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Summary 
Background: Patients with KEAP1 and STK11 alterations have shown poor 

response to immunotherapy in non-small cell lung cancer (NSCLC) due to unknown 

underlying mechanisms. In a sub-study of the TNM-I trial (NCT03299478), we 

discovered that lung adenocarcinomas (LUAD) with concurrent KEAP1 and STK11 

mutations exhibit predominantly non-inflamed immunological features, potentially 

contributing to immunotherapy resistance (PMID: 37100205). However, it is unclear 

whether single mutations or co-mutations drive this phenomenon. 

 

Methods: Among 215 patients (stage I-IIIA) who underwent genomic profiling, tumor 

tissue from 23 LUAD patients with STK11 and KEAP1 mutations were included in 

this thesis. NanoString gene expression analysis with the nCounter PanCancer IO 

360™ Panel was performed and analyzed. Comparisons of gene expression and 

metagene changes were assessed across single versus co-mutations. 

 

Results: 44% (n = 10) of the cohort had co-mutations, while 56% (n = 13) had a 

single mutation with either KEAP1 or STK11. In STK11 vs co-mutation, pathway 

analysis revealed up-regulation of genes associated with adaptive immunity. 

Specifically, B cells were generally upregulated (p-adj < 0.05) in STK11 altered 

cases. In KEAP1 vs co-mutation, matrix remodeling and metastasis pathways were 

highly enriched, with the highest fold changes for MMP7 and MMP9 (5.19, 3.34, 

respectively; p-adj < 0.05). Additionally, we found up-regulation of chemoresistant 

pathways in KEAP1 mutated patients (p-adj < 0.05). In STK11 vs KEAP1, NF-

kappaB was the most altered pathway. 

 

Conclusion: KEAP1 mutation is the main driver of the non-inflamed phenotype in 

LUAD compared to STK11 mutation, and it contributes to a more aggressive disease 

through activation of metastatic pathways and chemoresistance features. These 

results need to be validated in larger datasets. 
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1 Introduction to lung cancer  
1.1 Epidemiology  
Lung cancer is today the most common form of cancer in the world in both women 

and men, while at the same time being the leading cause of cancer related death (1). 

This is also seen in Norway, where lung cancer is the second most frequent form of 

cancer in both women and men (2). In the diagnosis year 2022, 3,466 new cases of 

lung cancer were registered in Norway, where an almost equal number of women 

and men were diagnosed (3). The median age for lung cancer is 73 years for both 

sexes, which means that half of all those diagnosed are over 73 years old (3). See 

Figure S1 (supplementary data) for an overview of incidence by gender and age 

groups between 1992-2022 (3). Compared to previous years, this is actually only a 

modest increase, despite the fact that this is the highest incidence ever recorded (in 

2021, the number of newly diagnosed cases was 3,422) (2, 3). But in general there 

has been a flattening incidence since 2018 in Norway, where the situation now is 

such that there is a decreasing incidence for those < 70 years and a flattening 

incidence for those > 70+ years (Figure S1) (3). 

Despite the fact that there never have been more people diagnosed with lung cancer 

than today, the good news is that there has been a reduction in mortality from lung 

cancer over the last 20 years (2). Figure S2 shows the relative 5-year survival rate 

for lung cancer in men and women, and how it has increased almost three times for 

both sexes from 1965 to 2021 (4). 

1.2 Risk factors 
Although it is now quite clear that smoking is the main cause of lung cancer, there 

are many other well-known carcinogens and risk factors (5). It is well known that 

people who have never so much as taken a puff of cigarette smoke can develop lung 

cancer, in addition to knowing that lung cancer existed before smoking became 

commercial (6). From earlier days it was known that people who worked in coal 

mines and other mining operations, not infrequently developed lung cancer (7). 

Today we know that, in addition to smoking; asbestos, aluminum production, radon-

222 and silica dust - as well as many more agents, are carcinogens that can cause 

lung cancer (5, 6, 8). These substances are registered as class 1 carcinogens on the 

the International Agency for Research on Cancer (IARC's) list - which means that 
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there is sufficient evidence for carcinogenicity in humans. In other words, there is 

convincing evidence that the agent causes cancer in humans (8, 9).  

Apart from the discussed risk factors, mutations and single-nucleotide 

polymorphisms are known to be associated with lung cancer (6). Meta-analyses have 

shown that there is a 2-fold increased risk of lung cancer in people with a family 

history of lung cancer in those who have not smoked (6, 10). Familial association 

studies have identified lung cancer associated genes with high penetrance and low 

frequency (6). Examples of identified genetic mutations that increase the risk of lung 

cancer are variations in 5p15.33 (telomerase reverse transcriptase gene), 6p21.33 

(cytochrome P450 family 21 subfamily A member 2), and 15q25.1 (cholinergic 

receptor nicotinic alpha 5 subunit) (5, 6). Also, single-nucleotide polymorphisms at 

22q12 (Checkpoint kinase 2) and the 15q15.2 (ubiquitin protein ligase E3 

component) locus have been highly associated with increased risk of lung cancer (5, 

6). 

In addition to the aforementioned risk factors, there are a number of other factors that 

have been suggested to be linked to lung cancer (6, 11-19). Respiratory diseases 

such as chronic obstructive pulmonary disease, pneumonia, asthma, tuberculosis 

give an increased risk of cancer, with chronic obstructive pulmonary disease being 

the disease that gives the greatest risk (6). Other examples of risk factors can be 

improper diet, alcohol consumption, marijuana smoking, estrogen, infections with 

human papillomavirus, human immunodeficiency virus, and Epstein-Barr virus (6, 11-

19). The latter are suggested risk factors in the literature, where there is a lack of 

clear evidence to ascertain their relationship (6). 

1.3 Diagnosis and investigation of lung cancer in Norway 

1.3.1 Guidelines for the investigation of lung cancer 
In Norway, there are standardized guidelines - or in Norwegian "pakkeforløp", for 

lung cancer (20). Today, almost all of the most common forms of cancer have their 

own guidelines, where the guidelines gives patients with a justified suspicion of 

cancer predictability and security (20). The goal of the guidelines is to give the patient 

comprehensive workup and prevent unnecessary delays for diagnostics (20, 21). 
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The guidelines for lung cancer was introduced in Norway in 2015 (21). When a 

medical doctor suspects that the patient could have lung cancer, the patient is 

referred for further investigations in accordance with these guidelines. (20). From the 

time the referral is made to the first appearance in the investigating department, a 

maximum of 7 calendar days must have passed, and from the patient's first 

appearance in the department to the end of the examination, a maximum of 21 

calendar days must have passed (21). In addition, there are also certain deadlines 

when it comes to how long it will take before the patient receives treatment. For 

example; if the investigation finds that the patient needs surgical treatment, a 

maximum of 14 calendar days must elapse from the end of the investigation to the 

start of treatment (21). See Table S1 for a complete overview of the various 

deadlines (21). These deadlines apply to all hospitals in Norway that investigate lung 

cancer and all patients - regardless of geography, must have the same offer (21). 

In principle, most people with lung cancer can be examined and treated at a local 

hospital, but because medicine is becoming more and more personalized, most 

people are also in contact with a larger regional hospital during treatment for their 

cancer. It is especially pathological diagnostics and oncological drugs and radiation 

that require much of the treatment carried out in the larger hospitals (22).  

1.3.2 Investigation of lung cancer - general overview 
When a patient is referred in accordance to the guidelines for lung cancer, it is first 

and foremost recommended that an anamnesis and a clinical examination is carried 

out (21). It is then recommended to supplement with diagnostic imaging, blood tests 

and biopsies (21). The examinations must be of such a scope that it provides 

answers to histological diagnosis including subgroup with relevant histochemical 

markers, distribution with tumor, nodes, and metastases (TNM) and clinical stage 

and the patient's health/suitability for treatment (21). 

According to the national action program, these clinical symptoms should lead to 

referral in the package course: hemoptysis (coughing up blood) and unexplained and 

persistent (> 3 weeks) cough, chest/shoulder pain, dyspnoea, weight loss, chest 

findings, hoarseness, finger-clubbing (21). Often, the investigation will start with a 

normal X-ray of the lungs, but a normal X-ray will never be able to rule out cancer 

(21). So for all practical purposes, if there is a reasonable suspicion of lung cancer, 
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one will proceed with a CT thorax/abdomen with intravenous contrast (21). If the CT 

scan shows extrathoracic disease or contralateral lung metastases (M +), the patient 

is unsuitable for curative treatment (with a few exceptions) (21). If CT only shows 

intrathoracic disease (M -), the patient is potentially eligible for curative treatment and 

a PET-CT should then be taken before further biopsy (21). Biopsy of the primary 

lesion is only relevant if there are no metastases or spread to lymph nodes (N0) (21). 

This means that patients with widespread disease (M+ and/or N+) are most often not 

available for curative treatment (21).  

Once the imaging examinations have been carried out, then the biopsy can be 

performed. Before curative treatment can be initiated, the diagnosis should be 

confirmed cytologically and histologically after the radiological examination. There 

are various techniques to get the biopsy done. It can be done ultrasound-guided, CT-

guided, through pleural puncture or with the help of endobronchial ultrasound (EBUS) 

(21). Figure S3 provides a summary of the investigation with diagnostic imaging and 

biopsy (21). 

1.3.3 Histopathology 
The "rough classification" of histological subtype of lung cancer is done by looking at 

a paraffin-embedded and stained biopsy under a light microscope (21). Pathologists 

have many aids, particularly in the form of immunohistochemistry (IHC), which 

facilitate first-line diagnostics (21). Based on this visualization and different types of 

staining, the pathologist can determine which main group of lung cancer it is (21). 

Because medicine has become more personalized, one cannot make a treatment 

recommendation based solely on the histological subtype of lung cancer. Since there 

are several genetic variations that can have treatment consequences for the 

individual type of cancer, next-generation sequencing is now performed on all types 

of non-small cell lung cancer (see later) with the exception of squamous cell 

carcinoma (21).  

When lung cancer is classified, it is important to distinguish between primary lung 

cancer (PLC) and intrapulmonary metastasis (IPM). It is important both with regard to 

treatment strategies, but also for prognosis (23). Unfortunately, this can be a 

complicated process, especially where the PLC has similar histology to IPM (23). But 

not only is it important to be able to distinguish between PLC and IPM, but also the 
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various subtypes of PLC. Lung cancer is a heterogenous disease with wide-ranging 

clinicopathological features (24). PLC can be classified into mainly two entities: non-

small cell lung cancer (NSCLC), which accounts for 85% of the total number of 

diagnosis, and small cell lung cancer (SCLC), which accounts for 15% of diagnoses 

(24). It is therefore NSCLC that is the most common histological form of lung cancer  

(21, 24). Under the main types of NSCLC and SCLC, different histological subtypes 

are found (19, 24).  

1.3.3.1 Non-small celled lung cancer (NSCLC) 
Within the NSCLC classification, lung adenocarcinoma (LUAD) are the most common 

subtype of lung cancer, followed by squamous cell carcinoma (24). In the past, 

squamous cell carcinoma was the most common form of NSCLC, but has now 

declined, partly due to the decline in smoking in high-income countries and the 

composition of cigarettes (24, 25). The third most common form of NSCLC is large 

cell carcinoma, which accounts for around 10-15% of the subtypes (19). Other less 

common subtypes account for approximately 20% of all NSCLC (19). Examples of 

such histological subtypes are adenosquamous carcinoma, pleomorphic sarcomatoid 

carcinoma, large-cell neuroendocrine carcinoma, and carcinoid tumor - which alone 

only accounts for a few percent (19). See Figure S4 for an overview of the various 

histological subtypes of NSCLC (19).  

1.3.4 The TNM classification of lung cancer 
When the radiological and histological response is available, a TNM stage can be 

set. Staging for cancer is done using TNM (21, 26). The TNM status of the patient is 

very important to know in order to be able to provide the correct treatment and to be 

able to predict the prognosis (21). It is well known that the TNM stage is closely 

related to the prognosis of the patient (21). See Table S2 for an overview of the 

latest TNM classification for NSCLC (26). 

1.4 Treatment strategies and prognosis of NSCLC 

Over the past few years, mortality from NSCLC has decreased significantly, mainly 

due to earlier diagnosis, but also because new therapeutic strategies have been 

developed (21). For the first time in history the 5-year survival rate for all types of 

lung cancer was a total of 30.0% in Norway in 2022, where the median survival have 

increased from 9.2 months in 2011 to 16.8 months in 2022 (3). It is difficult to 



 

 6 

calculate an exact 5-year survival for NSCLC as there are many subgroups, but the 

5-year survival was 38.3% for adenocarcinoma and 31.6% for squamous cell 

carcinoma in 2022 (3). In comparison the 5-year survival rate for SCLC was only 

8.6% in 2022 (3). In any case, it is important to be aware that the survival rate 

depends on several factors, including which histological subtype the patient has or, 

not least, which TNM stage the cancer is in at the time of diagnosis. In patients with 

localized NSCLC, i.e. the cancer has not spread outside the lungs at the time of 

diagnosis, the 5-year survival rate is 63% (27). For regional NSCLC, which means 

that cancer has spread outside the lungs to regional lymph nodes, the 5-year survival 

rate is 35% (27). For metastatic NSCLC, the 5-year survival rate is only 7% (27).  

Both surgery and radiation therapy are treatment modalities that can provide curation 

in patients with stage I-III NSCLC (21). Primarily, surgery is to be recommended for 

patients in early stages who are medically and technically operable (21). In patients 

who are inoperable or who do not want surgery, radiation therapy is an alternative 

(21). Chemotherapy alone is not curative, but together with surgery and/or 

radiotherapy can increase the possibility of a cure (21). For stage I, surgery alone is 

recommended, while in stage II, surgery is combined with adjuvant chemotherapy in 

patients under 70 years of age (21). Stage III is a heterogeneous group where 

optimal treatment is differentiated in relation to T- and N-stage. Patients with stage IV 

disease are usually not available for curative treatment (21). 

Regardless of whether the patient is intended for curative treatment or not, the 

patient will often receive some sort of chemotherapy and/or immunotherapy (21). 

Traditionally, platinum-containing chemotherapy is used in the treatment of NSCLC 

and is considered the cornerstone of chemotherapy for lung cancer (21). Over the 

past few decades, it has also become more and more common to test lung cancer for 

genetic mutations. There is now immunotherapy that attacks cancer-driven activating 

mutations in lung cancer cells (21). 

1.5 Genetic mutations in lung cancer 
As mentioned, there are several genetic mutations which are considered risk factors 

for developing lung cancer (28). Over the years, a number of drugs have been 

developed to target these genetic mutations, and today there are many targetable 

genes in NSCLC (21). The most important genetic mutations for which targeted 
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treatment is currently available for based on their prevalence, are KRAS (Kirsten rat 

sarcoma viral oncogene homologue), EGFR (epidermal growth factor receptor), ALK 

(anaplastic lymphoma kinase), BRAF (v-raf murine sarcoma viral oncogene homolog 

B1), ROS1 (Proto-Oncogene 1, Receptor Tyrosine Kinase), NTRK (Neurotrophic 

Tyrosine Receptor Kinaseand) MET (Mesenchymal Epithelial Transition) (21, 28).  

See Figure S5 for a complete overview of the incidence of the various oncogenes in 

NSCLC (28). 

KRAS is the most common oncogene in lung cancer, with 30-38% NSCLC cases 

harboring the mutation (28). The gene controls proteins involved in cell growth, 

maturation, and death. Activating mutations cause uncontrolled growth and 

maturation (29). Sotorasib is the only approved drug targeting the KRAS G12C 

mutation in Norway, prolonging overall survival by 12.5 months. EGFR mutations are 

the second most common in NSCLC, found in 10-15% of cases (21). Mutations lead 

to constant activation of the EGFR signaling pathway, resulting in malignancy. 

Although EGFR mutations are less common, several approved drugs like gefitinib, 

erlotinib, afatinib, dacomitinib, and osimertinib treat advanced EGFR-mutated 

NSCLC (21). 

Figure S5 shows that KRAS and EGFR account for the majority of mutations in 

NSCLC, where the other associated mutations alone only account for a few percent 

(28). Despite this, they collectively make up about a quarter of the oncogenes (28). 

What the aforementioned mutations have in common is that there are a number of 

targetable therapies against them and more are under development (21). For 

example, there are a number of approved drugs for both ALK, BRAF, ROS1, NTRK 

and MET mutations (21). 

1.6 T cell-inflamed vs. non-T cell-inflamed NSCLC  
Immunotherapy such as checkpoint blocking antibodies and adoptive cell transfer is 

becoming more and more commonly used for many types of cancer, and lung cancer 

is no exception (30-32). Although immunotherapies can be effective, many people fail 

to respond and some develop resistance (30). It is known that especially the tumors 

with high expression of dendritic cells and CD8 T cells - so-called “T-cell inflamed" or 

“hot” phenotypes, respond well to immunotherapy and generally develop less 

resistance (30, 33, 34). Conversely, one can also say that tumors that have a low 
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expression of these cell types - "non-inflamed" or “cold” phenotypes, will 

preferentially have a poorer response to immunotherapy and more often develop 

resistance (30, 34). In that way, the inflammation signature can be used to help 

predict the immunotherapy response (30, 34). 

Galon et al. proposed different methods for immune phenotyping of tumor tissue to 

better understand and treat various tumor immune profiles (35). Tumors can be 

classified as immune hot, altered/excluded, or cold based on their immune cell 

infiltration and activation, see Figure S6 (34, 35). Immune hot tumors have a high 

immune cell infiltration, while altered tumors exhibit partial infiltration, and cold 

tumors show minimal or no infiltration (35). These classifications have implications for 

the effectiveness of immunotherapies and can be used guide personalized treatment 

strategies (35). Immune phenotyping involves the assessment of immune cells, their 

spatial distribution, and functional state in the tumor microenvironment (35). Several 

methods are employed for this purpose, including IHC and gene expression profiling 

(35). 

Because it has been seen that immunological parameters provide prognostic 

information for the outcome of lung cancer, research is being done to develop a 

TNM-I score as a supplement to the already existing TNM score (31, 32). The 

advantage of such a TNM-I score is that you can get even more personalized 

medicine and to a greater extent be able to determine which patients will be able to 

benefit from immunotherapy (32). Today, little is known about which patients who will 

benefit from immunotherapy, and the objective response to immunotherapy in 

NSCLC patients is around 20%. Therefore, there is an urgent need to be able to 

predict survival and response to immunotherapy in this patient group (32, 36). 

1.7 Genetic mutations associated with a low T cell-signature 
As mentioned, research up to date has concluded that most forms of NSCLC are 

driven by defects in the genes mentioned in section 1.5 (21, 28, 29, 37-39). But in 

addition to these genes, defects have also been found in other genes that have been 

shown to induce cancer (37).  
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1.7.1 STK11  
STK11 is a gene encoding for liver kinase B1 (Lkb1), which plays an important role in 

metabolism, cell polarity and DNA repair (40-44). STK11 is found on chromosome 19 

and consists of nine coding exons and one non-coding exon (40, 43, 45). The Lkb1 

protein is expressed in all forms of tissue throughout the body. In order for the Lkb1 

protein to carry out genetic regulation, it must be activated (40). Like many other 

proteins, its activation is post-translationally modified by phosphorylation, acetylation 

and ubiquitination (40, 46). When Lkb1 proteins are active, it in turn activates a 

number of proteins in the AMP-activated protein kinase (AMPK) family (40, 47). The 

physiological role of Lkb1 is to modulate the metabolism of the cell in response to low 

nutrition and other stressors (40). When the Lkb1 protein is transcribed, it leads to a 

down-regulation of anabolic pathways and up-regulation of catabolic processes, see 

Figure 1 (40, 45, 47). This effect is mediated by Lkb1 through the AMPK signaling 

pathway. Loss of Lkb1 activity leads to a metabolic shift in the cell from oxidative 

phosphorylation to increased aerobic glycolysis and glutamine catabolism. This shift 

is a hallmark of malignant cells (40, 45, 48). A pathway that is closely regulated by 

Lkb1 and AMPK, with major consequences for tumorigenesis, is the mammalian 

target of rapamycin (mTOR) signaling pathway (40, 46). Activated AMPK 

phosphorylates mTOR and leads to the translation of key proteins involved in cellular 

proliferation and advancement through the cell cycle (40, 41). With loss of Lkb1 

function, these proliferation pathways will be constantly upregulated. Therefore, it can 

be said that the Lkb1 protein and thus the STK11 gene acts as a tumor suppressor 

(45).  

Mutations in the STK11/LKB1 gene have been recognized as an important tumor 

suppressor since the 90s (37, 45). While STK11/LKB1 mutations are commonly 

detected in lung adenocarcinomas, they are also present in pulmonary squamous 

cell carcinoma and large cell adenocarcinoma (40, 49-51). These mutations 

frequently coincide with KRAS mutations and are believed to contribute to the 

formation of aggressive tumors with metastatic properties, leading to a reduced 

overall survival rate (41, 51). It has been demonstrated that STK11 mutations have 

been shown to correlate with a smoking-associated molecular signature, which in 

turn means that STK11 inactivation increases the chance of tobacco-induced 

carcinogenesis (40, 52).  
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In addition to an association between STK11-mutation and the AMPK/mTOR 

signaling pathway, a connection between STK11 expression and the stimulator of 

interferon genes (STING) pathway has also recently been discovered (44, 53). 

STING is a protein found in the cytoplasm that is activated by the presence of free 

double-stranded DNA (dsDNA) in the cytoplasm. It is thus the presence of 

pathogenic microbes or neoplastic transformation that can lead to the activation of 

STING (54). STING then leads to the recruitment and activation of tank-binding 

kinase 1 (TBK1), which in turn activates the transcription factor IRF3 to induce the 

production of type 1 interferon and other chemokines, which then leads to T-cell 

recruitment (44, 53). Kitajima et al. have therefore seen that down regulation of 

STING - as a result of mutations in the STK11 gene, leads to loss of chemokines that 

promote T-cell recruitment and can thus be said to drive tumor escape (44, 53). 

Tumor cells with genetic abnormalities in the STK11 signal axis are therefore more 

often associated with a low T cell-signature and can therefore be said to be 

immunologically cold (37, 44, 55, 56). 
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Figure 1: LKB1 is a master metabolic sensor that acts as an energy gauge to sustain cancer cell 
survival (44). The figure is used with permission from the author.   

Furthermore, STK11 mutation has been associated with very poor prognosis in 

NSCLC (37, 40, 44, 57, 58). A possible explanation for this is that tumors with STK11 

mutation responds less and more often develop resistance to PD-L1 inhibitors and 

other forms of immunotherapy compared to lung cancer without this mutation (37, 59, 

60). One of the explanations for this is that it is seen that the STK11 gene has a 

central role in the expression of PD-L1 (37, 44). This connection is seen via STING, 

where a down-regulation leads to impaired dsDNA sensing and thus reduced 

expression of immune checkpoint regulatory proteins such as PD-L1 ,see Figure 2 
(44) 
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Figure 2: Loss of LKB1 drives the tumor immune escape (44). The figure is used with permission from 
the author. 

1.7.2  KEAP1 
Another gene where mutations have been shown to induce cancer is the KEAP1 

(kelch-like ECH-associated protein 1) gene. Mutations in the KEAP1 pathway have 

been identified in 20-30% of all lung adenocarcinomas, making it a potentially 

important gene in the oncogenesis of lung cancer (61-63). The lungs represent an 

environment with high oxidative stress, which is tolerated through tightly regulated 

stress response pathways (61). A critical stress response mediator is the 

transcription of nuclear factor erythroid-2-related factor 2 (NFE2L2/NRF2), which is 

negatively regulated by the KEAP1 (61, 63). 
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NRF2 is part of critical stress response mediators in mammalian cells (63). Normally 

under hemostatic conditions in the cell with low stress, KEAP1 degrades NRF2 by 

binding to it together with proteosomes (61). If, on the other hand, there is a lot of 

oxidative stress and non-haemostatic conditions, it will lead to conformational 

changes in KEAP1, which in turn causes the degradation of NRF2 to stop and thus 

cause NRF2 to accumulate and translocate to the nucleus (61). When NRF2 nuclear 

translocates, it leads to the transcription of cytoprotective genes that code for 

detoxifying enzymes and antioxidant proteins, such as NADH (61). The induction of 

these genes leads to resistance to oxidative stress (61, 64). Based on this, one 

would have thought that having a high level of NRF2 was protective against cancer. 

But lung cancer with a high level of NRF2 is highly resistant to chemotherapy and 

radiotherapy, in addition to being aggressively proliferative in nature (65, 66). 

Mutations in the KEAP1 gene thus have a very poor prognosis (67, 68). How NRF2 

promotes cell proliferation is not well understood, but an upregulation of NRF2 is 

seen when proliferative signaling pathways, such as active phosphatidylinositol 3-

kinase (PI3K), are activated. When P13K is activated, it can be seen that NRF2 

augments the expression of metabolic genes that assist in driving proliferative 

programs (61, 64). 

There is data to suggest that the activation of the Keap1-Nrf2 pathway is associated 

with the emergence of resistance to chemotherapy (69). In the same way as 

mutations in STK11, mutations in the KEAP1 gene are also associated with a lack of 

T-cell infiltration, and tumors that have this mutation are generally immunologically 

cold and therefore responds and therefore respond poorly to immune checkpoint 

inhibitors (ICIs) (70, 71). Over the past few years, pharmaceutical companies have 

directed their attention towards targets in both the Keap1-Nrf2 and the STK11-AMPK 

pathway to discover new and efficient molecules that can hinder the interaction these 

pathways have (69). A notable benefit of targeting these molecules is the anticipated 

enhancement in the effectiveness of conventional antitumor chemotherapies, and 

then especially for ICIs (69).  
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2 The aim of this thesis 
The presence of mutations in the STK11 gene, frequently accompanied by mutations 

in the KEAP1 gene, has been associated with poor outcomes in NSCLC patients 

undergoing immunotherapy (55). However, the underlying biology remains unknown. 

Our research has revealed that patients who harbor co-mutations in STK11 and 

KEAP1 genes predominantly exhibit a cold immune phenotype (72). The main aim is 

to explore whether the co-mutations or individual alterations in STK11 and KEAP1 

genes are the key drivers of poor local immune infiltration and potential resistance 

mechanisms to immunotherapy in NSCLC. 

By studying the underlying mechanisms that govern the immune microenvironment in 

NSCLC, we hope to shed light on the specific factors that lead to the development of 

a cold immune phenotype. Ultimately, our findings may help to inform the 

development of new treatment strategies for NSCLC patients with STK11 and 

KEAP1 mutations. There are currently no effective treatments for lung cancer cases 

with these mutations (73).  
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3 Material and method 

3.1 Study design  
Genomic profiling was carried out on 215 patients participating in the TNM-I clinical 

trial (NCT03299478), with 137 of them diagnosed with lung adenocarcinoma (LUAD). 

Within this group, patients with STK11 and KEAP1 mutations were chosen for further 

investigation (n=23). The selection process for identifying variants involved excluding 

the following: non-exonic untranslated regions, synonymous and common 

polymorphisms (with a minor allele frequency greater than 1% as per the 1000 

Genomes Project and GnomAD), and any variants classified as benign or likely 

benign in the ClinVar database (74, 75). 

3.2 NanoString gene expression panel analysis   
Gene expression analysis was performed using the NanoString nCounter gene 

expression assay. The nCounter Advanced Analysis protocol is based on direct 

digital detection of messenger RNA (mRNA) molecules of interest using target-

specific, color-coded probe pairs (76). A pair of reporter and capture probes with 

target-specific sequences ranging from 35 to 50 bases are utilized to detect each 

gene of interest (76). The reporter probe has a unique color code at its 5' end, which 

acts as a molecular barcode for the genes of interest, whereas the capture probes 

have a biotin label at their 3' end, facilitating the attachment of target genes for 

downstream digital detection (76). 

Following hybridization of the target mRNA with the reporter-capture probe pairs in 

solution phase, excess probes are eliminated, and the probe/target complexes are 

aligned and immobilized within the nCounter cartridge (76). The cartridge is then 

placed in a digital analyzer for image acquisition and data processing (76). The 

surface of the cartridge displays hundreds of thousands of color codes indicating 

mRNA targets of interest (76). The expression level of a gene is measured by 

counting the frequency of the corresponding color-coded barcode detected, and the 

barcode counts are then tabulated (76). See Figure S7 for a graphical representation 

of the workflow of the nCounter analysis (77) 

3.2.1 nCounter PanCancer IO 360™ Panel 
In this project, more specifically, the gene panel nCounter PanCancer IO 360™ was 

used to analyze the background genes relevant to the project. The panel comprises 
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of 770 clinically relevant genes and signatures associated with immune-targeted and 

other therapies (77).  

Once the samples with single STK11 mutation, single KEAP1 mutation and co-

mutation had been identified, these were marked and transferred to an Excel 

document with an overview of their mutation status. The samples' corresponding 

genetic data were then labeled in the same way as in Excel and compressed into 

RCC files. 

3.3 Rosalind and nCounter analysis  
After the NanoString gene expression panel samples were completed, the RCC-files 

with the expression data was uploaded and analyzed by ROSALIND®. ROSALIND is 

a cloud-based software platform that enables analyzation and interpretation of 

different gene expression data (78).   

3.3.1 Quality control metrics and normalization  
Before the actual analysis is carried out, ROSALIND starts by providing multiple 

metrics to verify the quality of the data (79). Any issues detected in the samples will 

be automatically flagged and the issue detected will be displayed for easy 

interpretation of the quality control (QC) metrics (79). For nCounter experiments, the 

following QC metrics are performed: imaging quality - the percentage of fields of view 

(FOV) captured (0.75% or lower causes flag), binding density - concentration of 

barcodes seen by the instrument (<0.1 or > 2.25 causes flag), in spots per square 

micron, and control linearity - a correlation analysis in log2 space between the known 

concentrations of positive control target molecules added by NanoString and the 

resulting counts (< 0.95 causes flag) (79). In addition, ROSALIND performs QC with 

regard to the noise threshold, i.e. the limit of detection of the assay (minimum 

expression level detectable) by calculating how many standard deviations the 0.5fM 

Positive Control value is above the average Negative Control value (QC flag occurs if 

below 2) (79). Limit of detection QC reports the average Negative Control value 

(“Mean”), standard deviations of Negative Controls (“Std Dev”) and 0.5fm Positive 

Control value (“Pos Control E”) - where QC flag occurs if “Mean” + 2 * “Std Dev” is 

greater than “Pos Control E” (79).  All the samples passed the built-in QC metrics, 

including FOV, binding density, control linearity, mean of negative controls (Mean), 



 

 17 

standard deviation of negative control (Std Dev) and positive control (Pos Control E). 

Se Table S3. 

Another important step before the actual processing of the data can start in 

ROSALIND, is to perform data normalization. Data normalization ensures the validity 

of its downstream analyzes (80). ROSALIND follows the NanoString nCounter® 

Advanced Analysis protocol for data normalization of Gene Expression nCounter 

RCC Analysis, where the normalization is performed by dividing counts within a lane 

by the geometric mean of the normalizer probes from the same lane (81). Normalizer 

probes are selected by the geNorm algorithm as implemented in the Bioconductor 

package NormqPCR R library (81, 82). 

Differential gene expression analysis was performed utilizing volcano plots. Fold 

changes (FC) and adjusted p-values were calculated using criteria provided by 

Nanostring (-1.5<FC>1.5; adjusted p-values <0.05). Clustering of genes for the final 

heatmap of differentially expressed genes was done using the partitioning around 

medoids method using the fpc R library that takes into consideration the direction and 

type of all signals on a pathway, the position, role and type of every gene (78, 83). By 

comparing the expression data from different experimental conditions or groups, 

these plots highlight genes with substantial FC and statistical significance. 

3.3.2 Pathway analysis 
Another way to explore gene expression is through gene expression signatures 

(GES), which is a single or combined group of genes in a cell with a uniquely 

characteristic pattern of gene expression that occurs as a result of an altered or 

unaltered biological process or pathogenic medical condition (84-86). GES are 

commonly defined as “a ranked list of genes whose differential expression is 

associated with a particular biological phenomenon” (87-89).  

3.3.3 Nanostring pipeline 
Based on the GES, a gene set analysis (GSA) score is calculated, which provides an 

average of the significance measured across all the genes in the pathway, as 

calculated by the differential expression (90). The global significance score (GSS) 

assess the overall significance of changes within a pathway and are always positive, 

regardless of whether the genes are up- or down-regulated (90). On the other hand, 
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directed GSS (dGSS) gives a negative or positive value corresponding to down-

regulation or up-regulation of a pathway (90). These scores are scaled to the same 

distribution (t-statistic), which makes them more robust for comparisons across 

different pathways or experiments (90). A high score indicates that a large proportion 

of the genes in a pathway are exhibiting changes in expression across groups of 

samples (90). 

3.3.4 Other analytical approaches 
Gene Set Enrichment Analysis (GSEA) is a statistical technique employed to identify 

groups of genes or proteins that are significantly overrepresented within a large set of 

genes or proteins, potentially linking them to disease phenotypes (91, 92). A range of 

database sources were consulted for GSEA, including Interpro (93), NCBI (94), 

MSigDB (92, 95), REACTOME (96), WikiPathways (97, 98). However, not all of these 

databases were ultimately used in this thesis. 

3.4 Ethical aspects and approval of the project  
Ethical approval for the entire clinical trial (NCT03299478) was granted by the 

Regional Committee (REK) and the Norwegian Data Protection Organization, under 

the Institutional Review Board (IRB) number REK2016/2054. 
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4 Results 

4.1 Patient characteristics  
The tissue samples included in the study came from 23 people who all had LUAD (n 

= 23), where the majority were in an early stage corresponding to pTNM1 (n = 14, 

61%). The patients had a median age of 69 years (range 57-83), a female 

representation of 61% of the cohort, and at the time of diagnosis approximately half 

were still smokers (n = 12, 52%), while the other half had a previous history of 

smoking (n = 11, 48%). Thus, all the patients in the cohort had a positive smoking 

history. Regarding the mutation status, 43% (n = 10) of the cohort were co-mutated, 

while 35% (n = 35) had a single mutation with KEAP1 and 22% (n = 5) a single 

mutation with STK11.  See table 1.  

Table 1: Patient characteristics and tumor characteristics of the population. The population contains 
no people with a negative smoking history, as well as no patients with a TNM stage higher than 3a, as 
these are inoperable. The table was created using PowerPoint. 
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4.2 STK11 vs. co-mutation 
The immune gene expression profiles were assessed using a NanoString panel 

(IO360) comprising 770 immune- specific genes and 39 signatures. Heatmap and 

hierarchical clustering of all genes and signatures for a combined group with single 

mutations vs co-mutation are presented in Figure 3.  

Figure 3: Heatmaps with hierarchical clustering of all genes and signatures for the comparison 
between the single mutations and the co-mutations. The orange color corresponds to how positive the 
FC-value is, while the blue color corresponds to how negative the FC-value is. To create the heatmap, 
a filter with FDR-adjusted p-value < 0.99 and -1.001 ≤ FC ≥ 1.001 has been used. 

We first examined whether STK11 single mutations and STK11/KEAP1 co-mutations 

had different immune gene expression profiles. In the volcano plot – where STK11 is 

the control group and co-mutation is the baseline, there is a significant number of 

upregulated genes in STK11 compared with co-mutation. Based on a filter where the 

FDR-adjusted p-value is = 0.05 and -1.5 ≤ FC ≥ 1.5, there are 120 up-regulated 

genes and 10 down-regulated genes (Figure 4A). When the upregulated genes are 

sorted according to FC, FCAR (7.92), MMP9 (5.52), ITGB3 (5.14), CD79B (5.10) and 

CDH2 (4.59) are the genes which are most up-regulated according to FC in the 

STK11 samples compared to co-mutations. For down regulation according to FC, IF6 

(-5.42), SLC7A5 (-4.64), CDC20 (-2.62), TGFBR1 (-2.56) and RRM2 (-2.55) have the 
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highest negative FC. The significantly upregulated and downregulated genes have 

then been analyzed and sorted by dGSS against the Nanostring Annotation GES, 

where Figure 4B shows that the “Lymphoid Compartment” (dGSS = 1.8828), “Matrix 

Remodeling and Metastasis” (dGSS = 1.8532), “Immune Cell Adhesion and 

Migration” (dGSS = 1.839), “Costimulatory Signaling” (dGSS = 1.7901) and “Cytokine 

and Chemokine Signaling” (dGSS = 1.7689) are the GES with the highest dGSS.  

This was further confirmed using enrichment analysis via PanglaoDB Database, 

where genes associated with adaptive immunity were up-regulated. More specifically, 

we found that that B cells are generally upregulated (p-adj = 0.01489), and memory 

B-cells (p-adj = 0.11801) (Table S4).  

The up-regulation of the immune system and especially the up-regulation of B cells, 

is confirmed by the GSEA pathway analysis (GO data set), where go_cell_activation 

(p-adj = 0.00074) and go_b_cell_activation (p-adj=0.03088) is statistically significant, 

in addition to go_lymphocyte_activation also tends towards being statistically 

significant (p-adj = 0.05447) (Table S5). 

Figure 4: Overview of the genetic data. (A) Volcano plot showing the difference in up- and down-
regulated genes in the STK11 samples compared to the co-mutation samples.The green dots 
represent up-regulated genes in the STK11 samples, while the purple dots represent the down-
regulated genes. (B) dGSS for the various Nansotring Annotations pathways, where a lighter color 
represents a more positive dGSS and a darker color more negative dGSS. The tables are sorted from 
the largest positive value at the top to the most negative value at the bottom. The figures are 
generated by ROSALIND®, Prism 9® and PowerPoint.   
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4.3 KEAP1 vs. co-mutation 
In the volcano plot – where KEAP1 is the control group and co-mutation is the 

baseline, there are five significantly up-regulated genes and no down-regulated 

genes compared to the control group. The five significantly up-regulated genes with 

the filter FDR-adjusted p-value is = 0.05 and FC is -1.5 ≤/≥ 1.5 in the volcano plot by 

decreasing FC, are MMP7 (5.19), WNT5A (4.68), ITGB8 (4.58) MMP9 (3.34) and 

SGK1 (2.23) (Figure 5A).  

Pathway analysis revealed that Immune Cell Adhesion and Migration (dGSS = 

2.0167), “Matrix Remodeling and Metastasis” (dGSS = 1.9569), “Myeloid 

Compartment” (dGSS = 1.9449), “Wnt Signaling” (dGSS = 1.9244) and “Hedgehog 

Signaling” (dGSS=1.8115) sigantures are the pathways with the highest dGSS. 

Figure 5B shows that “Lymphoid compartment” (dGSS = 1.4241) is ranked lower in 

KEAP1 compared to STK11.  

Consistently, there were very many pathways in the GSEA (reactome database) 

which were statistically significantly upregulated. Table S6 shows that both “ 

activation of matrix metalloproteinases” (p-adj = 0.00695), “ degradation of the 

extracellular matrix” (p-adj = 0.03771), “ extracellular matrix organization” (p-adj = 

0.03771), “reactome collagen formation” (p-adj = 0.03771), “ collagen degradation” 

(padj = 0.03771), “ assembly of collagen fibrils and other multimeric structures” (p-adj 

= 0.03771) and “ extracellular signal” (P-adj = 0.03771) were statistically significantly 

upregulated. The genes matrix metalloproteinase (MMP) 7 and MMP9 – which are 

part of these pathways, were the two genes with the highest FC (5.19, 3.34). In 

addition, the three genes WNT5A, ITGB8 and SGK1 were statistically significantly 

upregulated in the MSigDB oncogenic signatures pathway with a p-adj = 0.03417. 

An almost significant up-regulation of the 

TSUNODA_CISPLATIN_RESISTANCE_DN pathway was also found by GSEA 

(MSigDB - Chemical and Genetic Perturbations). The two genes WNT5A and SKG1 

were significantly increased in single KEAP1 mutation compared to co-mutation, 

where respectively WNT5A had an FC of 2.22504 (p-value < 0.05) and SKG1 

1.15948 (p-value < 0.05) (Table S7). 
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Figure 5: Overview of the genetic data. (A) Volcano plot showing the difference in up- and down-
regulated genes in the STK11 samples compared to the co-mutation samples. The green dots 
represent upregulated genes in the KEAP1 samples. (B) dGSS for the various Nansotring Annotations 
pathways, where a lighter color represents a more positive dGSS and a darker color more negative 
dGSS. The tables are sorted from the largest positive value at the top to the most negative value at 
the bottom. The figures are generated by ROSALIND®, Prism 9® and PowerPoint.    

4.4 STK11 vs. KEAP1 
In the volcano plot – where KEAP1 is the control group and co-mutation is the 

baseline, with the filter FDR-adjusted p-value is = 0.05 and FC is -1.5 ≤/≥ 1.5 18 

significantly up-regulated genes and 14 significantly down-regulated genes (Figure 
6A). The nonstring pathway analysis shows that dGSS is highest for “NF-kappaB 

Signalling” (dGSS = 0.9034), “lymphoid compartment” (dGSS = 0.8864) and 

“cytotoxicity” (dGSS = 0.7454). dGSS is lowest for “Myeloid compartment” (dGSS = -

0.8049) “Wnt Signalling” (dGSS= -0.88724), “Cell proliferation” (dGSS= - 0.9524) and 

“Hedgehog Signalling” (dGSS= - 0.9875) (Figure 6B). 

Although it is not statistically significant, the trend in the PangloaDB cell types 

database is that B-cells and its subtypes are upregulated in STK11 compared to 

KEAP1, but none of the adjusted p-values are under threshold and the different 

adjusted p-values for other cell types is quite similar (Table S8). The same trend is 

also observed when analyzing against the Panther library where “B cell activation” 
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has a (p-adj = 0.18602), where the B-cell genes CD79B, CD79A, PIK3CD and IKBKB 

are up-regulated in the STK11 compared to KEAP1 (Table S9).  

Figure 6: Overview of the genetic data. (A) Volcano plot showing the difference in up- and down-
regulated genes in the STK11 samples compared to the co-mutation samples. The green dots 
represent up-regulated genes in the STK11 samples, while the purple dots represent down-regulated 
genes. (B) dGSS for the various Nansotring Annotations pathways, where a lighter color represents a 
more positive dGSS and a darker color more negative dGSS. The tables are sorted from the largest 
positive value at the top to the most negative value at the bottom. The figures are generated by 
ROSALIND®, Prism 9® and PowerPoint.  
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5 Discussion  
In this master thesis, we investigated the potential drivers of the non-inflamed 

phenotype observed in early stage (stage I-IIIA) lung adenocarcinoma patients with 

KEAP1 and STK11 mutations. Our findings suggest that KEAP1 mutation plays a 

more significant role in the development of the immune desert phenotype compared 

to STK11 mutation. In addition, our results indicate a possible association between 

KEAP1 mutation and chemoresistance in these patients. This study contributes 

valuable insights into the molecular mechanisms underlying the poor response to 

immunotherapy observed in NSCLC patients harboring KEAP1 and STK11 

alterations. Understanding these mechanisms may facilitate the development of 

novel therapeutic strategies for patients with these mutations, ultimately improving 

their prognosis and treatment outcomes. 

In this context, Papillon-Cavanagh et al. investigated the predictive versus prognostic 

effect of STK11 or KEAP1 mutations in non-squamous NSCLC, where they included 

a group with co-occurring STK11, KEAP1 and KRAS mutations (99). They found that 

mutations in STK11-KEAP1 serve as prognostic biomarkers rather than predictive 

ones for the efficacy of immune check points blockers (99). Shen et al. found in their 

study that co-mutation with both STK11 and KEAP1 to be a strong determinant for an 

unfavorable prognosis with currently available therapies, where the median overall 

survival for the patients with co-mutations of STK11/KEAP1 in KRAS mutation-

positive lung cancer was just 7.3 months (100).  

5.1 KEAP1 mutation induces an upregulation of oncogenic and 
metastatic pathways 

The most obvious finding in the study is that STK11 has a very high number (n = 

120) of upregulated genes compared to the co-mutation group. The up-regulated 

genes in Nanostring GSA for the STK11 vs co-mutation comparison are involved in 

pathways that represent immunological response and activation of the immune 

system. It suggests that patients with a single STK11 mutation have a more active 

immune system compared to co-mutation, who appear to have a suppressed 

immune system. On the other hand, the KEAP1 group has a very low number of 

genes which are upregulated and most of the genes in the Nanostring GSA are 

associated with cancer pathways rather than immunological pathways (Figure 5A/B). 
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This is also confirmed in the comparison with STK11 vs KEAP1, where the same 

trend is observed, where the immunological pathways are up-regulated in STK11 and 

down-regulated in KEAP1 (Figure 6A/B). It suggests that the immune system alters 

and suppresses when the KEAP1 mutation is present, at the same time as the 

oncological pathways are upregulated. 

It is especially the “Matrix Remodulating and Metastasis” pathway in the Nanostring 

GSA that is upregulated in the samples containing KEAP1 mutation, where the 

comparison with KEAP1 vs co-mutation has a very high dGSS (= 1.9569). STK11 vs 

co-mutation also has a fairly high dGSS value (= 1.8532) for the same pathway, but 

this pathway is even stronger for KEAP1, which supports that the progression and 

the disease itself is more aggressive when KEAP1 mutation is present. This 

observation was further confirmed by GSEA using the Reactome data set, which 

showed that many of the extracellular matrix pathways were statistically significant 

upregulated in KEAP1 samples (Table S6). It was especially the genes MMP7 and 

MMP9 that were upregulated in KEAP1. These genes are known to participate in 

disruption, tumor neovascularization, and subsequent metastasis of cancer (101). 

The mechanism for how MMPs drive oncogenesis is believed to be multimodal, 

where they play a role in cancer angiogenesis through their proteolytic action on 

proteins in the extracellular matrix (101). In addition, they also have an oncogenic 

effect through the release of extracellular matrix-bound proangiogenic factors such 

as vascular endothelial growth factor (VEGF) (101, 102). 

When further analyzes of the immunological pathways which were up-regulated in 

the STK11 samples have been carried out, it is particularly genes of B-cell nature 

which are up-regulated (Table S4). For both the co-mutation samples and the single 

KEAP1 samples, no such up-regulation of immunological pathways is seen. It 

therefore appears that the KEAP1 mutation – both as a single mutation, but also as a 

co-mutation, limits the immune system and contributes to a lowered immune cell 

infiltration. This hypothesis is also supported by the fact that the volcano plot did not 

show any major genetic differences between KEAP1 vs co-mutation, where only 5 

genes were up-regulated in the KEAP1 samples compared to the co-mutation 

(Figure 5A). 
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5.2 KEAP1 and STK11 mutation triggers a shift of immunological 
compartments 

When investigating which pathways the upregulated genes were involved in, the 

“Lymphoid Compartment” was the pathway with the highest dGSS compared to the 

co-mutation. This is in contrast to KEAP1, where the “Myeloid Compartment” had an 

even higher dGSS (= 1.9449) and the lymphoid compartment a much lower dGSS (= 

1.4241) compared to co-mutation. This suggests that there is a shift of compartment 

depending on which mutation is present. This is further supported in the comparison 

with STK11 and KEAP1, where the lymphoid compartment has a positive dGSS (= 

0.8864) while the myeloid compartment has a negative dGSS (= -0.8049). 

Myeloid-derived cells, particularly myeloid-derived suppressor cells (MDSCs) and 

tumor-associated macrophages (TAMs), have been identified as key players in the 

progression of lung cancer due to their pro-tumoral activities and negative prognostic 

impact (103, 104). These myeloid subsets contribute to the formation of a supportive 

tumor microenvironment by promoting angiogenesis, immune evasion, and tumor cell 

proliferation (105). These cells exert their pro-tumoral effects by suppressing anti-

tumor immune responses, mainly through the inhibition of T cell proliferation and the 

promotion of regulatory T cells (Tregs) (106). Furthermore, MDSCs and TAMs can 

produce pro-inflammatory cytokines such as IL-6, IL-10, and TGF-β, which promote 

tumor growth and invasiveness (107). The presence of MDSCs in lung cancer tissue 

has been correlated with advanced stages of the disease and poor clinical outcomes 

(108).  

Regardless, it is striking that the STK11 mutation has an up-regulation of genes 

involved in the lymphoid compartment, while KEAP1 has an up-regulation of genes 

involved in the myeloid compartment. However, further investigation is warranted into 

the cross-communication between MDSCs presence and KEAP1 alterations. 

5.3 NF-κB pathway 
In the comparison between STK11 and KEAP1, it was the Nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) pathway in the Nanostring annotations 

library that had the highest dGSS score (= 0.9034) of all the pathways. The NF-κB 

pathway consists of five transcription factors that regulate cellular processes (109). 

The pathway has received much attention in the last three decades, where a large 
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number of human cancers have constitutive NF-κB activity due to the inflammatory 

microenvironment and various oncogenic mutations (109). The pathway induces the 

expression of various proinflammatory genes, including several genes encoding 

cytokines (110). The NF-κB pathways play essential roles in T-cell and B-cell 

activation downstream of T cell receptor and B cell receptor engagement as well as 

in T-cell and B-cell development (110-112). It has been shown that NF-κB activation 

in T cells increases the number of tumour-specific IFNγ-producing CD8+ T cells and 

is required for tumor elimination (113). Similarly, NF-κB activation in lung cancer cells 

induces T cell-mediated immune surveillance and results in tumor rejection owing to 

the expression of T cell-recruiting chemokines, including CCL2 (114). 

We have recently reported that NF-kappa-B signaling is associated with the 

exclusion of cytotoxic T-cells in the immunological desert phenotype (72). The exact 

role of the NF-κB pathway in this setting is not entirely clear cut, but it is obvious that 

this pathway is more upregulated in the samples with STK11 compared to KEAP1. If 

the hypothesis that the presence of KEAP1 mutation limits the immune system and 

contributes to a lowered immune cell infiltration is true, downregulation of this NF-κB 

pathway is a possible explanation mechanism for this phenomenon. 

5.4 The presence of KEAP1 mutation induces chemoresistance  
Although the main purpose of this study was to investigate whether the co-mutations 

or individual alterations in STK11 and KEAP1 genes were the key drivers of poor 

local immune infiltration, there is an underlying theory that poor local immune 

infiltration makes one more resistant to chemotherapy. Some studies have looked at 

KEAP1 mutation and chemoresistance, where it has been shown that mutations in 

the KEAP1 gene gives increased susceptibility to chemoresistance (115, 116). 

Although it was not statistically significant with an adjusted p-value of 0.07837, in our 

study the two genes WNT5A and SK1 in the GSEA analysis were found to be 

upregulated in those with single KEAP1 mutation compared to co-mutation (Table 
S7). Upregulation of these two genes have been associated with chemoresistance, 

where the mechanism is assumed to be that therapeutic drugs are pumped out of the 

cancer cells thus preventing effective treatment (117). Thus, it may seem that in 

addition to KEAP1 providing an immunosuppressive effect and a “colder” tumor 

environment, the mutation also has an additive effect in the form of up-regulation of 
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genes that provide increased chemoresistance in other ways than through changes 

in the immune environment.  

It suggests that if there is a KEAP1 mutation present, chemotherapy will potentially 

have minimal effect. If such a connection is demonstrated in larger studies, it could 

change clinical practice - which today is characterized by conventional chemotherapy 

being first attempted before, changed to the first-line treatment being instead 

immunotherapy against KEAP1.  

5.5 Limitations of this study 
An obvious weakness of this study was that a relatively small number of patients 

were included - with only 23 samples. It will require a similar study with a larger 

cohort to be able to verify the findings in this study. But despite the fact that there 

were a limiting number of samples, it must be taken into consideration that the 

incidence of the investigated mutations is quite low. It will require a large number of 

examined patients and resources in order to be able to find a sufficient number of 

samples. To find only these 23 patients, expensive genomic analyzes of 215 patients 

had to be carried out. It will therefore require enormous resources to put together a 

database with a large representative cohort. What is encouraging is that there is 

more routine genomic profiling of patients with lung cancer, where in the USA it is 

routinely done for all patients and in Norway it is now done for all patients with 

advanced stages in connection with the IMPRESS-study (118). 

6 Conclusion 
This study reveals that KEAP1 mutation is the main driver of the immune desert 

phenotype in early stage lung adenocarcinoma compared to STK11 mutation. 

KEAP1 enrichment, either as a single mutation or co-mutation with STK11, leads to 

greater immune system suppression than STK11 mutation alone, as evidenced by 

the higher number of B-lymphocytes observed in STK11 mutated samples. 

Furthermore, the study suggests a possible link between KEAP1 mutation and 

chemoresistance in early stage lung adenocarcinoma. Future research should 

involve larger sample sizes and more diverse patient populations to validate these 

findings and investigate the underlying mechanisms. In the future, we are planning 
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for a complete examination of the data set with regard to the genes which were found 

to be associated with chemoresistance. 
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Supplementary Figures 
Figure S1: Incidence of lung cancer by gender and age groups between 1992-2022 

in Norway. Source: Annual report for the lung cancer registry 2022 (3). 

 

Figure S2 (left plot): shows the trend for men in incidence (dark blue), mortality 

(light blue) and 5-year relative survival (green) for lung cancer in the period 1965-

2021. The right plot shows the trend for women in incidence (red), mortality (pink) 

and 5-year relative survival (brown) for lung cancer during the same period as for 

figure 2. Source: the report Cancer in Norway 2021(4). 
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Figure S3: Summary of investigation with diagnostic imaging and biopsy (21).  

 

 

Figure S4: Histological classification of lung cancer (19).  
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Figure S5: Incidence of oncogenic drivers in non-small cell lung cancer (17).  
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Figure S6: Based on the spatial distribution of CD8+ T lymphocytes in the tumor 

microenvironment, a gradient of three immunophenotypes is observed: the immune-

desert, immune-excluded and immune-inflamed phenotypes. In the immune-desert 

phenotype, immune cells are absent from the tumor and its periphery. In the immune-

excluded phenotype, immune cells accumulate but do not efficiently infiltrate. In the 

immune-inflamed phenotype, immune cells infiltrate but their effects are inhibited. 

Notably, the three different phenotypes have different response rates to immune 

checkpoint inhibitors (34).  

 

 

 

 

Figure S7: An overview of nCounter workflow for gene expression assay (77) 
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Supplementary Tables  
Table S1: Deadlines for the various parts of the guidelines for lung cancer in Norway 

(21). 
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Table S2: The 8th edition of the TNM classification for non-small lung cancer (26).  
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Table S3: QC metrics for the 23 samples that were included in the study. 

 

 

 

Table S4: The table contains various parameters for the PanglaoDB Cell Types 

pathways for STK11 vs. co-mutation, where the table is sorted by descending FDR-

adjusted p-Value with the most significant p-values at the top. 
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Table S5: The table contains various parameters for the MSigDB Biological Process 

pathways for STK11 vs. co-mutation, where the table is sorted by descending FDR-

adjusted p-Value with the most significant p-values at the top. 

 

 

 

Table S6: The table contains various parameters for the MSigDB Reactome 

pathways for KEAP1 vs. co-mutation, where the table is sorted by descending FDR-

adjusted p-Value with the most significant p-values at the top. 
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Table S7: The table contains various parameters for the MSigDB - Chemical and 

Genetic Perturbations pathways for KEAP1 vs. co-mutation, where the table is sorted 

by descending FDR-adjusted p-value with the most significant p-values at the top. 

The mentioned pathway in the main text is highlighted in light gray in the table. 

 

 

 

Table S8: The table contains various parameters for the PanglaoDB Cell Types 

pathways for STK11 vs. KEAP1, where the table is sorted by descending FDR-

adjusted p-value with the most significant p-values at the top. 
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Table S9: The table gives an overview of the various Panther pathways for the 

comparison between STK11 vs. KEAP1, where the table is sorted by descending 

FDR-adjusted p-value with the most significant p-value at the top. In addition, the box 

on the right shows the up-regulated genes in the "B cell activation" pathways, where 

they are again sorted by decreasing FC (Log2 FC).  

 

 

 

 



 

 

 

 


