel-2 was chosen due to the wide range of free data
available and past experience with the data. To minimize the seasonal varia-
tion of the climate and weather in the dataset, we decided to mainly rely on
imagery from June 2021 and June 2022. Due to the high availability of previ-
ously detected oil slicks in this area, we decided that the thesis was going to use
supervised classifiers, which meant that a large portion of the work involved
with this thesis was the annotation and creation of the dataset used for training
data.

37
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4.1 Image selection

Sentinel-2 images with detected oil slicks based on the Bonn agreement oil
appearance code, see Sec.2.3.3, were selected in collaboration with expert
analysts at KSAT. For this the open access Sentinel-HUB EO-browser [49] was
used to inspect the images before collecting. A large number of images were
inspected, before 12 images were included, where 10 images were used for
training and testing, and two were used for prediction. These are described in
Sec. 4.3.1. To avoid seasonal differences only images from June 21 and June
22 were chosen for the training dataset. All of these images contain oil slicks,
and some contain look-alikes and complex areas with shallow water and calm
wind. There clearly are differences in sunlight conditions and ocean color in
the images. This could potentially affect the classifiers, leading to a higher
variance in the dataset, but due to the nature of a monitoring service, where
the sunlight conditions will change, it was necessary to get a broad specter of
different sunlight conditions. It could potentially make the ML models more
robust to handle different sunlight conditions.

4.2 Data collection

The images were downloaded from the European space agency’s (ESA) Coper-
nicus open access HUB [50]. This is an open access HUB, which means that
anyone can download data from all the Sentinel satellites for free. Only a free-
to-make user is required. When searching for the images, we had the option
to download either Top of atmosphere (TOA) level-1 data or surface reflection
level-2 data. The main focus of this work is about creating a dataset and train-
ing classifiers, so we decided to use the level-2 products. This meant that we
did not have to perform atmospheric correction on the remotely sensed data
when creating the dataset.

4.3 Data specification

4.3.1 Tiles

A Sentinel-2 product consists of granules that have a fixed size. The smallest
indivisible partition of a product is known as a granule, which contains all
spectral bands. Level-2A granules, also known as tiles, are ortho-images in UT-
M/WGS84 projection covering an area of 110x110 𝑘𝑚2. The Earth is divided
into a predefined set of tiles using a 100 km step in UTM/WGS84 projection.
However, each tile has an area of 110x110 𝑘𝑚2 to ensure overlap with the neigh-
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boring tiles [30].

Data from the following Sentinel-2 tiles were used for training the classi-
fiers:

• Tile 1: 2022-06-22 06:46:29 UTC T40 RDP

• Tile 2: 2022-06-22 06:46:29 UTC T40 RDQ

• Tile 3: 2022-06-07 06:46:31 UTC T40 RDP

• Tile 4: 2022-06-27 06:46:41 UTC T40 RCP

• Tile 5: 2021-06-05 06:56:21 UTC T39 RYJ

• Tile 6: 2021-06-05 06:56:21 UTC T40 RBP

• Tile 7: 2021-06-12 06:46:21 UTC T40 RDQ

• Tile 8: 2021-06-17 06:46:29 UTC T40 RDN

• Tile 9: 2021-06-17 06:46:29 UTC T40 RCP

• Tile 10: 2021-06-22 06:46:31 UTC T40 RCP

The following Sentinel-2 tiles were used for prediction in this thesis:

• Tile 2: 2022-06-22 06:46:29 UTC T40 RDQ

• Tile 11: 2022-07-02 06:46:29 UTC T40 RDQ

Naming is based on date and timestamp, as well as the grid ID for the covered
areas. Figure 4.1 shows the Persian Gulf and the area where the tiles are lo-
cated. An overview of the grid IDs is shown in Fig.4.2. The tiles chosen have
varying sunlight conditions and ocean colors when observing the true color
composites.

True color composites of tiles used for prediction

Figure 4.3 shows the true color composite of tile 2. The red rectangles marked
on the figure are areas of oil slicks, and are enlarged in Fig. 4.4 to 4.6 The
yellow rectangles marked on the figure are areas with complex reflectance
due to weather and shallow water conditions, and are enlarged in Fig. 4.7 and
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Figure 4.1: Image showing the Persian Gulf. Highlighted area (red square) shows
data collection area.

Figure 4.2: Image showing the Sentinel-2 tiling grid for the data collection area.

4.8.

Figure 4.9 shows the true color composite of tile 11. The red rectangle marked
on the figure shows the location of the oil slick enlarged in Fig. 4.10.
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Figure 4.3: True color composite of tile 2.

Figure 4.4: Enlarged area of oil slick 1 (red) in tile 2.
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Figure 4.5: Enlarged area of oil slick 2 (red) in tile 2.

Figure 4.6: Enlarged area of oil slick 3 (red) in tile 2.

4.3.2 Bands

Sentinel-2 have 13 available bands as shown in Fig. 4.11.

For this work we used three VIS bands; band two, three and four, one Near
Infrared (NIR) band; band eight, and two short wave infrared (SWIR) bands;
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Figure 4.7: Enlarged area of complex area 1 (yellow) in tile 2.

Figure 4.8: Enlarged area of complex area 2 (yellow) in tile 2.

band 11 and 12, for the training, testing and the prediction.
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Figure 4.9: True color composite of tile 11.

4.3.3 Label data

The data was annotated in co-operation with experts at Kongsberg Satellite
Services, using the Bonn Agreement [7] for thick and thin oil. Figure 4.12
shows the total number of observations in the dataset and the distribution on
the classes.

In Fig. 4.12 we see that there were 1 883 511 observations in total. 6 % of those
were thick oil with 118 737 observations and 11 % were thin oil with 211 734
observation. 60 % were ocean water with 1 120 986 observation, 22 % turbid
water with 415 159 observations and 1 % vessels with 16 895 observations. We
tried to include as much thick oil observations as possible from the image data,
and at the same time have much more observations from the water classes to
roughly imitate real world distribution between the classes. Figure 4.13 show
examples of the annotation, one for each class.

Figure 4.13a shows annotation of thick oil with red outline and Fig. 4.13b shows
annotation of thin oil with red outline. Figures 4.13c and 4.13d show annotation
of respectively ocean water and turbid water, marked with blue outline. Figure
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Figure 4.10: Enlarged area of oil slick in tile 11.

4.13e shows annotation of a vessel.

4.4 Spectral response

This section presents spectrum plots based on data from two of the tiles used in
this works; tile 2 (Fig. 4.15 and Fig. 4.16) and tile 6 (Fig. 4.17 and Fig. 4.18). Tile
2 was chosen since it contained a larger number of oil slicks samples that could
be included in the spectrum plots. Tile 6 was included since it contained great
samples from thin oil and had different sunlight conditions than tile 2. The
figures were created using the semi automatic classification plug-in in QGIS
[51]. The plots are based on the average value of over 100 observations for
each class. In most figures we also see the value range for each class. Together
they show valuable information on the spectral behaviour of each class in the
dataset. Fig. 4.14 shows the labels for Fig. 4.15 to Fig. 4.18.

Tile 2

Figures 4.15 and 4.16 show spectrum plots based on data from tile 2. Figure
4.15a shows the spectrum with all classes. Figure 4.15b shows the spectrum
with all classes and range values. Figure 4.15c shows the spectrum without the
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Figure 4.11: Bands in the MSI sensor for S2A and S2B [30].

Figure 4.12: Number and distribution of observations in the classes.

vessel class. Figure 4.15d shows the spectrum without the vessel class, but with
range values.

Figure 4.16a shows the spectrum with the thick and thin oil classes, including
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(a) Annotation of thick oil. (b) Annotation of thin oil.

(c) Annotation of ocean water. (d) Annotation of turbid water.

(e) Annotation of vessel.

Figure 4.13: Examples of annotations performed is this work for all classes.
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Figure 4.14: Class labels for Fig. 4.15, Fig. 4.16, Fig. 4.17 and Fig. 4.18.

range values. Figure 4.16b shows the spectrum with the ocean and turbid wa-
ter classes, including range values. Figure 4.16c shows the spectrum with the
thin oil and ocean water classes, including range values. Figure 4.16d shows
the spectrum with the thin oil and turbid water classes, including range val-
ues.

It can be seen in Fig. 4.15 and Fig. 4.16 that the thick oil samples have a higher
reflectance than the thin oil samples and the water samples on average for
all wavelenghts. However, when including the max and min range we see a
large overlap between the thick oil and thin oil in the VIS spectrum. Turbid
water also has a small overlap with thick oil in the VIS spectrum. Turbid water
overlaps greatly with thin oil in the VIS spectrum. In the NIR region we see
a small overlap between thick and thin oil. In the SWIR region there is no
overlap between thick and thin oil. The vessel class have a large overlap with
thick and thin oil in all wavelengths, except for in the SWIR range over 2 𝜇𝑚

where the vessel class only overlaps with thick oil.

Tile 6

Figures 4.17 and 4.18 shows spectrum plots based on data from tile 6. Figure
4.17a shows the spectrum with all classes. Figure 4.17b shows the spectrum
with all classes and range values. Figure 4.17c shows the spectrum without the
vessel class. Figure 4.17d shows the spectrum without the vessel class, but with
range values.

Figure 4.18a shows the spectrum with the thick and thin oil classes, including
range values. Figure 4.18b shows the spectrum with the ocean and turbid wa-
ter classes, including range values. Figure 4.18c shows the spectrum with the
thin oil and ocean water classes, including range values. Figure 4.18d shows
the spectrum with the thin oil and turbid water classes, including range val-
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(a) Spectrum plot based on samples from Tile 2 with all classes.

(b) Spectrum plot based on samples from Tile 2 with all classes. Showing max and min range.

(c) Spectrum plot based on samples from Tile 2 without vessel class.

(d) Spectrum plot based on samples from Tile 2 without vessel class. Showing max and min
range.

Figure 4.15: Spectrum plots based on samples from Tile 2. The spectrum plots are
averages of over 100 samples.
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(a) Spectrum plot based on samples from Tile 2 with thin and thick oil. Showing max and min
range

(b) Spectrum plot based on samples from Tile 2 with ocean and turbid water. Showing max
and min range.

(c) Spectrum plot based on samples from Tile 2 with thin oil and ocean water.Showing max
and min range

(d) Spectrum plot based on samples from Tile 2 with thin oil and turbid water. Showing max
and min range.

Figure 4.16: Spectrum plots from Tile 2. The spectrum plots are averages of over 100
samples.
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(a) Spectrum plot based on samples from Tile 6 with all classes.

(b) Spectrum plot based on samples from Tile 6 with all classes. Showing max and min range.

(c) Spectrum plot based on samples from Tile 6 without vessel class.

(d) Spectrum plot based on samples from Tile 6 without vessel class. Showing max and min
range.

Figure 4.17: Spectrum plots based on samples from Tile 6. The spectrum plots are
averages of over 100 samples.
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ues.

The spectrum plots in Fig. 4.15, Fig. 4.16, Fig. 4.17, and Fig. 4.18 shows a
different separability for the classes in the SWIR wavelengths compared to the
VIS wavelengths and indicates that the inclusion of the SWIR bands in this
work can have a beneficial effect on the ML models.

Just like in in Fig. 4.15 and Fig. 4.16, Fig. 4.17 and Fig. 4.18 show that the thick
oil samples have a higher reflectance than the thin oil samples and the water
samples on average for all wavelenghts. Again, there is a large overlap between
the the thick oil and the thin oil from 0.4 𝜇𝑚 to 1.2 𝜇𝑚 when including max
and min range. Both ocean water and turbid water greatly overlap with thin oil
in all wavelengths. It can also bee seen that turbid water overlaps with thick oil
in all wavelengths. The vessel class overlaps with all classes except with thick
oil in the spectrum from 0.4 𝜇𝑚 to 2.2 𝜇𝑚.
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(a) Spectrum plot based on samples from Tile 6 with thin and thick oil. Showing max and min
range

(b) Spectrum plot based on samples from Tile 6 with ocean and turbid water. Showing max
and min range.

(c) Spectrum plot based on samples from Tile 6 with thin oil and ocean water.Showing max
and min range

(d) Spectrum plot based on samples from Tile 6 with thin oil and turbid water. Showing max
and min range.

Figure 4.18: Spectrum plots from Tile 6. The spectrum plots are averages of over 100
samples.





5
Methodology
This section describes the methodology used in this works. Section 5.1 to Sec.
6.4 describe the process from starting working on the labeling of the data, to
the prediction applying our trained classifiers on unlabeled data. Section 5.7
to Sec. 5.8 describe the configurations for the classifiers and the software used
in this thesis.

5.1 Annotation

Annotation is the manual work of assigning classes (labels) to pixels in the
remotely sensed image by drawing polygons around the selected pixels. In
this thesis the annotation was done on true color composite images with 10
m spatial resolution from the remotely sensed data using QGIS software, see
Sec.5.8. True color composites were used so that we could utilize the Bonn
agreement, see Sec. 2.3.3.

We initially chose six classes to work with because we wanted to include algae
in the thesis. This needed to be changed to five because none of the selected
images included an algal bloom event. The classes were as follows; thick oil
(class 1), thin oil (class 2), ocean water (class 3), turbid water (class 4) and
vessels (class 6), as shown in Tab. 5.1 The oil was identified in collaboration
with KSAT expert analysts using the Bonn agreement oil appearance code [7].
The annotated shapefiles were exported to PNG format, and imported toMatlab.
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Thick oil was defined as metallic and true colored oil (code 3, 4 and 5) and thin
oil was sheen and rainbow (code 1 and 2), based on the Bonn agreement. See
Sec. 2.3.3.

Table 5.1: Classes used in this thesis

Class Class name
1 Thick oil
2 Thin oil
3 Ocean water
4 Turbid water
6 Vessel

5.2 Band selection

The Multi spectral instrument (MSI) sensor used by Sentinel-2 have 13 bands
with resolutions from 10 m to 60 m depending on the band, see Fig. 4.11. Due
to the varying size of the identified oil slicks we needed the highest resolution.
We included band two, three, four and eight, centered at 492 nm, 559 nm, 665
nm and 833 nm due to the resolution of 10 m. Relevant literature [14] shows
promising results for oil classification using band 11 and band 12 at the short
wave infrared (SWIR) range with 20 m resolution. The spectral response curves
shown in Fig. 4.16a and Fig. 4.18a also shows that thick and thin oil are more
separable in the SWIR range. Therefore, we decided to include band 11 and 12
in the initial training phase, where we would train classifiers with four bands
and with six bands. To use band 11 and band 12 in combination with the 10
m spatial resolution bands, we had to perform up-sampling. This is described
in Sec.5.3. Based on the results from the first training phase, we would then
proceed with the band combination showing the highest accuracy for thick
oil.

5.3 Upsampling

To include SWIR bands 11 and 12 centered at 1612 nm and 2195 nm we had
to up-sample the bands from 20 m to 10 m spatial resolution. This was done
through the ESA Sentinel Application Platform (SNAP) tool, see Sec.5.8, using
bilinear upsampling. Three different resampling techniques were considered;
Nearest neighbor, Bilinear interpolation and Cubic convolution. The Nearest
neighbor method was excluded due to the possible position error connected
with this technique [52], and the Cubic convolution is only slightly better, but
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more time consuming [52]. Due to this we chose to use Bilinear interpolation
up-sampling. The Bilinear method finds the four nearest pixels to a point in the
original image, and calculates the weighted average. The point does not need
to be in the center of the four pixels, so the weight part is the distance, either
from the middel or upper left corner, from the four pixels to the given point.
The weighted average is the assigned value for the new pixel. Up-sampling
took about one hour for each tile.

5.4 Dataset

When the bands where selected and up-sampled to correct resolution, QGIS
[51] was used to extract the bands and merge the data into ENVI header(hdr)
files. This file type was chosen because it stores metadata and it can be easily
imported to programming environments such as Matlab. Matlab was used to
merge the remotely sensed data with the labeled data, creating the training
data for the classifiers [53].

5.5 Training and testing

This section describes the methodology concerning training and testing of the
dataset. We decided to split this part of the work into three phases: phase 1,
a selection phase were multiple ML models were trained and tested on parts
of the dataset, phase 2, a configuration phase were the best performing ML
models from phase 1 were tuned, trained and tested on parts of the dataset,
and phase 3, the final phase were the best performing ML models from phase
2 were trained and tested on the whole dataset. In all training phases, 75 % of
the data was used for training and 25 % was used for testing. Alternatively, the
dataset could be split into three parts, training-validation-testing. However, due
to the setup of this work with three phases, where phase 2 is testing different
parameters for each ML model, we chose a two-split, setting a part of the data
for validation.

The testing is used to evaluate the accuracy of the trained ML models. Two
test methods were considered, the Holdout validation and the Cross-validation
method. Holdout validation simply splits the data into a training part and a
validation part. In Cross-validation, also called k-fold cross validation, data is
randomly split into a k number of folds (groups). Using this method, the clas-
sifier will be trained a k number of times, each time, a unique fold will be the
validation fold, and the rest will be the training folds. The output will then be
the average accuracy over all folds. The Cross-validation gives a better indica-
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tion on the performance of the classifier because it is trained on multiple sets
of the same data [42]. However, the method is more time consuming than the
Holdout validation, especially for large datasets. Due to the size of the dataset
in this thesis, the Holdout validation was considered the preferred option. All
training and testing was performed in Matlab using the "classification learner"
app from the "statistics and machine learning" toolbox, see Sec.5.8.

5.5.1 Phase 1 - Selection

The goal for the first phase was to test multiple classifiers and evaluate their
performance on a part of the dataset, about 10 %, which was chosen to be
representative for the whole dataset. A second goal was to investigate the af-
fects when including SWIR bands in the dataset. This meant that we had two
datasets for phase one. One with four bands, including band two, three, four
and eight (centered at 492 nm, 559 nm, 665 nm and 833 nm), and one with six
bands, including band two, three, four, eight, eleven and twelve (centered at
492 nm, 559 nm, 665 nm and 833 nm, 1612 nm and 2195 nm). The list of clas-
sifiers include; KNN classifiers, NN classifiers, decision trees classifiers, naive
bayes classifiers, and discriminant classifiers. The KNN and decition trees were
included due to that they are simple, time-efficient and effective classifiers [41].
We included six KNN classifiers; a fine KNN (1 neighbor), a medium KNN (10
neighbors), a coarse KNN (100 neighbors), a cosine KNN (10 neighbors), a cubic
KNN (10 neighbors) and a weighted KNN (10 neighbors). We included three
decition trees; a fine Tree (maximum 100 splits), a medium Tree (maximum
20 splits) and a coarse Tree (maximum 4 splits).

NN are one of the most popular classifier used in oil detection today [38]. NN
can greatly vary in complexity, therefore two simple and time-efficient variants
were included in this works; A single-layered feed forward neural network with
25 nodes and a tri-layered feed forward neural network with 12 nodes in each
layer. Two Naive bayes models were incluced; The Gaussian naive bayes due
to that is simple and time-efficient, and the more time consuming Kernel naive
bayes, to compare the performance with the gaussian Naive bayes. The Naive
bayes are based on Bayes Theorem. Two discriminant models were included:
a Quadratic discriminat model and a Subspace discriminant model. The dis-
criminant classifiers are based on discriminant analysis and were included due
that they are simple and time-efficient [41].

The performance of all ML models were evaluated and ranked based on the
accuracy of classifying thick oil and the overall accuracy. We then proceeded
with the most promising dataset (four bands versus six bands) and the fourmost
promising classifiers were chosen for further evaluation. The four classifiers
were fine KNN,weighted KNN, a single-layered neural network and a tri-layered
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neural network. The configuration for each classifier is described in Sec.5.7.
The result from phase 1 is described in Sec.6.1.

5.5.2 Phase 2 - Configuration

The first phase showed that the performance was best using all six bands. The
goal for the second phase was then to test the four best classifiers from phase
one on a larger portion of the six-band dataset. For this phase about 30 % of the
dataset was used with different configuration for the classifiers. For the KNN
classifiers this meant testing different K-values, and for the ANN classifiers this
meant testing different layer sizes. Again, their performance were evaluated
and ranked based on the accuracy of classifying thick oil and the overall accu-
racy. We proceeded with the most promising configuration for the classifiers,
that would be the base for phase 3. The result from phase two is described in
Sec.6.2.

5.5.3 Phase 3 - Test results

In the last phase we ran the full dataset on the four classifiers with the best
modified setup from phase two. The results from phase 3 is described in Sec.6.3,
including confusion matrices and overall accuracy.

5.6 Prediction

The models were used to classify two Sentinel-2 tiles for visual interpretation.
The first was tile 2, which was part of the training data. The second, tile 11 was
not included in the training data, and can therefore be seen as independent
from the training data. The prediction has no reference values, and we can only
speculate about the quality of the model observing the prediction. However,
the prediction gives an overview on how the models will perform in a practical
situation, for instance as aid for operators at KSAT. Finally all result, described
in Sec.6 were discussed as described in Sec.7

5.7 Classifier setup

In this section we will describe the classifier setups. For all classifiers the data
was normalized before training.
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After phase 2 of the training, we worked with two KNN classifiers and two NN
classifiers. The first was a fine KNN classifier with 2 nearest neighbors. The
distance measure was euclidean and the distance weight was equal. The second
was a weighted KNN classifier with 8 nearest neighbors. The distance measure
was also euclidean, but the distance weight was squared inverse.

The neural network classifiers were feedforward fully connected models. For
both classifiers, we used the Rectified Linear Unit(ReLU) as the activation func-
tion. The iteration limit was set to 1000, and the regularization strength was
set to 0. The first was a simple single-layer NN classifier with 25 nodes. The
second was a tri-layered NN classifier with 12 nodes in each layer.

5.8 Software

In this section we will explain the software used in this thesis. These applica-
tions are QGIS, ESA Snap and the Classification Learner app in Matlab.

Quantum Geographic Information System (QGIS) is free and open source GIS
software, used to analyse and edit spatial information, with a wide range of ap-
plications [51]. For this thesis we used version 3.22.13. See "https://qgis.org/en/site"
for more information.

The European Space Agency (ESA) Sentinel Application platform (SNAP) is
a free Earth observation analysis app. It is used for processing data products
from a wide range of satellite missions, including EU’s Copernicus Sentinel-
1, Sentinel-2, Sentinel-3 and ESA’s SMOS mission. "SNAP enables people to
explore, analyse and process remote-sensing data, facilitating cutting-edge
scientific research, education and training activities, and the development of a
wide range of operational applications" [54].

The Classification Learner is an application in Matlab used to train models
for data classification. The app has a wide range of different classifiers used
in supervised machine learning. Here you can train desired classifiers and
validate their performance, and also export the trained models if needed [55].
See "https://se.mathworks.com/help/stats/classificationlearner-app.html" for
more information about the app.
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Results
This section presents the results of several machine learning algorithms evalu-
ated on remotely sensed data. The performance of the methods is assessed by
computing the confusion matrix, TPR and OA. Then the selected models are
applied to MSI S2 images to visually evaluate their performances, and hence
simulate the use of such models in operational environments. As explained in
Sec. 5.5, the training and testing was done in three phases. Section 6.1 shows
the results of evaluating a selection of ML models. Sec. 6.2 shows the results
of evaluating different configurations of the selected ML methods based on
their performances of predicting thick oil from phase 1. Section 6.3 presents
the resulting final ML models. These models are further studied by computing
confusion matrices and the OA. Section 6.4 shows the prediction when using
the selected ML models that had the highest accuracy in thick oil classification
to classify unlabeled remotely sensed data.

6.1 Phase 1

Figure 6.1 shows the results after training and testing a various well recognized
ML models on about 10 % of the labeled data. This data (10 % of the total
dataset) was further split into 70 % for training and 30 % for testing.

The first column shows the selected classifiers. The second column shows the
TPR for thick oil using 4 bands, while the third column shows the TPR for thick
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Figure 6.1: The selected classifiers and their performance after phase 1; TPR for thick
oil (class 1), and overall accuracy, using two datasets, one with 4 bands
and one with 6 bands. The green background in a cell shows which of
the band combinations, 4 bands or 6 bands, that have the highest

accuracy for the given classifier in the same row.

oil using 6 bands. The fourth column shows the OA using 4 bands, and the fifth
column shows OA using 6 bands. Green background in a cell shows which of
the band combinations, 4 bands or 6 bands, that has the highest accuracy for
the given classifier in the same row. Overall the figure shows that both the TPR
and OA were higher when using six bands. This is why we wanted to proceed
using the dataset with 6 bands. The best results were obtained by using the
KNN and NN classifiers based on the TPR for thick oil. Then the top four models
for TPR thick oil were as follow:

• Weighted KNN 86.5 %

• Fine KNN, 86.3 %

• Tri-layered NN 86.2 %

• Single-layer NN 86.0 %

That is why we chose to further study and compare these ML models.



6.2 phase 2 63

6.2 Phase 2

Figure. 6.2 shows the results after training and testing the best performing ML
models from phase 1 with different configurations. In this case about 30 % of
the total labeled data was used for training and testing the methods.

Figure 6.2: The selected classifiers and their performances after phase 2; TPR for
thick oil, overall accuracy, training time, and configuration (nn = Nearest

Neighbor, N = Nodes). The green background in a row shows the
configuration giving the best result for each of the chosen ML models.

Similar to phase 1, the data (30 % of the total labeled data) was split into 70
% for training and 30 % for testing. The first column in Fig. 6.2 shows the
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classifiers. The second column shows the TPR for thick oil (here only using the
6 band combination), while the third column shows the OA. The fourth column
shows the training time used for training eachmodel and the fifth column is the
model specific configuration. For the KNN models, various number of Nearest
Neighbors (nn) were studied. This corresponds to the "config" column in Fig.
6.2. For the NN models the number of nodes in the network were varied and
evaluated. A green background shows the configuration giving the best results
for each of the chosen ML models.

In the column showing training time in Fig. 6.2, for the KNN models, the
training time was short and always under 1 min. For the NNmodels the training
time was longer, and took between 28 min and 46 min depending on the
configuration. The best configurations for each ML model were:

• Fine KNN using 2 neigbors

• Weighted KNN using 8 neighbors

• Single-layer NN using 25 neurons

• Tri-layered NN using 12 neurons in each layer

That is why we chose to go forward with these configurations for the MLmodels
for further evaluation in the rest of this thesis.

6.3 Phase 3

Figure 6.3 shows the results after training and testing the best performing ML
models from phase 2 on 100 % of the labeled data.

Figure 6.3: The selected classifiers and their performances after phase 3; TPR for
thick oil, overall accuracy, training time, and configuration (nn = Nearest

Neighbor, N = Nodes).

As in phase 1 and 2, the data was split into 70 % training data and 30 % testing
data. Figure 6.3 has the same setup as Fig. 6.2, TPR for thick oil, OA, training
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time and configuration. It can be seen in Fig. 6.3 that the TPR for thick oil have
decreased for all classifiers compared to using only 30 % of the data. A reason
for this can be the difference in the reflectance values in the dataset due to
varying sun angle. For thick oil, the fine KNN has a TPR of 84.2 %, Weighted
KNN 78.3 %, single-layer NN 64.1 % and tri-layered NN 64.5 %. The overall
accuracy has also decreased. The OA for fine KNN is 92.1 %, for weighted KNN
94.1 %, single-layer NN 92.1 % and tri-layered NN 91.9 %.

Section 6.3.1 to 6.3.4 presents the confusion matrices after testing the selected
four ML models.

6.3.1 Model 1 - Fine K-nearest neighbors

Figure 6.4 shows the confusion matrix for model 1, fine KNN. For class one, thick
oil, we see a TPR of 84.2 %. Most incorrectly classified pixels were classified as
class two or three. For class two, thin oil, we see a TPR of 79.3 %, where most
incorrectly classified pixels were classified as either thick oil or ocean water.
Class three and four, ocean water and turbid water, had the highest TPR with
94.4 % and 97.2 %. The vessel class only scored a TPR of 23.8 %, where almost
half of the pixels where misclassified as ocean water.

Figure 6.4: Confusion matrix for model 1, fine KNN with 2 nearest neighbours.

6.3.2 Model 2 - Weighted K-nearest neighbor

Figure6.5 shows the confusion matrix for model 2, weighted KNN. The results
were similar to the fine KNN model. For class one, thick oil, the TPR is 78.3
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%. Most incorrectly classified pixels were classified as class two (thin oil) or
three (oceanic water). For class two, thin oil, the TPR was 79.5 %, where most
incorrectly classified pixels were classified as ocean water. Class three and four,
ocean water and turbid water, respectively, had the highest TPR of 98.4 % and
97.3 %, respectively. The vessel class only scored a TPR of 26.9 %, where over
half of the pixels were misclassified as ocean water.

Figure 6.5: Confusion matrix for model 2, weighted KNN with 8 nearest neighbours.

6.3.3 Model 3 - Single-layer neural network

Figure 6.6 shows the confusion matrix for model 3, the single-layer NN. For
class one, thick oil, we see a TPR of 64.1 %. Most incorrectly classified pixels
were classified as class two or three, similarly to the first two models. For class
two, thin oil, the TPR is 71.9 %, and the most incorrectly classified pixels were
classified as ocean water. These results are similar to the ones obtained by
using model 2. Class three and four, ocean water and turbid water, respectievly,
had again the highest TPR of 98.1 % and 97.1 %. The vessel class only scored
a TPR of 18.5 %, where over half of the pixels where misclassified as ocean
water.

6.3.4 Model 4 - Tri-layered neural network

Figure 6.7 shows the confusion matrix for model 4, the tri-layered NN. For class
one, thick oil, we see a TPR of 64.5 %. Most incorrectly classified pixels were
classified as class two or three, similar to all the other models. For class two,
thin oil, we see a TPR of 73.3 %, where most incorrectly classified pixels were
classified as ocean water, similar to model 2 and 3. Class three and four, ocean
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Figure 6.6: Confusion matrix for model 3, single-layer NN with 25 nodes.

water and turbid water, had again the highest TPR of 97.9 % and 96.7 %. The
vessel class only scored a TPR of 4.8 %, where over half of the pixels where
misclassified as ocean water just like for the other models.

Figure 6.7: Confusion matrix for model 4, tri-layered NN with 12 nodes in each layer.

Based on the computed statistical measures for the models some similarities
can be observed. When thick oil was misclassified, it was mostly classified to
thin oil and/ or ocean water. Model 2, 3 and 4 misclassified mostly thin oil as
ocean water, while model 1 misclassified mostly thin oil as thick oil and ocean
water. All models had high TPR for ocean water and turbid water, while having
a poor TPR for vessels.
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6.4 Prediction

This section presents the prediction power of the classifiers in two different
ways. Section 6.4.1 presents the results when the training data was included
in the prediction data. Hence, the models have already seen parts of this data
during training, and the prediction will not reflect the models true ability to
classify unseen data. On the other hand, Sec. 6.4.2 evaluates the robustness of
the classifiers. In this case, the training data was not included in the prediction,
and hence we gain an unbiased estimate of it’s performance. The inference
time for the ML models running the prediction is shown in Fig. 6.1.

Table 6.1: Inference time for the ML models running the prediction.

ML model Inference time
Fine KNN 1305 sec

Weighted KNN 2213 sec
Single-layer NN 183 sec
Tri-layered NN 137 sec

The inference time was significantly longer for the KNN models than for the NN
models. The tri-layered NN model used on average 137 sec and the single-layer
NN used on average 183 sec, while the fine KNNmodel used 1305 sec on average
and the weighted KNN model used 2213 sec on average predicting the data. In
the classified image, the white color represents the mask covering land areas
extended an additional 500-1000 m into the ocean in order to avoid adjacency.
Fig.6.8 shows the label colors. Class 1 is black, class 2 is yellow/golden, class 3
is blue, class 4 is teal/light blue, and class 6 is red.
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(a) Black color label. (b) Yellow/golden color label.

(c) Blue color label. (d) Teal/light blue color label.

(e) Red color label.

Figure 6.8: Label colors.

6.4.1 Visual representation of the trained classifiers

This section presents the results using the models on tile 2, which was included
in the training data and can not be considered as an independent dataset.
Figure 4.3 shows that tile 2 has some complex areas due to weather conditions
and shallow waters. In the south-west corner we see a large low wind area with
very little sunlight reflection, and in the north-west corner we see a complex
shallow area with a mixture of different colors. The prediction of tile 2 using
all models are shown in Fig. 6.9. In tile 2, three different oil slicks have been
identified. Enlarged areas of the prediction done on the oil slicks are shown
from Fig. 6.10 to Fig. 6.12.

Prediction of tile 2

Figure 6.9 shows the result after using the ML models on tile 2. Here Fig. 6.9
clearly shows the blue class 3, ocean water and the teal class 4, turbid water,
together with the white land mask. This indicates a good overall performance
for these classes. In the top left corner of Fig. 6.9a and Fig. 6.9b we see a large
red cluster of class 6 vessels, a black cluster of class 1 thick oil and a golden
cluster of class 2 thin oil. When observing the same area in Fig.4.7, we see
a mix of shallow water and calm wind, which means that a large part of this
area have been misclassified by the KNN models. The NN models, Fig. 6.9c and
Fig. 6.9d seem to have managed better mostly classifying this area as class 4,
turbid water. However, the cluster classified as thin oil is still present. In the
bottom left corner we have another large complex ocean area, seen in Fig. 4.8,
with calm wind. In this area all ML models have classified lots of class 2, thin
oil. The NN had the poorest performance in this area. The single-layer NN, Fig.
6.9c classified much more thin oil than the KNN classifiers. The tri-layer NN
classified this area as a cluster of mostly class 1, thick oil, but also class 2 thin
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oil and class 4 turbid water. Figure 4.8 indicates that this area is mostly ocean
water.

Along the border between the blue and the teal colors on the right side of the
images, we observe clusters of yellow color. Figure 6.9 shows more clusters
of yellow on the KNN models than on the NN models. Comparing to the true
color composite of tile 2, Fig. 4.3, we see that this also is a misclassification.
We also see yellow and black color spread inside the blue areas. The identified
oil slicks in tile 2 are difficult to spot in Fig. 6.9, when not enlarged. Further
we will look at the prediction of the oil slicks more closely.

Prediction of oil slick 1

Figure 6.10 shows an enlarged area of the prediction on the first oil slick in
tile 2. Fig. 4.4 in Sec. 4.3.1 shows the equivalent true color composite image.
All models managed to classify the thick oil with satisfying results. The NN
models, Fig. 6.10c and Fig. 6.10d have classified thin oil differently than the
KNN models, Fig. 6.10a and Fig. 6.10b. We see a much wider slick of thin oil
with a discrete edge on both sides of the thick oil, for the KNN models. The
discrete edge is likely due to that this data has been used for training the ML
models. We therefore have an example of the affects including training data
in predictions. However, this does not seem to have affected the NN models,
where we can’t observe any discrete edge similar to the KNN models.

Prediction of oil slick 2

Figure 6.11 shows enlarged areas of the prediction on the second oil slick in tile
2. As we can see from Fig. 4.6 in Sec. 4.3.1, the equivalent true color composite
image, this oil slick is dominated by thin oil, with a narrow line of thicker oil
fronting the ocean towards the north-east. In Fig. 6.11d we see that the tri-
layer NN model managed to classify the oil slick and the surroundings very
well, with clear clusters of thick oil, thin oil, turbid water, and ocean water. The
single-layer NN model, Fig. 6.11c managed similar to the tri-layer NN model,
but we observe a larger amount of data classified as turbid water mixed with
thin oil. The KNNmodels, Fig. 6.11a and Fig. 6.11b, also managed to classify the
thicker oil and the thin oil, but we see that a large portion of the ocean water
and turbid water has been misclassified as thin oil. Also, in Fig. 6.11a, some
data has been misclassified as thick oil instead of thin oil or turbid water.
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(a) Prediction of tile 2 using the Fine KNN
model.

(b) Prediction of tile 2 using the weighted
KNN model.

(c) Prediction of tile 2 using the single-layer
NN model.

(d) Prediction of tile 2 using the tri-layer NN
model.

Figure 6.9: Prediction of tile 2 using the ML models.
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(a) Enlarged area of the prediction on oil slick
1 using the fine KNN model.

(b) Enlarged area of the prediction on oil slick
1 using the weighted KNN model.

(c) Enlarged area of the prediction on oil slick
1 using the single-layer NN model.

(d) Enlarged area of the prediction on oil slick
1 using the tri-layer NN model.

Figure 6.10: Enlarged areas of the prediction on the first oil slick in tile 2 using the
trained ML models.
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(a) Enlarged area of the prediction on oil slick
2 using the fine KNN model.

(b) Enlarged area of the prediction on oil slick
2 using the weighted KNN model.

(c) Enlarged area of the prediction on oil slick
2 using the single-layer NN model.

(d) Enlarged area of the prediction on oil slick
2 using the tri-layer NN model.

Figure 6.11: Enlarged areas of the prediction on the second oil slick in tile 2 using
the trained ML models.
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Prediction of oil slick 3

Figure 6.12 shows enlarged areas of the prediction on the third area with oil
slicks in tile 2. Fig. 4.6 in Sec. 4.3.1 shows the equivalent true color composite
image. These images shows multiple oil slicks compared to Fig. 6.10 and Fig.
6.11. The prediction done by the ML models are alike; all have performed
well and classified the thick oil in discrete clusters. However, the NN models,
Fig. 6.12c and Fig. 6.12d, and the weighted KNN model, Fig 6.12b, have also
managed to classify the thin oil well. In the fine KNN model, Fig. 6.12a, lots of
ocean water has been classified as thin oil spread around the image, and also
the thin oil areas are "infected" with small appearances of thick oil.

6.4.2 Robustness evaluation

This section presents the results when applying the models on tile 11, which
was not included in the training data. Hence the data is independent and
suitable for robustness evaluation. As we can observe in the equivalent true
color composite image, Fig.4.9, tile 11 has some complex areas due to clouds
and shallow waters. In addition, the image appears darker in the ocean water
areas and brighter in the turbid water areas, compared to tile 2 (Fig. 4.3). The
results of the prediction on tile 11 using all models are shown in Fig. 6.13. In
tile 11, one oil slick have been identified. Enlarged areas containing the oil slick
are shown in Fig. 6.14.

Prediction of unlabeled data

Figure 6.13 shows the result after using the ML models on tile 11. We see clearly
the white landmask, the blue ocean water and the teal turbidwater in all figures.
This indicates a good overall performance for these classes. The prediction
done by the KNN models, Fig. 6.13a and Fig. 6.13b show large clusters of red
colors and smaller clusters of black color in the north-west corner and along
the white landmask in the east, especially in the north-east. This is obviously
a misclassification comparing to the true color composite in Fig. 4.9, which
shows bright shallow water areas. This indicates a poor performance for thick
oil and vessels for these models. The prediction done by the NN models, Fig.
6.13c and Fig. 6.13d do not show large red clusters. The single-layer NN, Fig.
6.13c shows large clusters of black color in the north-west and the north-east
side of the image, which is also a misclassification comparing to the true color
composite in Fig. 4.9. The prediction by tri-layer NN, Fig. 6.13d shows an
overall best performance, with only small black clusters in the shallow water
areas. The prediction by the NN models also shows less "noise" in the ocean
waters, meaning less ocean water data has misclassified as thick oil spread
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(a) Enlarged area of the prediction on oil slick
3 using the fine KNN model.

(b) Enlarged area of the prediction on oil slick
3 using the weighted KNN model.

(c) Enlarged area of the prediction on oil slick
3 using the single-layer NN model.

(d) Enlarged area of the prediction on oil slick
3 using the tri-layer NN model.

Figure 6.12: Enlarged areas of the prediction on the third oil slick in tile 2 using the
trained ML models.
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(a) Prediction on tile 11 using the fine KNN
model.

(b) Prediction on tile 11 using the weighted
KNN model.

(c) Prediction on tile 11 using the single-layer
NN model.

(d) Prediction on tile 11 using the tri-layer NN
model.

Figure 6.13: Prediction of unlabeled data - tile 11.

around the ocean. The identified oil slick is difficult to observe in Fig. 6.13, and
will next be discussed using Fig 6.14.

Prediction of unlabeled oil slick

Figure 6.14 shows enlarged areas of the prediction on an oil slick identified in
tile 11. Fig. 4.10 in Sec. 4.3.1 shows the equivalent true color composite image.
All models successfully manage to identify the oil spill, detecting the thick oil
and thin oil well. All models have also misclassified the clouds seen next to the
land area, as thick oil and thin oil. This shows the need for a mask covering
the clouds, to prevent clouds being classified as oil using these ML models. We
can also see that a small amount of data inside the thin oil has been classified
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(a) Enlarged area of the prediction on an oil
slick in tile 11 with a Fine KNN.

(b) Enlarged area of the prediction on an oil
slick in tile 11 with a Weighted KNN.

(c) Enlarged area of the prediction on an oil
slick in tile 11 with a single-layer NN.

(d) Enlarged area of the prediction on an oil
slick in tile 11 with a tri-layer NN.

Figure 6.14: Prediction of unlabeled data - oil slick.

as turbid water.
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Discussion
This project experimented with different ML models on multispectral satel-
lite data with the goal of identifying thick oil on the ocean surface. We also
included classes for thin oil, ocean water, turbid water and vessels. First we
created the dataset. Second we trained a variety of different ML models. Third
we tuned the parameters of the ML models showing best results. Finally we
trained and applied four ML models which were found to have the highest
accuracy in classifying thick oil. Two of the ML models were KNN models and
two were NN models. The models were trained and validated with data from
areas in the Persian Gulf, see Fig.4.1. The trained models were then used to
classify two images from the same area, to visualize the performance of the
classifiers.

All classifiers showed good performances based on the OA, varying from 91.9 %
to 94.1 %, where the weighted KNN performed best, and the tri-layered NN had
the lowest classification accuracy, see Fig. 6.3. It is important to note that the
distribution of observations from each class were not equal, due to that limited
amount of observation of thick oil, thin oil and vessels, compared to ocean
water and turbid water. Especially the number of ocean water observations
where high, with around 60 % of the total observations . See Sec.4.3.3 for the
distribution of labeled data. Due to a higher amount of observations from the
water classes, a high TPR for these classes (class 3 and 4) made a significant
impact on the OA.

The classifiers showed varying performance classifying thick oil (class 1). The
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lowest TPR was 64.1 % for the single-layer NN and the highest TPR was 84.2 %
for the fine KNN. The highest accuracy (TPR) for thick oil, 84.2 %, was achieved
using the fine KNN classifier with two nearest neighbors. This is in good corre-
spondance with the results reported in [9], where a two-class classification was
studied by using KNNs. The classes were oil and look-alikes, the three KNNs
had 1, 2 and 3 nearest neighbors, and the achieved accuracy was 71 %, 72 %
and 76 %, respectively. Another study with six classes [14], showed an accuracy
of 88 % for oil using KNN. The results in the aforementioned studies ([9, 14])
show good correspondence with the fine KNN used in this thesis.

For the NN models, the highest TPR for thick oil achieved was 64.5 % with
the Tri-layered NN. A smilar study [9] achieved an accuracy of 79 % using a
multilayer perceptron (MLP) with 1 hidden layer using 6 nodes. This shows
that our NN models have a poorer performance classifying oil compared to
similar studies. A reason for this can be the simplicity of our NN models. In
our most complex model we used a three layered feed forward NN with 12
nodes. This is a simple model, but yet the study [9] used only one layer with
six nodes and got a better result. A possible error is over-fitting, having high
variance in the training data. When using 10 % of the dataset for training we
saw a TPR of 86 % for the NN classifiers, and when working with 30 % of the
dataset in phase 2, we saw a TPR of over 90 % for both NN classifiers. Then we
implemented the whole dataset, and saw a decrease in TPR from over 90 %
to 64 %. If the ocean color reflectance was different in the last six tiles of the
dataset due to for instance different sunlight conditions, this may have caused
the decrease in performance.

In this work class 2, thin oil, was defined according to code 1 (Sheen) and code
2 (rainbow) from the Bonn agreement [7]. The classifiers performed acceptable
for this class, with a TPR varying from 71.9 % for the Onelayered NN model to
79.5 % for the Weighted KNN model. Using the Bonn agreement to label this
class was challenging due to the gradual transition between ocean water (class
3) and sheen oil (code 1), and the gradual transition between sheen/rainbow
oil and thick oil (class 1). Also look-alikes features can easily be confused with
thin sheen oil slicks, due to their similar characteristics in the visible true color
composite images. In this work, to prevent labeling false oil slicks, we only
included thin oil in connection to thick oil with visible metallic or true colored
signatures.

For class 3 (ocean water) the classifiers performed very well, where the lowest
TPRwas 94.4% for Fine KNN and the highest TPRwas 98.4% forweighted KNN.
Class 4 (turbid water) showed similar results, with TPR varying from 96.7 %
for tri-layered NN to 97.3 % for weighted KNN. In this work we mainly included
observation from waters with favorable wind conditions and sun angles, while
also including observations from near range and far range. This means that
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we only included a limited number of observation from complex water areas
in the ocean and turbid water classes, such as water areas with unfavorable
wind conditions or oil look-alikes. In this way we minimized the variation in
reflectance values for the ocean and turbid water class. In the predicted images
we also see that the classifiers mainly have classified the ocean waters and the
turbulent water correctly, but high rate of misclassification can be observed in
the complex water areas, classifying water areas as oil or vessels. See Fig.6.9
and Fig. 6.13.

All classifiers performed poorly classifying vessels (class 6), with TPRs varying
from 4.8 % to 26.9 %. In this case the weighted KNN performed best and
tri-layered NN had the lowest accuracy as well. This was expected, since the
reflectance spectra of vessels show large variations, see Fig. 4.15a. Therefore,
classifying vessels is challenging, which is especially valid for the KNN classifier.
KNN uses neighborhood data values in the classification process, hence large
variance impacts the accuracy of the classification. In addition, this class had
few observations compared to the total amount of observations. However, this
work mainly focused on classifying oil. Labeling data corresponding to vessels
was not the focus, it was only an additional exercise. Classifying vessels could be
improved by including a larger number of observations and tuning the classifiers
to handle large variance within the class.

Two similar studies, one for multispectral data [9] and one for SAR data [8]
uses only two classes when classifying oil with ML; oil and look-alikes. This
may be a good approach when the goal is to differentiate between oil and look-
alikes. However, the goal of this work is not just to separate oil from look-alikes,
but to identify oil in oceanic and turbid waters. A ML model could potentially
be of aid for an operator monitoring marine areas for oil slicks or as a fully
automatic service. This means that the ML model needs to classify the whole
marine area in the remotely sensed image. When an oil monitoring service uses
a ML model as a tool aiding an operator, in terms of error it is crucial that the
classifier rather identify false positives instead of missing true positives. This
is due to that an operator can make her own assessment on detected oil spills
found by the ML model. Masks for land and clouds should be used to make it
simper for a ML model. Ideally a ML classifier should be able to separate oil
from all other classes present at the ocean surface.

A limitation of this study is that the variation of sun and view angles in the
Sentinel-2 data were not considered. This can possibly create a larger variation
of reflectance values in the dataset. Another limitation is that the robustness
evaluation was only performed on one unlabeled Sentinel-2 image. This means
that the robustness evaluation only was performed at a specific sun angle. Eval-
uation the robustness on different sun angles would give a broader view of the
performance of the ML models. We see two ways of doing a similar study. The
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first would be to only pick multi-spectral data with a certain sun and view angle
for your training and test data. The second is to first do a background study on
the historical sun angles in Sentinel-2 data, before including Sentinel-2 data
with a variety of sun angles based on the background study. A final limitation
is that the training data included limited numbers of data from complex areas
(weather, look-alikes), whichmay impact the performance using the MLmodels
on images where complex areas are present.



8
Conclusion
This project showed that it is possible to identify and classify oil slicks in the
Persian Gulf using multispectral remote sensing data and ML methods. Sev-
eral ML methods were evaluated: ANN, KNN, Decition Trees, Naive Bayes and
discriminant classifiers. Two ML methods resulted in the highest accuracy and
were further evaluated in dept. These two methods were the ANN and KNN.
The performance of a fine KNN model and a weighted KNN model on the test
data was satisfactory (Fig. 6.3). When applied to an independent dataset the
KNNs were able to identify areas with thick oil (Fig. 6.10, Fig. 6.11 and Fig.
6.12). The performance of a single-layer NN model and a tri-layered NN model
was poor in testing, but they were still able to identify thick oil when applied
to a non independent dataset (Fig. 6.10, Fig. 6.11 and Fig. 6.12). A robustness
evaluation was performed on unlabeled independent data. The NN models and
the KNN models were both able to identify and classify the thick oil with good
precision when compared to the equivalent true color composite image (Fig.
6.14). All models showed poorer performance classifying in areas with complex
reflectance due to calm wind, clouds or shallow waters in combination with
low wind.

The ANN and KNN models used in this work show great potential to aid oper-
ators in an oil spill monitoring service, but they are not good enough to work
as ML models integrated in a fully automatic service, due to the large amount
of false positives. Even tough the KNN models used significantly less time in
the training process, the NN models used significantly less time computing the
predictions, and are therefor a better option for an oil spill monitoring service
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with near-real time (NRT) requirements. However, more tuning and robustness
testing of the NN models are likely needed to find the most optimal NN model
for an oil spill monitoring service.

This project provided valuable perspectives in both the possibilities and limi-
tation in classifying oil slicks using ML. While NN and KNN have been used
for oil spill classification in multi-spectral imagery, the ML models have to the
author’s knowledge not been used to classify oil slicks with multi-spectral re-
mote sensed data using a combination of visible, NIR and SWIR bands in the
Persian Gulf. The result indicates that the studied ML methods are promising
for this purpose, and potentially be subject for up-scaling and implemented in
a oil spill monitoring service.

Future work

Reliable ML models can be an important asset for monitoring and detection
of oil spills impacting the environment and society. Further work with the ML
models created in this work is needed to create satisfactory ML models for oil
spill monitoring services. To achieve this, a large scale robustness evaluation
on established ML models, testing the images on a large number of Sentinel-2
scenes is necessary. It might also be necessary to tune the ML mode with a
greater variety of configurations than done in this work, to evaluate for better
performance.
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